JP2018080356A5 - - Google Patents

Download PDF

Info

Publication number
JP2018080356A5
JP2018080356A5 JP2016222081A JP2016222081A JP2018080356A5 JP 2018080356 A5 JP2018080356 A5 JP 2018080356A5 JP 2016222081 A JP2016222081 A JP 2016222081A JP 2016222081 A JP2016222081 A JP 2016222081A JP 2018080356 A5 JP2018080356 A5 JP 2018080356A5
Authority
JP
Japan
Prior art keywords
electron beam
additive manufacturing
metal powder
dimensional additive
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016222081A
Other languages
Japanese (ja)
Other versions
JP2018080356A (en
JP6768459B2 (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2016222081A priority Critical patent/JP6768459B2/en
Priority claimed from JP2016222081A external-priority patent/JP6768459B2/en
Publication of JP2018080356A publication Critical patent/JP2018080356A/en
Publication of JP2018080356A5 publication Critical patent/JP2018080356A5/ja
Application granted granted Critical
Publication of JP6768459B2 publication Critical patent/JP6768459B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

造形後の造形物の表面の凹凸の例を図9、10、11に示す。図は造形物表面の断面の模様である。横方向は表面に平行方向で縦方向がそこでの凹凸の様子になる。図9は積層造形時の中央ビーム軸25に平行な面、図10は中央ビーム軸25に直交する面、図11は電子ビーム照射側に対して裏側の面である。それぞれの表面粗さは、Raは
積層造形工程の中央ビーム軸25に平行な面 29μm
積層造形工程の中央ビーム軸25に直交する面 9μm
積層造形工程の電子ビーム照射側に対して裏面 27μm
程度であった。このように、積層造形時の中央ビーム軸25に平行な面において、積層方向にそって連続した凸、あるいは連続した凹が発生することが多い。
Examples of irregularities on the surface of the modeled object after modeling are shown in FIGS. The figure shows a cross-sectional pattern on the surface of the model. The horizontal direction is parallel to the surface and the vertical direction is uneven. 9 is a surface parallel to the central beam axis 25 during additive manufacturing, FIG. 10 is a surface orthogonal to the central beam axis 25, and FIG. 11 is a surface on the back side with respect to the electron beam irradiation side. Each surface roughness Ra is 29 μm parallel to the central beam axis 25 in the additive manufacturing process
9 μm perpendicular to the central beam axis 25 in the additive manufacturing process
Back side 27μm for electron beam irradiation side of additive manufacturing process
It was about. As described above, a continuous protrusion or a continuous recess is often generated along the stacking direction on a surface parallel to the central beam axis 25 at the time of additive manufacturing.

1 電子銃(第1の電子銃)、2 電子ビーム(第1の電子ビーム)、3 電子ビーム照射室(第1の電子ビーム照射室)、4 造形ボックス、5 昇降ステージ、6 金属粉末、7 給粉機、8 造形物、81 一次造形物、82 二次造形物、11 金属粉末除去室、12 ジェットノズル、21 電子銃(第2の電子銃)、22 電子ビーム(第2の電子ビーム)、23 電子ビーム照射室(第2の電子ビーム照射室)、25 積層造形工程の中央ビーム軸、26 表面処理工程の中央ビーム軸、76 溶融池、100 電子ビーム照射機(第1の電子ビーム照射機)、110 電子ビーム照射機、300 電子ビーム照射機(第2の電子ビーム照射機、150 積層槽、200 金属粉末除去機、102 第1のゲート、103 ゲート、203 第2のゲート、



1 electron gun (first electron gun), 2 electron-beam (first electron beam), three electron beam irradiation chamber (first electron beam irradiation chamber), 4 modeling box, 5 temperature descending stage, 6 Metal powder 7 Powder feeder , 8 Modeled object, 81 Primary modeled object, 82 Secondary modeled object, 11 Metal powder removal chamber, 12 Jet nozzle, 21 Electron gun (second electron gun), 22 Electron beam (second electron Beam), 23 electron beam irradiation chamber (second electron beam irradiation chamber), 25 central beam axis of additive manufacturing process, 26 central beam axis of surface treatment process, 76 molten pool, 100 electron beam irradiation machine (first electron) Beam irradiation machine), 110 electron beam irradiation machine, 300 electron beam irradiation machine (second electron beam irradiation machine, 150 stacking tank, 200 metal powder removal machine, 102 first gate, 103 gate, 203 second gate,



Claims (20)

層状に敷き詰めた金属粉末に第1の電子ビームを照射して前記金属粉末を溶融させた後凝固して形成された金属凝固層の上に、層状に金属粉末を敷き詰め、前記第1の電子ビームを照射して、新たに敷き詰めた前記金属粉末を溶融させた後凝固した金属凝固層を形成することを繰り返して、金属が凝固した一次造形物を形成する積層造形工程と、
前記積層造形工程において凝固せずに前記一次造形物に付着した金属粉末を除去して二次造形物を形成する金属粉末除去工程と、
前記二次造形物に第2の電子ビームを照射して前記二次造形物の表面を再溶融させて造形物を形成する表面処理工程と
を有することを特徴とする三次元積層造形方法。
The metal powder spread in layers is spread on the metal solidified layer formed by irradiating the metal powder spread in layers with the first electron beam to melt the metal powder and then solidifying, and the first electron beam , And repeatedly forming a solidified metal solidified layer after the newly spread metal powder is melted, and a layered modeling process for forming a primary modeled solidified metal,
A metal powder removing step of forming a secondary shaped object by removing the metal powder adhering to the primary shaped object without solidifying in the layered shaping process;
A three-dimensional additive manufacturing method comprising: a surface treatment step of irradiating the secondary shaped object with a second electron beam to remelt the surface of the secondary shaped object to form a shaped object.
前記第1の電子ビームは、偏向させることにより前記層状に敷き詰められた金属粉末上を走査して前記金属粉末を溶融させることを特徴とする請求項1に記載の三次元積層造形方法。   2. The three-dimensional additive manufacturing method according to claim 1, wherein the first electron beam is deflected to scan the metal powder spread in a layered manner to melt the metal powder. 3. 前記第2の電子ビームの前記二次造形物に対する中央ビーム軸の方向は、前記第1の電子ビームの前記一次造形物に対する中央ビーム軸の方向とは異なることを特徴とする請求項1または2に記載の三次元積層造形方法。   The direction of the central beam axis of the second electron beam with respect to the secondary shaped article is different from the direction of the central beam axis of the first electron beam with respect to the primary shaped article. The three-dimensional additive manufacturing method described in 1. 前記金属凝固層の層の面に対して前記第1の電子ビームの中央ビーム軸が成す角度と、前記金属凝固層の層の面に対して前記第2の電子ビームの中央ビーム軸が成す角度との差が、90度から180度の範囲の角度であることを特徴とする請求項3に記載の三次元積層造形方法。   The angle formed by the central beam axis of the first electron beam with respect to the plane of the metal solidified layer and the angle formed by the central beam axis of the second electron beam with respect to the plane of the metal solidified layer. The three-dimensional layered manufacturing method according to claim 3, wherein the difference is an angle in the range of 90 degrees to 180 degrees. 前記第2の電子ビームと前記二次造形物との少なくとも一方を移動させることにより、前記第2の電子ビームが前記二次造形物の表面における前記金属凝固層の層の境界線に交差するように移動して照射することを特徴とする請求項1から4のいずれか1項に記載の三次元積層造形方法。   By moving at least one of the second electron beam and the secondary structure, the second electron beam intersects the boundary line of the metal solidified layer on the surface of the secondary structure. The three-dimensional additive manufacturing method according to any one of claims 1 to 4, wherein the three-dimensional additive manufacturing method is performed by moving to the irradiation. 前記第2の電子ビームは、偏向させることにより前記二次造形物上を走査して前記二次造形物の表面を再溶融させることを特徴とする請求項1から4のいずれか1項に記載の三次元積層造形方法。   The said 2nd electron beam is scanned on the said secondary shaped article by deflecting, and the surface of the said secondary shaped article is remelted, The any one of Claim 1 to 4 characterized by the above-mentioned. 3D additive manufacturing method. 前記積層造形工程において形成された前記金属凝固層の厚さ方向における、前記第2の電子ビームの照射により前記二次造形物の表面に形成される溶融池の幅が、予め設定した寸法以上となるよう、前記第2の電子ビームのパラメータを設定することを特徴とする請求項1から6のいずれか1項に記載の三次元積層造形方法。   The width of the molten pool formed on the surface of the secondary modeled object by irradiation with the second electron beam in the thickness direction of the solidified metal layer formed in the layered modeling process is greater than or equal to a predetermined dimension. The three-dimensional additive manufacturing method according to any one of claims 1 to 6, wherein a parameter of the second electron beam is set so as to be. 前記予め設定した寸法は、前記積層造形工程において形成された前記金属凝固層の1層の厚さの2倍であることを特徴とする請求項7に記載の三次元積層造形方法。   The three-dimensional additive manufacturing method according to claim 7, wherein the preset dimension is twice the thickness of one layer of the solidified metal layer formed in the additive manufacturing step. 前記第2の電子ビームのパラメータがビームパワーであることを特徴とする請求項7または8に記載の三次元積層造形方法。   The three-dimensional additive manufacturing method according to claim 7 or 8, wherein the parameter of the second electron beam is a beam power. 前記第2の電子ビームのパラメータがビーム径であることを特徴とする請求項7または8に記載の三次元積層造形方法。   The three-dimensional additive manufacturing method according to claim 7 or 8, wherein the parameter of the second electron beam is a beam diameter. 前記第2の電子ビームは、ビーム軸に対して垂直な方向に振動させた電子ビームであり、前記振動の幅を調整して前記溶融池の幅を制御することを特徴とする請求項7または8に記載の三次元積層造形方法。   The second electron beam is an electron beam oscillated in a direction perpendicular to a beam axis, and the width of the molten pool is controlled by adjusting the width of the oscillation. 8. The three-dimensional additive manufacturing method according to 8. 前記第2の電子ビームのビーム径は、前記積層造形工程における前記金属凝固層の1層の厚さの2倍以上であることを特徴とする請求項1から6のいずれか1項に記載の三次元積層造形方法。   The beam diameter of the second electron beam is at least twice the thickness of one layer of the solidified metal layer in the additive manufacturing process, according to any one of claims 1 to 6. Three-dimensional additive manufacturing method. 前記第2の電子ビームは、ビーム軸に対して垂直な方向に振動させた電子ビームであることを特徴とする請求項1から6のいずれか1項に記載の三次元積層造形方法。   The three-dimensional additive manufacturing method according to any one of claims 1 to 6, wherein the second electron beam is an electron beam oscillated in a direction perpendicular to a beam axis. 第1の電子ビーム照射室と第1の電子銃とを備え、前記第1の電子ビーム照射室内において、層状に敷き詰めた金属粉末に第1の電子ビームを照射して前記金属粉末を溶融させた後凝固して形成された金属凝固層の上に、層状に金属粉末を敷き詰め、前記第1の電子ビームを照射して、新たに敷き詰めた前記金属粉末を溶融させた後凝固して金属凝固層を形成することを繰り返して、金属が凝固した一次造形物を形成するように制御される第1の電子ビーム照射機と、
前記一次造形物に凝固せずに付着した金属粉末を除去して前記一次造形物を二次造形物とする金属粉末除去室を備えた金属粉末除去機と、
第2の電子ビーム照射室と第2の電子銃を備え、前記第2の電子ビーム照射室内において、前記二次造形物に第2の電子ビームを照射して前記二次造形物の表面を再溶融させて造形物を形成するよう構成された第2の電子ビーム照射機とを備えたことを特徴とする三次元積層造形装置。
A first electron beam irradiation chamber and a first electron gun are provided. In the first electron beam irradiation chamber, the metal powder spread in layers is irradiated with the first electron beam to melt the metal powder. A metal powder is spread on the metal solidified layer formed by post-solidification, and the first electron beam is irradiated to melt the newly spread metal powder, which is then solidified and solidified. A first electron beam irradiator that is controlled to form a primary shaped object in which the metal has solidified,
A metal powder removing machine provided with a metal powder removal chamber that removes the metal powder adhering to the primary modeled object without solidifying and uses the primary modeled article as a secondary modeled object;
A second electron beam irradiation chamber and a second electron gun are provided, and in the second electron beam irradiation chamber, the secondary shaped object is irradiated with a second electron beam to resurface the secondary shaped object. A three-dimensional additive manufacturing apparatus comprising: a second electron beam irradiator configured to melt and form a modeled article.
前記第1の電子ビーム照射室と前記金属粉末除去室とは、第1のゲートを介して接続されており、前記金属粉末除去室と前記第2の電子ビーム照射室とは、第2のゲートを介して接続されていることを特徴とする請求項14に記載の三次元積層造形装置。   The first electron beam irradiation chamber and the metal powder removal chamber are connected via a first gate, and the metal powder removal chamber and the second electron beam irradiation chamber are a second gate. The three-dimensional additive manufacturing apparatus according to claim 14, wherein the three-dimensional additive manufacturing apparatus is connected to the three-dimensional additive manufacturing apparatus. 前記第1の電子ビーム照射室と前記第2の電子ビーム照射室は同一の電子ビーム照射室であり、前記第1の電子銃と前記第2の電子銃は同一の電子銃であることを特徴とする請求項14に記載の三次元積層造形装置。   The first electron beam irradiation chamber and the second electron beam irradiation chamber are the same electron beam irradiation chamber, and the first electron gun and the second electron gun are the same electron gun. The three-dimensional additive manufacturing apparatus according to claim 14. 前記電子ビーム照射室と前記金属粉末除去室とはゲートを介して接続されていることを特徴とする請求項16に記載の三次元積層造形装置。   The three-dimensional additive manufacturing apparatus according to claim 16, wherein the electron beam irradiation chamber and the metal powder removal chamber are connected via a gate. 前記第2の電子ビームの前記二次造形物に対する中央ビーム軸の方向が、前記第1の電子ビームの前記一次造形物に対する中央ビーム軸の方向とは異なるように構成されていることを特徴とする請求項14から17のいずれか1項に記載の三次元積層造形装置。 The direction of the central beam axis of the second electron beam with respect to the secondary shaped article is configured to be different from the direction of the central beam axis of the first electron beam with respect to the primary shaped article. The three-dimensional layered manufacturing apparatus according to any one of claims 14 to 17. 前記第2の電子ビームのビーム径は、前記金属凝固層の1層の厚さの2倍以上であることを特徴とする請求項14から18のいずれか1項に記載の三次元積層造形装置。   19. The three-dimensional additive manufacturing apparatus according to claim 14, wherein a beam diameter of the second electron beam is twice or more a thickness of one layer of the metal solidified layer. . 前記第2の電子ビームは、ビーム軸に対して垂直な方向に振動させることを特徴とする請求項14から18のいずれか1項に記載の三次元積層造形装置。   The three-dimensional additive manufacturing apparatus according to any one of claims 14 to 18, wherein the second electron beam is vibrated in a direction perpendicular to a beam axis.
JP2016222081A 2016-11-15 2016-11-15 Three-dimensional laminated molding method and three-dimensional laminated molding equipment Active JP6768459B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016222081A JP6768459B2 (en) 2016-11-15 2016-11-15 Three-dimensional laminated molding method and three-dimensional laminated molding equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016222081A JP6768459B2 (en) 2016-11-15 2016-11-15 Three-dimensional laminated molding method and three-dimensional laminated molding equipment

Publications (3)

Publication Number Publication Date
JP2018080356A JP2018080356A (en) 2018-05-24
JP2018080356A5 true JP2018080356A5 (en) 2019-09-05
JP6768459B2 JP6768459B2 (en) 2020-10-14

Family

ID=62197542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016222081A Active JP6768459B2 (en) 2016-11-15 2016-11-15 Three-dimensional laminated molding method and three-dimensional laminated molding equipment

Country Status (1)

Country Link
JP (1) JP6768459B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116038860B (en) * 2023-02-09 2023-09-08 南京航空航天大学 Flexible modulation and curing method and device for light source manufactured by ceramic additive

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3943315B2 (en) * 2000-07-24 2007-07-11 松下電工株式会社 Manufacturing method of three-dimensional shaped object
DE10157647C5 (en) * 2001-11-26 2012-03-08 Cl Schutzrechtsverwaltungs Gmbh Method for producing three-dimensional workpieces in a laser material processing system or a stereolithography system
US8653409B1 (en) * 2004-06-23 2014-02-18 Board Of Governors For Higher Education, State Of Rhode Island And Providence Plantations Selective surface smoothing using lasers
DE102010011059A1 (en) * 2010-03-11 2011-09-15 Global Beam Technologies Ag Method and device for producing a component
JP2015168877A (en) * 2014-03-10 2015-09-28 日本電子株式会社 Three-dimentional lamination molding device and three-dimentional lamination molding method

Similar Documents

Publication Publication Date Title
US11097349B2 (en) Method and system for additive manufacturing using a light beam
EP2991818B1 (en) Method of eliminating sub-surface porosity
JP6443698B2 (en) Manufacturing method of three-dimensional shaped object
JP5599957B2 (en) Manufacturing method of three-dimensional shaped object
RU2013104192A (en) METHOD FOR PRODUCING METAL PARTS BY SELECTIVE POWDER MELTING
WO2017022226A1 (en) Method for manufacturing three-dimensionally shaped object
TW201635614A (en) 3-D patterning method using laser
JP2015199086A5 (en)
JP5612530B2 (en) Manufacturing method of three-dimensional shaped object
GB2515287A (en) An Additive Layer Manufacturing Method
JP2015030883A (en) Method and apparatus for production of three-dimensional laminate formed object
US20230191699A1 (en) Method and apparatus for producing a three-dimensional workpiece via additive layer manufacturing
JP2018080356A5 (en)
US9517506B2 (en) Laser assisted casting of cooling hole and related system
JPWO2018092841A1 (en) Manufacturing method of three-dimensional shaped object
JP6192677B2 (en) Additive manufacturing method and additive manufacturing apparatus
JP6768459B2 (en) Three-dimensional laminated molding method and three-dimensional laminated molding equipment
JP2022506643A (en) Alternating double-layer contouring and hatching for 3D manufacturing
US9636745B2 (en) Laser assisted casting of surface texture and related system
CN204912763U (en) 3d printing device
WO2018042526A1 (en) Method and device for manufacturing three-dimensional laminated molding
JP6731642B2 (en) Method for manufacturing three-dimensional shaped object
JP2020169372A (en) Method of laminate-molding three-dimensionally-shaped formed object
RU2688969C2 (en) Method of hollow coatings production at gas-powder laser welding-up with radiation scanning
JP2003313604A (en) Process for manufacturing metal powder-sintered part