JP2012224907A - Method for manufacturing three-dimensionally shaped article - Google Patents

Method for manufacturing three-dimensionally shaped article Download PDF

Info

Publication number
JP2012224907A
JP2012224907A JP2011092920A JP2011092920A JP2012224907A JP 2012224907 A JP2012224907 A JP 2012224907A JP 2011092920 A JP2011092920 A JP 2011092920A JP 2011092920 A JP2011092920 A JP 2011092920A JP 2012224907 A JP2012224907 A JP 2012224907A
Authority
JP
Japan
Prior art keywords
layer
light beam
solidified layer
powder
dimensional shaped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011092920A
Other languages
Japanese (ja)
Other versions
JP5612530B2 (en
Inventor
Satoshi Abe
諭 阿部
Takeshi Matsumoto
武 松本
Masataka Takenami
正孝 武南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2011092920A priority Critical patent/JP5612530B2/en
Publication of JP2012224907A publication Critical patent/JP2012224907A/en
Application granted granted Critical
Publication of JP5612530B2 publication Critical patent/JP5612530B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a three-dimensionally shaped article, for suitably coping with warp deformation of the shaped article.SOLUTION: The method for manufacturing a three-dimensionally shaped article includes repeating (i) a process for forming a solidified layer by irradiating the predetermined portion of a powder layer with a light beam so as to sinter or to melt and solidify the powder in the predetermined portion and (ii) a process for forming a new powder layer on the obtained solidified layer and irradiating the predetermined portion of the new powder layer with a light beam to form another solidified layer. The method is characterized by heat-treating a surface area constituting the outer surface of the three dimensionally shaped article in the surface area of a solidified layer by re-irradiating the surface area with a light beam.

Description

本発明は、三次元形状造形物の製造方法に関する。より詳細には、本発明は、粉末層の所定箇所に光ビームを照射して固化層を形成することを繰り返し実施することによって複数の固化層が積層一体化した三次元形状造形物を製造する方法に関する。   The present invention relates to a method for manufacturing a three-dimensional shaped object. More specifically, the present invention manufactures a three-dimensional shaped object in which a plurality of solidified layers are laminated and integrated by repeatedly performing formation of a solidified layer by irradiating a predetermined portion of the powder layer with a light beam. Regarding the method.

従来より、粉末材料に光ビームを照射して三次元形状造形物を製造する方法(一般的には「粉末焼結積層法」と称される)が知られている。かかる方法では、「(i)粉末層の所定箇所に光ビームを照射することよって、かかる所定箇所の粉末を焼結又は溶融固化させて固化層を形成し、(ii)得られた固化層の上に新たな粉末層を敷いて同様に光ビームを照射して更に固化層を形成する」といったことを繰り返して三次元形状造形物を製造している(特許文献1または特許文献2参照)。粉末材料として金属粉末やセラミック粉末などの無機質の粉末材料を用いた場合では、得られた三次元形状造形物を金型として用いることができ、樹脂粉末やプラスチック粉末などの有機質の粉末材料を用いた場合では、得られた三次元形状造形物をモデルとして用いることができる。このような製造技術によれば、複雑な三次元形状造形物を短時間で製造することが可能である。   Conventionally, a method of manufacturing a three-dimensional shaped object by irradiating a powder material with a light beam (generally referred to as “powder sintering lamination method”) is known. In such a method, “(i) by irradiating a predetermined portion of the powder layer with a light beam, the powder at the predetermined portion is sintered or melt-solidified to form a solidified layer, and (ii) of the obtained solidified layer A three-dimensional shaped article is manufactured by repeating the process of “laying a new powder layer on the top and irradiating the same with a light beam to form a solidified layer” (see Patent Document 1 or Patent Document 2). When inorganic powder materials such as metal powder and ceramic powder are used as the powder material, the obtained three-dimensional shaped object can be used as a mold, and organic powder materials such as resin powder and plastic powder can be used. In such a case, the obtained three-dimensional shaped object can be used as a model. According to such a manufacturing technique, it is possible to manufacture a complicated three-dimensional shaped object in a short time.

粉末焼結積層法では、一般に、造形プレート上において三次元形状造形物が形成される。具体的には、造形テーブル上に造形プレートが配されてボルト等で固定され、その造形プレート上において三次元形状造形物が形成される。粉末材料として金属粉末を用い、得られる三次元形状造形物を金型として用いる場合を例にとると、図1に示すように、まず、所定の厚みt1の粉末層22を造形プレート21上に形成した後(図1(a)参照)、光ビームを粉末層22の所定箇所に照射して、造形プレート21上において固化層24を形成する。そして、形成された固化層24の上に新たな粉末層22を敷いて再度光ビームを照射して新たな固化層を形成する。このように固化層を繰り返し形成すると、複数の固化層24が積層一体化した三次元形状造形物を得ることができる(図1(b)参照)。最下層に相当する固化層は造形プレート面に接着した状態で形成されるので、三次元形状造形物は造形プレートと一体化して得られることになる。そして、一体化した三次元形状造形物と造形プレートとは、そのまま金型として用いることができる。   In the powder sintering lamination method, generally, a three-dimensional shaped object is formed on a modeling plate. Specifically, a modeling plate is arranged on the modeling table and fixed with a bolt or the like, and a three-dimensional modeled object is formed on the modeling plate. Taking a case where a metal powder is used as a powder material and the obtained three-dimensional shaped object is used as a mold, as shown in FIG. 1, first, a powder layer 22 having a predetermined thickness t1 is placed on a modeling plate 21, as shown in FIG. After the formation (see FIG. 1A), the solidified layer 24 is formed on the modeling plate 21 by irradiating a predetermined portion of the powder layer 22 with a light beam. Then, a new powder layer 22 is laid on the formed solidified layer 24 and irradiated again with a light beam to form a new solidified layer. When the solidified layer is repeatedly formed in this way, a three-dimensional shaped object in which a plurality of solidified layers 24 are laminated and integrated can be obtained (see FIG. 1B). Since the solidified layer corresponding to the lowermost layer is formed in a state of being adhered to the modeling plate surface, the three-dimensional modeled object is obtained by being integrated with the modeling plate. Then, the integrated three-dimensional shaped object and the modeling plate can be used as a mold as they are.

特表平1−502890号公報JP-T-1-502890 特開2000−73108号公報JP 2000-73108 A

ここで、三次元形状造形物が光ビームの照射を通じて製造されるものであるため、三次元形状造形物およびそれを支える造形プレートは光ビームによる熱の影響を少なからず受けてしまう。具体的には、粉末層の照射箇所が一旦溶けて溶融状態となり、その後固化することで固化層は形成されるが、その固化する際に収縮現象が生じ得る(図2(a)参照)。特定の理論に拘束されるわけではないが、この収縮現象は、溶融した粉末が冷却・固化する際に応力が発生することに起因している。一方、固化層(即ち、三次元形状造形物)と一体化する造形プレートは、鋼材などから成る剛体であって、ボルトなどで造形テーブルに固定されているので、固化層形成時に収縮しきれず、造形プレートに応力が残留し得る。それゆえ、造形プレートを固定しているボルトを外すと、残留応力の開放に起因してプレートごと造形物が反り返る現象が生じてしまう(図2(b)参照)。   Here, since the three-dimensional shaped object is manufactured through irradiation with a light beam, the three-dimensional shaped object and the modeling plate that supports the three-dimensional shaped object are affected by the heat of the light beam. Specifically, the irradiated portion of the powder layer is once melted to be in a molten state and then solidified to form a solidified layer. However, a shrinkage phenomenon may occur during the solidification (see FIG. 2A). Although not bound by a specific theory, this shrinkage phenomenon is caused by the generation of stress when the molten powder cools and solidifies. On the other hand, the modeling plate that is integrated with the solidified layer (that is, the three-dimensional modeled object) is a rigid body made of steel or the like, and is fixed to the modeling table with bolts, etc. Stress may remain on the modeling plate. Therefore, if the bolt that fixes the modeling plate is removed, a phenomenon occurs in which the modeling object warps together with the plate due to the release of the residual stress (see FIG. 2B).

本発明は、かかる事情に鑑みて為されたものである。即ち、本発明の課題は、造形物の反り変形に好適な対処した三次元形状造形物の製造方法を提供することである。   The present invention has been made in view of such circumstances. That is, the subject of this invention is providing the manufacturing method of the three-dimensional shape molded article which coped with the warp deformation of a molded article suitably.

上記課題を解決するために、本発明では、
(i)粉末層の所定箇所に光ビームを照射して前記所定箇所の粉末を焼結又は溶融固化させて固化層を形成する工程、および
(ii)得られた固化層の上に新たな粉末層を形成し、前記新たな粉末層の所定箇所に光ビームを照射して更なる固化層を形成する工程
を繰り返して行う三次元形状造形物の製造方法であって、
固化層の表面領域のうち、三次元形状造形物の外表面を構成する表面領域に対して光ビームを再照射して加熱処理することを特徴とする、三次元形状造形物の製造方法が提供される。
In order to solve the above problems, in the present invention,
(I) irradiating a predetermined portion of the powder layer with a light beam to sinter or melt-solidify the powder at the predetermined portion to form a solidified layer; and (ii) a new powder on the obtained solidified layer. Forming a layer, irradiating a predetermined portion of the new powder layer with a light beam to form a further solidified layer, a method for producing a three-dimensional shaped object,
Provided is a method for producing a three-dimensional shaped object, characterized by re-irradiating a light beam to a surface region constituting the outer surface of the three-dimensional shaped object among the surface areas of the solidified layer and heat-treating it. Is done.

ある好適な態様では、再照射の対象となる外表面を備えた固化層を形成した後であって、かつ、その固化層の上に新たな粉末層を形成する前において光ビームの再照射を行う。   In a preferred embodiment, the light beam is re-irradiated after forming a solidified layer having an outer surface to be re-irradiated and before forming a new powder layer on the solidified layer. Do.

別のある好適な態様では、光ビームを再照射することによって、“外表面”(三次元形状造形物の外表面を構成する固化層表面領域)及びそれよりも下方に位置する固化層部分を加熱する。好ましくは、“外表面”を備えた固化層から2〜4層下層側に位置する固化層深さまでの固化層部分を加熱する。   In another preferable aspect, by re-irradiating the light beam, the “outer surface” (solidified layer surface region constituting the outer surface of the three-dimensional shaped object) and the solidified layer portion positioned below the “outer surface” are formed. Heat. Preferably, the solidified layer portion from the solidified layer having the “outer surface” to the solidified layer depth located on the lower layer side of the second to fourth layers is heated.

更に別のある好適な態様では、光ビームの再照射による加熱処理によって、“外表面”(三次元形状造形物の外表面を構成する固化層表面領域)の下方の固化層部分の残留応力を減じる。   In still another preferred embodiment, the residual stress of the solidified layer portion below the “outer surface” (solidified layer surface region constituting the outer surface of the three-dimensional shaped object) is reduced by heat treatment by re-irradiation with a light beam. Decrease.

更に別のある好適な態様では、“外表面”(三次元形状造形物の外表面を構成する固化層表面領域)のうちで表面仕上げ加工を施す領域を除いて光ビームの再照射を行う。   In still another preferred aspect, the light beam is re-irradiated except for an area to be surface-finished among “outer surface” (solidified layer surface area constituting the outer surface of the three-dimensional shaped object).

光ビームの再照射の対象となる“外表面”は三次元形状造形物の輪郭形状データから求めることが好ましい。具体的には、“外表面”を有する固化層をN層とし、その上に形成される固化層をN+1層とすると、N+1層に相当する部分の造形物輪郭形状からN層に相当する部分の造形物輪郭形状を差し引くことによって、再照射の対象となる“外表面”を求めることが好ましい。   The “outer surface” to be re-irradiated with the light beam is preferably obtained from the contour shape data of the three-dimensional shaped object. Specifically, when a solidified layer having an “outer surface” is an N layer and a solidified layer formed thereon is an N + 1 layer, a portion corresponding to the N layer from a contour shape of a portion corresponding to the N + 1 layer It is preferable to obtain an “outer surface” to be re-irradiated by subtracting the contour shape of the object.

本発明の製造方法に従えば、三次元形状造形物の製造に際して生じ得る残留応力を効果的に減じることができ、結果として、三次元形状造形物の反り変形を減じることができる。   According to the manufacturing method of the present invention, it is possible to effectively reduce the residual stress that may occur when manufacturing the three-dimensional shaped object, and as a result, it is possible to reduce the warp deformation of the three-dimensional shaped object.

特に本発明においては、残留応力・反り変形を減じるべく行う加熱処理は光ビームの再照射を通じて行っており、それゆえ、かかる光ビームの再照射を固化層形成に付随して実施することができる。また、再照射で加熱処理を施す領域は“三次元形状造形物の外表面となる表面領域”のみであって、あくまでも限定的である。従って、加熱処理に要する時間は短く、全体の製造時間が不必要に長くなることはない。   In particular, in the present invention, the heat treatment performed to reduce the residual stress / warp deformation is performed through re-irradiation of the light beam. Therefore, such re-irradiation of the light beam can be performed accompanying the formation of the solidified layer. . Further, the region where the heat treatment is performed by re-irradiation is only “a surface region that becomes the outer surface of the three-dimensional shaped object”, and is limited to the last. Therefore, the time required for the heat treatment is short, and the entire manufacturing time is not unnecessarily long.

残留応力・反り変形を抑制できると、三次元形状造形物の形状精度を出すことが容易となる。この点、従来技術において、三次元形状造形物の形状精度を出すには、“反り上がり”などの現象を予め想定した上で設計しておかなければならなかったものの、本発明では造形物の表面領域の一部を光ビームで再照射することによって形状精度を出すことができる。つまり、本発明は、そのような具体的に予測困難な現象を視野に入れた設計を“簡易なプロセスの付加”によって省くことができる点で非常に有益である。   If the residual stress / warp deformation can be suppressed, it becomes easy to obtain the shape accuracy of the three-dimensional shaped object. In this regard, in the prior art, in order to obtain the shape accuracy of the three-dimensional shaped object, it was necessary to design it after assuming a phenomenon such as “warping up” in advance. Shape accuracy can be obtained by re-irradiating a part of the surface region with a light beam. In other words, the present invention is very useful in that it is possible to omit such a design taking into account such a phenomenon that is difficult to predict by adding a simple process.

光造形複合加工機の動作を模式的に示した断面図Sectional view schematically showing the operation of the stereolithography combined processing machine 造形物の反り変形を模式的に示した断面図Sectional view schematically showing warpage deformation of a model 光造形(粉末焼結積層法)を実施するための装置を模式的に示した斜視図(図3(a):切削機構を備えた複合装置、図3(b):切削機構を備えていない装置)FIG. 3A is a perspective view schematically showing an apparatus for performing stereolithography (powder sintering lamination method) (FIG. 3A: a composite apparatus provided with a cutting mechanism, FIG. 3B: no cutting mechanism is provided). apparatus) 粉末焼結積層法が行われる態様を模式的に示した斜視図The perspective view which showed typically the aspect by which the powder sintering lamination method is performed 粉末焼結積層法を実施できる光造形複合加工機の構成を模式的に示した斜視図The perspective view which showed typically the composition of the stereolithography compound processing machine which can carry out a powder sintering lamination method 光造形複合加工機の動作のフローチャートFlow chart of operation of stereolithography combined processing machine 光造形複合加工プロセスを経時的に示した模式図Schematic diagram showing the optical modeling complex processing process over time 本発明の概念を模式的に表した図A diagram schematically showing the concept of the present invention 最終的に製造される三次元形状造形物において露出面(最上層)となる固化層表面領域にのみ光ビームを照射する態様を模式的に示した図The figure which showed typically the aspect which irradiates a light beam only to the solidification layer surface area | region used as an exposed surface (uppermost layer) in the three-dimensional shape molded article finally manufactured. 造形物に蓄積され得る残留応力を示したグラフA graph showing the residual stress that can be accumulated in a model 第3層目の固化層の形成に引き続いて、その第3層目の固化層に存在する“造形物外表面を構成する表面領域a3”に光ビームの再照射を行う態様を模式的に示した断面図Following the formation of the solidified layer of the third layer, a mode in which the light beam is re-irradiated to the “surface region a3 constituting the outer surface of the modeled object” existing in the solidified layer of the third layer is schematically shown. Cross section 第4層目の固化層の形成に引き続いて、その第4層目の固化層に存在する“造形物外表面を構成する表面領域a4”に光ビームの再照射を行う態様を模式的に示した断面図Following the formation of the solidified layer of the fourth layer, a mode in which the light beam is re-irradiated to the “surface region a4 constituting the outer surface of the modeled object” existing in the solidified layer of the fourth layer is schematically shown. Cross section 第5層目の固化層の形成に引き続いて、その第5層目の固化層に存在する“造形物外表面を構成する表面領域a5”に光ビームの再照射を行う態様を模式的に示した断面図Following the formation of the solidified layer of the fifth layer, a mode in which the light beam is re-irradiated to the “surface region a5 constituting the outer surface of the modeled object” existing in the solidified layer of the fifth layer is schematically shown. Cross section 光ビームが再照射される“外表面”を三次元形状造形物の輪郭形状データから求める態様を示した説明図Explanatory drawing which showed the aspect which calculates | requires "outer surface" to which a light beam is re-irradiated from the outline shape data of a three-dimensional shape molded article 表面仕上げ加工を施す部分を除いて光ビームの再照射を行う態様を示した断面図。Sectional drawing which showed the aspect which reirradiates a light beam except the part which surface-finishes. 金型使用時にてキャビティ空間を形成する面に対して表面切削加工を行う態様を示した斜視図The perspective view which showed the aspect which surface-cuts with respect to the surface which forms cavity space at the time of metal mold | die use 金型使用時にてコア側とキャビティ側とが接触することになる表面領域の一部に対して表面切削加工を行う態様を示した斜視図The perspective view which showed the aspect which surface-cuts with respect to a part of surface area which a core side and a cavity side will contact at the time of metal mold | die use 固化層部分が収縮して周囲の粉末層よりも低くなる態様を説明するための模式図Schematic diagram for explaining a mode in which the solidified layer portion shrinks and becomes lower than the surrounding powder layer

以下では、図面を参照して本発明をより詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to the drawings.

本明細書において「粉末層」とは、例えば「金属粉末から成る金属粉末層」を実質的に指している。また「粉末層の所定箇所」とは、製造される三次元形状造形物の領域を実質的に意味している。従って、かかる所定箇所に存在する粉末に対して光ビームを照射することによって、その粉末が焼結又は溶融固化して三次元形状造形物の形状を構成することになる。尚、粉末層が金属粉末層となる場合、「固化層」は「焼結層」に相当し、「固化密度」は「焼結密度」に相当し得る。   In the present specification, the “powder layer” substantially refers to, for example, a “metal powder layer made of metal powder”. The “predetermined portion of the powder layer” substantially means a region of the three-dimensional shaped article to be manufactured. Therefore, by irradiating the powder existing at the predetermined location with a light beam, the powder is sintered or melted and solidified to form the shape of the three-dimensional shaped object. When the powder layer is a metal powder layer, “solidified layer” can correspond to “sintered layer” and “solidified density” can correspond to “sintered density”.

[粉末焼結積層法]
まず、本発明の製造方法の前提となる粉末焼結積層法について説明する。説明の便宜上、材料粉末タンクから材料粉末を供給し、均し板を用いて材料粉末を均して粉末層を形成する態様を前提として粉末焼結積層法を説明する。また、粉末焼結積層法に際しては造形物の切削加工をも併せて行う複合加工の態様を例に挙げて説明する(つまり、図3(b)ではなく図3(a)に表す態様を前提とする)。図1,4および5には、粉末焼結積層法と切削加工とを実施できる光造形複合加工機の機能および構成が示されている。光造形複合加工機1は、「金属粉末および樹脂粉末などの粉末を所定の厚みで敷くことによって粉末層を形成する粉末層形成手段2」と「外周が壁27で囲まれた造形タンク29内において上下に昇降する造形テーブル20」と「造形テーブル20上に配され造形物の土台となる造形プレート21」と「光ビームLを任意の位置に照射する光ビーム照射手段3」と「造形物の周囲を削る切削手段4」とを主として備えている。粉末層形成手段2は、図1に示すように、「外周が壁26で囲まれた材料粉末タンク28内において上下に昇降する粉末テーブル25」と「造形プレート上に粉末層22を形成するための均し板23」とを主として有して成る。光ビーム照射手段3は、図4および図5に示すように、「光ビームLを発する光ビーム発振器30」と「光ビームLを粉末層22の上にスキャニング(走査)するガルバノミラー31(スキャン光学系)」とを主として有して成る。必要に応じて、光ビーム照射手段3には、光ビームスポットの形状を補正するビーム形状補正手段(例えば一対のシリンドリカルレンズと、かかるレンズを光ビームの軸線回りに回転させる回転駆動機構とを有して成る手段)やfθレンズなどが具備されている。切削手段4は、「造形物の周囲を削るミーリングヘッド40」と「ミーリングヘッド40を切削箇所へと移動させるXY駆動機構41(41a,41b)」とを主として有して成る(図4および図5参照)。
[Powder sintering lamination method]
First, the powder sintering lamination method as a premise of the production method of the present invention will be described. For the convenience of explanation, the powder sintering lamination method will be described on the premise that the material powder is supplied from the material powder tank and the material powder is leveled using a leveling plate to form a powder layer. Further, in the case of the powder sintering lamination method, a description will be given by taking as an example a mode of composite processing that also performs cutting of a molded article (that is, assuming the mode shown in FIG. 3A instead of FIG. 3B) And). 1, 4 and 5 show the function and configuration of a stereolithographic composite processing machine capable of performing the powder sintering lamination method and cutting. The optical modeling composite processing machine 1 includes “a powder layer forming means 2 for forming a powder layer by spreading a powder such as a metal powder and a resin powder with a predetermined thickness” and “in a modeling tank 29 whose outer periphery is surrounded by a wall 27. In FIG. 2, “a modeling table 20 that moves up and down”, “a modeling plate 21 that is arranged on the modeling table 20 and serves as a foundation of the modeling object”, “a light beam irradiation means 3 that irradiates a light beam L to an arbitrary position”, and “a modeling object” Cutting means 4 ”for cutting the periphery of the main body. As shown in FIG. 1, the powder layer forming means 2 includes “a powder table 25 that moves up and down in a material powder tank 28 whose outer periphery is surrounded by a wall 26” and “to form a powder layer 22 on a modeling plate”. And the leveling plate 23 ". As shown in FIGS. 4 and 5, the light beam irradiation means 3 includes a “light beam oscillator 30 that emits a light beam L” and a “galvanomirror 31 that scans (scans) the light beam L onto the powder layer 22 (scanning). Optical system) ”. If necessary, the light beam irradiation means 3 has beam shape correction means (for example, a pair of cylindrical lenses and a rotation drive mechanism for rotating the lenses around the axis of the light beam) for correcting the shape of the light beam spot. And an fθ lens. The cutting means 4 mainly includes “a milling head 40 that cuts the periphery of a modeled object” and “an XY drive mechanism 41 (41a, 41b) that moves the milling head 40 to a cutting location” (FIGS. 4 and 4). 5).

光造形複合加工機1の動作を図1、図6および図7を参照して詳述する。図6は、光造形複合加工機の一般的な動作フローを示しており、図7は、光造形複合加工プロセスを模式的に簡易に示している。   The operation of the optical modeling complex machine 1 will be described in detail with reference to FIG. 1, FIG. 6, and FIG. FIG. 6 shows a general operation flow of the optical modeling composite processing machine, and FIG. 7 schematically shows the optical modeling composite processing process schematically.

光造形複合加工機の動作は、粉末層22を形成する粉末層形成ステップ(S1)と、粉末層22に光ビームLを照射して固化層24を形成する固化層形成ステップ(S2)と、造形物の表面を切削する切削ステップ(S3)とから主に構成されている。粉末層形成ステップ(S1)では、最初に造形テーブル20をΔt1下げる(S11)。次いで、粉末テーブル25をΔt1上げた後、図1(a)に示すように、均し板23を、矢印A方向に移動させ、粉末テーブル25に配されていた粉末(例えば「平均粒径5μm〜100μm程度の鉄粉」または「平均粒径30μm〜100μm程度のナイロン、ポリプロピレン、ABS等の粉末」)を造形プレート21上へと移送させつつ(S12)、所定厚みΔt1に均して粉末層22を形成する(S13)。次に、固化層形成ステップ(S2)に移行し、光ビーム発振器30から光ビームL(例えば炭酸ガスレーザ(500W程度)、Nd:YAGレーザ(500W程度)、ファイバレーザ(500W程度)または紫外線など)を発し(S21)、光ビームLをガルバノミラー31によって粉末層22上の任意の位置にスキャニングし(S22)、粉末を溶融させ、固化させて造形プレート21と一体化した固化層24を形成する(S23)。光ビームは、空気中を伝達させることに限定されず、光ファイバーなどで伝送させてもよい。   The operation of the optical modeling composite processing machine includes a powder layer forming step (S1) for forming the powder layer 22, a solidified layer forming step (S2) for forming the solidified layer 24 by irradiating the powder layer 22 with the light beam L, It is mainly composed of a cutting step (S3) for cutting the surface of the modeled object. In the powder layer forming step (S1), the modeling table 20 is first lowered by Δt1 (S11). Next, after raising the powder table 25 by Δt1, as shown in FIG. 1A, the leveling plate 23 is moved in the direction of arrow A, and the powder (for example, “average particle size 5 μm”) ˜iron powder of about 100 μm ”or“ powder of nylon, polypropylene, ABS, etc. having an average particle size of about 30 μm to 100 μm ”is transferred onto the modeling plate 21 (S12), and the powder layer is averaged to a predetermined thickness Δt1 22 is formed (S13). Next, the process proceeds to the solidified layer forming step (S2), and the light beam L (for example, carbon dioxide laser (about 500 W), Nd: YAG laser (about 500 W), fiber laser (about 500 W), ultraviolet light, etc.) from the light beam oscillator 30) (S21), the light beam L is scanned to an arbitrary position on the powder layer 22 by the galvanometer mirror 31 (S22), and the powder is melted and solidified to form the solidified layer 24 integrated with the modeling plate 21. (S23). The light beam is not limited to being transmitted in the air, but may be transmitted by an optical fiber or the like.

固化層24の厚みがミーリングヘッド40の工具長さ等から求めた所定厚みになるまで粉末層形成ステップ(S1)と固化層形成ステップ(S2)とを繰り返し、固化層24を積層する(図1(b)参照)。かかる積層過程では、新たに積層される固化層が、焼結又は溶融固化に際して、既に形成された下層を成す固化層と一体化する。   The powder layer forming step (S1) and the solidified layer forming step (S2) are repeated until the thickness of the solidified layer 24 reaches a predetermined thickness obtained from the tool length of the milling head 40, and the solidified layer 24 is laminated (FIG. 1). (See (b)). In such a lamination process, the newly-solidified solidified layer is integrated with the solidified layer forming the lower layer already formed during sintering or melt solidification.

積層した固化層24の厚みが所定の厚みになると、切削ステップ(S3)へと移行する。図1および図7に示すような態様ではミーリングヘッド40を駆動させることによって切削ステップの実施を開始している(S31)。例えば、ミーリングヘッド40の工具(ボールエンドミル)が直径1mm、有効刃長さ3mmである場合、深さ3mmの切削加工ができるので、Δt1が0.05mmであれば、60層の固化層を形成した時点でミーリングヘッド40を駆動させる。XY駆動機構41(41a,41b)によってミーリングヘッド40を矢印X及び矢印Y方向に移動させ、積層した固化層24から成る造形物の表面を切削加工する(S32)。そして、三次元形状造形物の製造が依然終了していない場合では、粉末層形成ステップ(S1)へ戻ることになる。以後、S1乃至S3を繰り返して更なる固化層24を積層することによって、三次元形状造形物の製造を行う(図7参照)。   When the thickness of the laminated solidified layer 24 reaches a predetermined thickness, the process proceeds to the cutting step (S3). In the embodiment shown in FIGS. 1 and 7, the cutting step is started by driving the milling head 40 (S31). For example, when the tool (ball end mill) of the milling head 40 has a diameter of 1 mm and an effective blade length of 3 mm, a cutting process with a depth of 3 mm can be performed. Therefore, if Δt1 is 0.05 mm, 60 solidified layers are formed. At that time, the milling head 40 is driven. The milling head 40 is moved in the directions of the arrow X and the arrow Y by the XY drive mechanism 41 (41a, 41b), and the surface of the shaped object composed of the laminated solidified layer 24 is cut (S32). And when manufacture of a three-dimensional shape molded article has not ended yet, it will return to a powder layer formation step (S1). Thereafter, the three-dimensional shaped object is manufactured by repeating S1 to S3 and laminating a further solidified layer 24 (see FIG. 7).

固化層形成ステップ(S2)における光ビームLの照射経路と、切削ステップ(S3)における切削加工経路とは、予め三次元CADデータから作成しておく。この時、等高線加工を適用して加工経路を決定する。例えば、固化層形成ステップ(S2)では、三次元CADモデルから生成したSTLデータを等ピッチ(例えばΔt1を0.05mmとした場合では0.05mmピッチ)でスライスした各断面の輪郭形状データを用いる。   The irradiation path of the light beam L in the solidified layer forming step (S2) and the cutting path in the cutting step (S3) are previously created from three-dimensional CAD data. At this time, a machining path is determined by applying contour line machining. For example, in the solidified layer forming step (S2), contour shape data of each cross section obtained by slicing STL data generated from a three-dimensional CAD model at an equal pitch (for example, 0.05 mm pitch when Δt1 is 0.05 mm) is used. .

[本発明の製造方法]
本発明の製造方法は、上記の粉末焼結積層法につき、造形物に発生し得る応力を特に考慮して案出されたものである。具体的には、本発明においては、図8に示すように三次元形状造形物24の外表面を構成する表面領域(図面中の“斜線ハッチング部”)に対して光ビームを再照射して加熱処理を施す。つまり、図示するように、三次元形状造形物24の最上層となる部分にのみ光ビームを照射(加熱)する。
[Production method of the present invention]
The production method of the present invention has been devised in consideration of the stress that can be generated in a shaped article, with respect to the powder sintering lamination method described above. Specifically, in the present invention, as shown in FIG. 8, the light beam is re-irradiated to the surface region (“hatched portion” in the drawing) that constitutes the outer surface of the three-dimensional shaped object 24. Heat treatment is performed. That is, as shown in the drawing, the light beam is irradiated (heated) only to the uppermost layer of the three-dimensional shaped object 24.

以下の説明では、粉末として「金属粉末」を用いる態様(即ち、粉末層として金属粉末層を用いる態様)を例にとって説明する。ちなみに、本発明に用いる金属粉末は、鉄系粉末を主成分とした粉末であって、場合によってニッケル粉末、ニッケル系合金粉末、銅粉末、銅系合金粉末および黒鉛粉末などから成る群から選択される少なくとも1種類を更に含んで成る粉末であってよい(一例として、平均粒径20μm程度の鉄系粉末の配合量が60〜90重量%、ニッケル粉末及びニッケル系合金粉末の両方又はいずれか一方の配合量が5〜35重量%、銅粉末および/または銅系合金粉末の両方又はいずれか一方の配合量が5〜15重量%、ならびに、黒鉛粉末の配合量が0.2〜0.8重量%となった金属粉末を挙げることができる)。   In the following description, an embodiment using “metal powder” as a powder (that is, an embodiment using a metal powder layer as a powder layer) will be described as an example. Incidentally, the metal powder used in the present invention is a powder mainly composed of an iron-based powder, and is optionally selected from the group consisting of nickel powder, nickel-based alloy powder, copper powder, copper-based alloy powder, graphite powder, and the like. (For example, the amount of the iron-based powder having an average particle size of about 20 μm is 60 to 90% by weight, either or both of the nickel powder and the nickel-based alloy powder. 5 to 35% by weight, copper powder and / or copper-based alloy powder or 5 to 15% by weight, and graphite powder is 0.2 to 0.8%. Examples thereof include metal powders having a weight%).

本発明では、固化層形成に用いた光ビームを用いて、再度、その形成された固化層の表面領域を照射する。再照射を施す表面領域は、必ずしも固化層の表面領域の全てというわけではなく、あくまでも「三次元形状造形物の外表面を構成する表面領域」である。つまり、最終的に製造される三次元形状造形物において露出面となる固化層表面領域に対してのみ光ビームを照射する。より具体的には、図9に示されるように、三次元形状造形物の露出面のなかでも特に上側面を成す固化層露出面に対して光ビームを照射して加熱する。   In the present invention, the surface region of the formed solidified layer is irradiated again using the light beam used for forming the solidified layer. The surface area to which re-irradiation is performed is not necessarily the entire surface area of the solidified layer, but is merely a “surface area constituting the outer surface of the three-dimensional shaped object”. That is, the light beam is irradiated only to the solidified layer surface region that becomes the exposed surface in the finally manufactured three-dimensional shaped object. More specifically, as shown in FIG. 9, among the exposed surfaces of the three-dimensional shaped object, the solidified layer exposed surface that forms the upper side surface is irradiated with a light beam and heated.

このような光ビームの再照射は、本発明の創作過程において見出した図10のグラフ結果に依拠している。本願発明者らは、『三次元形状造形物に蓄積され得る残留応力というものは、造形物の最上面近傍、即ち、最後に溶融固化された層付近に集中し、中間部分には応力がほとんど残留しない傾向がある』ということを見出している(図10のグラフ参照)。特定の理論に拘束されるわけではないが、これは、中間部分のN層目を溶融固化(焼結)する際には収縮応力が発生して残留するが、N+1層目,N+2層目・・・と溶融固化(焼結)が繰り返されるときにN層目が熱影響を受けて応力緩和することが要因として考えられる。   Such re-irradiation of the light beam relies on the graph result of FIG. 10 found in the creation process of the present invention. The inventors of the present application stated that “the residual stress that can be accumulated in the three-dimensional shaped object is concentrated near the uppermost surface of the object, that is, near the layer finally melted and solidified, and almost no stress is applied to the intermediate part. It tends to not remain ”(see graph of FIG. 10). Although not limited by a specific theory, this is because when the N layer in the middle part is melted and solidified (sintered), shrinkage stress is generated and remains, but the N + 1 layer, N + 2 layer, It is considered that the reason is that the Nth layer is subjected to thermal influence and stress relaxation when melt solidification (sintering) is repeated.

図10のグラフに基づくと、残留応力を除去するための加熱処理を中間層に相当する固化層に行っても、かかる中間層では意味がなく、処理時間が長くなるだけである。中間層では、その上の固化層形成に際して熱影響を受けて残留応力が必然的に減じられるので、重畳的な加熱処理を積極的に施す意味合いは低い。それゆえ、加熱処理は、中間層ではなく、応力が残留し得る最上層の表面に対してのみ施すことが効率的であるといえる。ここで“応力が残留し得る最上層の表面”というのは、「三次元形状造形物の外表面を構成する表面領域」に相当する。従って、本発明では、固化層の表面領域のうち“三次元形状造形物の外表面を構成する表面領域”にのみ加熱処理を施す。   Based on the graph of FIG. 10, even if the heat treatment for removing the residual stress is performed on the solidified layer corresponding to the intermediate layer, the intermediate layer has no meaning and only the processing time is increased. In the intermediate layer, the residual stress is inevitably reduced due to the influence of heat when the solidified layer is formed on the intermediate layer, and therefore, the meaning of actively performing the superimposed heat treatment is low. Therefore, it can be said that it is efficient to perform the heat treatment only on the surface of the uppermost layer where stress can remain, not the intermediate layer. Here, “the surface of the uppermost layer on which stress can remain” corresponds to “a surface region constituting the outer surface of the three-dimensional shaped object”. Therefore, in the present invention, only the “surface region constituting the outer surface of the three-dimensional shaped object” in the surface region of the solidified layer is subjected to heat treatment.

このように、本発明においては光ビームの再照射による加熱処理を全層・全表面領域にわたって行うのではなく、残留応力が蓄積している最上層・最表面領域のみに施すので、加熱処理時間が全体として短縮され、ひいては、造形時間の短縮につながる。   Thus, in the present invention, the heat treatment by re-irradiation of the light beam is not performed on the entire layer / surface area, but only on the uppermost layer / surface area where residual stress is accumulated. Will be shortened as a whole, leading to a reduction in modeling time.

再照射に用いる光ビームの照射源としては、固化層形成に用いた照射源を用いることができる。従って、光造形(即ち、粉末焼結積層法)の装置をそのまま利用でき、設備コストの点でメリットがあるだけでなく、同じ装置を用いるために製造プロセス全体がスムーズとなり得る。再照射時の光ビームの照射条件は、固化層形成時の光ビームの照射条件と同程度であってよい。例えば、再照射時の光ビームの照射エネルギー密度Eは4〜15J/mm程度であってよい。尚、エネルギー密度E=レーザ出力(W)/(走査速度(mm/s)×走査ピッチ(mm)である(製造条件は例えば、粉末の積層厚さ:0.05mm、レーザの種類:CO(炭酸ガス)レーザ、スポット径:0.5mmである)。 As the irradiation source of the light beam used for re-irradiation, the irradiation source used for forming the solidified layer can be used. Therefore, an apparatus for stereolithography (that is, a powder sintering lamination method) can be used as it is, which is not only advantageous in terms of equipment cost, but also because the same apparatus is used, the entire manufacturing process can be smooth. The irradiation condition of the light beam at the time of re-irradiation may be approximately the same as the irradiation condition of the light beam at the time of forming the solidified layer. For example, the irradiation energy density E of the light beam at the time of re-irradiation may be about 4 to 15 J / mm 2 . Note that energy density E = laser output (W) / (scanning speed (mm / s) × scanning pitch (mm) (manufacturing conditions are, for example, powder lamination thickness: 0.05 mm, laser type: CO 2 (Carbon dioxide gas) laser, spot diameter: 0.5 mm).

好適な加熱処理を実現するために、再照射時の光ビームの照射条件を固化層形成時の光ビームの照射条件から変えてもよい。照射条件の変更は、(a)光ビームの照射エネルギー(出力エネルギー)を調整することによって実施できる他、(b)光ビームの走査速度の調整、(c)光ビームの走査ピッチの調整、(d)光ビームの集光径の調整などによっても実施できる。例えば、再照射時の加熱処理温度を上げるためには、(a)光ビームの出力エネルギーを上げることの他に、(b)光ビームの走査速度を下げる、(c)光ビームの走査ピッチを狭くする、(d)光ビームの集光径を小さくすることによっても達成することができる。逆に、再照射時の加熱処理温度を下げるためには、(a)光ビームの照射エネルギー(出力エネルギー)を下げることの他に、(b)光ビームの走査速度を上げる、(c)光ビームの走査ピッチを拡げる、(d)光ビームの集光径を大きくすることによっても達成できる。これら(a)〜(d)は、単独で行ってもよいものの、相互に種々に組み合わせて行ってもよい。   In order to realize a suitable heat treatment, the irradiation condition of the light beam at the time of re-irradiation may be changed from the irradiation condition of the light beam at the time of forming the solidified layer. The irradiation conditions can be changed by (a) adjusting the irradiation energy (output energy) of the light beam, (b) adjusting the scanning speed of the light beam, (c) adjusting the scanning pitch of the light beam, ( d) It can also be carried out by adjusting the condensing diameter of the light beam. For example, in order to increase the heat treatment temperature during re-irradiation, in addition to (a) increasing the output energy of the light beam, (b) decreasing the scanning speed of the light beam, (c) reducing the scanning pitch of the light beam. (D) It can also be achieved by reducing the condensing diameter of the light beam. Conversely, in order to lower the heat treatment temperature at the time of re-irradiation, in addition to (a) reducing the irradiation energy (output energy) of the light beam, (b) increasing the scanning speed of the light beam, (c) light This can also be achieved by expanding the scanning pitch of the beam, or (d) increasing the condensing diameter of the light beam. These (a) to (d) may be performed independently, but may be performed in various combinations with each other.

なお、焼鈍による残量応力の低減効果に鑑みれば、再照射領域を急熱・急冷させない方が好ましい。それゆえ、かかる事項を特に重視すれば、再照射時の光ビームの集光径を固化層形成時の集光径よりも大きくすることが好ましい。   In view of the effect of reducing the residual stress due to annealing, it is preferable not to rapidly heat / cool the re-irradiated region. Therefore, if this matter is particularly emphasized, it is preferable to make the condensing diameter of the light beam at the time of re-irradiation larger than the condensing diameter at the time of forming the solidified layer.

固化層の表面領域のうち“三次元形状造形物の外表面を構成する表面領域”に相当する部分は、固化層形成時に光ビームが照射されると共に、固化層形成後においても加熱処理のために光ビームが照射される。つまり、“外表面を構成する表面領域”は、固化層形成時と熱処理時との2回にわたって光ビームが照射される領域である。このような態様に鑑みて本明細書は「再照射」という用語を使用している。換言すれば、本明細書において「光ビームを再照射する」という表現は、固化層形成時のみならず、その固化層形成後の加熱処理時においても光ビームを照射する態様を実質的に指している。   Of the surface area of the solidified layer, the portion corresponding to the “surface area constituting the outer surface of the three-dimensional shaped object” is irradiated with a light beam when the solidified layer is formed, and is also subjected to heat treatment after the solidified layer is formed. Is irradiated with a light beam. That is, the “surface region constituting the outer surface” is a region to which the light beam is irradiated twice during formation of the solidified layer and during heat treatment. In view of such aspects, this specification uses the term “re-irradiation”. In other words, the expression “re-irradiating the light beam” in this specification substantially refers to an aspect in which the light beam is irradiated not only during the solidified layer formation but also during the heat treatment after the solidified layer formation. ing.

光ビームの再照射は、その対象となる外表面が形成された時点で行うことが好ましい。つまり、再照射の対象となる外表面を備えた固化層の形成後であって、かつ、その固化層上に行われる新たな粉末層の形成前において再照射を行うことが好ましい。例えば図9に示されるような三次元形状造形物24を製造する場合を想定すると、第3層目の固化層に存在する“造形物外表面を構成する表面領域a3”については、図11に示されるように、その第3層目の固化層の形成に引き続いて光ビームの再照射を行うことが好ましい。同様にして、第4層目の固化層に存在する“造形物外表面を構成する表面領域a4”については、図12に示されるように、その第4層目の固化層の形成に引き続いて光ビームの再照射を行うことが好ましく、また、第5層目の固化層に存在する“造形物外表面を構成する表面領域a5”については、図13に示されるように、その第5層目の固化層の形成に引き続いて光ビームの再照射を行うことが好ましい。このように、対象となる造形物外表面が表れた時点で光ビームの再照射を行うと、三次元形状造形物の形状がどのようなものであっても、確実に“外表面”に対して光ビームを再照射することができる。例えば三次元形状造形物が複雑な形状を有する場合であって、造形物の完成後に光ビームの再照射を実施する場合を想定すると、光ビームの経路が造形物によって遮られ、光ビームが届かない領域が存在し得る。つまり、“造形物外表面を構成する表面領域”の全てに対して光ビームの照射を施すことができない可能性がある。このような理由から、本発明では光ビームの照射は、対象となる造形物外表面が表れた時点、即ち、造形物外表面を備えた固化層が形成された後であって、かつ、その固化層の上に新たな粉末層が形成される前に再照射を行うことが好ましい。   The re-irradiation of the light beam is preferably performed at the time when the target outer surface is formed. That is, it is preferable to perform re-irradiation after formation of a solidified layer having an outer surface to be re-irradiated and before formation of a new powder layer performed on the solidified layer. For example, assuming that a three-dimensional shaped article 24 as shown in FIG. 9 is manufactured, the “surface region a3 constituting the outer surface of the article” existing in the third solidified layer is shown in FIG. As shown, it is preferable to re-irradiate the light beam following the formation of the third solidified layer. Similarly, regarding the “surface region a4 constituting the outer surface of the modeled object” existing in the fourth solidified layer, as shown in FIG. 12, following the formation of the fourth solidified layer. It is preferable to perform re-irradiation with the light beam, and the “surface region a5 constituting the outer surface of the modeled object” existing in the fifth solidified layer is the fifth layer as shown in FIG. It is preferable to re-irradiate the light beam following the formation of the solidified layer of the eye. In this way, when the light beam is re-irradiated when the target outer surface of the target object appears, regardless of the shape of the three-dimensional target object, The light beam can be re-irradiated. For example, if the 3D model has a complicated shape and the light beam is re-irradiated after completion of the model, the path of the light beam is blocked by the model and the light beam reaches. There may be no areas. That is, it may not be possible to irradiate all of the “surface region constituting the outer surface of the model” with the light beam. For this reason, in the present invention, the irradiation of the light beam is performed at the time when the outer surface of the object to be modeled appears, that is, after the solidified layer having the outer surface of the model is formed, and Re-irradiation is preferably performed before a new powder layer is formed on the solidified layer.

光ビームの再照射によって、その処理対象の造形物外表面を加熱すると共に、その外表面よりも下方に位置する固化層部分を加熱することが好ましい(図8参照)。これは、図10のグラフ結果に依拠しているものである。つまり、光ビームの再照射で造形物外表面およびその下方の固化層部分を加熱すると、図10のグラフにおける“A部分の残留応力”を減じることができる。図10のグラフのA部分は、造形物の最上層からその2〜7層ほどの下層に至る部分に相当する。従って、光ビームの再照射によって、その処理対象の外表面層から2〜7層下層、好ましくは2〜4層下層の固化層深さに至る固化層部分を加熱すると、その部分に残量している応力を効果的に減じることができる(各固化層厚さは、例えば0.02mm〜0.08mm程度である)。特定の理論に拘束されるわけではないが、再照射時においては“外表面よりも下方に位置する固化層部分”が焼鈍効果を好適に受けることになり、それによって、その部分の残留応力が減じられるものと考えられる。   It is preferable to heat the outer surface of the object to be processed by re-irradiation with the light beam and to heat the solidified layer portion positioned below the outer surface (see FIG. 8). This is based on the graph result of FIG. That is, when the outer surface of the modeled object and the solidified layer portion below it are heated by re-irradiation with the light beam, the “residual stress in the portion A” in the graph of FIG. 10 can be reduced. The portion A in the graph of FIG. 10 corresponds to a portion from the uppermost layer of the model to the lower layer of about 2 to 7 layers. Therefore, when the solidified layer portion is heated by re-irradiation with the light beam from the outer surface layer to be processed to the solidified layer depth of 2 to 7 lower layers, preferably 2 to 4 lower layers, the remaining amount remains in that portion. Can be effectively reduced (the thickness of each solidified layer is, for example, about 0.02 mm to 0.08 mm). While not being bound by a specific theory, at the time of re-irradiation, the “solidified layer portion positioned below the outer surface” is suitably subjected to the annealing effect, whereby the residual stress of that portion is reduced. It is considered to be reduced.

光ビームの再照射の対象となる“外表面”は三次元形状造形物の輪郭形状データから求めることができる(図14参照)。具体的には、光ビームの再照射領域は、積層焼結する際に用いられる、3Dモデル形状データをスライスした、各層の輪郭形状データを基にして求めることができる。   The “outer surface” to be re-irradiated with the light beam can be obtained from the contour shape data of the three-dimensional shaped object (see FIG. 14). Specifically, the re-irradiation region of the light beam can be obtained based on the contour shape data of each layer obtained by slicing the 3D model shape data used when laminating and sintering.

具体的には、“外表面”を有する固化層をN層とし、その上に形成される固化層をN+1層とすると、「N+1層に相当する造形物部分の輪郭形状データ」から「N層に相当する造形物部分の輪郭形状データ」を差し引くことによって再照射の対象となる“外表面”を求めることができる。例えば2層目に行われる光ビームの再照射領域は、2層目の固化層の輪郭形状から、3層目の固化層の輪郭形状を差し引いて残った部分となる(図14参照)。図示されるように、かかる部分は、2層目では“塗りつぶされる”ものの、3層目では“塗りつぶされない”部分となる。   Specifically, assuming that the solidified layer having the “outer surface” is an N layer and the solidified layer formed thereon is an N + 1 layer, the “N layer layer contour shape data corresponding to the N + 1 layer” is derived from the “N layer. The “outer surface” that is the object of re-irradiation can be obtained by subtracting the “contour shape data of the shaped part corresponding to“. For example, the re-irradiation region of the light beam performed in the second layer is a portion remaining by subtracting the contour shape of the third solidified layer from the contour shape of the second solidified layer (see FIG. 14). As shown in the drawing, such a portion is “painted” in the second layer, but becomes “not painted” in the third layer.

上記のような再照射領域の決定スキームに基づくと、本発明は、各層において、その層よりも上方に塗りつぶし領域がない部分(図8の斜線ハッチング部)を抽出し、その部分に対して光ビームを再照射して残留応力を除去する態様であるといえる。上方に塗りつぶし領域がない部分は、造形に使用するスライスデータ(各層の輪郭線データ)を元に抽出される。一方、対象となる層よりも上方に塗りつぶし領域がある部分は、上層の焼結による熱影響で焼鈍され、残留応力が除去されることになる。   Based on the re-irradiation area determination scheme as described above, the present invention extracts, in each layer, a portion where there is no filled area above the layer (the hatched portion in FIG. 8), and light is applied to the portion. It can be said that the residual stress is removed by re-irradiating the beam. A portion having no filled area above is extracted based on slice data (contour line data of each layer) used for modeling. On the other hand, the portion having the filled region above the target layer is annealed by the heat effect of the upper layer sintering, and the residual stress is removed.

光ビームの再照射による熱処理を複数層に渡って行う場合、即ち、光ビームの再照射により“造形物外表面”とその下方に位置する固化層部分を加熱する場合であっても、“輪郭形状データ”から再照射領域を求めることができる。例えば、光ビームの再照射による熱処理をK層に渡って行う場合、N層目の光ビームの再照射範囲は、N層目の輪郭形状からN+K層目の輪郭形状を差し引いた部分となる。   Even when heat treatment by re-irradiation of the light beam is performed over a plurality of layers, that is, when the “outer surface of the object” and the solidified layer portion located therebelow are heated by re-irradiation of the light beam, The re-irradiation area can be obtained from the “shape data”. For example, when heat treatment by re-irradiation of the light beam is performed over the K layer, the re-irradiation range of the N-th layer light beam is a portion obtained by subtracting the N + K-th layer contour shape from the N-th layer contour shape.

本発明の製造方法では、固化層の表面領域のなかでも造形物の外表面を構成する領域に対してのみ光ビームの再照射を行うが、最終的に表面仕上げ加工を施す領域が存在する場合ではその部分を除いて再照射を行うことが好ましい(図15参照)。残留応力は表層部に蓄積しているものの、表面切削加工などの表面仕上げ加工が行われる場合、そのような残留応力の蓄積部分が結果として除去されてしまうからである。即ち、そのように表面仕上げ加工を行う予定の領域は、熱処理による残留応力除去処理が必要ないので、造形物の外表面となる表面領域であっても光ビームの再照射を行わない。   In the manufacturing method of the present invention, the light beam is re-irradiated only to the region constituting the outer surface of the modeled object among the surface regions of the solidified layer, but there is a region where the surface finishing is finally performed. Then, it is preferable to perform re-irradiation except the part (refer FIG. 15). This is because although the residual stress is accumulated in the surface layer portion, when a surface finishing process such as a surface cutting process is performed, such a residual stress accumulation part is removed as a result. That is, since the region where the surface finishing process is to be performed does not require the residual stress removal process by the heat treatment, the light beam is not re-irradiated even if the surface area is the outer surface of the modeled object.

ここで、三次元形状造形物の製造においては、その造形物の用途を考慮して必要な箇所にのみ表面切削加工を行う場合がある(特に、造形物使用時に力のかかる表面領域に表面切削加工を施すことが好ましい)。例えば、三次元形状造形物をコア側またはキャビティ側の金型として用いる場合では、金型使用時にてキャビティ空間を形成する面に対して表面切削加工を行う場合がある(図16参照)。また、金型使用時にてコア側とキャビティ側とが接触することになる表面領域の一部(特にキャビティ空間形成面の直ぐ外側に位置する環状の表面領域部)に切削加工を施す場合もある(図17参照)。従って、本発明では、そのような表面切削加工領域を除いて光ビームの再照射を行うことが好ましい。これによって、再照射を施す範囲を減じることができ、熱処理時間が全体として短縮されるので、より効率的な造形が実現される。   Here, in the manufacture of a three-dimensional shaped object, surface cutting may be performed only on a necessary part in consideration of the use of the modeled object (particularly, surface cutting is performed on a surface area where force is applied when using the three-dimensional object). Preferably processed). For example, when a three-dimensional shaped object is used as a core-side or cavity-side mold, surface cutting may be performed on a surface that forms a cavity space when the mold is used (see FIG. 16). Further, a part of the surface region (particularly the annular surface region located just outside the cavity space forming surface) where the core side and the cavity side come into contact when the mold is used may be cut. (See FIG. 17). Therefore, in the present invention, it is preferable to re-irradiate the light beam except for such a surface cutting region. As a result, the re-irradiation range can be reduced, and the heat treatment time is shortened as a whole, so that more efficient modeling is realized.

以上、本発明の好適な実施形態を中心に説明してきたが、本発明はこれに限定されず、種々の改変がなされ得ることを当業者は容易に理解されよう。例えば、以下のような変更態様が考えられる。   As described above, the preferred embodiment of the present invention has been described mainly. However, the present invention is not limited to this, and those skilled in the art can easily understand that various modifications can be made. For example, the following modifications can be considered.

● 上記説明においては、光ビームの再照射を、その対象となる“外表面”が表れた時点で行う態様を主として説明したが、本発明は必ずしもかかる態様に限定されない。例えば、造形物製造が完了した後に一括して“外表面”に対して光ビームの照射を行ってもよい。 In the above description, the aspect in which the re-irradiation of the light beam is performed mainly when the “outer surface” as the target appears, but the present invention is not necessarily limited to such an aspect. For example, the light beam may be irradiated to the “outer surface” in a lump after the manufacturing of the molded article is completed.

● また、本発明では、光ビームの再照射は、その再照射の対象となる外表面を備えた固化層が形成された後であって、かつ、その固化層の上に新たな粉末層が形成される前に行うことが好ましいが、そのような再照射に先立って周囲の粉末を予め除去しておいてもよい。これは、図18に示すように、固化層形成時には、その固化層部分24が収縮して周囲の粉末層22よりも低くなり得ることを特に考慮したものである。つまり、そのような盛り上がった粉末層部分22は固化層の再照射に都合が良いとはいえず、それゆえ、再照射に先立って除去しておくことが好ましい。 In the present invention, the light beam is re-irradiated after a solidified layer having an outer surface to be re-irradiated is formed, and a new powder layer is formed on the solidified layer. Although it is preferably performed before formation, the surrounding powder may be removed in advance prior to such re-irradiation. As shown in FIG. 18, this particularly takes into account that the solidified layer portion 24 may shrink and become lower than the surrounding powder layer 22 when the solidified layer is formed. That is, such a raised powder layer portion 22 is not convenient for re-irradiation of the solidified layer, and therefore it is preferable to remove it before re-irradiation.

● 更に、上記説明においては、再照射は、固化層形成に用いる光ビーム照射源を使用する態様を主として説明したが、本発明は必ずしもかかる態様に限定されない。例えば、再照射源として、光造形の光ビーム照射源とは異なる熱源、例えばアーク放電源、溶射源などを用いてもよい。 Furthermore, in the above description, re-irradiation has mainly been described with respect to an embodiment in which a light beam irradiation source used for forming a solidified layer is used, but the present invention is not necessarily limited to such an embodiment. For example, as the re-irradiation source, a heat source different from the light beam irradiation source for optical modeling, such as an arc discharge power source or a thermal spray source, may be used.

1 光造形複合加工機
2 粉末層形成手段
3 光ビーム照射手段
4 切削手段
19 粉末/粉末層(例えば金属粉末/金属粉末層または樹脂粉末/樹脂粉末層)
20 造形テーブル
21 造形プレート
22 粉末層(例えば金属粉末層または樹脂粉末層)
23 均し板
24 固化層(例えば焼結層または硬化層)またはそれから得られる三次元形状造形物
25 粉末テーブル
26 粉末材料タンクの壁部分
27 造形タンクの壁部分
28 粉末材料タンク
29 造形タンク
30 光ビーム発振器
31 ガルバノミラー
32 反射ミラー
33 集光レンズ
40 ミーリングヘッド
41 XY駆動機構
41a X軸駆動部
41b Y軸駆動部
42 ツールマガジン
50 チャンバー
52 光透過窓
L 光ビーム
DESCRIPTION OF SYMBOLS 1 Optical modeling combined processing machine 2 Powder layer formation means 3 Light beam irradiation means 4 Cutting means 19 Powder / powder layer (For example, metal powder / metal powder layer or resin powder / resin powder layer)
20 modeling table 21 modeling plate 22 powder layer (for example, metal powder layer or resin powder layer)
23 Leveling plate 24 Solidified layer (for example, sintered layer or hardened layer) or three-dimensional shaped object 25 obtained therefrom Powder table 26 Wall part 27 of powder material tank Wall part 28 of modeling tank 28 Powder material tank 29 Modeling tank 30 Light Beam oscillator 31 Galvano mirror 32 Reflection mirror 33 Condensing lens 40 Milling head 41 XY drive mechanism 41a X axis drive unit 41b Y axis drive unit 42 Tool magazine 50 Chamber 52 Light transmission window L Light beam

Claims (7)

(i)粉末層の所定箇所に光ビームを照射して前記所定箇所の粉末を焼結又は溶融固化させて固化層を形成する工程、および
(ii)得られた固化層の上に新たな粉末層を形成し、前記新たな粉末層の所定箇所に光ビームを照射して更なる固化層を形成する工程
を繰り返して行う三次元形状造形物の製造方法であって、
前記固化層の表面領域のうち、前記三次元形状造形物の外表面を構成する表面領域に対して前記光ビームを再照射して加熱処理することを特徴とする、三次元形状造形物の製造方法。
(I) irradiating a predetermined portion of the powder layer with a light beam to sinter or melt-solidify the powder at the predetermined portion to form a solidified layer; and (ii) a new powder on the obtained solidified layer. Forming a layer, irradiating a predetermined portion of the new powder layer with a light beam to form a further solidified layer, a method for producing a three-dimensional shaped object,
Of the surface region of the solidified layer, the surface region constituting the outer surface of the three-dimensional shaped object is re-irradiated with the light beam and subjected to heat treatment, thereby producing a three-dimensional shaped object Method.
前記再照射を、該再照射の対象となる前記外表面を有する固化層を形成した後であって、かつ、該固化層の上に前記新たな粉末層を形成する前に行うことを特徴とする、請求項1に記載の三次元形状造形物の製造方法。   The re-irradiation is performed after forming the solidified layer having the outer surface to be re-irradiated and before forming the new powder layer on the solidified layer, The manufacturing method of the three-dimensional shaped structure according to claim 1. 前記再照射によって、前記外表面を構成する前記表面領域および該表面領域よりも下方に位置する固化層部分を加熱することを特徴とする、請求項1または2に記載の三次元形状造形物の製造方法。   The three-dimensional shaped object according to claim 1 or 2, wherein the re-irradiation heats the surface region constituting the outer surface and the solidified layer portion positioned below the surface region. Production method. 前記外表面を有する固化層から2〜4層下層側に位置する固化層の深さまで前記固化層部分を加熱することを特徴とする、請求項3に記載の三次元形状造形物の製造方法。   The method for producing a three-dimensional shaped structure according to claim 3, wherein the solidified layer portion is heated from the solidified layer having the outer surface to a depth of the solidified layer located on the lower layer side of 2 to 4 layers. 前記加熱処理によって、前記外表面を構成する前記表面領域の下方の固化層部分に残留している応力を減じることを特徴とする、請求項3または4に記載の三次元形状造形物の製造方法。   The method for manufacturing a three-dimensional shaped article according to claim 3 or 4, wherein the heat treatment reduces stress remaining in a solidified layer portion below the surface region constituting the outer surface. . 前記外表面を構成する前記表面領域のうちで表面仕上げ加工を施す領域を除いて前記再照射を行うことを特徴とする、請求項1〜5のいずれかに記載の三次元形状造形物の製造方法。   6. The three-dimensional shaped article according to claim 1, wherein the re-irradiation is performed except for a region to be subjected to a surface finishing process among the surface regions constituting the outer surface. Method. 前記再照射の対象となる前記外表面を前記三次元形状造形物の輪郭形状データから求めており、
前記外表面を有する前記固化層をN層とし、その上に形成される固化層をN+1層とすると、該N+1層に相当する部分の造形物輪郭形状から前記N層に相当する部分の造形物輪郭形状を差し引くことによって前記再照射の対象となる前記外表面を求めることを特徴とする、請求項1〜6のいずれかに記載の三次元形状造形物の製造方法。
The outer surface to be re-irradiated is obtained from the contour shape data of the three-dimensional shaped object,
When the solidified layer having the outer surface is an N layer and the solidified layer formed thereon is an N + 1 layer, a molded article of a portion corresponding to the N layer from a contour of a molded article corresponding to the N + 1 layer. The method for manufacturing a three-dimensional shaped object according to any one of claims 1 to 6, wherein the outer surface to be re-irradiated is obtained by subtracting a contour shape.
JP2011092920A 2011-04-19 2011-04-19 Manufacturing method of three-dimensional shaped object Active JP5612530B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011092920A JP5612530B2 (en) 2011-04-19 2011-04-19 Manufacturing method of three-dimensional shaped object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011092920A JP5612530B2 (en) 2011-04-19 2011-04-19 Manufacturing method of three-dimensional shaped object

Publications (2)

Publication Number Publication Date
JP2012224907A true JP2012224907A (en) 2012-11-15
JP5612530B2 JP5612530B2 (en) 2014-10-22

Family

ID=47275399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011092920A Active JP5612530B2 (en) 2011-04-19 2011-04-19 Manufacturing method of three-dimensional shaped object

Country Status (1)

Country Link
JP (1) JP5612530B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013163829A (en) * 2012-02-09 2013-08-22 Panasonic Corp Method of manufacturing three-dimensionally shaped article, and three-dimensionally shaped article
JP2015510979A (en) * 2012-02-23 2015-04-13 ヌオーヴォ ピニォーネ ソチエタ レスポンサビリタ リミタータNuovo Pignone S.R.L. Manufacture of impellers for turbomachinery
JP2015189007A (en) * 2014-03-27 2015-11-02 セイコーエプソン株式会社 Production method of shaped article
US9707622B2 (en) 2014-03-05 2017-07-18 Panasonic Intellectual Property Management Co., Ltd. Method for manufacturing three-dimensional shaped object
KR20180110075A (en) * 2016-03-09 2018-10-08 파나소닉 아이피 매니지먼트 가부시키가이샤 Method for manufacturing three dimensional shaped sculpture
JP2019210534A (en) * 2018-06-07 2019-12-12 株式会社ソディック Method of manufacturing three-dimensional shaped article

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002038201A (en) * 2000-07-24 2002-02-06 Matsushita Electric Works Ltd Method and apparatus for producing three-dimensional shape molded article
JP2004122490A (en) * 2002-09-30 2004-04-22 Matsushita Electric Works Ltd Method for manufacturing three-dimensionally shaped article
JP2005533172A (en) * 2001-11-26 2005-11-04 コンセプト レーザー ゲーエムベーハー Method for manufacturing a three-dimensional molded product in a laser material processing unit or an optical modeling unit
JP2010065259A (en) * 2008-09-09 2010-03-25 Panasonic Electric Works Co Ltd Method for producing three-dimensionally shaped object
JP2010215971A (en) * 2009-03-17 2010-09-30 Panasonic Electric Works Co Ltd Method of producing three-dimensional shaped article and three-dimensional shaped article obtained from the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002038201A (en) * 2000-07-24 2002-02-06 Matsushita Electric Works Ltd Method and apparatus for producing three-dimensional shape molded article
JP2005533172A (en) * 2001-11-26 2005-11-04 コンセプト レーザー ゲーエムベーハー Method for manufacturing a three-dimensional molded product in a laser material processing unit or an optical modeling unit
JP2004122490A (en) * 2002-09-30 2004-04-22 Matsushita Electric Works Ltd Method for manufacturing three-dimensionally shaped article
JP2010065259A (en) * 2008-09-09 2010-03-25 Panasonic Electric Works Co Ltd Method for producing three-dimensionally shaped object
JP2010215971A (en) * 2009-03-17 2010-09-30 Panasonic Electric Works Co Ltd Method of producing three-dimensional shaped article and three-dimensional shaped article obtained from the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013163829A (en) * 2012-02-09 2013-08-22 Panasonic Corp Method of manufacturing three-dimensionally shaped article, and three-dimensionally shaped article
JP2015510979A (en) * 2012-02-23 2015-04-13 ヌオーヴォ ピニォーネ ソチエタ レスポンサビリタ リミタータNuovo Pignone S.R.L. Manufacture of impellers for turbomachinery
US9903207B2 (en) 2012-02-23 2018-02-27 Nuovo Pignone Srl Turbo-machine impeller manufacturing
US9707622B2 (en) 2014-03-05 2017-07-18 Panasonic Intellectual Property Management Co., Ltd. Method for manufacturing three-dimensional shaped object
JP2015189007A (en) * 2014-03-27 2015-11-02 セイコーエプソン株式会社 Production method of shaped article
KR20180110075A (en) * 2016-03-09 2018-10-08 파나소닉 아이피 매니지먼트 가부시키가이샤 Method for manufacturing three dimensional shaped sculpture
KR102277612B1 (en) 2016-03-09 2021-07-14 파나소닉 아이피 매니지먼트 가부시키가이샤 Manufacturing method of 3D shape sculpture
JP2019210534A (en) * 2018-06-07 2019-12-12 株式会社ソディック Method of manufacturing three-dimensional shaped article

Also Published As

Publication number Publication date
JP5612530B2 (en) 2014-10-22

Similar Documents

Publication Publication Date Title
JP5519766B2 (en) Manufacturing method of three-dimensional shaped object and three-dimensional shaped object
JP5764753B2 (en) Manufacturing method of three-dimensional shaped object
JP5599957B2 (en) Manufacturing method of three-dimensional shaped object
JP6443698B2 (en) Manufacturing method of three-dimensional shaped object
JP5539347B2 (en) Manufacturing method of three-dimensional shaped object and three-dimensional shaped object obtained therefrom
JP5877471B2 (en) Manufacturing method of three-dimensional shaped object
JP5555222B2 (en) Manufacturing method of three-dimensional shaped object and three-dimensional shaped object obtained therefrom
JP5584019B2 (en) Manufacturing method of three-dimensional shaped object and three-dimensional shaped object obtained therefrom
JP5653657B2 (en) Method for producing three-dimensional shaped object, three-dimensional shaped object to be obtained, and method for producing molded product
JP5895172B2 (en) Manufacturing method of three-dimensional shaped object
JP5612530B2 (en) Manufacturing method of three-dimensional shaped object
JP5535121B2 (en) Manufacturing method of three-dimensional shaped object
CN107848212B (en) Method for manufacturing three-dimensional shaped object
EP3427870B1 (en) Three-dimensional molded object production method
JP2017030224A (en) Method for manufacturing three-dimensionally shaped object and three-dimensionally shaped object
JP6471975B2 (en) Manufacturing method of three-dimensional shaped object and three-dimensional shaped object
JP5588925B2 (en) Manufacturing method of three-dimensional shaped object
JP6817561B2 (en) Manufacturing method of 3D shaped object
JP6688997B2 (en) Method for manufacturing three-dimensional shaped object
JP6731642B2 (en) Method for manufacturing three-dimensional shaped object

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140116

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20140127

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20140228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140408

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140603

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140819

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140904

R151 Written notification of patent or utility model registration

Ref document number: 5612530

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151