JP2002347125A - Optically molded article - Google Patents

Optically molded article

Info

Publication number
JP2002347125A
JP2002347125A JP2001155109A JP2001155109A JP2002347125A JP 2002347125 A JP2002347125 A JP 2002347125A JP 2001155109 A JP2001155109 A JP 2001155109A JP 2001155109 A JP2001155109 A JP 2001155109A JP 2002347125 A JP2002347125 A JP 2002347125A
Authority
JP
Japan
Prior art keywords
wall
cross
section
stereolithography
reinforcing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001155109A
Other languages
Japanese (ja)
Inventor
Hiroshi Uesugi
浩 植杉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NAKAKIN KK
Nakakin Co Ltd
Original Assignee
NAKAKIN KK
Nakakin Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NAKAKIN KK, Nakakin Co Ltd filed Critical NAKAKIN KK
Priority to JP2001155109A priority Critical patent/JP2002347125A/en
Publication of JP2002347125A publication Critical patent/JP2002347125A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an optically molded article which is reduced in fluctuations of strength depending on portion as the optically molded article with its thickness part being made hollow, wherein a high shape accuracy is obtained in the optical molding without any collapse in shape, and which can be applied as a suitable lost pattern for casting. SOLUTION: Respective layers obtained by parallel slicing a three-dimensional model of a design product into compound high density layers are laminately formed as a cured layers of photocurable resin in the optically molded article M. The thickness part of the design product is formed hollow, the hollow inside 1 is sectioned by a reinforcing wall 2 into a honeycomb shape seen from the direction of the optical molding, the sectioned small spaces 10 are communicated with each other through lacking parts 3 of the reinforcing walls 2, making the whole of the hollow inside 1 of the thickness part be in a communication condition.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、三次元モデルを平
行スライスした各層を光造形による光硬化型樹脂の硬化
層として積層形成して得られる光造形物、特に鋳造用の
焼失原型として好適な光造形物に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optically molded product obtained by laminating layers obtained by parallel slicing a three-dimensional model as a cured layer of a photocurable resin by optical molding, and is particularly suitable as a burn-out prototype for casting. It relates to a stereolithography.

【0002】[0002]

【従来の技術】近年、自動車、航空機、建造物、家電、
玩具、日用雑貨等の各種工業分野における製品や部品の
設計・デザイン構成をCAD、CAM、CAE等のコン
ピュター上で行う手法が広く普及している。そして、こ
のようなコンピュター上で設計された三次元モデルを具
象化した実体モデルを製作する最新の手段として、コン
ピュター上で設計モデルを厚さ数十〜数百μm単位の多
数層に平行スライスした時の各断面パターンのデータを
作成し、このデータから直接に立体樹脂モデルを得る光
造形法が登場している。
2. Description of the Related Art In recent years, automobiles, aircraft, buildings, home appliances,
2. Description of the Related Art Techniques for designing and designing products and parts in various industrial fields such as toys and daily necessities on computers such as CAD, CAM, and CAE are widely used. And, as the latest means for producing a real model that embodies a three-dimensional model designed on such a computer, the design model was sliced in parallel into a number of layers of several tens to hundreds of μm thick on a computer. A stereolithography method that creates data of each cross-sectional pattern at the time and directly obtains a three-dimensional resin model from this data has appeared.

【0003】この光造形法では、光造形装置の制御装置
に前記断面パターンのデータを入力し、紫外線硬化型樹
脂の如き光硬化性樹脂の溶液を収容した造形槽内に配置
する昇降台座を液面から前記スライスした一層分の厚み
に相当する深さに設定し、この液面にXYスキャナー付
きのレーザヘッドから出射されるレーザービームを最下
層の断面パターンに沿って照射することにより、該断面
パターン形状の硬化樹脂層を形成し、次いで昇降台座を
前記一層分の厚みだけ下降させてリコーターにて硬化樹
脂層上に溶液を行き渡らせ、同様にレーザービームを照
射して第二層の断面パターンに対応する硬化樹脂層を形
成し、以降同様にして順次一層分ずつ昇降台座を下降さ
せてレーザービームを照射することにより、最終的に前
記平行スライスした全ての断面パターンに対応する硬化
樹脂層が積層一体化した樹脂モデルを作製する。
In this stereolithography method, data of the cross-sectional pattern is input to a control device of the stereolithography apparatus, and a lift pedestal placed in a molding tank containing a solution of a photocurable resin such as an ultraviolet-curable resin is used as a liquid. The surface is set to a depth corresponding to the thickness of the sliced layer, and a laser beam emitted from a laser head equipped with an XY scanner is irradiated on the liquid surface along the cross-sectional pattern of the lowermost layer, whereby Form a cured resin layer in a pattern shape, then lower the elevating pedestal by the thickness of the one layer, spread the solution over the cured resin layer with a recoater, and similarly irradiate a laser beam to cross-sectional pattern of the second layer By forming a cured resin layer corresponding to the above, and then lowering the elevating pedestal one by one in order in the same manner and irradiating a laser beam, finally the parallel slices Cured resin layer corresponding to all of the cross-sectional pattern making resin model integrally laminated.

【0004】このような光造形による樹脂モデルは、設
計モデルの形態確認用として用いたり、試作品として各
種の特性試験に供する以外に、鋳造用の焼失原型として
利用することも提案されている(例えば特許第2930
354号公報、特開2000−141498号公報)。
It has been proposed that such a resin model by stereolithography is used not only for confirming the form of a design model, but also as a prototype to be used as a prototype for burning out in addition to being subjected to various characteristic tests (see, for example). For example, Patent No. 2930
354, JP-A-2000-141498).

【0005】焼失原型を用いた鋳造は、鋳造品の原型を
樹脂にて製作し、この原型を鋳型材料中に埋入し、これ
を加熱して該原型を焼失させて鋳型材料中に型空間を形
成したのち、この型空間に金属溶湯を注湯するか、ある
いは鋳型材料中に原型を埋入したものを鋳型として、直
接に注湯する金属溶湯の熱で該原型を焼失させつつ原型
を溶融金属に置換させるものである。しかして、光造形
によれば、複雑な構造の焼失原型でも容易に短時間で製
作できる上、その肉部を中空にすることによって樹脂量
を少なくし、もって焼失に伴う燃焼ガスの発生量を減ら
し、このガス圧による鋳型の割れを防止できるという利
点がある。
[0005] In the casting using a burnt-out mold, a mold of a cast product is made of resin, the mold is buried in a mold material, and the mold is heated to burn off the mold to form a mold space in the mold material. After the mold is formed, the molten metal is poured into the mold space, or the mold is buried in the mold material while the mold is embedded in the mold material. It is to be replaced with molten metal. However, according to stereolithography, even a burnt-out prototype having a complicated structure can be easily manufactured in a short time, and the hollow portion of the flesh reduces the amount of resin, thereby reducing the amount of combustion gas generated due to burnout. This has the advantage that the mold can be prevented from cracking due to this gas pressure.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、光造形
にて製作した中空の焼失原型では、この原型自体の強度
が不充分であるため、鋳型材料中に埋入した際に変形し
て型空間の形状精度が低下し易いという難点がある。そ
こで、従来においては中空内部の要所に補強壁を設ける
ようにしているが、部位による強度のバラツキが大きく
なる上、補強壁にて中空内部が仕切られた形態になるこ
とから、光造形による造形途上で光硬化性樹脂溶液の液
面に硬化樹脂層にて囲まれた複数の閉鎖域を生じ、これ
ら閉鎖域同士で表面張力等による液面レベルの高低差が
発生し、造形される補強壁の形崩れを生起し易いという
問題があった。
However, in the case of a hollow burnt-out mold manufactured by stereolithography, the strength of the mold itself is insufficient. There is a drawback that the shape accuracy is easily reduced. Therefore, in the past, reinforcing walls are provided at important points inside the hollow, but the variation in strength due to the site becomes large, and since the hollow inside is partitioned by the reinforcing walls, the optical molding is used. During the molding process, a plurality of closed areas surrounded by a cured resin layer are formed on the liquid surface of the photo-curable resin solution, and a difference in the liquid surface level occurs between these closed areas due to surface tension, etc., and reinforcement is formed. There was a problem that the shape of the wall was easily caused.

【0007】本発明は、上述の情況に鑑み、肉部を中空
とした光造形物として、部位による強度のバラツキが少
なく、且つ光造形において型崩れなく高い形状精度が得
られ、もって鋳造用の焼失原型として好適に適用できる
ものを提供することを目的としている。
[0007] In view of the above-mentioned circumstances, the present invention provides a stereolithographic object having a hollow meat portion, which has a small variation in strength depending on the part, and which can obtain a high shape precision without collapse in stereolithography. It is an object of the present invention to provide a burnable prototype that can be suitably applied.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、本発明の請求項1に係る光造形物は、図面の参照符
号を付して示せば、設計物品の三次元モデルを多数層に
平行スライスした際の各層が光硬化性樹脂の硬化層とし
て積層形成されてなる光造形物Mであって、前記設計物
品の肉部が中空に形成され、この中空内部1が補強壁2
によって光造形方向から見てハニカム状に区切られると
共に、区切られた小空間10…同士が当該補強壁2の欠
如部3…によって連通し、且つこれら欠如部3…を介し
て前記肉部の中空内部1全体が連通状態にあることを特
徴としている。
In order to achieve the above-mentioned object, a stereolithographic object according to claim 1 of the present invention has a multi-layered three-dimensional model of a designed article as shown by reference numerals in the drawings. Is an optical molded article M in which each layer when sliced in parallel is laminated as a cured layer of a photo-curable resin, wherein the meat portion of the designed article is formed hollow, and the hollow interior 1 is a reinforcing wall 2
Are divided in a honeycomb shape when viewed from the optical molding direction, and the divided small spaces 10 communicate with each other by the lacking portions 3 of the reinforcing wall 2 and the hollow portion of the meat portion is formed through these lacking portions 3. It is characterized in that the entire interior 1 is in communication.

【0009】上記構成の光造形物Mでは、中空内部1が
補強壁2によってハニカム状に区切られているため、中
空の肉部全体が内側から均等に補強された状態となり、
鋳造用の焼失原型として鋳型材料中に埋入させた際に局
所的な変形を生じにくく、もって形状精度及び寸法精度
のよい型空間を形成できる。また、この光造形物Mの光
造形による製作においては、補強壁2によってハニカム
状に区切られた小空間10…同士が当該補強壁2の欠如
部3…によって連通し、更に中空内部0の全体も連通状
態にあるから、光造形の全段階を通して小空間10…相
互間で液圧差を生じず、表面張力等による液面の高低差
が発生せず、もって補強壁2を型崩れなく造形できる。
In the stereolithographic object M having the above structure, since the hollow interior 1 is partitioned in a honeycomb shape by the reinforcing wall 2, the entire hollow meat portion is uniformly reinforced from the inside, and
When embedded in a mold material as a burnt-out prototype for casting, local deformation is unlikely to occur, so that a mold space with good shape accuracy and dimensional accuracy can be formed. Further, in the manufacture of the optical molding M by optical molding, the small spaces 10 divided in a honeycomb shape by the reinforcing wall 2 communicate with each other by the lacking portions 3 of the reinforcing wall 2. Are in communication with each other, so that there is no difference in hydraulic pressure between the small spaces 10... Throughout the entire process of optical molding, and there is no difference in the level of the liquid surface due to surface tension or the like. .

【0010】しかして、このように中空内部1を補強壁
2によってハニカム状に区切ると共に、区切られた小空
間10…同士を当該補強壁2の欠如部3…によって連通
し、且つこれら欠如部を介して前記肉部の中空内部1全
体を連通状態とするための構成としては、特に制約はな
いが、前記補強壁2が六角形ハニカムの壁体をなす場合
において、請求項2〜4の構成が好適な具体例として挙
げられる。
Thus, the hollow interior 1 is partitioned in a honeycomb shape by the reinforcing wall 2, and the partitioned small spaces 10 are communicated with each other by the lacking portions 3 of the reinforcing wall 2, and these lacking portions are connected to each other. There is no particular limitation on the configuration for bringing the entire hollow interior 1 of the meat portion into a communication state through the intermediary, but when the reinforcing wall 2 forms a hexagonal honeycomb wall, the configuration according to claims 2 to 4 Is a preferred specific example.

【0011】すなわち、請求項2の構成では、前記六角
形を構成する3方向の壁部2a,2b,2cの内の1方
向の壁部2bを欠如した第一断面部11と、その第一断
面部11で欠如した1方向の壁部2bのみからなる第二
断面部12とが、光造形方向に沿って交互に反復して配
置してなるものとしている。また、請求項2の構成で
は、前記六角形を構成する3方向の壁部2a,2b,2
cの内の1方向の壁部2cを欠如した第一断面部13
と、その第一断面部13では欠如しない1方向の壁部2
cを欠如した第二断面部14と、これら第一及び第二断
面部13,14では欠如しない1方向の壁部2aを欠如
した第三断面部15とが、光造形方向に沿って順次に反
復して配置してなるものとしている。更に請求項3の構
成では、補強壁2によって前記小空間10…同士が隔絶
した第一断面部16と、前記六角形を構成する3方向の
壁部2a,2b,2cの内の2方向の壁部又は3方向全
部の壁部を欠如した第二断面部17a〜17dとが、光
造形方向に沿って交互に反復して配置してなるものとし
ている。
That is, in the configuration of the second aspect, the first cross-sectional portion 11 lacking the one-way wall portion 2b of the three-directional wall portions 2a, 2b, 2c constituting the hexagon, The second cross-sectional portion 12 consisting of only the one-way wall portion 2b missing in the cross-sectional portion 11 is alternately and repeatedly arranged along the stereolithography direction. Further, in the configuration of claim 2, the three-directional walls 2a, 2b, 2 constituting the hexagon.
c first section 13 lacking one-way wall 2c
And the one-way wall portion 2 which is not missing in the first section 13
c and the third cross-section 15, which lacks the one-way wall 2 a that is not absent in the first and second cross-sections 13, 14, are sequentially formed along the stereolithography direction. They are arranged repeatedly. Further, in the configuration of the third aspect, the first cross-section 16 in which the small spaces 10 are separated from each other by the reinforcing wall 2 and the three-directional wall portions 2a, 2b, and 2c forming the hexagon are formed in two directions. The wall sections or the second cross-section sections 17a to 17d lacking the wall sections in all three directions are alternately and repeatedly arranged along the stereolithography direction.

【0012】[0012]

【発明の実施の形態】以下、本発明に係る光造形物の実
施形態について、図面を参照して具体的に説明する。図
1は、本発明の光造形物を焼失原型として用いて得られ
る鋳造品Cの一例を示す。この鋳造品Cは、一面側へ膨
出するように湾曲した略矩形の厚板状であり、その一側
縁部の中央にU字状の切欠部Dを有している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of an optically molded object according to the present invention will be specifically described below with reference to the drawings. FIG. 1 shows an example of a cast product C obtained by using the stereolithographic product of the present invention as a burnout prototype. This casting C is a substantially rectangular thick plate curved so as to bulge to one surface side, and has a U-shaped notch D at the center of one side edge thereof.

【0013】図2に示す第一実施例の光造形物Mは、図
1の鋳造品Cを設計モデルとして、その切欠部D側を下
にする直立姿勢において下から上へ光造形して得られた
ものであり、全体が中空状をなしている。そして、この
光造形物Mの中空内部1は、鋳造品Cの全表面に対応す
る表面壁部4に一体化した補強壁2により、光造形方向
つまり上下方向から見て六角形ハニカム状に区切られて
いるが、図3(イ)に示す第一断面部11…と、図3
(ロ)に示す第2断面部12…とが光造形方向に沿って
交互に配置した形になっている。
The stereolithography M of the first embodiment shown in FIG. 2 is obtained by stereolithography from bottom to top in an upright posture with the cutout D side down, using the casting C of FIG. 1 as a design model. It is entirely hollow. The hollow interior 1 of the stereolithography object M is partitioned into a hexagonal honeycomb shape when viewed from the stereolithography direction, that is, the vertical direction, by the reinforcing wall 2 integrated with the surface wall portion 4 corresponding to the entire surface of the casting C. 3A shown in FIG. 3A and FIG.
The second cross-sections 12 shown in (b) are alternately arranged along the stereolithography direction.

【0014】しかして、第一断面部11では、ハニカム
の六角形を構成する補強壁2の3方向の壁部2a,2
b,2cの内、2方向の壁部2a,2bがジグザグ状に
連なって表面壁部4に連続しているが、残る1方向の壁
部2cが欠如しており、その欠如部3…によって六角形
の小空間10…同士が造形物厚み方向にのみ連通した状
態となっている。一方、第二断面部12では、第一断面
部11において欠如していた1方向の壁部2cのみが存
在し、壁部2a,2bは欠如しており、その欠如部3…
によって六角形の小空間10…の全てが連通した状態に
なっている。従って、光造形物Mの中空内部1の全体も
連通状態となっている。なお、第二断面部12の各壁部
2cは、その上下縁の左右両端部において、上下位の第
一断面部11における壁部2a,2bの屈曲部に一体化
している。
Thus, in the first section 11, the three-directional walls 2a, 2 of the reinforcing wall 2 forming the hexagon of the honeycomb are provided.
Among the b and 2c, the two-way walls 2a and 2b are connected in a zigzag manner to be continuous with the surface wall 4, but the remaining one-way wall 2c is missing. The hexagonal small spaces 10 communicate with each other only in the thickness direction of the modeled object. On the other hand, in the second section 12, only the one-way wall 2c that was missing in the first section 11 is present, and the walls 2a and 2b are missing.
, All of the hexagonal small spaces 10 communicate with each other. Accordingly, the entire hollow interior 1 of the optical molding M is also in communication. Each of the walls 2c of the second section 12 is integrated with the bent portions of the walls 2a and 2b in the upper and lower first sections 11 at the left and right ends of the upper and lower edges.

【0015】このような光造形物Mを製作するには、コ
ンピュータ上で3次元モデルを作成する際に、予め全体
が中空形状をなして前記の第一断面部11…と第二断面
部12…とが交互に配置する構造として設計し、この設
計モデルをコンピュータ上で多数層に平行スライスした
断面パターンのデータを作成し、このデータを光造形装
置のコントローラーに入力し、常法に準じて自動操作に
よる光造形を行えばよい。その光造形操作を図4に示
す。
In order to manufacture such a stereolithographic object M, when a three-dimensional model is created on a computer, the first cross section 11.. Designed as a structure in which and are alternately arranged, this design model is created on a computer to create cross-sectional pattern data that is sliced in parallel into multiple layers, and this data is input to the controller of the stereolithography machine, and the data is processed according to a standard method. What is necessary is just to perform stereolithography by automatic operation. The stereolithography operation is shown in FIG.

【0016】すなわち、造形槽内の昇降台座5の上面位
置を紫外線硬化型樹脂の如き光硬化性樹脂の溶液6の液
面6aから前記スライスした一層分の厚みに相当する深
さに設定し、液面6aにレーザービームLを最下層の断
面パターンに沿って照射することにより、該断面パター
ン形状の硬化樹脂層を形成し、次いで昇降台座5を前記
一層分の厚みだけ下降させてリコーター(図示省略)に
て先に形成した硬化樹脂層上に溶液6を行き渡らせ、同
様にレーザービームLを照射して硬化樹脂層を形成し、
以降同様にして順次一層分ずつ昇降台座5を下降させて
レーザービームLを照射することにより、最終的に同図
の仮想線で示すように硬化樹脂層が積層一体化した樹脂
モデルMを作製する。なお、図では、光造形物Mの昇降
台座5上からの取り外しを容易にするための下面側のサ
ボート部7と、中空内部1に入った液を抜くための下端
両側部の液抜き孔8,8とを、予め設計段階で設けるよ
うにしている。
That is, the upper surface position of the elevating pedestal 5 in the molding tank is set to a depth corresponding to the thickness of the sliced one from the liquid surface 6a of the solution 6 of the photocurable resin such as the ultraviolet curable resin, The liquid surface 6a is irradiated with a laser beam L along the lowermost layer cross-sectional pattern to form a cured resin layer having the cross-sectional pattern shape, and then the lifting pedestal 5 is lowered by the thickness of the one layer to form a recoater (shown in the figure). The solution 6 is spread over the previously formed cured resin layer in (omitted), and similarly irradiated with a laser beam L to form a cured resin layer,
Thereafter, similarly, by sequentially lowering the elevating pedestal 5 by one layer and irradiating the laser beam L, a resin model M in which a cured resin layer is integrally laminated as shown by a virtual line in FIG. . In the drawing, a support section 7 on the lower surface side for facilitating removal of the optical molded article M from the elevating pedestal 5 and liquid drain holes 8 on both sides at the lower end for draining the liquid entering the hollow interior 1. , 8 are provided in advance in the design stage.

【0017】この光造形物Mでは、中空内部1が補強壁
2によって六角形ハニカム状に区切られているが、例え
ば図5に示す第二断面部12の造形中においては、補強
壁2の切除部3…によって中空内部1の全体が水平方向
に連通した状態にあり、補強壁2によって区切られた小
空間10…同士は液圧が等しくなるから、これら小空間
10…同士の間で液面の高低差を生じず、もって壁部2
c…が型崩れなく精密に造形される。また、第一断面部
11の造形中には、中空内部1が水平面内において壁部
2a,2bのジグザグ状の連なりよって分画されるが、
直下にある第二断面部12での液の流通により、分画さ
れた領域間での液面の高低差を生じず、もって壁部2
a,2bが型崩れなく精密に造形されることになる。な
お、図5中の9は造形槽を示す。
In this optically shaped object M, the hollow interior 1 is partitioned into a hexagonal honeycomb by the reinforcing wall 2. For example, during the shaping of the second section 12 shown in FIG. The entire hollow interior 1 is in horizontal communication with each other by the parts 3. Since the small spaces 10 divided by the reinforcing wall 2 have the same liquid pressure, the liquid level between these small spaces 10 is equal. Of the wall 2
c ... is precisely formed without collapse. Also, during the formation of the first cross-section 11, the hollow interior 1 is fractionated by a zigzag series of the walls 2a, 2b in a horizontal plane.
Due to the flow of the liquid in the second section 12 immediately below, there is no difference in the level of the liquid surface between the divided areas, and thus the wall 2
Thus, a and 2b can be precisely formed without shape collapse. In addition, 9 in FIG. 5 indicates a modeling tank.

【0018】上記第一実施例の光造形物Mの中空内部1
は、補強壁2の壁部2a,2bが存在する第一断面部1
1と、同壁部2cのみが存在する第二断面部12とが光
造形方向に沿って交互に配置した構成であるが、該補強
壁2の切除部3…によって光造形途上での小空間10…
の間で液面の高低差を防止する上で様々な構成が可能で
ある。例えば、図6(イ)に示すにように補強壁2の壁
部2a,2cのみが存在する第一断面部13と、同
(ロ)に示すように壁部2a,2bのみが存在する第二
断面部14と、同(ハ)に示すように壁部2b,2cの
みが存在する第三断面部15とを光造形方向に沿って順
次に反復して配置する構成(第二実施例)としても、そ
の3つの断面部13〜15の合わさりによって全体的に
連通状態となるから、区切られた小空間10…同士は液
圧が等しくなって液面の高低差を生じない。
The hollow interior 1 of the stereolithographic object M of the first embodiment.
Is a first section 1 where the walls 2a and 2b of the reinforcing wall 2 are present.
1 and the second section 12 having only the wall portion 2c are alternately arranged along the stereolithography direction. However, the small space in the stereolithography process is formed by the cut-out portions 3 of the reinforcing wall 2. 10 ...
Various configurations are possible for preventing a difference in liquid level between the two. For example, as shown in FIG. 6A, the first cross-sectional portion 13 in which only the wall portions 2a and 2c of the reinforcing wall 2 exists, and the second cross-sectional portion in which only the wall portions 2a and 2b exist as shown in FIG. A configuration in which the two cross-sectional portions 14 and the third cross-sectional portion 15 having only the wall portions 2b and 2c as shown in (c) are sequentially and repeatedly arranged along the stereolithography direction (second embodiment). However, since the three cross-sections 13 to 15 combine to form a communication state as a whole, the divided small spaces 10 have the same liquid pressure and do not generate a difference in liquid level.

【0019】また、図6(ニ)に示すように全部の壁部
2a,2c,2cにて小空間10…同士が完全に分画さ
れた第一断面部16と、同図(ホ)〜(ト)に示すよう
な壁部2a〜2cの内の1方向の壁部のみを有する第二
断面部17a〜17cとを光造形方向に沿って順次に反
復して配置する構成(第三実施例)としても、第二断面
部17a〜17dでの全体的な連通状態により、第一断
面部13の造形時においても区切られた小空間10…同
士は液圧が等しくなって液面の高低差を生じない。更
に、図7に示す第四実施例の光造形物Mのように、全部
の壁部2a,2c,2cにて小空間10…同士が完全に
分画された第一断面部16と、全部の壁部2a,2c,
2cつまり補強壁2が存在しない第二断面部17dとを
光造形方向に沿って順次に反復して配置する構成でも、
やはり第二断面部17dでの全体的な連通状態により、
第一断面部13の造形時に小空間10…同士で液面の高
低差を生じることはない。
Further, as shown in FIG. 6 (d), the first section 16 in which the small spaces 10 are completely separated from each other by all the walls 2a, 2c, 2c, and FIG. (G) A configuration in which the second cross-sections 17a to 17c having only one direction wall of the walls 2a to 2c as shown in (g) are sequentially and repeatedly arranged along the stereolithography direction (third embodiment) For example, even when the first cross-section 13 is formed, the small spaces 10 that are separated from each other have the same hydraulic pressure due to the overall communication state of the second cross-sections 17a to 17d, and the liquid level is higher or lower. No difference. Further, as in the stereolithographic object M of the fourth embodiment shown in FIG. 7, the first cross section 16 in which the small spaces 10 are completely separated from each other by all the walls 2a, 2c, 2c, Walls 2a, 2c,
2c, that is, the second cross-sectional portion 17d where the reinforcing wall 2 does not exist is also sequentially and repeatedly arranged along the stereolithography direction.
Again, due to the overall communication state at the second section 17d,
There is no difference in the liquid level between the small spaces 10 when the first section 13 is formed.

【0020】しかして、このような光造形物Mは、補強
壁2に欠如部3…を有していても、中空内部1が全体と
して均一なハニカム構造をなしているから、中空形状で
軽量であるにも関わらず高い耐圧強度及び剛性を備える
上に、全体的に強度のバラツキがないから、鋳造用の焼
失原型として鋳型材料中に埋入させた際に局所的な変形
を生じにくく、もって形状精度及び寸法精度のよい型空
間を形成できる。また、補強壁2はハニカム構造によっ
て薄くても高強度が得られるから、薄い補強壁2とする
ことによって樹脂量を少なくし、焼失時の燃焼ガス量を
低減してガス圧による鋳型の亀裂や破損をより生じにく
くすることが可能である。
Thus, even if such a stereolithographic object M has a recess 3 in the reinforcing wall 2, since the hollow interior 1 has a uniform honeycomb structure as a whole, it is hollow and lightweight. Despite being high in pressure resistance and rigidity, and because there is no variation in strength as a whole, local deformation is unlikely to occur when embedded in a mold material as a burnt-out prototype for casting, Thus, a mold space having good shape accuracy and dimensional accuracy can be formed. In addition, since the reinforcing wall 2 has a high strength even if it is thin due to the honeycomb structure, the thin reinforcing wall 2 reduces the amount of resin, reduces the amount of combustion gas at the time of burning, and reduces cracks in the mold due to gas pressure. It is possible to make damage less likely to occur.

【0021】このような光造形物Mからなる焼失原型を
用いて鋳造を行うには、例えば図8(イ)に示すよう
に、まず光造形物Mにワックス等で製作した湯口21及
び押し湯22を接着させ、その全体を鋳型材料20中に
埋入させ、この埋入状態で加熱することにより、光造形
物Mの樹脂成分と湯口21及び押し湯22のワックス成
分を燃焼気化させる。これによって、鋳型材料20が硬
化すると共に、同図(ロ)に示すように、内部に焼失し
た光造形物Mと同じ形状の型空間23が形成され、この
型空間23に湯口21及び押し湯22の通路を連通した
鋳型が得られる。しかして、この鋳型の湯口21よりア
ルミ合金等の金属溶湯を型空間23内に注湯し、冷却固
化させることにより、鋳造品Cが得られることになる。
In order to perform casting using the burnt-out prototype made of such a stereolithographic object M, for example, as shown in FIG. The resin component 22 and the wax component of the sprue 21 and the feeder 22 are burned and vaporized by adhering the whole 22 and embedding the whole in the mold material 20 and heating in this embedding state. As a result, the mold material 20 is hardened, and a mold space 23 having the same shape as the burned-out optically shaped object M is formed therein, as shown in FIG. A mold communicating with 22 passages is obtained. Thus, a casting C is obtained by pouring a molten metal such as an aluminum alloy into the mold space 23 from the gate 21 of the mold and cooling and solidifying the molten metal.

【0022】上記実施例では図による理解が得られ易い
ように比較的に単純な形態の光造形物を例示したが、本
発明で対象とする光造形物の形態については全く制約は
なく、むしろ複雑な形態であるほど本発明の適用効果は
大きく現れる。また、本発明の光造形物は、鋳造用の焼
失原型として特に好適であるが、単なる形態確認用等の
他の用途に供する光造形物としても、軽量で高強度であ
る上に精密な光造形を行えることは大きな利点となる。
In the above-described embodiment, a relatively simple form of the optically formed object is illustrated so as to be easily understood by the drawings. However, there is no limitation on the form of the optically formed object which is an object of the present invention. The more complicated the configuration, the greater the application effects of the present invention. Further, the optical molded article of the present invention is particularly suitable as a burn-out prototype for casting, but is also lightweight, high-strength, and precise optical molded article provided for other uses such as simple shape confirmation. Being able to shape is a great advantage.

【0023】[0023]

【発明の効果】請求項1の発明によれば、光造形物とし
て、肉部を中空とした光造形物として、高い耐圧強度及
び剛性を備える上、部位による強度のバラツキが少な
く、且つ光造形において型崩れなく高い形状精度が得ら
れ、もって特に鋳造用の焼失原型として好適に適用でき
るものが提供される。
According to the first aspect of the present invention, an optically formed object having a hollow body portion has a high pressure resistance and rigidity, a small variation in strength depending on a portion, and an optically formed object. Thus, the present invention can provide a high shape accuracy without shape collapse, and can be suitably applied especially as a burnt-out prototype for casting.

【0024】請求項2〜4の発明によれば、上記の光造
形物として、特に型崩れなく高い形状精度で光造形でき
るものが提供される。
According to the second to fourth aspects of the present invention, there is provided, as the above-mentioned stereolithography object, a stereolithography product which can be stereolithographically formed with high shape precision without breaking down.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の一実施例に係る光造形物の設計モデ
ルとする鋳造品の斜視図である。
FIG. 1 is a perspective view of a casting as a design model of an optical molded article according to one embodiment of the present invention.

【図2】 本発明の第一実施例に係る光造形物の縦断正
面図である。
FIG. 2 is a vertical sectional front view of the optically formed object according to the first embodiment of the present invention.

【図3】 同光造形物の断面構造を示し、(イ)図は図
2のイーイ線の断面矢視図、(ロ)図は図2のローロ線
の断面矢視図である。
3A and 3B show a cross-sectional structure of the stereolithographic object, wherein FIG. 3A is a cross-sectional view taken along the line II in FIG. 2, and FIG.

【図4】 同光造形物の光造形操作を示す要部の正面図
である。
FIG. 4 is a front view of a main part showing a stereolithography operation of the stereolithography object.

【図5】 同光造形部物の第一断面部の光造形状態を示
す平面図である。
FIG. 5 is a plan view showing a stereolithography state of a first cross section of the stereolithography part.

【図6】 本発明に係る光造形物の断面構成を示し、
(イ)図は第二実施例における第一断面部、(ロ)図は
同第二断面部、(ハ)図は同第三断面部、(ニ)図は第
三実施例における第一断面部、(ホ)図〜(ト)図は同
第二断面部、をそれぞれ示す横断面図である。
FIG. 6 shows a cross-sectional configuration of a stereolithography according to the present invention;
(A) is a first section in the second embodiment, (B) is a second section, (C) is a third section, and (D) is a first section in the third embodiment. (E) to (g) are cross-sectional views respectively showing the second section.

【図7】 本発明の第四実施例に係る光造形物の縦断側
面図である。
FIG. 7 is a longitudinal sectional side view of an optical molded article according to a fourth embodiment of the present invention.

【図8】 本発明の光造形物からなる焼失鋳型を用いた
鋳造方法を示し、(イ)図は焼失鋳型を鋳型材料中に埋
入した状態の縦断面図、(ロ)図は焼失鋳型を焼失させ
て得られた鋳型の縦断面図、(ハ)図は鋳型に金属溶湯
を注湯した状態の縦断面図である。
8A and 8B show a casting method using a burn-off mold made of a stereolithographic product of the present invention, wherein FIG. 8A is a longitudinal sectional view showing a state where the burn-off mold is embedded in a mold material, and FIG. Is a vertical cross-sectional view of a mold obtained by burning off the mold, and FIG. 3C is a vertical cross-sectional view of a state in which a molten metal is poured into the mold.

【符号の説明】[Explanation of symbols]

1 中空内部 2 補強壁 2a〜2c 壁部 3 欠如部 4 表面壁部 6 光硬化性樹脂溶液 10 小空間 11,13,16 第一断面部 12,14 第二断面部 15 第三断面部 17a〜17d 第二断面部 C 鋳造品 M 光造形品 L レーザービーム DESCRIPTION OF SYMBOLS 1 Hollow interior 2 Reinforcement wall 2a-2c Wall part 3 Missing part 4 Surface wall part 6 Photocurable resin solution 10 Small space 11,13,16 First cross-section part 12,14 Second cross-section part 15 Third cross-section part 17a- 17d 2nd section C casting M stereolithography L laser beam

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 設計物品の三次元モデルを多数層に平行
スライスした際の各層が光硬化性樹脂の硬化層として積
層形成されてなる光造形物であって、 前記設計物品の肉部が中空に形成され、この中空内部が
補強壁によって光造形方向から見てハニカム状に区切ら
れると共に、区切られた小空間同士が当該補強壁の欠如
部によって連通し、且つこれら欠如部を介して前記肉部
の中空内部全体が連通状態にあることを特徴とする光造
形物。
1. A three-dimensional model of a design article, which is obtained by slicing a three-dimensional model in parallel into a plurality of layers, wherein each of the layers is formed by lamination as a cured layer of a photocurable resin. The hollow interior is partitioned by a reinforcing wall into a honeycomb shape as viewed from the stereolithography direction, and the partitioned small spaces communicate with each other through a missing portion of the reinforcing wall, and the meat is formed through the missing portion. A stereolithographic object characterized in that the entire hollow interior of the part is in communication.
【請求項2】 前記補強壁が六角形ハニカムの壁体をな
し、この六角形を構成する3方向の壁部の内の1方向の
壁部を欠如した第一断面部と、その第一断面部で欠如し
た1方向の壁部のみからなる第二断面部とが、光造形方
向に沿って交互に反復して配置してなる請求項1記載の
光造形物。
2. A first cross-section in which the reinforcing wall forms a hexagonal honeycomb wall body and one of three-way walls constituting the hexagon lacks a wall in one direction, and a first cross-section thereof. The stereolithographic object according to claim 1, wherein the second cross-sectional portion consisting of only the one-way wall portion missing in the portion is alternately and repeatedly arranged along the stereolithography direction.
【請求項3】 前記補強壁が六角形ハニカムの壁体をな
し、この六角形を構成する3方向の壁部の内の1方向の
壁部を欠如した第一断面部と、その第一断面部では欠如
しない1方向の壁部を欠如した第二断面部と、これら第
一及び第二断面部では欠如しない1方向の壁部を欠如し
た第三断面部とが、光造形方向に沿って順次に反復して
配置してなる請求項1記載の光造形物。
3. A first cross-section in which the reinforcing wall forms a hexagonal honeycomb wall body and lacks a one-way wall among three-way walls constituting the hexagon, and a first cross-section thereof. The second cross-section without the one-way wall not missing in the part and the third cross-section without the one-way wall not missing in the first and second cross-sections along the stereolithography direction The stereolithographic object according to claim 1, wherein the stereolithographic object is arranged repeatedly and sequentially.
【請求項4】 前記補強壁が六角形ハニカムの壁体をな
し、この補強壁によって前記小空間同士が隔絶した第一
断面部と、前記六角形を構成する3方向の壁部の内の2
方向の壁部又は3方向全部の壁部を欠如した第二断面部
とが、光造形方向に沿って交互に反復して配置してなる
請求項1記載の光造形物。
4. The reinforcing wall forms a hexagonal honeycomb wall body, and the reinforcing wall forms a first cross-sectional portion in which the small spaces are isolated from each other, and two of the three-directional wall portions forming the hexagon.
The stereolithography object according to claim 1, wherein a wall portion in one direction or a second cross-section portion lacking a wall portion in all three directions is alternately and repeatedly arranged along the stereolithography direction.
JP2001155109A 2001-05-24 2001-05-24 Optically molded article Pending JP2002347125A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001155109A JP2002347125A (en) 2001-05-24 2001-05-24 Optically molded article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001155109A JP2002347125A (en) 2001-05-24 2001-05-24 Optically molded article

Publications (1)

Publication Number Publication Date
JP2002347125A true JP2002347125A (en) 2002-12-04

Family

ID=18999350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001155109A Pending JP2002347125A (en) 2001-05-24 2001-05-24 Optically molded article

Country Status (1)

Country Link
JP (1) JP2002347125A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012172770A1 (en) 2011-06-17 2012-12-20 ソニー株式会社 Structure and production method therefor
EP2543497A1 (en) 2011-07-08 2013-01-09 Sony Corporation Structure and production method therefor
US9796170B2 (en) 2014-06-03 2017-10-24 Xyzprinting, Inc. Three dimensional printing method
US20170334142A1 (en) * 2014-10-27 2017-11-23 Universite Grenoble Alpes Method for three-dimensional printing
JP2019107874A (en) * 2017-12-18 2019-07-04 株式会社エンプラス Lamination molding method
JP2020026099A (en) * 2018-08-13 2020-02-20 株式会社大林組 Structure and method of forming the same
JP7343939B1 (en) 2022-12-27 2023-09-13 株式会社ダイモール Casting model and method for manufacturing a casting model

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012172770A1 (en) 2011-06-17 2012-12-20 ソニー株式会社 Structure and production method therefor
CN103608166A (en) * 2011-06-17 2014-02-26 索尼公司 Structure and production method therefor
EP2543497A1 (en) 2011-07-08 2013-01-09 Sony Corporation Structure and production method therefor
US9862138B2 (en) 2011-07-08 2018-01-09 Sony Corporation Structure and production method therefor
US9796170B2 (en) 2014-06-03 2017-10-24 Xyzprinting, Inc. Three dimensional printing method
TWI609769B (en) * 2014-06-03 2018-01-01 三緯國際立體列印科技股份有限公司 Three dimensional structure and three dimensional printing method
US20170334142A1 (en) * 2014-10-27 2017-11-23 Universite Grenoble Alpes Method for three-dimensional printing
JP2019107874A (en) * 2017-12-18 2019-07-04 株式会社エンプラス Lamination molding method
JP2020026099A (en) * 2018-08-13 2020-02-20 株式会社大林組 Structure and method of forming the same
JP7192301B2 (en) 2018-08-13 2022-12-20 株式会社大林組 Structure and method of forming structure
JP7343939B1 (en) 2022-12-27 2023-09-13 株式会社ダイモール Casting model and method for manufacturing a casting model

Similar Documents

Publication Publication Date Title
US11148360B2 (en) Methods and breakable supports for additive manufacturing
US11155071B2 (en) Methods and keyway supports for additive manufacturing
EP3205424B1 (en) Method and connecting supports for additive manufacturing
US10799951B2 (en) Method and conformal supports for additive manufacturing
JP6412180B2 (en) Method for additive manufacturing and leading edge support
CA3031220C (en) Methods using ghost supports for additive manufacturing
EP3205421A1 (en) Methods and surrounding supports for additive manufacturing
US11173668B2 (en) Methods and rail supports for additive manufacturing
EP3541606B1 (en) Method for additive manufacturing
EP0729824A1 (en) Rapid making of a prototype part or mold using stereolithography model
JP2008101256A (en) Stack-molded die and producing method therefor
JP2002347125A (en) Optically molded article
JP2008094001A (en) Laminate shaping device/method
JP2001254107A (en) Three-dimensional model structure and molding structure by photo-molding, and molding method by photo-molding
JP3541184B2 (en) Manufacturing method of mold by stereolithography
JP6688997B2 (en) Method for manufacturing three-dimensional shaped object
JP2000006249A (en) Manufacture of stereo lithographic product
JP2002346696A (en) Molding flask
JP3541185B2 (en) Manufacturing method of mold by stereolithography
JP2007077443A (en) Method for manufacturing three-dimensional structure
JP2009166422A (en) Method of forming photo-fabrication material
JPH09308942A (en) Manufacture of mask for forming mold laminated layer
JPH04351245A (en) Manufacture of pattern for casting
JP2001219245A (en) Manufacturing method of metal parts

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20031001