JP2008101256A - Stack-molded die and producing method therefor - Google Patents

Stack-molded die and producing method therefor Download PDF

Info

Publication number
JP2008101256A
JP2008101256A JP2006286002A JP2006286002A JP2008101256A JP 2008101256 A JP2008101256 A JP 2008101256A JP 2006286002 A JP2006286002 A JP 2006286002A JP 2006286002 A JP2006286002 A JP 2006286002A JP 2008101256 A JP2008101256 A JP 2008101256A
Authority
JP
Japan
Prior art keywords
base plate
additive manufacturing
cross
space
molded article
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006286002A
Other languages
Japanese (ja)
Inventor
Tomomi Tanaka
知実 田中
Yukio Nishikawa
幸男 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006286002A priority Critical patent/JP2008101256A/en
Publication of JP2008101256A publication Critical patent/JP2008101256A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Abstract

<P>PROBLEM TO BE SOLVED: To produce a molded article having a three-dimensional structure of a large contour with high precision, by reducing the warp of a base plate and preventing the distortion of the contour. <P>SOLUTION: When layers 2 to be hardened are stacked on the base plate 22 to form a desirable molded article 5, the volume decreases because spaces among powders are lost while the layers 2 to be hardened are sintered, and furthermore, a contraction stress 110 is generated inside the molded article 5 by solidification shrinkage. The molded article 5 is tentatively bonded with the base plate 22 and causes the volume shrinkage, so that a reaction force 111 acts in the base plate 22 due to a tensile force. When the contraction stress 110 is larger than the reaction force 111, the base plate 22 is warped and causes distortion in the three-dimensional shape formed thereon. The production method includes forming a notch 6 on the surface which is located in the lower part of the molded article 5 and contacts with the base plate 22. Then, the notch reduces a contacting area between the base plate 22 and the molded article 5, decreases a bending moment caused by the shrinkage, makes a balance between the contraction stress 110 and the reaction force 111 advantageous to the base plate 22, suppresses the warp of the base plate 22, and accurately forms the molded three-dimensional shape. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、3次元形状の積層造形物の製造方法に係り、詳しくは光ビームを利用して金属の粉末を層状に積層し連続的に硬化させた3次元形状造形物の積層造形金型とその製造方法に関するものである。   The present invention relates to a method of manufacturing a three-dimensional shaped object, and more specifically, a three-dimensional shaped object of a three-dimensional shaped object obtained by laminating metal powders in layers using a light beam and continuously curing the powder. It relates to the manufacturing method.

無機質粉末(金属粉)に対して光ビーム(指向性エネルギービーム、例えばレーザビーム)を照射して硬化させ、硬化層を積層して3次元形状造形物を形成する従来技術としては、例えば特許文献1に示される方法があった。図3(a)〜(d)は、特許文献1に記載された3次元形状造形物の製造方法を模式的に示す断面図である。   As a conventional technique for forming a three-dimensional shaped object by irradiating an inorganic powder (metal powder) with a light beam (directional energy beam, for example, a laser beam) and curing it, and laminating a cured layer, for example, Patent Document There was the method shown in 1. 3A to 3D are cross-sectional views schematically showing a method for manufacturing a three-dimensional shaped object described in Patent Document 1. FIG.

図3(a)に示すように、供給部10の底面12と造形部20の底面24は昇降自在である。底面24の上には板状のベースプレート22が配置されており、ベースプレート22の上に粉末材料1を焼結させてなる硬化層2が順次積み重ねられて造形物5が製造される。移送ブレード30は、供給部10および造形部20の内幅よりも長い板状をなし、供給部10の外側から供給部10および造形部20の上方を通過して造形部20の外側まで水平移動する。予め造形部20では先に形成され積み重ねられた硬化層2の上面を造形部20の上端よりも少し下げている。また、供給部10では、供給部10の上端よりも少し高い位置まで粉末材料1が配置されている。   As shown in FIG. 3A, the bottom surface 12 of the supply unit 10 and the bottom surface 24 of the modeling unit 20 can be raised and lowered. A plate-like base plate 22 is disposed on the bottom surface 24, and a hardened layer 2 formed by sintering the powder material 1 is sequentially stacked on the base plate 22 to manufacture the model 5. The transfer blade 30 has a plate shape longer than the inner width of the supply unit 10 and the modeling unit 20, and moves horizontally from the outside of the supply unit 10 to the outside of the modeling unit 20 through the supply unit 10 and the modeling unit 20. To do. In the modeling unit 20, the upper surface of the hardened layer 2 formed and stacked in advance is slightly lowered from the upper end of the modeling unit 20. Further, in the supply unit 10, the powder material 1 is disposed up to a position slightly higher than the upper end of the supply unit 10.

この状態で移送ブレード30を供給部10から造形部20の方向に水平移動させる。図3(b)に示すように供給部10の上端よりも高い部分の粉末材料1が移送ブレード30に押し動かされて、造形部20に移送される。移送ブレード30の下端で均された粉末材料1は、空間4に薄い層状に堆積する。造形部20に粉末材料1を供給し終えた移送ブレード30は、造形部20の外側まで移動する。   In this state, the transfer blade 30 is moved horizontally from the supply unit 10 to the modeling unit 20. As shown in FIG. 3B, a portion of the powder material 1 higher than the upper end of the supply unit 10 is pushed by the transfer blade 30 and transferred to the modeling unit 20. The powder material 1 leveled at the lower end of the transfer blade 30 is deposited in a thin layer in the space 4. The transfer blade 30 that has finished supplying the powder material 1 to the modeling unit 20 moves to the outside of the modeling unit 20.

図3(c)に示すように、造形部20の上面に光ビーム3を所定のパターン状に照射することにで、粉末材料1を硬化させ、新たな硬化層2’を形成する。この光照射工程の間もしくは後に移送ブレード30を供給部10の外側の待機位置に用意しておく。   As shown in FIG. 3C, the powder material 1 is cured by irradiating the upper surface of the modeling unit 20 with the light beam 3 in a predetermined pattern, thereby forming a new cured layer 2 ′. The transfer blade 30 is prepared at a standby position outside the supply unit 10 during or after the light irradiation process.

供給部10では、底面12を上昇させて次回に造形部20に供給する粉末材料1を用意しておき、図3(d)に示すように、造形部20の底面24を下降させて、次回に粉末材料1が供給される空間4を設けておく。前記のような工程を繰り返すことによって、造形部20のベースプレート22の上には、複数層の硬化層2が積み重ねられ、所望の3次元形状を有する造形物5が得られることとなる。   In the supply part 10, the bottom surface 12 is raised and the powder material 1 to be supplied to the modeling part 20 next time is prepared, and the bottom surface 24 of the modeling part 20 is lowered as shown in FIG. A space 4 in which the powder material 1 is supplied is provided. By repeating the steps as described above, a plurality of hardened layers 2 are stacked on the base plate 22 of the modeling unit 20, and a modeled object 5 having a desired three-dimensional shape is obtained.

この方法で製造した3次元形状の積層造形物は、CADデータから直接変換したデータにより製造できるため、通常の機械加工で製造する場合よりも、速く加工ができる。このため、複雑な形状の金型に用いるとより好適である。
特開2001−150557号公報
Since the three-dimensional layered object manufactured by this method can be manufactured by data directly converted from CAD data, it can be processed faster than the case of manufacturing by normal machining. For this reason, it is more suitable when it is used for a mold having a complicated shape.
JP 2001-150557 A

しかしながら、前記従来の構成では、造形物を形成する硬化層2が焼結する時に粉末状態で生じていた粉と粉の間の空間が溶融時に失われて体積が減少し、さらに凝固収縮することで、一旦ベースプレート22と結びついてから体積収縮が起こることで、ベースプレート22が引っ張り力を受けて反ってしまい、その上に形成される3次元形状が歪んでしまうという課題を有していた。特に、この反り量は造形物とベースプレート22の間の接触面積と接触部分の長さに強い相関関係を持ち、外形が100mmを超える大きさとなる形状の造形物を製作する場合には、ベースプレート22の厚みを十分に取らないと0.01mm以上の反りが発生し、造形物の寸法にも誤差を生じさせることにつながり、精密な金型部品を製作するには支障があった。   However, in the conventional configuration, when the hardened layer 2 that forms the shaped object is sintered, the space between the powders generated in the powder state is lost during melting, the volume is reduced, and the solidification shrinks. Thus, once the volume of the base plate 22 is contracted with the base plate 22, the base plate 22 is warped by receiving a pulling force, and the three-dimensional shape formed thereon is distorted. In particular, the amount of warpage has a strong correlation with the contact area between the modeled object and the base plate 22 and the length of the contact part, and in the case of manufacturing a modeled object whose outer shape exceeds 100 mm, the base plate 22 is used. If a sufficient thickness is not taken, a warp of 0.01 mm or more is generated, leading to an error in the dimension of the modeled object, and there is a problem in manufacturing a precise mold part.

本発明は、前記従来技術の問題を解決することに指向するものであり、光ビームを利用して金属の粉末を層状に連続的に硬化させて製造する3次元形状の積層造形物で、外形が100mmを超える大きさの造形物を、ベースプレートの反りを少なくすることで形状の歪みを少なくして製造できる、積層造形金型とその製作方法を提供することを目的とする。   The present invention is directed to solving the above-described problems of the prior art, and is a three-dimensional layered structure manufactured by continuously curing a metal powder in a layer shape using a light beam. An object of the present invention is to provide an additive manufacturing mold and a method for manufacturing the same, which can manufacture a molded article having a size exceeding 100 mm with less warping of the base plate and less distortion of the shape.

前記の目的を達成するために、本発明に係る請求項1に記載した積層造形金型は、ベースプレート上に堆積した金属粉を硬化させた積層造形物からなる積層造形金型であって、積層造形物とベースプレートとの間に、ベースプレートとの接触面以外の面は積層造形物で囲まれなる空間を有し、この空間を積層造形物に形成したことを特徴とする。   In order to achieve the above object, the additive manufacturing mold according to claim 1 according to the present invention is an additive manufacturing mold comprising an additive manufacturing object obtained by curing metal powder deposited on a base plate, Between the modeled object and the base plate, a surface other than the contact surface with the base plate has a space surrounded by the layered object, and this space is formed in the layered object.

また、請求項2〜3に記載した積層造形金型は、請求項1の積層造形金型において、空間のベースプレートと平行な任意の第1断面における第1面積が、第1断面と平行でかつ第1断面より積層方向に離れた任意の第2断面における第2面積よりも大きいこと、さらに、空間のベースプレートとの接触面の長さが2mm以上15mm以下であり、ベースプレートとの接触面からの高さが15mm以下であること、さらに、空間は積層造形物とベースプレートの間に複数あることを特徴とする。   The additive manufacturing mold described in claims 2 to 3 is the additive manufacturing mold according to claim 1, wherein the first area in an arbitrary first cross section parallel to the base plate of the space is parallel to the first cross section, and It is larger than the second area in any second cross section separated from the first cross section in the stacking direction, and the length of the contact surface with the base plate in the space is 2 mm or more and 15 mm or less, and from the contact surface with the base plate The height is 15 mm or less, and there are a plurality of spaces between the layered object and the base plate.

また、請求項5に記載した積層造形金型の製造方法は、ベースプレート上に堆積した金属粉を硬化させた積層造形物からなる積層造形金型の製造方法であって、積層造形物に、ベースプレートとの接触面以外の面が積層造形物で囲まれてなる空間を形成して、ベースプレート上に積層造形物を製造することを特徴とする。   The manufacturing method of the additive manufacturing mold according to claim 5 is a manufacturing method of the additive manufacturing mold made of the additive manufacturing object obtained by curing the metal powder deposited on the base plate. Forming a space on which the surface other than the contact surface is surrounded by the layered object, and manufacturing the layered object on the base plate.

また、請求項6,7に記載した積層造形金型の製造方法は、請求項5の積層造形金型の製造方法において、空間のベースプレートと平行な任意の第1断面における第1面積が、第1断面と平行でかつ第1断面より積層方向に離れた任意の第2断面における第2面積よりも大きく、空間を形成したこと、さらに、空間は積層造形物とベースプレートの間に複数を形成したことを特徴とする。   Moreover, the manufacturing method of the additive manufacturing mold described in claims 6 and 7 is the manufacturing method of the additive manufacturing mold of claim 5, wherein the first area in an arbitrary first cross section parallel to the base plate of the space is A space is formed that is larger than the second area in any second cross section that is parallel to the first cross section and separated from the first cross section in the stacking direction, and a plurality of spaces are formed between the layered object and the base plate. It is characterized by that.

前記構成によれば、光ビームを利用して金属の粉末を層状に連続的に硬化させて製造する3次元形状の積層造形物で、外形が100mmを超える大きさの造形物を、ベースプレートの反りを少なくすることで形状の歪みを少なくして、正確な形状で製造できる。   According to the above-described configuration, a three-dimensional layered structure manufactured by continuously curing a metal powder in a layer shape using a light beam, and a shaped object having an outer shape exceeding 100 mm is warped of the base plate. By reducing the amount of distortion, it is possible to reduce the distortion of the shape and to manufacture with an accurate shape.

本発明によれば、光ビームを利用して金属の粉末を層状に連続的に硬化させて製造する3次元形状の積層造形物で、外形が100mmを超える大きさの造形物を、ベースプレートの反りを少なくすることで形状の歪みを少なくして、正確な形状で製造することができるという効果を奏する。   According to the present invention, a three-dimensional layered object manufactured by continuously curing a metal powder in a layer shape using a light beam, and the object whose outer shape exceeds 100 mm is warped of the base plate. As a result, the distortion of the shape is reduced, and an accurate shape can be produced.

以下、図面を参照して本発明における実施の形態を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

(実施の形態1)
図1は本発明の実施の形態1における積層造形物であり、(a),(b)は模式的な断面図、(c)は簡略化した斜視図を示す図である。ここで、前記従来例を示す図3(a)〜(d)において説明した構成部材に対応し同等の機能を有するものには同一の符号を付して示し、以下の各図においても同様とする。
(Embodiment 1)
FIG. 1 shows a layered object according to Embodiment 1 of the present invention, in which (a) and (b) are schematic cross-sectional views, and (c) is a simplified perspective view. Here, components having the same functions corresponding to the components described in FIGS. 3A to 3D showing the conventional example are denoted by the same reference numerals, and the same applies to the following drawings. To do.

図1(a)に示すように、ベースプレート22の上には、複数層の硬化層2が積み重ねられて、所望の3次元形状を有する造形物5が得られるのであるが、造形物5(硬化層2)が焼結する時に粉末状態で生じていた粉と粉の間の空間が溶融時に失われて体積が減少し、さらに凝固収縮することで、造形物5の内部には収縮応力110が生じることになる。さらに、造形物5は一旦ベースプレート22と結びついてから体積収縮が起こることで、ベースプレート22が引っ張り力を受け、反力111が働くこととなるのであるが、収縮応力110>反力111となった場合、ベースプレート22が反ってしまい、その上に形成される3次元形状が歪んでしまう。このため、図1(b)に示すように造形物5の下部でベースプレート22との接触面に、空間となる切り欠き6を設けてある。   As shown in FIG. 1A, a plurality of hardened layers 2 are stacked on a base plate 22 to obtain a shaped article 5 having a desired three-dimensional shape. When the layer 2) is sintered, the space between the powders generated in the powder state is lost during melting, the volume is reduced, and the solidification and shrinkage are further caused, so that a shrinkage stress 110 is generated in the interior of the model 5. Will occur. Furthermore, the volume 5 shrinks once the shaped article 5 is connected to the base plate 22, so that the base plate 22 receives a pulling force and a reaction force 111 acts, but the shrinkage stress 110> the reaction force 111. In this case, the base plate 22 is warped, and the three-dimensional shape formed thereon is distorted. For this reason, as shown in FIG.1 (b), the notch 6 used as space is provided in the contact surface with the base plate 22 in the lower part of the molded article 5. FIG.

この結果、分割した個々のベースプレート22と造形物5間の接触面積が小さくなり、造形物5の収縮によりベースプレート22上に生じる曲げモーメントの大きさが小さくなるとともに、造形物5自体にも切り欠き6の形状が追加されたことにより、造形物5の収縮応力110とベースプレート22の反力111の釣り合いがベースプレート22に有利になり、ベースプレート22の反りを抑えることができる。このため、その上に造形される3次元形状を正しく形成することができる。   As a result, the contact area between the divided individual base plate 22 and the modeled object 5 is reduced, the magnitude of the bending moment generated on the base plate 22 due to the contraction of the modeled object 5 is reduced, and the modeled object 5 itself is notched. Since the shape 6 is added, the balance between the shrinkage stress 110 of the model 5 and the reaction force 111 of the base plate 22 is advantageous to the base plate 22, and the warpage of the base plate 22 can be suppressed. For this reason, the three-dimensional shape modeled on it can be formed correctly.

図1(c)に示すように造形物5の全長をLとして、図1(b)に示す点Aにおける歪量をyとした時、収縮応力110を簡単に上向きの均等加重wで近似して、点Bを起点とした均等加重を受ける片持ち梁の式を当てはめると、ヤング率をE、断面2次モーメントをIとして、(数1)   As shown in FIG. 1C, when the total length of the shaped object 5 is L and the strain amount at the point A shown in FIG. 1B is y, the contraction stress 110 is simply approximated by an upward equal weight w. Applying the formula of a cantilever beam that receives an equal load starting from point B, the Young's modulus is E and the secondary moment of moment is I. (Equation 1)

Figure 2008101256
により、近似的に表すことができる。例えば、造形物5が点Cで完全に分割された場合、点Cを起点とした均等加重を受ける片持ち梁の式を当てはめると、(数2)
Figure 2008101256
Can be expressed approximately. For example, when the shaped object 5 is completely divided at the point C, when a cantilever beam formula that receives an equal load from the point C is applied, (Equation 2)

Figure 2008101256
となり、歪量は16分の1に低減できることになるが、実際には造形物5は、金型部品の3次元形状部であり、製品の3次元形状の大きさから全長Lが決まっているため、点Cで完全に分割することはできない。ところが、切り欠き6があるので、造形物5とベースプレート22との接触面に空間を有し、かつ造形物5は空間の上部でつながっている形状を有している。このように、上部で結合されている影響で点Cの左右で各々の造形形状が相互作用を生じさせるため、その相互作用の係数をDとすると、(数3)
Figure 2008101256
Thus, the amount of distortion can be reduced to 1/16, but in actuality, the molded object 5 is a three-dimensional shape part of a mold part, and the total length L is determined from the size of the three-dimensional shape of the product. Therefore, it cannot be completely divided at the point C. However, since there is the notch 6, there is a space on the contact surface between the modeled object 5 and the base plate 22, and the modeled object 5 has a shape connected at the upper part of the space. Thus, since each modeling shape produces an interaction on the left and right of the point C due to the effect of being coupled at the upper part, assuming that the coefficient of the interaction is D, (Equation 3)

Figure 2008101256
で示されることになる。相互作用の係数がD<16の状態で、切り欠き6を追加した場合の歪量yが、切り欠き6のない場合に比べて小さいことになるが、造形物5の形状に着目すると、切り欠き6が存在することにより反力111に対する抵抗力は確実に弱まるため、相互作用の係数D<16となることは容易に予想できる。
Figure 2008101256
Will be shown. When the notch 6 is added in the state where the coefficient of interaction is D <16, the distortion amount y is smaller than when the notch 6 is not provided. Since the resistance against the reaction force 111 is surely weakened by the presence of the notch 6, it can be easily predicted that the interaction coefficient D <16.

本実施の形態1では、ベースプレート22は直方体であり、断面2次モーメントIは図1(c)に示すようにベースプレート22の幅をb、厚さをhとして、(数4)   In the first embodiment, the base plate 22 is a rectangular parallelepiped, and the secondary moment I of the cross section is represented by (Equation 4) where the width of the base plate 22 is b and the thickness is h as shown in FIG.

Figure 2008101256
となる。効果を確認するために、全長Lを85mmとして、厚み40mmで直方体形状の造形物5を切り欠き6のあるものとないものの2つを、幅bが100mm、厚さhが15mmのベースプレート22を使用して製作した。その結果、切り欠きなしの単純な直方体で造形した場合の歪量y=0.186mm、切り欠きありの場合y=0.15mmとなり、切り欠きの追加で歪量yが小さくなり、その結果ベースプレート22上に形成される造形物5の歪量も小さくなり、所望の3次元形状を有する造形物5を得られることが確認できた。この場合の相互作用の係数Dは約12.97である。
Figure 2008101256
It becomes. In order to confirm the effect, the base plate 22 having a total length L of 85 mm, a cuboid-shaped shaped article 5 having a thickness of 40 mm and a notch 6 and a base plate 22 having a width b of 100 mm and a thickness h of 15 mm is used. Made using. As a result, the distortion amount y = 0.186 mm when modeling with a simple rectangular parallelepiped without cutout, and y = 0.15 mm with cutout, the distortion amount y is reduced by adding the cutout, and as a result, the base plate It was confirmed that the amount of distortion of the shaped object 5 formed on the surface 22 was reduced, and the shaped object 5 having a desired three-dimensional shape was obtained. In this case, the coefficient of interaction D is about 12.97.

参考までに、切り欠きありの場合の歪量yの値は、造形物5の積層厚さを40mmから20mmに減少させた場合の実測値に相当する。また、切り欠き6の断面形状の幅は、少なくとも2mm以上ないと、切り欠き6を設ける効果が得られておらず、また切り欠き6の断面形状の幅が15mmを超えたり、高さが造形物5の厚みの3分の1を超えたりすると、造形物5の強度が下がってしまい、金型部品としての実用に支障をきたす。実際には造形物5の厚みは金型の形状によって変化するため、切り欠きの高さは15mm以下とすることで効果が高くなる。   For reference, the value of the strain amount y in the case where there is a notch corresponds to the actual measurement value in the case where the stacking thickness of the model 5 is reduced from 40 mm to 20 mm. Further, if the width of the cross-sectional shape of the notch 6 is not at least 2 mm or more, the effect of providing the notch 6 is not obtained, the width of the cross-sectional shape of the notch 6 exceeds 15 mm, or the height is formed. If it exceeds 1/3 of the thickness of the article 5, the strength of the shaped article 5 is lowered, which impedes practical use as a mold part. Actually, since the thickness of the modeled object 5 varies depending on the shape of the mold, the effect is enhanced by setting the height of the notch to 15 mm or less.

なお、本実施の形態1において、切り欠き6として、ベースプレート22と造形物5との接触面に設けた空間は3角形の断面形状となっているが、切り欠き6の空間は、ベースプレート22との接触面側が広くて造形物5の積層方向に狭くなる形状であれば、台形や5角形や半円や楕円形などでも良く、必ずしも露出している必要はない。   In Embodiment 1, the space provided on the contact surface between the base plate 22 and the modeled object 5 has a triangular cross-sectional shape as the notch 6, but the space of the notch 6 is the same as that of the base plate 22. As long as the contact surface side is wide and narrow in the stacking direction of the shaped object 5, it may be trapezoidal, pentagonal, semicircular or elliptical, and is not necessarily exposed.

図3(c)に示した従来の造形物5となる硬化層2を形成するために、光ビーム3を所定のパターン状に照射する際、切り欠き6として光ビーム3を照射せず選択的に硬化層2を形成しない部分を形成し、かつ切り欠き6の面積を1層目のよりも2層目を小さくして形成し、これを繰り返して、ベースプレート22と造形物5の間に切り欠き6となる空間を形成する。この場合、選択的に硬化層2を形成しない部分は粉末状のままとなることから、造形物5の形成後に取り除くことで切り欠き6となる空間を物理的に形成することになるが、取り除かなくとも、造形物5の構造上の強度に寄与しないため、切り欠き6と同様の機能を有することになる。   When the light beam 3 is irradiated in a predetermined pattern in order to form the hardened layer 2 to be the conventional shaped article 5 shown in FIG. 3C, the light beam 3 is selectively not irradiated as the notch 6. A portion where the hardened layer 2 is not formed is formed, and the area of the notch 6 is formed so that the second layer is smaller than the first layer, and this is repeated to cut between the base plate 22 and the modeled object 5. A space to be a notch 6 is formed. In this case, since the portion where the hardened layer 2 is not selectively formed remains in a powder form, the space that becomes the notch 6 is physically formed by removing after the formation 5 is formed. Even if it does not contribute, it does not contribute to the structural strength of the shaped article 5 and thus has the same function as the notch 6.

この切り欠き6の空間として、ベースプレート22と平行な任意の第1断面における第1面積と、第1断面と平行でかつ第1断面より積層方向に離れた任意の第2断面における第2面積を比較した場合、第1面積が、第2面積より大きくなるような、空間を造形物5とベースプレート22間に形成する。つまり、ベースプレート22との接触面以外は造形物5で囲まれている空間を形成する。これにより、歪の少ない積層物5をベースプレート22上に製造することができる。   The space of the notch 6 includes a first area in an arbitrary first cross section parallel to the base plate 22 and a second area in an arbitrary second cross section parallel to the first cross section and separated from the first cross section in the stacking direction. When compared, a space is formed between the shaped article 5 and the base plate 22 such that the first area is larger than the second area. That is, a space surrounded by the modeled object 5 is formed except for the contact surface with the base plate 22. Thereby, the laminate 5 with less distortion can be manufactured on the base plate 22.

本実施の形態1において、1箇所に1つだけ切り欠き6を施しているが、2箇所以上に切り欠き6を施しても良く、切り欠き6は直線である必要はないため曲線でも良く、複数の切り欠き6が交差したり接したりしていても良い。   In the first embodiment, only one notch 6 is provided at one place, but the notch 6 may be provided at two or more places, and the notch 6 does not have to be a straight line, and may be a curve. A plurality of notches 6 may intersect or touch each other.

(実施の形態2)
図2は、本発明の実施の形態2における積層造形物の簡略化した斜視図である。図2において、造形物5はファンなどの回転体の成型を行うために、円筒形状の外形を持っている。この実施の形態2では、形状が4分割されており、それぞれの形状の歪量がばらつくことは望ましくないため、切り欠き6を4つの形状の境目に4箇所設けている。その結果、ベースプレート22の歪量は小さくなるが、その歪量の減少も4つの形状に均等にもたらされることとなる。この切り欠き6は4箇所設けているが、ベースプレート22との接合面で十字形状に交差する2つの切り欠き6であっても良い。
(Embodiment 2)
FIG. 2 is a simplified perspective view of the layered object according to Embodiment 2 of the present invention. In FIG. 2, the model 5 has a cylindrical outer shape in order to mold a rotating body such as a fan. In the second embodiment, the shape is divided into four parts, and it is not desirable that the amount of distortion of each shape varies. Therefore, four notches 6 are provided at the boundary of the four shapes. As a result, the amount of distortion of the base plate 22 is reduced, but the reduction of the amount of distortion is also brought equally to the four shapes. Although the four cutouts 6 are provided, two cutouts 6 that intersect in a cross shape at the joint surface with the base plate 22 may be used.

なお、切り欠き6の形状や個数は、積層後の造形物5の形状に合わせて所望の形状や個数とすると好適である。   The shape and number of the notches 6 are preferably set to a desired shape and number in accordance with the shape of the modeled article 5 after lamination.

本発明に係る積層造形金型とその製造方法は、光ビームを利用して金属の粉末を層状に連続的に硬化させて製造する3次元形状の積層造形物で、外形が100mmを超える大きさの造形物を、ベースプレートの反りを少なくすることで形状の歪みを少なくして、正確な形状で製造することができ、3次元形状造形物である積層造形金型およびその製造方法として有用である。   The additive manufacturing mold and the manufacturing method thereof according to the present invention is a three-dimensional additive manufacturing object manufactured by continuously curing a metal powder in a layer shape using a light beam, and the outer shape exceeds 100 mm. Can be manufactured with an accurate shape by reducing warping of the base plate, and is useful as a three-dimensional shaped object and a manufacturing method thereof. .

本発明の実施の形態1における積層造形物であり、(a),(b)は模式的な断面図、(c)は簡略化した斜視図を示す図BRIEF DESCRIPTION OF THE DRAWINGS It is a laminate-molded article in Embodiment 1 of this invention, (a), (b) is typical sectional drawing, (c) is a figure which shows the simplified perspective view. 本発明の実施の形態2における積層造形物の簡略化した斜視図Simplified perspective view of the layered object in Embodiment 2 of the present invention 従来の3次元形状造形物の製造方法であり、(a)〜(d)は模式的に示す断面図It is the manufacturing method of the conventional three-dimensional shape molded article, (a)-(d) is sectional drawing which shows typically

符号の説明Explanation of symbols

1 粉末材料
2,2’ 硬化層
3 光ビーム
4 空間
5 造形物
6 切り欠き
10 供給部
12,24 底面
20 造形部
22 ベースプレート
30 移送ブレード
110 収縮応力
111 反力
DESCRIPTION OF SYMBOLS 1 Powder material 2, 2 'Hardened layer 3 Light beam 4 Space 5 Modeling object 6 Notch 10 Supply part 12, 24 Bottom face 20 Modeling part 22 Base plate 30 Transfer blade 110 Contraction stress 111 Reaction force

Claims (7)

ベースプレート上に堆積した金属粉を硬化させた積層造形物からなる積層造形金型であって、
前記積層造形物と前記ベースプレートとの間に、前記ベースプレートとの接触面以外の面は前記積層造形物で囲まれてなる空間を有し、前記空間を前記積層造形物に形成したことを特徴とする積層造形金型。
It is an additive manufacturing mold made of an additive manufacturing product obtained by curing metal powder deposited on a base plate,
Between the layered object and the base plate, a surface other than the contact surface with the base plate has a space surrounded by the layered object, and the space is formed in the layered object. Additive manufacturing mold.
前記空間の前記ベースプレートと平行な任意の第1断面における第1面積が、前記第1断面と平行でかつ前記第1断面より積層方向に離れた任意の第2断面における第2面積よりも大きいことを特徴とする請求項1記載の積層造形金型。   A first area in an arbitrary first cross section parallel to the base plate in the space is larger than a second area in an arbitrary second cross section parallel to the first cross section and separated from the first cross section in the stacking direction. The additive manufacturing mold according to claim 1. 前記空間の前記ベースプレートとの接触面の長さが2mm以上15mm以下であり、前記ベースプレートとの接触面からの高さが15mm以下であることを特徴とする請求項1または2記載の積層造形金型。   3. The additive manufacturing metal according to claim 1, wherein a length of a contact surface with the base plate in the space is 2 mm or more and 15 mm or less, and a height from the contact surface with the base plate is 15 mm or less. Type. 前記空間は前記積層造形物と前記ベースプレートの間に複数あることを特徴とする請求項1〜3のいずれか1項に記載の積層造形金型。   The additive manufacturing mold according to any one of claims 1 to 3, wherein there are a plurality of the spaces between the additive manufacturing object and the base plate. ベースプレート上に堆積した金属粉を硬化させた積層造形物からなる積層造形金型の製造方法であって、
前記積層造形物に、前記ベースプレートとの接触面以外の面が前記積層造形物で囲まれてなる空間を形成して、前記ベースプレート上に前記積層造形物を製造することを特徴とする積層造形金型の製造方法。
A method for manufacturing a layered mold comprising a layered product obtained by curing metal powder deposited on a base plate,
The additive manufacturing object characterized in that the additive manufacturing object is formed on the base plate by forming a space in which the surface other than the contact surface with the base plate is surrounded by the additive object. Mold manufacturing method.
前記空間の前記ベースプレートと平行な任意の第1断面における第1面積が、前記第1断面と平行でかつ前記第1断面より積層方向に離れた任意の第2断面における第2面積よりも大きく、前記空間を形成したことを特徴とする請求項5記載の積層造形金型の製造方法。   A first area of an arbitrary first cross section parallel to the base plate of the space is larger than a second area of an arbitrary second cross section parallel to the first cross section and separated from the first cross section in the stacking direction; 6. The method for manufacturing an additive manufacturing mold according to claim 5, wherein the space is formed. 前記空間は前記積層造形物と前記ベースプレートの間に複数を形成したことを特徴とする請求項5または6記載の積層造形金型の製造方法。   7. The method for manufacturing an additive manufacturing mold according to claim 5, wherein a plurality of the spaces are formed between the additive manufacturing object and the base plate.
JP2006286002A 2006-10-20 2006-10-20 Stack-molded die and producing method therefor Pending JP2008101256A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006286002A JP2008101256A (en) 2006-10-20 2006-10-20 Stack-molded die and producing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006286002A JP2008101256A (en) 2006-10-20 2006-10-20 Stack-molded die and producing method therefor

Publications (1)

Publication Number Publication Date
JP2008101256A true JP2008101256A (en) 2008-05-01

Family

ID=39435806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006286002A Pending JP2008101256A (en) 2006-10-20 2006-10-20 Stack-molded die and producing method therefor

Country Status (1)

Country Link
JP (1) JP2008101256A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010042524A (en) * 2008-08-08 2010-02-25 Panasonic Electric Works Co Ltd Method for producing three-dimensionally shaped object
JP2010047817A (en) * 2008-08-25 2010-03-04 Panasonic Electric Works Co Ltd Method for producing three-dimensionally shaped object
JP2010100884A (en) * 2008-10-22 2010-05-06 Panasonic Electric Works Co Ltd Method for producing three-dimensionally shaped object
JP2010196099A (en) * 2009-02-24 2010-09-09 Panasonic Electric Works Co Ltd Apparatus and method of producing three-dimensional shaped article
WO2011102382A1 (en) * 2010-02-17 2011-08-25 パナソニック電工株式会社 Method for producing three-dimensional shaped article and three-dimensional shaped article
JP2012224906A (en) * 2011-04-19 2012-11-15 Panasonic Corp Method for manufacturing three-dimensionally shaped article
JP2015221933A (en) * 2014-05-23 2015-12-10 大同特殊鋼株式会社 Steel for metal mold and metal mold
JP2015224363A (en) * 2014-05-27 2015-12-14 大同特殊鋼株式会社 Steel for metallic mold and metallic mold
WO2016017155A1 (en) * 2014-07-30 2016-02-04 パナソニックIpマネジメント株式会社 Method for producing three-dimensionally shaped molded article, and three-dimensionally shaped molded article
JP2017519639A (en) * 2014-05-27 2017-07-20 カーエス コルベンシュミット ゲゼルシャフト ミット ベシュレンクテル ハフツングKS Kolbenschmidt GmbH Laminated manufacturing method for laser melting (SLS) in gravity mold casting

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010042524A (en) * 2008-08-08 2010-02-25 Panasonic Electric Works Co Ltd Method for producing three-dimensionally shaped object
JP2010047817A (en) * 2008-08-25 2010-03-04 Panasonic Electric Works Co Ltd Method for producing three-dimensionally shaped object
JP2010100884A (en) * 2008-10-22 2010-05-06 Panasonic Electric Works Co Ltd Method for producing three-dimensionally shaped object
JP2010196099A (en) * 2009-02-24 2010-09-09 Panasonic Electric Works Co Ltd Apparatus and method of producing three-dimensional shaped article
US10022797B2 (en) 2010-02-17 2018-07-17 Panasonic Intellectual Property Management Co., Ltd. Method for manufacturing three-dimensional shaped object and three-dimensional shaped object
WO2011102382A1 (en) * 2010-02-17 2011-08-25 パナソニック電工株式会社 Method for producing three-dimensional shaped article and three-dimensional shaped article
JP2012224906A (en) * 2011-04-19 2012-11-15 Panasonic Corp Method for manufacturing three-dimensionally shaped article
JP2015221933A (en) * 2014-05-23 2015-12-10 大同特殊鋼株式会社 Steel for metal mold and metal mold
JP2017519639A (en) * 2014-05-27 2017-07-20 カーエス コルベンシュミット ゲゼルシャフト ミット ベシュレンクテル ハフツングKS Kolbenschmidt GmbH Laminated manufacturing method for laser melting (SLS) in gravity mold casting
JP2015224363A (en) * 2014-05-27 2015-12-14 大同特殊鋼株式会社 Steel for metallic mold and metallic mold
WO2016017155A1 (en) * 2014-07-30 2016-02-04 パナソニックIpマネジメント株式会社 Method for producing three-dimensionally shaped molded article, and three-dimensionally shaped molded article
CN106573412A (en) * 2014-07-30 2017-04-19 松下知识产权经营株式会社 Method for producing three-dimensionally shaped molded article, and three-dimensionally shaped molded article
JPWO2016017155A1 (en) * 2014-07-30 2017-05-25 パナソニックIpマネジメント株式会社 Manufacturing method of three-dimensional shaped object and three-dimensional shaped object
US10413970B2 (en) 2014-07-30 2019-09-17 Panasonic Intellectual Property Management Co., Ltd. Method for manufacturing three-dimensional shaped object and three-dimensional shaped object

Similar Documents

Publication Publication Date Title
JP2008101256A (en) Stack-molded die and producing method therefor
JP6374479B2 (en) Manufacturing method of object by solidification of powder using laser beam and insertion of deformation absorbing member
CN103561891B (en) The manufacture method of three dimensional structure
US8968624B2 (en) Method for producing a three dimensional green article
EP1557250A4 (en) Method for producing tire vulcanizing mold and tire vulcanizing mold
JP4889266B2 (en) Three-dimensional shaped object and manufacturing method thereof
KR102145781B1 (en) Manufacturing method of 3D shape sculpture
JP2015516316A (en) Multilayer manufacturing substrate
JP2017094540A (en) Three-dimensional shaping device, three-dimensional shaping method, program, and recording medium
JP6597084B2 (en) Nozzle and additive manufacturing apparatus, nozzle operation method and additive manufacturing method
JP6417586B2 (en) Modeling method and model
JP2002066844A (en) Method of manufacturing discharge machining electrode using metal powder sintering type laminated molding
JP2006257463A (en) Powdery material to be sintered by laser, manufacturing method therefor, three-dimensional structure and manufacturing method therefor
JP4337216B2 (en) Modeling method by stereolithography and stereolithography by stereolithography
JP2008231490A (en) Method for designing structure by lamination molding process using powder material
JP6878364B2 (en) Movable wall for additional powder floor
JP2007100199A (en) Method for producing three-dimensional structure
JP4983768B2 (en) Modeling method by stereolithography
JP2010052318A (en) Light shaping method
JP2003320595A (en) Manufacturing method for core for manufacturing tire
JP2002347125A (en) Optically molded article
JP2017154447A (en) Resin joint product and method for producing the same
JP6688997B2 (en) Method for manufacturing three-dimensional shaped object
TWI601629B (en) Additive manufacturing method
KR102332533B1 (en) Wire arc directed energy deposition 3d printing method for forming inner core and flattening outer surface