JP2010280173A - Method for manufacturing three-dimensionally shaped article - Google Patents

Method for manufacturing three-dimensionally shaped article Download PDF

Info

Publication number
JP2010280173A
JP2010280173A JP2009136554A JP2009136554A JP2010280173A JP 2010280173 A JP2010280173 A JP 2010280173A JP 2009136554 A JP2009136554 A JP 2009136554A JP 2009136554 A JP2009136554 A JP 2009136554A JP 2010280173 A JP2010280173 A JP 2010280173A
Authority
JP
Japan
Prior art keywords
manufacturing
exclusion
powder
material powder
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009136554A
Other languages
Japanese (ja)
Other versions
JP5456379B2 (en
Inventor
Satoshi Abe
諭 阿部
Tokuo Yoshida
徳雄 吉田
Yoshikazu Azuma
喜万 東
Masataka Takenami
正孝 武南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Electric Works Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Electric Works Co Ltd filed Critical Panasonic Electric Works Co Ltd
Priority to JP2009136554A priority Critical patent/JP5456379B2/en
Publication of JP2010280173A publication Critical patent/JP2010280173A/en
Application granted granted Critical
Publication of JP5456379B2 publication Critical patent/JP5456379B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/188Processes of additive manufacturing involving additional operations performed on the added layers, e.g. smoothing, grinding or thickness control
    • B29C64/194Processes of additive manufacturing involving additional operations performed on the added layers, e.g. smoothing, grinding or thickness control during lay-up
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Powder Metallurgy (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To shorten the shaping time for a shaped article without scratching the surface of the shaped article in the method for manufacturing the three-dimensionally shaped article. <P>SOLUTION: A laminate shaping device 1 includes: a shaping part 2 for shaping the three-dimensionally shaped shaping article; a power layer forming part 3, which forms a powder layer 32 by supplying powder material 31; a covering frame 4 for covering the powder layer 32 and the like; a light beam irradiating part 5 for forming a solidified layer 33 for irradiating it with light beam L; a machining removing part 6 for removing the surface layer of the shaped article 11; a brushing tool 71 for eliminating the powder material 31 around the shaped article 11 and wastes; and a controlling part for controlling respective parts. The cleaning of the shaped article 11 can be possible without developing bruises on the surface of the shaped article due to the elimination of the powder material 31 around the surface of the shaped article and the wastes with the brushing tool 71 before the removal process by the machining removing part 6 and, at the same time, the shaping time can be shortened. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、材料粉末に光ビームの照射を行なう三次元形状造形物の製造方法に関する。   The present invention relates to a method for manufacturing a three-dimensional shaped object in which a material powder is irradiated with a light beam.

従来から、材料粉末で形成した粉末層に光ビームを照射して焼結又は溶融固化させて固化層を形成し、この固化層の上に新たな粉末層を形成して光ビームを照射することを繰り返して固化層を積層して造形物を形成し、この造形物の形成の途中に造形物の表層及び不要部分を切削等によって除去するということを繰り返して三次元形状造形物を製造する製造方法が知られている。   Conventionally, a powder layer formed of a material powder is irradiated with a light beam to sinter or melt and solidify to form a solidified layer, and a new powder layer is formed on the solidified layer and irradiated with the light beam. The solidified layer is repeatedly laminated to form a modeled object, and the three-dimensional modeled object is manufactured by repeatedly removing the surface layer and unnecessary portions of the modeled object by cutting or the like during the formation of the modeled object. The method is known.

図12(a)に、このような製造方法における除去工程中の造形物の断面を示す。このような製造方法においては、表層や不要部分である除去部38の切削時に、材料粉末31や切削屑が造形物11とエンドミル63の間にかみ込み、造形物11の表面に傷が発生する。図12(b)に、このような表面の傷を示す。   FIG. 12A shows a cross-section of a shaped object during the removing step in such a manufacturing method. In such a manufacturing method, the material powder 31 and the cutting waste bite between the modeled object 11 and the end mill 63 during the cutting of the removal portion 38 which is a surface layer or an unnecessary part, and the surface of the modeled object 11 is damaged. . FIG. 12B shows such a scratch on the surface.

また、切削時の材料粉末や切削屑のかみ込みを防止するために、切削の前に造形物の周囲の材料粉末と切削屑を全て吸引して排除する製造方法が知られている(例えば特許文献1参照)。しかしながら、このような製造方法においては、材料粉末と切削屑とを全て排除するので、造形時間が長くなる。   In addition, a manufacturing method is known in which all the material powder and cutting waste around the modeled object are sucked and removed before cutting in order to prevent biting of the material powder and cutting waste at the time of cutting (for example, patents). Reference 1). However, in such a manufacturing method, since all of the material powder and the cutting waste are eliminated, the modeling time becomes long.

特開2002−115004号公報JP 2002-115004 A

本発明は、上記問題を解消するものであり、造形物の表面に傷を発生させることがなく、造形時間の短縮が図れる三次元形状造形物の製造方法を提供することを目的とする。   An object of the present invention is to solve the above-described problem, and to provide a method for producing a three-dimensional shaped object that can reduce the modeling time without causing scratches on the surface of the object.

上記目的を達成するために請求項1の発明は、材料粉末を供給して粉末層を形成する粉末層形成工程と、前記粉末層の所定の箇所に光ビームを照射して該粉末層を焼結又は溶融固化させ固化層を形成する固化層形成工程とを備え、前記粉末層形成工程と固化層形成工程とを繰り返すことにより固化層を積層する造形物の形成の途中に、該造形物の表層及び不要部分を除去する除去工程を少なくとも1回以上挿入して三次元形状造形物を造形する三次元形状造形物の製造方法において、前記除去工程における除去作業と同時に、又は除去工程の前に造形物の周囲の材料粉末、及び除去作業で発生する屑を排除する排除工程を備え、前記排除工程は、前記除去作業が施される造形物の表面周辺の範囲で行なわれるものである。   In order to achieve the above object, the invention of claim 1 includes a powder layer forming step of supplying a material powder to form a powder layer, and irradiating a predetermined portion of the powder layer with a light beam to sinter the powder layer. A solidified layer forming step of forming a solidified layer by solidifying or melting and solidifying the solidified layer by repeating the powder layer forming step and the solidified layer forming step. In the manufacturing method of a three-dimensional shaped article that forms a three-dimensional shaped article by inserting a removing step that removes the surface layer and unnecessary portions at least once, before the removing operation in the removing process, or before the removing process An exclusion process for eliminating material powder around the modeled object and debris generated in the removal operation is provided, and the exclusion process is performed in a range around the surface of the modeled object on which the removal operation is performed.

請求項2の発明は、請求項1に記載の三次元形状造形物の製造方法において、前記排除工程が行なわれる領域は、前記除去加工時の加工経路を基に定められるものである。   According to a second aspect of the present invention, in the method for manufacturing a three-dimensional shaped article according to the first aspect, the region where the exclusion step is performed is determined based on a processing path at the time of the removal processing.

請求項3の発明は、請求項1又は請求項2に記載の三次元形状造形物の製造方法において、前記排除工程は、前記材料粉末及び屑を掃き出すブラシを有する排除手段によって行なわれるものである。   According to a third aspect of the present invention, in the method for manufacturing a three-dimensionally shaped article according to the first or second aspect, the exclusion step is performed by an exclusion means having a brush that sweeps out the material powder and waste. .

請求項4の発明は、請求項1又は請求項2に記載の三次元形状造形物の製造方法において、前記排除工程は、前記材料粉末及び屑をすくい上げるスクリュウを有する排除手段によって行なわれるものである。   According to a fourth aspect of the present invention, in the method for manufacturing a three-dimensionally shaped article according to the first or second aspect, the exclusion step is performed by an exclusion means having a screw that scoops up the material powder and waste. .

請求項5の発明は、請求項1又は請求項2に記載の三次元形状造形物の製造方法において、前記排除工程は、前記粉末層を覆うスカート部と、前記スカート部によって形成される空間内を吸引する吸引部と、を有した排除手段によって行なわれるものである。   According to a fifth aspect of the present invention, in the method for manufacturing a three-dimensional shaped article according to the first or second aspect, the exclusion step is performed in a space formed by the skirt portion covering the powder layer and the skirt portion. And a suction unit that sucks the water.

請求項6の発明は、請求項1又は請求項2に記載の三次元形状造形物の製造方法において、前記排除工程は、前記材料粉末及び屑を吹き飛ばすガスを噴出する排除手段によって行なわれるものである。   The invention of claim 6 is the method for producing a three-dimensional shaped article according to claim 1 or claim 2, wherein the exclusion step is performed by an exclusion means for ejecting a gas for blowing off the material powder and debris. is there.

請求項7の発明は、請求項1又は請求項2に記載の三次元形状造形物の製造方法において、前記除去工程は、第1の回転切削工具によって行なわれ、前記排除工程は、前記第1の回転切削工具よりも小さい径を持つ第2の回転切削工具を用い、該第2の回転切削工具を前記第1の回転切削工具の走査経路に沿って走査させることにより行なわれるものである。   The invention of claim 7 is the method for producing a three-dimensional shaped article according to claim 1 or claim 2, wherein the removing step is performed by a first rotary cutting tool, and the removing step is performed by the first step. This is performed by using a second rotary cutting tool having a diameter smaller than that of the first rotary cutting tool and causing the second rotary cutting tool to scan along the scanning path of the first rotary cutting tool.

請求項8の発明は、請求項1又は請求項2に記載の三次元形状造形物の製造方法において、前記排除工程は、列状に配置された吸引ノズルが前記粉末層上を走査し、前記除去作業が施される造形物の表面周辺に位置したときに、前記材料粉末及び屑を吸引することにより行なわれるものである。   The invention of claim 8 is the method of manufacturing a three-dimensionally shaped object according to claim 1 or claim 2, wherein in the exclusion step, suction nozzles arranged in rows scan the powder layer, and It is performed by sucking the material powder and scrap when positioned around the surface of the shaped object to be removed.

請求項1の発明によれば、造形物の表面周辺の範囲で材料粉末及び屑を排除するので、造形物の表面をきれいにすることができると共に、造形時間を短縮することができる。   According to the first aspect of the present invention, since the material powder and debris are excluded in the range around the surface of the modeled object, the surface of the modeled object can be cleaned and the modeling time can be shortened.

請求項2の発明によれば、排除工程を行なう領域を容易に決めることができ、造形時間の短縮が図れる。   According to invention of Claim 2, the area | region which performs an exclusion process can be determined easily and shortening of modeling time can be aimed at.

請求項3の発明によれば、ブラシによって造形物の表面周辺の材料粉末及び屑を排除するので、造形時間の短縮が図れる。   According to the invention of claim 3, since the material powder and debris around the surface of the modeled object are eliminated by the brush, the modeling time can be shortened.

請求項4の発明によれば、スクリュウによって造形物の表面周辺の材料粉末及び屑を排除するので、造形時間の短縮が図れる。   According to invention of Claim 4, since the material powder and waste around the surface of a modeling thing are excluded with a screw, modeling time can be shortened.

請求項5の発明によれば、スカート部と吸引部とによって造形物の表面周辺の材料粉末及び屑を排除するので、造形時間の短縮が図れる。   According to the fifth aspect of the present invention, since the material powder and debris around the surface of the modeled object are eliminated by the skirt part and the suction part, the modeling time can be shortened.

請求項6の発明によれば、ガスを噴出する排除手段によって造形物の表面周辺の材料粉末及び屑を排除するので、造形時間の短縮が図れる。   According to the sixth aspect of the present invention, the material powder and debris around the surface of the modeled object are excluded by the excluding means for ejecting gas, so that the modeling time can be shortened.

請求項7の発明によれば、第2の回転切削工具によって造形物の表面周辺の材料粉末及び屑を排除するので、造形時間の短縮が図れる。   According to the seventh aspect of the present invention, since the material powder and debris around the surface of the modeled object are eliminated by the second rotary cutting tool, the modeling time can be shortened.

請求項8の発明によれば、吸引ノズルによって造形物の表面周辺の材料粉末及び屑を排除するので、造形時間の短縮が図れる。   According to the eighth aspect of the present invention, since the material powder and debris around the surface of the modeled object are eliminated by the suction nozzle, the modeling time can be shortened.

(a)は本発明の第1の実施形態に係る製造方法に用いる積層造形装置の部分断面図、(b)は同装置の斜視図。(A) is a fragmentary sectional view of the additive manufacturing apparatus used for the manufacturing method which concerns on the 1st Embodiment of this invention, (b) is a perspective view of the apparatus. (a)は同装置のブラシ工具の構成図、(b)は同ブラシ工具の他例の構成図。(A) is a block diagram of the brush tool of the apparatus, (b) is a block diagram of the other example of the brush tool. (a)乃至(f)は同製造方法を時系列に示す図。(A) thru | or (f) is a figure which shows the manufacturing method in time series. 同製造方法のフロー図。The flowchart of the manufacturing method. 同製造方法における除去工程時の造形物の断面図。Sectional drawing of the molded article at the time of the removal process in the manufacturing method. (a)は同製造方法における造形物の最終形状の斜視図、(b)は同造形物の造形途中での斜視図、(c)は同製造方法における除去領域を示す造形物の平面図、(d)は同除去領域を示す造形物の断面図、(e)は同製造方法における排除領域を示す造形物の断面図。(A) is a perspective view of the final shape of a modeled object in the manufacturing method, (b) is a perspective view in the middle of modeling the modeled object, (c) is a plan view of a modeled object showing a removal region in the manufacturing method, (D) is sectional drawing of the molded article which shows the removal area | region, (e) is sectional drawing of the molded article which shows the exclusion area | region in the manufacturing method. 本発明の第2の実施形態に係る製造方法に用いる積層造形装置のスクリュウ工具の構成図。The block diagram of the screw tool of the additive manufacturing apparatus used for the manufacturing method which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施形態に係る製造方法に用いる積層造形装置の吸引装置の構成図。The block diagram of the suction device of the additive manufacturing apparatus used for the manufacturing method which concerns on the 3rd Embodiment of this invention. 本発明の第4の実施形態に係る製造方法に用いる積層造形装置の噴出装置の構成図。The block diagram of the ejection apparatus of the additive manufacturing apparatus used for the manufacturing method which concerns on the 4th Embodiment of this invention. (a)は本発明の第5の実施形態に係る製造方法における排除工程時の造形物の断面図、(b)は同製造方法における除去工程時の造形物の断面図。(A) is sectional drawing of the molded article at the time of the exclusion process in the manufacturing method which concerns on the 5th Embodiment of this invention, (b) is sectional drawing of the molded article at the time of the removal process in the manufacturing method. (a)(b)は本発明の第6の実施形態に係る製造方法に用いる積層造形装置の吸引ノズルの構成図。(A) and (b) are the block diagrams of the suction nozzle of the additive manufacturing apparatus used for the manufacturing method which concerns on the 6th Embodiment of this invention. (a)は従来の製造方法における除去工程時の造形物の断面図、(b)は同製造方法によって製造した造形物における表面の傷の写真。(A) is sectional drawing of the molded article at the time of the removal process in the conventional manufacturing method, (b) is a photograph of the surface damage | wound in the molded article manufactured by the manufacturing method.

(第1の実施形態)
本発明の第1の実施形態に係る三次元造形物の製造方法について図面を参照して説明する。図1(a)(b)は、同製造方法に用いられる積層造形装置(以下、本装置と記す)の構成を示す。本装置1は、三次元形状造形物を造形する造形部2と、無機質又は有機質の材料粉末31を造形部2に供給して粉末層32を形成する粉末層形成部3と、粉末層32等を覆う覆い枠4と、粉末層32に光ビームLを照射して固化層33を形成する光ビーム照射部5と、造形物11の表層を除去する切削除去部6と、造形物11の周囲の材料粉末31を排除するブラシ工具(排除手段)71と、各部を制御する制御部(図示なし)とを備えている。粉末層32は、光ビームLが照射されることにより焼結又は溶融固化され固化層33となり、固化層33が積層されて造形物11が造形される。また、本装置1は、覆い枠4内に雰囲気ガスを供給するガスタンク(図示なし)と、雰囲気ガスを回収するガス回収装置(図示なし)とを備えている。
(First embodiment)
The manufacturing method of the three-dimensional structure according to the first embodiment of the present invention will be described with reference to the drawings. 1A and 1B show the configuration of an additive manufacturing apparatus (hereinafter referred to as the present apparatus) used in the manufacturing method. The apparatus 1 includes a modeling unit 2 that models a three-dimensional modeled object, a powder layer forming unit 3 that supplies an inorganic or organic material powder 31 to the modeling unit 2 to form a powder layer 32, a powder layer 32, and the like. A cover frame 4 that covers the powder, a light beam irradiation unit 5 that irradiates the powder layer 32 with a light beam L to form a solidified layer 33, a cutting removal unit 6 that removes the surface layer of the modeled object 11, and the surroundings of the modeled object 11 The brush tool (exclusion means) 71 which excludes the material powder 31 and the control part (not shown) which controls each part are provided. The powder layer 32 is sintered or melted and solidified by being irradiated with the light beam L to become a solidified layer 33, and the solidified layer 33 is laminated to form the modeled article 11. In addition, the apparatus 1 includes a gas tank (not shown) that supplies atmospheric gas into the cover frame 4 and a gas recovery device (not shown) that recovers the atmospheric gas.

造形部2は、昇降する昇降テーブル21と、昇降テーブル21の上にセッティングされて粉末層32が敷かれる造形プレート22と、昇降テーブル21の周囲を囲み粉末層32を保持する造形タンク23を有している。材料粉末31は、例えば平均粒径20μmの球形の鉄粉である。   The modeling unit 2 includes a lifting table 21 that moves up and down, a modeling plate 22 that is set on the lifting table 21 and on which a powder layer 32 is laid, and a modeling tank 23 that surrounds the lifting table 21 and holds the powder layer 32. is doing. The material powder 31 is, for example, a spherical iron powder having an average particle diameter of 20 μm.

粉末層形成部3は、昇降して材料粉末31をせり上げる供給テーブル34と、供給テーブル34の周囲を囲む粉末タンク35と、粉末タンク35及び造形タンク23上をスライド移動するブレード36とを有している。制御部は、供給テーブル34を上昇させて材料粉末31をせり上げ、ブレード36を矢印A方向にスライド移動させて供給テーブル34上の材料粉末31を造形部2の造形プレート22上に供給し、材料粉末31を均して粉末層32を形成する。   The powder layer forming unit 3 has a supply table 34 that moves up and down to raise the material powder 31, a powder tank 35 that surrounds the supply table 34, and a blade 36 that slides on the powder tank 35 and the modeling tank 23. is doing. The control unit raises the supply table 34 to raise the material powder 31, slides the blade 36 in the direction of arrow A, and supplies the material powder 31 on the supply table 34 onto the modeling plate 22 of the modeling unit 2, The material powder 31 is leveled to form a powder layer 32.

覆い枠4は、上面に光ビームLを透過させるウィンドウ41を有している。ウィンドウ41の材質は、例えば、光ビームLが炭酸ガスレーザの場合はジンクセレン等であり、光ビームLがYAGレーザの場合は石英ガラス等であり、光ビームLが十分に透過する材質であればよい。覆い枠4内は雰囲気ガスによって満たされており、材料粉末31の酸化等が防がれる。雰囲気ガスは、例えば窒素ガスやアルゴンガスである。また、雰囲気ガスに代えて還元性ガスを用いてもよい。雰囲気ガスは、ガスタンクから覆い枠4内に供給され、覆い枠4内の雰囲気ガスはガス回収装置に排気される。   The cover frame 4 has a window 41 that transmits the light beam L on its upper surface. The material of the window 41 is, for example, zinc selenium or the like when the light beam L is a carbon dioxide gas laser, or quartz glass or the like when the light beam L is a YAG laser, and may be any material that can sufficiently transmit the light beam L. . The inside of the cover frame 4 is filled with the atmospheric gas, and oxidation of the material powder 31 is prevented. The atmospheric gas is, for example, nitrogen gas or argon gas. A reducing gas may be used instead of the atmospheric gas. The atmospheric gas is supplied from the gas tank into the cover frame 4, and the atmospheric gas in the cover frame 4 is exhausted to the gas recovery device.

光ビーム照射部5は、覆い枠4の上に設けられ、光ビームLを発光する光ビーム発振器51と、光ビームLを集光する集光レンズ52と、集光された光ビームLを粉末層32の上にスキャニングするガルバノミラー53とを備えている。光ビーム発振器51は、例えば、炭酸ガスレーザやYAGレーザやファイバーレーザ等の発振器である。   The light beam irradiating unit 5 is provided on the cover frame 4, and a light beam oscillator 51 that emits the light beam L, a condensing lens 52 that condenses the light beam L, and the collected light beam L as powder. A galvanometer mirror 53 that scans on the layer 32 is provided. The light beam oscillator 51 is an oscillator such as a carbon dioxide laser, a YAG laser, or a fiber laser.

切削除去部6は、主軸台61を備える3軸制御が可能な数値制御工作機械であり、主軸台61のスピンドルヘッド62に加工のためのエンドミル63がセットされる。エンドミル63は、例えば超硬素材の2枚刃ボールエンドミルであり、加工形状や目的に応じて、スクエアエンドミル、ラジアスエンドミル、ドリル等が用いられる。各エンドミル63は、ツールマガジン64に収納され、スピンドルヘッド62に自動交換される。主軸台61はXYZ駆動部65によって、切削位置に移動される。   The cutting removal unit 6 is a numerically controlled machine tool including a headstock 61 and capable of three-axis control, and an end mill 63 for processing is set on a spindle head 62 of the headstock 61. The end mill 63 is, for example, a two-blade ball end mill made of a cemented carbide material, and a square end mill, a radius end mill, a drill, or the like is used according to the processing shape and purpose. Each end mill 63 is housed in a tool magazine 64 and automatically replaced with a spindle head 62. The headstock 61 is moved to the cutting position by the XYZ driving unit 65.

ブラシ工具71について、図2を参照して説明する。図2(a)に示されるように、ブラシ工具71は、先端にブラシ71aを有しており、スピンドルヘッド62に取り付けられて造形物11の周囲の材料粉末31を排除する。ブラシ71aの材質は、例えば樹脂や金属であり、可撓性を有するものであればよい。ブラシ工具71は、使用されないときはツールマガジン64に収納されている。ブラシ工具71は、図2(b)に示されるようにブラシ71aを側面方向に有してもよいし、また、ブラシ71aはいずれの方向を向いていてもよい。   The brush tool 71 will be described with reference to FIG. As shown in FIG. 2A, the brush tool 71 has a brush 71 a at the tip, and is attached to the spindle head 62 to exclude the material powder 31 around the shaped article 11. The material of the brush 71a is, for example, resin or metal, and may be any material having flexibility. The brush tool 71 is stored in the tool magazine 64 when not in use. As shown in FIG. 2B, the brush tool 71 may have the brush 71a in the side surface direction, and the brush 71a may face in any direction.

図3は本装置1による三次元形状造形物の製造動作を、図4はそのフローを示す。図3(a)に示されるように、制御部は、昇降テーブル21をこれから形成する粉末層32の厚さ分、降下させた後、ブレード36を矢印A方向に移動させ、造形プレート22の上に材料粉末31を供給し、粉末層32を形成する。この工程は粉末層形成工程であり、図4のステップS1に相当する。次に、図3(b)に示されるように、光ビームLを粉末層32の任意の箇所に走査させて材料粉末31を焼結又は溶融固化させ、造形プレート22と一体化した固化層33を形成する。この工程は固化層形成工程であり、図4のステップS2に相当する。   FIG. 3 shows the manufacturing operation of the three-dimensional shaped object by the apparatus 1, and FIG. 4 shows the flow. As shown in FIG. 3A, the control unit lowers the lifting table 21 by the thickness of the powder layer 32 to be formed, and then moves the blade 36 in the direction of arrow A, A material powder 31 is supplied to form a powder layer 32. This step is a powder layer forming step and corresponds to step S1 in FIG. Next, as shown in FIG. 3B, the light beam L is scanned at an arbitrary position of the powder layer 32 to sinter or melt and solidify the material powder 31, and the solidified layer 33 integrated with the modeling plate 22. Form. This step is a solidified layer forming step and corresponds to step S2 in FIG.

この固化層形成工程において、i層目(iは整数)の固化層33が形成される。光ビームLの照射経路は、予め三次元CADモデルから生成したSTL(Stereo Lithography)データを、例えば、0.05mmの等ピッチでスライスした各断面の輪郭形状データに基づいて定める。この照射経路は、造形物11の少なくとも最表面が気孔率5%以下の高密度となるようにするのが好ましい。   In this solidified layer forming step, the i-th (i is an integer) solidified layer 33 is formed. The irradiation path of the light beam L is determined based on contour shape data of each cross section obtained by slicing STL (Stereo Lithography) data generated from a three-dimensional CAD model in advance at an equal pitch of 0.05 mm, for example. The irradiation path is preferably such that at least the outermost surface of the shaped article 11 has a high density with a porosity of 5% or less.

上述した図3(a)に示される粉末層形成工程(図4のステップS1)と図3(b)に示される固化層形成工程(図4のステップS2)とを繰り返し、図3(c)に示されるように、新たな粉末層32を形成する度に昇降テーブル21を降下させて、固化層33を積層する。固化層33の積層は、層数iが所定の層数Nになるまで繰り返す(図4のステップS1乃至S4)。この層数Nは、造形物11の表面を切削するエンドミル63の有効刃長から求められる。例えば、エンドミル63が直径1mm、有効刃長3mmで深さ3mmの切削加工が可能であり、粉末層32の厚みが0.05mmであるならば、層数Nは積層した粉末層の厚みが2.5mmとなる50層になる。そして、固化層33の層数iが定めた層数Nになると、図3(d)に示されるように、ブラシ工具71を主軸台61に取り付け、ブラシ工具71を矢印Bのように造形物11の表面周辺に移動させ、材料粉末31を排除する。この表面周辺とは造形物11の側面及び上面を含む。このとき、ブラシ工具71は回転させてもよいし、回転させなくてもよい。この工程が排除工程であり、図4のステップS5に相当する。   The above-described powder layer forming step (step S1 in FIG. 4) shown in FIG. 3 (a) and the solidified layer forming step (step S2 in FIG. 4) shown in FIG. 3 (b) are repeated, and FIG. As shown in FIG. 3, every time a new powder layer 32 is formed, the elevating table 21 is lowered and the solidified layer 33 is laminated. The stacking of the solidified layer 33 is repeated until the number i of layers reaches a predetermined number N (steps S1 to S4 in FIG. 4). The number N of layers is obtained from the effective blade length of the end mill 63 that cuts the surface of the molded article 11. For example, if the end mill 63 is capable of cutting with a diameter of 1 mm, an effective blade length of 3 mm, and a depth of 3 mm, and the thickness of the powder layer 32 is 0.05 mm, the number N of layers is that the thickness of the laminated powder layers is 2. 50 layers of 5 mm. When the number of layers i of the solidified layer 33 reaches the determined number N, as shown in FIG. 3D, the brush tool 71 is attached to the headstock 61, and the brush tool 71 is shaped as indicated by the arrow B. 11 is moved to the periphery of the surface, and the material powder 31 is excluded. The periphery of the surface includes the side surface and the upper surface of the molded article 11. At this time, the brush tool 71 may be rotated or may not be rotated. This step is an exclusion step and corresponds to step S5 in FIG.

排除工程が終了すると、図3(e)に示されるように、エンドミル63を主軸台61に取り付け、エンドミル63を矢印Bのように造形物11の周囲に移動させ、造形物11の表面をエンドミル63によって除去する。このとき、切削により屑37が発生する。この工程が除去工程であり、図4のステップS6に相当する。ここに、図4のステップS6の後に、造形が終了したかの判断が成され(ステップS7)、終了していないとき、層数iを1に初期化してから(ステップS8)、ステップS1に戻り、上記を繰り返す。こうして、図3(f)に示されるように造形が終了するまで固化層33の形成と造形物11の表面の除去とを繰り返す。上述した排除工程が2回目以降の場合には、粉末層32中に除去工程で発生した屑37も含まれているので、排除工程では、材料粉末31と屑37とを排除する。   When the removal step is completed, as shown in FIG. 3E, the end mill 63 is attached to the headstock 61, the end mill 63 is moved around the modeled object 11 as indicated by arrow B, and the surface of the modeled object 11 is moved to the end mill. 63 to remove. At this time, scrap 37 is generated by cutting. This process is a removal process and corresponds to step S6 in FIG. Here, after step S6 in FIG. 4, it is determined whether or not the modeling is completed (step S7). When the modeling is not completed, the layer number i is initialized to 1 (step S8), and then the process proceeds to step S1. Return and repeat above. In this way, the formation of the solidified layer 33 and the removal of the surface of the modeled object 11 are repeated until the modeling is completed as shown in FIG. When the above-described exclusion process is performed for the second time or later, the powder layer 32 includes the waste 37 generated in the removal process. Therefore, in the exclusion process, the material powder 31 and the waste 37 are excluded.

上記の除去工程における造形物11の断面を図5に示す。排除工程によって、造形物11の周辺の材料粉末31や屑37(図3(f)等参照)が排除されているので、それらが除去作業中にエンドミル63と造形物11の間にかみ込まれず、造形物11の表層や不要部分である除去部38がスムーズに除去され、造形物11に傷が入り難くなり、表面をきれいにすることができる。また、造形物11の表面周辺の範囲で材料粉末31や屑37の排除を行なうので、造形時間の短縮を図れる。   FIG. 5 shows a cross section of the shaped article 11 in the above removal process. Since the material powder 31 and scraps 37 (see FIG. 3F, etc.) around the modeled object 11 are excluded by the exclusion process, they are not bitten between the end mill 63 and the modeled object 11 during the removing operation. The removal part 38 which is a surface layer and an unnecessary part of the modeled article 11 is smoothly removed, and the modeled article 11 is hardly damaged, and the surface can be cleaned. Moreover, since the material powder 31 and the waste 37 are removed in the range around the surface of the molded article 11, the modeling time can be shortened.

排除工程が行なわれる領域について、図6を参照して説明する。図6(a)は、造形物11における造形の最終形状の斜視を示し、図6(b)は、図6(a)における一点鎖線K1により示される高さまで固化層33が積層された時点での造形物11の斜視を示す。図6(c)は、図6(b)に示す造形物11の平面視を示し、除去作業が行なわれる領域を示す。図6(d)は、図6(c)での1点鎖線K2における断面を示し、このときの除去作業は除去領域高さZの範囲が対象であり、点線Lで示された範囲で行なわれる。図6(e)は、上述した除去作業前の排除作業の領域を実線Mで示す。この排除作業の領域を決めるのに、除去領域高さZ内に入る造形物11の表面全てとすると、除去作業を行なわない造形物11の外周面Eも含まれることとなり、ムダな排除作業をすることになる。排除作業は、除去作業が行なわれる範囲を行なうので、排除作業を行なう領域は、除去加工時の加工経路を定めたNCプログラムを基に定めるとよく、そうすることにより容易に定めることができる。   The region where the exclusion process is performed will be described with reference to FIG. FIG. 6A shows a perspective view of the final shape of modeling in the modeled article 11, and FIG. 6B shows a point when the solidified layer 33 is laminated to the height indicated by the alternate long and short dash line K1 in FIG. FIG. FIG.6 (c) shows the planar view of the molded article 11 shown in FIG.6 (b), and shows the area | region where removal work is performed. FIG. 6D shows a cross section taken along the one-dot chain line K2 in FIG. 6C, and the removal work at this time is for the range of the removal region height Z, and is performed within the range indicated by the dotted line L. It is. FIG. 6E shows a region of the removal work before the removal work described above by a solid line M. If the entire surface of the modeled object 11 that falls within the removal area height Z is determined in order to determine the area for the exclusion work, the outer peripheral surface E of the modeled object 11 that is not subjected to the removal work is also included. Will do. Since the removal work is performed within the range where the removal work is performed, the area where the removal work is performed may be determined based on the NC program that defines the machining path at the time of the removal work, and can be easily determined by doing so.

排除工程において、ブラシ工具71の高さは、材料粉末31が十分に排除されるように調整すればよいが、固化層33上の材料粉末31を除去する場合は、ブラシの先端が固化層33の上面より0.1〜1mm深い位置になるように調整するとよい。このとき、ブラシ工具71のブラシ先端の高さの測定は、ブラシ工具71を挟んで受光センサにレーザ光を投光し、受光した受光センサの位置から高さを算出したり、画像センサ等によってブラシ工具71を撮像し、算出すればよい。また、感圧センサ上に主軸台61に取り付けられたブラシ工具71を降下させ、ブラシ71aによる圧力を検知することにより高さを算出してもよい。ブラシに導電性がある場合には、感圧センサに代えて導電性を有する接点上にブラシ工具71を降下させ、通電を検知することによって行なってもよい。また、ブラシ工具71の寸法とブラシ工具71の取り付け位置のデータから算出してもよい。   In the removal step, the height of the brush tool 71 may be adjusted so that the material powder 31 is sufficiently removed. However, when the material powder 31 on the solidified layer 33 is removed, the tip of the brush is the solidified layer 33. It is good to adjust so that it may become a position 0.1-1 mm deeper than the upper surface. At this time, the height of the brush tip of the brush tool 71 is measured by projecting a laser beam onto the light receiving sensor across the brush tool 71 and calculating the height from the position of the received light receiving sensor or by using an image sensor or the like. The brush tool 71 may be imaged and calculated. Alternatively, the height may be calculated by lowering the brush tool 71 attached to the headstock 61 on the pressure sensor and detecting the pressure by the brush 71a. When the brush is conductive, the brush tool 71 may be lowered on the conductive contact instead of the pressure sensor, and the energization may be detected. Further, it may be calculated from data of the dimensions of the brush tool 71 and the mounting position of the brush tool 71.

また、ブラシ工具71を取り付けられ、3軸制御が可能な主軸台を別に設け、ブラシ工具71による排除工程と、エンドミル63による除去工程を同時に行なうようにしてもよい。排除工程とが同時におこなわれるので、造形時間の短縮が図れる。   Alternatively, a spindle head to which the brush tool 71 is attached and capable of three-axis control may be provided separately, and the removal process using the brush tool 71 and the removal process using the end mill 63 may be performed simultaneously. Since the exclusion process is performed at the same time, the modeling time can be shortened.

なお、昇降テーブル21に造形プレート22を載置せずに、粉末層32を昇降テーブル21上に直接形成してもよい。その場合には、昇降テーブル21上に固化層33を面状に形成すると造形後に造形物11が昇降テーブル21から取り外し難くなるので、固化層33における第1層目等の下方の層は点状や線状に形成し、昇降テーブル21と造形物11との接触面積を小さくするとよい。   Note that the powder layer 32 may be formed directly on the lifting table 21 without placing the modeling plate 22 on the lifting table 21. In that case, if the solidified layer 33 is formed in a planar shape on the lift table 21, the molded article 11 is difficult to remove from the lift table 21 after modeling, so the lower layers such as the first layer in the solidified layer 33 are dotted. It is preferable that the contact area between the lifting table 21 and the modeled object 11 is reduced.

(第2の実施形態)
本発明の第2の実施形態に係る三次元形状造形物の製造方法について説明する。本実施形態に用いる本装置1は、第1の実施形態におけるブラシ工具71に代えてスクリュウ工具(排除手段)を有している。図7は、このスクリュウ工具72を示している。スクリュウ工具72は、ツールマガジン64に保有され、排除工程時にスピンドルヘッド62に取り付けられる。スクリュウ工具72は、側面がスクリュウ形状に成っており、ブラシ工具71と同様に造形物11の表面周辺を移動し、回転して材料粉末31及び屑37をすくい上げて排除する。造形物11の溝形状中の材料粉末31及び屑37を除去する場合には、溝の幅よりも径が小さいスクリュウ工具72を用いる。このとき、スクリュウ工具72の先端の高さの測定は、第1の実施形態と同様に、光センサや画像センサや感圧センサ等によって行なえばよい。スクリュウ工具72によって造形物11の表面周辺の範囲で材料粉末31及び屑37が排除されるので、造形物11の表面をきれいにすることができ、造形時間の短縮を図れる。
(Second Embodiment)
A method for manufacturing a three-dimensional shaped object according to the second embodiment of the present invention will be described. The device 1 used in the present embodiment has a screw tool (exclusion means) instead of the brush tool 71 in the first embodiment. FIG. 7 shows the screw tool 72. The screw tool 72 is held in the tool magazine 64 and attached to the spindle head 62 during the removal process. The screw tool 72 has a screw-shaped side surface, and moves around the surface of the shaped article 11 like the brush tool 71 and rotates to scoop up and remove the material powder 31 and scraps 37. In order to remove the material powder 31 and the scraps 37 in the groove shape of the modeled object 11, a screw tool 72 having a diameter smaller than the width of the groove is used. At this time, the height of the tip of the screw tool 72 may be measured by an optical sensor, an image sensor, a pressure sensor, or the like as in the first embodiment. Since the material powder 31 and the waste 37 are excluded in the range around the surface of the modeled object 11 by the screw tool 72, the surface of the modeled object 11 can be cleaned and the modeling time can be shortened.

(第3の実施形態)
本発明の第3の実施形態に係る三次元形状造形物の製造方法について説明する。本実施形態に用いる本装置1は、第1の実施形態におけるブラシ工具71に代えて吸引装置(排除手段)を有している。図8は、この吸引装置73を示している。吸引装置73は、エンドミル63の周囲を囲み粉末層32を覆うスカート部73aと、スカート部73aとチューブ73bで繋がり、スカート部73aによって形成される空間内を吸引する吸引部73cを有している。スカート部73aの下面には第1の実施形態と同様にブラシ73dが取り付けられている。スカート部73aは、主軸台61の回転しない部分に取り付けられ、エンドミル63が回転しても回転しない。スカート部73aはツールマガジン64に保有され、排除工程時に主軸台61に取り付けられる。主軸台61への取り付けは、ネジ等によって行なってもよいし、電磁石式や、上から押し付けるとひっかかり、もう一度押すと外れるような機構の着脱ボタン式の自動着脱としてもよい。
(Third embodiment)
A method for manufacturing a three-dimensional shaped object according to the third embodiment of the present invention will be described. The device 1 used in the present embodiment has a suction device (exclusion means) instead of the brush tool 71 in the first embodiment. FIG. 8 shows the suction device 73. The suction device 73 includes a skirt portion 73a that surrounds the end mill 63 and covers the powder layer 32, and a suction portion 73c that is connected by the skirt portion 73a and the tube 73b and sucks the space formed by the skirt portion 73a. . As in the first embodiment, a brush 73d is attached to the lower surface of the skirt portion 73a. The skirt portion 73a is attached to a portion of the headstock 61 that does not rotate, and does not rotate even when the end mill 63 rotates. The skirt portion 73a is held in the tool magazine 64 and is attached to the headstock 61 during the removal process. Attachment to the headstock 61 may be performed by screws or the like, or may be an automatic attachment / detachment of an electromagnetic type or a detachable button type of mechanism that is hooked when pressed from above and released when pressed again.

排除工程において、吸引装置73によって材料粉末31と屑37とを吸引する排除作業を行ないながら、エンドミル63によって造形物11の水平面における除去作業を同時に行なう。このとき、ブラシ73dの先端の高さの測定は、第1の実施形態と同様に、光センサや画像センサや感圧センサ等によって行なえばよい。吸引装置73によって造形物11の表面周辺の範囲で材料粉末31及び屑37が排除されるので、造形物11の表面をきれいにすることができ、造形時間の短縮を図れる。また、排除工程と除去工程が同時に行なわれるので、造形時間を更に短縮することができる。また、スカート部73aの下面にブラシ73dが取り付けられているので、造形物11の水平面に多少の凹凸があっても、材料粉末31と屑37の排除を行なうことができる。   In the exclusion process, the removal work on the horizontal surface of the shaped article 11 is simultaneously performed by the end mill 63 while performing the exclusion work of sucking the material powder 31 and the waste 37 by the suction device 73. At this time, the height of the tip of the brush 73d may be measured by an optical sensor, an image sensor, a pressure sensor, or the like, as in the first embodiment. Since the material powder 31 and the debris 37 are excluded in the range around the surface of the molded article 11 by the suction device 73, the surface of the molded article 11 can be cleaned, and the modeling time can be shortened. Moreover, since the exclusion process and the removal process are performed simultaneously, the modeling time can be further shortened. Moreover, since the brush 73d is attached to the lower surface of the skirt portion 73a, the material powder 31 and the waste 37 can be removed even if there is some unevenness on the horizontal surface of the molded article 11.

(第4の実施形態)
本発明の第4の実施形態に係る三次元形状造形物の製造方法について説明する。本実施形態に用いる本装置1は、第1の実施形態におけるブラシ工具71に代えて材料粉末を吹き飛ばす噴出装置(排除手段)を有している。図9は、この噴出装置74を示している。噴出装置74は、噴出穴を先端に有した噴出工具74aと、噴出工具74aとチューブ74bで繋がり雰囲気ガスを噴出させる送風部74cとを有している。噴出工具74aは、ツールマガジン64に保有され、排除工程時にスピンドルヘッド62に取り付けられる。噴出工具74aは、ブラシ工具71と同様に造形物11の表面周辺を移動し、材料粉末31及び屑37を吹き飛ばして排除する。このとき、噴出工具74aの先端の高さの測定は、第1の実施形態と同様に、光センサや画像センサや感圧センサ等によって行なえばよい。噴出工具74aとして、切削油を供給する穴を先端に有したドリルを用いてもよい。噴出装置74によって造形物11の表面周辺の範囲で材料粉末31及び屑37が排除されるので、造形物11の表面をきれいにすることができ、造形時間の短縮が図れる。
(Fourth embodiment)
A method for manufacturing a three-dimensional shaped object according to the fourth embodiment of the present invention will be described. The device 1 used in the present embodiment has an ejection device (exclusion means) for blowing material powder in place of the brush tool 71 in the first embodiment. FIG. 9 shows this ejection device 74. The ejection device 74 includes an ejection tool 74a having an ejection hole at the tip, and an air blowing unit 74c that is connected by the ejection tool 74a and the tube 74b to eject atmospheric gas. The ejection tool 74a is held in the tool magazine 64 and attached to the spindle head 62 during the removal process. The ejection tool 74 a moves around the surface of the modeled object 11 like the brush tool 71, and blows away the material powder 31 and the waste 37. At this time, the height of the tip of the ejection tool 74a may be measured by an optical sensor, an image sensor, a pressure sensor, or the like as in the first embodiment. As the ejection tool 74a, a drill having a hole for supplying cutting oil at the tip may be used. Since the material powder 31 and the waste 37 are excluded in the range around the surface of the modeled article 11 by the ejection device 74, the surface of the modeled article 11 can be cleaned, and the modeling time can be shortened.

(第5の実施形態)
本発明の第5の実施形態に係る三次元形状造形物の製造方法について説明する。第1の実施形態においては、除去工程の前の排除工程をブラシ工具71によって行なったが、本実施形態では、排除工程をブラシ工具71に代えてエンドミルによって行なう。ここで用いるエンドミルは、後の除去工程で用いるエンドミルよりも径の小さいものを用いる。すなわち、図10(a)に示されるように、排除工程に用いるエンドミル63a(第2の回転切削工具、以下、小径エンドミルと称す)は、図10(b)に示される除去工程で用いるエンドミル63b(第1の回転切削工具、以下、大径エンドミルと称す)よりも径が小さい。排除工程では、エンドミル63aがスピンドルヘッド62(図2等参照)に取り付けられて、除去工程における大径エンドミル63bの走査経路に沿って回転しながら走査する。この走査により、例えば、小径エンドミル63aの外径が6mmであり、大径エンドミル63bの外径が10mmであるとすると、小径エンドミル63aの外周は、大径エンドミル63bによる造形物11の切削面よりも2mm外側を走査するので、造形物11を切削せずに、造形物11の表面周辺の材料粉末31と屑37を弾き飛ばして排除する。除去工程では、エンドミル63bがスピンドルヘッド62に取り付けられて、造形物11の表層の除去を行なう。
(Fifth embodiment)
A method for manufacturing a three-dimensional shaped object according to the fifth embodiment of the present invention will be described. In the first embodiment, the removal step prior to the removal step is performed by the brush tool 71, but in this embodiment, the removal step is performed by an end mill instead of the brush tool 71. The end mill used here has a smaller diameter than the end mill used in the subsequent removal step. That is, as shown in FIG. 10 (a), an end mill 63a (second rotary cutting tool, hereinafter referred to as a small diameter end mill) used in the removal step is an end mill 63b used in the removal step shown in FIG. 10 (b). The diameter is smaller than (first rotary cutting tool, hereinafter referred to as a large diameter end mill). In the exclusion process, the end mill 63a is attached to the spindle head 62 (see FIG. 2 and the like), and scans while rotating along the scanning path of the large-diameter end mill 63b in the removal process. By this scanning, for example, if the outer diameter of the small-diameter end mill 63a is 6 mm and the outer diameter of the large-diameter end mill 63b is 10 mm, the outer periphery of the small-diameter end mill 63a is more than the cutting surface of the model 11 by the large-diameter end mill 63b. Since the outer side is scanned 2 mm, the material powder 31 and the scraps 37 around the surface of the modeled object 11 are blown away without cutting the modeled object 11. In the removing step, the end mill 63b is attached to the spindle head 62, and the surface layer of the shaped article 11 is removed.

このように、小径エンドミル63aによって造形物11の表面周辺の範囲で材料粉末31及び屑37が排除されるので、造形物11の表面をきれいにすることができ、造形時間の短縮が図れる。また、エンドミルを用いることにより新たな設備が不要であるので、低コストで材料粉末31及び屑37の排除を行なうことができる。   Thus, since the material powder 31 and the waste 37 are excluded in the range around the surface of the modeled article 11 by the small diameter end mill 63a, the surface of the modeled article 11 can be cleaned, and the modeling time can be shortened. Moreover, since no new equipment is required by using an end mill, the material powder 31 and the waste 37 can be eliminated at low cost.

(第6の実施形態)
本発明の第6の実施形態に係る三次元形状造形物の製造方法について説明する。本実施形態に用いる本装置1は、第1の実施形態におけるブラシ工具71に代えて、吸引ノズルを用いる。図11は、この吸引ノズル75を示している。本装置1は、列状に配置され負圧吸引する吸引ノズル75と、この吸引ノズル75を保持し、粉末層32上をスライド移動するノズル駆動部75aとを有している。吸引ノズル75はチューブ75bを介してノズル吸引部(図示なし)に繋がれている。また、吸引ノズル75はそれぞれ開閉弁を有しており、個別に吸引をオンオフする。
(Sixth embodiment)
A method for manufacturing a three-dimensional shaped object according to the sixth embodiment of the present invention will be described. The apparatus 1 used in the present embodiment uses a suction nozzle instead of the brush tool 71 in the first embodiment. FIG. 11 shows the suction nozzle 75. The apparatus 1 includes a suction nozzle 75 that is arranged in a line and sucks negative pressure, and a nozzle drive unit 75 a that holds the suction nozzle 75 and slides on the powder layer 32. The suction nozzle 75 is connected to a nozzle suction portion (not shown) via a tube 75b. Each suction nozzle 75 has an open / close valve, and individually turns on and off suction.

排除工程において、ノズル駆動部75aは矢印C方向にスライド移動し、吸引ノズル75は、除去作業が行なわれる造形物11の表面周辺に位置したときに材料粉末31及び屑37を吸引して排除する。吸引ノズル75によって造形物11の表面周辺の範囲で材料粉末31及び屑37が排除されるので、造形物11の表面をきれいにすることができ、造形時間の短縮が図れる。また、吸引ノズル75が列状に配置され、それぞれが吸引するので、排除作業が速やかに行なわれ、更に造形時間の短縮が図れる。   In the removal process, the nozzle drive unit 75a slides in the direction of arrow C, and the suction nozzle 75 sucks and removes the material powder 31 and the waste 37 when positioned around the surface of the modeled object 11 on which the removal operation is performed. . Since the material powder 31 and the debris 37 are excluded in the range around the surface of the molded article 11 by the suction nozzle 75, the surface of the molded article 11 can be cleaned, and the modeling time can be shortened. Further, since the suction nozzles 75 are arranged in a row and each of them sucks, the removal work is performed quickly, and the modeling time can be further shortened.

なお、本発明は、上記実施形態の構成に限られず、発明の趣旨を変更しない範囲で種々の変形が可能である。例えば、粉末層32及び固化層33の積層を行なうのに、昇降テーブル21を下降させずに、昇降テーブル21の周囲の造形タンク23を上昇させるような機構としてもよい。   In addition, this invention is not restricted to the structure of the said embodiment, A various deformation | transformation is possible in the range which does not change the meaning of invention. For example, in order to stack the powder layer 32 and the solidified layer 33, a mechanism may be used in which the modeling tank 23 around the lifting table 21 is raised without lowering the lifting table 21.

11 造形物
31 材料粉末
32 粉末層
33 固化層
37 屑
63a 小径エンドミル(第2の回転切削工具)
63b 大径エンドミル(第1の回転切削工具)
71 ブラシ工具(排除手段)
72 スクリュウ工具(排除手段)
73 吸引装置(排除手段)
73a スカート部
73c 吸引部
74 噴出装置(排除手段)
75 吸引ノズル
L 光ビーム
11 Modeled object 31 Material powder 32 Powder layer 33 Solidified layer 37 Scrap 63a Small-diameter end mill (second rotary cutting tool)
63b Large-diameter end mill (first rotary cutting tool)
71 Brush tool (exclusion means)
72 Screw tool (exclusion means)
73 Suction device (exclusion means)
73a Skirt part 73c Suction part 74 Ejection device (exclusion means)
75 Suction nozzle L Light beam

Claims (8)

材料粉末を供給して粉末層を形成する粉末層形成工程と、前記粉末層の所定の箇所に光ビームを照射して該粉末層を焼結又は溶融固化させ固化層を形成する固化層形成工程とを備え、前記粉末層形成工程と固化層形成工程とを繰り返すことにより固化層を積層する造形物の形成の途中に、該造形物の表層及び不要部分を除去する除去工程を少なくとも1回以上挿入して三次元形状造形物を造形する三次元形状造形物の製造方法において、
前記除去工程における除去作業と同時に、又は除去工程の前に造形物の周囲の材料粉末、及び除去作業で発生する屑を排除する排除工程を備え、
前記排除工程は、前記除去作業が施される造形物の表面周辺の範囲で行なわれることを特徴とする三次元形状造形物の製造方法。
A powder layer forming step of supplying a material powder to form a powder layer, and a solidified layer forming step of forming a solidified layer by irradiating a predetermined portion of the powder layer with a light beam to sinter or melt and solidify the powder layer And removing the surface layer and the unnecessary part of the modeled object at least once during the formation of the modeled object in which the solidified layer is laminated by repeating the powder layer forming step and the solidified layer forming step. In the manufacturing method of a three-dimensional shaped object that is inserted to form a three-dimensional shaped object,
Simultaneously with the removing operation in the removing step, or before the removing step, the material powder around the modeled object, and an elimination step for eliminating waste generated in the removing operation,
The said exclusion process is performed in the range around the surface of the molded article to which the said removal operation is performed, The manufacturing method of the three-dimensional shaped molded article characterized by the above-mentioned.
前記排除工程が行なわれる領域は、前記除去加工時の加工経路を基に定められることを
特徴とする請求項1に記載の三次元形状造形物の製造方法。
2. The method for manufacturing a three-dimensional shaped article according to claim 1, wherein the region where the exclusion step is performed is determined based on a processing path at the time of the removal processing.
前記排除工程は、前記材料粉末及び屑を掃き出すブラシを有する排除手段によって行なわれることを特徴とする請求項1又は請求項2に記載の三次元形状造形物の製造方法。   The said exclusion process is performed by the exclusion means which has a brush which sweeps out the said material powder and refuse, The manufacturing method of the three-dimensional shaped molded article of Claim 1 or Claim 2 characterized by the above-mentioned. 前記排除工程は、前記材料粉末及び屑をすくい上げるスクリュウを有する排除手段によって行なわれることを特徴とする請求項1又は請求項2に記載の三次元形状造形物の製造方法。   The said exclusion process is performed by the exclusion means which has a screw which scoops up the said material powder and refuse, The manufacturing method of the three-dimensional shape molded article of Claim 1 or Claim 2 characterized by the above-mentioned. 前記排除工程は、前記粉末層を覆うスカート部と、前記スカート部によって形成される空間内を吸引する吸引部と、を有した排除手段によって行なわれることを特徴とする請求項1又は請求項2に記載の三次元形状造形物の製造方法。   The said exclusion process is performed by the exclusion means which has the skirt part which covers the said powder layer, and the suction part which attracts | sucks the inside of the space formed by the said skirt part, The Claim 1 or Claim 2 characterized by the above-mentioned. The manufacturing method of the three-dimensional shape molded article of description. 前記排除工程は、前記材料粉末及び屑を吹き飛ばすガスを噴出する排除手段によって行なわれることを特徴とする請求項1又は請求項2に記載の三次元形状造形物の製造方法。   The said exclusion process is performed by the exclusion means which ejects the gas which blows off the said material powder and refuse, The manufacturing method of the three-dimensional shaped molded article of Claim 1 or Claim 2 characterized by the above-mentioned. 前記除去工程は、第1の回転切削工具によって行なわれ、
前記排除工程は、前記第1の回転切削工具よりも小さい径を持つ第2の回転切削工具を用い、該第2の回転切削工具を前記第1の回転切削工具の走査経路に沿って走査させることにより行なわれることを特徴とする請求項1又は請求項2に記載の三次元形状造形物の製造方法。
The removing step is performed by a first rotary cutting tool,
In the exclusion step, a second rotary cutting tool having a smaller diameter than the first rotary cutting tool is used, and the second rotary cutting tool is scanned along the scanning path of the first rotary cutting tool. The method for producing a three-dimensional shaped object according to claim 1 or 2, wherein the method is performed.
前記排除工程は、列状に配置された吸引ノズルが前記粉末層上を走査し、前記除去作業が施される造形物の表面周辺に位置したときに、前記材料粉末及び屑を吸引することにより行なわれることを特徴とする請求項1又は請求項2に記載の三次元形状造形物の製造方法。   In the exclusion step, when the suction nozzles arranged in a row scan on the powder layer and are positioned around the surface of the shaped object to be subjected to the removal operation, the material powder and waste are sucked. It is performed, The manufacturing method of the three-dimensional shape molded article of Claim 1 or Claim 2 characterized by the above-mentioned.
JP2009136554A 2009-06-05 2009-06-05 Manufacturing method of three-dimensional shaped object Expired - Fee Related JP5456379B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009136554A JP5456379B2 (en) 2009-06-05 2009-06-05 Manufacturing method of three-dimensional shaped object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009136554A JP5456379B2 (en) 2009-06-05 2009-06-05 Manufacturing method of three-dimensional shaped object

Publications (2)

Publication Number Publication Date
JP2010280173A true JP2010280173A (en) 2010-12-16
JP5456379B2 JP5456379B2 (en) 2014-03-26

Family

ID=43537369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009136554A Expired - Fee Related JP5456379B2 (en) 2009-06-05 2009-06-05 Manufacturing method of three-dimensional shaped object

Country Status (1)

Country Link
JP (1) JP5456379B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013079725A1 (en) 2011-12-02 2013-06-06 Ecole Centrale Method and machining device by combined addition of material and shaping
JP5599921B1 (en) * 2013-07-10 2014-10-01 パナソニック株式会社 Manufacturing method of three-dimensional shaped object
WO2015005497A1 (en) * 2013-07-10 2015-01-15 パナソニックIpマネジメント株式会社 Production method and production device for three-dimensionally shaped molded object
EP2926924A1 (en) 2014-04-04 2015-10-07 Matsuura Machinery Corporation Metal powder processing equipment
JP5841649B1 (en) * 2014-10-08 2016-01-13 株式会社ソディック Additive manufacturing equipment
JP2016078306A (en) * 2014-10-16 2016-05-16 アビー株式会社 Shaping apparatus
CN106513672A (en) * 2016-12-05 2017-03-22 珠海天威飞马打印耗材有限公司 Metal three-dimensional printing device and printing method thereof
CN106825561A (en) * 2015-11-17 2017-06-13 通用电气公司 Association type addition manufacture and machining system
JP2017150048A (en) * 2016-02-26 2017-08-31 株式会社ソディック Laminate molding apparatus
WO2017163431A1 (en) 2016-03-25 2017-09-28 技術研究組合次世代3D積層造形技術総合開発機構 Three-dimensional lamination shaping device, method for controlling three-dimensional lamination shaping device, and program for controlling three-dimensional lamination shaping device
WO2018042526A1 (en) * 2016-08-31 2018-03-08 株式会社Opmラボラトリー Method and device for manufacturing three-dimensional laminated molding
CN110072655A (en) * 2016-11-14 2019-07-30 米其林集团总公司 Powder base increasing material manufacturing unit including brush cleaning device
JP2019183282A (en) * 2013-06-11 2019-10-24 レニショウ パブリック リミテッド カンパニーRenishaw Public Limited Company Additive manufacturing apparatus and method
KR102408777B1 (en) * 2020-12-11 2022-06-15 한국기계연구원 3d printer having sweep device or milling device including sweep member and printing method using the same
WO2022145570A1 (en) * 2020-12-28 2022-07-07 (주)유니젯 3d printer cartridge and 3d printer
US11433606B2 (en) 2019-04-23 2022-09-06 Okuma Corporation Three-dimensional shape processing method

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016106615A1 (en) * 2014-12-30 2016-07-07 深圳市圆梦精密技术研究院 Multi-electron-beam melting and milling composite 3d printing apparatus
US20160325383A1 (en) * 2014-12-30 2016-11-10 Yuanmeng Precision Technology (Shenzhen) Institute Electron beam melting and laser milling composite 3d printing apparatus
WO2016106610A1 (en) * 2014-12-30 2016-07-07 深圳市圆梦精密技术研究院 Multi-axis milling and laser melting composite 3d printing apparatus
WO2016106607A1 (en) * 2014-12-30 2016-07-07 深圳市圆梦精密技术研究院 Laser melting and laser milling composite 3d printing apparatus
CN105345002A (en) * 2015-12-08 2016-02-24 中国工程物理研究院机械制造工艺研究所 Lathe body structure of laser material additive manufacturing equipment capable of supplying materials in small-amount mode

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002115004A (en) * 2000-10-05 2002-04-19 Matsushita Electric Works Ltd Method and equipment for manufacturing article with three-dimensional shape
JP2004175093A (en) * 2002-09-30 2004-06-24 Matsushita Electric Works Ltd Method for fabricating three-dimensional shape article

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002115004A (en) * 2000-10-05 2002-04-19 Matsushita Electric Works Ltd Method and equipment for manufacturing article with three-dimensional shape
JP2004175093A (en) * 2002-09-30 2004-06-24 Matsushita Electric Works Ltd Method for fabricating three-dimensional shape article

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9962799B2 (en) 2011-12-02 2018-05-08 Ecole Centrale De Nantes Method and machining device by combined addition of material and shaping
FR2983424A1 (en) * 2011-12-02 2013-06-07 Nantes Ecole Centrale METHOD AND APPARATUS FOR COMBINED MATERIAL ADDITION MACHINING AND SHAPING
WO2013079725A1 (en) 2011-12-02 2013-06-06 Ecole Centrale Method and machining device by combined addition of material and shaping
JP2019183282A (en) * 2013-06-11 2019-10-24 レニショウ パブリック リミテッド カンパニーRenishaw Public Limited Company Additive manufacturing apparatus and method
US11325188B2 (en) 2013-06-11 2022-05-10 Renishaw Plc Additive manufacturing apparatus and method
JP2015017295A (en) * 2013-07-10 2015-01-29 パナソニック株式会社 Method for producing three-dimensional shape formed article and manufacturing apparatus therefor
WO2015005497A1 (en) * 2013-07-10 2015-01-15 パナソニックIpマネジメント株式会社 Production method and production device for three-dimensionally shaped molded object
JP5599921B1 (en) * 2013-07-10 2014-10-01 パナソニック株式会社 Manufacturing method of three-dimensional shaped object
KR102126243B1 (en) * 2013-07-10 2020-06-24 파나소닉 아이피 매니지먼트 가부시키가이샤 Production method and production device for three-dimensionally shaped molded object
JP2015017294A (en) * 2013-07-10 2015-01-29 パナソニック株式会社 Method for producing three-dimensional shape formed article
KR20170038112A (en) * 2013-07-10 2017-04-05 파나소닉 아이피 매니지먼트 가부시키가이샤 Production method and production device for three-dimensionally shaped molded object
US9604282B2 (en) 2013-07-10 2017-03-28 Panasonic Intellectual Property Management Co., Ltd. Method for manufacturing three-dimensional shaped object
CN104768681B (en) * 2013-07-10 2016-05-25 松下知识产权经营株式会社 The manufacture method of three dimensional structure and manufacturing installation thereof
TWI549807B (en) * 2013-07-10 2016-09-21 松下知識產權經營股份有限公司 Method for manufacturing three-dimensional modeled object
US9586285B2 (en) 2013-07-10 2017-03-07 Panasonic Intellectual Property Management Co., Ltd. Method and apparatus for manufacturing three-dimensional shaped object
WO2015005496A1 (en) * 2013-07-10 2015-01-15 パナソニックIpマネジメント株式会社 Production method for three-dimensionally shaped molded object
KR20150115600A (en) 2014-04-04 2015-10-14 가부시키가이샤 마쓰우라 기카이 세이사쿠쇼 Metal powder processing device
CN104972117A (en) * 2014-04-04 2015-10-14 株式会社松浦机械制作所 Metal Powder Processing Equipment
US10596654B2 (en) 2014-04-04 2020-03-24 Matsuura Machinery Corporation Metal powder processing equipment
EP2926924A1 (en) 2014-04-04 2015-10-07 Matsuura Machinery Corporation Metal powder processing equipment
KR101950537B1 (en) * 2014-04-04 2019-02-20 가부시키가이샤 마쓰우라 기카이 세이사쿠쇼 Metal powder processing device
JP5841649B1 (en) * 2014-10-08 2016-01-13 株式会社ソディック Additive manufacturing equipment
US9808864B2 (en) 2014-10-08 2017-11-07 Sodick Co., Ltd. Three dimensional printer
JP2016078306A (en) * 2014-10-16 2016-05-16 アビー株式会社 Shaping apparatus
CN106825561A (en) * 2015-11-17 2017-06-13 通用电气公司 Association type addition manufacture and machining system
JP2017113871A (en) * 2015-11-17 2017-06-29 ゼネラル・エレクトリック・カンパニイ Combined additive manufacturing and machining system
JP7076942B2 (en) 2015-11-17 2022-05-30 ゼネラル・エレクトリック・カンパニイ Composite additive manufacturing and machining system
JP2017150048A (en) * 2016-02-26 2017-08-31 株式会社ソディック Laminate molding apparatus
WO2017163431A1 (en) 2016-03-25 2017-09-28 技術研究組合次世代3D積層造形技術総合開発機構 Three-dimensional lamination shaping device, method for controlling three-dimensional lamination shaping device, and program for controlling three-dimensional lamination shaping device
WO2018042526A1 (en) * 2016-08-31 2018-03-08 株式会社Opmラボラトリー Method and device for manufacturing three-dimensional laminated molding
CN110072655A (en) * 2016-11-14 2019-07-30 米其林集团总公司 Powder base increasing material manufacturing unit including brush cleaning device
CN110072655B (en) * 2016-11-14 2022-08-30 米其林集团总公司 Powder-based additive manufacturing unit comprising a wiper cleaning device
WO2018103529A1 (en) * 2016-12-05 2018-06-14 珠海天威飞马打印耗材有限公司 Metal three-dimensional printing device and printing method therefor
CN106513672A (en) * 2016-12-05 2017-03-22 珠海天威飞马打印耗材有限公司 Metal three-dimensional printing device and printing method thereof
US11433606B2 (en) 2019-04-23 2022-09-06 Okuma Corporation Three-dimensional shape processing method
KR102408777B1 (en) * 2020-12-11 2022-06-15 한국기계연구원 3d printer having sweep device or milling device including sweep member and printing method using the same
WO2022145570A1 (en) * 2020-12-28 2022-07-07 (주)유니젯 3d printer cartridge and 3d printer

Also Published As

Publication number Publication date
JP5456379B2 (en) 2014-03-26

Similar Documents

Publication Publication Date Title
JP5456379B2 (en) Manufacturing method of three-dimensional shaped object
JP4238938B2 (en) Additive manufacturing equipment
JP5355213B2 (en) Laminate modeling equipment for modeling three-dimensional shaped objects
US9586285B2 (en) Method and apparatus for manufacturing three-dimensional shaped object
US9604282B2 (en) Method for manufacturing three-dimensional shaped object
JP5250338B2 (en) Manufacturing method of three-dimensional shaped object, manufacturing apparatus thereof, and three-dimensional shaped object
JP4131260B2 (en) Manufacturing equipment for 3D shaped objects
US20170341143A1 (en) Method for manufacturing three-dimensional shaped object
JP5877471B2 (en) Manufacturing method of three-dimensional shaped object
JP5243934B2 (en) Layered modeling apparatus and layered modeling method for modeling a three-dimensional shaped object
JP5243935B2 (en) Additive manufacturing apparatus and additive manufacturing method
JP2010265521A (en) Method for producing three-dimensionally shaped object
JP6854465B2 (en) Manufacturing method of three-dimensional shaped object
JP5456400B2 (en) Manufacturing apparatus and manufacturing method of three-dimensional shaped object
JP3599054B2 (en) Manufacturing method of three-dimensional shaped object
JP4867790B2 (en) Manufacturing method of three-dimensional shaped object
JP2012224907A (en) Method for manufacturing three-dimensionally shaped article
JP6731642B2 (en) Method for manufacturing three-dimensional shaped object

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120117

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130625

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140108

R150 Certificate of patent or registration of utility model

Ref document number: 5456379

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees