WO2018042526A1 - Method and device for manufacturing three-dimensional laminated molding - Google Patents

Method and device for manufacturing three-dimensional laminated molding Download PDF

Info

Publication number
WO2018042526A1
WO2018042526A1 PCT/JP2016/075381 JP2016075381W WO2018042526A1 WO 2018042526 A1 WO2018042526 A1 WO 2018042526A1 JP 2016075381 W JP2016075381 W JP 2016075381W WO 2018042526 A1 WO2018042526 A1 WO 2018042526A1
Authority
WO
WIPO (PCT)
Prior art keywords
cutting
lifting table
solidified
material powder
solidified layers
Prior art date
Application number
PCT/JP2016/075381
Other languages
French (fr)
Japanese (ja)
Inventor
一穂 森本
敦司 廣田
博文 石黒
Original Assignee
株式会社Opmラボラトリー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Opmラボラトリー filed Critical 株式会社Opmラボラトリー
Priority to PCT/JP2016/075381 priority Critical patent/WO2018042526A1/en
Publication of WO2018042526A1 publication Critical patent/WO2018042526A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/16Both compacting and sintering in successive or repeated steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor

Definitions

  • the present invention relates to a method and a manufacturing apparatus for manufacturing a three-dimensional layered object by stacking solidified layers obtained by solidifying material powder.
  • a material powder such as a metal powder is irradiated with an energy beam such as a laser beam, and the material powder is sintered or melted and solidified to form a solidified layer, and the solidified layer is laminated to form a three-dimensional shape.
  • an energy beam such as a laser beam
  • the material powder is sintered or melted and solidified to form a solidified layer, and the solidified layer is laminated to form a three-dimensional shape.
  • a plurality of solidified layers are stacked, and the plurality of solidified layers are collectively cut.
  • the side surfaces of the plurality of solidified layers are cut, and the side surfaces of the solidified layers thus cut finally become the surface of the three-dimensional layered object.
  • the solidified layer that has already been cut may be deformed by the influence of heat from the new solidified layer. . For this reason, there exists a problem that an unevenness
  • Patent Document 1 describes an example of a conventional stereolithography combined processing method.
  • the present invention has been made in view of such circumstances, and the object of the present invention is to prevent unevenness of the surface of the three-dimensional layered object by suppressing the material powder from roughening the side surface of the solidified layer. It is in providing the manufacturing method and manufacturing apparatus of a three-dimensional layered product which can suppress generation
  • the manufacturing method of the three-dimensional layered object according to the present invention includes forming a solidified layer obtained by solidifying the material powder by irradiation of an energy beam to the material powder, laminating the solidified layer, and laminating the plurality of solidified layers.
  • the cutting process is performed by cutting at least a part of the plurality of solidified layers into a required shape with the rotating first cutting tool.
  • the method for manufacturing a three-dimensional layered object according to the present invention is characterized in that the removing step removes the material powder to a position deeper than a deepest position of the first cutting tool in the finishing step.
  • the cutting step includes a rough finishing step of cutting at least a part of the plurality of solidified layers with a second cutting tool before the removing step.
  • the finishing step cuts at least a part of a portion that has already been cut by the rough finishing step, and the removal step includes side surfaces of the plurality of solidified layers cut by the rough finishing step.
  • the bar-shaped tool is moved at a predetermined distance from the tool.
  • the manufacturing method of the three-dimensional layered object according to the present invention includes a lifting table on which the material powder is placed and the plurality of solidified layers are stacked, and the lifting table to hold the material powder on the lifting table. And the removing step is performed in a state where the lifting table is raised until the position of the portion to be cut of the plurality of solidified layers is higher than the upper end of the wall. It is characterized by being.
  • the manufacturing method of the three-dimensional layered object according to the present invention includes a lifting table on which the material powder is placed and the plurality of solidified layers are stacked, and the lifting table to hold the material powder on the lifting table.
  • the wall is formed with a discharge portion for discharging the material powder, and in the step of forming and laminating the solidified layer, the mounting surface of the lifting table is formed by the discharge portion from the discharge portion.
  • the cutting step is performed by lowering the lifting table until the position of the mounting surface is lower than a part of the discharge portion, and the mounting surface described above. And elevating the elevating table until the position becomes higher than the discharge unit, and the removing step is performed after the elevating table is lowered and raised.
  • An apparatus for manufacturing a three-dimensional layered object according to the present invention forms a solidified layer obtained by solidifying the material powder by irradiation of an energy beam to the material powder, and stacks a plurality of stacked layers.
  • An apparatus for manufacturing a three-dimensional layered object wherein the cutting unit needs at least a part of the plurality of solidified layers by a rotating cutting tool.
  • a finishing part that cuts into a desired shape, and before cutting by the finishing part, a rod-shaped tool having a diameter larger than that of the cutting tool is disposed around the plurality of solidified layers along the side surfaces of the plurality of solidified layers.
  • a removing unit that removes the material powder from the periphery of the plurality of solidified layers by being moved.
  • the apparatus for manufacturing a three-dimensional layered object includes a lift table on which the material powder is placed and the plurality of solidified layers are stacked, and the lift table to hold the material powder on the lift table.
  • the apparatus for manufacturing a three-dimensional layered object includes a lift table on which the material powder is placed and the plurality of solidified layers are stacked, and the lift table to hold the material powder on the lift table. And a wall for forming a discharge portion for discharging the material powder, and the stacking portion is positioned higher than the discharge portion.
  • the solidified layer is formed and laminated in a state, and the cutting unit is a lowering unit that lowers the lifting table until the position of the placement surface is lower than a part of the discharge unit, And a second ascending unit that raises the elevating table until the position of the placement surface is higher than the discharge unit, and the removing unit operates the descending unit and the second ascending unit Characterized by performing work later
  • the manufacturing apparatus that manufactures the three-dimensional layered object by the optical modeling composite processing method, before the finishing process of cutting a plurality of solidified layers into a necessary shape by the first cutting tool in the cutting process.
  • a removal step of removing the material powder from the periphery of the solidified layer to be cut is performed.
  • the material powder is removed by moving a rod-shaped tool having a diameter larger than that of the first cutting tool around the solidified layer along the side surface of the solidified layer.
  • the material powder is less likely to come into contact with the first cutting tool, and the material powder in contact with the first cutting tool is suppressed from roughening the side surface of the solidified layer.
  • the material powder is removed in the removing step up to a position deeper than the position of the first cutting tool in the finishing step. For this reason, it becomes difficult for the material powder to come into contact with the first cutting tool during the finishing process.
  • a rough finishing process of cutting a plurality of solidified layers with the second cutting tool is performed, and a finishing process is performed after the rough finishing process.
  • the bar-shaped tool moves at a predetermined distance from the side surface of the solidified layer cut in the rough finishing process.
  • the manufacturing apparatus includes an elevating table on which material powder is placed and a solidified layer is stacked, and a wall surrounding the elevating table.
  • the removing step is performed in a state where the lifting table is raised until the position of the solidified layer to be cut is higher than the upper end of the wall. Since the metal powder is discharged to the outside beyond the upper end of the wall, the material powder is effectively removed.
  • the manufacturing apparatus includes an elevating table on which material powder is placed and a solidified layer is stacked, and a wall surrounding the elevating table.
  • the wall is formed with a discharge portion for discharging the material powder.
  • the manufacturing apparatus temporarily lowers the lifting table until the position of the placement surface is lower than a part of the discharge portion, and raises the position until the position of the placement surface is higher than the discharge portion.
  • the removing process is performed after the lift table is lowered and raised. When the lifting table is once lowered, a part of the metal powder is discharged to the outside through the discharge portion. For this reason, removal of material powder is performed effectively.
  • the present invention since the material powder is suppressed from roughening the side surface of the solidified layer when finishing the cutting process, the occurrence of unevenness on the surface of the three-dimensional layered object is suppressed. Therefore, the present invention has an excellent effect such that it is possible to manufacture a high-quality three-dimensional layered object with less surface irregularities while avoiding an increase in manufacturing time.
  • 3 is a flowchart illustrating a procedure of a cutting process according to the first embodiment. It is typical sectional drawing which shows a rough finishing process.
  • FIG. 3 is a schematic cross-sectional view showing a removal process according to Embodiment 1.
  • 5 is a schematic cross-sectional view showing a finishing process according to Embodiment 1.
  • FIG. 5 is a schematic cross-sectional view showing a finishing process according to Embodiment 1.
  • FIG. 10 is a flowchart showing a procedure of a cutting process according to the second embodiment. It is a typical fragmentary sectional view which shows the state of a part of manufacturing apparatus at the time of performing the removal process which concerns on Embodiment 2.
  • FIG. 10 is a schematic cross-sectional view showing a removal process according to Embodiment 2.
  • FIG. 10 is a schematic cross-sectional view showing a finishing process according to Embodiment 2.
  • FIG. It is typical sectional drawing which shows the structure of a part of manufacturing apparatus of the three-dimensional laminate modeling thing which concerns on Embodiment 3.
  • FIG. 10 is a flowchart illustrating a procedure of a cutting process according to the third embodiment. It is a typical fragmentary sectional view which shows the state which lowered the raising / lowering table.
  • FIG. 1 is a schematic partial cross-sectional view illustrating a configuration of a three-dimensional layered object manufacturing apparatus 1 according to the first embodiment.
  • the manufacturing apparatus 1 irradiates a metal powder (material powder) with laser light (energy beam), sinters the metal powder to form a solidified layer, and stacks the solidified layer to form a three-dimensional shape.
  • a stereolithography combined processing method is performed in which cutting is performed during the formation of the original shape.
  • the manufacturing apparatus 1 includes a lifting table 12 that can be lifted while holding a modeled object, a wall 13 that surrounds the lifting table 12, and a blade 14 that applies metal powder 4 onto the lifting table 12.
  • the wall 13 holds the metal powder 4 placed on the lifting table 12 so as not to spill from the lifting table 12 when the blade 14 is applied.
  • the lifting table 12 moves up and down in the space surrounded by the wall 13.
  • the manufacturing apparatus 1 applies a laser light source 31 for irradiating the metal powder 4 on the lifting table 12 with laser light, a mirror 32 for reflecting the laser light, a lens 33 for condensing the laser light, and a modeling object. And a cutting machine 2 that performs the cutting process.
  • the laser light source 31 uses a laser that can effectively heat the metal powder 4 such as a fiber laser. By moving the mirror 32, the position where the metal powder 4 is irradiated with the laser light is adjusted. In FIG. 1, laser light is indicated by arrows.
  • the manufacturing apparatus 1 may include an optical system for adjusting the irradiation position of the laser light.
  • the cutting machine 2 includes a first cutting tool 21 for performing finishing, a second cutting tool 22 for performing rough finishing, and a rod-shaped tool 23 for removing the metal powder 4.
  • the manufacturing apparatus 1 includes a control unit 11 that controls the operation of the entire manufacturing apparatus 1.
  • the control unit 11 includes a calculation unit that performs calculation for controlling the operation, a memory that stores information associated with the calculation, a storage unit that stores a control program, and the like.
  • the control unit 11 controls the operation of each part constituting the manufacturing apparatus 1, and controls the irradiation position of the laser light irradiated to the metal powder 4 and the cutting position of the shaped object cut by the cutting machine 2.
  • the manufacturing apparatus 1 includes a control unit 11 that controls the operation of the entire manufacturing apparatus 1.
  • the control unit 11 includes a calculation unit that performs calculation for controlling the operation, a memory that stores information associated with the calculation, a storage unit that stores a control program, and the like.
  • the control unit 11 controls the operation of each part constituting the manufacturing apparatus 1, and controls the irradiation position of the laser light irradiated to the metal powder 4 and the cutting position of the shaped object cut by the cutting machine 2.
  • FIG. 2 to 5 are schematic partial cross-sectional views showing the steps of the stereolithography combined processing method.
  • the base plate 51 is placed on the lifting table 12, and the metal powder 4 is applied to the base plate 51 by the blade 14.
  • the metal powder 4 is placed on the elevating table 12 up to the upper end of the wall 13 and leveled almost horizontally by the blade 14.
  • the laser light source 31 irradiates the metal powder 4 with laser light, the metal powder 4 is heated and sintered, and the solidified layer 52 in which the metal powder 4 is solidified is formed. .
  • the laser beam is scanned in the shape of the cross-sectional shape of the modeled object, and the solidified layer 52 forms the cross-sectional shape of the modeled object.
  • the scanning shape of the laser light is controlled by the control unit 11.
  • the lifting table 12 is slightly lowered, the metal powder 4 is applied to the solidified layer 52 by the blade 14, the laser light is irradiated to the metal powder 4, the metal powder 4 is sintered, and the next solidified layer 52 is formed. Is done. Application of the metal powder 4, irradiation with laser light, and sintering of the metal powder 4 are repeated, and a plurality of solidified layers 52 are laminated.
  • the blade 14, the laser light source 31, the mirror 32, the lens 33, and the control unit 11 correspond to a stacked unit.
  • the cutting machine 2 performs cutting on the modeling layer 53 formed by laminating a plurality of solidified layers 52.
  • the modeling layer 53 is processed into a desired shape forming a part of the modeled object.
  • a desired shape to be processed by the modeling layer 53 is determined in advance and stored in the control unit 11.
  • the shape of the modeling layer 53 to be processed is controlled by the control unit 11 controlling the operation of the cutting machine 2.
  • the cutting machine 2 and the control unit 11 correspond to a cutting unit.
  • the formation and lamination of the modeling layer 53 and the cutting process on the modeling layer 53 are repeated, and as shown in FIG. 5, a three-dimensional layered object 54 formed by laminating a plurality of modeling layers 53 is manufactured.
  • the side surface of the modeling layer 53 becomes the surface of the three-dimensional layered object 54.
  • FIG. 6 is a schematic cross-sectional view showing a state in which a new modeling layer 53 is laminated on a plurality of modeling layers 53.
  • the plurality of stacked modeling layers 53 are referred to as a first modeling layer 531, a second modeling layer 532, a third modeling layer 533, and a fourth modeling layer 534, respectively.
  • a plurality of modeling layers 53 are laminated from the lower layer in the order of the first modeling layer 531, the second modeling layer 532, the third modeling layer 533, and the fourth modeling layer 534.
  • Another modeling layer 53 is laminated below the first modeling layer 531.
  • the first modeling layer 531 is finished in a desired shape for constituting a part of the modeled object.
  • a part of the second modeling layer 532 is finished to a desired shape, and the other part is cut to leave a finishing allowance 55 protruding outward from the desired shape.
  • the portion where the finishing is performed is below the portion where the finishing allowance 55 is left.
  • the third modeling layer 533 is in a state of being cut with the finishing allowance 55 left.
  • the fourth modeling layer 534 is newly formed by stacking the plurality of solidified layers 52 and has not yet been cut.
  • the finishing allowance 55 is provided in the upper modeling layer 53 where heat is easily transmitted in order to cancel the deformation of the modeling layer 53.
  • the thickness d at which the finishing allowance 55 protrudes outward from the desired shape of the modeling layer 53 is large enough to offset the deformation of the modeling layer 53.
  • a thickness d of the finishing allowance 55 is, for example, 0.035 mm.
  • FIG. 7 is a flowchart showing a procedure of a cutting process according to the first embodiment.
  • the manufacturing apparatus 1 uses the second cutting tool 22 to perform a rough finishing process of cutting the modeling layer 53 while leaving the finishing allowance 55 (S11).
  • the manufacturing apparatus 1 performs the removal process which removes the metal powder 4 from the circumference
  • the manufacturing apparatus 1 uses the first cutting tool 21 to perform a finishing process in which the finishing allowance 55 is cut off and the modeling layer 53 is cut into a desired shape (S13).
  • the process of S13 corresponds to the finishing part
  • the process of S12 corresponds to the removal part.
  • FIG. 8 is a schematic cross-sectional view showing the rough finishing process.
  • the cutting machine 2 performs processing using the second cutting tool 22.
  • the second cutting tool 22 is a substantially cylindrical end mill. Although omitted in FIG. 8, the second cutting tool 22 has a cutting blade on the side surface, and a groove is formed.
  • the 2nd cutting tool 22 rotates centering on a central axis, and cuts what contacts a side.
  • the cutting machine 2 rotates the second cutting tool 22 to bring the side surface of the second cutting tool 22 into contact with the side surface of the modeling layer 53 to cut the modeling layer 53.
  • the second modeling layer 532, the third modeling layer 533, and the fourth modeling layer 534 are processed to leave the finishing allowance 55.
  • the metal powder 4 exists around the modeling layer 53, and the second cutting tool 22 performs the cutting process while scraping the metal powder 4.
  • FIG. 9 is a schematic cross-sectional view showing the removal process according to the first embodiment.
  • the cutting machine 2 changes the tool from the second cutting tool 22 to the rod-shaped tool 23.
  • the rod-shaped tool 23 is a substantially cylindrical tool.
  • the rod-shaped tool 23 is a cutting tool such as a drill or an end mill.
  • the diameter a of the rod-shaped tool 23 is larger than the maximum diameter of the first cutting tool 21.
  • the cutting machine 2 rotates the rod-shaped tool 23 with the central axis as the center of rotation, and inserts it into the metal powder 4 around the modeling layer 53. At this time, the cutting machine 2 slightly separates the bar-shaped tool 23 from the side surface of the modeling layer 53 processed by the rough finishing process. Further, the cutting machine 2 inserts the rod-shaped tool 23 to a position deeper than the deepest position of the first cutting tool 21 in the subsequent finishing process.
  • the cutting machine 2 moves the rod-shaped tool 23 inserted into the metal powder 4 around the modeling layer 53 along the side surface of the modeling layer 53. At this time, the cutting machine 2 moves the rod-shaped tool 23 while being separated from the side surface of the modeling layer 53 by a predetermined distance.
  • the metal powder 4 is pushed away by the moving rod-shaped tool 23, and the metal powder 4 is removed from the periphery of the modeling layer 53.
  • the metal powder 4 that has been in contact with the side surface of the modeling layer 53 to be subjected to the finishing process is also removed.
  • the predetermined distance for separating the bar-shaped tool 23 from the side surface of the modeling layer 53 is such a distance that the metal powder 4 is removed from the side surface of the modeling layer 53 as much as possible. This distance is, for example, 0.05 mm.
  • the cutting machine 2 changes the tool from the rod-shaped tool 23 to the first cutting tool 21.
  • the first cutting tool 21 is an end mill and has a substantially cylindrical shape as a whole.
  • the first cutting tool 21 includes a columnar part 212 and a cutting part 211 connected to the tip of the columnar part 212.
  • the cutting portion 211 has a cutting blade on its side surface and has a groove.
  • the columnar portion 212 does not have a cutting blade.
  • the maximum diameter of the cutting part 211 exceeds the diameter of the columnar part 212. For this reason, the side surface of the cutting part 211 protrudes from the side surface of the columnar part 212.
  • the diameter a of the rod-shaped tool 23 is larger than the maximum diameter b of the first cutting tool 21.
  • the first cutting tool 21 rotates with the cutting portion 211 on the lower side and the central axis of the columnar portion 212 as the rotation center, and cuts the one that contacts the side surface of the cutting portion 211.
  • the cutting machine 2 rotates the first cutting tool 21, inserts the first cutting tool 21 around the modeling layer 53, contacts the side surface of the cutting part 211 with the side surface of the modeling layer 53, and cuts the modeling layer 53. Process. At this time, the cutting machine 2 scrapes off a part of the finishing allowance 55 in the third modeling layer 533 and performs a process of finishing a part of the third modeling layer 533 into a desired shape.
  • FIG. 10 shows a state where the finishing allowance 55 in the third modeling layer 533 is scraped off. The cutting machine 2 lowers the first cutting tool 21 while continuing the cutting process, so that the finishing allowance 55 in the second modeling layer 532 is scraped off and the second modeling layer 532 is processed into a desired shape.
  • FIG. 10 shows a state where the finishing allowance 55 in the third modeling layer 533 is scraped off.
  • the cutting machine 2 lowers the first cutting tool 21 while continuing the cutting process, so that the finishing allowance 55 in the second modeling layer 532 is scraped off and the second modeling layer 532 is processed
  • FIG. 11 shows a state in which the finishing allowance 55 in the second modeling layer 532 is scraped off, and the first cutting tool 21 is at a substantially deepest position.
  • the second modeling layer 532 and a part of the third modeling layer 533 are finished in a desired shape.
  • the other portions of the third modeling layer 533 and the finishing allowance 55 in the fourth modeling layer 534 are left without being cut.
  • the portion where the finishing allowance 55 is left in the third modeling layer 533 is above the portion where the finishing is performed. Since the side surface of the cutting portion 211 protrudes from the side surface of the columnar portion 212, it is possible to perform a process of removing the finishing allowance 55 in the lower modeling layer 53 while leaving the finishing allowance 55 in the upper modeling layer 53. After the finishing process is finished, the cutting process is finished. After the cutting process is completed, the solidified layer 52 is further formed and laminated, and when the next cutting process is executed, the process starts again from the state shown in FIG.
  • the first cutting tool 21 is inserted into the space from which the metal powder 4 has been removed.
  • the removal process is performed using the rod-shaped tool 23 whose diameter a exceeds the maximum diameter b of the first cutting tool 21, the metal powder 4 is removed from the range where the inserted first cutting tool 21 comes into contact.
  • the rod-shaped tool 23 is inserted to a position deeper than the deepest position of the first cutting tool 21 in the finishing process, the metal powder 4 is removed even at the deepest position of the first cutting tool 21. Yes.
  • the 1st cutting tool 21 moves in the space from which the metal powder 4 was removed.
  • the possibility that the first cutting tool 21 contacts the metal powder 4 during the finishing process is low, and the metal powder 4 that has contacted the first cutting tool 21 is suppressed from roughening the side surface of the modeling layer 53. Therefore, it is prevented that the metal powder 4 roughens the side surface of the modeling layer 53, so that the surface of the three-dimensional layered object is not uneven, and the generation of the surface unevenness of the three-dimensional layered object is suppressed.
  • FIG. 12 is a view showing a photograph of a three-dimensional layered object manufactured by the manufacturing method according to Embodiment 1 and the conventional manufacturing method.
  • the three-dimensional layered object manufactured by the conventional manufacturing method has irregularities on the surface.
  • the generated unevenness has a striped pattern that intersects the direction in which the solidified layer 52 is laminated.
  • the three-dimensional layered object manufactured by the manufacturing method according to the present embodiment has clearly reduced surface irregularities.
  • Ra which indicates the average height of the unevenness
  • Rz which is the maximum value of the height difference of the unevenness
  • the three-dimensional layered object manufactured by the conventional manufacturing method has a surface roughness of 1.5 times or more compared to the three-dimensional layered object manufactured by the manufacturing method according to this embodiment. That is, it is clear that a high-quality three-dimensional layered object having few surface irregularities can be manufactured by this embodiment.
  • FIG. 13 is a flowchart showing a procedure of a cutting process according to the second embodiment.
  • the manufacturing apparatus 1 uses the second cutting tool 22 to perform a rough finishing process of cutting the modeling layer 53 while leaving the finishing allowance 55 (S21).
  • the manufacturing apparatus 1 raises the elevating table 12 until the position of the modeling layer 53 that is the object of cutting is higher than the upper end of the wall 13 (S22).
  • the position of the lifting table 12 is controlled by the control unit 11.
  • the manufacturing apparatus 1 performs the removal process which removes a metal powder from the circumference
  • the process of S22 corresponds to the ascending part
  • the process of S23 corresponds to the removal part.
  • FIG. 14 is a schematic partial cross-sectional view illustrating a partial state of the manufacturing apparatus 1 when performing the removing process according to the second embodiment. From the state for the step of laminating the solidified layer 52 as shown in FIG. 2 and FIG. 3, the position of a part of the three-dimensional layered object 54 being manufactured is higher than the upper end of the wall 13 as shown in FIG. The lift table 12 is raised to the position.
  • FIG. 15 is a schematic cross-sectional view illustrating a removal process according to the second embodiment. The lifting table 12 is raised until at least a part of the modeling layer 53 to be cut is higher than the upper end of the wall 13.
  • the positions of the second modeling layer 532, the third modeling layer 533, and the fourth modeling layer 534 that are the objects of cutting, and the position of a part of the first modeling layer 531 are higher than the upper end of the wall 13. It is desirable to become.
  • the cutting machine 2 rotates the rod-shaped tool 23 and inserts it into the metal powder 4 around the modeling layer 53, and around the modeling layer 53 along the side surface of the modeling layer 53. Move. At this time, the cutting machine 2 inserts the rod-shaped tool 23 to a position deeper than the deepest position of the first cutting tool 21 in the subsequent finishing process.
  • the metal powder 4 around the modeling layer 53 at a position higher than the upper end of the wall 13 can overflow to the outside beyond the upper end of the wall 13.
  • the metal powder 4 pushed away by the rod-shaped tool 23 is discharged outside beyond the upper end of the wall 13. For this reason, the amount of the metal powder 4 that cannot be removed from the surroundings of the modeling layer 53 in the removal step or the amount of the metal powder 4 that returns to the surroundings of the modeling layer 53 after being removed is reduced, and the effect from the periphery of the modeling layer 53 is reduced. Thus, the metal powder 4 is removed.
  • FIG. 16 is a schematic cross-sectional view illustrating a finishing process according to the second embodiment.
  • the cutting machine 2 rotates the first cutting tool 21, inserts the first cutting tool 21 around the modeling layer 53, contacts the side surface of the cutting part 211 with the side surface of the modeling layer 53, and cuts the modeling layer 53. Process.
  • the cutting machine 2 scrapes off a part of the finishing allowance 55 in the third modeling layer 533, finishes a part of the third modeling layer 533 into a desired shape, and sets the finishing allowance 55 in the second modeling layer 532. It cuts and performs the process which finishes the 2nd modeling layer 532 in a desired shape.
  • the process of S24 corresponds to the finishing part.
  • the manufacturing apparatus 1 lowers the elevating table 12 until the position of the three-dimensional layered object 54 being manufactured is lower than the upper end of the wall 13 (S25). The process ends. After the cutting process is completed, the metal powder 4 is applied to the three-dimensional layered object 54 being manufactured by the blade 14, and the solidified layer 52 is formed and laminated.
  • the first cutting tool 21 is a metal powder during the finishing process as shown in FIG. 4 becomes difficult to contact. It is unlikely that the metal powder 4 in contact with the first cutting tool 21 roughens the side surface of the modeling layer 53, and the surface of the three-dimensional layered object is uneven because the metal powder 4 roughens the side surface of the modeling layer 53. Is prevented from occurring. Therefore, it is possible to manufacture a high-quality three-dimensional layered object with less surface irregularities while avoiding an increase in manufacturing time.
  • the manufacturing apparatus 1 may execute the processes of S21 and S22 in the reverse order. That is, the manufacturing apparatus 1 may perform rough finishing after raising the lifting table 12. Moreover, the manufacturing apparatus 1 may perform the process of S24 and S25 in reverse order. That is, the manufacturing apparatus 1 may perform finishing after lowering the lifting table 12. Moreover, the manufacturing apparatus 1 may perform a removal process by raising the raising / lowering table 12. FIG. When the raising / lowering table 12 is raised until the position of the modeling layer 53 to be cut is higher than the upper end of the wall 13, the metal powder 4 collapses and passes the upper end of the wall 13 to the outside. Overflows. Therefore, the manufacturing apparatus 1 can remove the metal powder 4 from the surroundings of the modeling layer 53 that is the object of cutting only by raising the elevating table 12.
  • FIG. 17 is a schematic cross-sectional view illustrating a partial configuration of the three-dimensional layered object manufacturing apparatus 1 according to the third embodiment.
  • a discharge hole 131 for discharging the metal powder 4 is formed in the wall 13.
  • the discharge hole 131 corresponds to the discharge portion.
  • the step of forming and stacking the solidified layer 52 is performed in a state where the mounting surface 121 of the lifting table 12 is at a position higher than the discharge hole 131.
  • Other configurations of the manufacturing apparatus 1 are the same as those in the first embodiment.
  • the cutting process is different from the first embodiment. Of the steps for manufacturing the three-dimensional layered object, steps other than the cutting step are the same as those in the first embodiment.
  • FIG. 18 is a flowchart showing a procedure of a cutting process according to the third embodiment.
  • the manufacturing apparatus 1 uses the second cutting tool 22 to perform a rough finishing process of cutting the modeling layer 53 while leaving the finishing allowance 55 (S31).
  • the manufacturing apparatus 1 lowers the lifting table 12 until the position of the mounting surface 121 of the lifting table 12 is lower than at least a part of the discharge hole 131 (S32).
  • the position of the lifting table 12 is controlled by the control unit 11.
  • the process of S32 corresponds to the descending part.
  • FIG. 19 is a schematic partial cross-sectional view showing a state where the elevating table 12 is lowered. As shown in FIG. 17, from the state for the step of laminating the solidified layer 52, ascending and descending until the mounting surface 121 of the lifting table 12 is at a position lower than at least a part of the discharge hole 131 as shown in FIG. The table 12 descends. In this state, a part of the metal powder 4 above the mounting surface 121 passes through the discharge hole 131 and is discharged to the outside. It is assumed that the lifting table 12 is not lowered until the discharge hole 131 is completely higher than the metal powder 4 and the metal powder 4 cannot be discharged.
  • the manufacturing apparatus 1 raises the lifting table 12 (S33). At this time, the manufacturing apparatus 1 raises the lifting table 12 from the position shown in FIG. 19 to a predetermined position where the placement surface 121 is higher than the discharge hole 131. For example, the elevating table 12 is raised so that the position of the placement surface 121 is the same as the position shown in FIG.
  • the manufacturing apparatus 1 performs the removal process which removes the metal powder 4 from the circumference
  • the process of S33 corresponds to the second ascending part, and the process of S34 corresponds to the removal part.
  • the cutting machine 2 rotates the rod-shaped tool 23, inserts it into the metal powder 4 around the modeling layer 53 that is the object of cutting, and surrounds the modeling layer 53 along the side surface of the modeling layer 53. Move. At this time, the cutting machine 2 inserts the rod-shaped tool 23 to a position deeper than the deepest position of the first cutting tool 21 in the subsequent finishing process. The metal powder 4 is pushed away by the moving rod-shaped tool 23, and the metal powder 4 is removed from the periphery of the modeling layer 53. As a result of part of the metal powder 4 being discharged in S32, the amount of the metal powder 4 is decreasing.
  • the quantity of the metal powder 4 which the rod-shaped tool 23 should push away reduces. Further, the amount of the metal powder 4 that cannot be removed from the surroundings of the modeling layer 53 in the removing process or the amount of the metal powder 4 that returns to the surroundings of the modeling layer 53 after being removed decreases. Therefore, the metal powder 4 is effectively removed from the periphery of the modeling layer 53.
  • the manufacturing apparatus 1 uses the first cutting tool 21 to perform the finishing process of cutting the finishing allowance 55 and cutting the modeling layer 53 into a desired shape (S35).
  • the cutting machine 2 rotates the first cutting tool 21, inserts the first cutting tool 21 around the modeling layer 53, contacts the side surface of the cutting part 211 with the side surface of the modeling layer 53, and cuts the modeling layer 53.
  • the cutting machine 2 cuts off a part of the finishing allowance 55 and performs a process of finishing a part of the modeling layer 53 into a desired shape.
  • the process of S35 corresponds to the finishing part.
  • the manufacturing apparatus 1 finishes the cutting process.
  • the metal powder 4 is applied to the three-dimensional layered object 54 being manufactured by the blade 14, and the solidified layer 52 is formed and laminated.
  • the second process is performed during the finishing process as in the case of the second embodiment shown in FIG. 1 It becomes difficult for the cutting tool 21 to contact the metal powder 4. It is unlikely that the metal powder 4 in contact with the first cutting tool 21 will roughen the modeling layer 53, and unevenness is generated on the surface of the three-dimensional layered object because the metal powder 4 roughens the side surface of the modeling layer 53. It is prevented. Therefore, it is possible to manufacture a high-quality three-dimensional layered object with less surface irregularities while avoiding an increase in manufacturing time.
  • the manufacturing apparatus 1 may execute the process of S31 after the process of S33. That is, the manufacturing apparatus 1 may perform rough finishing after discharging a part of the metal powder 4. Moreover, the manufacturing apparatus 1 may perform a removal process in the state which lowered the raising / lowering table 12, and may perform rough finishing or finishing in the state which lowered the raising / lowering table 12. FIG. Moreover, the manufacturing apparatus 1 may perform the removal process by lowering the lifting table 12. When the lifting table 12 is lowered until the placement surface 121 is at a position lower than at least a part of the discharge hole 131, the metal powder 4 is naturally discharged outside through the discharge hole 131.
  • the manufacturing apparatus 1 can remove the metal powder 4 from the periphery of the modeling layer 53 that is the object of cutting by simply lowering the elevating table 12.
  • the discharge part formed in the wall 13 showed the example which is the discharge hole 131
  • the form other than the discharge hole 131 may be sufficient as a discharge part.
  • the discharge part may be the lower end of the wall 13.
  • the solidified layer is formed by sintering the metal powder 4.
  • the three-dimensional layered object manufacturing apparatus 1 melts and solidifies the metal powder 4.
  • the solidified layer 52 may be formed.
  • the laser beam is used as the energy beam.
  • the manufacturing apparatus 1 may use an energy beam other than the laser beam.
  • the metal powder 4 is used as the material powder.
  • the manufacturing apparatus 1 may use a material powder other than the metal powder such as a resin powder.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Powder Metallurgy (AREA)

Abstract

Provided are a method and a device for manufacturing a three-dimensional laminated molding, which are capable of suppressing the formation of projected and recessed parts on the surface of the three-dimensional laminated molding by suppressing the occurrence of roughening the side surface of a solidified layer caused by powder material. The three-dimensional laminated molding is manufactured by forming solidified layers in which the powder material is irradiated with an energy beam so as to be solidified, laminating the solidified layers, and cutting the laminated solidified layers. The cutting process includes: a finishing step for cutting at least some parts of the solidified layers into necessary shapes by a first rotary cutting tool; and a removal step for removing the powder material from around the solidified layers by moving a rod-like tool larger in diameter than the first cutting tool around the solidified layers along the side surface of the solidified layers before the finishing step.

Description

三次元積層造形物の製造方法及び製造装置Manufacturing method and manufacturing apparatus for three-dimensional layered object
 本発明は、材料粉末を固化させた固化層を積層することによって三次元積層造形物を製造する方法、及び製造装置に関する。 The present invention relates to a method and a manufacturing apparatus for manufacturing a three-dimensional layered object by stacking solidified layers obtained by solidifying material powder.
 金属粉末等の材料粉末にレーザ光等のエネルギービームを照射し、材料粉末を焼結又は溶融固化させて固化層を形成し、固化層を積層することで三次元形状を形成し、三次元形状の形成途中に切削加工を加えることにより、三次元積層造形物を製造する方法がある。以下、この製造方法を光造形複合加工法と言う。 A material powder such as a metal powder is irradiated with an energy beam such as a laser beam, and the material powder is sintered or melted and solidified to form a solidified layer, and the solidified layer is laminated to form a three-dimensional shape. There is a method of manufacturing a three-dimensional layered object by adding a cutting process in the middle of forming. Hereinafter, this manufacturing method is referred to as an optical modeling composite processing method.
 光造形複合加工法では、複数の固化層を積層し、複数の固化層に対してまとめて切削加工を行う。切削加工では複数の固化層の側面が切削され、切削加工された固化層の側面が最終的に三次元積層造形物の表面となる。ところが、切削加工を行った固化層の上に新たな固化層を形成・積層した場合に、既に切削加工を行った固化層が新たな固化層からの熱の影響を受けて変形することがある。このため、三次元積層造形物の表面に凹凸が生じるという問題がある。そこで、従来の光造形複合加工法では、切削加工時に、所望の形状から若干大きい仕上げ代を残す荒仕上げを行い、新たな固化層からの熱の影響を受けないある程度下層の固化層に対して、所望の形状に仕上げる仕上げを行う。この方法により、三次元積層造形物の表面の凹凸の発生が抑制される。特許文献1には、従来の光造形複合加工法の例が記載されている。 In the stereolithography combined processing method, a plurality of solidified layers are stacked, and the plurality of solidified layers are collectively cut. In the cutting process, the side surfaces of the plurality of solidified layers are cut, and the side surfaces of the solidified layers thus cut finally become the surface of the three-dimensional layered object. However, when a new solidified layer is formed and laminated on the solidified layer that has been cut, the solidified layer that has already been cut may be deformed by the influence of heat from the new solidified layer. . For this reason, there exists a problem that an unevenness | corrugation arises on the surface of a three-dimensional laminate modeling thing. Therefore, in the conventional stereolithography combined processing method, rough finishing that leaves a slightly large finishing allowance from the desired shape is performed at the time of cutting, and to a certain degree of solidified layer that is not affected by the heat from the new solidified layer Then, finish to the desired shape. By this method, the generation of irregularities on the surface of the three-dimensional layered object is suppressed. Patent Document 1 describes an example of a conventional stereolithography combined processing method.
特開2007-204828号公報JP 2007-204828 A
 ところが、切削加工を荒仕上げと仕上げとに分けて行った場合でも、三次元積層造形物の表面に凹凸が生じることがある。特に、まとめて切削加工を受ける複数の固化層の数が多くなるほど、より凹凸が生じやすくなる。切削加工を荒仕上げと仕上げとに分けて行った場合でも凹凸が生じる原因の一つは、製造途中の三次元積層造形物の周囲に存在する材料粉末が切削加工時に固化層の側面を粗すことであると考えられている。まとめて切削加工を受ける複数の固化層の数を少なくした場合は、三次元積層造形物の表面の凹凸の発生を抑制できるものの、製造時間が長大化するという問題がある。 However, even when the cutting process is divided into rough finishing and finishing, unevenness may occur on the surface of the three-dimensional layered object. In particular, as the number of the plurality of solidified layers subjected to the cutting process together increases, unevenness is more likely to occur. Even when the cutting process is divided into rough finishing and finishing, one of the causes of unevenness is that the material powder present around the three-dimensional layered product in the process of roughing the side of the solidified layer during cutting It is considered that. When the number of the plurality of solidified layers subjected to the cutting process is reduced, it is possible to suppress the generation of irregularities on the surface of the three-dimensional layered object, but there is a problem that the manufacturing time is lengthened.
 本発明は、斯かる事情に鑑みてなされたものであって、その目的とするところは、材料粉末が固化層の側面を粗すことを抑制することにより、三次元積層造形物の表面の凹凸の発生を抑制することができる三次元積層造形物の製造方法及び製造装置を提供することにある。 The present invention has been made in view of such circumstances, and the object of the present invention is to prevent unevenness of the surface of the three-dimensional layered object by suppressing the material powder from roughening the side surface of the solidified layer. It is in providing the manufacturing method and manufacturing apparatus of a three-dimensional layered product which can suppress generation | occurrence | production of this.
 本発明に係る三次元積層造形物の製造方法は、材料粉末へのエネルギービームの照射により前記材料粉末を固化させた固化層を形成し、該固化層を積層し、積層した複数の固化層に対して切削加工を行うことにより、三次元積層造形物を製造する方法において、切削加工の工程は、回転する第1切削工具によって、前記複数の固化層の少なくとも一部を必要な形状に切削加工する仕上げ工程と、該仕上げ工程の前に、前記第1切削工具よりも径の大きい棒状工具を、前記複数の固化層の側面に沿って前記複数の固化層の周囲を移動させることにより、前記複数の固化層の周囲から前記材料粉末を除去する除去工程とを含むことを特徴とする。 The manufacturing method of the three-dimensional layered object according to the present invention includes forming a solidified layer obtained by solidifying the material powder by irradiation of an energy beam to the material powder, laminating the solidified layer, and laminating the plurality of solidified layers. In the method of manufacturing a three-dimensional layered object by performing cutting on the cutting process, the cutting process is performed by cutting at least a part of the plurality of solidified layers into a required shape with the rotating first cutting tool. The finishing step to be performed, and before the finishing step, by moving a rod-shaped tool having a diameter larger than that of the first cutting tool around the plurality of solidified layers along the side surfaces of the plurality of solidified layers, And a removing step of removing the material powder from the periphery of the plurality of solidified layers.
 本発明に係る三次元積層造形物の製造方法は、前記除去工程は、前記仕上げ工程における前記第1切削工具の最も深い位置よりも深い位置まで前記材料粉末を除去することを特徴とする。 The method for manufacturing a three-dimensional layered object according to the present invention is characterized in that the removing step removes the material powder to a position deeper than a deepest position of the first cutting tool in the finishing step.
 本発明に係る三次元積層造形物の製造方法は、前記切削加工の工程は、前記除去工程の前に、第2切削工具によって、前記複数の固化層の少なくとも一部を切削加工する荒仕上げ工程を更に含み、前記仕上げ工程は、前記荒仕上げ工程によって既に切削加工された部分の少なくとも一部を切削加工し、前記除去工程は、前記荒仕上げ工程によって切削加工された前記複数の固化層の側面から所定距離離隔して前記棒状工具を移動させることを特徴とする。 In the method for producing a three-dimensional layered object according to the present invention, the cutting step includes a rough finishing step of cutting at least a part of the plurality of solidified layers with a second cutting tool before the removing step. The finishing step cuts at least a part of a portion that has already been cut by the rough finishing step, and the removal step includes side surfaces of the plurality of solidified layers cut by the rough finishing step. The bar-shaped tool is moved at a predetermined distance from the tool.
 本発明に係る三次元積層造形物の製造方法は、前記材料粉末が載置され、前記複数の固化層が積層される昇降テーブルと、前記材料粉末を前記昇降テーブル上に保持すべく前記昇降テーブルを囲う壁とを用い、前記除去工程は、前記複数の固化層の切削加工の対象となる部分の位置が前記壁の上端よりも高い位置になるまで前記昇降テーブルを上昇させた状態で、行われることを特徴とする。 The manufacturing method of the three-dimensional layered object according to the present invention includes a lifting table on which the material powder is placed and the plurality of solidified layers are stacked, and the lifting table to hold the material powder on the lifting table. And the removing step is performed in a state where the lifting table is raised until the position of the portion to be cut of the plurality of solidified layers is higher than the upper end of the wall. It is characterized by being.
 本発明に係る三次元積層造形物の製造方法は、前記材料粉末が載置され、前記複数の固化層が積層される昇降テーブルと、前記材料粉末を前記昇降テーブル上に保持すべく前記昇降テーブルを囲う壁とを用い、前記壁には、前記材料粉末が排出される排出部が形成されており、前記固化層を形成し積層する工程は、前記昇降テーブルの載置面が前記排出部よりも高い位置にある状態で行われ、前記切削加工の工程は、前記載置面の位置が前記排出部の一部よりも低い位置になるまで前記昇降テーブルを下降させる工程と、前記載置面の位置が前記排出部よりも高い位置になるまで前記昇降テーブルを上昇させる工程とを更に含み、前記除去工程は、前記昇降テーブルを下降及び上昇させる工程の後に行われることを特徴とする。 The manufacturing method of the three-dimensional layered object according to the present invention includes a lifting table on which the material powder is placed and the plurality of solidified layers are stacked, and the lifting table to hold the material powder on the lifting table. The wall is formed with a discharge portion for discharging the material powder, and in the step of forming and laminating the solidified layer, the mounting surface of the lifting table is formed by the discharge portion from the discharge portion. The cutting step is performed by lowering the lifting table until the position of the mounting surface is lower than a part of the discharge portion, and the mounting surface described above. And elevating the elevating table until the position becomes higher than the discharge unit, and the removing step is performed after the elevating table is lowered and raised.
 本発明に係る三次元積層造形物の製造装置は、材料粉末へのエネルギービームの照射により前記材料粉末を固化させた固化層を形成し、該固化層を積層する積層部と、積層した複数の固化層に対して切削加工を行う切削加工部とを備え、三次元積層造形物を製造する装置において、前記切削加工部は、回転する切削工具によって、前記複数の固化層の少なくとも一部を必要な形状に切削加工する仕上げ部と、該仕上げ部による切削加工の前に、前記切削工具よりも径の大きい棒状工具を、前記複数の固化層の側面に沿って前記複数の固化層の周囲を移動させることにより、前記複数の固化層の周囲から前記材料粉末を除去する除去部とを有することを特徴とする。 An apparatus for manufacturing a three-dimensional layered object according to the present invention forms a solidified layer obtained by solidifying the material powder by irradiation of an energy beam to the material powder, and stacks a plurality of stacked layers. An apparatus for manufacturing a three-dimensional layered object, wherein the cutting unit needs at least a part of the plurality of solidified layers by a rotating cutting tool. A finishing part that cuts into a desired shape, and before cutting by the finishing part, a rod-shaped tool having a diameter larger than that of the cutting tool is disposed around the plurality of solidified layers along the side surfaces of the plurality of solidified layers. And a removing unit that removes the material powder from the periphery of the plurality of solidified layers by being moved.
 本発明に係る三次元積層造形物の製造装置は、前記材料粉末が載置され、前記複数の固化層が積層される昇降テーブルと、前記材料粉末を前記昇降テーブル上に保持すべく前記昇降テーブルを囲う壁とを更に備え、前記切削加工部は、前記除去部による作業の際に、前記複数の固化層の切削加工の対象となる部分の位置が前記壁の上端よりも高い位置になるまで前記昇降テーブルを上昇させる上昇部を更に有することを特徴とする。 The apparatus for manufacturing a three-dimensional layered object according to the present invention includes a lift table on which the material powder is placed and the plurality of solidified layers are stacked, and the lift table to hold the material powder on the lift table. A wall that surrounds the plurality of solidified layers when the removal portion is operated by the removal portion until a position of a portion to be cut of the plurality of solidified layers is higher than an upper end of the wall. It further has a raising part which raises the raising / lowering table.
 本発明に係る三次元積層造形物の製造装置は、前記材料粉末が載置され、前記複数の固化層が積層される昇降テーブルと、前記材料粉末を前記昇降テーブル上に保持すべく前記昇降テーブルを囲う壁とを更に備え、前記壁には、前記材料粉末が排出される排出部が形成されており、前記積層部は、前記昇降テーブルの載置面が前記排出部よりも高い位置にある状態で前記固化層の形成及び積層を行い、前記切削加工部は、前記載置面の位置が前記排出部の一部よりも低い位置になるまで前記昇降テーブルを下降させる下降部と、前記載置面の位置が前記排出部よりも高い位置になるまで前記昇降テーブルを上昇させる第2の上昇部とを更に有し、前記除去部は、前記下降部及び前記第2の上昇部が動作した後に作業を行うことを特徴とする。 The apparatus for manufacturing a three-dimensional layered object according to the present invention includes a lift table on which the material powder is placed and the plurality of solidified layers are stacked, and the lift table to hold the material powder on the lift table. And a wall for forming a discharge portion for discharging the material powder, and the stacking portion is positioned higher than the discharge portion. The solidified layer is formed and laminated in a state, and the cutting unit is a lowering unit that lowers the lifting table until the position of the placement surface is lower than a part of the discharge unit, And a second ascending unit that raises the elevating table until the position of the placement surface is higher than the discharge unit, and the removing unit operates the descending unit and the second ascending unit Characterized by performing work later
 本発明においては、光造形複合加工法により三次元積層造形物を製造する製造装置は、切削加工の工程において、第1切削工具によって複数の固化層を必要な形状に切削加工する仕上げ工程の前に、切削を行うべき固化層の周囲から材料粉末を除去する除去工程を行う。除去工程では、第1切削工具よりも径の大きい棒状工具を、固化層の側面に沿って固化層の周囲を移動させることによって、材料粉末を除去する。仕上げ工程の最中に材料粉末が第1切削工具に接触し難くなり、第1切削工具に接触した材料粉末が固化層の側面を粗すことが抑制される。 In the present invention, the manufacturing apparatus that manufactures the three-dimensional layered object by the optical modeling composite processing method, before the finishing process of cutting a plurality of solidified layers into a necessary shape by the first cutting tool in the cutting process. In addition, a removal step of removing the material powder from the periphery of the solidified layer to be cut is performed. In the removing step, the material powder is removed by moving a rod-shaped tool having a diameter larger than that of the first cutting tool around the solidified layer along the side surface of the solidified layer. During the finishing process, the material powder is less likely to come into contact with the first cutting tool, and the material powder in contact with the first cutting tool is suppressed from roughening the side surface of the solidified layer.
 本発明においては、仕上げ工程における第1切削工具の位置よりも深い位置まで材料粉末が除去工程で除去される。このため、仕上げ工程の最中に材料粉末が第1切削工具により接触し難くなる。 In the present invention, the material powder is removed in the removing step up to a position deeper than the position of the first cutting tool in the finishing step. For this reason, it becomes difficult for the material powder to come into contact with the first cutting tool during the finishing process.
 本発明においては、第2切削工具によって複数の固化層を切削加工する荒仕上げ工程が行われ、荒仕上げ工程の後に仕上げ工程が行われる。除去工程では、荒仕上げ工程で切削加工された固化層の側面から所定距離離隔して、棒状工具が移動する。これにより、仕上げ工程の対象となる固化層の周囲から材料粉末が除去される。 In the present invention, a rough finishing process of cutting a plurality of solidified layers with the second cutting tool is performed, and a finishing process is performed after the rough finishing process. In the removal process, the bar-shaped tool moves at a predetermined distance from the side surface of the solidified layer cut in the rough finishing process. Thereby, material powder is removed from the circumference | surroundings of the solidification layer used as the object of a finishing process.
 本発明においては、製造装置は、材料粉末が載置され固化層が積層される昇降テーブルと、昇降テーブルを囲う壁とを備える。除去工程は、切削加工の対象となる固化層の位置が壁の上端よりも高い位置になるまで昇降テーブルを上昇させた状態で、行われる。金属粉末は壁の上端を越えて外部へ排出されるので、材料粉末の除去が効果的に行われる。 In the present invention, the manufacturing apparatus includes an elevating table on which material powder is placed and a solidified layer is stacked, and a wall surrounding the elevating table. The removing step is performed in a state where the lifting table is raised until the position of the solidified layer to be cut is higher than the upper end of the wall. Since the metal powder is discharged to the outside beyond the upper end of the wall, the material powder is effectively removed.
 本発明においては、製造装置は、材料粉末が載置され固化層が積層される昇降テーブルと、昇降テーブルを囲う壁とを備える。壁には、材料粉末が排出される排出部が形成されている。製造装置は、昇降テーブルを、載置面の位置が排出部の一部よりも低い位置になるまで一旦下降させ、載置面の位置が排出部の高い位置になるまで上昇させる。除去工程は、昇降テーブルの下降及び上昇の後で行われる。昇降テーブルを一旦下降させた際に、金属粉末の一部が排出部を通って外部へ排出される。このため、材料粉末の除去が効果的に行われる。 In the present invention, the manufacturing apparatus includes an elevating table on which material powder is placed and a solidified layer is stacked, and a wall surrounding the elevating table. The wall is formed with a discharge portion for discharging the material powder. The manufacturing apparatus temporarily lowers the lifting table until the position of the placement surface is lower than a part of the discharge portion, and raises the position until the position of the placement surface is higher than the discharge portion. The removing process is performed after the lift table is lowered and raised. When the lifting table is once lowered, a part of the metal powder is discharged to the outside through the discharge portion. For this reason, removal of material powder is performed effectively.
 本発明にあっては、切削加工の仕上げを行う際に材料粉末が固化層の側面を粗すことが抑制されるので、三次元積層造形物の表面の凹凸の発生が抑制される。従って、製造時間の長大化を回避しながら、表面の凹凸が少ない高品質の三次元積層造形物を製造することが可能となる等、本発明は優れた効果を奏する。 In the present invention, since the material powder is suppressed from roughening the side surface of the solidified layer when finishing the cutting process, the occurrence of unevenness on the surface of the three-dimensional layered object is suppressed. Therefore, the present invention has an excellent effect such that it is possible to manufacture a high-quality three-dimensional layered object with less surface irregularities while avoiding an increase in manufacturing time.
実施形態1に係る三次元積層造形物の製造装置の構成を示す模式的部分断面図である。It is a typical fragmentary sectional view showing the composition of the manufacturing device of the three-dimensional layered object concerning Embodiment 1. 光造形複合加工法の工程を示す模式的部分断面図である。It is a typical fragmentary sectional view which shows the process of the optical shaping composite processing method. 光造形複合加工法の工程を示す模式的部分断面図である。It is a typical fragmentary sectional view which shows the process of the optical shaping composite processing method. 光造形複合加工法の工程を示す模式的部分断面図である。It is a typical fragmentary sectional view which shows the process of the optical shaping composite processing method. 光造形複合加工法の工程を示す模式的部分断面図である。It is a typical fragmentary sectional view which shows the process of the optical shaping composite processing method. 複数の造形層の上に新たな造形層を積層した状態を示す模式的断面図である。It is a typical sectional view showing the state where a new modeling layer was laminated on a plurality of modeling layers. 実施形態1に係る切削加工の工程の手順を示すフローチャートである。3 is a flowchart illustrating a procedure of a cutting process according to the first embodiment. 荒仕上げ工程を示す模式的断面図である。It is typical sectional drawing which shows a rough finishing process. 実施形態1に係る除去工程を示す模式的断面図である。FIG. 3 is a schematic cross-sectional view showing a removal process according to Embodiment 1. 実施形態1に係る仕上げ工程を示す模式的断面図である。5 is a schematic cross-sectional view showing a finishing process according to Embodiment 1. FIG. 実施形態1に係る仕上げ工程を示す模式的断面図である。5 is a schematic cross-sectional view showing a finishing process according to Embodiment 1. FIG. 実施形態1に係る製造方法と従来の製造方法とで製造した三次元積層造形物の写真を示した図である。It is the figure which showed the photograph of the three-dimensional layered object manufactured with the manufacturing method which concerns on Embodiment 1, and the conventional manufacturing method. 実施形態2に係る切削加工の工程の手順を示すフローチャートである。10 is a flowchart showing a procedure of a cutting process according to the second embodiment. 実施形態2に係る除去工程を行う際の製造装置の一部の状態を示す模式的部分断面図である。It is a typical fragmentary sectional view which shows the state of a part of manufacturing apparatus at the time of performing the removal process which concerns on Embodiment 2. FIG. 実施形態2に係る除去工程を示す模式的断面図である。10 is a schematic cross-sectional view showing a removal process according to Embodiment 2. FIG. 実施形態2に係る仕上げ工程を示す模式的断面図である。10 is a schematic cross-sectional view showing a finishing process according to Embodiment 2. FIG. 実施形態3に係る三次元積層造形物の製造装置の一部の構成を示す模式的断面図である。It is typical sectional drawing which shows the structure of a part of manufacturing apparatus of the three-dimensional laminate modeling thing which concerns on Embodiment 3. FIG. 実施形態3に係る切削加工の工程の手順を示すフローチャートである。10 is a flowchart illustrating a procedure of a cutting process according to the third embodiment. 昇降テーブルを下降させた状態を示す模式的部分断面図である。It is a typical fragmentary sectional view which shows the state which lowered the raising / lowering table.
 以下本発明をその実施の形態を示す図面に基づき具体的に説明する。
(実施形態1)
 図1は、実施形態1に係る三次元積層造形物の製造装置1の構成を示す模式的部分断面図である。製造装置1は、金属粉末(材料粉末)にレーザ光(エネルギービーム)を照射し、金属粉末を焼結させて固化層を形成し、固化層を積層することで三次元形状を形成し、三次元形状の形成途中に切削加工を加える光造形複合加工法を行う。製造装置1は、造形物を保持しながら昇降が可能な昇降テーブル12と、昇降テーブル12を囲う壁13と、金属粉末4を昇降テーブル12上に塗布するブレード14とを備えている。壁13は、ブレード14が塗布することによって昇降テーブル12上に載置された金属粉末4が昇降テーブル12からこぼれないように保持する。昇降テーブル12は、壁13によって囲われた空間内を昇降する。
Hereinafter, the present invention will be specifically described with reference to the drawings showing embodiments thereof.
(Embodiment 1)
FIG. 1 is a schematic partial cross-sectional view illustrating a configuration of a three-dimensional layered object manufacturing apparatus 1 according to the first embodiment. The manufacturing apparatus 1 irradiates a metal powder (material powder) with laser light (energy beam), sinters the metal powder to form a solidified layer, and stacks the solidified layer to form a three-dimensional shape. A stereolithography combined processing method is performed in which cutting is performed during the formation of the original shape. The manufacturing apparatus 1 includes a lifting table 12 that can be lifted while holding a modeled object, a wall 13 that surrounds the lifting table 12, and a blade 14 that applies metal powder 4 onto the lifting table 12. The wall 13 holds the metal powder 4 placed on the lifting table 12 so as not to spill from the lifting table 12 when the blade 14 is applied. The lifting table 12 moves up and down in the space surrounded by the wall 13.
 また、製造装置1は、昇降テーブル12上の金属粉末4へレーザ光を照射するためのレーザ光源31と、レーザ光を反射させるミラー32と、レーザ光を集光するレンズ33と、造形物に対して切削加工を行う切削機2とを備えている。レーザ光源31は、ファイバーレーザ等、金属粉末4を効果的に加熱することができるレーザを使用している。ミラー32が動くことにより、金属粉末4へレーザ光が照射される位置が調整される。図1中には、レーザ光を矢印で示している。製造装置1は、ミラー32及びレンズ33以外にも、レーザ光の照射位置を調整するための光学系を備えていてもよい。切削機2は、仕上げを行うための第1切削工具21と、荒仕上げを行うための第2切削工具22と、金属粉末4の除去を行う棒状工具23とを有している。 In addition, the manufacturing apparatus 1 applies a laser light source 31 for irradiating the metal powder 4 on the lifting table 12 with laser light, a mirror 32 for reflecting the laser light, a lens 33 for condensing the laser light, and a modeling object. And a cutting machine 2 that performs the cutting process. The laser light source 31 uses a laser that can effectively heat the metal powder 4 such as a fiber laser. By moving the mirror 32, the position where the metal powder 4 is irradiated with the laser light is adjusted. In FIG. 1, laser light is indicated by arrows. In addition to the mirror 32 and the lens 33, the manufacturing apparatus 1 may include an optical system for adjusting the irradiation position of the laser light. The cutting machine 2 includes a first cutting tool 21 for performing finishing, a second cutting tool 22 for performing rough finishing, and a rod-shaped tool 23 for removing the metal powder 4.
 更に製造装置1は、製造装置1全体の動作を制御する制御部11を備えている。制御部11は、動作を制御するための演算を行う演算部、演算に伴う情報を記憶するメモリ、及び制御プログラムを記憶する記憶部等を含んで構成されている。制御部11は、製造装置1を構成する各部分の動作を制御し、金属粉末4へ照射されるレーザ光の照射位置と、切削機2が切削する造形物の切削位置とを制御する。 Furthermore, the manufacturing apparatus 1 includes a control unit 11 that controls the operation of the entire manufacturing apparatus 1. The control unit 11 includes a calculation unit that performs calculation for controlling the operation, a memory that stores information associated with the calculation, a storage unit that stores a control program, and the like. The control unit 11 controls the operation of each part constituting the manufacturing apparatus 1, and controls the irradiation position of the laser light irradiated to the metal powder 4 and the cutting position of the shaped object cut by the cutting machine 2.
 更に製造装置1は、製造装置1全体の動作を制御する制御部11を備えている。制御部11は、動作を制御するための演算を行う演算部、演算に伴う情報を記憶するメモリ、及び制御プログラムを記憶する記憶部等を含んで構成されている。制御部11は、製造装置1を構成する各部分の動作を制御し、金属粉末4へ照射されるレーザ光の照射位置と、切削機2が切削する造形物の切削位置とを制御する。 Furthermore, the manufacturing apparatus 1 includes a control unit 11 that controls the operation of the entire manufacturing apparatus 1. The control unit 11 includes a calculation unit that performs calculation for controlling the operation, a memory that stores information associated with the calculation, a storage unit that stores a control program, and the like. The control unit 11 controls the operation of each part constituting the manufacturing apparatus 1, and controls the irradiation position of the laser light irradiated to the metal powder 4 and the cutting position of the shaped object cut by the cutting machine 2.
 光造形複合加工法の概略を説明する。図2~図5は、光造形複合加工法の工程を示す模式的部分断面図である。図2に示すように、昇降テーブル12上にベースプレート51が載置され、ブレード14によりベースプレート51に金属粉末4が塗布される。金属粉末4は、昇降テーブル12上に、壁13の上端まで載置され、ブレード14によってほぼ水平にならされる。次に、図3に示すように、レーザ光源31から金属粉末4に対してレーザ光が照射され、金属粉末4が加熱されて焼結し、金属粉末4が固化した固化層52が形成される。レーザ光は造形物の断面形状の形に走査され、固化層52は造形物の断面形状をなす。レーザ光の走査形状は、制御部11によって制御される。次に、昇降テーブル12が若干降下し、ブレード14により固化層52に金属粉末4が塗布され、金属粉末4へレーザ光が照射され、金属粉末4が焼結し、次の固化層52が形成される。金属粉末4の塗布、レーザ光の照射、金属粉末4の焼結が繰り返され、複数の固化層52が積層される。ブレード14、レーザ光源31、ミラー32、レンズ33及び制御部11は、積層部に対応する。 An outline of the stereolithography combined processing method will be described. 2 to 5 are schematic partial cross-sectional views showing the steps of the stereolithography combined processing method. As shown in FIG. 2, the base plate 51 is placed on the lifting table 12, and the metal powder 4 is applied to the base plate 51 by the blade 14. The metal powder 4 is placed on the elevating table 12 up to the upper end of the wall 13 and leveled almost horizontally by the blade 14. Next, as shown in FIG. 3, the laser light source 31 irradiates the metal powder 4 with laser light, the metal powder 4 is heated and sintered, and the solidified layer 52 in which the metal powder 4 is solidified is formed. . The laser beam is scanned in the shape of the cross-sectional shape of the modeled object, and the solidified layer 52 forms the cross-sectional shape of the modeled object. The scanning shape of the laser light is controlled by the control unit 11. Next, the lifting table 12 is slightly lowered, the metal powder 4 is applied to the solidified layer 52 by the blade 14, the laser light is irradiated to the metal powder 4, the metal powder 4 is sintered, and the next solidified layer 52 is formed. Is done. Application of the metal powder 4, irradiation with laser light, and sintering of the metal powder 4 are repeated, and a plurality of solidified layers 52 are laminated. The blade 14, the laser light source 31, the mirror 32, the lens 33, and the control unit 11 correspond to a stacked unit.
 所定数の固化層52が積層された段階で、図4に示す如く、複数の固化層52が積層してなる造形層53に対して、切削機2により、切削加工が行われる。切削加工により、造形層53は、造形物の一部をなす所望の形状に加工される。造形層53が加工されるべき所望の形状は、予め定められ、制御部11に記憶されている。加工される造形層53の形状は、制御部11が切削機2の動作を制御することによって制御される。切削機2及び制御部11は、切削加工部に対応する。造形層53の形成及び積層、並びに造形層53に対する切削加工が繰り返され、図5に示すように、複数の造形層53が積層してなる三次元積層造形物54が製造される。造形層53の側面は、三次元積層造形物54の表面となる。 When the predetermined number of solidified layers 52 are laminated, as shown in FIG. 4, the cutting machine 2 performs cutting on the modeling layer 53 formed by laminating a plurality of solidified layers 52. By the cutting process, the modeling layer 53 is processed into a desired shape forming a part of the modeled object. A desired shape to be processed by the modeling layer 53 is determined in advance and stored in the control unit 11. The shape of the modeling layer 53 to be processed is controlled by the control unit 11 controlling the operation of the cutting machine 2. The cutting machine 2 and the control unit 11 correspond to a cutting unit. The formation and lamination of the modeling layer 53 and the cutting process on the modeling layer 53 are repeated, and as shown in FIG. 5, a three-dimensional layered object 54 formed by laminating a plurality of modeling layers 53 is manufactured. The side surface of the modeling layer 53 becomes the surface of the three-dimensional layered object 54.
 切削加工についてより詳しい説明を行う。図6は、複数の造形層53の上に新たな造形層53を積層した状態を示す模式的断面図である。ここで、積層された複数の造形層53の夫々を、第1造形層531、第2造形層532、第3造形層533及び第4造形層534とする。第1造形層531、第2造形層532、第3造形層533及び第4造形層534の順に、複数の造形層53が下層から積層されている。第1造形層531よりも下層には、他の造形層53が積層されている。第1造形層531は、造形物の一部を構成するための所望の形状に仕上げされた状態になっている。第2造形層532は、一部が所望の形状に仕上げされ、他の部分は所望の形状よりも外側へ突出した仕上げ代55を残して切削加工された状態になっている。仕上げが行われた部分は、仕上げ代55を残した部分よりも下側にある。第3造形層533は、仕上げ代55を残して切削加工された状態になっている。第4造形層534は、複数の固化層52の積層により新たに形成され、まだ切削加工を受けていない状態である。 Detailed explanation about cutting. FIG. 6 is a schematic cross-sectional view showing a state in which a new modeling layer 53 is laminated on a plurality of modeling layers 53. Here, the plurality of stacked modeling layers 53 are referred to as a first modeling layer 531, a second modeling layer 532, a third modeling layer 533, and a fourth modeling layer 534, respectively. A plurality of modeling layers 53 are laminated from the lower layer in the order of the first modeling layer 531, the second modeling layer 532, the third modeling layer 533, and the fourth modeling layer 534. Another modeling layer 53 is laminated below the first modeling layer 531. The first modeling layer 531 is finished in a desired shape for constituting a part of the modeled object. A part of the second modeling layer 532 is finished to a desired shape, and the other part is cut to leave a finishing allowance 55 protruding outward from the desired shape. The portion where the finishing is performed is below the portion where the finishing allowance 55 is left. The third modeling layer 533 is in a state of being cut with the finishing allowance 55 left. The fourth modeling layer 534 is newly formed by stacking the plurality of solidified layers 52 and has not yet been cut.
 造形層53の上に新たに固化層52を積層する際、固化層52を形成するための熱が造形層53へ伝わり、造形層53が変形する。例えば、熱の伝わった部分が収縮する。仕上げ代55は、造形層53の変形を相殺するために、熱の伝わり易い上層の造形層53に設けられている。仕上げ代55が造形層53の所望の形状よりも外側へ突出した厚みdは、造形層53の変形を相殺できる大きさになっている。仕上げ代55の厚みdは、例えば0.035mmである。 When the solidified layer 52 is newly laminated on the modeling layer 53, heat for forming the solidified layer 52 is transmitted to the modeling layer 53, and the modeling layer 53 is deformed. For example, the heat-transferred portion contracts. The finishing allowance 55 is provided in the upper modeling layer 53 where heat is easily transmitted in order to cancel the deformation of the modeling layer 53. The thickness d at which the finishing allowance 55 protrudes outward from the desired shape of the modeling layer 53 is large enough to offset the deformation of the modeling layer 53. A thickness d of the finishing allowance 55 is, for example, 0.035 mm.
 図7は、実施形態1に係る切削加工の工程の手順を示すフローチャートである。製造装置1は、第2切削工具22を用いて、仕上げ代55を残して造形層53を切削加工する荒仕上げ工程を行う(S11)。製造装置1は、次に、棒状工具23を用いて、加工すべき造形層53の周囲から金属粉末4を除去する除去工程を行う(S12)。製造装置1は、次に、第1切削工具21を用いて、仕上げ代55を削り取って造形層53を所望の形状に切削加工する仕上げ工程を行う(S13)。S13の処理は仕上げ部に対応し、S12の処理は除去部に対応する。 FIG. 7 is a flowchart showing a procedure of a cutting process according to the first embodiment. The manufacturing apparatus 1 uses the second cutting tool 22 to perform a rough finishing process of cutting the modeling layer 53 while leaving the finishing allowance 55 (S11). Next, the manufacturing apparatus 1 performs the removal process which removes the metal powder 4 from the circumference | surroundings of the modeling layer 53 which should be processed using the rod-shaped tool 23 (S12). Next, the manufacturing apparatus 1 uses the first cutting tool 21 to perform a finishing process in which the finishing allowance 55 is cut off and the modeling layer 53 is cut into a desired shape (S13). The process of S13 corresponds to the finishing part, and the process of S12 corresponds to the removal part.
 図8は、荒仕上げ工程を示す模式的断面図である。切削機2は、第2切削工具22を用いて加工を行う。第2切削工具22は、略円柱状のエンドミルである。図8では省略しているものの、第2切削工具22は、側面に切削用の刃を有しており、溝が形成されている。第2切削工具22は、中心軸を回転中心として回転し、側面に接触するものを切削する。切削機2は、第2切削工具22を回転させ、第2切削工具22の側面を造形層53の側面に接触させて、造形層53を切削する。このとき、図8に示すように、第2造形層532、第3造形層533及び第4造形層534に対して、仕上げ代55を残す加工が行われる。造形層53の周囲には金属粉末4が存在しており、第2切削工具22は金属粉末4をかき分けながら切削加工を行う。 FIG. 8 is a schematic cross-sectional view showing the rough finishing process. The cutting machine 2 performs processing using the second cutting tool 22. The second cutting tool 22 is a substantially cylindrical end mill. Although omitted in FIG. 8, the second cutting tool 22 has a cutting blade on the side surface, and a groove is formed. The 2nd cutting tool 22 rotates centering on a central axis, and cuts what contacts a side. The cutting machine 2 rotates the second cutting tool 22 to bring the side surface of the second cutting tool 22 into contact with the side surface of the modeling layer 53 to cut the modeling layer 53. At this time, as shown in FIG. 8, the second modeling layer 532, the third modeling layer 533, and the fourth modeling layer 534 are processed to leave the finishing allowance 55. The metal powder 4 exists around the modeling layer 53, and the second cutting tool 22 performs the cutting process while scraping the metal powder 4.
 図9は、実施形態1に係る除去工程を示す模式的断面図である。切削機2は、第2切削工具22から棒状工具23へ工具を交換する。棒状工具23は、略円柱状の工具である。例えば、棒状工具23は、ドリル又はエンドミル等の切削工具である。棒状工具23の直径aは、第1切削工具21の最大直径よりも大きい。切削機2は、中心軸を回転中心として棒状工具23を回転させ、造形層53の周囲にある金属粉末4の中へ挿入する。このとき、切削機2は、荒仕上げ工程によって加工された造形層53の側面から棒状工具23を若干離隔させる。また、切削機2は、この後の仕上げ工程における第1切削工具21の最も深い位置よりも深い位置まで棒状工具23を挿入する。 FIG. 9 is a schematic cross-sectional view showing the removal process according to the first embodiment. The cutting machine 2 changes the tool from the second cutting tool 22 to the rod-shaped tool 23. The rod-shaped tool 23 is a substantially cylindrical tool. For example, the rod-shaped tool 23 is a cutting tool such as a drill or an end mill. The diameter a of the rod-shaped tool 23 is larger than the maximum diameter of the first cutting tool 21. The cutting machine 2 rotates the rod-shaped tool 23 with the central axis as the center of rotation, and inserts it into the metal powder 4 around the modeling layer 53. At this time, the cutting machine 2 slightly separates the bar-shaped tool 23 from the side surface of the modeling layer 53 processed by the rough finishing process. Further, the cutting machine 2 inserts the rod-shaped tool 23 to a position deeper than the deepest position of the first cutting tool 21 in the subsequent finishing process.
 切削機2は、金属粉末4の中へ挿入した棒状工具23を、造形層53の側面に沿って、造形層53の周囲を移動させる。このとき、切削機2は、棒状工具23を造形層53の側面から所定距離離隔させた状態で移動させる。移動する棒状工具23によって金属粉末4が押しのけられ、造形層53の周囲から金属粉末4が除去される。仕上げ工程の対象となる造形層53の側面に接触していた金属粉末4も除去される。造形層53の側面から棒状工具23を離隔させる所定の距離は、造形層53の側面から可及的に金属粉末4が除去されるような距離である。この距離は、例えば0.05mmである。 The cutting machine 2 moves the rod-shaped tool 23 inserted into the metal powder 4 around the modeling layer 53 along the side surface of the modeling layer 53. At this time, the cutting machine 2 moves the rod-shaped tool 23 while being separated from the side surface of the modeling layer 53 by a predetermined distance. The metal powder 4 is pushed away by the moving rod-shaped tool 23, and the metal powder 4 is removed from the periphery of the modeling layer 53. The metal powder 4 that has been in contact with the side surface of the modeling layer 53 to be subjected to the finishing process is also removed. The predetermined distance for separating the bar-shaped tool 23 from the side surface of the modeling layer 53 is such a distance that the metal powder 4 is removed from the side surface of the modeling layer 53 as much as possible. This distance is, for example, 0.05 mm.
 図10及び図11は、実施形態1に係る仕上げ工程を示す模式的断面図である。切削機2は、棒状工具23から第1切削工具21へ工具を交換する。第1切削工具21は、エンドミルであり、全体的に略円柱状になっている。第1切削工具21は、柱状部212と、柱状部212の先端に連結した切削部211とを備えている。図中では省略しているものの、切削部211は、側面に切削用の刃を有しており、溝が形成されている。柱状部212は、切削用の刃を有していない。また、切削部211の最大直径は、柱状部212の直径を超過している。このため、切削部211の側面は柱状部212の側面よりも突出している。また、前述したように、棒状工具23の直径aは、第1切削工具21の最大直径bよりも大きい。第1切削工具21は、切削部211を下側にして、柱状部212の中心軸を回転中心として回転し、切削部211の側面に接触するものを切削する。 10 and 11 are schematic cross-sectional views showing the finishing process according to the first embodiment. The cutting machine 2 changes the tool from the rod-shaped tool 23 to the first cutting tool 21. The first cutting tool 21 is an end mill and has a substantially cylindrical shape as a whole. The first cutting tool 21 includes a columnar part 212 and a cutting part 211 connected to the tip of the columnar part 212. Although omitted in the drawing, the cutting portion 211 has a cutting blade on its side surface and has a groove. The columnar portion 212 does not have a cutting blade. Further, the maximum diameter of the cutting part 211 exceeds the diameter of the columnar part 212. For this reason, the side surface of the cutting part 211 protrudes from the side surface of the columnar part 212. Further, as described above, the diameter a of the rod-shaped tool 23 is larger than the maximum diameter b of the first cutting tool 21. The first cutting tool 21 rotates with the cutting portion 211 on the lower side and the central axis of the columnar portion 212 as the rotation center, and cuts the one that contacts the side surface of the cutting portion 211.
 切削機2は、第1切削工具21を回転させ、造形層53の周囲に第1切削工具21を挿入し、切削部211の側面を造形層53の側面に接触させて、造形層53を切削加工する。このとき、切削機2は、第3造形層533にある仕上げ代55の一部を削り取り、第3造形層533の一部を所望の形状に仕上げる加工を行う。図10には、第3造形層533にある仕上げ代55を削り取る様子を示している。切削機2は、切削加工を継続しながら第1切削工具21を下降させることにより、第2造形層532にある仕上げ代55を削り取り、第2造形層532を所望の形状に仕上げる加工を行う。図11には、第2造形層532にある仕上げ代55を削り取る様子を示しており、第1切削工具21は、ほぼ最も深い位置にある。この仕上げ工程により、第2造形層532、及び第3造形層533の一部が所望の形状に仕上げられる。第3造形層533の他の部分及び第4造形層534にある仕上げ代55は、切削されずに残される。第3造形層533において仕上げ代55が残された部分は、仕上げが行われた部分よりも上側にある。切削部211の側面は柱状部212の側面よりも突出しているので、上側の造形層53にある仕上げ代55を残し、下側の造形層53にある仕上げ代55を削り取る加工が可能である。仕上げ工程が終了した後は、切削加工の工程が終了する。切削加工の工程が終了した後は、更に固化層52が形成・積層され、次に切削加工の工程が実行される際には、再び、図6に示す状態から始まる。 The cutting machine 2 rotates the first cutting tool 21, inserts the first cutting tool 21 around the modeling layer 53, contacts the side surface of the cutting part 211 with the side surface of the modeling layer 53, and cuts the modeling layer 53. Process. At this time, the cutting machine 2 scrapes off a part of the finishing allowance 55 in the third modeling layer 533 and performs a process of finishing a part of the third modeling layer 533 into a desired shape. FIG. 10 shows a state where the finishing allowance 55 in the third modeling layer 533 is scraped off. The cutting machine 2 lowers the first cutting tool 21 while continuing the cutting process, so that the finishing allowance 55 in the second modeling layer 532 is scraped off and the second modeling layer 532 is processed into a desired shape. FIG. 11 shows a state in which the finishing allowance 55 in the second modeling layer 532 is scraped off, and the first cutting tool 21 is at a substantially deepest position. By this finishing process, the second modeling layer 532 and a part of the third modeling layer 533 are finished in a desired shape. The other portions of the third modeling layer 533 and the finishing allowance 55 in the fourth modeling layer 534 are left without being cut. The portion where the finishing allowance 55 is left in the third modeling layer 533 is above the portion where the finishing is performed. Since the side surface of the cutting portion 211 protrudes from the side surface of the columnar portion 212, it is possible to perform a process of removing the finishing allowance 55 in the lower modeling layer 53 while leaving the finishing allowance 55 in the upper modeling layer 53. After the finishing process is finished, the cutting process is finished. After the cutting process is completed, the solidified layer 52 is further formed and laminated, and when the next cutting process is executed, the process starts again from the state shown in FIG.
 除去工程において造形層53の周囲から金属粉末4が除去されるので、図10及び図11に示すように、仕上げ工程においては、第1切削工具21は金属粉末4の除去された空間に挿入される。第1切削工具21の最大直径bを直径aが超過した棒状工具23を用いて除去工程を行っているので、挿入された第1切削工具21の触れる範囲から金属粉末4が除去されている。また、除去工程では、仕上げ工程における第1切削工具21の最も深い位置よりも深い位置まで棒状工具23が挿入されているので、第1切削工具21の最も深い位置でも金属粉末4が除去されている。このため、仕上げ工程では、第1切削工具21は金属粉末4が除去された空間内を動く。仕上げ工程の最中に第1切削工具21が金属粉末4に接触する可能性は低く、第1切削工具21に接触した金属粉末4が造形層53の側面を粗すことが抑制される。従って、金属粉末4が造形層53の側面を粗すことを原因として三次元積層造形物の表面に凹凸が生じることが防止され、三次元積層造形物の表面の凹凸の発生が抑制される。造形層53を構成する固化層52の数、即ちまとめて切削加工を受ける複数の固化層52の数を増やした場合でも、三次元積層造形物の表面の凹凸の発生を抑制することができる。従って、製造時間の長大化を回避しながら、表面の凹凸が少ない高品質の三次元積層造形物を製造することが可能となる。 Since the metal powder 4 is removed from the periphery of the modeling layer 53 in the removal process, as shown in FIGS. 10 and 11, in the finishing process, the first cutting tool 21 is inserted into the space from which the metal powder 4 has been removed. The Since the removal process is performed using the rod-shaped tool 23 whose diameter a exceeds the maximum diameter b of the first cutting tool 21, the metal powder 4 is removed from the range where the inserted first cutting tool 21 comes into contact. In the removal process, since the rod-shaped tool 23 is inserted to a position deeper than the deepest position of the first cutting tool 21 in the finishing process, the metal powder 4 is removed even at the deepest position of the first cutting tool 21. Yes. For this reason, in a finishing process, the 1st cutting tool 21 moves in the space from which the metal powder 4 was removed. The possibility that the first cutting tool 21 contacts the metal powder 4 during the finishing process is low, and the metal powder 4 that has contacted the first cutting tool 21 is suppressed from roughening the side surface of the modeling layer 53. Therefore, it is prevented that the metal powder 4 roughens the side surface of the modeling layer 53, so that the surface of the three-dimensional layered object is not uneven, and the generation of the surface unevenness of the three-dimensional layered object is suppressed. Even when the number of the solidified layers 52 constituting the modeling layer 53, that is, the number of the plurality of solidified layers 52 that are collectively subjected to the cutting process, is increased, the occurrence of unevenness on the surface of the three-dimensional layered object can be suppressed. Therefore, it is possible to manufacture a high-quality three-dimensional layered object with less surface irregularities while avoiding an increase in manufacturing time.
 本実施形態に係る三次元積層造形物の製造方法を検証した例を説明する。本実施形態に係る製造方法と従来の製造方法とで、同一の形状の三次元積層造形物を製造した。従来の製造方法は、棒状工具23を用いて金属粉末を除去する除去工程を含まない方法である。その他の条件は同一である。図12は、実施形態1に係る製造方法と従来の製造方法とで製造した三次元積層造形物の写真を示した図である。従来の製造方法で製造した三次元積層造形物は、表面に凹凸が生じている。生じた凹凸は、固化層52を積層する方向に交差する縞模様になっている。これに対し、本実施形態に係る製造方法で製造した三次元積層造形物は、表面の凹凸が明らかに少なくなっている。両者で表面粗さを比較した結果、凹凸の高さの平均を示すRaは、従来の製造方法では0.342μmであるのに対し、本実施形態では0.222μmであった。また、凹凸の高低差の最大値であるRzは、従来の製造方法では2.906μmであるのに対し、本実施形態では1.436μmであった。従来の製造方法で製造した三次元積層造形物は、本実施形態に係る製造方法で製造した三次元積層造形物に比べて、表面粗さが1.5倍以上である。即ち、本実施形態により表面の凹凸が少ない高品質の三次元積層造形物を製造できることが明らかである。 The example which verified the manufacturing method of the three-dimensional layered object concerning this embodiment is explained. A three-dimensional layered object having the same shape was manufactured by the manufacturing method according to this embodiment and the conventional manufacturing method. The conventional manufacturing method is a method that does not include a removal step of removing the metal powder using the rod-shaped tool 23. Other conditions are the same. FIG. 12 is a view showing a photograph of a three-dimensional layered object manufactured by the manufacturing method according to Embodiment 1 and the conventional manufacturing method. The three-dimensional layered object manufactured by the conventional manufacturing method has irregularities on the surface. The generated unevenness has a striped pattern that intersects the direction in which the solidified layer 52 is laminated. On the other hand, the three-dimensional layered object manufactured by the manufacturing method according to the present embodiment has clearly reduced surface irregularities. As a result of comparing the surface roughness between the two, Ra, which indicates the average height of the unevenness, was 0.342 μm in the conventional manufacturing method, whereas it was 0.222 μm in the present embodiment. In addition, Rz, which is the maximum value of the height difference of the unevenness, was 2.906 μm in the conventional manufacturing method, whereas it was 1.436 μm in the present embodiment. The three-dimensional layered object manufactured by the conventional manufacturing method has a surface roughness of 1.5 times or more compared to the three-dimensional layered object manufactured by the manufacturing method according to this embodiment. That is, it is clear that a high-quality three-dimensional layered object having few surface irregularities can be manufactured by this embodiment.
(実施形態2)
 実施形態2に係る三次元積層造形物の製造装置1の構成は、実施形態1と同様である。実施形態2では、切削加工の工程が実施形態1と異なる。三次元積層造形物を製造するための工程の内、切削加工の工程以外の工程は、実施形態1と同様である。
(Embodiment 2)
The configuration of the three-dimensional layered object manufacturing apparatus 1 according to the second embodiment is the same as that of the first embodiment. In the second embodiment, the cutting process is different from that of the first embodiment. Of the steps for manufacturing the three-dimensional layered object, steps other than the cutting step are the same as those in the first embodiment.
 図13は、実施形態2に係る切削加工の工程の手順を示すフローチャートである。製造装置1は、第2切削工具22を用いて、仕上げ代55を残して造形層53を切削加工する荒仕上げ工程を行う(S21)。製造装置1は、次に、切削加工の対象となっている造形層53の位置が壁13の上端よりも高い位置になるまで、昇降テーブル12を上昇させる(S22)。昇降テーブル12の位置は、制御部11で制御される。製造装置1は、次に、棒状工具23を用いて、加工すべき造形層53の周囲から金属粉末を除去する除去工程を行う(S23)。S22の処理は上昇部に対応し、S23の処理は除去部に対応する。 FIG. 13 is a flowchart showing a procedure of a cutting process according to the second embodiment. The manufacturing apparatus 1 uses the second cutting tool 22 to perform a rough finishing process of cutting the modeling layer 53 while leaving the finishing allowance 55 (S21). Next, the manufacturing apparatus 1 raises the elevating table 12 until the position of the modeling layer 53 that is the object of cutting is higher than the upper end of the wall 13 (S22). The position of the lifting table 12 is controlled by the control unit 11. Next, the manufacturing apparatus 1 performs the removal process which removes a metal powder from the circumference | surroundings of the modeling layer 53 which should be processed using the rod-shaped tool 23 (S23). The process of S22 corresponds to the ascending part, and the process of S23 corresponds to the removal part.
 図14は、実施形態2に係る除去工程を行う際の製造装置1の一部の状態を示す模式的部分断面図である。図2及び図3に示す如き、固化層52を積層する工程のための状態から、図14に示す如き、製造途中の三次元積層造形物54の一部の位置が壁13の上端よりも高い位置になる状態まで、昇降テーブル12が上昇する。図15は、実施形態2に係る除去工程を示す模式的断面図である。昇降テーブル12は、切削加工の対象となる造形層53の少なくとも一部の位置が壁13の上端よりも高い位置になるまで、上昇する。例えば、切削加工の対象となる第2造形層532、第3造形層533及び第4造形層534の位置、並びに第1造形層531の一部の位置が、壁13の上端よりも高い位置になることが望ましい。実施形態1と同様に、切削機2は、棒状工具23を回転させ、造形層53の周囲にある金属粉末4の中へ挿入し、造形層53の側面に沿って、造形層53の周囲を移動させる。このとき、切削機2は、この後の仕上げ工程における第1切削工具21の最も深い位置よりも深い位置まで棒状工具23を挿入する。 FIG. 14 is a schematic partial cross-sectional view illustrating a partial state of the manufacturing apparatus 1 when performing the removing process according to the second embodiment. From the state for the step of laminating the solidified layer 52 as shown in FIG. 2 and FIG. 3, the position of a part of the three-dimensional layered object 54 being manufactured is higher than the upper end of the wall 13 as shown in FIG. The lift table 12 is raised to the position. FIG. 15 is a schematic cross-sectional view illustrating a removal process according to the second embodiment. The lifting table 12 is raised until at least a part of the modeling layer 53 to be cut is higher than the upper end of the wall 13. For example, the positions of the second modeling layer 532, the third modeling layer 533, and the fourth modeling layer 534 that are the objects of cutting, and the position of a part of the first modeling layer 531 are higher than the upper end of the wall 13. It is desirable to become. Similarly to the first embodiment, the cutting machine 2 rotates the rod-shaped tool 23 and inserts it into the metal powder 4 around the modeling layer 53, and around the modeling layer 53 along the side surface of the modeling layer 53. Move. At this time, the cutting machine 2 inserts the rod-shaped tool 23 to a position deeper than the deepest position of the first cutting tool 21 in the subsequent finishing process.
 壁13の上端よりも高い位置にある造形層53の周囲にある金属粉末4は、壁13の上端を越えて外部へあふれ出ることができる。棒状工具23が造形層53の周囲を移動した場合、棒状工具23によって押しのけられた金属粉末4は、壁13の上端を越えて外部へ排出される。このため、除去工程で造形層53の周囲から除去されきれない金属粉末4、又は一旦除去された後で造形層53の周囲へ戻る金属粉末4の量が減少し、造形層53の周囲から効果的に金属粉末4が除去される。 The metal powder 4 around the modeling layer 53 at a position higher than the upper end of the wall 13 can overflow to the outside beyond the upper end of the wall 13. When the rod-shaped tool 23 moves around the modeling layer 53, the metal powder 4 pushed away by the rod-shaped tool 23 is discharged outside beyond the upper end of the wall 13. For this reason, the amount of the metal powder 4 that cannot be removed from the surroundings of the modeling layer 53 in the removal step or the amount of the metal powder 4 that returns to the surroundings of the modeling layer 53 after being removed is reduced, and the effect from the periphery of the modeling layer 53 is reduced. Thus, the metal powder 4 is removed.
 製造装置1は、次に、第1切削工具21を用いて、仕上げ代55を削り取って造形層53を所望の形状に切削加工する仕上げ工程を行う(S24)。図16は、実施形態2に係る仕上げ工程を示す模式的断面図である。切削機2は、第1切削工具21を回転させ、造形層53の周囲に第1切削工具21を挿入し、切削部211の側面を造形層53の側面に接触させて、造形層53を切削加工する。このとき、切削機2は、第3造形層533にある仕上げ代55の一部を削り取り、第3造形層533の一部を所望の形状に仕上げ、第2造形層532にある仕上げ代55を削り取り、第2造形層532を所望の形状に仕上げる加工を行う。S24の処理は仕上げ部に対応する。 Next, the manufacturing apparatus 1 uses the first cutting tool 21 to cut off the finishing allowance 55 and perform a finishing process of cutting the modeling layer 53 into a desired shape (S24). FIG. 16 is a schematic cross-sectional view illustrating a finishing process according to the second embodiment. The cutting machine 2 rotates the first cutting tool 21, inserts the first cutting tool 21 around the modeling layer 53, contacts the side surface of the cutting part 211 with the side surface of the modeling layer 53, and cuts the modeling layer 53. Process. At this time, the cutting machine 2 scrapes off a part of the finishing allowance 55 in the third modeling layer 533, finishes a part of the third modeling layer 533 into a desired shape, and sets the finishing allowance 55 in the second modeling layer 532. It cuts and performs the process which finishes the 2nd modeling layer 532 in a desired shape. The process of S24 corresponds to the finishing part.
 仕上げ工程が終了した後は、製造装置1は、製造途中の三次元積層造形物54の位置が壁13の上端よりも低い位置になるまで、昇降テーブル12を下降させ(S25)、切削加工の工程を終了する。切削加工の工程が終了した後は、ブレード14により金属粉末4が製造途中の三次元積層造形物54に塗布され、更に固化層52が形成・積層される。 After the finishing process is completed, the manufacturing apparatus 1 lowers the elevating table 12 until the position of the three-dimensional layered object 54 being manufactured is lower than the upper end of the wall 13 (S25). The process ends. After the cutting process is completed, the metal powder 4 is applied to the three-dimensional layered object 54 being manufactured by the blade 14, and the solidified layer 52 is formed and laminated.
 本実施形態においては、除去工程において造形層53の周囲から金属粉末4が効果的に除去されるので、図16に示すように、仕上げ工程の最中には、第1切削工具21は金属粉末4に接触し難くなる。第1切削工具21に接触した金属粉末4が造形層53の側面を粗すことは起こり難く、金属粉末4が造形層53の側面を粗すことを原因として三次元積層造形物の表面に凹凸が生じることが防止される。従って、製造時間の長大化を回避しながら、表面の凹凸が少ない高品質の三次元積層造形物を製造することが可能となる。 In the present embodiment, since the metal powder 4 is effectively removed from the periphery of the modeling layer 53 in the removal process, the first cutting tool 21 is a metal powder during the finishing process as shown in FIG. 4 becomes difficult to contact. It is unlikely that the metal powder 4 in contact with the first cutting tool 21 roughens the side surface of the modeling layer 53, and the surface of the three-dimensional layered object is uneven because the metal powder 4 roughens the side surface of the modeling layer 53. Is prevented from occurring. Therefore, it is possible to manufacture a high-quality three-dimensional layered object with less surface irregularities while avoiding an increase in manufacturing time.
 なお、製造装置1は、S21とS22との処理を逆の順番で実行してもよい。即ち、製造装置1は、昇降テーブル12を上昇させた後で、荒仕上げを行ってもよい。また、製造装置1は、S24とS25との処理を逆の順番で実行してもよい。即ち、製造装置1は、昇降テーブル12を下降させた後で、仕上げを行ってもよい。また、製造装置1は、昇降テーブル12を上昇させることによって除去工程を行ってもよい。切削加工の対象となっている造形層53の位置が壁13の上端よりも高い位置になるまで昇降テーブル12を上昇させた場合、金属粉末4は、崩れ落ち、壁13の上端を越えて外部へあふれ出る。従って、製造装置1は、昇降テーブル12を上昇させるだけで、切削加工の対象となっている造形層53の周囲から金属粉末4を除去することが可能である。 Note that the manufacturing apparatus 1 may execute the processes of S21 and S22 in the reverse order. That is, the manufacturing apparatus 1 may perform rough finishing after raising the lifting table 12. Moreover, the manufacturing apparatus 1 may perform the process of S24 and S25 in reverse order. That is, the manufacturing apparatus 1 may perform finishing after lowering the lifting table 12. Moreover, the manufacturing apparatus 1 may perform a removal process by raising the raising / lowering table 12. FIG. When the raising / lowering table 12 is raised until the position of the modeling layer 53 to be cut is higher than the upper end of the wall 13, the metal powder 4 collapses and passes the upper end of the wall 13 to the outside. Overflows. Therefore, the manufacturing apparatus 1 can remove the metal powder 4 from the surroundings of the modeling layer 53 that is the object of cutting only by raising the elevating table 12.
(実施形態3)
 図17は、実施形態3に係る三次元積層造形物の製造装置1の一部の構成を示す模式的断面図である。壁13には、金属粉末4が排出されるための排出孔131が形成されている。排出孔131は排出部に対応する。固化層52を形成・積層する工程は、昇降テーブル12の載置面121が排出孔131よりも高い位置にある状態で、行われる。製造装置1のその他の構成は、実施形態1と同様である。実施形態3では、切削加工の工程が実施形態1と異なる。三次元積層造形物を製造するための工程の内、切削加工の工程以外の工程は、実施形態1と同様である。
(Embodiment 3)
FIG. 17 is a schematic cross-sectional view illustrating a partial configuration of the three-dimensional layered object manufacturing apparatus 1 according to the third embodiment. A discharge hole 131 for discharging the metal powder 4 is formed in the wall 13. The discharge hole 131 corresponds to the discharge portion. The step of forming and stacking the solidified layer 52 is performed in a state where the mounting surface 121 of the lifting table 12 is at a position higher than the discharge hole 131. Other configurations of the manufacturing apparatus 1 are the same as those in the first embodiment. In the third embodiment, the cutting process is different from the first embodiment. Of the steps for manufacturing the three-dimensional layered object, steps other than the cutting step are the same as those in the first embodiment.
 図18は、実施形態3に係る切削加工の工程の手順を示すフローチャートである。製造装置1は、第2切削工具22を用いて、仕上げ代55を残して造形層53を切削加工する荒仕上げ工程を行う(S31)。製造装置1は、次に、昇降テーブル12の載置面121の位置が排出孔131の少なくとも一部よりも低い位置になるまで、昇降テーブル12を下降させる(S32)。昇降テーブル12の位置は、制御部11で制御される。S32の処理は下降部に対応する。 FIG. 18 is a flowchart showing a procedure of a cutting process according to the third embodiment. The manufacturing apparatus 1 uses the second cutting tool 22 to perform a rough finishing process of cutting the modeling layer 53 while leaving the finishing allowance 55 (S31). Next, the manufacturing apparatus 1 lowers the lifting table 12 until the position of the mounting surface 121 of the lifting table 12 is lower than at least a part of the discharge hole 131 (S32). The position of the lifting table 12 is controlled by the control unit 11. The process of S32 corresponds to the descending part.
 図19は、昇降テーブル12を下降させた状態を示す模式的部分断面図である。図17に示す如き、固化層52を積層する工程のための状態から、図19に示す如き、昇降テーブル12の載置面121が排出孔131の少なくとも一部よりも低い位置になるまで、昇降テーブル12が下降する。この状態では、載置面121よりも上にある金属粉末4の一部が排出孔131を通過して外部へ排出される。なお、排出孔131が金属粉末4よりも完全に高い位置になって金属粉末4が排出できなくなる状態までは、昇降テーブル12を下降させないものとする。 FIG. 19 is a schematic partial cross-sectional view showing a state where the elevating table 12 is lowered. As shown in FIG. 17, from the state for the step of laminating the solidified layer 52, ascending and descending until the mounting surface 121 of the lifting table 12 is at a position lower than at least a part of the discharge hole 131 as shown in FIG. The table 12 descends. In this state, a part of the metal powder 4 above the mounting surface 121 passes through the discharge hole 131 and is discharged to the outside. It is assumed that the lifting table 12 is not lowered until the discharge hole 131 is completely higher than the metal powder 4 and the metal powder 4 cannot be discharged.
 ある程度の量の金属粉末4が排出された後、製造装置1は、昇降テーブル12を上昇させる(S33)。このとき、製造装置1は、図19に示す位置から、載置面121が排出孔131よりも高くなる所定の位置まで昇降テーブル12を上昇させる。例えば、載置面121の位置が図17に示す位置と同じ位置になるように、昇降テーブル12が上昇する。製造装置1は、次に、棒状工具23を用いて、加工すべき造形層53の周囲から金属粉末4を除去する除去工程を行う(S34)。S33の処理は第2の上昇部に対応し、S34の処理は除去部に対応する。 After a certain amount of the metal powder 4 is discharged, the manufacturing apparatus 1 raises the lifting table 12 (S33). At this time, the manufacturing apparatus 1 raises the lifting table 12 from the position shown in FIG. 19 to a predetermined position where the placement surface 121 is higher than the discharge hole 131. For example, the elevating table 12 is raised so that the position of the placement surface 121 is the same as the position shown in FIG. Next, the manufacturing apparatus 1 performs the removal process which removes the metal powder 4 from the circumference | surroundings of the modeling layer 53 which should be processed using the rod-shaped tool 23 (S34). The process of S33 corresponds to the second ascending part, and the process of S34 corresponds to the removal part.
 切削機2は、棒状工具23を回転させ、切削加工の対象となっている造形層53の周囲にある金属粉末4の中へ挿入し、造形層53の側面に沿って、造形層53の周囲を移動させる。このとき、切削機2は、この後の仕上げ工程における第1切削工具21の最も深い位置よりも深い位置まで棒状工具23を挿入する。移動する棒状工具23によって金属粉末4が押しのけられ、造形層53の周囲から金属粉末4が除去される。S32で金属粉末4の一部が排出された結果、金属粉末4の量は減少している。このため、造形層53の周囲から金属粉末4を除去するために棒状工具23が押しのけるべき金属粉末4の量が減少する。また、除去工程で造形層53の周囲から除去されきれない金属粉末4、又は一旦除去された後で造形層53の周囲へ戻る金属粉末4の量が減少する。従って、造形層53の周囲から効果的に金属粉末4が除去される。 The cutting machine 2 rotates the rod-shaped tool 23, inserts it into the metal powder 4 around the modeling layer 53 that is the object of cutting, and surrounds the modeling layer 53 along the side surface of the modeling layer 53. Move. At this time, the cutting machine 2 inserts the rod-shaped tool 23 to a position deeper than the deepest position of the first cutting tool 21 in the subsequent finishing process. The metal powder 4 is pushed away by the moving rod-shaped tool 23, and the metal powder 4 is removed from the periphery of the modeling layer 53. As a result of part of the metal powder 4 being discharged in S32, the amount of the metal powder 4 is decreasing. For this reason, in order to remove the metal powder 4 from the circumference | surroundings of the modeling layer 53, the quantity of the metal powder 4 which the rod-shaped tool 23 should push away reduces. Further, the amount of the metal powder 4 that cannot be removed from the surroundings of the modeling layer 53 in the removing process or the amount of the metal powder 4 that returns to the surroundings of the modeling layer 53 after being removed decreases. Therefore, the metal powder 4 is effectively removed from the periphery of the modeling layer 53.
 製造装置1は、次に、第1切削工具21を用いて、仕上げ代55を削り取って造形層53を所望の形状に切削加工する仕上げ工程を行う(S35)。切削機2は、第1切削工具21を回転させ、造形層53の周囲に第1切削工具21を挿入し、切削部211の側面を造形層53の側面に接触させて、造形層53を切削加工する。このとき、切削機2は、仕上げ代55の一部を削り取り、造形層53の一部を所望の形状に仕上げる加工を行う。S35の処理は仕上げ部に対応する。仕上げ工程が終了した後は、製造装置1は、切削加工の工程を終了する。切削加工の工程が終了した後は、ブレード14により金属粉末4が製造途中の三次元積層造形物54に塗布され、更に固化層52が形成・積層される。 Next, the manufacturing apparatus 1 uses the first cutting tool 21 to perform the finishing process of cutting the finishing allowance 55 and cutting the modeling layer 53 into a desired shape (S35). The cutting machine 2 rotates the first cutting tool 21, inserts the first cutting tool 21 around the modeling layer 53, contacts the side surface of the cutting part 211 with the side surface of the modeling layer 53, and cuts the modeling layer 53. Process. At this time, the cutting machine 2 cuts off a part of the finishing allowance 55 and performs a process of finishing a part of the modeling layer 53 into a desired shape. The process of S35 corresponds to the finishing part. After the finishing process is finished, the manufacturing apparatus 1 finishes the cutting process. After the cutting process is completed, the metal powder 4 is applied to the three-dimensional layered object 54 being manufactured by the blade 14, and the solidified layer 52 is formed and laminated.
 本実施形態においては、除去工程において造形層53の周囲から金属粉末4が効果的に除去されるので、図16に示した実施形態2の場合と同様に、仕上げ工程の最中には、第1切削工具21は金属粉末4に接触し難くなる。第1切削工具21に接触した金属粉末4が造形層53を粗すことは起こり難く、金属粉末4が造形層53の側面を粗すことを原因として三次元積層造形物の表面に凹凸が生じることが防止される。従って、製造時間の長大化を回避しながら、表面の凹凸が少ない高品質の三次元積層造形物を製造することが可能となる。 In the present embodiment, since the metal powder 4 is effectively removed from the periphery of the modeling layer 53 in the removal process, the second process is performed during the finishing process as in the case of the second embodiment shown in FIG. 1 It becomes difficult for the cutting tool 21 to contact the metal powder 4. It is unlikely that the metal powder 4 in contact with the first cutting tool 21 will roughen the modeling layer 53, and unevenness is generated on the surface of the three-dimensional layered object because the metal powder 4 roughens the side surface of the modeling layer 53. It is prevented. Therefore, it is possible to manufacture a high-quality three-dimensional layered object with less surface irregularities while avoiding an increase in manufacturing time.
 なお、製造装置1は、S31の処理をS33の処理の後に実行してもよい。即ち、製造装置1は、金属粉末4の一部を排出させた後で荒仕上げを行ってもよい。また、製造装置1は、昇降テーブル12を下降させた状態で除去工程を行ってもよく、昇降テーブル12を下降させた状態で荒仕上げ又は仕上げを行ってもよい。また、製造装置1は、昇降テーブル12を下降させることによって除去工程を行ってもよい。載置面121が排出孔131の少なくとも一部よりも低い位置になるまで昇降テーブル12を下降させた場合、金属粉末4は、排出孔131を通って自然に外部へ排出される。従って、製造装置1は、昇降テーブル12を下降させるだけで、切削加工の対象となっている造形層53の周囲から金属粉末4を除去することが可能である。また、本実施形態においては、壁13に形成された排出部が排出孔131である例を示したが、排出部は排出孔131以外の形態であってもよい。例えば、排出部は壁13の下端であってもよい。 Note that the manufacturing apparatus 1 may execute the process of S31 after the process of S33. That is, the manufacturing apparatus 1 may perform rough finishing after discharging a part of the metal powder 4. Moreover, the manufacturing apparatus 1 may perform a removal process in the state which lowered the raising / lowering table 12, and may perform rough finishing or finishing in the state which lowered the raising / lowering table 12. FIG. Moreover, the manufacturing apparatus 1 may perform the removal process by lowering the lifting table 12. When the lifting table 12 is lowered until the placement surface 121 is at a position lower than at least a part of the discharge hole 131, the metal powder 4 is naturally discharged outside through the discharge hole 131. Therefore, the manufacturing apparatus 1 can remove the metal powder 4 from the periphery of the modeling layer 53 that is the object of cutting by simply lowering the elevating table 12. Moreover, in this embodiment, although the discharge part formed in the wall 13 showed the example which is the discharge hole 131, the form other than the discharge hole 131 may be sufficient as a discharge part. For example, the discharge part may be the lower end of the wall 13.
 なお、以上の実施形態1~3においては、金属粉末4を焼結させることによって固化層を形成する形態を示したが、三次元積層造形物の製造装置1は、金属粉末4を溶融固化させることによって固化層52を形成する形態であってもよい。また、実施形態1~3においては、エネルギービームとしてレーザ光を用いる形態を示したが、製造装置1は、レーザ光以外のエネルギービームを用いる形態であってもよい。また、実施形態1~3においては、材料粉末として金属粉末4を用いる形態を示したが、製造装置1は、樹脂粉末等の金属粉末以外の材料粉末を用いる形態であってもよい。 In the first to third embodiments, the solidified layer is formed by sintering the metal powder 4. However, the three-dimensional layered object manufacturing apparatus 1 melts and solidifies the metal powder 4. In this case, the solidified layer 52 may be formed. In the first to third embodiments, the laser beam is used as the energy beam. However, the manufacturing apparatus 1 may use an energy beam other than the laser beam. In the first to third embodiments, the metal powder 4 is used as the material powder. However, the manufacturing apparatus 1 may use a material powder other than the metal powder such as a resin powder.
 1 製造装置
 11 制御部
 12 昇降テーブル
 121 載置面
 13 壁
 131 排出孔(排出部)
 2 切削機
 21 第1切削工具
 22 第2切削工具
 23 棒状工具
 31 レーザ光源
 4 金属粉末(材料粉末)
 52 固化層
 53 造形層
 54 三次元積層造形物
DESCRIPTION OF SYMBOLS 1 Manufacturing apparatus 11 Control part 12 Lifting table 121 Mounting surface 13 Wall 131 Discharge hole (discharge part)
2 Cutting Machine 21 First Cutting Tool 22 Second Cutting Tool 23 Bar Tool 31 Laser Light Source 4 Metal Powder (Material Powder)
52 Solidified layer 53 Modeling layer 54 Three-dimensional layered object

Claims (8)

  1.  材料粉末へのエネルギービームの照射により前記材料粉末を固化させた固化層を形成し、該固化層を積層し、積層した複数の固化層に対して切削加工を行うことにより、三次元積層造形物を製造する方法において、
     切削加工の工程は、
     回転する第1切削工具によって、前記複数の固化層の少なくとも一部を必要な形状に切削加工する仕上げ工程と、
     該仕上げ工程の前に、前記第1切削工具よりも径の大きい棒状工具を、前記複数の固化層の側面に沿って前記複数の固化層の周囲を移動させることにより、前記複数の固化層の周囲から前記材料粉末を除去する除去工程と
     を含むことを特徴とする三次元積層造形物の製造方法。
    A three-dimensional layered object is formed by forming a solidified layer obtained by solidifying the material powder by irradiating the material powder with an energy beam, laminating the solidified layer, and cutting the plurality of laminated solidified layers. In the method of manufacturing
    The cutting process is
    A finishing step of cutting at least a part of the plurality of solidified layers into a required shape by a rotating first cutting tool;
    Before the finishing step, a rod-shaped tool having a diameter larger than that of the first cutting tool is moved around the plurality of solidified layers along the side surfaces of the plurality of solidified layers, so that the plurality of solidified layers are formed. A removing step of removing the material powder from the surroundings. A method for producing a three-dimensional layered object.
  2.  前記除去工程は、前記仕上げ工程における前記第1切削工具の最も深い位置よりも深い位置まで前記材料粉末を除去すること
     を特徴とする請求項1に記載の三次元積層造形物の製造方法。
    The method of manufacturing a three-dimensional layered object according to claim 1, wherein the removing step removes the material powder to a position deeper than a deepest position of the first cutting tool in the finishing step.
  3.  前記切削加工の工程は、
     前記除去工程の前に、第2切削工具によって、前記複数の固化層の少なくとも一部を切削加工する荒仕上げ工程を更に含み、
     前記仕上げ工程は、前記荒仕上げ工程によって既に切削加工された部分の少なくとも一部を切削加工し、
     前記除去工程は、前記荒仕上げ工程によって切削加工された前記複数の固化層の側面から所定距離離隔して前記棒状工具を移動させること
     を特徴とする請求項1又は2に記載の三次元積層造形物の製造方法。
    The cutting process includes
    Before the removing step, further comprising a rough finishing step of cutting at least a part of the plurality of solidified layers by a second cutting tool;
    The finishing step cuts at least a part of the portion already cut by the rough finishing step,
    3. The three-dimensional additive manufacturing according to claim 1, wherein the removing step moves the bar-shaped tool at a predetermined distance from the side surfaces of the solidified layers cut by the rough finishing step. Manufacturing method.
  4.  前記材料粉末が載置され、前記複数の固化層が積層される昇降テーブルと、
     前記材料粉末を前記昇降テーブル上に保持すべく前記昇降テーブルを囲う壁とを用い、
     前記除去工程は、前記複数の固化層の切削加工の対象となる部分の位置が前記壁の上端よりも高い位置になるまで前記昇降テーブルを上昇させた状態で、行われること
     を特徴とする請求項1乃至3のいずれか一つに記載の三次元積層造形物の製造方法。
    A lifting table on which the material powder is placed and the plurality of solidified layers are stacked;
    Using the wall surrounding the lifting table to hold the material powder on the lifting table,
    The removing step is performed in a state in which the lifting table is raised until a position of a portion to be cut of the plurality of solidified layers is higher than an upper end of the wall. Item 4. The method for producing a three-dimensional layered object according to any one of Items 1 to 3.
  5.  前記材料粉末が載置され、前記複数の固化層が積層される昇降テーブルと、
     前記材料粉末を前記昇降テーブル上に保持すべく前記昇降テーブルを囲う壁とを用い、
     前記壁には、前記材料粉末が排出される排出部が形成されており、
     前記固化層を形成し積層する工程は、前記昇降テーブルの載置面が前記排出部よりも高い位置にある状態で行われ、
     前記切削加工の工程は、
     前記載置面の位置が前記排出部の一部よりも低い位置になるまで前記昇降テーブルを下降させる工程と、
     前記載置面の位置が前記排出部よりも高い位置になるまで前記昇降テーブルを上昇させる工程とを更に含み、
     前記除去工程は、前記昇降テーブルを下降及び上昇させる工程の後に行われること
     を特徴とする請求項1乃至3のいずれか一つに記載の三次元積層造形物の製造方法。
    A lifting table on which the material powder is placed and the plurality of solidified layers are stacked;
    Using the wall surrounding the lifting table to hold the material powder on the lifting table,
    The wall is formed with a discharge portion for discharging the material powder,
    The step of forming and laminating the solidified layer is performed in a state where the mounting surface of the lifting table is at a higher position than the discharge unit,
    The cutting process includes
    Lowering the elevating table until the position of the placement surface is lower than a part of the discharge portion;
    A step of raising the lifting table until the position of the placement surface is higher than the discharge unit,
    The method of manufacturing a three-dimensional layered object according to any one of claims 1 to 3, wherein the removing step is performed after a step of lowering and raising the lifting table.
  6.  材料粉末へのエネルギービームの照射により前記材料粉末を固化させた固化層を形成し、該固化層を積層する積層部と、積層した複数の固化層に対して切削加工を行う切削加工部とを備え、三次元積層造形物を製造する装置において、
     前記切削加工部は、
     回転する切削工具によって、前記複数の固化層の少なくとも一部を必要な形状に切削加工する仕上げ部と、
     該仕上げ部による切削加工の前に、前記切削工具よりも径の大きい棒状工具を、前記複数の固化層の側面に沿って前記複数の固化層の周囲を移動させることにより、前記複数の固化層の周囲から前記材料粉末を除去する除去部と
     を有することを特徴とする三次元積層造形物の製造装置。
    Forming a solidified layer obtained by solidifying the material powder by irradiating the material powder with an energy beam, and laminating the solidified layer; and a cutting unit performing cutting on the plurality of solidified layers. In an apparatus for producing a three-dimensional layered object,
    The cutting portion is
    A finishing portion that cuts at least a part of the plurality of solidified layers into a required shape by a rotating cutting tool;
    Before cutting by the finishing portion, a plurality of solidified layers are moved by moving a rod-shaped tool having a diameter larger than that of the cutting tool around the plurality of solidified layers along side surfaces of the plurality of solidified layers. And a removing unit that removes the material powder from the periphery of the three-dimensional layered object manufacturing apparatus.
  7.  前記材料粉末が載置され、前記複数の固化層が積層される昇降テーブルと、
     前記材料粉末を前記昇降テーブル上に保持すべく前記昇降テーブルを囲う壁とを更に備え、
     前記切削加工部は、
     前記除去部による作業の際に、前記複数の固化層の切削加工の対象となる部分の位置が前記壁の上端よりも高い位置になるまで前記昇降テーブルを上昇させる上昇部を更に有すること
     を特徴とする請求項6に記載の三次元積層造形物の製造装置。
    A lifting table on which the material powder is placed and the plurality of solidified layers are stacked;
    A wall surrounding the lifting table to hold the material powder on the lifting table;
    The cutting portion is
    In the operation by the removing unit, the moving table further includes a lifting unit that lifts the lifting table until the position of the portion to be cut of the plurality of solidified layers is higher than the upper end of the wall. The manufacturing apparatus of the three-dimensional layered object according to claim 6.
  8.  前記材料粉末が載置され、前記複数の固化層が積層される昇降テーブルと、
     前記材料粉末を前記昇降テーブル上に保持すべく前記昇降テーブルを囲う壁とを更に備え、
     前記壁には、前記材料粉末が排出される排出部が形成されており、
     前記積層部は、前記昇降テーブルの載置面が前記排出部よりも高い位置にある状態で前記固化層の形成及び積層を行い、
     前記切削加工部は、
     前記載置面の位置が前記排出部の一部よりも低い位置になるまで前記昇降テーブルを下降させる下降部と、
     前記載置面の位置が前記排出部よりも高い位置になるまで前記昇降テーブルを上昇させる第2の上昇部とを更に有し、
     前記除去部は、前記下降部及び前記第2の上昇部が動作した後に作業を行うこと
     を特徴とする請求項6に記載の三次元積層造形物の製造装置。
     
    A lifting table on which the material powder is placed and the plurality of solidified layers are stacked;
    A wall surrounding the lifting table to hold the material powder on the lifting table;
    The wall is formed with a discharge portion for discharging the material powder,
    The stacking unit forms and stacks the solidified layer in a state where the mounting surface of the lifting table is higher than the discharge unit,
    The cutting portion is
    A lowering part that lowers the lifting table until the position of the placement surface is lower than a part of the discharge part;
    A second raising part that raises the lifting table until the position of the placement surface is higher than the discharge part;
    The apparatus for manufacturing a three-dimensional layered object according to claim 6, wherein the removing unit performs work after the descending unit and the second ascending unit are operated.
PCT/JP2016/075381 2016-08-31 2016-08-31 Method and device for manufacturing three-dimensional laminated molding WO2018042526A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/075381 WO2018042526A1 (en) 2016-08-31 2016-08-31 Method and device for manufacturing three-dimensional laminated molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/075381 WO2018042526A1 (en) 2016-08-31 2016-08-31 Method and device for manufacturing three-dimensional laminated molding

Publications (1)

Publication Number Publication Date
WO2018042526A1 true WO2018042526A1 (en) 2018-03-08

Family

ID=61301465

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/075381 WO2018042526A1 (en) 2016-08-31 2016-08-31 Method and device for manufacturing three-dimensional laminated molding

Country Status (1)

Country Link
WO (1) WO2018042526A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020012160A (en) * 2018-07-18 2020-01-23 株式会社ソディック Method for manufacturing laminate molded article
CN111822944A (en) * 2019-04-23 2020-10-27 大隈株式会社 Three-dimensional shape processing method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010280173A (en) * 2009-06-05 2010-12-16 Panasonic Electric Works Co Ltd Method for manufacturing three-dimensionally shaped article

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010280173A (en) * 2009-06-05 2010-12-16 Panasonic Electric Works Co Ltd Method for manufacturing three-dimensionally shaped article

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020012160A (en) * 2018-07-18 2020-01-23 株式会社ソディック Method for manufacturing laminate molded article
CN111822944A (en) * 2019-04-23 2020-10-27 大隈株式会社 Three-dimensional shape processing method

Similar Documents

Publication Publication Date Title
JP4452692B2 (en) Surface finishing method for 3D additive manufacturing parts
JP6360978B2 (en) Cutting tool and 3D additive manufacturing apparatus
JP5877471B2 (en) Manufacturing method of three-dimensional shaped object
EP2815873B1 (en) Additive layer manufacturing method
KR102020779B1 (en) Method for producing three-dimensionally shaped object
JP5519766B2 (en) Manufacturing method of three-dimensional shaped object and three-dimensional shaped object
KR102126243B1 (en) Production method and production device for three-dimensionally shaped molded object
KR100499677B1 (en) Method of making sintered object
JP5539347B2 (en) Manufacturing method of three-dimensional shaped object and three-dimensional shaped object obtained therefrom
EP3541606B1 (en) Method for additive manufacturing
JP2018095946A (en) Manufacturing method of three-dimensional molded article and three-dimensional molding device
JP6702936B2 (en) Additive manufacturing process for parts for tire molds, especially powder-based lining blades
EP3053674B1 (en) Method for manufacturing a combustor front panel and a combustor front panel
KR102145781B1 (en) Manufacturing method of 3D shape sculpture
KR102099574B1 (en) Manufacturing method of 3D shape sculpture and 3D shape sculpture
WO2018042526A1 (en) Method and device for manufacturing three-dimensional laminated molding
JP2008101256A (en) Stack-molded die and producing method therefor
JP5612530B2 (en) Manufacturing method of three-dimensional shaped object
JP2002066844A (en) Method of manufacturing discharge machining electrode using metal powder sintering type laminated molding
JP2011089145A (en) Method for producing shaped article
JP3687672B2 (en) Surface finishing method for powder sintered parts
JP6688997B2 (en) Method for manufacturing three-dimensional shaped object
WO2017130834A1 (en) Method for manufacturing three-dimensionally shaped object
JP2018080356A5 (en)
JP2003313604A (en) Process for manufacturing metal powder-sintered part

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16915087

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16915087

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP