JP2008081840A - Metal powder for metal photofabrication and method of metal photofabrication using the same - Google Patents

Metal powder for metal photofabrication and method of metal photofabrication using the same Download PDF

Info

Publication number
JP2008081840A
JP2008081840A JP2007219066A JP2007219066A JP2008081840A JP 2008081840 A JP2008081840 A JP 2008081840A JP 2007219066 A JP2007219066 A JP 2007219066A JP 2007219066 A JP2007219066 A JP 2007219066A JP 2008081840 A JP2008081840 A JP 2008081840A
Authority
JP
Japan
Prior art keywords
powder
metal
iron
stereolithography
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007219066A
Other languages
Japanese (ja)
Other versions
JP4661842B2 (en
Inventor
Isao Fuwa
勲 不破
Satoshi Abe
諭 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2007219066A priority Critical patent/JP4661842B2/en
Publication of JP2008081840A publication Critical patent/JP2008081840A/en
Application granted granted Critical
Publication of JP4661842B2 publication Critical patent/JP4661842B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for metal photofabrication in which a three-dimensional configuration shaped item is obtained by irradiating powder layers consisting of metal powder with optical beams to thereby form sintered layers and laminating the sintered layers, where, upon the cutting-away of metal unrequired metal powder adhered to the surface of the item, cutting resistance is reduced, and the life duration of a cutting tool is prolonged. <P>SOLUTION: Metal powder containing an iron powder and at least one powder selected from the group consisting of nickel, a nickel alloy, copper, a copper alloy and graphite, and in which the iron powder is softened by being subjected to tempering treatment is used. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、金属光造形に用いる金属粉末に関する。より詳細には、本発明は、光ビームを照射して三次元形状造形物を得る金属光造形に用いられる金属粉末に関する。   The present invention relates to a metal powder used for metal stereolithography. In more detail, this invention relates to the metal powder used for the metal optical modeling which irradiates a light beam and obtains a three-dimensional shaped molded article.

従来から、(1)金属粉末から成る粉末層に光ビーム(例えばレーザ光のような指向性エネルギービーム)を照射して焼結層を形成し、(2)得られた焼結層の上に新たな粉末層を敷いて光ビームを照射して更に焼結層を形成する、ことを繰り返して三次元形状造形物を製造する金属光造形技術が知られている。この技術によれば、複雑な三次元形状造形物を短時間で製造することができる。特に、エネルギー密度の高い光ビームを照射することにより金属粉末を完全に溶融させた後に固化させることによって、焼結密度をほぼ100%の状態にできる。この高密度の造形物は、その表面を仕上げ加工して滑らかな面とすることにより、プラスチック成形用金型などに適用することができる。   Conventionally, (1) a powder layer made of metal powder is irradiated with a light beam (for example, a directional energy beam such as laser light) to form a sintered layer, and (2) on the obtained sintered layer. A metal stereolithography technique is known in which a new powder layer is laid and irradiated with a light beam to further form a sintered layer, thereby producing a three-dimensional shaped article. According to this technique, a complicated three-dimensional shaped object can be manufactured in a short time. In particular, when the metal powder is completely melted by irradiation with a light beam having a high energy density and then solidified, the sintered density can be brought to almost 100%. This high-density shaped article can be applied to a plastic molding die or the like by finishing the surface to obtain a smooth surface.

しかし、このような金属光造形の原料として用いられる金属粉末は、圧縮成形してから焼結するような他の粉末焼結に用いられる金属粉末とは異なった特性が必要である。   However, the metal powder used as a raw material for such metal stereolithography needs characteristics different from those of other metal powders used for powder sintering such as compression molding and sintering.

例えば、金属粉末の粒子径は、光ビームが照射される粉末層の厚みよりも小さくする必要がある。粒子径が小さいと、粉末の充填密度が高くなり、造形時の光ビーム吸収率も良いので焼結密度を高くすることができると共に、得られる造形物の表面粗さを小さくすることができる。その一方で、粒子径が小さすぎると、金属粉末の凝集が引き起こされ、粉末の充填密度は小さくなり、粉末層を薄く均一に敷けなくなってしまう。   For example, the particle diameter of the metal powder needs to be smaller than the thickness of the powder layer irradiated with the light beam. When the particle diameter is small, the powder packing density is high and the light beam absorptance at the time of modeling is good, so that the sintered density can be increased and the surface roughness of the resulting modeled object can be reduced. On the other hand, if the particle size is too small, the metal powder is agglomerated, the powder packing density becomes small, and the powder layer cannot be spread thinly and uniformly.

造形物の強度を高くするためには、形成する新たな焼結層と、その下層にある固化している焼結層との接合面積が広く、かつ、その密着強度が高くなければならないと同時に、隣接する固化している焼結層との接合面積も広く、密着強度が高い必要がある。   In order to increase the strength of the modeled object, the bonding area between the new sintered layer to be formed and the solidified sintered layer underneath must be wide and the adhesion strength must be high. The bonding area between the adjacent solidified sintered layers is wide and the adhesion strength needs to be high.

また、新たな焼結層の上面があまり大きく盛り上がってはならない。盛り上がり量が粉末層の厚み以上となると、次の粉末層を敷く際に障害となり、かかる次の粉末層の形成そのものが困難となってしまう。   Also, the upper surface of the new sintered layer should not rise too much. When the bulging amount is equal to or greater than the thickness of the powder layer, it becomes an obstacle when the next powder layer is laid, and the formation of the next powder layer itself becomes difficult.

ここで、金属光造形に際して光ビームが照射された金属粉末は、その一部又は全部が一旦溶融し、その後急冷凝固されて焼結層となるが、この溶融した時の濡れ性が大きいと、隣接する焼結層との接合面積が大きくなり、流動性が大きければ盛り上がりが小さくなる。従って、溶融した時の流動性が大きく、かつ、濡れ性も大きい金属粉末が望まれる。   Here, a part or all of the metal powder irradiated with the light beam at the time of metal stereolithography is once melted and then rapidly solidified to become a sintered layer. The joint area between the adjacent sintered layers is increased, and the swell is reduced if the fluidity is large. Therefore, a metal powder having high fluidity when melted and high wettability is desired.

また、金属光造形で製造される三次元形状造形物は、その造形物表面に金属粉末が付着して表面粗さを悪くし得る。従って、この三次元形状造形物を高精度なプラスチック射出成形金型等として使用するためには、造形物表面に付着した金属粉末を除去しなければならず、切削用工具などを用いて切削仕上げ等の加工を行う必要がある。硬度の高い鉄系粉末が配合された金属粉末を用いて金属光造形を実施した場合、この鉄系粉末に起因して、切削加工時に切削用工具の刃先が磨耗してしまう。特に細い溝を有する形状を切削加工する場合、小径工具で行わなければならず、工具の磨耗が引き起こされ、場合によっては刃先欠け(チッピング)や工具折れが生じてしまう。従って、切削仕上げ等の加工を行う時の加工性が良くなる金属粉末が望まれる。   In addition, a three-dimensional modeled article manufactured by metal stereolithography may deteriorate the surface roughness due to metal powder adhering to the modeled object surface. Therefore, in order to use this three-dimensional shaped object as a high-precision plastic injection mold, etc., the metal powder adhering to the surface of the object must be removed, and cutting finish using a cutting tool etc. Etc. need to be processed. When metal stereolithography is performed using a metal powder containing a high-hardness iron-based powder, the cutting edge of the cutting tool is worn during the cutting process due to the iron-based powder. In particular, when cutting a shape having a narrow groove, it must be performed with a small-diameter tool, causing wear of the tool, and in some cases, cutting edge chipping (chipping) or tool breakage occurs. Therefore, a metal powder that improves workability when processing such as cutting finish is desired.

また、得られた三次元形状造形物の外観に大きな割れが存在してはならない。特に、三次元形状造形物を射出成形金型として用いる場合、その内部に流体(冷却水)を流すことなどを考慮すると、造形物の内部組織にマイクロクラックが無いことが望まれる。   Moreover, a big crack must not exist in the external appearance of the obtained three-dimensional shape molded article. In particular, when a three-dimensional shaped object is used as an injection mold, it is desired that the internal structure of the shaped object is free of microcracks in consideration of flowing a fluid (cooling water) inside the object.

このような事情に鑑み、本出願人は特許文献1に示されるように、鉄系粉末(クロムモリブデン鋼、合金工具鋼)と、ニッケル、ニッケル系合金、銅、及び銅系合金からなる群から選ばれる1種類以上の非鉄系粉末とを含む金属光造形用金属粉末を提案している。また、本出願人は、特許文献2に示されるように、鉄系粉末(クロムモリブデン鋼)と、ニッケルまたは及びニッケル系合金の粉末と、銅または及び銅系合金の粉末と黒鉛粉末からなる金属光造形用の混合粉末も提案している。クロムモリブデン鋼等は、その強度や靭性の点から用いている。銅及び銅系合金粉末は濡れ性及び流動性の点から用いている。また、ニッケル及びニッケル系合金粉末は強度及び加工性の点から用いている。更に、黒鉛粉末は光ビームの吸収率及びマイクロクラック低減の点から用いている。   In view of such circumstances, as shown in Patent Document 1, the present applicant is from a group consisting of iron-based powder (chrome molybdenum steel, alloy tool steel), nickel, nickel-based alloy, copper, and copper-based alloy. The metal powder for metal stereolithography containing one or more types of non-ferrous powder selected is proposed. In addition, as shown in Patent Document 2, the applicant of the present invention is a metal composed of iron-based powder (chromium molybdenum steel), nickel or nickel-based alloy powder, copper or copper-based alloy powder, and graphite powder. Proposed mixed powder for stereolithography. Chromium molybdenum steel and the like are used in terms of strength and toughness. Copper and copper-based alloy powders are used in terms of wettability and fluidity. Nickel and nickel-based alloy powder are used in terms of strength and workability. Further, the graphite powder is used from the viewpoint of light beam absorptivity and microcrack reduction.

しかしながら、これら特許文献1及び特許文献2に示されるような金属光造形用金属粉末であっても、金属光造形で得られる造形物の表面に硬い鉄系粉末が付着することに起因して、切削による表面仕上げ時に切削抵抗が大きくなり工具寿命が短くなってしまう問題があり、その一方で、工具寿命を長くしようとすれば、切削速度を遅くしなければならず、加工に時間がかかってしまうという問題があった。
特開2001−152204号公報 特開2004−277877号公報
However, even if it is the metal powder for metal stereolithography as shown in these Patent Documents 1 and 2, due to the fact that the hard iron-based powder adheres to the surface of the modeled object obtained by metal stereolithography, When cutting the surface, there is a problem that the cutting resistance increases and the tool life is shortened. On the other hand, if the tool life is to be lengthened, the cutting speed must be slowed down and the processing takes time. There was a problem that.
JP 2001-152204 A JP 2004-277877 A

本発明は、上記の問題を解決するためになされたものである。即ち、本発明の目的は、造形物の表面に付着した不要な金属粉末を切削除去するに際して、その切削抵抗を小さくでき、用いられる切削工具の寿命を延ばすことを可能にする金属光造形用金属粉末を提供することである。   The present invention has been made to solve the above problems. That is, the object of the present invention is to provide a metal stereolithography metal that can reduce cutting resistance and extend the life of a cutting tool to be used when cutting and removing unnecessary metal powder adhered to the surface of a modeled object. To provide powder.

上記目的を達成するために、本発明では、金属粉末からなる粉末層に光ビームを照射して焼結層を形成すると共に、前記焼結層を積層することで三次元形状造形物を得る金属光造形に用いられる金属光造形用金属粉末であって、前記金属粉末は、鉄系粉末と、ニッケル、ニッケル系合金、銅、銅系合金、及び黒鉛から成る群から選ばれる1種類以上の粉末とを含んで成り、前記鉄系粉末が焼き鈍し処理されていることを特徴とする金属光造形用金属粉末が提供される。本発明の金属光造形用金属粉末は、鉄系粉末が焼き鈍し処理されて軟らかくなっていることを特徴の1つとしている。尚、本明細書で用いる「焼き鈍し処理」とは、鉄系粉末を或る温度に加熱して適当な時間保った後、冷却(好ましくはゆっくりと冷却)する処理を一般に指しており、「焼鈍(しょうどん)」または「アニーリング」とも呼ぶことができるものである。   In order to achieve the above object, in the present invention, a metal layer is formed by irradiating a powder layer made of metal powder with a light beam to form a sintered layer and laminating the sintered layer to obtain a three-dimensional shaped object. Metal powder for metal stereolithography used for stereolithography, wherein the metal powder is one or more powders selected from the group consisting of iron-based powders, nickel, nickel-based alloys, copper, copper-based alloys, and graphite A metal powder for metal stereolithography is provided, wherein the iron-based powder is annealed. One feature of the metal powder for metal stereolithography of the present invention is that the iron-based powder is annealed and softened. As used herein, “annealing treatment” generally refers to a treatment in which an iron-based powder is heated to a certain temperature and maintained for a suitable time and then cooled (preferably slowly cooled). (Sododon) "or" annealing ".

本発明の金属光造形用金属粉末において、鉄系粉末と、ニッケル、ニッケル系合金、銅、銅系合金、及び黒鉛から成る群から選ばれる1種類以上の粉末とは混合(好ましくは均一に混合)されて成ることが好ましい。また、本発明の金属光造形用金属粉末において、金属粉末は、鉄系粉末と、ニッケル及びニッケル系合金粉末の両方又はいずれか一方と、銅及び銅系合金粉末の両方又はいずれか一方と、黒鉛粉末とを含んで成ることが好ましい。   In the metal stereolithographic metal powder of the present invention, the iron-based powder and one or more powders selected from the group consisting of nickel, nickel-based alloy, copper, copper-based alloy, and graphite are mixed (preferably uniformly mixed). ). Moreover, in the metal stereolithography metal powder of the present invention, the metal powder is an iron-based powder, both nickel and nickel-based alloy powder or both, copper and copper-based alloy powder or both, It preferably comprises graphite powder.

ある好適な態様において、鉄系粉末は、減圧下、真空下または不活性雰囲気下において、600〜700℃の温度に保持された後に徐冷または冷却することによって焼き鈍しされている。この場合、鉄系粉末の平均粒子径が5〜50μmであることが好ましい。   In a preferred embodiment, the iron-based powder is annealed by being slowly cooled or cooled after being maintained at a temperature of 600 to 700 ° C. under reduced pressure, vacuum or inert atmosphere. In this case, the average particle size of the iron-based powder is preferably 5 to 50 μm.

焼き鈍し処理される鉄系粉末はアトマイズ粉末(噴霧粉末)であってよい。即ち、焼き鈍し処理される鉄系粉末がアトマイズ法(例えば水アトマイズ法)で製造された粉末であってよい。   The iron-based powder to be annealed may be atomized powder (sprayed powder). That is, the iron-based powder to be annealed may be a powder produced by an atomizing method (for example, a water atomizing method).

本発明では、上述の金属光造形用金属粉末を用いた金属光造形法も提供される。かかる本発明の金属光造形法は、上述の金属光造形用金属粉末からなる粉末層に光ビームを照射して焼結層を形成する工程と、前記焼結層の積層により形成した造形物の表面部及び不要部分の両方又はいずれか一方の切削除去を行う工程と、を繰り返すことにより三次元形状造形物を得る方法である。   In this invention, the metal stereolithography method using the above-mentioned metal powder for metal stereolithography is also provided. The metal stereolithography method of the present invention includes a step of forming a sintered layer by irradiating a powder layer composed of the metal powder for metal stereolithography described above with a light beam, and a model formed by stacking the sintered layers. It is a method of obtaining a three-dimensional shaped object by repeating the step of cutting and removing both or any one of the surface portion and the unnecessary portion.

本発明の金属光造形用金属粉末では、鉄系粉末が焼き鈍し処理されて軟らかくなっているので、金属光造形で得られた造形物表面に付着する金属粉末に起因する切削抵抗が小さくなる。つまり、造形物の表面に付着した不要な金属粉末の切削除去に際して、その切削抵抗を小さくできるので、用いられる切削工具の寿命を延ばすことができる。尚、ここでいう「切削工具」とは、金属光造形に用いられる一般的な切削工具のことを指している。   In the metal stereolithography metal powder of the present invention, the iron-based powder is annealed and softened, so that the cutting resistance due to the metal powder adhering to the surface of the molded article obtained by metal stereolithography is reduced. That is, when cutting and removing unnecessary metal powder adhering to the surface of the modeled object, the cutting resistance can be reduced, so that the life of the cutting tool used can be extended. The “cutting tool” here refers to a general cutting tool used for metal stereolithography.

特に、金属粉末が、鉄系粉末と、ニッケル及びニッケル系合金粉末の両方又はいずれか一方と、銅及び銅系合金粉末の両方又はいずれか一方と、黒鉛粉末とを含んで成る場合では、得られる三次元形状造形物の焼結密度が高密度となり得る。   In particular, when the metal powder comprises iron-based powder, nickel and / or nickel-based alloy powder, copper and / or copper-based alloy powder, and graphite powder, The sintered density of the resulting three-dimensional shaped object can be high.

鉄系粉末(好ましくは平均粒子径が5〜50μm)が、減圧下、真空下または不活性雰囲気下において、600〜700℃の温度に保持された後に徐冷または冷却されることによって焼き鈍し処理されている場合、鉄系粉末同士が焼き鈍し処理に際して融着しないので、金属光造形用の金属粉末として特に好適に用いることができる。   An iron-based powder (preferably having an average particle diameter of 5 to 50 μm) is annealed by being slowly cooled or cooled after being maintained at a temperature of 600 to 700 ° C. under reduced pressure, vacuum or inert atmosphere. In this case, since the iron-based powders are not fused during the annealing process, they can be particularly suitably used as a metal powder for metal stereolithography.

また、本発明では、鉄系粉末が比較的硬いアトマイズ粉末であっても、かかる粉末を焼き鈍し処理して用いるので、結果的に軟らかくされ、金属光造形で得られた造形物表面に付着する金属粉末に起因する切削抵抗を小さくすることができる。つまり、比較的硬いアトマイズ粉末を金属光造形の原料として用いる場合であっても、造形物の表面に付着した不要な金属粉末の切削除去に際して、用いられる切削工具の寿命を延ばすことができる。   Further, in the present invention, even if the iron-based powder is a relatively hard atomized powder, the powder is annealed and used, so that the metal is softened as a result and adheres to the surface of the molded object obtained by metal stereolithography. Cutting resistance resulting from the powder can be reduced. That is, even when a relatively hard atomized powder is used as a raw material for metal stereolithography, it is possible to extend the life of the cutting tool used when removing unnecessary metal powder adhering to the surface of the modeled object.

以下では、図面を参照にして本発明をより詳細に説明する。まず、本発明の金属光造形用金属粉末が使用される金属光造形複合加工について説明し、その後、本発明の金属光造形用金属粉末の説明を行う。   Hereinafter, the present invention will be described in more detail with reference to the drawings. First, the metal optical modeling complex processing in which the metal powder for metal optical modeling of the present invention is used will be described, and then the metal powder for metal optical modeling of the present invention will be described.

[金属光造形用金属粉末が使用される金属光造形複合加工]
本発明の金属光造形用金属粉末を使用して金属光造形法が実施される金属光造形複合加工について図1を参照して説明する。図1は、金属光造形複合加工を行なう金属光造形複合加工機1の構成を示す。金属光造形複合加工機1は、金属粉末を所定の厚みの層に敷く粉末層形成手段2と、光ビームLを発し、光ビームLを任意の位置に照射する焼結層形成手段3と、造形物の周囲を削る除去手段4とを備えている。粉末層形成手段2は、上下に昇降する昇降テーブル20と、昇降テーブル20の上に配され造形物の土台となる造形用ベース(図3に示す)と、造形用ベースに金属粉末の粉末層22を敷くスキージング用ブレード23とを有している。焼結層形成手段3は、光ビームL(指向性エネルギービーム、例えばレーザー)を発する光ビーム発信器30と、光ビームLを粉末層22の上にスキャニングするガルバノミラー31とを有している。除去手段4は、造形物の周囲を削るミーリングヘッド40と、ミーリングヘッド40を切削箇所に移動させるXY駆動機構41とを有している。
[Metal stereolithography combined processing using metal stereolithography powder]
The metal stereolithography combined processing in which the metal stereolithography method is performed using the metal stereolithography metal powder of the present invention will be described with reference to FIG. FIG. 1 shows a configuration of a metal stereolithography composite processing machine 1 that performs metal stereolithography composite processing. The metal stereolithography composite processing machine 1 includes a powder layer forming means 2 for laying a metal powder in a layer having a predetermined thickness, a sintered layer forming means 3 for emitting a light beam L and irradiating the light beam L to an arbitrary position, The removal means 4 which scrapes the circumference | surroundings of a molded article is provided. The powder layer forming means 2 includes an elevating table 20 that moves up and down, a modeling base (shown in FIG. 3) that is placed on the elevating table 20 and serves as a foundation of a model, and a powder layer of metal powder on the modeling base. And a squeezing blade 23 on which 22 are laid. The sintered layer forming means 3 includes a light beam transmitter 30 that emits a light beam L (directional energy beam, for example, a laser), and a galvanometer mirror 31 that scans the light beam L onto the powder layer 22. . The removing unit 4 includes a milling head 40 that cuts the periphery of the modeled object, and an XY drive mechanism 41 that moves the milling head 40 to a cutting location.

金属光造形複合加工機1の動作を図2及び図3を参照して説明する。図2は、金属光造形複合加工機1の動作のフローを示し、図3は、金属光造形複合加工機1の動作を示す。   The operation of the metal stereolithography composite processing machine 1 will be described with reference to FIGS. FIG. 2 shows a flow of the operation of the metal stereolithography composite processing machine 1, and FIG. 3 shows the operation of the metal stereolithography composite processing machine 1.

金属光造形複合加工機1の動作は、金属粉末を敷く粉末層形成ステップ(S1)と、粉末層22に光ビームLを照射して焼結層24を形成する焼結層形成ステップ(S2)と、造形物の表面を切削する除去ステップ(S3)とから構成されている。粉末層形成ステップ(S1)では、最初に昇降テーブル20を矢印Z方向にΔt1下げる(S11)。造形用ベース21に金属粉末を供給し(S12)、スキージング用ブレード23を、矢印A方向に移動させ、供給された金属粉末を造形用ベース21上にならして、所定厚み矢印Δt1の粉末層22を形成する(S13)。次に、焼結層形成ステップ(S2)に移行し、光ビーム発信器30から光ビームLを発し(S21)、光ビームLをガルバノミラー31によって粉末層22上の任意の位置にスキャニングし(S22)、金属粉末を溶融し、焼結させて造形用ベース21と一体化した焼結層24を形成する(S23)。   The operation of the metal stereolithography composite processing machine 1 includes a powder layer forming step (S1) for spreading metal powder, and a sintered layer forming step (S2) for forming the sintered layer 24 by irradiating the powder layer 22 with the light beam L. And a removal step (S3) for cutting the surface of the modeled object. In the powder layer forming step (S1), the elevating table 20 is first lowered by Δt1 in the arrow Z direction (S11). The metal powder is supplied to the modeling base 21 (S12), the squeezing blade 23 is moved in the direction of arrow A, the supplied metal powder is leveled on the modeling base 21, and the powder having the predetermined thickness arrow Δt1 The layer 22 is formed (S13). Next, the process proceeds to the sintered layer forming step (S2), where a light beam L is emitted from the light beam transmitter 30 (S21), and the light beam L is scanned to an arbitrary position on the powder layer 22 by the galvanometer mirror 31 ( S22) The metal powder is melted and sintered to form a sintered layer 24 integrated with the modeling base 21 (S23).

焼結層24の厚みがミーリングヘッド40の工具長さ等から求めた所定の厚みになるまで粉末層形成ステップ(S1)と焼結層形成ステップ(S2)とを繰り返し、焼結層24を積層する。   The powder layer forming step (S1) and the sintered layer forming step (S2) are repeated until the thickness of the sintered layer 24 reaches a predetermined thickness obtained from the tool length of the milling head 40, and the sintered layer 24 is laminated. To do.

そして、積層した焼結層24の厚みが所定の厚みになると、除去ステップ(S3)に移行し、ミーリングヘッド40を駆動させる(S31)。XY駆動機構41によってミーリングヘッド40を矢印X及び矢印Y方向に移動させ、焼結層24が積層した造形物の表面を切削する(S32)。そして、三次元形状造形物の造形が終了していない場合では、粉末層形成ステップ(S1)へ戻る。こうして、S1乃至S3を繰り返して更なる焼結層24を積層することで、三次元形状造形物を製造する。   And when the thickness of the laminated | stacked sintered layer 24 becomes predetermined thickness, it transfers to a removal step (S3) and drives the milling head 40 (S31). The milling head 40 is moved in the directions of arrows X and Y by the XY drive mechanism 41 to cut the surface of the shaped object on which the sintered layer 24 is laminated (S32). Then, when the modeling of the three-dimensional shaped object has not been completed, the process returns to the powder layer forming step (S1). Thus, a three-dimensional shaped object is manufactured by repeating S1 to S3 and laminating a further sintered layer 24.

焼結層形成ステップ(S2)における光ビームLの照射経路と、除去ステップ(S3)における切削加工経路は、予め三次元CADデータから作成しておく。この時、等高線加工を適用して加工経路を決定する。そして、除去ステップ(S3)に移行する焼結層24の厚みは、造形物の形状に応じて変動させる。造形物の形状が傾斜しているときは所定の厚みより薄い時点において、除去ステップ(S3)に移行することで、滑らかな表面を得ることができる。   The irradiation path of the light beam L in the sintered layer forming step (S2) and the cutting path in the removal step (S3) are created in advance from three-dimensional CAD data. At this time, a machining path is determined by applying contour line machining. And the thickness of the sintered layer 24 which transfers to a removal step (S3) is changed according to the shape of a molded article. When the shape of the modeled object is inclined, a smooth surface can be obtained by shifting to the removal step (S3) at a time point when the shape is thinner than a predetermined thickness.

[金属光造形用金属粉末]
次に、本発明の金属光造形用金属粉末について説明する。本発明の金属光造形用金属粉末は、鉄系粉末と、ニッケル、ニッケル系合金、銅、銅系合金、及び黒鉛から成る群から選ばれる1種類以上の粉末とを含んで成る。
[Metal powder for metal stereolithography]
Next, the metal powder for metal stereolithography of the present invention will be described. The metal stereolithographic metal powder of the present invention comprises iron-based powder and one or more powders selected from the group consisting of nickel, nickel-based alloy, copper, copper-based alloy, and graphite.

鉄系粉末としては、特に制限されるわけではないが、クロムモリブデン鋼粉末、炭素工具鋼粉末、ダイス鋼粉末、高速度工具鋼粉末などを挙げることができる。炭素含有量の多い鉄系粉末は、急冷によりマルテンサイト組織になって硬度が高くなり、焼き戻しにより硬度が低下する。鉄系粉末がクロムモリブデン鋼粉末または工具鋼の粉末である場合には、表面の切削性が良好となるだけでなく、得られる造形物が高強度・高硬度となり得る。かかる鉄系粉末の個々の粒子の形状は特に制限はなく、例えば、球形状、楕円体形状または多面体形状(例えば立方体形状)等であってよい。かかる鉄系粉末の平均粒子径は、好ましくは2〜100μm、より好ましくは5〜50μm、更に好ましくは10〜30μmである(尚、平均粒子径が5μmよりも小さいと凝集が生じやすくなる。また、金属光造形に際して形成される粉末層の厚みは一般的には約50μm程度である)。ここで、「粒子径」とは、粒子のあらゆる方向における長さのうち最大となる長さを実質的に意味しており、「平均粒子径」とは、粒子の電子顕微鏡写真または光学顕微鏡写真に基づいてある個数の粒子の粒子径を測定し、その数平均として算出したものを実質的に意味している。   Examples of the iron-based powder include, but are not limited to, chromium molybdenum steel powder, carbon tool steel powder, die steel powder, and high-speed tool steel powder. An iron-based powder with a high carbon content has a martensite structure due to rapid cooling and increases in hardness, and the hardness decreases due to tempering. When the iron-based powder is a chromium molybdenum steel powder or a tool steel powder, not only the surface machinability is improved, but the resulting molded article can have high strength and high hardness. The shape of the individual particles of the iron-based powder is not particularly limited, and may be, for example, a spherical shape, an ellipsoid shape, or a polyhedral shape (for example, a cubic shape). The average particle size of the iron-based powder is preferably 2 to 100 μm, more preferably 5 to 50 μm, and still more preferably 10 to 30 μm. (If the average particle size is smaller than 5 μm, aggregation tends to occur. The thickness of the powder layer formed during metal stereolithography is generally about 50 μm). Here, the “particle diameter” substantially means the maximum length among the lengths in all directions of the particle, and the “average particle diameter” means an electron micrograph or an optical micrograph of the particle. The particle diameter of a certain number of particles is measured based on the above, and the value calculated as the number average is substantially meant.

かかる鉄系粉末は、後述で詳細に説明するように焼き鈍し処理に付して用い、軟らかくされるので、鉄系粉末がアトマイズ法(例えば水アトマイズ法)で製造された比較的硬いアトマイズ粉末であってもよい。   Such an iron-based powder is used after being annealed and softened as will be described in detail later. Therefore, the iron-based powder is a relatively hard atomized powder produced by an atomizing method (for example, a water atomizing method). May be.

「ニッケル、ニッケル系合金、銅、銅系合金、及び黒鉛から成る群から選ばれる1種類以上の粉末」における「ニッケル系合金」としては、制限するわけではないが、ニッケルと、シリコン、ボロンおよびモリブデンからなる群から選ばれる少なくとも1種類の金属とから成る合金が挙げられる。同様に、「銅系合金」としては、制限するわけではないが、銅と、マンガン、リンおよびスズからなる群から選ばれる少なくとも1種類の金属とから成る合金が挙げられる。「鉄系粉末」と同様、かかる粉末の個々の粒子の形状も特に制限はなく、例えば、球形状、楕円体形状または多面体形状(例えば立方体形状)等であってよい。また、「鉄系粉末」と同様、「ニッケル」、「ニッケル系合金」、「銅」、「銅系合金」および/または「黒鉛」の平均粒子径は、好ましくは2〜100μm、より好ましくは5〜50μm、更に好ましくは10〜30μmである。ここでいう「粒子径」も、粒子のあらゆる方向における長さのうち最大となる長さを実質的に意味しており、「平均粒子径」とは、粒子の電子顕微鏡写真または光学顕微鏡写真に基づいてある個数の粒子の粒子径を測定し、その数平均として算出したものを実質的に意味している。   “Nickel-based alloy” in “one or more powders selected from the group consisting of nickel, nickel-based alloy, copper, copper-based alloy, and graphite” is not limited, but nickel, silicon, boron and An alloy composed of at least one metal selected from the group consisting of molybdenum is mentioned. Similarly, the “copper-based alloy” includes, but is not limited to, an alloy composed of copper and at least one metal selected from the group consisting of manganese, phosphorus and tin. Similarly to the “iron-based powder”, the shape of the individual particles of the powder is not particularly limited, and may be, for example, a spherical shape, an ellipsoidal shape, or a polyhedral shape (for example, a cubic shape). Further, like “iron powder”, the average particle diameter of “nickel”, “nickel alloy”, “copper”, “copper alloy” and / or “graphite” is preferably 2 to 100 μm, more preferably It is 5-50 micrometers, More preferably, it is 10-30 micrometers. The term “particle diameter” as used herein substantially means the maximum length among the lengths in all directions of the particle, and the “average particle diameter” refers to an electron micrograph or an optical micrograph of the particle. Based on the measurement, the particle diameter of a certain number of particles is measured, and the value calculated as the number average is substantially meant.

「鉄系粉末」および「ニッケル、ニッケル系合金、銅、銅系合金、及び黒鉛から成る群から選ばれる1種類以上の粉末」の製造法は、特に制限はなく、一般的な粉末製造法、例えば、アトマイズ法(ガスアトマイズ法、水アトマイズ法、遠心力アトマイズ法、プラズマアトマイズ法など)、回転電極法(REP法)、機械的プロセス(例えば粉砕法、メカニカルアロイング法など)、化学的プロセス(酸化物還元法、塩化物還元法など)を用いることができる。また、当然のことながら、かかる製造法で予め製造された市販の粉末をそのまま用いてもよい。   The production method of “iron-based powder” and “one or more powders selected from the group consisting of nickel, nickel-based alloy, copper, copper-based alloy, and graphite” is not particularly limited, and is a general powder production method. For example, atomization method (gas atomization method, water atomization method, centrifugal atomization method, plasma atomization method, etc.), rotating electrode method (REP method), mechanical process (eg, pulverization method, mechanical alloying method, etc.), chemical process ( An oxide reduction method, a chloride reduction method, or the like can be used. Needless to say, a commercially available powder produced in advance by such a production method may be used as it is.

焼き鈍し処理に起因した金属光造形物の表面の切削性の改善の効果は、金属粉末の組成の割合(配合割合)の影響を特に受けないので、本発明の金属粉末に含まれる各種粉末の割合(配合割合)は特に制限はない。ただし一例を挙げると、「鉄系粉末の割合」は、金属光造形用金属粉末を基準として、好ましくは40〜95重量%、より好ましくは60〜90重量%であり、「ニッケル、ニッケル系合金、銅、銅系合金、及び黒鉛から成る群から選ばれる1種類以上の粉末の割合」は、金属光造形用金属粉末を基準として、好ましくは5〜60重量%、より好ましくは10〜40重量%である。   Since the effect of improving the machinability of the surface of the metal stereolithography resulting from the annealing treatment is not particularly affected by the proportion of the metal powder (mixing proportion), the proportion of various powders contained in the metal powder of the present invention (Mixing ratio) is not particularly limited. However, to give an example, the “ratio of iron-based powder” is preferably 40 to 95% by weight, more preferably 60 to 90% by weight, based on the metal powder for metal stereolithography. The ratio of one or more kinds of powders selected from the group consisting of copper, copper-based alloys, and graphite "is preferably 5 to 60% by weight, more preferably 10 to 40% by weight, based on the metal powder for metal stereolithography. %.

金属粉末が、本願発明に従って、鉄系粉末と、ニッケル、ニッケル系合金、銅、銅系合金、及び黒鉛からなる群から選ばれる1種類以上の粉末とが混合されたものであれば、金属光造形物は、表面の切削性が良好となる他に、強度等においても良好となるが、ここで「ニッケル、ニッケル系合金、銅、銅系合金、及び黒鉛から成る群から選ばれる1種類以上の粉末」が「ニッケル及びニッケル系合金粉末の両方又はいずれか一方と、銅及び銅系合金粉末の両方又はいずれか一方と、黒鉛粉末とから成る粉末」である場合には、特に金属光造形物の密度が高密度となる効果も付加的に奏されることになる。例えば、鉄系粉末の配合量が60〜90重量%、ニッケル及びニッケル系合金の両方又はいずれか一方の粉末の配合量が5〜35重量%、銅及び銅系合金の両方又はいずれか一方の粉末の配合量が5〜15重量%、黒鉛粉末の配合量が0.2〜0.8重量%である金属粉末では、表面の切削性が良好であるだけでなく、内部にマイクロクラックが無い造形物をつくることができる。   If the metal powder is a mixture of iron-based powder and one or more powders selected from the group consisting of nickel, nickel-based alloy, copper, copper-based alloy, and graphite according to the present invention, metal light In addition to having good surface machinability, the shaped article also has good strength and the like. Here, “one or more selected from the group consisting of nickel, nickel-based alloy, copper, copper-based alloy, and graphite” In particular, the metal stereolithography is used in the case where "the powder" is "a powder comprising nickel and / or nickel-based alloy powder and / or copper and / or copper-based alloy powder and graphite powder". The effect of increasing the density of the object is also exhibited. For example, the blending amount of iron-based powder is 60 to 90% by weight, the blending amount of nickel and / or nickel-based alloy is 5 to 35% by weight, and / or both of copper and copper-based alloy Metal powder with a powder content of 5 to 15% by weight and a graphite powder content of 0.2 to 0.8% by weight not only has good surface machinability but also has no microcracks inside. A model can be made.

本発明では、鉄系粉末が焼き鈍し処理されている。つまり、鉄系粉末を或る温度に加熱して適当な時間保った後、冷却(好ましくはゆっくりと冷却)する処理が施されている。これにより、鉄系粉末が軟らかくなるので、金属光造形で得られる造形物表面に付着する金属粉末に起因する切削抵抗を小さくできるという効果、つまり、表面の切削性が良好となり、用いられる切削工具(例えば、超硬合金、高速度工具鋼および/またはcBN等の材質から成る切削工具)の寿命が延びる効果が奏される。例えば、鉄系粉末が焼き鈍し処理されている場合は、鉄系粉末が焼き鈍し処理されていない場合の1.2〜2.0倍程度(例えば約1.5倍)切削工具の寿命が延びる。焼き鈍し処理において加熱される温度は、好ましくは580℃〜780℃、より好ましくは590〜740℃、更に好ましくは600℃〜700℃である。加熱後に保持される時間は、好ましくは0.5〜10時間、より好ましくは1〜2時間である。加熱時間が長すぎると過熱中に粉末が焼結されてかたまってしまう。一方、短すぎると焼き鈍し効果が小さい。冷却または徐冷では、上記温度にまで加熱した鉄系粉末を、25℃程度までゆっくり降温させる。かかる冷却または徐冷は、無加熱状態下の自然放置によって行うのが望ましい。尚、かかる焼き鈍し処理は、減圧下、真空下または不活性雰囲気下で行うことが好ましい。ここでいう「減圧下」とは、大気圧よりも低い圧力下のことを実質的に意味し、「真空下」とは、実質的に真空状態とみなせる雰囲気または常套の真空デバイスを用いて作り出される雰囲気(例えば約100Paの圧力雰囲気下)のことを意味している。「不活性雰囲気下」としては、特に制限されるわけではないが、「アルゴンガス雰囲気」または「窒素ガス雰囲気」が好ましい。尚、これらを組み合せた態様、例えば、不活性雰囲気の減圧下であってもかまわない。   In the present invention, the iron-based powder is annealed. That is, the iron-based powder is heated to a certain temperature and kept for an appropriate time, and then cooled (preferably slowly cooled). As a result, the iron-based powder becomes soft, so that the cutting resistance due to the metal powder adhering to the surface of the molded object obtained by metal stereolithography can be reduced, that is, the cutting ability to be used is improved and the cutting tool used is improved. The effect of extending the life of (for example, a cutting tool made of a material such as cemented carbide, high-speed tool steel, and / or cBN) is exhibited. For example, when the iron-based powder is annealed, the life of the cutting tool is extended by about 1.2 to 2.0 times (for example, about 1.5 times) when the iron-based powder is not annealed. The temperature heated in the annealing treatment is preferably 580 ° C to 780 ° C, more preferably 590 to 740 ° C, and further preferably 600 ° C to 700 ° C. The time kept after heating is preferably 0.5 to 10 hours, more preferably 1 to 2 hours. If the heating time is too long, the powder is sintered and clumped during overheating. On the other hand, if it is too short, the annealing effect is small. In cooling or slow cooling, the iron-based powder heated to the above temperature is slowly cooled to about 25 ° C. Such cooling or gradual cooling is desirably performed by natural standing in an unheated state. In addition, it is preferable to perform this annealing process under reduced pressure, a vacuum, or an inert atmosphere. As used herein, “under reduced pressure” means substantially under a pressure lower than atmospheric pressure, and “under vacuum” refers to an atmosphere that can be regarded as a substantially vacuum state or a conventional vacuum device. Means an atmosphere (for example, under a pressure atmosphere of about 100 Pa). The “inert atmosphere” is not particularly limited, but “argon gas atmosphere” or “nitrogen gas atmosphere” is preferable. It should be noted that these may be combined, for example, under reduced pressure in an inert atmosphere.

以上、本発明の実施形態について説明してきたが、本発明はこれに限定されず、種々の改変がなされ得ることは当業者には容易に理解されよう。例えば、本発明の金属粉末を金属光造形複合加工機に用いる例を説明したが(即ち、焼結層の形成工程と切削工程とを繰り返して行って三次元形状造形物を得ている例であるが)、金属光造形により三次元形状造形物の全体を製造してから、造形物の表面を切削加工する金属光造形に対して本発明の金属粉末を用いてもよい。   As mentioned above, although embodiment of this invention has been described, this invention is not limited to this, It will be easily understood by those skilled in the art that various modifications can be made. For example, although the example which uses the metal powder of this invention for a metal stereolithography composite processing machine was demonstrated (namely, it is an example which has performed the formation process of a sintered layer, and the cutting process repeatedly, and has obtained the three-dimensional shape molded article. However, the metal powder of the present invention may be used for metal stereolithography in which the entire three-dimensional modeled object is manufactured by metal stereolithography and then the surface of the model is cut.

尚、上述した本発明は、次の態様を包含することに留意されたい:
第1の態様: 金属粉末からなる粉末層に光ビームを照射して焼結層を形成すると共に、前記焼結層を積層することで三次元形状造形物を得る金属光造形に用いられる金属光造形用金属粉末であって、
鉄系粉末と、ニッケル、ニッケル系合金、銅、銅系合金、及び黒鉛から成る群から選ばれる少なくとも1種類以上の粉末とを含んで成り、
前記鉄系粉末が焼き鈍し処理されていることを特徴とする金属光造形用金属粉末。
第2の態様: 上記第1の態様において、鉄系粉末と、ニッケル、ニッケル系合金、銅、銅系合金、及び黒鉛から成る群から選ばれる少なくとも1種類以上の粉末とが前記金属粉末にて混合されて成ることを特徴とする金属光造形用金属粉末。
第3の態様: 上記第1または第2の態様において、鉄系粉末と、ニッケル及びニッケル系合金粉末の両方又はいずれか一方と、銅及び銅系合金粉末の両方又はいずれか一方と、黒鉛粉末とを含んで成ることを特徴とする金属光造形用金属粉末。
第4の態様: 上記第1〜第3の態様のいずれかにおいて、前記鉄系粉末が、減圧下、真空下または不活性雰囲気下において、600〜700℃の温度に保持された後に徐冷されることによって焼き鈍し処理されていることを特徴とする金属光造形用金属粉末。
第5の態様: 上記第4の態様において、前記鉄系粉末の平均粒子径が5〜50μmであることを特徴とする金属光造形用金属粉末。
第6の態様: 上記第1〜第5の態様のいずれかにおいて、前記焼き鈍し処理される前記鉄系粉末がアトマイズ粉末であることを特徴とする金属光造形用金属粉末。
第7の態様:上記第1〜第6の態様のいずれかの金属光造形用金属粉末からなる粉末層に光ビームを照射して焼結層を形成する工程と、前記焼結層の積層により形成した造形物の表面部及び不要部分の両方又はいずれか一方の切削除去を行う工程と、を繰り返すことにより三次元形状造形物を得る金属光造形法。
It should be noted that the present invention described above includes the following aspects:
1st aspect: While irradiating a light layer to the powder layer which consists of metal powders and forming a sintered layer, the metal light used for the metal stereolithography which obtains a three-dimensional shaped molded object by laminating | stacking the said sintered layer A metal powder for modeling,
Comprising an iron-based powder and at least one powder selected from the group consisting of nickel, a nickel-based alloy, copper, a copper-based alloy, and graphite,
Metal powder for metal stereolithography, wherein the iron-based powder is annealed.
Second aspect: In the first aspect, the metal powder includes an iron-based powder and at least one powder selected from the group consisting of nickel, a nickel-based alloy, copper, a copper-based alloy, and graphite. Metal powder for metal stereolithography characterized by being mixed.
Third aspect: In the first or second aspect, iron-based powder, nickel and nickel-based alloy powder or both, copper and copper-based alloy powder or both, and graphite powder A metal powder for metal stereolithography characterized by comprising:
Fourth aspect: In any one of the first to third aspects, the iron-based powder is gradually cooled after being maintained at a temperature of 600 to 700 ° C under reduced pressure, vacuum, or inert atmosphere. Metal powder for metal stereolithography characterized by being annealed by processing.
Fifth aspect: The metal powder for metal stereolithography according to the fourth aspect, wherein the iron-based powder has an average particle diameter of 5 to 50 µm.
Sixth aspect: The metal powder for metal stereolithography according to any one of the first to fifth aspects, wherein the iron-based powder to be annealed is an atomized powder.
Seventh aspect: by the step of irradiating the powder layer comprising the metal powder for metal stereolithography according to any one of the first to sixth aspects with a light beam to form a sintered layer, and by laminating the sintered layers The metal stereolithography method which obtains a three-dimensional shaped molded article by repeating the process of cutting and removing either or both of the surface portion and the unnecessary portion of the formed molded article.

金属光造形用金属粉末に含まれる鉄系粉末の焼き鈍し処理を行なった。鉄系粉末は、熱処理を行うと、粉末の最表面が活性化された状態となり、接触している部分は、より安定な形状に、すなわち、表面積を小さくなる方向に金属原子が移動を行い、粉末同士が一体となる焼結が起きる。粉末粒径が細かくなるほど粉末の表面積が増え、粉末同士の接触面積も増えるため、低温で焼結が進行することとなる。また、熱処理温度が高いほど、焼結は起き易くなる。従って、多くの接触面積を有した粉末同士を一度に焼き鈍し処理をする場合、その焼き鈍し温度は、通常の溶製材の焼き鈍し温度よりも低温で行う必要があり、焼き鈍し処理条件を検討した。   Annealing treatment of iron-based powder contained in metal powder for metal stereolithography was performed. When the iron-based powder is subjected to heat treatment, the outermost surface of the powder is activated, and the contacted part has a more stable shape, that is, metal atoms move in a direction to reduce the surface area, Sintering occurs where the powders are united. As the particle size of the powder becomes finer, the surface area of the powder increases and the contact area between the powders also increases, so that sintering proceeds at a low temperature. Also, the higher the heat treatment temperature, the easier the sintering takes place. Therefore, when annealing a powder having a large contact area at a time, the annealing temperature needs to be lower than the annealing temperature of a normal melted material, and annealing conditions were examined.

焼き鈍し処理条件の検討は、鉄系粉末として平均粒子径20μmのクロムモリブデン鋼(SCM440)粉末を用いて、焼き鈍し温度と雰囲気条件を変えて行なった。検討に用いたクロムモリブデン鋼粉末は、大量生産が可能な水アトマイズ法で作られており、粉末製作過程の冷却速度が非常に速いため焼入れされた組織となっており、非常に硬い粉末となっていた。   The annealing treatment conditions were examined using chromium molybdenum steel (SCM440) powder having an average particle diameter of 20 μm as the iron-based powder and changing the annealing temperature and atmospheric conditions. The chromium-molybdenum steel powder used in the study is made by a water atomization method that can be mass-produced, and has a quenched structure because the cooling rate of the powder production process is very fast, resulting in a very hard powder. It was.

このクロムモリブデン鋼粉末を、ステンレスパレットに敷き詰め、1000℃、800℃、650℃の温度条件で焼鈍炉にて焼き鈍し処理を行った。雰囲気は、大気中と真空中(約100Pa)と還元雰囲気中で行なった。その結果、1000℃、800℃のものは隣接する粉末同士が融着した状態となり、その粉末を元の粉末に分離するのが困難であった。1000℃で処理した粉末について、特にその現象が激しかった。650℃で処理したものについては、多少は粉末同士が融着していたが、ふるい上ですり潰すことにより、元の粉末状態に戻った。   This chromium molybdenum steel powder was spread on a stainless steel pallet and annealed in an annealing furnace under the temperature conditions of 1000 ° C, 800 ° C and 650 ° C. The atmosphere was air, vacuum (about 100 Pa), and reducing atmosphere. As a result, the ones at 1000 ° C. and 800 ° C. were in a state where adjacent powders were fused together, and it was difficult to separate the powder into the original powder. The phenomenon was particularly severe for powders treated at 1000 ° C. In the case of processing at 650 ° C., the powders were somewhat fused with each other, but the powders were restored to their original powder state by crushing on the sieve.

鉄は、580℃以下の温度では余り焼き鈍されないことと、上述の結果から、鉄系粉末の焼き鈍し処理の最適な温度範囲は、600〜700℃と判断することができた。   From the above results, it was possible to determine that the optimum temperature range for the annealing of the iron-based powder was 600 to 700 ° C.

また、焼き鈍し処理時の雰囲気については、650℃の焼き鈍し温度において、真空中で熱処理したものは良好であったが、大気中で熱処理したものは粉末の表面酸化が激しく、また、還元雰囲気中で熱処理したものは、隣接する粉末同士がくっついて使用不可能であった。このことから、焼き鈍し処理の雰囲気としては、鉄系粉末が雰囲気と反応しない真空下や減圧下、又は、例えばアルゴンガスや窒素ガスのような不活性雰囲気下が適すると判断できた。   As for the atmosphere during the annealing treatment, the heat treatment in vacuum was good at the annealing temperature of 650 ° C., but the heat treatment in the air caused the surface oxidation of the powder to be intense, and in the reducing atmosphere The heat-treated product cannot be used because the adjacent powders stick to each other. From this, it can be judged that the annealing atmosphere is preferably a vacuum or reduced pressure at which the iron-based powder does not react with the atmosphere, or an inert atmosphere such as argon gas or nitrogen gas.

次に、上述のように真空中において650℃で焼き鈍し処理したクロムモリブデン鋼粉末を配合した金属光造形用金属粉末と、焼き鈍し処理をしていないクロムモリブデン鋼粉末を配合した金属光造形用金属粉末とを図1に示すような金属光造形複合加工機1(例えば松浦機械製作所製、型式LUMEX25C)に用いて、造形物表面の切削性の比較をした。用いた金属粉末は、上述のクロムモリブデン鋼粉末に、平均粒子径が30μmのニッケル(Ni)粉末と、平均粒子径が30μmの銅マンガン合金(CuMnNi)粉末と、フレーク状黒鉛(C)粉末とを混合して作成した。組成は、70重量%SCM440−20重量%Ni−9重量%CuMnNi−0.3重量%Cであった。図4には、真空中において650℃で焼き鈍し処理したクロムモリブデン鋼粉末のSEM写真を示し、図5には、ニッケル粉末のSEM写真を示し、図6には、銅マンガン合金粉末のSEM写真を示し、図7には、フレーク状黒鉛粉末のSEM写真を示し、図8には、それらを混合した金属粉末のSEM写真を示す。   Next, as described above, a metal stereolithographic metal powder blended with chrome molybdenum steel powder annealed at 650 ° C. in vacuum as described above, and a metal stereolithographic metal powder blended with chrome molybdenum steel powder not annealed. Were used in a metal stereolithography combined processing machine 1 as shown in FIG. 1 (for example, model LUMEX25C manufactured by Matsuura Machinery Co., Ltd.) to compare the machinability on the surface of the modeled object. The metal powder used was the above-mentioned chromium molybdenum steel powder, nickel (Ni) powder having an average particle diameter of 30 μm, copper manganese alloy (CuMnNi) powder having an average particle diameter of 30 μm, and flake graphite (C) powder. It was created by mixing. The composition was 70 wt% SCM440-20 wt% Ni-9 wt% CuMnNi-0.3 wt% C. 4 shows an SEM photograph of chromium molybdenum steel powder annealed at 650 ° C. in vacuum, FIG. 5 shows an SEM photograph of nickel powder, and FIG. 6 shows an SEM photograph of copper manganese alloy powder. 7 shows an SEM photograph of the flaky graphite powder, and FIG. 8 shows an SEM photograph of the metal powder obtained by mixing them.

金属光造形複合加工では、光ビームLは、炭酸ガスレーザを使用し、粉末層22の厚みΔt1は、0.05mmとした。ミーリングヘッド40の工具(ボールエンドミル)は直径が0.6mm(有効刃長1mm)のものを使用し、10層の焼結層24を形成した時点、すなわち、0.5mmの焼結層を形成した時点で除去手段4を作動させた。   In the metal stereolithography combined processing, the light beam L uses a carbon dioxide laser, and the thickness Δt1 of the powder layer 22 is 0.05 mm. A milling head 40 tool (ball end mill) having a diameter of 0.6 mm (effective blade length of 1 mm) is used, and when the 10 sintered layers 24 are formed, that is, a 0.5 mm sintered layer is formed. At that time, the removing means 4 was activated.

切削性の比較の結果、焼き鈍し処理したクロムモリブデン鋼粉末を配合した金属光造形用金属粉末における造形物の切削性は、焼き鈍し処理をしていないクロムモリブデン鋼粉末を配合したものと比較して、工具の切削寿命が約1.5倍になった。この工具の切削寿命の差は、造形物表面に付着しているクロムモリブデン鋼粉末が焼き鈍し処理により軟らかくなったことに起因しているものと考えられる。   As a result of the comparison of machinability, the machinability of the shaped object in the metal stereolithography metal powder blended with the annealed chromium molybdenum steel powder is compared with that blended with the chromium molybdenum steel powder not annealed, The cutting life of the tool is about 1.5 times longer. The difference in the cutting life of this tool is considered to be due to the fact that the chromium molybdenum steel powder adhering to the surface of the model became soft by annealing.

以上のように、本発明者らは粒子径が20μmの鉄系粉末の焼き鈍し条件を見つけ出し、その条件で焼き鈍しを行った鉄系粉末を含む金属粉末を用いて金属光造形を行うことができた。その結果、高密度でかつ強度や硬度が高い三次元形状造形物を得ることができたのと同時に、表面の切削性においても改善され、工具寿命の向上を図ることができた。   As described above, the present inventors have found an annealing condition for an iron-based powder having a particle diameter of 20 μm, and were able to perform metal stereolithography using a metal powder containing an iron-based powder that has been annealed under that condition. . As a result, a three-dimensional shaped article having a high density and high strength and hardness could be obtained, and at the same time, the surface machinability was improved, and the tool life could be improved.

尚、鉄系粉末の焼き鈍し処理の検討は、上述のように、金属粉末の組成の割合を(70重量%SCM440−20重量%Ni−9重量%CuMnNi−0.3重量%C)にして行なったが、焼き鈍し処理による金属光造形物の表面の切削性の改善の効果は、金属粉末の組成の影響を特に受けないので、鉄系粉末の焼き鈍し処理は、鉄系粉末を配合した全ての金属光造形用金属粉末に効果があるといえる。   In addition, the examination of the annealing treatment of the iron-based powder was performed with the composition ratio of the metal powder (70 wt% SCM440-20 wt% Ni-9 wt% CuMnNi-0.3 wt% C) as described above. However, since the effect of improving the machinability of the surface of the metal stereolithography by annealing treatment is not particularly affected by the composition of the metal powder, the annealing treatment of the iron-based powder is performed for all metals containing the iron-based powder. It can be said that the metal powder for stereolithography is effective.

本発明の金属光造形用金属粉末を用いて金属光造形法を実施することによって、プラスチック射出成形用金型、プレス金型、ダイカスト金型、鋳造金型、鍛造金型などの三次元形状造形物を製造することができる。   By implementing the metal stereolithography method using the metal stereolithography metal powder of the present invention, three-dimensional shape modeling such as plastic injection mold, press mold, die casting mold, casting mold, forging mold, etc. Can be manufactured.

本発明の金属光造形用金属粉末を用いる金属光造形複合加工機の構成図。The block diagram of the metal optical modeling composite processing machine using the metal powder for metal optical modeling of this invention. 金属光造形複合加工機の動作(本発明の金属造形法)のフローチャート。The flowchart of operation | movement (metal shaping method of this invention) of a metal stereolithography composite processing machine. 金属光造形複合加工機の動作を示す図。The figure which shows operation | movement of a metal stereolithography composite processing machine. 本発明の金属光造形用金属粉末に含まれるクロムモリブデン鋼粉末のSEM写真。The SEM photograph of the chromium molybdenum steel powder contained in the metal powder for metal stereolithography of the present invention. 本発明の金属光造形用金属粉末に含まれるニッケル粉末のSEM写真。The SEM photograph of the nickel powder contained in the metal powder for metal stereolithography of the present invention. 本発明の金属光造形用金属粉末に含まれる銅マンガン合金粉末のSEM写真。The SEM photograph of the copper manganese alloy powder contained in the metal powder for metal stereolithography of this invention. 本発明の金属光造形用金属粉末に含まれるフレーク状黒鉛粉末のSEM写真。The SEM photograph of the flaky graphite powder contained in the metal powder for metal stereolithography of the present invention. 本発明の金属光造形用金属粉末(本発明の金属粉末に含まる粉末成分が混合されたもの)のSEM写真。The SEM photograph of the metal powder for metal stereolithography of this invention (The powder component contained in the metal powder of this invention was mixed).

符号の説明Explanation of symbols

1 金属光造形複合加工機
2 粉末層形成手段
3 焼結層形成手段
4 除去手段
20 昇降テーブル
21 造形用ベース
22 粉末層
23 スキージング用ブレード
24 焼結層
30 光ビーム発信器
31 ガルバノミラー
40 ミーリングヘッド
41 XY駆動機構
L 光ビーム

DESCRIPTION OF SYMBOLS 1 Metal stereolithography machine 2 Powder layer forming means 3 Sintered layer forming means 4 Removal means 20 Lifting table 21 Modeling base 22 Powder layer 23 Squeezing blade 24 Sintering layer 30 Light beam transmitter 31 Galvano mirror 40 Milling Head 41 XY drive mechanism L Light beam

Claims (6)

金属粉末からなる粉末層に光ビームを照射して焼結層を形成すると共に、前記焼結層を積層することで三次元形状造形物を得る金属光造形に用いられる金属光造形用金属粉末であって、
前記金属粉末は、鉄系粉末と、ニッケル、ニッケル系合金、銅、銅系合金、及び黒鉛から成る群から選ばれる1種類以上の粉末とを含んで成り、
前記鉄系粉末が焼き鈍し処理されていることを特徴とする金属光造形用金属粉末。
A metal powder for metal stereolithography that is used for metal stereolithography to form a sintered layer by irradiating a light beam to a powder layer made of metal powder and to obtain a three-dimensional shaped article by laminating the sintered layer. There,
The metal powder comprises iron-based powder and one or more powders selected from the group consisting of nickel, nickel-based alloy, copper, copper-based alloy, and graphite,
Metal powder for metal stereolithography, wherein the iron-based powder is annealed.
前記金属粉末が、鉄系粉末と、ニッケル及びニッケル系合金粉末の両方又はいずれか一方と、銅及び銅系合金粉末の両方又はいずれか一方と、黒鉛粉末とを含んで成ることを特徴とする請求項1に記載の金属光造形用金属粉末。   The metal powder comprises iron-based powder, nickel and / or nickel-based alloy powder, copper and / or copper-based alloy powder, and graphite powder. The metal powder for metal stereolithography according to claim 1. 前記鉄系粉末が、減圧下、真空下または不活性雰囲気下において、600〜700℃の温度に保持された後に徐冷されることによって焼き鈍し処理されていることを特徴とする請求項1又は請求項2に記載の金属光造形用金属粉末。   The iron-based powder is annealed by being gradually cooled after being maintained at a temperature of 600 to 700 ° C under reduced pressure, vacuum or inert atmosphere. Item 3. The metal powder for metal stereolithography according to Item 2. 前記鉄系粉末の平均粒子径が5〜50μmであることを特徴とする請求項3に記載の金属光造形用金属粉末。   The metal powder for metal stereolithography according to claim 3, wherein the iron-based powder has an average particle size of 5 to 50 μm. 前記焼き鈍し処理される前記鉄系粉末がアトマイズ粉末であることを特徴とする請求項1乃至請求項4のいずれか一項に記載の金属光造形用金属粉末。   The metal powder for metal stereolithography according to any one of claims 1 to 4, wherein the iron-based powder to be annealed is an atomized powder. 請求項1乃至請求項5のいずれか一項に記載の金属光造形用金属粉末からなる粉末層に光ビームを照射して焼結層を形成する工程と、前記焼結層の積層により形成した造形物の表面部及び不要部分の両方又はいずれか一方の切削除去を行う工程と、を繰り返すことにより三次元形状造形物を得る金属光造形法。   It formed by the process of irradiating a light beam to the powder layer which consists of metal powder for metal stereolithography as described in any one of Claims 1 thru | or 5, and forming a sintered layer, and lamination | stacking of the said sintered layer. The metal stereolithography method which obtains a three-dimensional shaped molded article by repeating the process of cutting and removing either or both of the surface portion and unnecessary portion of the molded article.
JP2007219066A 2006-08-28 2007-08-24 Method for producing metal powder for metal stereolithography and metal stereolithography Expired - Fee Related JP4661842B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007219066A JP4661842B2 (en) 2006-08-28 2007-08-24 Method for producing metal powder for metal stereolithography and metal stereolithography

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006230291 2006-08-28
JP2007219066A JP4661842B2 (en) 2006-08-28 2007-08-24 Method for producing metal powder for metal stereolithography and metal stereolithography

Publications (2)

Publication Number Publication Date
JP2008081840A true JP2008081840A (en) 2008-04-10
JP4661842B2 JP4661842B2 (en) 2011-03-30

Family

ID=39352982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007219066A Expired - Fee Related JP4661842B2 (en) 2006-08-28 2007-08-24 Method for producing metal powder for metal stereolithography and metal stereolithography

Country Status (1)

Country Link
JP (1) JP4661842B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010215971A (en) * 2009-03-17 2010-09-30 Panasonic Electric Works Co Ltd Method of producing three-dimensional shaped article and three-dimensional shaped article obtained from the same
WO2011149101A1 (en) * 2010-05-25 2011-12-01 パナソニック電工株式会社 Metal powder for selective laser sintering, process for producing three-dimensionally shaped object using same, and three-dimensionally shaped object produced thereby
JP2013096013A (en) * 2011-10-31 2013-05-20 Alstom Technology Ltd Method for manufacturing component or coupon made of high temperature superalloy
WO2013137283A1 (en) * 2012-03-16 2013-09-19 パナソニック株式会社 Production method for three-dimensionally shaped object, and three-dimensionally shaped object
JP2013237930A (en) * 2013-07-04 2013-11-28 Panasonic Corp Method of manufacturing three-dimensionally shaped article, and the three-dimensionally shaped article obtained thereby
JP2014169500A (en) * 2013-02-28 2014-09-18 Alstom Technology Ltd Method for manufacturing hybrid component
JP2014213449A (en) * 2013-04-25 2014-11-17 ケンナメタルインコーポレイテッドKennametal Inc. Hybrid cutting tool, chip transporting portion and process for producing cutting tool
EP3162473A1 (en) 2015-10-29 2017-05-03 Seiko Epson Corporation Manufacturing method for three-dimensional structure, manufacturing apparatus for three-dimensional structure, and control program for manufacturing apparatus
JP6346983B1 (en) * 2017-09-04 2018-06-20 株式会社Nttデータエンジニアリングシステムズ Copper alloy powder, heat treatment method of layered object, manufacturing method of copper alloy object, and copper alloy object
US10369636B2 (en) 2014-04-17 2019-08-06 Kennametal Inc. Machining tool and method for manufacturing a machining tool
WO2022124359A1 (en) 2020-12-10 2022-06-16 山陽特殊製鋼株式会社 Shaped body formed of powder
WO2022124358A1 (en) 2020-12-10 2022-06-16 山陽特殊製鋼株式会社 Fe-group alloy powder
WO2023074613A1 (en) 2021-10-25 2023-05-04 山陽特殊製鋼株式会社 Ni alloy powder suited to additive manufacturing and additively manufactured article obtained using same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6703511B2 (en) 2017-10-27 2020-06-03 山陽特殊製鋼株式会社 Fe-based metal powder for modeling
JP6985940B2 (en) 2018-01-09 2021-12-22 山陽特殊製鋼株式会社 Stainless steel powder for modeling
JP2019173049A (en) 2018-03-27 2019-10-10 山陽特殊製鋼株式会社 Powder for metal mold
JP7132751B2 (en) 2018-06-01 2022-09-07 山陽特殊製鋼株式会社 Cu-based alloy powder
JP7194087B2 (en) 2019-07-23 2022-12-21 山陽特殊製鋼株式会社 Cu-based alloy powder

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62278201A (en) * 1986-02-20 1987-12-03 Sumitomo Metal Ind Ltd Production of metallic powder for powder metallurgy
JP2002115004A (en) * 2000-10-05 2002-04-19 Matsushita Electric Works Ltd Method and equipment for manufacturing article with three-dimensional shape
JP2004277877A (en) * 2003-02-25 2004-10-07 Matsushita Electric Works Ltd Metal powder for metal light mold molding, method of producing the same, method of producing molding with three-dimensional shape by metal light molding and metal light molding
JP2005187908A (en) * 2003-12-26 2005-07-14 Jfe Steel Kk Iron based powdery mixture for powder metallurgy

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62278201A (en) * 1986-02-20 1987-12-03 Sumitomo Metal Ind Ltd Production of metallic powder for powder metallurgy
JP2002115004A (en) * 2000-10-05 2002-04-19 Matsushita Electric Works Ltd Method and equipment for manufacturing article with three-dimensional shape
JP2004277877A (en) * 2003-02-25 2004-10-07 Matsushita Electric Works Ltd Metal powder for metal light mold molding, method of producing the same, method of producing molding with three-dimensional shape by metal light molding and metal light molding
JP2005187908A (en) * 2003-12-26 2005-07-14 Jfe Steel Kk Iron based powdery mixture for powder metallurgy

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010215971A (en) * 2009-03-17 2010-09-30 Panasonic Electric Works Co Ltd Method of producing three-dimensional shaped article and three-dimensional shaped article obtained from the same
WO2011149101A1 (en) * 2010-05-25 2011-12-01 パナソニック電工株式会社 Metal powder for selective laser sintering, process for producing three-dimensionally shaped object using same, and three-dimensionally shaped object produced thereby
JP5579839B2 (en) * 2010-05-25 2014-08-27 パナソニック株式会社 Metal powder for powder sintering lamination, manufacturing method of three-dimensional shaped article using the same, and three-dimensional shaped article obtained
US8828116B2 (en) 2010-05-25 2014-09-09 Panasonic Corporation Metal powder for selective laser sintering, method for manufacturing three-dimensional shaped object by using the same, and three-dimensional shaped object obtained therefrom
JP2013096013A (en) * 2011-10-31 2013-05-20 Alstom Technology Ltd Method for manufacturing component or coupon made of high temperature superalloy
WO2013137283A1 (en) * 2012-03-16 2013-09-19 パナソニック株式会社 Production method for three-dimensionally shaped object, and three-dimensionally shaped object
US9764423B2 (en) 2013-02-28 2017-09-19 Ansaldo Energia Ip Uk Limited Method for manufacturing a hybrid component
JP2014169500A (en) * 2013-02-28 2014-09-18 Alstom Technology Ltd Method for manufacturing hybrid component
JP2014213449A (en) * 2013-04-25 2014-11-17 ケンナメタルインコーポレイテッドKennametal Inc. Hybrid cutting tool, chip transporting portion and process for producing cutting tool
JP2013237930A (en) * 2013-07-04 2013-11-28 Panasonic Corp Method of manufacturing three-dimensionally shaped article, and the three-dimensionally shaped article obtained thereby
US10369636B2 (en) 2014-04-17 2019-08-06 Kennametal Inc. Machining tool and method for manufacturing a machining tool
US20170120331A1 (en) 2015-10-29 2017-05-04 Seiko Epson Corporation Manufacturing method for three-dimensional structure, manufacturing apparatus for three-dimensional structure, and control program for manufacturing apparatus
EP3162473A1 (en) 2015-10-29 2017-05-03 Seiko Epson Corporation Manufacturing method for three-dimensional structure, manufacturing apparatus for three-dimensional structure, and control program for manufacturing apparatus
EP3903969A1 (en) 2015-10-29 2021-11-03 Seiko Epson Corporation Manufacturing method for three-dimensional structure
US11185922B2 (en) 2015-10-29 2021-11-30 Seiko Epson Corporation Manufacturing method for three-dimensional structure, manufacturing apparatus for three-dimensional structure, and control program for manufacturing apparatus
JP6346983B1 (en) * 2017-09-04 2018-06-20 株式会社Nttデータエンジニアリングシステムズ Copper alloy powder, heat treatment method of layered object, manufacturing method of copper alloy object, and copper alloy object
JP2019070169A (en) * 2017-09-04 2019-05-09 株式会社Nttデータエンジニアリングシステムズ Copper alloy powder, heat treatment method for multilayer shaped structure, method for producing copper alloy shaped structure, and copper alloy shaped structure
WO2022124359A1 (en) 2020-12-10 2022-06-16 山陽特殊製鋼株式会社 Shaped body formed of powder
WO2022124358A1 (en) 2020-12-10 2022-06-16 山陽特殊製鋼株式会社 Fe-group alloy powder
WO2023074613A1 (en) 2021-10-25 2023-05-04 山陽特殊製鋼株式会社 Ni alloy powder suited to additive manufacturing and additively manufactured article obtained using same

Also Published As

Publication number Publication date
JP4661842B2 (en) 2011-03-30

Similar Documents

Publication Publication Date Title
JP4661842B2 (en) Method for producing metal powder for metal stereolithography and metal stereolithography
WO2008026500A1 (en) Metal powder for metal photofabrication and method of metal photofabrication using the same
JP5579839B2 (en) Metal powder for powder sintering lamination, manufacturing method of three-dimensional shaped article using the same, and three-dimensional shaped article obtained
CN104404509B (en) A kind of metal laser melting increasing material manufacturing method
KR100586360B1 (en) Metal powder composition for use in selective laser sintering
US6814926B2 (en) Metal powder composition for laser sintering
JP5602913B2 (en) Manufacturing method of three-dimensional shaped object and three-dimensional shaped object obtained therefrom
CN107812941A (en) A kind of in-situ preparation method of laser gain material manufacture aluminium alloy and products thereof
JP5337545B2 (en) Manufacturing method of three-dimensional shaped object and three-dimensional shaped object obtained therefrom
JPWO2016031279A1 (en) Additive manufacturing powder and additive manufacturing method
JP4640216B2 (en) Metal powder for metal stereolithography
JP4737007B2 (en) Metal powder for metal stereolithography
JP3633607B2 (en) Metal powder for metal stereolithography, method for producing the same, method for producing three-dimensional shaped article by metal stereolithography, and metal stereolithography
JP3687667B2 (en) Metal powder for metal stereolithography
JP2008184623A (en) Method for producing three-dimensional molding, and material
Su et al. Investigation of fully dense laser sintering of tool steel powder using a pulsed Nd: YAG (neodymium-doped yttrium aluminium garnet) laser
WO2017150340A1 (en) Composite particles, composite powder, method for manufacturing composite particles, and method for manufacturing composite member
CN112809022A (en) Novel method for preparing metal product by additive
CN105798294A (en) Rapid part prototyping method for refractory materials
WO2017203717A1 (en) Laminate-molding metal powder, laminate-molded article manufacturing method, and laminate-molded article
WO2017050226A1 (en) Method of laser-forming aluminum
JP2022122462A (en) Carbon-fixed carbon steel powder
Kyogoku et al. Direct selective laser sintering of WC-Co cemented carbide by premixing of additives
JP2004050225A (en) Method for producing metal-made formed material
Lherbier et al. AM: Technologies: The Pluses and Minuses of Additive Manufacturing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081010

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100720

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101220

R150 Certificate of patent or registration of utility model

Ref document number: 4661842

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees