JP2002115004A - Method and equipment for manufacturing article with three-dimensional shape - Google Patents

Method and equipment for manufacturing article with three-dimensional shape

Info

Publication number
JP2002115004A
JP2002115004A JP2000306546A JP2000306546A JP2002115004A JP 2002115004 A JP2002115004 A JP 2002115004A JP 2000306546 A JP2000306546 A JP 2000306546A JP 2000306546 A JP2000306546 A JP 2000306546A JP 2002115004 A JP2002115004 A JP 2002115004A
Authority
JP
Japan
Prior art keywords
powder
layer
sintered
shaped object
dimensionally shaped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000306546A
Other languages
Japanese (ja)
Other versions
JP3446733B2 (en
Inventor
Satoshi Abe
諭 阿部
Tokuo Yoshida
徳雄 吉田
Yoshikazu Azuma
喜万 東
Hirohiko Tougeyama
裕彦 峠山
Isao Fuwa
勲 不破
Shuji Kaminaga
修士 上永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=18787215&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2002115004(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2000306546A priority Critical patent/JP3446733B2/en
Priority to TW090123973A priority patent/TW506868B/en
Priority to US09/964,626 priority patent/US6657155B2/en
Priority to CNB011411619A priority patent/CN1283413C/en
Priority to DE10148967A priority patent/DE10148967B4/en
Priority to KR10-2001-0061382A priority patent/KR100436121B1/en
Publication of JP2002115004A publication Critical patent/JP2002115004A/en
Priority to HK02107915.5A priority patent/HK1046383A1/en
Publication of JP3446733B2 publication Critical patent/JP3446733B2/en
Application granted granted Critical
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/141Processes of additive manufacturing using only solid materials
    • B29C64/153Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/25Direct deposition of metal particles, e.g. direct metal deposition [DMD] or laser engineered net shaping [LENS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • B22F10/364Process control of energy beam parameters for post-heating, e.g. remelting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/66Treatment of workpieces or articles after build-up by mechanical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/40Radiation means
    • B22F12/44Radiation means characterised by the configuration of the radiation means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/40Radiation means
    • B22F12/49Scanners
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/80Plants, production lines or modules
    • B22F12/82Combination of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/86Serial processing with multiple devices grouped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/247Removing material: carving, cleaning, grinding, hobbing, honing, lapping, polishing, milling, shaving, skiving, turning the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Plasma & Fusion (AREA)
  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To smoothly finish the surface of an article regardless of its shape at a low cost. SOLUTION: Powder metallurgical sintered parts in which a plurality of sintered layers 11 are integrally laminated are manufactured by repeating a procedure consisting of steps of; forming a sintered layer 11 by irradiating the prescribed part of a layer 10 of inorganic or organic powders with a light beam L to sinter the powders in the corresponding part, and forming a new sintered layer 11 integrated with the previously-formed sintered layer 11 as a lower layer by covering the previously-formed sintered layer 11 with a new layer 10 of the powder material and irradiating the prescribed part with the light beam L to sinter the powder in the corresponding part. In this method, a step where the surface part and/or unnecessary part of the formed part obtained theretofore is removed after the formation of the sintered layer 11 is inserted between a plurality of manufacturing steps of the sintered layer 11.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は粉末材料を光ビーム
で焼結硬化させることで三次元形状造形物を製造する三
次元形状造形物の製造方法及びその装置に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for manufacturing a three-dimensionally shaped object by manufacturing a three-dimensionally shaped object by sintering and hardening a powder material with a light beam.

【0002】[0002]

【従来の技術】光造形法として知られている三次元形状
造形物の製造方法がある。特許第2620353号など
に示された該製造方法は、図18(a)に示すように、無
機質あるいは有機質の粉末材料の層の所定箇所に光ビー
ムLを照射して該当個所の粉末を焼結することで焼結層
11を形成し、この焼結層11の上に粉末材料の新たな
層10を被覆して該粉末層10の所定箇所に光ビームL
を照射して該当個所の粉末を焼結することで下層の焼結
層11と一体になった新たな焼結層11を形成すること
を繰り返すことによって、複数の焼結層が積層一体化さ
れた粉末焼結部品(三次元形状造形物)を作成するもの
であり、三次元形状造形物の設計データ(CADデー
タ)であるモデルを所望の層厚みにスライスして生成す
る各層の断面形状データをもとに光ビームLを照射する
ことから、いわゆるCAM装置が無くとも任意形状の三
次元形状造形物を製造することができるほか、切削加工
などによる製造方法に比して、迅速に所望の形状の造形
物を得ることができる。
2. Description of the Related Art There is a method for producing a three-dimensionally shaped object known as an optical molding method. As shown in FIG. 18 (a), the manufacturing method disclosed in Japanese Patent No. 2620353 irradiates a predetermined portion of a layer of an inorganic or organic powder material with a light beam L and sinters the powder at the corresponding portion. Then, a new layer 10 of a powder material is coated on the sintered layer 11, and a light beam L is applied to a predetermined portion of the powder layer 10.
Is repeated to form a new sintered layer 11 integrated with the lower sintered layer 11 by sintering the powder at the corresponding location, whereby a plurality of sintered layers are laminated and integrated. To create powder sintered parts (three-dimensional shaped object), and to slice and cut a model, which is design data (CAD data) of the three-dimensional shaped object, into a desired layer thickness, and to generate cross-sectional shape data of each layer. By irradiating the light beam L based on the above, it is possible to manufacture a three-dimensionally shaped object having an arbitrary shape without a so-called CAM device, and it is possible to produce a desired three-dimensionally shaped object more quickly than a manufacturing method such as cutting. A shaped object having a shape can be obtained.

【0003】[0003]

【発明が解決しようとする課題】ところで、図20に示
すように、光ビームLを照射して焼結硬化させた部分の
周囲には伝達された熱が原因となって不要な粉末15が
付着するものであり、該付着粉末は密度の低い表面層1
6を造形物に形成してしまう。
By the way, as shown in FIG. 20, unnecessary powder 15 adheres around the portion hardened by irradiating the light beam L due to the transmitted heat. The adhering powder is a low-density surface layer 1
6 is formed on the molded article.

【0004】特開2000−73108号公報には、焼
結層11を積層することで生じる外表面の段差(図18
(b)参照)を除去することが示されているが、この段差
を除去するだけでは図18(c)に示すように、低密度表
面層16が残ってしまい、滑らかな表面を得ることがで
きない。
Japanese Patent Application Laid-Open No. 2000-73108 discloses a step on the outer surface caused by laminating the sintered layers 11 (FIG. 18).
(see FIG. 18 (b)), but simply removing this step leaves the low-density surface layer 16 as shown in FIG. Can not.

【0005】また焼結工程において十分な密度(低気孔
率)の焼結体を形成しておかないと、段差を除去しても
除去後の表面に気孔が現れて滑らかな表面は得られな
い。
[0005] Unless a sintered body having a sufficient density (low porosity) is formed in the sintering step, even if the step is removed, pores appear on the surface after the removal and a smooth surface cannot be obtained. .

【0006】さらに造形物を完成させた後に上記低密度
表面層を除去する仕上げを行う場合は、造形物形状に対
して、加工工具による限界が生じる。たとえば深いリブ
等を切削する場合、小径工具では工具長さに制限がある
ために加工不可能となることがあるために、別途放電加
工等の工程が必要となり、時間及びコストの点で問題が
多い。
[0006] Further, in the case of performing the finishing for removing the low-density surface layer after completing the modeled object, there is a limit to the shape of the modeled object by a processing tool. For example, when cutting deep ribs or the like, small-diameter tools may not be able to be machined due to the limited tool length, so a separate process such as electric discharge machining is required, which poses problems in terms of time and cost. Many.

【0007】本発明はこのような点に鑑みなされたもの
であって、その目的とするところは造形物表面をその形
状にかかわらず低コストで滑らかに仕上げることができ
る三次元形状造形物の製造方法及びその装置を提供する
にある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above points, and an object of the present invention is to manufacture a three-dimensionally shaped object capable of smoothly finishing the surface of the object at low cost regardless of its shape. A method and an apparatus therefor are provided.

【0008】[0008]

【課題を解決するための手段】しかして本発明に係る三
次元形状造形物の製造方法は、無機質あるいは有機質の
粉末材料の層の所定箇所に光ビームを照射して該当個所
の粉末を焼結することで焼結層を形成し、この焼結層の
上に粉末材料の新たな層を被覆して所定箇所に光ビーム
を照射して該当個所の粉末を焼結することで下層の焼結
層と一体になった新たな焼結層を形成することを繰り返
して、複数の焼結層が積層一体化された粉末焼結部品を
作成するにあたり、焼結層の形成後にそれまでに作成し
た造形物の表面部及びまたは不要部分の除去を行う工程
を複数回の焼結層の作成工程中に挿入することに特徴を
有している。
According to the present invention, there is provided a method of manufacturing a three-dimensionally shaped object, comprising irradiating a predetermined portion of a layer of an inorganic or organic powder material with a light beam to sinter the powder at the corresponding portion. To form a sintered layer, coat a new layer of powdered material on this sintered layer, irradiate a light beam to a predetermined location, and sinter the powder at the corresponding location to sinter the lower layer. Repeatedly forming a new sintered layer integrated with the layer, in order to create a powder sintered part in which multiple sintered layers are laminated and integrated, created by the time after the formation of the sintered layer The method is characterized in that a step of removing the surface portion and / or unnecessary portion of the modeled object is inserted into a plurality of steps of forming a sintered layer.

【0009】この時、除去工程に際しての造形物の表面
部の除去深さを焼結部の周囲に付着した粉末による低密
度表面層の深さより大とすることが好ましく、また、三
次元形状造形物である粉末焼結部品の表面を高密度に焼
結させておくとともに、除去工程により上記高密度部を
露出させることが好ましい。
At this time, it is preferable that the removal depth of the surface portion of the molded article in the removal step is larger than the depth of the low-density surface layer formed by the powder attached around the sintered portion. It is preferable that the surface of the powder sintered component is sintered at a high density, and the high-density portion is exposed by a removing step.

【0010】除去工程は切削やレーザーによって行うこ
とができる。
The removing step can be performed by cutting or laser.

【0011】除去工程の直前に除去対象部に光ビームを
照射して除去対象部を軟化させたり、除去工程の直後に
除去対象部を除去した部分に溶融硬化もしくは熱処理用
の光ビームを照射するようにしてもよい。
[0011] Immediately before the removing step, a light beam is applied to the portion to be removed to soften the portion to be removed, or immediately after the removing step, a light beam for melt-hardening or heat treatment is applied to the portion from which the portion to be removed is removed. You may do so.

【0012】また、除去工程における除去作業と同時に
三次元形状造形物である粉末焼結部品の周囲の未焼結粉
末や除去作業で発生する屑の排除作業を行うことも好ま
しく、未焼結粉末の排除は除去工程の直前に行ってもよ
い。
In addition, it is preferable to simultaneously remove the unsintered powder around the powder sintered part, which is a three-dimensionally shaped object, and dust generated in the removing operation at the same time as the removing operation in the removing step. May be removed immediately before the removal step.

【0013】上記排除を行う場合は、除去工程の直後に
除去部及び排除部に対して樹脂またはろう材を流し込
み、次いで次の粉末材料の層の形成及び焼結を行うよう
にしてもよい。
In the case of performing the above-described removal, a resin or a brazing material may be poured into the removal section and the removal section immediately after the removal step, and then the next layer of powder material may be formed and sintered.

【0014】焼結層の形成直後もしくは除去工程の直後
にそれまでに形成した造形物の形状及び位置の計測を行
い、該計測結果に基づき、次の焼結層の形成のための光
ビームの照射経路データ及び次の除去工程での被除去部
の除去加工経路データの修正を行うことも好ましい。。
Immediately after the formation of the sintered layer or immediately after the removing step, the shape and the position of the molded object formed so far are measured, and based on the measurement result, a light beam for forming the next sintered layer is formed. It is also preferable to correct the irradiation path data and the removal processing path data of the part to be removed in the next removal step. .

【0015】除去工程の前に未焼結粉末を固化させてお
くようにしてもよく、この場合の固化は、未焼結粉末を
冷凍したり、樹脂またはろう材を用いるとよい。
The unsintered powder may be solidified before the removing step. In this case, the unsintered powder may be frozen or a resin or brazing material may be used.

【0016】そして本発明に係る三次元形状造形物の製
造装置は、無機質あるいは有機質の粉末材料の層を形成
する粉末層形成手段と、上記粉末層の所定箇所に光ビー
ムを照射して該当個所の粉末を焼結して焼結層を形成す
る焼結層形成手段と、焼結層形成手段と焼結層との相対
距離を調整する調整手段とを備えるとともに、造形物の
表面部及びまたは不要部分の除去を行う除去手段を備え
ていることに特徴を有している。
The apparatus for manufacturing a three-dimensionally shaped object according to the present invention comprises: a powder layer forming means for forming a layer of an inorganic or organic powder material; and a light beam irradiating a predetermined portion of the powder layer with a corresponding portion. Sintered layer forming means for forming a sintered layer by sintering the powder of, and adjusting means for adjusting the relative distance between the sintered layer forming means and the sintered layer, and the surface portion of the molded article and or It is characterized by having a removing means for removing unnecessary portions.

【0017】未焼結粉末や除去手段による除去工程で発
生する屑を排除する排除手段を備えたものとしてもよ
く、この排除手段は、粉末層形成手段に付設したもの
や、XY駆動機構を有して造形物の断面輪郭形状に沿っ
て排除作業を行うものを好適に用いることができる。
The apparatus may be provided with a rejecting means for rejecting unsintered powder and debris generated in the removing step by the removing means. The rejecting means may be provided to the powder layer forming means or may have an XY drive mechanism. Then, a device that performs an exclusion operation along the cross-sectional contour shape of the modeled object can be suitably used.

【0018】また、焼結層の形成直後もしくは除去工程
の直後にそれまでに形成した造形物の形状及び位置の計
測を行う計測手段と、計測手段による計測結果に基づい
て焼結層形成手段の動作を補正する補正手段とを備えた
ものとするのも好ましく、この場合の計測手段には、X
Y駆動機構を有して造形物の断面輪郭形状に沿って計測
を行うものを好適に用いることができる。
A measuring means for measuring the shape and position of the formed object immediately after the formation of the sintered layer or immediately after the removing step, and a measuring means for the sintered layer forming means based on the measurement result by the measuring means. It is also preferable to provide a correction means for correcting the operation. In this case, the measurement means includes X
A device having a Y drive mechanism for performing measurement along the cross-sectional profile of a modeled object can be suitably used.

【0019】[0019]

【発明の実施の形態】以下本発明を実施の形態の一例に
基づいて詳述すると、図3は本発明に係る三次元形状造
形物の製造装置を示しており、シリンダーで外周が囲ま
れた空間内を上下に昇降する昇降テーブル20上に供給
した無機質あるいは有機質の粉末材料をスキージング用
ブレード21でならすことで所定厚みΔt1の粉末層1
0を形成する粉末層形成手段2と、レーザー発振器30
から出力されたレーザーをガルバノミラー31等のスキ
ャン光学系を介して上記粉末層10に照射することで粉
末を焼結して焼結層11を形成する焼結層形成手段3
と、上記粉末層形成手段2のベース部にXY駆動機構
(高速化の点で直動リニアモータ駆動のものが好まし
い)40を介してミーリングヘッド41を設けて、除去
手段4を形成してある。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail based on an example of an embodiment. FIG. 3 shows an apparatus for manufacturing a three-dimensionally shaped object according to the present invention, the outer periphery of which is surrounded by a cylinder. The powder layer 1 having a predetermined thickness Δt1 is formed by leveling an inorganic or organic powder material supplied on a lifting table 20 that moves up and down in the space with a squeezing blade 21.
Powder layer forming means 2 for forming a laser oscillator 30;
Layer forming means 3 for sintering the powder by forming a sintered layer 11 by irradiating the laser output from the laser beam onto the powder layer 10 via a scanning optical system such as a galvanometer mirror 31.
A milling head 41 is provided on a base portion of the powder layer forming means 2 via an XY drive mechanism (preferably a linear motion linear motor driven in terms of speeding up) 40 to form a removing means 4. .

【0020】このものにおける三次元形状造形物の製造
は、図1に示すように、焼結層形成手段と焼結層との相
対距離を調整する調整手段であるところの昇降テーブル
20上面の造形用ベース22表面に無機質または有機質
の粉末材料を供給してブレード21でならすことで第1
層目の粉末層10を形成し、この粉末層10の硬化させ
たい箇所に光ビーム(レーザー)Lを照射して粉末を焼
結させてベース22と一体化した焼結層11を形成す
る。
As shown in FIG. 1, the production of the three-dimensionally shaped object is performed by shaping the upper surface of the elevating table 20 as an adjusting means for adjusting the relative distance between the sintered layer forming means and the sintered layer. By supplying an inorganic or organic powder material to the surface of the
The powder layer 10 of the layer is formed, and a portion of the powder layer 10 to be cured is irradiated with a light beam (laser) L to sinter the powder to form a sintered layer 11 integrated with the base 22.

【0021】この後、昇降テーブル20を少し下げて再
度無機質または有機質の粉末材料を供給してブレード2
1でならすことで第2層目の粉末層10を形成し、この
粉末層10の硬化させたい箇所に光ビーム(レーザー)
Lを照射して粉末を焼結させて下層の焼結層11と一体
化した焼結層11を形成する。
Thereafter, the elevating table 20 is slightly lowered, and an inorganic or organic powder material is again supplied to the blade 2.
The second powder layer 10 is formed by leveling with 1, and a light beam (laser) is applied to a portion of the powder layer 10 where the powder layer 10 is to be cured.
The powder is sintered by irradiating L to form a sintered layer 11 integrated with the lower sintered layer 11.

【0022】昇降テーブル20を下降させて新たな粉末
層10を形成し、光ビームを照射して所要箇所を焼結層
11とする工程を繰り返すことで、目的とする三次元形
状造形物を製造するものであり、たとえば、粉末材料と
して平均粒径約20μmの球形の鉄粉、光ビームとして
は炭酸ガスレーザー、粉末層10の厚みΔt1としては
0.05mmが好適である。
The step of lowering the elevating table 20 to form a new powder layer 10 and irradiating a light beam to form a sintered layer 11 at a required portion is repeated to produce a target three-dimensional shaped object. For example, a spherical iron powder having an average particle size of about 20 μm as a powder material, a carbon dioxide laser as a light beam, and 0.05 mm as a thickness Δt1 of the powder layer 10 are preferable.

【0023】光ビームの照射経路は、予め三次元CAD
データから作成しておく。すなわち、従来のものと同様
に、三次元CADモデルから生成したSTLデータを等
ピッチ(ここでは0.05mm)でスライスした各断面
の輪郭形状データを用いる。この時、三次元形状造形物
の少なくとも最表面が高密度(気孔率5%以下)となる
ように焼結させることができるように光ビームの照射を
行うのが好ましい。除去手段によって後述する表面除去
を行っても、露出した部分がポーラスであれば、除去加
工後の表面もポーラスな状態となるためであり、このた
めに予め形状モデルデータを図4に示すように、表層部
Sと内部Nとに分割しておき、内部Nについてはポーラ
スとなるような焼結条件、表層部Sはほぼ粉末が溶融し
て高密度となる条件で光ビームを照射する。図5(a)の
図中12が高密度部を示しており、図中16は前述の付
着粉末によるところの低密度表面層である。
The irradiation path of the light beam is determined in advance by three-dimensional CAD.
Create from data. That is, similarly to the conventional one, the contour shape data of each section obtained by slicing the STL data generated from the three-dimensional CAD model at an equal pitch (here, 0.05 mm) is used. At this time, it is preferable to irradiate the light beam so that at least the outermost surface of the three-dimensionally shaped object can be sintered so as to have a high density (porosity of 5% or less). This is because, even if surface removal described later is performed by the removing means, if the exposed portion is porous, the surface after the removal processing is also in a porous state. For this reason, the shape model data is previously stored as shown in FIG. The surface N is divided into a surface portion S and an inner portion N, and the inner portion N is irradiated with a light beam under a sintering condition for forming a porous portion, and the surface portion S is irradiated with a light beam under a condition that the powder is substantially melted and becomes dense. In FIG. 5A, reference numeral 12 denotes a high-density portion, and reference numeral 16 denotes a low-density surface layer formed by the above-mentioned attached powder.

【0024】そして、上記粉末層10を形成しては光ビ
ームを照射して焼結層11を形成することを繰り返して
いくのであるが、焼結層11の全厚みがたとえばミーリ
ングヘッド41の工具長さなどから求めた所要の値にな
れば、いったん除去手段4を作動させてそれまでに造形
した造形物の表面を切削する。たとえば、ミーリングヘ
ッド41の工具(ボールエンドミル)が直径1mm、有
効刃長3mmで深さ3mmの切削加工が可能であり、粉
末層10の厚みΔt1が0.05mmであるならば、6
0層の焼結層11を形成した時点で、除去手段4を作動
させる。
The formation of the powder layer 10 and the irradiation of a light beam to form the sintered layer 11 are repeated. When the required value obtained from the length or the like is reached, the removing means 4 is once operated to cut the surface of the modeled object formed up to that time. For example, if the tool (ball end mill) of the milling head 41 can perform cutting with a diameter of 1 mm, an effective blade length of 3 mm, and a depth of 3 mm, and the thickness Δt1 of the powder layer 10 is 0.05 mm, 6
When the zero sintered layer 11 is formed, the removing means 4 is operated.

【0025】この除去手段4による切削加工により、図
5に示すように、造形物表面に付着した粉末による低密
度表面層16を除去すると同時に、高密度部12まで削
り込むことで、造形物表面に高密度部12を全面的に露
出させる。このために、所望の形状Mよりも焼結層11
が少し大きくなるようにしておく。
As shown in FIG. 5, the removal process 4 removes the low-density surface layer 16 of the powder adhered to the surface of the modeled object and, at the same time, removes the high-density portion 12 to obtain the surface of the modeled object. Then, the high-density portion 12 is entirely exposed. For this reason, the sintered layer 11 may be smaller than the desired shape M.
Is slightly larger.

【0026】この除去手段4による切削加工経路は、光
ビームの照射経路と同様に予め三次元CADデータから
作成しておく。この時、等高線加工を適用して加工経路
を決定するが、Z方向ピッチは焼結時の積層ピッチにこ
だわる必要はなく、緩い傾斜の場合はZ方向ピッチをよ
り細かくして補間することで、滑らかな表面を得られる
ようにしておく。切削加工を直径1mmのボールエンド
ミルで行う場合は、切り込み量を0.1〜0.5mm、
送り速度を5m/min〜50m/min、工具回転数
を20,000rpm〜100,000rpmとするの
が好ましい。
The cutting path by the removing means 4 is created in advance from the three-dimensional CAD data, similarly to the irradiation path of the light beam. At this time, the processing path is determined by applying the contour processing, but the Z-direction pitch does not need to stick to the lamination pitch at the time of sintering, and in the case of a gentle inclination, the Z-direction pitch is made finer and interpolated. Be prepared to obtain a smooth surface. When the cutting process is performed with a ball end mill with a diameter of 1 mm, the cutting depth is 0.1 to 0.5 mm,
It is preferable that the feed speed is 5 m / min to 50 m / min and the tool rotation speed is 20,000 rpm to 100,000 rpm.

【0027】なお、切削による除去に際しては、図6に
示すように、切削加工の直前の部分にエネルギー密度を
小さくした光ビーム(レーザー)Lを照射して加熱する
ことで軟化させておき、この軟化した状態の部分を工具
44が切削していくようにすると、切削抵抗が小さくな
るために切削加工時間を短くできるとともに工具44の
寿命を延ばすことができる。
In the removal by cutting, as shown in FIG. 6, a portion immediately before the cutting is irradiated with a light beam (laser) L having a reduced energy density and heated to be softened. When the tool 44 cuts the softened portion, the cutting resistance is reduced, so that the cutting time can be shortened and the life of the tool 44 can be extended.

【0028】また、図7に示すように、切削除去直後の
部分に再度光ビームLを照射して溶融硬化させたり熱処
理することで、密度を高めるようにすることも好まし
い。
Further, as shown in FIG. 7, it is also preferable to increase the density by irradiating the light beam L again to the portion immediately after the removal of the cut to melt-harden or heat-treat the portion.

【0029】図8に示すものは、焼結層形成手段3であ
るレーザー発振器30からのレーザーを光ファイバー3
6を通じて受けて出力する照射ヘッド35を除去手段4
におけるXY駆動機構40に取り付けている。共用部品
が増えるために部品点数を少なくすることができる。
FIG. 8 shows that a laser from a laser oscillator 30 which is a sintered layer forming means 3 is applied to an optical fiber 3.
The irradiation head 35 for receiving and outputting through
Is attached to the XY drive mechanism 40 in FIG. Since the number of common parts increases, the number of parts can be reduced.

【0030】ところで、除去手段4による造形物表面及
び不要部分の除去に際して、未焼結粉末や除去手段4に
よる切削屑が除去作業の邪魔になる上に、次の粉末層1
0の形成に際して、ブレード21に切削屑が引っかかっ
て平坦な粉末層10を形成することができなかったり、
ブレード21と造形物との間に切削屑が挟まってブレー
ド21が停止してしまうことがある。このために、図9
及び図10(a)あるいは図10(b)に示すように、たとえ
ばエアポンプ50に接続した吸引ノズル51を工具44
に隣接させて配置して、切削と同時に未焼結粉末及び切
削屑を吸引排除してしまうとよい。吸引ノズル51で工
具44を囲んでいる図10(b)に示すものでは、工具4
4としてスピンドルヘッドを好適に用いることができ
る。
When the removal means 4 removes the surface of the modeled object and the unnecessary portion, the unsintered powder and the cutting chips by the removal means 4 hinder the removal operation, and the next powder layer 1 is removed.
In the formation of 0, the cutting dust is caught on the blade 21 and the flat powder layer 10 cannot be formed,
In some cases, cutting chips are caught between the blade 21 and the modeled object, and the blade 21 stops. Because of this, FIG.
As shown in FIG. 10 (a) or FIG. 10 (b), for example, the suction nozzle 51 connected to the air pump 50 is
It is good to arrange | position adjacent to and to aspirate and remove unsintered powder and cutting waste simultaneously with cutting. In FIG. 10B in which the tool 44 is surrounded by the suction nozzle 51, the tool 4
As 4, a spindle head can be suitably used.

【0031】図11に示すように、切削加工前に未焼結
粉末のみを吸引除去し、切削加工と同時に切削屑を吸引
除去するようにしてもよく、この場合、未焼結粉末に切
削屑が混入することがないために、未焼結粉末の再利用
が容易となる。
As shown in FIG. 11, only the unsintered powder may be suctioned and removed before cutting, and the chips may be suctioned and removed at the same time as the cutting. Is not mixed, so that the unsintered powder can be easily reused.

【0032】ところで、未焼結粉末を吸引排除してしま
った場合、除去工程後にさらに粉末層10を積層する
時、多量の粉末が必要となり、除去工程を複数回繰り返
す場合、その都度、未焼結粉末を排除した全空間に粉末
を埋めなくてはならず、時間的なロスが大きくなる。
When the unsintered powder is removed by suction, a large amount of powder is required when the powder layer 10 is further laminated after the removing step. The powder must be filled in the entire space from which the condensed powder has been removed, resulting in a large time loss.

【0033】このために、未焼結粉末を排除した空間に
は、図12に示すように、樹脂あるいはろう材を流し込
んで固化させることで固化部18を形成し、次の粉末層
10は最上層の焼結層11と上記固化部18の上面に形
成するとよい。使用する粉末量を削減することができ
る。
For this reason, as shown in FIG. 12, a solidified portion 18 is formed by pouring and solidifying a resin or brazing material in the space from which the unsintered powder has been removed. It may be formed on the upper surface of the upper sintered layer 11 and the solidified portion 18. The amount of powder used can be reduced.

【0034】なお、上記エアポンプ50及び吸引ノズル
51からなる排除手段における吸引ノズル51は、除去
工程に先だって未焼結粉末を排除するものについては、
図13に示すように、粉末層形成手段2におけるブレー
ド21の駆動部に取り付けておくと、全域の未焼結粉末
の排除を行うことができるとともに吸引ノズル51のた
めの専用の駆動機構を必要としなくなるために、装置構
成を簡単にすることができる。
The suction nozzle 51 in the elimination means composed of the air pump 50 and the suction nozzle 51 is provided for removing the unsintered powder prior to the removing step.
As shown in FIG. 13, if it is attached to the drive section of the blade 21 in the powder layer forming means 2, the unsintered powder in the entire area can be eliminated and a dedicated drive mechanism for the suction nozzle 51 is required. Therefore, the device configuration can be simplified.

【0035】また、図14に示すように、吸引ノズル5
1を専用のXY駆動機構55、もしくは除去手段4にお
けるXY駆動機構40に取り付けた場合には、造形物の
断面輪郭線形状に沿って吸引ノズル51を移動させるこ
とができる。
Further, as shown in FIG.
When 1 is attached to the dedicated XY drive mechanism 55 or the XY drive mechanism 40 in the removing means 4, the suction nozzle 51 can be moved along the cross-sectional contour of the object.

【0036】未焼結粉末については、除去工程の直前に
吸引排除してしまうのではなく、例えば液体窒素などを
吹き付ける(必要とあれば湿気を含んだガスを同時に吹
き付ける)ことで未焼結粉末を固化させたり、樹脂やろ
う材などを流し込んで固化させておき、この状態で除去
手段4を動作させるようにしてもよい。切削屑が未焼結
粉末内に入り込んでしまうことがないために、切削屑の
排除を容易に行うことができる。
The unsintered powder is not removed by suction immediately before the removing step, but is sprayed with, for example, liquid nitrogen (if necessary, simultaneously with a gas containing moisture), thereby blowing the unsintered powder. May be solidified, or a resin or brazing material may be poured in and solidified, and the removing means 4 may be operated in this state. Since cutting chips do not enter into the unsintered powder, cutting chips can be easily removed.

【0037】図15に示すものは、焼結直後もしくは除
去加工直後の造形物の形状及び位置を測定するための計
測手段6を設けたものを示している。光ビームの照射精
度や除去加工の加工精度をオンマシンで計測することが
できるものであり、計測結果をフィードバックして、測
定データ(位置座標データ)とCADデータを比較する
ことで、造形精度を算出することができるとともに、比
較結果に基づいて次の光ビーム照射経路データを修正し
たり、次の除去加工経路データを修正したりすること
で、より高精度な造形が可能となる。
FIG. 15 shows an apparatus provided with measuring means 6 for measuring the shape and position of a molded article immediately after sintering or immediately after removal processing. It can measure the accuracy of light beam irradiation and the processing accuracy of removal processing on-machine. By feeding back the measurement results and comparing the measurement data (position coordinate data) with the CAD data, the modeling accuracy can be improved. In addition to being able to calculate, by correcting the next light beam irradiation path data or the next removal processing path data based on the comparison result, more accurate modeling can be performed.

【0038】上記計測手段6がたとえば圧電型接触セン
サである場合には、除去手段4におけるXY駆動機構4
0に計測手段6を設けると、計測手段6のための専用駆
動機構を必要とすることなく、計測を行うことができ
る。
When the measuring means 6 is, for example, a piezoelectric contact sensor, the XY driving mechanism 4 in the removing means 4
When the measuring means 6 is provided at 0, measurement can be performed without requiring a dedicated driving mechanism for the measuring means 6.

【0039】また、計測手段6としてはCCDカメラの
ような撮像手段を用いてもよい。測定しようとする点が
画像の中心となるように撮像手段を移動させて、画像中
心と造形物中の測定しようとしている点とのずれた画素
数からずれ量を計測するのである。
As the measuring means 6, an image pickup means such as a CCD camera may be used. The imaging means is moved so that the point to be measured is located at the center of the image, and the shift amount is measured from the number of pixels that are shifted between the center of the image and the point to be measured in the object.

【0040】以上の各例では、除去手段4として切削で
除去を行うものを示したが、このほか、高出力レーザー
で除去を行うようにしてもよい。たとえばピーク出力が
10kW以上のQスイッチYAGレーザーを使用すれ
ば、造形物表面の低密度表面層16を瞬時に蒸発させて
除去することができる。また、除去部分は造形物の表面
部に限るものではなく、造形の都合上、本来ならば不要
である部分も造形しなくてはならない場合、この不要部
分の除去も行うことができる。
In each of the above examples, the removing means 4 is used for removing by cutting. However, the removing means 4 may be removed using a high-power laser. For example, if a Q-switched YAG laser having a peak output of 10 kW or more is used, the low-density surface layer 16 on the surface of the object can be instantaneously evaporated and removed. Further, the removed portion is not limited to the surface portion of the modeled object. If a portion which is originally unnecessary must be formed for the sake of modeling, the unnecessary portion can be removed.

【0041】[0041]

【発明の効果】以上のように本発明の三次元形状造形物
の製造方法は、無機質あるいは有機質の粉末材料の層の
所定箇所に光ビームを照射して該当個所の粉末を焼結す
ることで焼結層を形成し、この焼結層の上に粉末材料の
新たな層を被覆して所定箇所に光ビームを照射して該当
個所の粉末を焼結することで下層の焼結層と一体になっ
た新たな焼結層を形成することを繰り返して、複数の焼
結層が積層一体化された粉末焼結部品を作成するにあた
り、焼結層の形成後にそれまでに作成した造形物の表面
部及びまたは不要部分の除去を行う工程を複数回の焼結
層の作成工程中に挿入することから、つまりは焼結層の
作成と造形物の表面部及びまたは不要部分の除去を繰り
返し行うために、仕上げにドリル長などの制約を受ける
ことなく表面を仕上げることができる。
As described above, the method for manufacturing a three-dimensionally shaped object according to the present invention comprises irradiating a predetermined portion of a layer of an inorganic or organic powder material with a light beam and sintering the powder at the corresponding portion. A sintered layer is formed, a new layer of powdered material is coated on the sintered layer, and a light beam is applied to a predetermined location to sinter the powder at the corresponding location to integrate with the lower sintered layer. By repeatedly forming a new sintered layer that has become a sintered layer, a plurality of sintered layers are laminated and integrated to create a powder sintered part. Since the step of removing the surface portion and / or the unnecessary portion is inserted into the process of forming the sintered layer a plurality of times, that is, the creation of the sintered layer and the removal of the surface portion and / or the unnecessary portion of the molded article are repeatedly performed. Surface without any restrictions such as drill length. It can gel.

【0042】この時、除去工程に際しての造形物の表面
部の除去深さを焼結部の周囲に付着した粉末による低密
度表面層の深さより大とすることで、造形物表面を確実
に滑らかにすることができる。
At this time, by making the removal depth of the surface portion of the modeled object in the removing step larger than the depth of the low density surface layer formed by the powder attached to the periphery of the sintered portion, the surface of the modeled object is reliably smoothed. Can be

【0043】また、三次元形状造形物である粉末焼結部
品の表面を高密度に焼結させておくとともに、除去工程
により上記高密度部を露出させることで、表面の面粗度
を高くすることができる。
Further, the surface of the powder sintered part, which is a three-dimensionally shaped object, is sintered at a high density, and the high-density portion is exposed by a removing step to increase the surface roughness of the surface. be able to.

【0044】除去工程の直前に除去対象部に光ビームを
照射して除去対象部を軟化させるならば、除去を切削で
行う場合、切削抵抗を下げることができるために、切削
時間の短縮及び切削工具寿命の向上を図ることができ
る。
If the part to be removed is irradiated with a light beam immediately before the removing step to soften the part to be removed, if the removal is performed by cutting, the cutting resistance can be reduced. The tool life can be improved.

【0045】また、除去工程の直後に除去対象部を除去
した部分に溶融硬化もしくは熱処理用の光ビームを照射
するならば、表面密度を向上させることができる。
Further, if a light beam for melt-hardening or heat treatment is applied to the portion from which the portion to be removed has been removed immediately after the removing step, the surface density can be improved.

【0046】そして、除去工程における除去作業と同時
に三次元形状造形物である粉末焼結部品の周囲の未焼結
粉末や除去作業で発生する屑の排除作業を行うと、切削
屑の処理が可能であって、次の粉末層の形成に際して切
削屑が悪影響を及ぼしてしまうことを避けることができ
る。未焼結粉末の排除は除去工程の直前に行ってもよ
く、この場合、未焼結粉末と切削屑とを分離して処理す
ることができるために未焼結粉末の再利用が容易とな
る。
When the removal operation in the removal step and the removal operation of the unsintered powder around the powder sintered part which is a three-dimensionally shaped object and the debris generated in the removal operation are performed, the processing of the cutting debris is possible. However, it is possible to avoid that cutting chips exert an adverse effect on the formation of the next powder layer. The removal of the unsintered powder may be performed immediately before the removing step. In this case, the unsintered powder and the cutting chips can be separated and processed, so that the reuse of the unsintered powder is facilitated. .

【0047】上記排除を行う場合は、除去工程の直後に
除去部及び排除部に対して樹脂またはろう材を流し込
み、次いで次の粉末材料の層の形成及び焼結を行うと、
粉末の使用量を削減することができる。
When the above-described removal is performed, a resin or a brazing material is poured into the removal portion and the removal portion immediately after the removal process, and then the next powder material layer is formed and sintered.
The amount of powder used can be reduced.

【0048】焼結層の形成直後もしくは除去工程の直後
にそれまでに形成した造形物の形状及び位置の計測を行
い、該計測結果に基づき、次の焼結層の形成のための光
ビームの照射経路データ及び次の除去工程での被除去部
の除去加工経路データの修正を行うことで、より高精度
な造形が可能となる。
Immediately after the formation of the sintered layer or immediately after the removing step, the shape and the position of the molded object formed so far are measured, and based on the measurement result, the light beam for forming the next sintered layer is measured. By correcting the irradiation path data and the removal processing path data of the part to be removed in the next removal step, modeling with higher precision is possible.

【0049】除去工程の前に未焼結粉末を固化させてお
くようにしてもよく、この場合の固化は、未焼結粉末を
冷凍したり、樹脂またはろう材を用いるとよい。このよ
うに固化させた場合、粉末の再充填などを必要とするこ
となく、切削屑のみを容易に除去することができる。
The unsintered powder may be solidified before the removing step. In this case, the unsintered powder may be frozen or a resin or brazing material may be used. When solidified in this way, only cutting chips can be easily removed without the need to refill the powder.

【0050】そして本発明に係る三次元形状造形物の製
造装置は、無機質あるいは有機質の粉末材料の層を形成
する粉末層形成手段と、上記粉末層の所定箇所に光ビー
ムを照射して該当個所の粉末を焼結して焼結層を形成す
る焼結層形成手段と、焼結層形成手段と焼結層との相対
距離を調整する調整手段とを備えるとともに、造形物の
表面部及びまたは不要部分の除去を行う除去手段を備え
ていることから、造形加工後の表面粗度の向上を図るこ
とができるものであり、また上記製造方法を簡便に実施
することができる。
The apparatus for producing a three-dimensionally shaped object according to the present invention comprises: a powder layer forming means for forming a layer of an inorganic or organic powder material; and a light beam irradiating a predetermined portion of the powder layer with a corresponding portion. Sintered layer forming means for forming a sintered layer by sintering the powder of, and adjusting means for adjusting the relative distance between the sintered layer forming means and the sintered layer, and the surface portion of the molded article and or The provision of the removing means for removing the unnecessary portion can improve the surface roughness after the shaping process, and the above-mentioned manufacturing method can be easily carried out.

【0051】未焼結粉末や除去手段による除去工程で発
生する屑を排除する排除手段を備えたものとすること
で、屑の影響を避けることができるものとなる。
By providing an elimination means for eliminating the unsintered powder and debris generated in the removal step by the removal means, the influence of the debris can be avoided.

【0052】また、焼結層の形成直後もしくは除去工程
の直後にそれまでに形成した造形物の形状及び位置の計
測を行う計測手段と、XY駆動機構を有して造形物の断
面輪郭形状に沿って計測を行う上記計測手段による計測
結果に基づいて焼結層形成手段の動作を補正する補正手
段とを備えたものとすることで、高精度な造形物を容易
に得ることができるものとなる。
Further, immediately after the formation of the sintered layer or immediately after the removing step, a measuring means for measuring the shape and position of the formed object up to that time, and an XY drive mechanism are provided to adjust the sectional contour shape of the formed object. Correction means for correcting the operation of the sintering layer forming means based on the measurement result by the measurement means for performing measurement along, so that a high-precision model can be easily obtained. Become.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態の一例に係る動作説明図で
ある。
FIG. 1 is an operation explanatory diagram according to an example of an embodiment of the present invention.

【図2】同上のブロック図である。FIG. 2 is a block diagram of the same.

【図3】同上の概略斜視図である。FIG. 3 is a schematic perspective view of the same.

【図4】同上の表面高密度部に関する説明図である。FIG. 4 is an explanatory diagram relating to a high-density surface portion of the above.

【図5】(a)(b)は同上の除去工程を示す断面図である。FIGS. 5A and 5B are cross-sectional views showing a removing step of the above.

【図6】同上の他例の動作を示す斜視図である。FIG. 6 is a perspective view showing an operation of another example of the above.

【図7】同上の更に他例の動作を示す斜視図である。FIG. 7 is a perspective view showing an operation of still another example of the above.

【図8】別の例の概略斜視図である。FIG. 8 is a schematic perspective view of another example.

【図9】さらに他例の概略斜視図である。FIG. 9 is a schematic perspective view of still another example.

【図10】(a)(b)は夫々排除手段の一例を示している概
略断面図である。
FIGS. 10A and 10B are schematic cross-sectional views each showing an example of an exclusion unit.

【図11】(a)(b)は排除手段の他例の動作を示す概略断
面図である。
FIGS. 11A and 11B are schematic cross-sectional views showing the operation of another example of the elimination means.

【図12】(a)(b)は排除加工後の処理を示す概略断面図
である。
FIGS. 12A and 12B are schematic cross-sectional views showing processing after the exclusion processing.

【図13】排除手段のさらに他例を示す概略断面図であ
る。
FIG. 13 is a schematic sectional view showing still another example of the elimination means.

【図14】排除手段の別の例を示す概略斜視図である。FIG. 14 is a schematic perspective view showing another example of the exclusion unit.

【図15】計測手段を備えた例の概略斜視図である。FIG. 15 is a schematic perspective view of an example including a measuring unit.

【図16】(a)(b)は同上の動作を示す断面図である。FIGS. 16A and 16B are cross-sectional views showing the operation of the above.

【図17】計測手段の他例を示す概略斜視図である。FIG. 17 is a schematic perspective view showing another example of the measuring means.

【図18】(a)は焼結層の形成に際しての粉末の付着を
説明する断面図、(b)は低密度表面層を示す断面図、(c)
は段差のみを除去した場合の断面図である。
18 (a) is a cross-sectional view for explaining the adhesion of powder when forming a sintered layer, FIG. 18 (b) is a cross-sectional view showing a low density surface layer, and FIG. 18 (c).
FIG. 4 is a cross-sectional view when only a step is removed.

【符号の説明】[Explanation of symbols]

L 光ビーム 4 除去手段 10 粉末層 11 焼結層 L Light beam 4 Removal means 10 Powder layer 11 Sintered layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 東 喜万 大阪府門真市大字門真1048番地松下電工株 式会社内 (72)発明者 峠山 裕彦 大阪府門真市大字門真1048番地松下電工株 式会社内 (72)発明者 不破 勲 大阪府門真市大字門真1048番地松下電工株 式会社内 (72)発明者 上永 修士 大阪府門真市大字門真1048番地松下電工株 式会社内 Fターム(参考) 4F213 AC04 AP06 AR07 WA22 WA25 WA43 WA53 WA67 WA83 WB01 WL03 WL04 WL13 WL21 WL32 WL52 WL85 WL96 4K018 CA44 CA50 EA51 EA60 FA01 JA05  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor: Kiman Higashi, Kazuma, Osaka, 1048, Kadoma, Matsushita Electric Works, Ltd. (72) Inventor Isao Fuwa 1048 Kadoma Kadoma, Kadoma City, Osaka Prefecture Inside the Matsushita Electric Works Co., Ltd. (72) Inventor Osamu Uenaga 1048 Kadoma Kadoma, Kadoma City, Osaka Pref. AP06 AR07 WA22 WA25 WA43 WA53 WA67 WA83 WB01 WL03 WL04 WL13 WL21 WL32 WL52 WL85 WL96 4K018 CA44 CA50 CA51 EA51 EA60 FA01 JA05

Claims (18)

【特許請求の範囲】[Claims] 【請求項1】 無機質あるいは有機質の粉末材料の層の
所定箇所に光ビームを照射して該当個所の粉末を焼結す
ることで焼結層を形成し、この焼結層の上に粉末材料の
新たな層を被覆して所定箇所に光ビームを照射して該当
個所の粉末を焼結することで下層の焼結層と一体になっ
た新たな焼結層を形成することを繰り返して、複数の焼
結層が積層一体化された粉末焼結部品を作成するにあた
り、焼結層の形成後にそれまでに作成した造形物の表面
部及びまたは不要部分の除去を行う工程を複数回の焼結
層の作成工程中に挿入することを特徴とする三次元形状
造形物の製造方法。
A sintering layer is formed by irradiating a predetermined portion of a layer of an inorganic or organic powder material with a light beam and sintering the powder at the corresponding portion to form a sintered layer. Repeating the process of forming a new sintered layer integrated with the lower sintered layer by sintering the powder at the corresponding location by irradiating a light beam to a predetermined location by coating a new layer, In producing a powder sintered part in which the sintered layers of the above are laminated and integrated, a process of removing the surface portion and / or unnecessary portions of the formed object after the formation of the sintered layer is performed a plurality of times. A method for producing a three-dimensionally shaped object, wherein the method is inserted during a step of forming a layer.
【請求項2】 除去工程に際しての造形物の表面部の除
去深さを焼結部の周囲に付着した粉末による低密度表面
層の深さより大とすることを特徴とする請求項1記載の
三次元形状造形物の製造方法。
2. The tertiary tertiary material according to claim 1, wherein the removal depth of the surface of the molded article in the removal step is larger than the depth of the low-density surface layer formed by the powder attached around the sintered part. Manufacturing method of original shaped object.
【請求項3】 三次元形状造形物である粉末焼結部品の
表面を高密度に焼結させておくとともに、除去工程によ
り上記高密度部を露出させることを特徴とする請求項1
または2記載の三次元形状造形物の製造方法。
3. The high-density part is sintered by densifying the surface of a powder sintered part which is a three-dimensionally shaped object and exposing the high-density part by a removing step.
Or the method for producing a three-dimensionally shaped object according to 2.
【請求項4】 除去工程を切削によって行うことを特徴
とする請求項1〜3のいずれかの項に記載の三次元形状
造形物の製造方法。
4. The method for producing a three-dimensionally shaped object according to claim 1, wherein the removing step is performed by cutting.
【請求項5】 除去工程をレーザーによって行うことを
特徴とする請求項1〜3のいずれかの項に記載の三次元
形状造形物の製造方法。
5. The method according to claim 1, wherein the removing step is performed by a laser.
【請求項6】 除去工程の直前に除去対象部に光ビーム
を照射して除去対象部を軟化させることを特徴とする請
求項1〜5のいずれかの項に記載の三次元形状造形物の
製造方法。
6. The three-dimensionally shaped object according to claim 1, wherein a light beam is applied to the part to be removed immediately before the removing step to soften the part to be removed. Production method.
【請求項7】 除去工程の直後に除去対象部を除去した
部分に溶融硬化もしくは熱処理用の光ビームを照射する
ことを特徴とする請求項1〜6のいずれかの項に記載の
三次元形状造形物の製造方法。
7. The three-dimensional shape according to claim 1, wherein a light beam for melt hardening or heat treatment is applied to a portion from which the portion to be removed has been removed immediately after the removing step. A method for manufacturing a molded article.
【請求項8】 除去工程における除去作業と同時に三次
元形状造形物である粉末焼結部品の周囲の未焼結粉末や
除去作業で発生する屑の排除作業を行うことを特徴とす
る請求項1〜7のいずれかの項に記載の三次元形状造形
物の製造方法。
8. The removal operation in the removal step, the removal operation of the unsintered powder around the powder sintered part which is a three-dimensionally shaped object and the debris generated in the removal operation are performed. 7. The method for producing a three-dimensionally shaped object according to any one of Items 7 to 7.
【請求項9】 除去工程の直前に未焼結粉末の排除を行
うことを特徴とする請求項1〜7のいずれかの項に記載
の三次元形状造形物の製造方法。
9. The method for manufacturing a three-dimensionally shaped object according to claim 1, wherein the unsintered powder is removed immediately before the removing step.
【請求項10】 除去工程の直後に除去部及び排除部に
対して樹脂またはろう材を流し込み、次いで次の粉末材
料の層の形成及び焼結を行うことを特徴とする請求項1
〜9のいずれかの項に記載の三次元形状造形物の製造方
法。
10. The method according to claim 1, wherein a resin or brazing material is poured into the removing section and the removing section immediately after the removing step, and then the next layer of powder material is formed and sintered.
10. The method for producing a three-dimensionally shaped object according to any one of Items 9 to 9.
【請求項11】 焼結層の形成直後もしくは除去工程の
直後にそれまでに形成した造形物の形状及び位置の計測
を行い、該計測結果に基づき、次の焼結層の形成のため
の光ビームの照射経路データ及び次の除去工程での被除
去部の除去加工経路データの修正を行うことを特徴とす
る請求項1〜10のいずれかの項に記載の三次元形状造
形物の製造方法。
11. Immediately after the formation of the sintered layer or immediately after the removing step, the shape and the position of the formed object are measured, and based on the measurement result, light for forming the next sintered layer is measured. The method for manufacturing a three-dimensionally shaped object according to any one of claims 1 to 10, wherein the beam irradiation path data and the removal processing path data of the part to be removed in the next removal step are corrected. .
【請求項12】 除去工程の前に未焼結粉末を固化させ
ることを特徴とする請求項1〜11のいずれかの項に記
載の三次元形状造形物の製造方法。
12. The method according to claim 1, wherein the unsintered powder is solidified before the removing step.
【請求項13】 未焼結粉末を冷凍にて固化させること
を特徴とする請求項12記載の三次元形状造形物の製造
方法。
13. The method according to claim 12, wherein the unsintered powder is solidified by freezing.
【請求項14】 未焼結粉末を樹脂またはろう材にて固
化させることを特徴とする請求項12記載の三次元形状
造形物の製造方法。
14. The method for producing a three-dimensionally shaped object according to claim 12, wherein the unsintered powder is solidified with a resin or a brazing material.
【請求項15】 無機質あるいは有機質の粉末材料の層
を形成する粉末層形成手段と、上記粉末層の所定箇所に
光ビームを照射して該当個所の粉末を焼結して焼結層を
形成する焼結層形成手段と、焼結層形成手段と焼結層と
の相対距離を調整する調整手段とを備えるとともに、造
形物の表面部及びまたは不要部分の除去を行う除去手段
を備えていることを特徴とする三次元形状造形物の製造
装置。
15. A powder layer forming means for forming a layer of an inorganic or organic powder material, and irradiating a predetermined portion of the powder layer with a light beam to sinter the powder at the corresponding portion to form a sintered layer. Sintered layer forming means, and an adjusting means for adjusting the relative distance between the sintered layer forming means and the sintered layer, and a removing means for removing a surface portion and / or an unnecessary portion of the modeled object are provided. An apparatus for producing a three-dimensionally shaped object characterized by the following.
【請求項16】 未焼結粉末や除去手段による除去工程
で発生する屑を排除する排除手段を粉末層形成手段に付
設していることを特徴とする請求項15記載の三次元形
状造形物の製造装置。
16. The three-dimensionally shaped object according to claim 15, wherein a removing means for removing unsintered powder and debris generated in a removing step by the removing means is attached to the powder layer forming means. manufacturing device.
【請求項17】 未焼結粉末や除去手段による除去工程
で発生する屑を排除する排除手段を備えるとともに該排
除手段はXY駆動機構を有して造形物の断面輪郭形状に
沿って排除作業を行うものであることを特徴とする請求
項15記載の三次元形状造形物の製造装置。
17. Eliminating means for eliminating unsintered powder and debris generated in the removing step by the removing means, and the eliminating means has an XY drive mechanism to perform an elimination operation along the cross-sectional contour shape of the modeled object. 16. The apparatus for manufacturing a three-dimensionally shaped object according to claim 15, wherein the apparatus is used.
【請求項18】 焼結層の形成直後もしくは除去工程の
直後にそれまでに形成した造形物の形状及び位置の計測
を行う計測手段と、計測手段による計測結果に基づいて
焼結層形成手段の動作を補正する補正手段とを備えると
ともに、上記計測手段は、XY駆動機構を有して造形物
の断面輪郭形状に沿って計測を行うものであることを特
徴とする請求項15〜17のいずれかの項に記載の三次
元形状造形物の製造装置。
18. A measuring means for measuring a shape and a position of a formed object immediately after forming a sintered layer or immediately after a removing step; 18. A method according to claim 15, further comprising a correction unit for correcting an operation, wherein the measurement unit has an XY drive mechanism and performs measurement along a cross-sectional contour shape of the modeled object. An apparatus for producing a three-dimensionally shaped object according to any of the above items.
JP2000306546A 2000-10-05 2000-10-05 Method and apparatus for manufacturing three-dimensional shaped object Expired - Lifetime JP3446733B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2000306546A JP3446733B2 (en) 2000-10-05 2000-10-05 Method and apparatus for manufacturing three-dimensional shaped object
TW090123973A TW506868B (en) 2000-10-05 2001-09-27 Method of and apparatus for making a three-dimensional object
US09/964,626 US6657155B2 (en) 2000-10-05 2001-09-28 Method of and apparatus for making a three-dimensional object
CNB011411619A CN1283413C (en) 2000-10-05 2001-09-29 Method and apparatus for producing three-dimensional objects
DE10148967A DE10148967B4 (en) 2000-10-05 2001-10-04 Method and device for producing a three-dimensional object
KR10-2001-0061382A KR100436121B1 (en) 2000-10-05 2001-10-05 Method of and apparatus for making a three-dimensional object
HK02107915.5A HK1046383A1 (en) 2000-10-05 2002-10-31 Method of and apparatus for making a three-dimensional object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000306546A JP3446733B2 (en) 2000-10-05 2000-10-05 Method and apparatus for manufacturing three-dimensional shaped object

Publications (2)

Publication Number Publication Date
JP2002115004A true JP2002115004A (en) 2002-04-19
JP3446733B2 JP3446733B2 (en) 2003-09-16

Family

ID=18787215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000306546A Expired - Lifetime JP3446733B2 (en) 2000-10-05 2000-10-05 Method and apparatus for manufacturing three-dimensional shaped object

Country Status (5)

Country Link
JP (1) JP3446733B2 (en)
KR (1) KR100436121B1 (en)
CN (1) CN1283413C (en)
DE (1) DE10148967B4 (en)
HK (1) HK1046383A1 (en)

Cited By (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003159755A (en) * 2001-11-29 2003-06-03 Matsushita Electric Works Ltd Method and device for manufacturing three- dimensionally shaped article
JP2003340925A (en) * 2002-05-28 2003-12-02 Matsushita Electric Works Ltd Sales management method for powder material, sales management system for powder material and its manufacturing apparatus
JP2004002957A (en) * 2002-03-26 2004-01-08 Matsushita Electric Works Ltd Method for finishing surface of powder-sintered part
JP2004082556A (en) * 2002-08-27 2004-03-18 Matsushita Electric Works Ltd Method and apparatus for manufacturing three-dimensional shape molding
JP2004122489A (en) * 2002-09-30 2004-04-22 Matsushita Electric Works Ltd Apparatus for manufacturing three-dimensional shaped article and mold manufacturing method using same
JP2004122490A (en) * 2002-09-30 2004-04-22 Matsushita Electric Works Ltd Method for manufacturing three-dimensionally shaped article
JP2004143581A (en) * 2002-08-27 2004-05-20 Matsushita Electric Works Ltd Manufacturing device of three-dimensionally shaped article
JP2004160830A (en) * 2002-11-13 2004-06-10 Roland Dg Corp Method and equipment for three-dimensional shaping
JP2004168610A (en) * 2002-11-21 2004-06-17 Toyota Motor Corp Manufacturing method of three dimensional sintered body and three dimensional sintered body
JP2004175093A (en) * 2002-09-30 2004-06-24 Matsushita Electric Works Ltd Method for fabricating three-dimensional shape article
JP2004232043A (en) * 2003-01-31 2004-08-19 Media Plus Inc Layering shaping method
JP2004277881A (en) * 2003-02-25 2004-10-07 Matsushita Electric Works Ltd Method for manufacturing three dimensionally shaped article and apparatus therefor
JP2005002472A (en) * 2003-06-10 2005-01-06 Boeing Co:The Rapid prototyping machine, selective laser sintering machine, and method for improving production part from automated production process for just in time inventory system
JP2005154830A (en) * 2003-11-25 2005-06-16 Matsushita Electric Works Ltd Surface finishing method for powder sintered component
WO2005115663A1 (en) * 2004-05-26 2005-12-08 Matsushita Electric Works, Ltd. Three-dimensional shape model producing method and apparatus
JP2005335199A (en) * 2004-05-26 2005-12-08 Matsushita Electric Works Ltd Method for recycling powder material in the manufacture of three-dimensional shape and powder material recycling device
WO2006046671A1 (en) 2004-10-26 2006-05-04 Matsushita Electric Works, Ltd. Photo-shaping method, photo-shaping system, and photo-shaping program
US7172724B2 (en) 2002-03-26 2007-02-06 Matsushita Electric Works, Ltd. Method of making sintered object
JP2007534838A (en) * 2004-02-25 2007-11-29 ベゴ・メディカル・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Method and apparatus for generating control data set for production of product by free-formation sintering or free-formation dissolution, and production equipment
US7323132B2 (en) 2002-09-30 2008-01-29 Matsushita Electric Works, Ltd. Method of making three-dimensional object
JP2008081840A (en) * 2006-08-28 2008-04-10 Matsushita Electric Works Ltd Metal powder for metal photofabrication and method of metal photofabrication using the same
WO2008143106A1 (en) * 2007-05-14 2008-11-27 Panasonic Electric Works Co., Ltd. Method and apparatus for manufacture of three-dimensionally shaped article
JP2008291317A (en) * 2007-05-24 2008-12-04 Panasonic Electric Works Co Ltd Method for producing three-dimensionally shaped object
DE112008000027T5 (en) 2007-05-30 2009-06-10 Panasonic Electric Works Co., Ltd., Kadoma-shi Lamination shaping device
WO2009131103A1 (en) 2008-04-21 2009-10-29 パナソニック電工株式会社 Laminate molding device
DE102009036195A1 (en) 2008-08-05 2010-03-04 Panasonic Electric Works Co., Ltd., Kadoma-shi Apparatus for producing a laminated article
JP2010123110A (en) * 2008-10-21 2010-06-03 Matsuura Machinery Corp Cutting method for forming acute angle
US7754135B2 (en) 2003-02-25 2010-07-13 Panasonic Electric Works Co., Ltd. Three dimensional structure producing method and producing device
JP2010280173A (en) * 2009-06-05 2010-12-16 Panasonic Electric Works Co Ltd Method for manufacturing three-dimensionally shaped article
US8062020B2 (en) 2003-02-25 2011-11-22 Panasonic Electric Works Co., Ltd. Three dimensional structure producing device and producing method
CN103341591A (en) * 2013-07-18 2013-10-09 大连理工大学 Selective-failure-based 3D (three-dimensional) printing method for preparing mold
JP5599921B1 (en) * 2013-07-10 2014-10-01 パナソニック株式会社 Manufacturing method of three-dimensional shaped object
KR101469307B1 (en) * 2010-04-14 2014-12-04 가부시키가이샤 마쓰우라 기카이 세이사쿠쇼 Method for producing artificial bone and artificial bone produced by the method
WO2015005497A1 (en) * 2013-07-10 2015-01-15 パナソニックIpマネジメント株式会社 Production method and production device for three-dimensionally shaped molded object
JP2015168877A (en) * 2014-03-10 2015-09-28 日本電子株式会社 Three-dimentional lamination molding device and three-dimentional lamination molding method
JP2016503903A (en) * 2013-01-18 2016-02-08 ウエスチングハウス・エレクトリック・カンパニー・エルエルシー Laser sintering system and method for remotely producing high density pellets containing highly radioactive elements
JP2016505386A (en) * 2012-12-14 2016-02-25 ウェスタン・ミシガン・ユニバーシティ・リサーチ・ファウンデイションWestern Michigan University Research Foundation Modelless sand mold and core formation for rapid casting.
JP2016078306A (en) * 2014-10-16 2016-05-16 アビー株式会社 Shaping apparatus
WO2016075802A1 (en) * 2014-11-14 2016-05-19 株式会社ニコン Shaping device and shaping method
JP2016521195A (en) * 2013-03-15 2016-07-21 パイロテック インコーポレイテッド Ceramic filter
JP2016533923A (en) * 2013-07-24 2016-11-04 ザ・ボーイング・カンパニーThe Boeing Company Additive manufacturing system, apparatus and method
JP2016196694A (en) * 2015-04-06 2016-11-24 株式会社ソディック Laminate molding method and laminate molding apparatus
JP6129945B1 (en) * 2015-12-22 2017-05-17 株式会社ソディック Laminate modeling apparatus and misalignment correction method for additive modeling apparatus
JP2017087459A (en) * 2015-11-04 2017-05-25 株式会社リコー Three-dimensional model-forming apparatus
KR101752126B1 (en) 2016-03-24 2017-06-28 가부시키가이샤 마쓰우라 기카이 세이사쿠쇼 Three-dimensional shaping method
JP6177412B1 (en) * 2016-11-22 2017-08-09 株式会社ソディック Additive manufacturing equipment
JP2017150021A (en) * 2016-02-23 2017-08-31 マツダ株式会社 Method for manufacturing body for working fluid control mechanism, and method for manufacturing working fluid control mechanism using body
JP2017529239A (en) * 2014-07-18 2017-10-05 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Additive manufacturing using laser and gas flow
JP2017530033A (en) * 2014-09-19 2017-10-12 ムーグ インコーポレイテッド Method for removing defects layer by layer during additive manufacturing
KR20180008731A (en) 2015-06-25 2018-01-24 파나소닉 아이피 매니지먼트 가부시키가이샤 Method for manufacturing three-dimensional sculpture
US20180071987A1 (en) * 2015-03-12 2018-03-15 Nikon Corporation Apparatus for manufacturing three dimensional shaped object, and method for manufacturing structure
JP2018070989A (en) * 2016-11-04 2018-05-10 株式会社ソディック Laminate molding device
JP2018537304A (en) * 2015-09-23 2018-12-20 マニュテック − ユエスデ Additive manufacturing system and additive manufacturing process by powder bed laser melting
WO2019030839A1 (en) * 2017-08-08 2019-02-14 三菱重工業株式会社 Three-dimensional layering modeling apparatus, three-dimensional layering modeling method, and three-dimensional layered model
CN109622961A (en) * 2018-12-26 2019-04-16 深圳市圆梦精密技术研究院 3D metallic print machine
KR20190075987A (en) * 2016-10-25 2019-07-01 가부시키가이샤 다이헨 Copper alloy powder, method of producing laminated molding, and laminated molding
JP2019137071A (en) * 2019-05-24 2019-08-22 株式会社ニコン Shaping apparatus and shaping method
JP2019147998A (en) * 2018-02-28 2019-09-05 セイコーエプソン株式会社 Three-dimensional molding device
JP2019183282A (en) * 2013-06-11 2019-10-24 レニショウ パブリック リミテッド カンパニーRenishaw Public Limited Company Additive manufacturing apparatus and method
JP2019209558A (en) * 2018-06-04 2019-12-12 株式会社日立製作所 Additive manufactured article and manufacturing method thereof
CN111151750A (en) * 2014-11-14 2020-05-15 株式会社尼康 Molding device and molding method
JP2020097240A (en) * 2015-01-14 2020-06-25 ツェーエル・シュッツレヒツフェアヴァルトゥングス・ゲゼルシャフト・ミト・べシュレンクテル・ハフツング Device for producing three-dimensional members
JPWO2020208708A1 (en) * 2019-04-09 2020-10-15
JP2020171968A (en) * 2020-06-22 2020-10-22 株式会社ニコン Shaping apparatus and shaping method
CN112334253A (en) * 2018-11-29 2021-02-05 日立金属株式会社 Method for manufacturing additive manufactured body and device for manufacturing additive manufactured body
US10981226B2 (en) 2016-10-25 2021-04-20 Daihen Corporation Copper alloy powder, method of producing additively-manufactured article, and additively-manufactured article
US11077495B2 (en) 2015-05-13 2021-08-03 Daihen Corporation Metal powder, method of producing additively-manufactured article, and additively-manufactured article
CN114126787A (en) * 2019-06-18 2022-03-01 Slm方案集团股份公司 Method and device for producing a multi-material workpiece
WO2022234658A1 (en) * 2021-05-07 2022-11-10 三菱電機株式会社 Numerical control device and numerical control method

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10157647C5 (en) * 2001-11-26 2012-03-08 Cl Schutzrechtsverwaltungs Gmbh Method for producing three-dimensional workpieces in a laser material processing system or a stereolithography system
DE10219984C1 (en) * 2002-05-03 2003-08-14 Bego Medical Ag Device for producing freely formed products through a build-up of layers of powder-form material, has powder spread over a lowerable table, and then solidified in layers by a laser energy source
DE10344901B4 (en) * 2002-09-30 2006-09-07 Matsushita Electric Works, Ltd., Kadoma Method for producing a three-dimensional sintered product
WO2007058160A1 (en) * 2005-11-15 2007-05-24 Matsushita Electric Works, Ltd. Process for producing three-dimensionally shaped object
JP3923511B1 (en) 2006-10-30 2007-06-06 株式会社松浦機械製作所 Stereolithography method
PL2266727T3 (en) * 2009-06-22 2016-04-29 Gillette Co A method of forming a functional razor cartridge
US8562324B2 (en) 2010-08-18 2013-10-22 Makerbot Industries, Llc Networked three-dimensional printing
US20120092724A1 (en) * 2010-08-18 2012-04-19 Pettis Nathaniel B Networked three-dimensional printing
WO2014010144A1 (en) * 2012-07-09 2014-01-16 パナソニック株式会社 Method for manufacturing three-dimensional molding
JP2015533650A (en) * 2012-07-27 2015-11-26 エアロジェット ロケットダイン オブ ディーイー,インコーポレイテッド Selective laser melting solid axisymmetric powder bed.
CN103128972B (en) * 2013-03-24 2015-07-01 张哲夫 Assembly-free 3D (three dimensional) printing formation method and device
DE102013208651A1 (en) 2013-05-10 2014-11-13 Eos Gmbh Electro Optical Systems A method of automatically calibrating a device for generatively producing a three-dimensional object
DE102014206697A1 (en) * 2014-04-07 2015-10-08 Homag Holzbearbeitungssysteme Gmbh Device and method for creating solids
GB201410484D0 (en) * 2014-06-12 2014-07-30 Renishaw Plc Additive manufacturing apparatus and a flow device for use with such apparatus
DE102014012286B4 (en) * 2014-08-22 2016-07-21 Cl Schutzrechtsverwaltungs Gmbh Apparatus and method for producing three-dimensional objects
EP3023237B1 (en) * 2014-11-21 2020-11-11 Airbus Operations GmbH Method and system for manufacturing a three-dimensional object by means of additive manufacturing
CN104493165A (en) * 2014-12-30 2015-04-08 深圳市圆梦精密技术研究院 Electron beam melting and laser milling composite 3D printing apparatus
WO2016106607A1 (en) * 2014-12-30 2016-07-07 深圳市圆梦精密技术研究院 Laser melting and laser milling composite 3d printing apparatus
US20160325383A1 (en) * 2014-12-30 2016-11-10 Yuanmeng Precision Technology (Shenzhen) Institute Electron beam melting and laser milling composite 3d printing apparatus
CN104526359A (en) * 2014-12-30 2015-04-22 深圳市圆梦精密技术研究院 Multi-electron-beam fusing and milling composite 3D printing device
EP3228404A4 (en) * 2014-12-30 2018-09-19 Yuanmeng Precision Technology (Shenzhen) Institut Multi-electron-beam melting and milling composite 3d printing apparatus
JP5888826B1 (en) * 2015-04-27 2016-03-22 株式会社ソディック Additive manufacturing equipment
EP3159081B1 (en) 2015-10-21 2023-12-06 Nikon SLM Solutions AG Powder application arrangement comprising two cameras
JP6262275B2 (en) * 2016-03-23 2018-01-17 株式会社ソディック Additive manufacturing equipment
KR101843493B1 (en) 2016-06-01 2018-03-29 한국기계연구원 3d printing apparatus comprising measuring member of density of metal powder and 3d printing method using the same
CN109414844A (en) * 2016-06-29 2019-03-01 松下知识产权经营株式会社 The manufacturing method of multiple sprue bushes
DE102016222555A1 (en) * 2016-11-16 2018-05-17 Siemens Aktiengesellschaft Method for additive production of a component and computer-readable medium
DE102016222564A1 (en) * 2016-11-16 2018-05-17 Siemens Aktiengesellschaft Process for additive production with selective removal of base material
US20190315062A1 (en) * 2016-11-22 2019-10-17 Covestro Deutschland Ag Method and system for producing an article by layer-by-layer buildup in a stamping process
US20180345379A1 (en) * 2017-05-31 2018-12-06 General Electric Company Apparatus and method for real-time simultaneous additive and subtractive manufacturing
EP3473441B1 (en) * 2017-10-23 2021-05-19 General Electric Company Moveable molding assembly for use with additive manufacturing
EP3564034A1 (en) * 2018-05-04 2019-11-06 CL Schutzrechtsverwaltungs GmbH Apparatus for additively manufacturing three-dimensional objects
KR102119452B1 (en) * 2018-12-28 2020-06-05 주식회사 성우하이텍 Layer laminating device and 3d printing method using the same
IT201900023991A1 (en) 2019-12-13 2021-06-13 Cms Spa Work center and method for machining pieces
DE102021105228A1 (en) 2021-03-04 2022-09-08 KSB SE & Co. KGaA Removal of the support structure with a laser beam integrated on a robotic arm

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03183530A (en) * 1989-09-05 1991-08-09 Univ Texas Syst Device and method for manufacturing part
JPH09109269A (en) * 1995-10-17 1997-04-28 Roland D G Kk Three-dimensional molding method
JP2620353B2 (en) * 1986-10-17 1997-06-11 ボード、オブ、リージェンツ、ザ、ユニバーシティー、オブ、テキサス、システム Method of manufacturing parts by selective sintering
WO1997024217A1 (en) * 1995-12-31 1997-07-10 Shinko Sellbic Co., Ltd. Moldless molding method using no mold and apparatus therefor
JPH09511705A (en) * 1994-10-13 1997-11-25 イーオーエス ゲゼルシャフト ミット ベシュレンクテル ハフツング イレクトロ オプティカル システムズ Method for manufacturing three-dimensional object
JP2000073108A (en) * 1998-08-26 2000-03-07 Matsushita Electric Works Ltd Method for surface-finishing metal powder sintered part

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19514740C1 (en) * 1995-04-21 1996-04-11 Eos Electro Optical Syst Appts. for producing three-dimensional objects by laser sintering
DE19533960C2 (en) * 1995-09-13 1997-08-28 Fraunhofer Ges Forschung Method and device for producing metallic workpieces
DE19853978C1 (en) * 1998-11-23 2000-05-25 Fraunhofer Ges Forschung Apparatus for selective laser smelting comprises a roller that moves over the processing surface using an element to distribute powder
DE19905067A1 (en) * 1999-02-08 2000-08-10 Matthias Fockele Layer-wise molding build-up apparatus, especially for laser prototyping of metallic articles, has a grinding tool for removing irregularities from a previously laser melted and solidified layer region

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2620353B2 (en) * 1986-10-17 1997-06-11 ボード、オブ、リージェンツ、ザ、ユニバーシティー、オブ、テキサス、システム Method of manufacturing parts by selective sintering
JPH03183530A (en) * 1989-09-05 1991-08-09 Univ Texas Syst Device and method for manufacturing part
JPH09511705A (en) * 1994-10-13 1997-11-25 イーオーエス ゲゼルシャフト ミット ベシュレンクテル ハフツング イレクトロ オプティカル システムズ Method for manufacturing three-dimensional object
JPH09109269A (en) * 1995-10-17 1997-04-28 Roland D G Kk Three-dimensional molding method
WO1997024217A1 (en) * 1995-12-31 1997-07-10 Shinko Sellbic Co., Ltd. Moldless molding method using no mold and apparatus therefor
JP2000073108A (en) * 1998-08-26 2000-03-07 Matsushita Electric Works Ltd Method for surface-finishing metal powder sintered part

Cited By (125)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003159755A (en) * 2001-11-29 2003-06-03 Matsushita Electric Works Ltd Method and device for manufacturing three- dimensionally shaped article
JP2004002957A (en) * 2002-03-26 2004-01-08 Matsushita Electric Works Ltd Method for finishing surface of powder-sintered part
US7172724B2 (en) 2002-03-26 2007-02-06 Matsushita Electric Works, Ltd. Method of making sintered object
JP2003340925A (en) * 2002-05-28 2003-12-02 Matsushita Electric Works Ltd Sales management method for powder material, sales management system for powder material and its manufacturing apparatus
JP2004082556A (en) * 2002-08-27 2004-03-18 Matsushita Electric Works Ltd Method and apparatus for manufacturing three-dimensional shape molding
JP2004143581A (en) * 2002-08-27 2004-05-20 Matsushita Electric Works Ltd Manufacturing device of three-dimensionally shaped article
JP2004122489A (en) * 2002-09-30 2004-04-22 Matsushita Electric Works Ltd Apparatus for manufacturing three-dimensional shaped article and mold manufacturing method using same
JP2004122490A (en) * 2002-09-30 2004-04-22 Matsushita Electric Works Ltd Method for manufacturing three-dimensionally shaped article
JP2004175093A (en) * 2002-09-30 2004-06-24 Matsushita Electric Works Ltd Method for fabricating three-dimensional shape article
US7323132B2 (en) 2002-09-30 2008-01-29 Matsushita Electric Works, Ltd. Method of making three-dimensional object
JP2004160830A (en) * 2002-11-13 2004-06-10 Roland Dg Corp Method and equipment for three-dimensional shaping
JP2004168610A (en) * 2002-11-21 2004-06-17 Toyota Motor Corp Manufacturing method of three dimensional sintered body and three dimensional sintered body
JP2004232043A (en) * 2003-01-31 2004-08-19 Media Plus Inc Layering shaping method
US7754135B2 (en) 2003-02-25 2010-07-13 Panasonic Electric Works Co., Ltd. Three dimensional structure producing method and producing device
US8062020B2 (en) 2003-02-25 2011-11-22 Panasonic Electric Works Co., Ltd. Three dimensional structure producing device and producing method
US8562897B2 (en) 2003-02-25 2013-10-22 Panasonic Corporation Method of and apparatus for making a three-dimensional object
JP2004277881A (en) * 2003-02-25 2004-10-07 Matsushita Electric Works Ltd Method for manufacturing three dimensionally shaped article and apparatus therefor
JP2005002472A (en) * 2003-06-10 2005-01-06 Boeing Co:The Rapid prototyping machine, selective laser sintering machine, and method for improving production part from automated production process for just in time inventory system
JP2005154830A (en) * 2003-11-25 2005-06-16 Matsushita Electric Works Ltd Surface finishing method for powder sintered component
US8884186B2 (en) 2004-02-25 2014-11-11 Bego Medical Gmbh Method and device use to produce a set of control data for producing products by free-form sintering and/or melting, in addition to a device for the production thereof
JP2007534838A (en) * 2004-02-25 2007-11-29 ベゴ・メディカル・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Method and apparatus for generating control data set for production of product by free-formation sintering or free-formation dissolution, and production equipment
JP2005336547A (en) * 2004-05-26 2005-12-08 Matsushita Electric Works Ltd Production apparatus for shaped article with three-dimensional shape and method for correcting irradiation position of optical beam and machining position therefor
JP4561187B2 (en) * 2004-05-26 2010-10-13 パナソニック電工株式会社 Method for producing three-dimensional shaped object and powder material recycling apparatus for producing three-dimensional shaped object
JP2005335199A (en) * 2004-05-26 2005-12-08 Matsushita Electric Works Ltd Method for recycling powder material in the manufacture of three-dimensional shape and powder material recycling device
WO2005115663A1 (en) * 2004-05-26 2005-12-08 Matsushita Electric Works, Ltd. Three-dimensional shape model producing method and apparatus
JP2006124733A (en) * 2004-10-26 2006-05-18 Matsushita Electric Works Ltd Optical fabrication method, optical fabrication system, and program for optical fabrication
WO2006046671A1 (en) 2004-10-26 2006-05-04 Matsushita Electric Works, Ltd. Photo-shaping method, photo-shaping system, and photo-shaping program
US7740797B2 (en) 2004-10-26 2010-06-22 Panasonic Electric Works Co., Ltd. Photo-shaping method, photo-shaping system, and photo-shaping program
JP2008081840A (en) * 2006-08-28 2008-04-10 Matsushita Electric Works Ltd Metal powder for metal photofabrication and method of metal photofabrication using the same
JP4661842B2 (en) * 2006-08-28 2011-03-30 パナソニック電工株式会社 Method for producing metal powder for metal stereolithography and metal stereolithography
WO2008143106A1 (en) * 2007-05-14 2008-11-27 Panasonic Electric Works Co., Ltd. Method and apparatus for manufacture of three-dimensionally shaped article
JP2008307895A (en) * 2007-05-14 2008-12-25 Panasonic Electric Works Co Ltd Method and apparatus for manufacture of three-dimensionally shaped article
JP2008291317A (en) * 2007-05-24 2008-12-04 Panasonic Electric Works Co Ltd Method for producing three-dimensionally shaped object
DE202008017990U1 (en) 2007-05-30 2011-02-10 Panasonic Electric Works Co., Ltd., Kadoma-shi Lamination shaping device
DE112008000027B4 (en) * 2007-05-30 2015-05-21 Panasonic Intellectual Property Management Co., Ltd. Lamination shaping device
US8070474B2 (en) 2007-05-30 2011-12-06 Panasonic Electric Works Co., Ltd. Lamination shaping apparatus
DE112008000027T5 (en) 2007-05-30 2009-06-10 Panasonic Electric Works Co., Ltd., Kadoma-shi Lamination shaping device
WO2009131103A1 (en) 2008-04-21 2009-10-29 パナソニック電工株式会社 Laminate molding device
US8550802B2 (en) 2008-04-21 2013-10-08 Panasonic Corporation Stacked-layers forming device
JP2009279928A (en) * 2008-04-21 2009-12-03 Panasonic Electric Works Co Ltd Laminate molding apparatus
DE102009036195A1 (en) 2008-08-05 2010-03-04 Panasonic Electric Works Co., Ltd., Kadoma-shi Apparatus for producing a laminated article
JP2010123110A (en) * 2008-10-21 2010-06-03 Matsuura Machinery Corp Cutting method for forming acute angle
JP2010280173A (en) * 2009-06-05 2010-12-16 Panasonic Electric Works Co Ltd Method for manufacturing three-dimensionally shaped article
KR101469307B1 (en) * 2010-04-14 2014-12-04 가부시키가이샤 마쓰우라 기카이 세이사쿠쇼 Method for producing artificial bone and artificial bone produced by the method
JP2016505386A (en) * 2012-12-14 2016-02-25 ウェスタン・ミシガン・ユニバーシティ・リサーチ・ファウンデイションWestern Michigan University Research Foundation Modelless sand mold and core formation for rapid casting.
JP2016503903A (en) * 2013-01-18 2016-02-08 ウエスチングハウス・エレクトリック・カンパニー・エルエルシー Laser sintering system and method for remotely producing high density pellets containing highly radioactive elements
JP2020182952A (en) * 2013-03-15 2020-11-12 パイロテック インコーポレイテッド Ceramic filter
JP2016521195A (en) * 2013-03-15 2016-07-21 パイロテック インコーポレイテッド Ceramic filter
JP7119035B2 (en) 2013-03-15 2022-08-16 パイロテック インコーポレイテッド ceramic filter
US11325188B2 (en) 2013-06-11 2022-05-10 Renishaw Plc Additive manufacturing apparatus and method
JP2019183282A (en) * 2013-06-11 2019-10-24 レニショウ パブリック リミテッド カンパニーRenishaw Public Limited Company Additive manufacturing apparatus and method
JP5599921B1 (en) * 2013-07-10 2014-10-01 パナソニック株式会社 Manufacturing method of three-dimensional shaped object
US9604282B2 (en) 2013-07-10 2017-03-28 Panasonic Intellectual Property Management Co., Ltd. Method for manufacturing three-dimensional shaped object
KR101606426B1 (en) * 2013-07-10 2016-03-25 파나소닉 아이피 매니지먼트 가부시키가이샤 Production method for three-dimensionally shaped molded object
KR102126243B1 (en) * 2013-07-10 2020-06-24 파나소닉 아이피 매니지먼트 가부시키가이샤 Production method and production device for three-dimensionally shaped molded object
JP2015017294A (en) * 2013-07-10 2015-01-29 パナソニック株式会社 Method for producing three-dimensional shape formed article
JP2015017295A (en) * 2013-07-10 2015-01-29 パナソニック株式会社 Method for producing three-dimensional shape formed article and manufacturing apparatus therefor
WO2015005496A1 (en) * 2013-07-10 2015-01-15 パナソニックIpマネジメント株式会社 Production method for three-dimensionally shaped molded object
WO2015005497A1 (en) * 2013-07-10 2015-01-15 パナソニックIpマネジメント株式会社 Production method and production device for three-dimensionally shaped molded object
US9586285B2 (en) 2013-07-10 2017-03-07 Panasonic Intellectual Property Management Co., Ltd. Method and apparatus for manufacturing three-dimensional shaped object
KR20170038112A (en) * 2013-07-10 2017-04-05 파나소닉 아이피 매니지먼트 가부시키가이샤 Production method and production device for three-dimensionally shaped molded object
CN103341591A (en) * 2013-07-18 2013-10-09 大连理工大学 Selective-failure-based 3D (three-dimensional) printing method for preparing mold
US10882291B2 (en) 2013-07-24 2021-01-05 The Boeing Company Additive-manufacturing systems, apparatuses and methods
JP2016533923A (en) * 2013-07-24 2016-11-04 ザ・ボーイング・カンパニーThe Boeing Company Additive manufacturing system, apparatus and method
JP2015168877A (en) * 2014-03-10 2015-09-28 日本電子株式会社 Three-dimentional lamination molding device and three-dimentional lamination molding method
JP2017529239A (en) * 2014-07-18 2017-10-05 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Additive manufacturing using laser and gas flow
JP2017530033A (en) * 2014-09-19 2017-10-12 ムーグ インコーポレイテッド Method for removing defects layer by layer during additive manufacturing
JP2016078306A (en) * 2014-10-16 2016-05-16 アビー株式会社 Shaping apparatus
CN111687416A (en) * 2014-11-14 2020-09-22 株式会社尼康 Molding apparatus and molding method
TWI705887B (en) * 2014-11-14 2020-10-01 日商尼康股份有限公司 Modeling apparatus and modeling method
WO2016075802A1 (en) * 2014-11-14 2016-05-19 株式会社ニコン Shaping device and shaping method
US11806810B2 (en) 2014-11-14 2023-11-07 Nikon Corporation Shaping apparatus and shaping method
CN106922135A (en) * 2014-11-14 2017-07-04 株式会社尼康 Styling apparatus and formative method
US11161202B2 (en) 2014-11-14 2021-11-02 Nikon Corporation Shaping apparatus and shaping method
CN111702173A (en) * 2014-11-14 2020-09-25 株式会社尼康 Molding apparatus and molding method
CN111687415A (en) * 2014-11-14 2020-09-22 株式会社尼康 Molding apparatus and molding method
CN106922135B (en) * 2014-11-14 2020-07-14 株式会社尼康 Molding apparatus and molding method
CN111151750A (en) * 2014-11-14 2020-05-15 株式会社尼康 Molding device and molding method
TWI760620B (en) * 2014-11-14 2022-04-11 日商尼康股份有限公司 Modeling apparatus and modeling method
CN111702173B (en) * 2014-11-14 2023-12-19 株式会社尼康 Molding apparatus and molding method
JPWO2016075802A1 (en) * 2014-11-14 2017-08-24 株式会社ニコン Modeling apparatus and modeling method
US11911844B2 (en) 2014-11-14 2024-02-27 Nikon Corporation Shaping apparatus and shaping method
JP2020097240A (en) * 2015-01-14 2020-06-25 ツェーエル・シュッツレヒツフェアヴァルトゥングス・ゲゼルシャフト・ミト・べシュレンクテル・ハフツング Device for producing three-dimensional members
US11370028B2 (en) 2015-01-14 2022-06-28 Concept Laser Gmbh Method for producing three-dimensional components
JP7004337B2 (en) 2015-01-14 2022-02-10 ツェーエル・シュッツレヒツフェアヴァルトゥングス・ゲゼルシャフト・ミト・べシュレンクテル・ハフツング Equipment for manufacturing 3D members
US20180071987A1 (en) * 2015-03-12 2018-03-15 Nikon Corporation Apparatus for manufacturing three dimensional shaped object, and method for manufacturing structure
JP2016196694A (en) * 2015-04-06 2016-11-24 株式会社ソディック Laminate molding method and laminate molding apparatus
US11077495B2 (en) 2015-05-13 2021-08-03 Daihen Corporation Metal powder, method of producing additively-manufactured article, and additively-manufactured article
KR20180008731A (en) 2015-06-25 2018-01-24 파나소닉 아이피 매니지먼트 가부시키가이샤 Method for manufacturing three-dimensional sculpture
JP2018537304A (en) * 2015-09-23 2018-12-20 マニュテック − ユエスデ Additive manufacturing system and additive manufacturing process by powder bed laser melting
JP2017087459A (en) * 2015-11-04 2017-05-25 株式会社リコー Three-dimensional model-forming apparatus
US10688559B2 (en) 2015-12-22 2020-06-23 Sodick Co., Ltd. Three dimensional printer
JP6129945B1 (en) * 2015-12-22 2017-05-17 株式会社ソディック Laminate modeling apparatus and misalignment correction method for additive modeling apparatus
JP2017115181A (en) * 2015-12-22 2017-06-29 株式会社ソディック Lamination molding apparatus and method of correcting positional deviation for lamination molding apparatus
US20170173689A1 (en) * 2015-12-22 2017-06-22 Sodick Co., Ltd. Three dimensional printer
JP2017150021A (en) * 2016-02-23 2017-08-31 マツダ株式会社 Method for manufacturing body for working fluid control mechanism, and method for manufacturing working fluid control mechanism using body
KR101752126B1 (en) 2016-03-24 2017-06-28 가부시키가이샤 마쓰우라 기카이 세이사쿠쇼 Three-dimensional shaping method
US10981226B2 (en) 2016-10-25 2021-04-20 Daihen Corporation Copper alloy powder, method of producing additively-manufactured article, and additively-manufactured article
KR102239261B1 (en) * 2016-10-25 2021-04-12 가부시키가이샤 다이헨 Copper alloy powder, manufacturing method of laminated moldings and laminated moldings
US12084745B2 (en) 2016-10-25 2024-09-10 Daihen Corporation Copper alloy powder, method of producing additively-manufactured article, and additively-manufactured article
KR20190075987A (en) * 2016-10-25 2019-07-01 가부시키가이샤 다이헨 Copper alloy powder, method of producing laminated molding, and laminated molding
JP2018070989A (en) * 2016-11-04 2018-05-10 株式会社ソディック Laminate molding device
US10376959B2 (en) 2016-11-04 2019-08-13 Sodick Co., Ltd. Lamination molding apparatus
JP6177412B1 (en) * 2016-11-22 2017-08-09 株式会社ソディック Additive manufacturing equipment
JP2018083966A (en) * 2016-11-22 2018-05-31 株式会社ソディック Lamination molding apparatus
WO2019030839A1 (en) * 2017-08-08 2019-02-14 三菱重工業株式会社 Three-dimensional layering modeling apparatus, three-dimensional layering modeling method, and three-dimensional layered model
US11344952B2 (en) 2017-08-08 2022-05-31 Mitsubishi Heavy Industries, Ltd. Three-dimensional additive manufacturing device, three-dimensional additive manufacturing method, and three-dimensional additive manufactured product
JPWO2019030839A1 (en) * 2017-08-08 2020-03-19 三菱重工業株式会社 Three-dimensional additive manufacturing apparatus, three-dimensional additive manufacturing method, and three-dimensional additive manufacturing
JP2019147998A (en) * 2018-02-28 2019-09-05 セイコーエプソン株式会社 Three-dimensional molding device
JP7041391B2 (en) 2018-02-28 2022-03-24 セイコーエプソン株式会社 3D modeling equipment
WO2019234974A1 (en) * 2018-06-04 2019-12-12 株式会社日立製作所 Powder laminate molded article and production method therefor
JP2019209558A (en) * 2018-06-04 2019-12-12 株式会社日立製作所 Additive manufactured article and manufacturing method thereof
CN112334253A (en) * 2018-11-29 2021-02-05 日立金属株式会社 Method for manufacturing additive manufactured body and device for manufacturing additive manufactured body
CN112334253B (en) * 2018-11-29 2023-06-06 株式会社博迈立铖 Method and device for manufacturing additive manufactured body
CN109622961A (en) * 2018-12-26 2019-04-16 深圳市圆梦精密技术研究院 3D metallic print machine
CN109622961B (en) * 2018-12-26 2023-12-22 深圳市圆梦精密技术研究院 3D metal printer
JP7476886B2 (en) 2019-04-09 2024-05-01 株式会社ニコン Modeling Unit
JPWO2020208708A1 (en) * 2019-04-09 2020-10-15
JP2019137071A (en) * 2019-05-24 2019-08-22 株式会社ニコン Shaping apparatus and shaping method
CN114126787A (en) * 2019-06-18 2022-03-01 Slm方案集团股份公司 Method and device for producing a multi-material workpiece
JP2022106693A (en) * 2020-06-22 2022-07-20 株式会社ニコン Shaping apparatus and shaping method
JP7047864B2 (en) 2020-06-22 2022-04-05 株式会社ニコン Modeling equipment and modeling method
JP7468559B2 (en) 2020-06-22 2024-04-16 株式会社ニコン Molding apparatus and molding method
JP2020171968A (en) * 2020-06-22 2020-10-22 株式会社ニコン Shaping apparatus and shaping method
WO2022234658A1 (en) * 2021-05-07 2022-11-10 三菱電機株式会社 Numerical control device and numerical control method

Also Published As

Publication number Publication date
JP3446733B2 (en) 2003-09-16
CN1283413C (en) 2006-11-08
KR20020027259A (en) 2002-04-13
DE10148967B4 (en) 2008-06-12
HK1046383A1 (en) 2003-10-17
DE10148967A1 (en) 2002-04-18
KR100436121B1 (en) 2004-06-14
CN1347783A (en) 2002-05-08

Similar Documents

Publication Publication Date Title
JP2002115004A (en) Method and equipment for manufacturing article with three-dimensional shape
JP4655063B2 (en) Manufacturing method of three-dimensional shaped object
KR100553644B1 (en) Method of manufacturing a three dimensional object
US6827988B2 (en) Process and a device for producing ceramic molds
JP3943315B2 (en) Manufacturing method of three-dimensional shaped object
US6657155B2 (en) Method of and apparatus for making a three-dimensional object
KR100574268B1 (en) Method of manufacturing a three dimensional object
US5354414A (en) Apparatus and method for forming an integral object from laminations
JP4487636B2 (en) Manufacturing method of three-dimensional shaped object
JP3599059B2 (en) Method and apparatus for manufacturing three-dimensional shaped object
JP4661551B2 (en) Three-dimensional shaped object manufacturing equipment
US20140010908A1 (en) Method for manufacturing three-dimensional shaped object and three-dimensional shaped object
JP2000296561A (en) Variable weld lamination type rapid shaping method and apparatus
WO2004076103A1 (en) Three dimensional structure producing method and producing device
JP2005533172A (en) Method for manufacturing a three-dimensional molded product in a laser material processing unit or an optical modeling unit
JP2009007669A (en) Laminating shaping apparatus
JP4867790B2 (en) Manufacturing method of three-dimensional shaped object
JP3491627B2 (en) Manufacturing method of three-dimensional shaped object
TWI232786B (en) Method of making a three-dimensional sintered product
JP2004122490A (en) Method for manufacturing three-dimensionally shaped article
JP3433745B2 (en) Manufacturing method and manufacturing apparatus for three-dimensional shaped object
JP2003305778A (en) Method for manufacturing three-dimensionally shaped article
JP2004122489A (en) Apparatus for manufacturing three-dimensional shaped article and mold manufacturing method using same
JP6192677B2 (en) Additive manufacturing method and additive manufacturing apparatus
JP2004232043A (en) Layering shaping method

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030603

R151 Written notification of patent or utility model registration

Ref document number: 3446733

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070704

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080704

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090704

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090704

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090704

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100704

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100704

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130704

Year of fee payment: 10