JP2007077443A - Method for manufacturing three-dimensional structure - Google Patents

Method for manufacturing three-dimensional structure Download PDF

Info

Publication number
JP2007077443A
JP2007077443A JP2005266141A JP2005266141A JP2007077443A JP 2007077443 A JP2007077443 A JP 2007077443A JP 2005266141 A JP2005266141 A JP 2005266141A JP 2005266141 A JP2005266141 A JP 2005266141A JP 2007077443 A JP2007077443 A JP 2007077443A
Authority
JP
Japan
Prior art keywords
modeling
shape
modeling plate
cutting
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005266141A
Other languages
Japanese (ja)
Inventor
Kenji Nishitani
賢二 西谷
Tomomi Tanaka
知実 田中
Hiroshi Kado
寛 嘉戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005266141A priority Critical patent/JP2007077443A/en
Publication of JP2007077443A publication Critical patent/JP2007077443A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Powder Metallurgy (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To accurately cut a three-dimensional structure integrated with a shaped plate with the use of a different device from a shaping device, by machining a working standard for cutting on the shaped plate beforehand. <P>SOLUTION: This manufacturing method includes machining the standard shape 11 onto the shaped plate 2, which is the working standard for integrally cutting the three-dimensional structure 1 and the shaped plate 2, by using a surface removal mechanism 8 which is installed in the shaping device and removes the surface, before charging the first metal powder 7. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、三次元形状造形物の製造方法に関し、造形プレート上の金属粉末層を光ビームで焼結硬化させることで三次元形状造形物を製造し、且つ造形途中で硬化層の表面除去加工を行う表面除去機構を備える装置において、別装置により必要形状の三次元形状造形物と造形プレートとを一体に切り出すための加工基準を設定する技術に係るものである。   The present invention relates to a method for manufacturing a three-dimensional shaped object, and manufactures a three-dimensional shaped object by sintering and hardening a metal powder layer on a modeling plate with a light beam, and surface removal processing of the cured layer in the middle of modeling. In the apparatus provided with the surface removal mechanism for performing the above-described process, the present invention relates to a technique for setting a processing standard for integrally cutting out a three-dimensionally shaped object having a required shape and a modeling plate by another apparatus.

従来、三次元形状造形物の製造方法には、例えば特許文献1に記載するものがある。これは、図4に示すように、必要形状の三次元形状造形物1を造形プレート2上に焼結造形するものであり、金属粉末層の焼結と積層とを繰り返すことにより三次元形状造形物1を焼結造形するものである。   Conventionally, for example, Patent Document 1 discloses a method for manufacturing a three-dimensional shaped object. As shown in FIG. 4, the three-dimensional shaped object 1 having a required shape is sintered on the modeling plate 2, and the three-dimensional shape modeling is performed by repeating the sintering and lamination of the metal powder layer. The object 1 is formed by sintering.

この装置において、造形プレート2は造形タンク5の内部に設けた昇降テーブル6にボルト固定しており、造形タンク5に投入された金属粉末7を焼結硬化させて造形プレート2に三次元形状造形物1の一層分だけ造形した後に、次の一層分だけ昇降テーブル6を降下させ、金属粉末層の焼結と積層とを繰り返す。その途中においてこの装置が有する表面除去加工を行う表面除去機構8を利用して、硬化層表面を所望形状に除去しつつ、最終的に造形プレート2と一体となった三次元形状造形物1を造形タンク5の内部に沈み込ませる。   In this apparatus, the modeling plate 2 is bolted to an elevating table 6 provided inside the modeling tank 5, and the metal powder 7 put into the modeling tank 5 is sintered and cured to form a three-dimensional shape on the modeling plate 2. After modeling one layer of the object 1, the lifting table 6 is lowered by the next layer, and the sintering and lamination of the metal powder layer are repeated. The three-dimensional shaped object 1 finally integrated with the modeling plate 2 is removed while removing the surface of the hardened layer into a desired shape by using the surface removing mechanism 8 that performs the surface removing process of the apparatus in the middle. Sink into the modeling tank 5.

そして、図5に示すように、必要形状の三次元形状造形物1を造形プレート2上に焼結造形する際に、切り出し用の加工基準をなす基準形状4を設けている。この加工基準は必要形状の三次元形状造形物1と造形プレート2とを一体に切り出すための基準をなすものである。   Then, as shown in FIG. 5, when the required three-dimensional shaped article 1 is sintered and shaped on the modeling plate 2, a reference shape 4 that serves as a cutting reference for cutting is provided. This processing standard serves as a reference for cutting out the three-dimensional modeled object 1 and the modeling plate 2 of a necessary shape integrally.

この加工基準を設ける理由は以下にある。三次元形状造形物1を焼結造形する際に、造形プレート2に対する三次元形状構造物1の造形位置は、造形プレート2の上に造形することから垂線方向のZ方向では必然的に決定されるが、造形プレート2が昇降テーブル6にボルト固定するだけの配置構造であるために、造形プレート2の面上の位置、つまり平面視X−Y方向の位置は定まらない。   The reason for providing this processing standard is as follows. When the three-dimensional shaped article 1 is sintered and shaped, the modeling position of the three-dimensional shaped structure 1 with respect to the modeling plate 2 is inevitably determined in the perpendicular Z direction because it is modeled on the modeling plate 2. However, since the modeling plate 2 has an arrangement structure in which the bolt is fixed to the elevating table 6, the position on the surface of the modeling plate 2, that is, the position in the XY direction in plan view is not determined.

このため造形プレート2上に加工基準として基準形状部4を三次元形状造形物1と同時に焼結造形する。この加工基準を設けることにより、焼結造形する装置において造形プレート2を正確に位置合わせする必要がなくなり、造形後に装置から造形プレート2を三次元形状造形物1と共に取り出し、別装置(フライス加工装置、ワイヤーカット装置等)により基準形状4を基にして造形プレート2から必要形状の三次元形状造形物1を一体に切り出すことが可能となる。   For this reason, the reference shape portion 4 is sintered and formed on the modeling plate 2 simultaneously with the three-dimensional shaped object 1 as a processing reference. By providing this processing standard, it is not necessary to accurately position the modeling plate 2 in the apparatus for sintering modeling, and the modeling plate 2 is taken out of the apparatus together with the three-dimensional modeled object 1 after modeling. , A wire cutting device, etc.), it is possible to integrally cut out a three-dimensional shaped object 1 having a required shape from the modeling plate 2 based on the reference shape 4.

図6は、基準形状4を用いない場合を示すものであり、造形後に予め装置にプログラミングされた輪郭Aに沿って、装置内で造形プレート2から必要形状の三次元形状造形物1を一体に切り出すものであり、焼結硬化による基準形状4を造形する必要がない。装置に組み込まれた表面除去機構を利用して切り出すので、造形プレート2の取り外しも不要で、且つ切り出し加工を高精度で行えるだけでなく、切り出し加工のための専用機構を別途設ける必要がなく、既設装置において作業が完結する。
特開2004−231997号公報
FIG. 6 shows a case where the reference shape 4 is not used, and the three-dimensional shaped object 1 of a necessary shape is integrally formed from the modeling plate 2 in the apparatus along the contour A programmed in the apparatus in advance after modeling. It is what is cut out, and it is not necessary to form the reference shape 4 by sintering hardening. Since it cuts out using the surface removal mechanism incorporated in the apparatus, it is not necessary to remove the modeling plate 2 and not only can perform the cutting process with high accuracy, but also there is no need to provide a dedicated mechanism for the cutting process, Work is completed in existing equipment.
Japanese Patent Laid-Open No. 2004-231997

しかし、上記した従来の方法において、造形プレート2に基準形状4を形成する場合には、基準形状4を造形するための焼結硬化に余分な時間が掛かってしまう。また、基準形状4も硬化層の積層による造形物であるが故に、必要形状の三次元形状造形物1の造形データ以外に基準形状4の造形データを必要とし、三次元形状造形物1の大きさによっては制約を受けることもある。   However, in the above-described conventional method, when the reference shape 4 is formed on the modeling plate 2, it takes extra time for sintering and hardening for modeling the reference shape 4. In addition, since the reference shape 4 is also a modeled object formed by stacking the hardened layers, the modeling data of the reference shape 4 is required in addition to the modeled data of the three-dimensional modeled object 1 having the required shape. Depending on the situation, there may be restrictions.

また、焼結硬化によって形成する基準形状4には、その立ち上がり面の表面に、この装置の特徴でもある、積層ピッチ(一般的に0.5mm)ごとに0.01mm程度の段が生じる。この段差があるために、基準形状4を加工基準とすることは高精度の位置決めには向かない。   Further, in the reference shape 4 formed by sintering and hardening, a step of about 0.01 mm is generated on the surface of the rising surface for each stacking pitch (generally 0.5 mm), which is also a feature of this apparatus. Due to this level difference, using the reference shape 4 as a processing reference is not suitable for highly accurate positioning.

一方、基準形状4を形成しない場合には以下の問題がある。造形工程の最終の状態において造形プレート2と一体となった三次元形状造形物1が共に造形タンク内5に沈み込んでおり、この時造形プレート2の周りは全て金属粉末7である。   On the other hand, when the reference shape 4 is not formed, there are the following problems. In the final state of the modeling process, the three-dimensional modeled object 1 integrated with the modeling plate 2 is sunk together in the modeling tank 5, and at this time, all around the modeling plate 2 is the metal powder 7.

このような造形完了直後の状況下で、この装置が有する表面除去機構8を利用して、金属粉末7中の造形プレート2から必要形状の三次元形状造形物1を一体に直接切り出すためには、造形プレート2を切り落とせるだけの工具長さが必要であり、金属粉末7中において造形プレート2を切り出せるほどの主軸剛性が必要となる。   In order to directly cut out the three-dimensional shaped object 1 having the required shape from the modeling plate 2 in the metal powder 7 directly using the surface removal mechanism 8 of this apparatus under the circumstances immediately after the completion of the modeling. The tool length that allows the modeling plate 2 to be cut off is required, and the spindle rigidity that allows the modeling plate 2 to be cut out in the metal powder 7 is required.

また、三次元形状造形物1を造形プレート2と一体に切り出すために、造形プレート2は造形タンク5内の昇降テーブル6へ直接にボルト固定するのではなく、造形プレート2と昇降テーブル6の間に切り出し用プレート9を設けて、切り出し用プレート9と昇降テーブル6をボルト固定し、造形プレート2と切り出し用プレート9をボルト固定する。   Further, in order to cut out the three-dimensional modeled object 1 integrally with the modeling plate 2, the modeling plate 2 is not directly bolted to the lifting table 6 in the modeling tank 5, but between the modeling plate 2 and the lifting table 6. The cutting plate 9 is provided, the cutting plate 9 and the lifting table 6 are bolted, and the modeling plate 2 and the cutting plate 9 are bolted.

ここで重要なのは、造形プレート2から必要形状の三次元形状造形物1を切り出す切削加工時において、造形プレート2が加工負荷でずれることなくしっかり固定されていることである。   What is important here is that the modeling plate 2 is firmly fixed without being displaced by a processing load when cutting the three-dimensional modeled object 1 having a required shape from the modeling plate 2.

しかし、切り出し用プレート9の大きさは、造形プレート2を切り出す必要があるために、必然的に造形プレート2より小さい形状をなしており、三次元形状造形物1を切り出すための切り出し範囲10によっては、切り出し用プレート9の大きさがかなり制約を受けてしまい、結果としてバランスよく造形プレート2が固定されないことがあった。   However, since it is necessary to cut out the modeling plate 2, the size of the cutting plate 9 is inevitably smaller than the modeling plate 2, and the size of the cutting plate 9 depends on the cutting range 10 for cutting out the three-dimensional modeled object 1. However, the size of the cutting plate 9 is considerably restricted, and as a result, the modeling plate 2 may not be fixed in a balanced manner.

本発明は上記した従来の課題を解決するものであり、造形完了後に金属粉末7中の造形プレート2から必要形状の三次元形状造形物1を直接に切り出さずに、造形後の造形プレート2と一体となった三次元形状造形物1を別装置によって高精度に切り出すことを前提とし、従来の焼結硬化による基準形状4を用いずに、別装置で必要となる加工基準を作成する手段を用いる三次元形状造形物の製造方法を提供することを目的とする。   The present invention solves the above-described conventional problems, and without forming the three-dimensional shaped object 1 having a required shape directly from the modeling plate 2 in the metal powder 7 after the modeling is completed, On the premise that the integrated three-dimensional shaped object 1 is cut out with high accuracy by another device, means for creating a processing standard required by another device without using the standard shape 4 by conventional sintering hardening It aims at providing the manufacturing method of the three-dimensional shape modeling thing to be used.

上記課題を解決するために、請求項1に係る本発明の三次元形状造形物の製造方法は、造形プレート上に金属粉末層を光ビームで焼結硬化させて三次元形状造形物を造形し、表面除去機構によって硬化層の表面除去加工を行う装置において、前記装置に造形プレートを設置し、前記造形プレートに前記表面除去機構による切削加工にて切り出し基準形状を形成し、前記切り出し基準形状が形成された造形プレート上に三次元形状造形物を造形し、前記三次元形状造形物が造形された造形プレートを装置から取り出し、取り出された造形プレートを前記切り出し基準形状に基づいて必要形状に切り出すものである。   In order to solve the above-mentioned problem, the method for producing a three-dimensional shaped article of the present invention according to claim 1 forms a three-dimensional shaped article by sintering and hardening a metal powder layer with a light beam on a modeling plate. In the apparatus for performing the surface removal processing of the hardened layer by the surface removal mechanism, a modeling plate is installed in the apparatus, a cutting reference shape is formed on the modeling plate by cutting by the surface removal mechanism, and the cutting reference shape is A three-dimensional shaped object is modeled on the formed modeling plate, the modeling plate on which the three-dimensional shaped object is modeled is taken out of the apparatus, and the taken-out modeling plate is cut into a necessary shape based on the cut-out reference shape. Is.

請求項2に係る本発明の三次元形状造形物の製造方法は、切り出し基準形状が三次元形状造形物の輪郭を含んで平面視四角形状の範囲を囲む形状をなすものである。   In the method for manufacturing a three-dimensional shaped object according to the second aspect of the present invention, the cut-out reference shape includes a contour of the three-dimensional shaped object and surrounds a quadrangular range in plan view.

以上のように本発明によれば、造形プレートに切り出し基準形状を造形前に切削加工で形成するので、三次元形状造形物と一緒に焼結硬化によって基準形状を造形する必要がなく、造形後に別装置によって造形プレートと一体に三次元形状造形物を切り出すので、切り出し用プレートも不要である。   As described above, according to the present invention, the reference shape is cut out on the modeling plate and formed by cutting before modeling, so there is no need to model the reference shape by sintering and hardening together with the three-dimensional modeled object. Since the three-dimensional shaped object is cut out integrally with the modeling plate by a separate apparatus, a cutting plate is also unnecessary.

また、造形プレート上に金属粉末を最初に供給する前に、この装置が有する表面除去機構による切削加工で、造形プレートの任意の位置に切り出し基準形状を切削して設けるので、切り出し基準形状の加工を高速高精度化することができ、別装置で造形プレートから必要形状の三次元形状造形物を一体に切り出す際の位置精度を向上させることができる。   In addition, before the metal powder is first supplied onto the modeling plate, the cutting reference shape is cut and provided at an arbitrary position on the modeling plate by cutting using the surface removal mechanism of this apparatus. Can be improved at high speed, and the position accuracy can be improved when a three-dimensional shaped object having a required shape is cut out integrally from the modeling plate by another apparatus.

また、請求項2記載の本発明によれば、請求項1記載の効果に加えて、加工基準となる切り出し基準形状に種類を持たせることで、別装置に応じて、その切削による切り出しに必要な基準形状を選択できるので、加工段取りの効率化が図れる。   Further, according to the present invention described in claim 2, in addition to the effect described in claim 1, it is necessary for cutting by cutting according to another apparatus by giving the cutting reference shape as a processing reference a type. Since a simple reference shape can be selected, the processing setup can be made more efficient.

以下、本発明の実施の形態を、図面を参照しながら説明する。
(実施例1)
この装置による造形方法は、基本的に従来と同様であり、その方法を図3に基づいて説明する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
Example 1
The modeling method using this apparatus is basically the same as the conventional one, and the method will be described with reference to FIG.

まず、造形タンク5の内部に設けた昇降テーブル6に造形プレート2を取付ける。そして、材料タンク12の内部に設けた昇降テーブル13の上に金属粉末7を投入し、昇降テーブル13を上昇させて持ち上げた金属粉末7をブレード14で造形タンク5に向かってスキージングする。   First, the modeling plate 2 is attached to the lifting table 6 provided in the modeling tank 5. Then, the metal powder 7 is put on the lifting table 13 provided inside the material tank 12, and the lifting / lowering table 13 is lifted and the metal powder 7 lifted is squeezed toward the modeling tank 5 by the blade 14.

その際、造形タンク5の昇降テーブル6の設定位置は、造形プレート2がブレード14の高さよりも、焼結造形させる一層分の厚みだけ下がった位置に来るように制御されている。このような状態で、先ほどのスキージングを行うことで、造形プレート2の上に金属粉末7を均一高さ(一般的には0.05mm)に供給することができる。   At this time, the setting position of the lifting table 6 of the modeling tank 5 is controlled so that the modeling plate 2 comes to a position lower than the height of the blade 14 by the thickness of one layer to be sintered. In such a state, the metal powder 7 can be supplied to the uniform height (generally 0.05 mm) on the modeling plate 2 by performing the above squeegeeing.

その後、ブレード14が元の材料タンク12へ移動した後に、レーザー光15を造形プレート2上の金属粉末7に所望する形状部に沿って照射することで、造形プレート2に金属粉末7を焼結硬化させる。   Then, after the blade 14 moves to the original material tank 12, the metal powder 7 is sintered on the modeling plate 2 by irradiating the metal powder 7 on the modeling plate 2 along the desired shape portion. Harden.

この後、二層目を造形する際も一層目と同様に、造形タンク5内の昇降テーブル6を焼結造形させる二層目の厚みだけ下げた後に、材料タンク12内の昇降テーブル13を上昇させ、ブレード14で金属粉末7をスキージングして造形プレート2の一層目の焼結硬化した面に金属粉末7を均一高さに供給し、その後に所望する形状部にレーザー照射することによって一層目に重ねて金属粉末7を焼結硬化させる。   After that, when the second layer is formed, the lift table 13 in the material tank 12 is raised after the thickness of the second layer for sintering and forming the lift table 6 in the modeling tank 5 is lowered as in the first layer. Then, the metal powder 7 is squeezed with the blade 14 to supply the metal powder 7 to the first sintered and hardened surface of the modeling plate 2 at a uniform height, and then the desired shape portion is irradiated with laser. The metal powder 7 is sintered and hardened over the eyes.

このように金属粉末7を供給する工程と、レーザー光15を所望する形状部に照射する工程を繰り返すことで、焼結硬化層を堆積させて三次元形状造形物1を製造する。また、造形途中である高さにまで焼結硬化層(一般的には0.05mmの積層を10層重ねた時点、即ち0.5mmの焼結硬化層)が形成された時点で、この装置が有する表面除去加工を行う表面除去機構8で焼結硬化層の表面を所望の形状に切削加工し、所望する三次元形状に仕上げる。   Thus, by repeating the step of supplying the metal powder 7 and the step of irradiating the desired shape portion with the laser beam 15, the sintered hardened layer is deposited and the three-dimensional shaped article 1 is manufactured. In addition, when the sintered hardened layer (generally when 10 layers of 0.05 mm layers are stacked, that is, 0.5 mm sintered hardened layer) is formed up to a height in the middle of modeling, this apparatus The surface of the sintered hardened layer is cut into a desired shape by the surface removal mechanism 8 that performs the surface removal processing of the material, and is finished into a desired three-dimensional shape.

次に、本発明の特徴的な構成について説明する。本発明においては、造形完了後に本装置が有する表面除去加工を行う表面除去機構8による切削加工によっては、造形プレート2と必要形状の三次元形状造形物1とを一体に切り出さないので、図1に示すように、造形プレート2を昇降テーブル6に直接ボルト固定する(図面上ボルトは省略している)。   Next, a characteristic configuration of the present invention will be described. In the present invention, the modeling plate 2 and the three-dimensional modeled object 1 having the required shape are not cut out integrally by cutting by the surface removing mechanism 8 that performs the surface removing process of the apparatus after the modeling is completed. 3, the modeling plate 2 is directly bolted to the lifting table 6 (the bolts are omitted in the drawing).

そして、造形プレート2の上に金属粉末7を最初に供給する前に、表面除去機構8による切削加工で造形プレート2の任意の位置を切削して切り出し基準形状11を設ける。この切り出し基準形状11において加工基準に必要となる面の大きさ(高さ)は、図1中に符号aで表しているが、一般的には3mmもあれば加工基準としての機能を果たすことができる。   And before supplying the metal powder 7 on the modeling plate 2 for the first time, the arbitrary shape of the modeling plate 2 is cut by the cutting process by the surface removal mechanism 8, and the cut-out reference | standard shape 11 is provided. The size (height) of the surface required for the machining reference in the cutout reference shape 11 is represented by the symbol “a” in FIG. 1, but generally functions as a machining reference if it is 3 mm. Can do.

そのため、表面除去機構8において切削加工に用いる工具刃長は、高さaを削れるだけの長さで十分となる。このため、先に図4で示したような工具長さは不要となり、造形装置の主軸に掛かる負荷を軽減できる。   Therefore, the tool blade length used for cutting in the surface removal mechanism 8 is sufficient to cut the height a. For this reason, the tool length as previously shown in FIG. 4 is not necessary, and the load applied to the spindle of the modeling apparatus can be reduced.

次に、造形終了後に造形プレート2と三次元形状造形物1を一体に装置外へ取り出し、別装置による切削によって切り出し基準形状11に基づいて三次元形状造形物1を造形プレート1と一体に必要形状に切り出す。
(実施例2)
図2に示すように、切り出し基準形状11は三次元形状造形物1の輪郭を含む平面視四角形状の範囲を囲んでおり、表面除去機構8による切削加工において、切り出し基準形状11で囲む範囲外の造形プレート2を全て削り出して必要とされる三次元形状造形物1の輪郭を囲う平面視四角形状を削り残すか、若しくはある設計範囲内で切り出し基準形状11を切削する。
Next, after the modeling is completed, the modeling plate 2 and the three-dimensional modeled object 1 are integrally taken out of the apparatus, and the three-dimensional modeled object 1 is integrally formed with the modeling plate 1 based on the reference shape 11 cut out by cutting with another apparatus. Cut into shapes.
(Example 2)
As shown in FIG. 2, the cutout reference shape 11 surrounds a rectangular area in plan view including the outline of the three-dimensional shaped object 1, and is outside the range surrounded by the cutout reference shape 11 in the cutting process by the surface removal mechanism 8. All the modeling plates 2 are cut out to leave a square shape in plan view surrounding the outline of the required three-dimensional modeled object 1, or the reference shape 11 is cut out within a certain design range.

図2(a)、(a’)は、必要とされる三次元形状造形物1の輪郭を含む平面視四角形状の範囲を、加工基準となるべき機能を有する基準形状11で囲むものであり、表面除去機構8による切削加工で基準形状11の外周の範囲外を全て削り出したもので、造形プレート2に基準形状11が凸状に残された構成を示している。   2 (a) and 2 (a ') surround a square range in plan view including the required outline of the three-dimensional shaped object 1 with a reference shape 11 having a function to be a processing reference. FIG. 2 shows a configuration in which the outside of the outer periphery of the reference shape 11 is cut out by cutting by the surface removal mechanism 8 and the reference shape 11 is left convex on the modeling plate 2.

図2(b)、(b’)は、必要とされる三次元形状造形物1の輪郭を含む平面視四角形状の範囲を、加工基準となるべき機能を有する基準形状11で囲むものであり、表面除去機構8による切削加工で基準形状11を設計基準で定められた幅B分だけ削り込んだ構成を示している。   2 (b) and 2 (b ′) surround a square range in plan view including the required outline of the three-dimensional shaped object 1 with a reference shape 11 having a function to be a processing reference. 3 shows a configuration in which the reference shape 11 is cut by the width B determined by the design standard by cutting by the surface removal mechanism 8.

図2(c)、(c’)は、必要とされる三次元形状造形物1の輪郭を含む平面視四角形状の範囲を、加工基準となるべき機能を有する基準形状11で囲むものであり、表面除去機構8による切削加工で基準形状11を設計基準で定められた幅で平面視L字状に形成し、三次元形状造形物1の輪郭を含む平面視四角形状の範囲の四隅に基準形状11を分散配置する構成を示している。   2 (c) and 2 (c ') surround a square range in plan view including the required outline of the three-dimensional shaped object 1 with a reference shape 11 having a function to be a processing reference. The reference shape 11 is formed in an L shape in plan view with a width determined by the design standard by cutting by the surface removal mechanism 8, and is referenced to the four corners of the quadrangular shape in plan view including the outline of the three-dimensional shaped object 1. The structure which distributes and arranges the shape 11 is shown.

本発明にかかる三次元形状構造物の製造方法は、造形プレート上に金属粉末を最初に供給する前に、この装置が有する表面除去加工を行う表面除去機構による切削加工で、造形プレートの任意の位置に切削による基準形状を設けるため、造形プレート上の金属粉末を光ビームで焼結硬化させることで三次元形状造形物を製造し、且つ造形途中で硬化層の表面除去加工を行う表面除去機構を備える装置において有用である。   The manufacturing method of the three-dimensional structure according to the present invention is a cutting process by a surface removal mechanism that performs a surface removal process of the apparatus before supplying metal powder to the modeling plate for the first time. In order to provide a reference shape by cutting at a position, a surface removal mechanism that manufactures a three-dimensional shaped object by sintering and hardening metal powder on a modeling plate with a light beam, and performs surface removal processing of the hardened layer during modeling It is useful in an apparatus comprising

本発明の実施例1における基準形状の切削加工を示す模式図The schematic diagram which shows the cutting process of the reference | standard shape in Example 1 of this invention 本発明の実施例2における各種の基準形状を示すものであり、(a)、(b)、(c)は各基準形状の平面図、(a’)、(b’)、(c’)は各基準形状の断面図The various reference | standard shape in Example 2 of this invention is shown, (a), (b), (c) is a top view of each reference | standard shape, (a '), (b'), (c ') Is a cross-sectional view of each reference shape 本発明の造形方法を示す説明図Explanatory drawing which shows the modeling method of this invention 従来の造形装置の概略断面図Schematic sectional view of a conventional modeling device 従来の焼結硬化による基準形状を示し、(a)は平面図、(b)は断面図The standard shape by the conventional sintering hardening is shown, (a) is a plan view, (b) is a sectional view 従来の焼結硬化による基準形状を用いない方法を示す平面図Plan view showing a method that does not use a standard shape by conventional sinter hardening

符号の説明Explanation of symbols

1 三次元形状造形物
2 造形プレート
4 焼結硬化による基準形状
5 造形タンク
6 昇降テーブル
7 金属粉末
8 表面除去機構
9 切り出し用プレート
11 切削による基準形状
12 材料タンク
13 昇降テーブル
14 ブレード
15 レーザー光
DESCRIPTION OF SYMBOLS 1 Three-dimensional modeled object 2 Modeling plate 4 Reference shape by sintering hardening 5 Modeling tank 6 Lifting table 7 Metal powder 8 Surface removal mechanism 9 Cutting plate 11 Reference shape by cutting 12 Material tank 13 Lifting table 14 Blade 15 Laser light

Claims (2)

造形プレート上に金属粉末層を光ビームで焼結硬化させて三次元形状造形物を造形し、表面除去機構によって硬化層の表面除去加工を行う装置において、前記装置に造形プレートを設置し、前記造形プレートに前記表面除去機構による切削加工にて切り出し基準形状を形成し、前記切り出し基準形状が形成された造形プレート上に三次元形状造形物を造形し、前記三次元形状造形物が造形された造形プレートを装置から取り出し、取り出された造形プレートを前記切り出し基準形状に基づいて必要形状に切り出すことを特徴とする三次元形状造形物の製造方法。 In a device that sinters and cures a metal powder layer on a modeling plate with a light beam to model a three-dimensional modeled object, and performs surface removal processing of the cured layer by a surface removal mechanism, the modeling plate is installed in the device, A cutting reference shape is formed on the modeling plate by cutting by the surface removal mechanism, a three-dimensional shaped object is formed on the modeling plate on which the cutting reference shape is formed, and the three-dimensional shape object is formed A method for producing a three-dimensional shaped object, wherein the modeling plate is taken out from the apparatus, and the taken-out modeling plate is cut out to a necessary shape based on the cut-out reference shape. 切り出し基準形状が三次元形状造形物の輪郭を含んで平面視四角形状の範囲を囲む形状をなすことを特徴とする請求項1に記載の三次元形状造形物の製造方法。 The method for manufacturing a three-dimensional shaped object according to claim 1, wherein the cut-out reference shape includes a contour of the three-dimensional shaped object and surrounds a rectangular area in plan view.
JP2005266141A 2005-09-14 2005-09-14 Method for manufacturing three-dimensional structure Pending JP2007077443A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005266141A JP2007077443A (en) 2005-09-14 2005-09-14 Method for manufacturing three-dimensional structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005266141A JP2007077443A (en) 2005-09-14 2005-09-14 Method for manufacturing three-dimensional structure

Publications (1)

Publication Number Publication Date
JP2007077443A true JP2007077443A (en) 2007-03-29

Family

ID=37938048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005266141A Pending JP2007077443A (en) 2005-09-14 2005-09-14 Method for manufacturing three-dimensional structure

Country Status (1)

Country Link
JP (1) JP2007077443A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011102382A1 (en) * 2010-02-17 2011-08-25 パナソニック電工株式会社 Method for producing three-dimensional shaped article and three-dimensional shaped article
JP2017144446A (en) * 2016-02-15 2017-08-24 富士通アイソテック株式会社 Metal 3d printer and shaping method using metal 3d printer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011102382A1 (en) * 2010-02-17 2011-08-25 パナソニック電工株式会社 Method for producing three-dimensional shaped article and three-dimensional shaped article
US10022797B2 (en) 2010-02-17 2018-07-17 Panasonic Intellectual Property Management Co., Ltd. Method for manufacturing three-dimensional shaped object and three-dimensional shaped object
JP2017144446A (en) * 2016-02-15 2017-08-24 富士通アイソテック株式会社 Metal 3d printer and shaping method using metal 3d printer

Similar Documents

Publication Publication Date Title
US9592554B2 (en) Method for manufacturing three-dimensional shaped object
KR101648442B1 (en) Method of manufacturing three-dimensional sculpture
US10821663B2 (en) Method for manufacturing three-dimensional shaped object
JP5539347B2 (en) Manufacturing method of three-dimensional shaped object and three-dimensional shaped object obtained therefrom
KR100574268B1 (en) Method of manufacturing a three dimensional object
KR20180019780A (en) Method for producing three-dimensionally shaped object
JP2010265530A (en) Laminate molding device for molding three-dimensionally shaped article
JPS62275734A (en) Method for forming solid
JP5456400B2 (en) Manufacturing apparatus and manufacturing method of three-dimensional shaped object
KR20180099788A (en) Method for manufacturing three-dimensional sculpture
JP2007204828A (en) Surface finishing method for three-dimensional stacked shaped article
JP2002066844A (en) Method of manufacturing discharge machining electrode using metal powder sintering type laminated molding
WO2017195773A1 (en) Method for manufacturing hybrid shaped article, and hybrid shaped article
JP2004122490A (en) Method for manufacturing three-dimensionally shaped article
JP2007077443A (en) Method for manufacturing three-dimensional structure
JP2004122489A (en) Apparatus for manufacturing three-dimensional shaped article and mold manufacturing method using same
JPH05147044A (en) Master model for tire mold
KR102127648B1 (en) Method of manufacturing salt core
JP3687672B2 (en) Surface finishing method for powder sintered parts
JPH0524118A (en) Manufacture of electrode for processing mold
JP2005097692A (en) Method for manufacturing three-dimensionally shaped article and apparatus for the same
JP3601535B1 (en) Manufacturing method of three-dimensional shaped object
JP3405357B1 (en) Manufacturing method of metal powder sintered parts
JP2004231997A (en) Method of producing three-dimensional molding
JPH1024495A (en) Method for making photo-molding

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080430