JP4131260B2 - Manufacturing equipment for 3D shaped objects - Google Patents

Manufacturing equipment for 3D shaped objects Download PDF

Info

Publication number
JP4131260B2
JP4131260B2 JP2004311491A JP2004311491A JP4131260B2 JP 4131260 B2 JP4131260 B2 JP 4131260B2 JP 2004311491 A JP2004311491 A JP 2004311491A JP 2004311491 A JP2004311491 A JP 2004311491A JP 4131260 B2 JP4131260 B2 JP 4131260B2
Authority
JP
Japan
Prior art keywords
chamber
light beam
powder
atmospheric gas
sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004311491A
Other languages
Japanese (ja)
Other versions
JP2006124732A (en
Inventor
喜万 東
裕彦 峠山
諭 阿部
正孝 武南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2004311491A priority Critical patent/JP4131260B2/en
Publication of JP2006124732A publication Critical patent/JP2006124732A/en
Application granted granted Critical
Publication of JP4131260B2 publication Critical patent/JP4131260B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Description

本発明は金属粉末からなる粉末層に光ビームを照射して焼結層を形成するとともにこの焼結層を積層することで所望の三次元形状造形物を製造する三次元形状造形物の製造装置に関するものである。   The present invention forms a sintered layer by irradiating a powder layer made of metal powder with a light beam and laminates the sintered layer to produce a desired three-dimensional shaped article manufacturing apparatus. It is about.

ステージ上に形成した粉末層の所定箇所に光ビーム(指向性エネルギービーム、例えばレーザ)を照射することで該当箇所の粉末を焼結させて焼結層を形成し、この焼結層の上に粉末材料の新たな層を被覆して所定箇所に光ビームを照射することで該当箇所の粉末を焼結させて下層の焼結層と一体になった新たな焼結層を形成することを繰り返すとともに、焼結層の形成の繰り返しの合間に焼結層の積層物である造形物の外面の除去加工を行う光造形法が特開2002−115004号公報(特許文献1)に開示されている。   By irradiating a predetermined portion of the powder layer formed on the stage with a light beam (directed energy beam, for example, a laser), the powder at the corresponding portion is sintered to form a sintered layer, and on this sintered layer A new layer of powder material is coated and a light beam is irradiated on a predetermined portion to sinter the powder at the corresponding portion to repeatedly form a new sintered layer integrated with the lower sintered layer. In addition, an optical modeling method for removing an outer surface of a modeled object that is a laminate of sintered layers between repeated formations of a sintered layer is disclosed in Japanese Patent Laid-Open No. 2002-115004 (Patent Document 1). .

このものでは所定雰囲気下に保たれるチャンバー内にステージ及び粉末を供給して粉末層を形成する粉末供給手段を配置し、チャンバー外に配した光ビーム照射手段からチャンバーにおける光透過性の窓を通じて粉末層に対する光ビームの照射を行っている。   In this device, a powder supply means for supplying a stage and powder to form a powder layer in a chamber maintained in a predetermined atmosphere is arranged, and a light beam irradiation means arranged outside the chamber is passed through a light transmissive window in the chamber. The light beam is irradiated to the powder layer.

ところで粉末に高エネルギー光ビームを照射して粉末を焼結(いったん溶融させた後に凝固させる場合を含む)する際、ヒューム(粉末が金属粉末であれば金属蒸気など)が発生する。このヒュームは上昇して直上位置にある上記窓に付着したり焼き付いたりして窓を曇らせて光ビームの透過率を低下させてしまうために、焼結が安定しないとか焼結部分の密度を高くすることができなくて三次元形状造形物の強度が低下してしまうといった問題を招く。また、飛散した粉末によっても光ビームの透過率の低下を招く。   By the way, when the powder is irradiated with a high energy light beam to sinter the powder (including a case where the powder is once melted and then solidified), fumes (such as metal vapor if the powder is a metal powder) are generated. This fume rises and attaches or burns onto the window at the position directly above, causing the window to fog up and lowering the light beam transmittance, so that the sintering is unstable or the density of the sintered part is increased. This can cause a problem that the strength of the three-dimensional shaped object is lowered. In addition, the scattered powder causes a decrease in light beam transmittance.

一方、光ビームの照射時にはチャンバー内を窒素等の不活性雰囲気ガスを満たすことで、焼結させた造形物が酸化状態となることがないようにしているのであるが、上記ヒュームは雰囲気ガスを汚染して、光ビームの透過率を低下させてしまう。   On the other hand, when the light beam is irradiated, the interior of the chamber is filled with an inert atmosphere gas such as nitrogen so that the sintered model is not in an oxidized state. Contamination reduces the light beam transmittance.

チャンバー内の雰囲気ガスを循環させるとともに循環路中に集塵部を具備する循環手段を設けることで、雰囲気ガスの汚染を抑えることができるが、集塵部で捕捉することができる粒子径の点などから、造形途中に雰囲気ガスを入れ替えなくては光ビームによる焼結に悪影響が生じることがある。   By circulating the atmospheric gas in the chamber and providing a circulation means having a dust collecting part in the circulation path, contamination of the atmospheric gas can be suppressed, but the particle diameter that can be captured by the dust collecting part For example, if the atmosphere gas is not changed during the modeling, the sintering by the light beam may be adversely affected.

しかし、雰囲気ガスの入れ替えは、チャンバー内に圧縮空気を供給してそれまでチャンバー内に充填されていた不活性の雰囲気ガスを追い出し、その後、不活性ガスをチャンバー内に供給するという手順で行うことから、どうしても時間がかかるものであり、しかも雰囲気ガスの入れ替え中は光ビームの照射による焼結を行うことができないことから、造形途中に雰囲気ガスの入れ替えを行うことは、造形に要する時間を長くしてしまうことになる。
特開2002−115004号公報
However, replacement of the atmospheric gas is performed by a procedure in which compressed air is supplied into the chamber, the inert atmospheric gas previously filled in the chamber is driven out, and then the inert gas is supplied into the chamber. Therefore, since it is inevitably time consuming, and it is impossible to sinter by irradiation with a light beam during the replacement of the atmosphere gas, replacing the atmosphere gas during the modeling increases the time required for the modeling. Will end up.
JP 2002-115004 A

本発明は上記の従来の問題点に鑑みて発明したものであって、その目的とするところは雰囲気ガスの入れ替えが造形に要する時間に影響を与えることがない三次元形状造形物の製造装置を提供することを課題とするものである。   The present invention has been invented in view of the above-described conventional problems, and the object of the present invention is a three-dimensional shaped article manufacturing apparatus that does not affect the time required for modeling the replacement of the atmospheric gas. The issue is to provide.

上記課題を解決するために本発明に係る三次元形状造形物の製造装置は、チャンバー内のステージ上に形成された粉末層の所定箇所に光ビームを照射して照射位置の粉末を焼結する光ビーム照射手段と、ステージ上及び既に焼結された焼結層上に粉末層を供給する粉末供給手段と、チャンバー内に配設されて焼結層の形成の繰り返しの合間に焼結層の積層物である造形物の外面の除去加工を行う加工手段と、チャンバー内を不活性雰囲気とする給排手段とを備えている三次元形状造形物の製造装置であって、上記給排手段は加工手段による除去加工中にチャンバー内の雰囲気ガスの入れ換えを行うものであることに特徴を有している。造形に要する時間中に当初から含まれている加工手段による除去加工中に雰囲気ガスの入れ替えを行うようにしたものである。   In order to solve the above problems, the apparatus for producing a three-dimensional shaped object according to the present invention sinters a powder at an irradiation position by irradiating a predetermined position of a powder layer formed on a stage in a chamber with a light beam. A light beam irradiation means, a powder supply means for supplying a powder layer on the stage and the sintered layer that has already been sintered; A three-dimensional shaped article manufacturing apparatus comprising processing means for removing the outer surface of a modeled object that is a laminate, and supply / exhaust means for making the inside of the chamber an inert atmosphere, wherein the supply / exhaust means includes: It is characterized in that the atmosphere gas in the chamber is replaced during the removal processing by the processing means. During the time required for modeling, the atmosphere gas is replaced during the removal processing by the processing means included from the beginning.

チャンバー内の雰囲気ガスを循環させるとともに循環路中に集塵部を具備する循環手段を備えたものとしてもよく、この場合の循環手段は、チャンバー内からの吸気を行う吸気部とチャンバー内に向けて吐出する吐出部とが前記ステージの上方空間を挟んで対向配置されているもの、あるいはチャンバー内に配されて光ビーム通過空間を囲む傘内にチャンバー内からの吸気を行う吸気部を位置させているものを好適に用いることができる。   The atmospheric gas in the chamber may be circulated, and a circulation means having a dust collecting part in the circulation path may be provided. In this case, the circulation means is directed to the intake part that performs intake from the chamber and the inside of the chamber. An air intake unit that performs air intake from the inside of the chamber is positioned inside the umbrella that is disposed opposite to the upper space of the stage, or in an umbrella that is disposed in the chamber and surrounds the light beam passage space. Can be used suitably.

また上記循環手段における集塵部は、密閉されるとともに内部空間がチャンバー内と連通する容器内に配設されているものが好ましい。   Further, the dust collecting part in the circulation means is preferably one that is hermetically sealed and has an internal space disposed in a container that communicates with the inside of the chamber.

本発明は、焼結層の形成の繰り返しの合間に行われる加工手段での除去加工中に、給排手段によるチャンバー内の雰囲気ガスの入れ換えがなされるものであり、造形に要する時間中に当初から含まれている除去加工中に雰囲気ガスの入れ替えがなされることから、雰囲気ガスの入れ替えが造形に要する時間を長くしてしまうことがないものである。   In the present invention, the atmosphere gas in the chamber is replaced by the supply / exhaust means during the removal process in the processing means performed between repeated formations of the sintered layers, and the initial time is required during modeling. Since the atmosphere gas is replaced during the removal process included in the above, the replacement of the atmosphere gas does not lengthen the time required for modeling.

以下、本発明を添付図面に示す実施形態に基いて説明すると、図示例の三次元形状造形物の製造装置は、粉末層形成手段2と光ビーム照射手段3と加工手段4、そして粉末層形成手段2と除去加工用の加工手段4とを内部に納めているチャンバー5、さらにチャンバー5内の雰囲気を所定状態に保つための給排手段6で構成されているもので、上記粉末層形成手段2は、外周が囲まれた造形タンク21内をシリンダー駆動で上下に昇降するステージ22上に粉末タンク23内の金属粉末をスキージング用ブレード24で供給するとともに均すことで所定厚みΔt1の粉末層10をステージ22上に形成するものとして構成されている。   Hereinafter, the present invention will be described with reference to the embodiments shown in the accompanying drawings. The three-dimensional shaped article manufacturing apparatus in the illustrated example includes a powder layer forming unit 2, a light beam irradiation unit 3, a processing unit 4, and a powder layer forming unit. It comprises a chamber 5 in which means 2 and processing means 4 for removal processing are housed, and supply / discharge means 6 for maintaining the atmosphere in the chamber 5 in a predetermined state. 2 is a powder having a predetermined thickness Δt1 by supplying the metal powder in the powder tank 23 with a squeezing blade 24 and leveling it on a stage 22 that moves up and down by driving a cylinder in the modeling tank 21 surrounded by the outer periphery. The layer 10 is configured to be formed on the stage 22.

光ビーム照射手段3は、レーザー発振器30から出力されたレーザーをガルバノミラー31等のスキャン光学系を介して上記粉末層10に照射するものであり、チャンバー5外に配設されていて、該光ビーム照射手段3から出射された光ビームLはチャンバー5に設けられた光透過性の窓50を通じて粉末層に照射される。   The light beam irradiating means 3 irradiates the powder layer 10 with a laser output from the laser oscillator 30 via a scanning optical system such as a galvano mirror 31, and is disposed outside the chamber 5. The light beam L emitted from the beam irradiation means 3 is applied to the powder layer through a light transmissive window 50 provided in the chamber 5.

加工手段4は図示例では上記粉末層形成手段2のベース部にXY駆動機構を介して設けたミーリングヘッドで構成されている。   In the illustrated example, the processing means 4 is constituted by a milling head provided on the base portion of the powder layer forming means 2 via an XY drive mechanism.

給排手段6は、窒素源60と窒素供給弁61、圧縮空気源62,空気供給弁63、排気弁64,排気ファン65等で構成されたもので、光ビームLによる焼結中はチャンバー5内を窒素が充填された不活性雰囲気に保つ。図中66は酸素濃度計である。   The supply / exhaust means 6 includes a nitrogen source 60, a nitrogen supply valve 61, a compressed air source 62, an air supply valve 63, an exhaust valve 64, an exhaust fan 65, and the like. During the sintering by the light beam L, the chamber 5 is provided. Maintain an inert atmosphere filled with nitrogen. In the figure, 66 is an oxygen concentration meter.

このものにおける三次元形状造形物の製造は、ステージ22上に粉末タンク23から溢れさせた金属粉末をブレード24で供給すると同時にブレード24で均すことで第1層目の粉末層10を形成し、この粉末層10の硬化させたい箇所に光ビーム(レーザー)Lを照射して金属粉末を焼結させて焼結層11を形成する。   In the production of the three-dimensional shaped object in this product, the metal powder overflowed from the powder tank 23 is supplied onto the stage 22 with the blade 24 and simultaneously leveled with the blade 24 to form the first powder layer 10. Then, a portion of the powder layer 10 to be cured is irradiated with a light beam (laser) L to sinter the metal powder to form the sintered layer 11.

この後、ステージ22を少し下げて再度金属粉末を供給してブレード24で均すことで第1層目の粉末層10(と焼結層11)の上に第2層目の粉末層10を形成し、この第2層目の粉末層10の硬化させたい箇所に光ビームLを照射して粉末を焼結させて下層の焼結層11と一体化した焼結層11を形成する。   Thereafter, the stage 22 is slightly lowered, the metal powder is supplied again, and leveled by the blade 24, whereby the second powder layer 10 is formed on the first powder layer 10 (and the sintered layer 11). Then, the portion of the second powder layer 10 to be cured is irradiated with the light beam L to sinter the powder, thereby forming the sintered layer 11 integrated with the lower sintered layer 11.

ステージ22を下降させて新たな粉末層10を形成し、光ビームLを照射して所要箇所を焼結層11とする工程を繰り返すことで、焼結層の積層物として目的とする三次元形状造形物を製造するものである。光ビームLの照射経路(ハッチング経路)は、製造しようとする造形物についての三次元CADデータから予め作成しておく。すなわち、三次元CADモデルから生成したSTLデータを等ピッチ(Δt1を0.05mmとした場合、0.05mmピッチ)でスライスした各断面の輪郭形状データを用いる。   By lowering the stage 22 to form a new powder layer 10 and irradiating the light beam L to make the required portion a sintered layer 11, a desired three-dimensional shape as a laminate of the sintered layers is obtained. A model is manufactured. The irradiation path (hatching path) of the light beam L is created in advance from three-dimensional CAD data for a model to be manufactured. That is, contour shape data of each cross section obtained by slicing STL data generated from a three-dimensional CAD model at an equal pitch (0.05 mm pitch when Δt1 is 0.05 mm) is used.

そして、上記粉末層10を形成しては光ビームを照射して焼結層11を形成することを繰り返していくのであるが、焼結層11の全厚みがたとえば加工手段4であるミーリングヘッドの工具長さなどから求めた所要の値になれば、いったん加工手段4を作動させてそれまでに造形した造形物の表面を切削する。たとえば、ミーリングヘッド41の工具(ボールエンドミル)が直径1mm、有効刃長3mmで深さ3mmの切削加工が可能であり、粉末層10の厚みΔt1が0.05mmであるならば、60層の焼結層11を形成した時点で、加工手段4を作動させる。   Then, the powder layer 10 is formed and the light beam is irradiated to repeatedly form the sintered layer 11. The total thickness of the sintered layer 11 is, for example, that of the milling head that is the processing means 4. When the required value obtained from the tool length or the like is reached, the processing means 4 is operated once to cut the surface of the modeled object that has been modeled so far. For example, if the tool (ball end mill) of the milling head 41 is capable of cutting with a diameter of 1 mm, an effective blade length of 3 mm and a depth of 3 mm, and the thickness Δt1 of the powder layer 10 is 0.05 mm, 60 layers of fired When the binder layer 11 is formed, the processing means 4 is activated.

この加工手段4による切削除去加工により、造形物表面に付着した粉末による低密度表面層を除去して造形物表面をきれいな面に保つ。加工手段4による切削加工経路は、光ビームの照射経路と同様に予め三次元CADデータから作成しておく。また、この照射経路を元に、加工手段4による切削加工に要する時間Tを演算しておく。   By the cutting and removing process by the processing means 4, the low-density surface layer of the powder adhering to the surface of the modeled object is removed to keep the modeled object surface clean. The cutting path by the processing means 4 is created in advance from three-dimensional CAD data in the same manner as the light beam irradiation path. Also, based on this irradiation path, a time T required for cutting by the processing means 4 is calculated.

ここにおいて、金属粉末に光ビームを照射して焼結させる時、前述のようにヒュームHが発生し、チャンバー5内の不活性雰囲気ガスを汚染する。このために定期的に、あるいは不活性雰囲気ガスの汚染度が所定値まで高くなった時に、雰囲気ガスの入れ替えを行うのであるが、この雰囲気ガスの入れ替えは、粉末層形成手段2と光ビーム照射手段3と加工手段4並びに給排手段6の制御を司る制御装置7の制御の元に、加工手段4による加工工程中に給排手段6を作動させることで行う。   Here, when the metal powder is irradiated with a light beam and sintered, fume H is generated as described above, and the inert gas in the chamber 5 is contaminated. For this reason, the atmosphere gas is replaced periodically or when the degree of contamination of the inert atmosphere gas reaches a predetermined value. This replacement of the atmosphere gas is performed by the powder layer forming means 2 and the light beam irradiation. This is performed by operating the supply / discharge means 6 during the processing step by the processing means 4 under the control of the control device 7 that controls the means 3, the processing means 4 and the supply / discharge means 6.

すなわち、雰囲気ガスの入れ替えは、排気弁64を開いて排気ファン65を作動させることで不活性雰囲気ガスを排出すると同時に空気供給弁63を開いて圧縮空気をチャンバー5内に導入することで、汚染されている雰囲気ガスを押し出し、その後、窒素供給弁61を開いて窒素源60からの窒素をチャンバー5内に導入することで行うのであるが、チャンバー5内に窒素を導入して充満させるのに要する時間tは既知であることから、制御装置7は焼結工程から加工工程に入った時点で上記空気供給による押し出し排気動作を開始する。この排気は、図2に示すように、切削加工に要する時間Tから上記窒素導入に要する時間tを差し引いた時間T−t時間だけ行い、次いで上記の窒素導入動作を行う。従って、加工手段4による切削加工が終了した時点では、雰囲気ガス(窒素)の入れ替えが完了しているものであり、このために直ちに次の焼結工程に入ることができる。   That is, the atmosphere gas is replaced by opening the exhaust valve 64 and operating the exhaust fan 65 to discharge the inert atmosphere gas and simultaneously opening the air supply valve 63 to introduce compressed air into the chamber 5. This is done by extruding the atmospheric gas, and then opening the nitrogen supply valve 61 and introducing nitrogen from the nitrogen source 60 into the chamber 5. To introduce and fill nitrogen into the chamber 5 Since the required time t is already known, the control device 7 starts the pushing and exhausting operation by the air supply when entering the processing step from the sintering step. As shown in FIG. 2, this exhaust is performed for a time T-t that is obtained by subtracting the time t required for introducing nitrogen from the time T required for cutting, and then the above-described nitrogen introducing operation is performed. Therefore, when the cutting process by the processing means 4 is completed, the replacement of the atmospheric gas (nitrogen) is completed, so that the next sintering process can be started immediately.

図1中の90は照射ターゲット91を撮像する撮像する撮像カメラ、92は照射ターゲット91を照明する照明である。加工手段4に付設されたこれら設備は、本来は加工手段4と光ビーム照射手段3との位置合わせや光ビーム照射位置の補正を行うために設けたものであるが、雰囲気ガスの汚染度が高くなれば、撮像カメラ90で撮像した照射ターゲット91の明るさ等が変化することから、この点を元に雰囲気ガスの汚染度を検出し、汚染度が高くなれば、雰囲気ガスの入れ替えを行うようにしてもよい。   In FIG. 1, 90 is an imaging camera that captures an image of the irradiation target 91, and 92 is illumination that illuminates the irradiation target 91. These facilities attached to the processing means 4 are originally provided to align the processing means 4 with the light beam irradiation means 3 and to correct the light beam irradiation position. If it becomes higher, the brightness and the like of the irradiation target 91 imaged by the imaging camera 90 change. Therefore, the contamination level of the atmospheric gas is detected based on this point, and if the contamination level increases, the atmospheric gas is replaced. You may do it.

図3はチャンバー5内の雰囲気ガスを循環させる循環手段8を別途設けたものを示しており、この循環手段8は循環用のファン80と集塵装置81とを備えている。ヒュームHを含んでいる雰囲気ガスは上記集塵装置81を通ることでヒュームHが除去される。   FIG. 3 shows a separate circulation means 8 for circulating the atmospheric gas in the chamber 5. The circulation means 8 includes a circulation fan 80 and a dust collecting device 81. The atmospheric gas containing the fume H passes through the dust collector 81 so that the fume H is removed.

ここで、循環手段8におけるチャンバー5内の雰囲気ガスの吸気を行う吸気部85と、チャンバー5内に向けて吐出する吐出部86とは、前記ステージ22の上方空間を挟む位置に対向配置されており、吐出部86から吐出された雰囲気ガスはステージ22の上方空間を横切って吸気部85に向かうエアカーテンを構成することになる。このエアカーテンは、ヒュームHが光ビームLを透過させる窓50を汚すことを効果的に防止する。なお、上記吐出部86と吸気部85は図4に示すように窓50寄りの位置に配置してもよい。   Here, in the circulation means 8, the intake portion 85 that sucks in the atmospheric gas in the chamber 5 and the discharge portion 86 that discharges into the chamber 5 are opposed to each other at a position sandwiching the space above the stage 22. Thus, the atmospheric gas discharged from the discharge unit 86 forms an air curtain that crosses the upper space of the stage 22 and goes to the intake unit 85. This air curtain effectively prevents the fume H from fouling the window 50 through which the light beam L is transmitted. The discharge part 86 and the intake part 85 may be arranged at a position near the window 50 as shown in FIG.

循環手段8を設ける場合、図5に示すように、チャンバー5内に光ビームLの通過空間を囲む傘88を設けて、この傘88の内部に吸気部85を配置し、吐出部86を傘88の外部に配置するようにしてもよい。この時、傘88の上端は窓50の枠に近接乃至密着させ、傘88の下端は傘88の外の雰囲気ガスが傘88内に入りこむことができるように隙間を明けておく。ヒュームHは傘88内に閉じ込められてチャンバー5内の全体に広がることはなく、また吸気部85から効果的に吸い込まれて集塵されることになる。なお、この傘88は加工手段4で加工を行う際は上記位置から退避位置へ移動させることができるようになっている。   When the circulation means 8 is provided, as shown in FIG. 5, an umbrella 88 surrounding the passage space of the light beam L is provided in the chamber 5, an intake portion 85 is disposed inside the umbrella 88, and the discharge portion 86 is provided as an umbrella. You may make it arrange | position outside the 88. FIG. At this time, the upper end of the umbrella 88 is brought close to or in close contact with the frame of the window 50, and the lower end of the umbrella 88 has a gap so that atmospheric gas outside the umbrella 88 can enter the umbrella 88. The fume H is confined in the umbrella 88 and does not spread throughout the chamber 5, and is effectively sucked from the intake portion 85 and collected. The umbrella 88 can be moved from the above position to the retracted position when the processing means 4 performs the processing.

ところで、循環手段8における集塵装置81は、吸い込んだ気体の中から塵埃を捕集し、吸い込んだ気体は放出するように設計されていることから、集塵装置81そのものは気密性をさほど有しておらず、このために雰囲気ガスを循環させる循環手段8中に配置した場合、雰囲気ガスが漏れてしまうことになると同時に、循環させている雰囲気ガス中に酸素が入ってしまう虞を有している。   By the way, the dust collector 81 in the circulation means 8 is designed to collect dust from the sucked gas and to release the sucked gas. Therefore, the dust collector 81 itself has a great airtightness. For this reason, when it is arranged in the circulation means 8 for circulating the atmospheric gas, the atmospheric gas leaks, and at the same time, oxygen may enter the circulating atmospheric gas. ing.

図6はこの点に対処したものを示しており、循環用のファン80と集塵装置81とを密閉した容器85内に配置するとともに、容器85の内部空間はチャンバー5内の空間とパイプ86により連通させている。集塵装置81から雰囲気ガスが漏れてもチャンバー5内とつながった容器85内に漏れるだけであり、外部に雰囲気ガスが放出されないことから、雰囲気ガスの使用量の低減することができると同時に、チャンバー5内の不活性雰囲気を保つことができる。   FIG. 6 shows what copes with this point, and the circulation fan 80 and the dust collecting device 81 are arranged in a sealed container 85, and the internal space of the container 85 is the space in the chamber 5 and the pipe 86. Communicate with each other. Even if atmospheric gas leaks from the dust collector 81, it only leaks into the container 85 connected to the inside of the chamber 5, and since atmospheric gas is not released to the outside, it is possible to reduce the amount of atmospheric gas used, An inert atmosphere in the chamber 5 can be maintained.

図7に示すように、上記容器85内に雰囲気ガス(窒素)を供給するようにしてもよい。循環手段8におけるファン80による負圧が原因で容器85内の気体を吸い込んでも、容器85内の気体は雰囲気ガスであることから、チャンバー5内の酸素濃度が上がることがないものである。また、容器85内に雰囲気ガスを加圧気味に加えるならば、容器85として気密性がさほど高くないものを用いることができる。   As shown in FIG. 7, atmospheric gas (nitrogen) may be supplied into the container 85. Even if the gas in the container 85 is sucked in due to the negative pressure by the fan 80 in the circulation means 8, the gas in the container 85 is an atmospheric gas, so that the oxygen concentration in the chamber 5 does not increase. In addition, if atmospheric gas is added to the container 85 in a pressurized manner, a container 85 having a relatively low airtightness can be used.

なお、集塵装置81やファン80を含む循環手段8の密閉度が高ければ、上記容器85が不要であることはもちろんである。   Of course, if the degree of sealing of the circulating means 8 including the dust collector 81 and the fan 80 is high, the container 85 is unnecessary.

本発明の実施の形態の一例を示すブロック図である。It is a block diagram which shows an example of embodiment of this invention. 同上の動作の説明図である。It is explanatory drawing of operation | movement same as the above. 循環手段を設けた例を示すもので、(a)は概略水平断面図、(b)は部分縦断面図である。The example which provided the circulation means is shown, (a) is a schematic horizontal sectional view, (b) is a partial longitudinal cross-sectional view. 他例の部分縦断面図である。It is a fragmentary longitudinal cross-sectional view of another example. 別の例を示すもので、(a)は概略断面図、(b)は傘の斜視図である。FIG. 4 shows another example, in which (a) is a schematic sectional view and (b) is a perspective view of an umbrella. 循環手段の更に他例を示す断面図である。It is sectional drawing which shows the further another example of a circulation means. 循環手段の他の例を示す断面図である。It is sectional drawing which shows the other example of a circulation means.

符号の説明Explanation of symbols

2 粉末供給手段
3 光ビーム照射手段
4 加工手段
5 チャンバー
6 給排手段
2 Powder supply means 3 Light beam irradiation means 4 Processing means 5 Chamber 6 Supply / discharge means

Claims (4)

チャンバー内のステージ上に形成された粉末層の所定箇所に光ビームを照射して照射位置の粉末を焼結する光ビーム照射手段と、ステージ上及び既に焼結された焼結層上に粉末層を供給する粉末供給手段と、チャンバー内に配設されて焼結層の形成の繰り返しの合間に焼結層の積層物である造形物の外面の除去加工を行う加工手段と、チャンバー内を不活性雰囲気とする給排手段とを備えている三次元形状造形物の製造装置であって、上記給排手段は加工手段による除去加工中にチャンバー内の雰囲気ガスの入れ換えを行うものであることを特徴とする三次元形状造形物の製造装置。   Light beam irradiation means for irradiating a predetermined position of the powder layer formed on the stage in the chamber with a light beam to sinter the powder at the irradiation position, and the powder layer on the stage and on the already sintered sintered layer A powder supply means for supplying the material, a processing means for removing the outer surface of the shaped object, which is a laminate of the sintered layers, disposed between the repetitions of the formation of the sintered layers and the chamber. An apparatus for producing a three-dimensional shaped article having an active atmosphere supply / discharge means, wherein the supply / discharge means replaces the atmospheric gas in the chamber during the removal processing by the processing means. A device for producing a characteristic three-dimensional shaped object. チャンバー内の雰囲気ガスを循環させるとともに循環路中に集塵部を具備する循環手段を備えており、該循環手段はチャンバー内からの吸気を行う吸気部とチャンバー内に向けて吐出する吐出部とが前記ステージの上方空間を挟んで対向配置されていることを特徴とする請求項1記載の三次元形状造形物の製造装置。   Circulating means that circulates atmospheric gas in the chamber and has a dust collecting part in the circulation path, the circulating means includes an intake part that sucks air from the chamber, and a discharge part that discharges into the chamber The three-dimensional shaped article manufacturing apparatus according to claim 1, wherein the two are opposed to each other across the upper space of the stage. チャンバー内の雰囲気ガスを循環させるとともに循環路中に集塵部を具備する循環手段と、チャンバー内の光ビーム通過空間を囲む傘とを備えるとともに、上記循環手段はチャンバー内からの吸気を行う吸気部を傘内に位置させていることを特徴とする請求項1記載の三次元形状造形物の製造装置。   The circulation means includes a circulation means that circulates the atmospheric gas in the chamber and includes a dust collecting portion in the circulation path, and an umbrella that surrounds the light beam passage space in the chamber. The three-dimensional shaped article manufacturing apparatus according to claim 1, wherein the portion is positioned in the umbrella. 循環手段における集塵部は密閉されるとともに内部空間がチャンバー内と連通する容器内に配設されていることを特徴とする請求項2または3記載の三次元形状造形物の製造装置。   4. The three-dimensional shaped article manufacturing apparatus according to claim 2, wherein the dust collecting portion in the circulation means is sealed and the internal space is disposed in a container communicating with the inside of the chamber.
JP2004311491A 2004-10-26 2004-10-26 Manufacturing equipment for 3D shaped objects Active JP4131260B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004311491A JP4131260B2 (en) 2004-10-26 2004-10-26 Manufacturing equipment for 3D shaped objects

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004311491A JP4131260B2 (en) 2004-10-26 2004-10-26 Manufacturing equipment for 3D shaped objects

Publications (2)

Publication Number Publication Date
JP2006124732A JP2006124732A (en) 2006-05-18
JP4131260B2 true JP4131260B2 (en) 2008-08-13

Family

ID=36719753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004311491A Active JP4131260B2 (en) 2004-10-26 2004-10-26 Manufacturing equipment for 3D shaped objects

Country Status (1)

Country Link
JP (1) JP4131260B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105142826A (en) * 2013-03-13 2015-12-09 联合工艺公司 Uninteruppted filtering system for selective laser melting powder bed additive manufacturing process
KR101773062B1 (en) * 2017-01-17 2017-08-31 (주)센트롤 Three-dimensional object
DE102017115110A1 (en) 2016-07-13 2018-01-18 Sodick Co., Ltd. Layer forming device

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4925048B2 (en) * 2007-01-26 2012-04-25 パナソニック株式会社 Manufacturing method of three-dimensional shaped object
DE202008017990U1 (en) * 2007-05-30 2011-02-10 Panasonic Electric Works Co., Ltd., Kadoma-shi Lamination shaping device
GB0813241D0 (en) 2008-07-18 2008-08-27 Mcp Tooling Technologies Ltd Manufacturing apparatus and method
JP5250338B2 (en) * 2008-08-22 2013-07-31 パナソニック株式会社 Manufacturing method of three-dimensional shaped object, manufacturing apparatus thereof, and three-dimensional shaped object
JP5243934B2 (en) * 2008-12-03 2013-07-24 パナソニック株式会社 Layered modeling apparatus and layered modeling method for modeling a three-dimensional shaped object
JP5243935B2 (en) * 2008-12-03 2013-07-24 パナソニック株式会社 Additive manufacturing apparatus and additive manufacturing method
JP5364439B2 (en) * 2009-05-15 2013-12-11 パナソニック株式会社 Manufacturing method of three-dimensional shaped object
CN102574333B (en) * 2009-10-21 2015-07-29 松下电器产业株式会社 The manufacture method of three dimensional structure and manufacturing installation thereof
WO2011102382A1 (en) * 2010-02-17 2011-08-25 パナソニック電工株式会社 Method for producing three-dimensional shaped article and three-dimensional shaped article
DE202011003443U1 (en) 2011-03-02 2011-12-23 Bego Medical Gmbh Device for the generative production of three-dimensional components
PL2956261T3 (en) * 2013-02-14 2018-07-31 Renishaw Plc. Selective laser solidification apparatus and method
US9669583B2 (en) 2013-03-15 2017-06-06 Renishaw Plc Selective laser solidification apparatus and method
DE102013205724A1 (en) 2013-03-28 2014-10-02 Eos Gmbh Electro Optical Systems Method and device for producing a three-dimensional object
JP6320123B2 (en) * 2014-03-31 2018-05-09 三菱重工業株式会社 Three-dimensional laminating apparatus and three-dimensional laminating method
JP6338422B2 (en) 2014-03-31 2018-06-06 三菱重工業株式会社 3D laminating equipment
JP5721886B1 (en) 2014-06-20 2015-05-20 株式会社ソディック Additive manufacturing equipment
JP6087328B2 (en) * 2014-09-18 2017-03-01 株式会社ソディック Additive manufacturing equipment
CN105522147A (en) * 2014-09-30 2016-04-27 陈莉雅 Method and device for manufacturing three-dimensional object
JP5841649B1 (en) * 2014-10-08 2016-01-13 株式会社ソディック Additive manufacturing equipment
GB201418595D0 (en) 2014-10-20 2014-12-03 Renishaw Plc Additive manufacturing apparatus and methods
CN104493491B (en) * 2014-12-12 2017-04-12 华南理工大学 Equipment and method for single-cylinder type selective laser melting and milling composite processing
JP6058618B2 (en) * 2014-12-16 2017-01-11 株式会社ソディック Control device for additive manufacturing equipment
JP6325475B2 (en) * 2015-03-18 2018-05-16 株式会社東芝 Gas recycling apparatus, additive manufacturing apparatus, and additive manufacturing method
EP3075470A1 (en) 2015-03-31 2016-10-05 Linde Aktiengesellschaft Method for layered production of a metallic workpiece by means of laser assisted additive manufacturing
CN104959605B (en) * 2015-07-27 2017-10-10 中南大学 A kind of selective laser cladding equipment for preparing magnesium alloy artificial bone
JP5982047B1 (en) * 2015-08-31 2016-08-31 株式会社ソディック Additive manufacturing equipment
JP5982046B1 (en) * 2015-08-31 2016-08-31 株式会社ソディック Additive manufacturing equipment
DE102015119747A1 (en) * 2015-11-16 2017-05-18 Cl Schutzrechtsverwaltungs Gmbh Device for the generative production of a three-dimensional object
US10737326B2 (en) * 2016-05-19 2020-08-11 Sodick Co., Ltd. Metal 3D printer
JP6188103B1 (en) * 2016-11-16 2017-08-30 株式会社ソディック Additive manufacturing equipment
KR102233013B1 (en) * 2017-02-10 2021-03-26 휴렛-팩커드 디벨롭먼트 컴퍼니, 엘.피. Fusion module
CN107225761A (en) * 2017-08-10 2017-10-03 上海联泰科技股份有限公司 Gas circuit structure and the 3D printing equipment being applicable, Method of printing
TWI636865B (en) * 2017-09-04 2018-10-01 東台精機股份有限公司 3d printing device for recycling dust and operation method thereof
JP6410912B1 (en) 2017-11-16 2018-10-24 株式会社ソディック Additive manufacturing equipment
WO2019124115A1 (en) * 2017-12-18 2019-06-27 本田技研工業株式会社 3-dimensional molding apparatus
JP6541206B1 (en) * 2019-03-01 2019-07-10 株式会社松浦機械製作所 Method of manufacturing three-dimensional object
CN110843213A (en) * 2019-12-09 2020-02-28 安徽卓锐三维科技有限公司 Automatic feeding device for laser printing
CN112643057A (en) * 2020-12-15 2021-04-13 南京前知智能科技有限公司 Device for blowing off splashing metal particles and smoke dust and control method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19853947C1 (en) * 1998-11-23 2000-02-24 Fraunhofer Ges Forschung Process chamber for selective laser fusing of material powder comprises a raised section in the cover surface above the structure volume, in which a window is arranged for the coupling in of the laser beam
JP3551838B2 (en) * 1999-05-26 2004-08-11 松下電工株式会社 Manufacturing method of three-dimensional shaped object
JP2004277878A (en) * 2003-02-25 2004-10-07 Matsushita Electric Works Ltd Apparatus and method for manufacturing three dimensionally shaped article

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105142826A (en) * 2013-03-13 2015-12-09 联合工艺公司 Uninteruppted filtering system for selective laser melting powder bed additive manufacturing process
CN105142826B (en) * 2013-03-13 2018-01-30 联合工艺公司 Uninterrupted filtration system for selective laser melting powder bed increment manufacturing process
US10265772B2 (en) 2013-03-13 2019-04-23 United Technologies Corporation Uninteruppted filtering system for selective laser melting powder bed additive manufacturing process
DE102017115110A1 (en) 2016-07-13 2018-01-18 Sodick Co., Ltd. Layer forming device
US10471509B2 (en) 2016-07-13 2019-11-12 Sodick Co., Ltd. Lamination molding apparatus
KR101773062B1 (en) * 2017-01-17 2017-08-31 (주)센트롤 Three-dimensional object

Also Published As

Publication number Publication date
JP2006124732A (en) 2006-05-18

Similar Documents

Publication Publication Date Title
JP4131260B2 (en) Manufacturing equipment for 3D shaped objects
US9073264B2 (en) Method and apparatus for manufacturing three-dimensional shaped object
JP5250338B2 (en) Manufacturing method of three-dimensional shaped object, manufacturing apparatus thereof, and three-dimensional shaped object
JP4770862B2 (en) Manufacturing apparatus and manufacturing method of three-dimensional shaped object
US20170341143A1 (en) Method for manufacturing three-dimensional shaped object
US10029308B2 (en) Three dimensional printer
US10046393B2 (en) Three dimensional printer
JP5456379B2 (en) Manufacturing method of three-dimensional shaped object
JP5355213B2 (en) Laminate modeling equipment for modeling three-dimensional shaped objects
JP5243935B2 (en) Additive manufacturing apparatus and additive manufacturing method
JP5243934B2 (en) Layered modeling apparatus and layered modeling method for modeling a three-dimensional shaped object
JP2004277878A (en) Apparatus and method for manufacturing three dimensionally shaped article
JP5764751B2 (en) Manufacturing method and manufacturing apparatus for three-dimensional shaped object
JP6262275B2 (en) Additive manufacturing equipment
JP2002115004A (en) Method and equipment for manufacturing article with three-dimensional shape
JP2009078558A (en) Laminate shaping apparatus
JP5456400B2 (en) Manufacturing apparatus and manufacturing method of three-dimensional shaped object
JP2018035429A (en) Method for producing three-dimensional shaped article
JP2015030872A (en) Method and apparatus for production of three-dimensional laminate formed object
JP2016117919A (en) Management system of lamination molding device
JP6192677B2 (en) Additive manufacturing method and additive manufacturing apparatus
JP7150121B1 (en) Modeling program creation method, layered manufacturing method, and layered manufacturing apparatus
JP2019143224A (en) Apparatus and method for manufacturing lamination-formed object
TWI649185B (en) 3d printing device by rolling for recycling dusts and operation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080430

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080513

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4131260

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120606

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120606

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130606

Year of fee payment: 5