JPS62278201A - Production of metallic powder for powder metallurgy - Google Patents

Production of metallic powder for powder metallurgy

Info

Publication number
JPS62278201A
JPS62278201A JP62036583A JP3658387A JPS62278201A JP S62278201 A JPS62278201 A JP S62278201A JP 62036583 A JP62036583 A JP 62036583A JP 3658387 A JP3658387 A JP 3658387A JP S62278201 A JPS62278201 A JP S62278201A
Authority
JP
Japan
Prior art keywords
powder
coarse
fine
particles
binder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62036583A
Other languages
Japanese (ja)
Inventor
Kazutaka Asabe
和孝 阿佐部
Toshihiko Kubo
敏彦 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Publication of JPS62278201A publication Critical patent/JPS62278201A/en
Priority to DE19873742960 priority Critical patent/DE3742960A1/en
Priority to FR8717768A priority patent/FR2608652A1/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To prevent the segregation of fine particles and to improve the compressibility and formability of metallic powder for powder metallurgy by separately handling coarse particles and fine particles of metallic powder and uniformly sticking the fine particles to the outsides of the coarse particles to form aggregates of particles. CONSTITUTION:Coarse particles and fine particles of metallic powder are separately obtd. by production in separate production lines or by classification after production in the same production line. The coarse particles are mixed with the fine particles in a proper ratio and the fine particles are uniformly stuck to the outsides of the coarse particles to form aggregates of particles.

Description

【発明の詳細な説明】 3、発明の詳細な説明 (産業上の利用分野) 本発明は、粉末冶金用金属粉末の製造方法、特に金属粉
末における微粒粉の偏析を防止し、圧縮、成形性ととも
に焼結性にも優れた粉末冶金用金属粉末を製造する方法
に関する。
Detailed Description of the Invention 3. Detailed Description of the Invention (Field of Industrial Application) The present invention is directed to a method for producing metal powder for powder metallurgy, in particular, to prevent segregation of fine powder in the metal powder and to improve compression and formability. The present invention also relates to a method for producing metal powder for powder metallurgy that has excellent sinterability.

(従来の技術) 金属粉末の製造法、例えば、水アトマイズ法、油アトマ
イズ法では、−iに32メソシユ(500μI)以下の
粉末を製造しているが、かかる液体アトマイズ法により
製造した金属粉末は、一般に正規分布に近い粒度分布を
有する。
(Prior art) Metal powder manufacturing methods, such as water atomization and oil atomization, produce powders with −i of 32 mesos (500 μI) or less, but metal powder produced by such liquid atomization methods , generally has a particle size distribution close to a normal distribution.

このようなアトマイズ粉を焼結用として使用する場合、
これらの粉末を、(アトマイズ)−(固液分離)−(乾
燥)−(還元・脱炭・焼鈍)=(粉砕)=(分級)=(
ブレンド)とこのようなフローに従って処理して焼結用
粉末として用いている。
When using such atomized powder for sintering,
These powders are (atomized) - (solid-liquid separation) - (drying) - (reduction/decarburization/annealing) = (pulverization) = (classification) = (
blend) and processed according to this flow and used as sintering powder.

しかしながら、この還元・脱炭等を行う加熱処理(以下
、単に加熱処理という)を含む従来技術は粉末の特性を
十分出し切っていない。つまり、この加熱処理は一般に
900〜1150℃の高温における還元、または脱炭処
理であるが、従来法では粗粒粉と微粒粉とがアトマイズ
時のままの割合で混在したま一1処理されるため、品質
、歩留上十分な粉末が得られていないのである。
However, conventional techniques that include heat treatment (hereinafter simply referred to as heat treatment) for reducing, decarburizing, etc. do not fully utilize the characteristics of powder. In other words, this heat treatment is generally a reduction or decarburization treatment at a high temperature of 900 to 1150°C, but in the conventional method, coarse grain powder and fine grain powder are mixed in the same ratio at the time of atomization. Therefore, powder of sufficient quality and yield cannot be obtained.

例えば、粉末の加熱処理は、ローラハース炉、ベルト炉
等の移動床上に数mm〜数十mm厚さの粉体層を形成さ
せ、ラジアントチューブなどを使った加熱方法によって
、900℃以上に加熱して行うが、粗粒粉と微粒粉とが
無作為に混在したま\の場合、即ち、粗粒粉と微粒粉の
割合をコントロールせず、また何ら予備加工しないで装
入すると、粗粒粉と微粒粉とはそれぞれ偏析を起こし易
く、特に微粒粉の強固な固まりができる。微粒粉は粗粒
粉に比べて焼結しやすく、強固に結合するため後の粉砕
工程でも解砕しに<(、粗大粒が残る。粉末冶金で使用
する原料粉末は通常−60メツシユが標準であるから、
粗大粒は分級して除去しなければならず、結局粉末製造
工程の歩留を低下させることになる。また、偏析の存在
は焼結用金属粉末として品質の劣化をもたらす。
For example, heat treatment of powder involves forming a powder layer several millimeters to several tens of millimeters thick on a moving bed of a roller hearth furnace, belt furnace, etc., and heating it to 900°C or higher using a heating method such as a radiant tube. However, if coarse grain powder and fine grain powder are mixed at random, that is, if the ratio of coarse grain powder and fine grain powder is not controlled, and if it is charged without any preliminary processing, coarse grain powder and fine-grained powder are likely to cause segregation, and particularly fine-grained powder forms strong clumps. Fine-grained powder is easier to sinter than coarse-grained powder, and because it is strongly bonded, it is difficult to crush it even in the subsequent crushing process. Because it is,
Coarse particles must be classified and removed, which ultimately reduces the yield of the powder manufacturing process. Moreover, the presence of segregation causes deterioration in quality as a metal powder for sintering.

このことは、同一温度では粒径が小さいものほど焼結し
易いことに起因する。例えば、32/60メソシユでは
1050℃で焼結が開始するが、−350メツシユでは
750℃で焼結が開始する。
This is due to the fact that the smaller the particle size, the easier it is to sinter at the same temperature. For example, 32/60 mesh starts sintering at 1050°C, while -350 mesh starts sintering at 750°C.

熱処理前の粒径分布と熱処理、軽粉砕後の粒子の粒度分
布との比較を第1表に示す。熱処理後は、微粒粉が極端
に減少して、粗粒の割合が増加しているのが分かる。
Table 1 shows a comparison between the particle size distribution before heat treatment and the particle size distribution of the particles after heat treatment and light pulverization. It can be seen that after heat treatment, the amount of fine particles is extremely reduced and the proportion of coarse particles increases.

第1表 (注)熱処理:980°Cに30分間加熱。Table 1 (Note) Heat treatment: Heat to 980°C for 30 minutes.

さらに、微粒粉同士が付着するとポーラスな粒子となり
、圧粉体としたとき、その密度、さらには焼結体密度が
低くなるから、結局焼結体製品の強度低下を招く。
Furthermore, when the fine powders adhere to each other, they become porous particles, and when formed into a compact, the density and further the density of the sintered product decreases, resulting in a decrease in the strength of the sintered product.

一方、粗粒の鉄粉に、Ni、 Mo、 Cu等の添加合
金元素である微粒粉を添加、混合し、圧粉成形するプレ
ミックス法においては、粗粒粉と微粒粉の粉体物性(密
度、粒子形状、粒径等)が大きく異なるために、プレミ
ックスをおえで次工程へ送る搬送等のハンドリング中に
分級する傾向にあり、偏析が生じやすい。
On the other hand, in the premix method in which fine grain powder, which is an additive alloying element such as Ni, Mo, or Cu, is added to coarse grain iron powder, mixed, and compacted, the powder physical properties of coarse grain powder and fine grain powder ( Due to the large difference in density, particle shape, particle size, etc., there is a tendency for the premix to be classified during handling, such as during transportation before being sent to the next process, and segregation is likely to occur.

なお、特公昭61−36046号には微細粒子の凝集処
理が提案されている。アトマイズ鉄粉の見掛は密度が高
いのを改善すべく不規則形状粒子とするのである。しか
し、アトマイズ鉄粉全体に凝集処理を行うため、それが
本来有する優れた圧縮性の劣化は免れない。また、微粒
粉の粗大化を阻止するために、加熱処理工程の管理を厳
重にしなければならず、また処理後の破砕工程において
も厳重な管理が必要となるなど、処理コストも高くなる
心配がある。
Note that Japanese Patent Publication No. 36046/1983 proposes a treatment for agglomeration of fine particles. In order to improve the apparent high density of atomized iron powder, it is made into irregularly shaped particles. However, since the entire atomized iron powder is subjected to agglomeration treatment, the excellent compressibility inherent in the atomized iron powder inevitably deteriorates. In addition, in order to prevent the fine powder from becoming coarse, the heat treatment process must be strictly controlled, and the crushing process after treatment must also be strictly controlled, so there is a concern that processing costs will increase. be.

(発明が解決しようとする問題点) かくして、本発明の目的は、無作為に粗粒粉と微粒粉と
が混在する金属粉において生じる前記の問題点を解決し
、微粒粉の偏析を防止するとともに焼結特性を改善した
粉末冶金用金属粉末の製造方法を提供することである。
(Problems to be Solved by the Invention) Thus, an object of the present invention is to solve the above-mentioned problems that occur in metal powder in which coarse powder and fine powder are randomly mixed, and to prevent segregation of fine powder. It is also an object of the present invention to provide a method for producing metal powder for powder metallurgy with improved sintering properties.

(問題点を解決するための手段) 本発明者らは、上述の目的を達成すべく、種々検討を重
ねたところ、金属粉末の粗粒分と微粒分とを区分して取
扱い、それぞれの特性を生かすことによって橿めて優れ
た粉末冶金用原料粉を比較的簡易に製造できることを知
った。
(Means for Solving the Problem) In order to achieve the above-mentioned object, the inventors of the present invention have conducted various studies and have found that the coarse particle fraction and the fine particle fraction of the metal powder are handled separately, and the characteristics of each are treated separately. I learned that by taking advantage of this, it is possible to relatively easily produce excellent raw material powder for powder metallurgy.

ここに、本発明の要旨は、金属粉末を粗粒分と微粒分と
に区分し、両者を適正な配合比で混合して、粗粒粉の周
囲に微粒粉が均一に付着した粒子集合体に造粒すること
を特徴とする粉末冶金用金属粉末の製造方法である。
Here, the gist of the present invention is to divide metal powder into coarse particles and fine particles, mix the two in an appropriate mixing ratio, and create a particle aggregate in which fine particles are uniformly attached around coarse particles. This is a method for producing metal powder for powder metallurgy, which is characterized by granulating it into powder metallurgy.

まず、第1図によって本発明の基礎となる粉末集合体の
物性を説明する。第1図の(イ)は微粒粉だけの集合状
態である。これは焼結性にすぐれているが、圧縮性、成
形性に劣る。(ロ)は粗粒粉だけの集合体で、これは圧
縮性、成形性にはすぐれるが、焼結性は著しく劣り、焼
結製品の強度が十分に得られない。(ハ)、(ニ)は微
粒粉末と粗粒粉末の混合である。この場合、微粒粉末が
一部に偏在して集合しており、そのため焼結性にすぐれ
た部分(微粒粉の部分)と圧縮性、成形性にすぐれた部
分とが分かれている。このような粉末を用いて焼結した
場合、粉末同志の結合(いわゆるネック)の成長に不十
分な部分が生じ、強度の低下がおこる。
First, the physical properties of the powder aggregate, which is the basis of the present invention, will be explained with reference to FIG. Figure 1 (a) shows a state in which only fine powder is aggregated. This has excellent sinterability, but poor compressibility and moldability. (B) is an aggregate consisting only of coarse powder, which has excellent compressibility and formability, but has extremely poor sinterability, making it impossible to obtain a sintered product with sufficient strength. (c) and (d) are mixtures of fine powder and coarse powder. In this case, the fine powder particles are unevenly distributed and aggregated in one part, so that the part with excellent sinterability (the part of fine powder) is separated from the part with excellent compressibility and moldability. When such powder is used for sintering, there are parts where the bond between the powders (so-called neck) is insufficient to grow, resulting in a decrease in strength.

第1図の(ホ)は粗粒粉と微粒粉の混合体でしかもその
集合状態が理想的なものである。即ち、(ホ)の状態で
は、圧縮性、成形性にすぐれた粗粒粉が焼結性にすぐれ
た微粒粉で均一に覆われており、これを圧縮成形して焼
結した時密度の高い高強度の製品が得られる。
(E) in FIG. 1 is a mixture of coarse powder and fine powder, and its aggregation state is ideal. That is, in the state (e), coarse powder with excellent compressibility and formability is uniformly covered with fine powder with excellent sinterability, and when this is compression molded and sintered, it becomes a dense powder. A product with high strength can be obtained.

たとえば、アトマイズ法によって製造された金属粉末で
は、粗粒粉と微粒粉とが無作為に混在してるから、これ
を前述(3頁)の工程で処理すれば通常第1図(イ)〜
(ニ)の粒子集合体が混在したものとなる。粉末の大部
分を(ホ)のような形態のものにするには何らかの特別
な処置をとらなければならない。
For example, in metal powder produced by the atomization method, coarse powder and fine powder are randomly mixed, so if this is processed in the process described above (page 3), it will usually be from Figure 1 (a) to
The result is a mixture of particle aggregates (d). Some special measures must be taken to make most of the powder into the form shown in (e).

本発明では、粉末製造工程(アトマイズ法、還元法、電
解法、粉砕法等いずれの方法でもよい)で得られる粉末
を、そのま−次工程、即ち還元や脱炭、焼鈍等の工程、
へ送らず、粗粒分と微粒分とを一旦区分し、改めてこれ
らを適正な混合率で配合するという新しい方法を採った
。一般に粉末製造工程で得られた金属粉は第2図(イ)
に示すように、その粒度分布はは\゛正規分布に近い0
本発明でいう粗粒分、微粒分とは次の2つの定義を包含
する。■第2図(イ)において、破線で示す境界の前後
で区分する場合、例えば境界を250メツシユの上下と
すれば、250メソシユの篩上を粗粒分といい、篩下を
微粒分という。■第2図(ロ)に示すように、異なる方
法又はラインで製造された粒度分布の異なる粉末(A、
B)においては、Aを粗粒分、Bを微粒分と称する。■
の場合、AとBとは成分組成が同一でも、相互に異なる
ものでもよい。
In the present invention, the powder obtained in the powder manufacturing process (any method such as an atomization method, a reduction method, an electrolytic method, or a pulverization method may be used) is subjected to a subsequent process, that is, a process such as reduction, decarburization, annealing, etc.
A new method was adopted in which coarse particles and fine particles were once separated and then blended at an appropriate mixing ratio. In general, the metal powder obtained in the powder manufacturing process is shown in Figure 2 (a).
As shown in , the particle size distribution is \゛0, which is close to the normal distribution.
The coarse particle fraction and fine particle fraction in the present invention include the following two definitions. (2) In FIG. 2 (a), when dividing before and after the boundary shown by the broken line, for example, if the boundary is above and below 250 mesh, the area above the sieve of 250 mesh is called the coarse particle fraction, and the area below the sieve is called the fine particle fraction. ■As shown in Figure 2 (b), powders (A,
In B), A is referred to as the coarse grain fraction and B is referred to as the fine grain fraction. ■
In this case, A and B may have the same component composition or may be different from each other.

このように区分した粉末は、第1図(ホ)に示す集合状
態が得られるように、即ち粗粒粉のひとつひとつができ
るだけ、均一に微粒粉で覆われるように、適正な混合比
で配合される。混合比は、一義的には決めれないが、所
望の焼結体の特性に応じて、粗粒分の平均粒度と微粒分
の平均粒度から近イ以的に計算して個々に決定すること
ができる。
The powders separated in this way are mixed at an appropriate mixing ratio so that the agglomeration state shown in Figure 1 (e) is obtained, that is, each coarse powder is covered with fine powder as evenly as possible. Ru. Although the mixing ratio cannot be determined uniquely, it can be calculated individually from the average particle size of the coarse particles and the average particle size of the fine particles, depending on the desired characteristics of the sintered body. can.

金属粉末の粗粒粉と微粒粉の成分又は組成が同じ場合に
おいは一般に、粗粒粉50〜80%(重り、微粒粉20
〜50%(重量)が好ましい。金属粉末の粗粒粉と微粒
粉の成分又は組成が互いに異なる場合においては、−最
に、粗粒粉80〜99%(重N)、微粒粉l〜20%(
重量)が好ましい。
When the components or compositions of coarse and fine metal powders are the same, the odor is generally 50 to 80% of the coarse powder (weight, 20% of the fine powder).
~50% (by weight) is preferred. When the components or compositions of the coarse powder and the fine powder of the metal powder are different from each other, the coarse powder is 80 to 99% (heavy N), and the fine powder is 1 to 20% (heavy N).
Weight) is preferred.

前述のとおり微粒粉と粗粒粉との区別は相対的なもので
十分であるが、用途に応じて250メツシユ、350メ
ツシユあるいは700メソンユを境界に分けてもよい。
As mentioned above, it is sufficient to distinguish between fine grain powder and coarse grain powder on a relative basis, but depending on the purpose, the boundaries may be divided at 250 mesh, 350 mesh, or 700 mesh.

粗粒粉とは主体が粗粒粉であればよく、粗粒粉中に一部
微粒粉が混入していても差しつかえない。第2図(ロ)
に示すようなA、82種類の粉末を用いた場合、Aの微
粒分(A゛)は微粒粉末として作用し、一方、Bの粗粒
分(B”)は粗粒粉末として働く。従ってA、I3それ
ぞれの粒度分布が分かっていれば、その配合比率を適正
に選ぶことは難しくない。
Coarse powder only needs to be mainly coarse powder, and there is no problem even if some fine powder is mixed into the coarse powder. Figure 2 (b)
When using 82 types of powder A as shown in Figure 1, the fine part of A (A゛) acts as a fine particulate powder, while the coarse part of B (B'') acts as a coarse part of powder. , I3 is known, it is not difficult to appropriately select their blending ratio.

本発明の好適態様によれば、油アトマイズ銅粉の場合、
粗粒粉を一60メソシュ、微粒粉を−250メソシュと
することができる。
According to a preferred embodiment of the present invention, in the case of oil atomized copper powder,
The coarse powder can be 160 mesosh, and the fine powder can be -250 mesosh.

その他、例えば、粗粒粉をいくつかに分級し、それぞれ
について微粒粉を配合、混合して造粒してもよい、この
ように微粒粉と粗粒粉との区別、組合せには多くのもの
が考えられるが、いずれも粗粒粉に微粒粉を付着させる
という作用効果を示す限りにおいて本発明の範囲内であ
る。しかし、その境界は好ましくは実用的には350メ
ソシユ、品質面からみれば700メツシユであり、工業
的には350メツシユが周辺設備技術を含めて工業化し
やすい境界である。
In addition, for example, coarse grain powder may be classified into several types, and fine grain powder may be blended and mixed for each to make granules.There are many ways to differentiate and combine fine grain powder and coarse grain powder. However, any of them is within the scope of the present invention as long as they exhibit the effect of adhering fine powder to coarse powder. However, the boundary is preferably 350 mesh in practical terms, and 700 mesh in terms of quality, and 350 mesh is the boundary that is easy to industrialize including peripheral equipment technology.

金属粉末の粗粒粉と微粒粉の成分または組成が互いに異
なる場合たとえば鉄粉とNi、、MO% Cu系の添加
合金粉とをプレミックスする場合においては、鉄粉の粗
粒粉はアトマイズ法により製造され、微粒粉(N1% 
Mos Cu等の添加合金光素粉)は、どのような方法
で製造されてもよい0例えば還元法、電解法、粉砕法等
、特に制限はない、また、粗粒粉と微粒粉とは、相対的
なものでもよいのでベース粉、添加合金光素粉の分級を
特に必要としないが、微粒粉として250メツシユより
細かい粉末を用いるのが望ましい。
When the components or compositions of the coarse metal powder and the fine metal powder are different from each other, for example, when premixing iron powder and Ni, MO% Cu-based additive alloy powder, the coarse iron powder can be prepared by atomizing. Fine powder (N1%)
Additive alloy optical element powder such as Mos Cu) may be produced by any method. For example, reduction method, electrolytic method, pulverization method, etc. are not particularly limited. Also, coarse powder and fine powder may be produced by any method. It is not necessary to classify the base powder and the additive alloy powder as they may be relative, but it is preferable to use a powder finer than 250 mesh as the fine powder.

本発明における造粒工程は、■粉末製造工程中の加熱(
還元、脱炭、焼鈍等のための加熱)の前に行う場合と、
■粉末製造工程を出て、焼結法による製品の製造工程に
おいて行う場合、とがある。
The granulation process in the present invention consists of (1) heating during the powder manufacturing process (
heating for reduction, decarburization, annealing, etc.);
■There is a case where it is carried out after the powder manufacturing process and in the product manufacturing process using the sintering method.

異種粉末のプレミックス法では、■が採用される。In the premix method of different powders, ■ is adopted.

いずれの場合も、粗粒粉と微粒粉とを、適正比率で配合
してよく混合すれば所望の粒子集合体がえれれる。しか
し、造粒工程で適当なバインダーを使用することは好ま
しい。この場合、粘着性バインダーによって表面を濡ら
した粗粒粉と、乾燥した微粒粉とを配合、混合するので
ある。粗粒粉と微粒粉とをただ単に混合するだけでは、
必ずしも微粒粉が粗粒粉の周りに均一にまぶされること
にはならない場合があり、また混合後、搬送工程におい
て分離することも考えられるから、これらの欠点を確実
に防止するために混合時に付着させてしまうのである。
In either case, a desired particle aggregate can be obtained by blending coarse powder and fine powder in an appropriate ratio and mixing well. However, it is preferred to use a suitable binder in the granulation process. In this case, coarse powder whose surface is wetted with an adhesive binder and dried fine powder are blended and mixed. Simply mixing coarse powder and fine powder
Fine grain powder may not necessarily be uniformly sprinkled around coarse grain powder, and it may also separate during the conveyance process after mixing, so to ensure that these defects are prevented I let them do it.

その場合、単に粘着性バインダーを使用しただけでは、
例えば粒子全体にバインダーが浸透すると微粒粉同士の
付着が生じやすい。
In that case, simply using an adhesive binder will not work.
For example, if the binder permeates the entire particle, fine particles tend to stick to each other.

したがって、本発明によれば、付着の生じ難い粗粒粉を
まず濡らし、これに乾いた微粒粉を共存させることによ
り、そのバインダーの表面張力を利用して粗粒粉表面に
可及的に均一に付着させるのである。これによりその後
の搬送工程での比重差による望ましくない分級も阻止で
きる。
Therefore, according to the present invention, by first wetting the coarse powder that is difficult to adhere to, and then allowing dry fine powder to coexist with this, the surface tension of the binder can be used to spread the surface of the coarse powder as uniformly as possible. It is attached to the surface. This can also prevent undesirable classification due to differences in specific gravity during the subsequent conveyance process.

なお、かかるバインダーはそれに続く加熱処理に際し除
去され、同時に微粒粉の粗粒粉表面への接着が行われる
The binder is removed during the subsequent heat treatment, and at the same time, the fine powder is adhered to the surface of the coarse powder.

(作用) 第3回は、本発明方法の1例を示すフローチャートであ
る。粗粒粉と微粒粉とを先ず用意し、これらを適宜割合
で配合、バインダーを使用しあるいは使用せずに造粒工
程に送り、混合し造粒して、粗粒の周りに微粒粉をまぶ
した状態にするとともに、所要粒径にまで造粒する。次
いでこれを通常行われる還元、脱炭或いは焼鈍のための
加熱工程に送る。一般にこのときの処理条件は600〜
1200℃で処理時間は15〜60分間程度である。こ
の工程で粗粒粉と微粒粉の界面で拡散焼結がおこり両者
の結合が強化される。
(Operation) The third part is a flowchart showing an example of the method of the present invention. Coarse powder and fine powder are first prepared, mixed in appropriate proportions, sent to the granulation process with or without a binder, mixed and granulated, and the fine powder is sprinkled around the coarse particles. and granulate it to the required particle size. This is then sent to a conventional heating process for reduction, decarburization, or annealing. Generally, the processing conditions at this time are 600~
The treatment time is about 15 to 60 minutes at 1200°C. In this step, diffusion sintering occurs at the interface between the coarse powder and the fine powder, strengthening the bond between the two.

上記の加熱処理により一部塊状になった原料粉はさらに
軽粉砕するとともに、分級して余りにも大きい部分を除
去する。これを焼結原料粉末とするには用途に応じて適
宜粒度のものをブレンドして粒度分布を所要のものに調
整するのである。
The raw material powder, which has become partially lumpy due to the above heat treatment, is further lightly pulverized and classified to remove excessively large portions. In order to use this as a sintering raw material powder, the particle size distribution is adjusted to the required one by blending particles with appropriate particle sizes depending on the application.

原料粉末が同一の製造ラインから得られる場合の上記の
各工程における粉末粒子の形状変化を第4図に模式的に
示す。例えば、液体アトマイズ粉である出発金属粉末を
予め分級して粗粒粉と微粒粉とを用意しく第4図ta+
および(b)参照)、これらを適宜割合で配合、混合し
、バインダーを使用し、あるいは使用せずに、造粒し、
ちょうど大きな粒子の周りに細かい粒子がまぶされたよ
うにしく第4図fcl参照)、次いでこれを加熱処理す
ることにより、微粒粉の付着を強固なものとするのであ
る(第4図fdl参照)。
FIG. 4 schematically shows changes in the shape of powder particles in each of the above steps when the raw material powders are obtained from the same production line. For example, the starting metal powder, which is liquid atomized powder, is classified in advance to prepare coarse powder and fine powder.
and (b)), blend and mix these in appropriate proportions, and granulate with or without a binder,
It looks like fine particles are sprinkled around large particles (see Figure 4, fcl), and then heat-treated to solidify the adhesion of the fine particles (see Figure 4, fdl). ).

ここで、本発明の特徴である分級、造粒工程についてさ
らに説明する。
Here, the classification and granulation steps, which are the characteristics of the present invention, will be further explained.

粗粒粉、微粒粉の分級は、所要の焼結原料粉末の粒度構
成、用途により異なるが、前掲の第1表に示すような一
般的な水アトマイズ、油アトマイズ粉では、250メツ
シユまたは350メツシユで、場合によっては700メ
ツシユで粗粒粉側と微粒粉側とに分ける。
The classification of coarse powder and fine powder differs depending on the particle size structure and purpose of the required sintering raw material powder, but for general water atomized and oil atomized powders as shown in Table 1 above, 250 mesh or 350 mesh is used. Depending on the case, the powder is divided into coarse powder and fine powder at 700 mesh.

粗粒粉には予めバインダーを付着させておくと、これに
微粒粉を配合、混合することにより、粗粒粉の周りに微
粒粉がちょうどまぶされるようになって造粒が行われる
ので有利である。
It is advantageous to attach a binder to the coarse powder in advance, because by blending and mixing the fine powder with it, the fine powder is just sprinkled around the coarse powder and granulation is performed. be.

この場合使用する粘着性バインダーとしては粉末冶金用
鋼粉として多量に使用されている液体アトマイズ法の噴
霧媒である鉱物油、植物油、動物油、水を利用するのが
、工業的には安価となる。
In this case, the adhesive binder used is mineral oil, vegetable oil, animal oil, or water, which is the atomizing medium of the liquid atomization method that is used in large quantities as steel powder for powder metallurgy, and is industrially inexpensive. .

粗粒粉を液体アトマイズ法で製造する場合は、噴霧媒の
除去(乾燥)を調整することによって、粗粒粉表面をバ
インダーで濡らしたのと同じ状態が得られる。また、他
の粘着性バインダーとしては、炭化水素系化合I#(例
:パラフィン、樹脂etc、)があり、これを使用すれ
ば、後処理が容易で、コスト的に有利である。
When coarse powder is produced by a liquid atomization method, by adjusting the removal (drying) of the spray medium, the same state as when the surface of the coarse powder is wetted with a binder can be obtained. Further, as another adhesive binder, there is a hydrocarbon compound I# (eg, paraffin, resin, etc.), and if this is used, post-treatment is easy and it is advantageous in terms of cost.

粗粒粉表面を粘着性バインダーで濡らす場合、400℃
以下で液体状とならなければならないため、その融点は
400℃以下とするのが好ましい。一方、造粒粉の脱バ
インダ一工程において、600℃以上では粗粒粉と微粒
粉との接着が生じ始めるため、クランキング、浸炭等の
現象、残渣の存在等が生じ、粉末の硬度を高くするとと
もに、圧縮性を低下させる原因となる。したがって、バ
インダーの沸点は高々600℃が好ましい。
When wetting the surface of coarse powder with adhesive binder, 400℃
The melting point is preferably 400° C. or lower because it must become liquid at a temperature of 400° C. or lower. On the other hand, in the debinding process of granulated powder, at temperatures above 600°C, adhesion between coarse and fine powder begins to occur, resulting in phenomena such as cranking, carburization, and the presence of residue, which increases the hardness of the powder. At the same time, it causes a decrease in compressibility. Therefore, the boiling point of the binder is preferably at most 600°C.

粘着性バインダーの添加量は、バインダーの′種類によ
り最適値が異なるが、一般には、粉体全量に対し1〜1
0重量%の配合で引張強度の上昇が認められ、特に1〜
5重債%においてその効果が顕著である。この添加量が
10重量%を越えると、粘着性バインダーが微粒粉に浸
透してしまい、その結果バインダーの表面張力により微
粒粉同士の造粒物が生じ易くなり、圧縮性の低下は免れ
ない。
The optimum amount of adhesive binder to be added differs depending on the type of binder, but in general, it is 1 to 1% of the total amount of powder.
An increase in tensile strength was observed when the content was 0% by weight, especially when the content was 0% by weight.
The effect is remarkable for 5% debt. If the amount added exceeds 10% by weight, the adhesive binder will penetrate into the fine powder, and as a result, the surface tension of the binder will tend to cause granules of the fine powder to form, inevitably resulting in a decrease in compressibility.

しかし、1重置%未満の場合にはバインダーが粗粒粉表
面を充分に濡らすことができないから、その効果を発揮
できない。
However, if the amount is less than 1%, the binder cannot sufficiently wet the surface of the coarse grain powder, and therefore cannot exhibit its effect.

このようなバインダーの配合およびそれに続く粗粒粉と
微粒粉との混合・造粒方法は、要するに粗粒粉表面に均
一に付着すれば充分であり、その限りにおいて制限はな
いが、好ましくは機械的撹拌方法、例えば粗粒粉の上か
ら微粒粉をふりかけながらクツピングと振動を与えて機
械的に攪拌する方法゛、撹拌羽根を利用して混合する方
法、等がある。混合時間があまり長時間である必要はな
く、数分から1時間までで充分である。
The blending of such a binder and the subsequent mixing and granulation method of coarse powder and fine powder are sufficient as long as the binder is uniformly adhered to the surface of the coarse powder, and as long as this is not limited, it is preferable to use a machine. For example, there are mechanical stirring methods such as mechanical stirring by sprinkling fine powder over coarse powder while applying chopping and vibration, and mixing using a stirring blade. The mixing time does not need to be very long; a few minutes to an hour is sufficient.

油アトマイズの噴霧媒である油をバインダーとした場合
の分級、造粒についてさらに具体的に説明する。
Classification and granulation in the case where oil, which is a spray medium for oil atomization, is used as a binder will be explained in more detail.

油アトマイズにより得られたアトマイズ粉は60メンシ
ユアンダーで平均粒径が65〜80μmであるような粒
径分布を持っている。これらの粉末群を遠心分M機等に
より強制脱油する前に、油の中で金属粉が懸濁した状態
において噴霧媒である油を利用した湿式分級により25
0メツシユを境に粗粒粉と微粒粉とに分離した後、粗粒
粉は10%程度にまで強制脱油、微粒粉は強制脱油後乾
燥する。
The atomized powder obtained by oil atomization has a particle size distribution of 60 mensider and an average particle size of 65 to 80 μm. Before these powder groups are forcibly deoiled using a centrifugal M machine, etc., the metal powders are suspended in oil and subjected to wet classification using oil as a spray medium.
After separating into coarse powder and fine powder at 0 mesh, the coarse powder is forcibly deoiled to about 10%, and the fine powder is dried after forced oil removal.

適度の油分が付着した粗粒粉群に乾燥した微粒粉を定量
供給しなからペレソタイダ一式の造粒機を用いて造粒す
る。粗粒粉と微粒粉との配合割合は6:4 (重M)で
あった、造粒後、加熱処理を兼ねて、油アトマイズの時
に0.3〜0.5%滲炭した炭素分を低減させるために
脱炭炉に装入して加熱処理した。このときの、昇温、脱
炭過程におい    −てみられる焼結現象により粗粒
粉に微粒粉を固く付着させた後、軽粉砕により造粒粒子
同士のゆるい付着を解砕して、再び分級、ブレンドして
成品粉末とする。
A fixed amount of dry fine powder is supplied to the coarse powder to which a suitable amount of oil has adhered, and then granulated using a granulator set of Peresotaida. The blending ratio of coarse grain powder and fine grain powder was 6:4 (heavy M). After granulation, 0.3 to 0.5% of carbonized carbon content was added during oil atomization, which also served as heat treatment. In order to reduce the amount of carbon, it was charged into a decarburization furnace and heat treated. At this time, after the fine powder is firmly adhered to the coarse powder due to the sintering phenomenon observed during the temperature rise and decarburization process, the loose adhesion between the granulated particles is broken up by light pulverization, and the particles are classified again. , blended to form a finished powder.

次に、第5図ないし第7図は、本発明にかかる方法を実
施するための各変更具体例の工程図である。
Next, FIGS. 5 to 7 are process diagrams of various modified examples for carrying out the method according to the present invention.

第5図では、液体アトマイズ粉を先ず固液分離し、次い
で乾燥してから、粗粒粉と微粒粉とに分級し、それらを
再び適宜割合で配合、混合して造粒するのである。造粒
してからは加熱処理により粗粒粉と微粒粉との付着を強
化し、さらに軽粉砕工程を経て、焼結原料とするために
再び分級、ブレンドの各工程を経て粉末冶金用の金属粉
末とす20である。軽粉砕工程は粗粒粉同士などのゆる
い結合を破壊するために行うもので、加熱処理の際の粒
子同士の焼結の程度によって、必要に応じ行うことがで
きる。
In FIG. 5, the liquid atomized powder is first separated into solid and liquid, then dried, and then classified into coarse powder and fine powder, which are again blended and mixed in appropriate proportions and granulated. After granulation, heat treatment is used to strengthen the adhesion between coarse and fine powder, and then a light pulverization process is carried out, and the metal for powder metallurgy is processed through the classification and blending processes again to become a sintering raw material. The powder is 20. The light pulverization process is carried out to break loose bonds between coarse particles, and can be carried out as necessary depending on the degree of sintering of the particles during the heat treatment.

第6図は、第5図の工程の一部を変え、液体アトマイズ
粉を乾燥してから、還元・脱炭後、粉砕して分級するこ
とから成る方法を示す。水アトマイズの場合には還元工
程を、油アトマイズの場合には脱炭工程を利用すること
ができる。軽粉砕工程は造粒物同士の付着、固着を解砕
するものである。
FIG. 6 shows a method in which a part of the process shown in FIG. 5 is changed, and the liquid atomized powder is dried, reduced and decarburized, and then pulverized and classified. In the case of water atomization, a reduction process can be used, and in the case of oil atomization, a decarburization process can be used. The light crushing step is to break up adhesion and adhesion between granules.

第7図は、固液分離に先立って湿式で分級を行う例を示
すものである。この場合には、水アトマイズ粉では水を
、油アトマイズ粉では油をそれぞれ造粒工程でのバイン
ダーとして利用するものである。一般的には固液分離の
前に湿式で分級し、必要含液体量まで液体分離(例えば
遠心分a機による液体分離)を行い、次いで造粒し、乾
燥後、加熱処理を行うのである。
FIG. 7 shows an example in which wet classification is performed prior to solid-liquid separation. In this case, water is used as a binder for water atomized powder, and oil is used for oil atomized powder as a binder in the granulation process. Generally, before solid-liquid separation, the material is wet classified, liquid separated to the required liquid content (for example, liquid separated using a centrifugal separator), then granulated, dried, and then heated.

第8回は、特に異種粉末のプレミックスに本発明を適用
する場合を示す。それぞれ別個の粉末製造工程から送ら
れてくる粗粒粉(たとえば純鉄粉)と微粒粉(Nis 
Cu、 Mo等の添加合金粉)とを所定の比率で混合し
、造粒するのである。この時もバインダーの添加は任意
である。これらの粉末は、すでに還元、焼鈍等の熱処理
をすませたものである場合は、造粒の後の加熱は必ずし
も必要としない、そのま\圧縮、成形し、焼結工程に送
ればよい。
Part 8 specifically shows the case where the present invention is applied to a premix of different types of powders. Coarse powder (for example, pure iron powder) and fine powder (Nis
Additive alloy powders such as Cu and Mo are mixed in a predetermined ratio and granulated. Also at this time, addition of a binder is optional. If these powders have already been subjected to heat treatments such as reduction and annealing, heating after granulation is not necessarily necessary, and they may be compressed, molded, and sent to the sintering process as they are.

次に本発明を実施例によってさらに詳細に説明する。Next, the present invention will be explained in more detail with reference to Examples.

実施例1 本例では第6図に示す工程に従い第2表に示す組成の溶
鋼を通常の油アトマイズ法により製造し、前掲の第1表
に示す粒度分布とほぼ同一の油アトマイズ鋼粉を得た。
Example 1 In this example, molten steel having the composition shown in Table 2 was produced by a normal oil atomization method according to the steps shown in FIG. Ta.

このようにして得た油アトマイズ粉を遠心分離機を使い
固液分離後、350メコ・シュを境に粗粒粉と微粒粉と
に区分し、次いで100/150.150/200.2
00/250そして250/350メツシユの各粗粒粉
に上記微粒粉をほぼ4:1〜2:lの割合で配合してバ
インダーなしで造粒した。加熱処理は900℃で60分
間行った。処理条件は第3表にまとめて示す。
After solid-liquid separation of the oil atomized powder obtained in this way using a centrifuge, it is divided into coarse powder and fine powder at 350 Mekosh, and then 100/150.150/200.2
The above-mentioned fine powder was mixed with coarse powder of 00/250 and 250/350 mesh in a ratio of approximately 4:1 to 2:1 and granulated without a binder. The heat treatment was performed at 900°C for 60 minutes. The processing conditions are summarized in Table 3.

比較のため従来法によるものも併せて示す。For comparison, a conventional method is also shown.

第3表 得られた加熱処理済みの粉末をさらに軽粉砕、分級、ブ
レンドの各工程を経て、第4表に示す粒度分布を有する
粉末に調整した。このとき得られた造粒粉の顕微鏡組織
写真(倍率400)を第9図に示す。歩留り、粉体特性
は第5表にまとめてしめす。
Table 3 The heat-treated powder obtained was further subjected to light pulverization, classification, and blending steps to obtain powder having the particle size distribution shown in Table 4. A microscopic photograph (400 magnification) of the granulated powder obtained at this time is shown in FIG. The yield and powder characteristics are summarized in Table 5.

第4表 第5表 標準的な粉末冶金用原料として使用可能な60メツシユ
以下の粉末の歩留が本発明方法の採用によって約6%改
善され良好であるのは、脱炭前に分級して粒度コントロ
ールしていることによる。見掛密度、流動度から本発明
方法の粉末が若干不規則形状になっているようである。
Table 4 Table 5 The yield of powder of 60 mesh or less, which can be used as a standard raw material for powder metallurgy, is improved by about 6% by adopting the method of the present invention, which is good because it is classified before decarburization. This is due to particle size control. From the apparent density and fluidity, it appears that the powder produced by the method of the present invention has a slightly irregular shape.

次に、第4表の粒度分布をもち、第5表の粉体特性を備
えた、本発明および従来法により製造された粉末をそれ
ぞれ使って、圧粉体の成形および焼結を行った。
Next, green compacts were formed and sintered using the powders produced by the present invention and the conventional method, each having the particle size distribution shown in Table 4 and the powder properties shown in Table 5.

結果を第6表および第7表にまとめて示すが、これらの
データからも本発明方法は圧縮性、成形性といった圧粉
体特性、引張、伸びといった焼結体特性を向上させるす
ぐれた方法であることが分かる。
The results are summarized in Tables 6 and 7, and these data show that the method of the present invention is an excellent method for improving green compact properties such as compressibility and formability, and sintered compact properties such as tensile and elongation. I understand that there is something.

ネ G 長 (ン垣:0.8ステアリン酸亜鉛と0.6−と黒鉛を添
加第7表 (注)試験条件 実施例2 油アトマイズ法によって得られたアトマイズままの鋼粉
を用い、−60メツシユ、−100メツシユ、−250
メソシユそして一350メソシュにそれぞれ分級すると
ともに一60メソシュ、−100メツシユを粗粒粉とし
、この粗粒粉に粘着性バインダーとして鉱物油(スーパ
ーハイランド40、日本石油■製)を配合し、造粒を行
った。使用した油アトマイズまま鋼粉の組成を第8表に
、造粒条件を第9表にまとめて示す。
Table 7 (Note) Test conditions Example 2 Using as-atomized steel powder obtained by the oil atomization method, -60 mesh, -100 mesh, -250
The 160 mesh and -100 mesh are respectively classified into coarse powder, and mineral oil (Super Highland 40, manufactured by Nippon Oil Co., Ltd.) is blended into this coarse powder as an adhesive binder. I went grain. The composition of the oil-atomized steel powder used is summarized in Table 8, and the granulation conditions are summarized in Table 9.

第8表 第9表 分混合。Table 8 Table 9 Minute mixing.

次いで、このように配合され、造粒された後、水素雰囲
気中で600℃×20分加熱してから900℃X13分
Hto含有水素雰囲気中で加熱し、さらに970℃XI
O分水素雰囲気中で加熱して脱炭処理を行い、粉砕した
。粉砕した粉末について、下記要領で粉体特性、圧粉体
特性、焼結体特性を調査した。
Next, after being blended and granulated in this way, the mixture was heated at 600°C for 20 minutes in a hydrogen atmosphere, then heated at 900°C for 13 minutes in an Hto-containing hydrogen atmosphere, and then heated at 970°C for 13 minutes.
It was decarburized by heating in an O-hydrogen atmosphere and pulverized. The powder properties, green compact properties, and sintered compact properties of the pulverized powder were investigated in the following manner.

圧粉体特性:Zn−5t0.8%添加、5 Ton/a
J焼結体特性:0.5%C−0,8%Zn−5t7、 
Log/cjに調整、1250℃×30分Ng雰囲気下
で焼結、同じくh雰囲気 下で850℃×30分加熱してから油 焼入れ、200℃×60分N!雰囲気下で焼戻。
Green compact properties: Zn-5t 0.8% addition, 5 Ton/a
J sintered body properties: 0.5%C-0.8%Zn-5t7,
Adjusted to Log/cj, sintered at 1250°C x 30 minutes under Ng atmosphere, heated at 850°C x 30 minutes under h atmosphere, then oil quenched, 200°C x 60 minutes N! Tempered under atmosphere.

その結果を第10表にまとめて示す。The results are summarized in Table 10.

それからも分かるように、従来法に比べ引張強度、シャ
ルピー衝撃値を向上させるだけであれば、試料光1−7
から1−12のように微粒粉量を増加させることにより
ある程度の改善は可能である。
As can be seen, if only the tensile strength and Charpy impact value were to be improved compared to the conventional method, the sample light 1-7
It is possible to improve it to some extent by increasing the amount of fine powder as shown in 1-12.

しかし、先にも述べたように、その場合、圧縮性の低下
が著しい。これに比較して、本発明によれば、微粒粉量
を増やしたにもかかわらず、圧縮性、成形性の向上が認
められる。
However, as mentioned above, in that case, the compressibility is significantly reduced. In comparison, according to the present invention, improvements in compressibility and moldability are observed even though the amount of fine powder is increased.

また、−60メソシエの歩留りも、第10表に示すごと
く、かなりの改善がみられる。
Further, as shown in Table 10, the yield of -60 Mesosier is also significantly improved.

さらに、本発明による混合方法の相違もその特性に大き
な影響を与える。例えば、試料隘1−3および1−5を
比較すると分かるように、その差違は混合方法の差違、
つまり粒子形態の相違にもとずくものである。望ましく
は、混合法Aを使用することが特性改善にはよい。
Furthermore, the difference in the mixing method according to the invention also has a great influence on its properties. For example, as can be seen by comparing samples 1-3 and 1-5, the difference is due to the mixing method,
In other words, it is based on the difference in particle morphology. Preferably, the use of mixing method A is good for improving characteristics.

実施例3 油アトマイズ法によって得られた市販鋼粉を用い、粘着
性バインダーとしてロウ(ロストワックスに−21、加
藤洋工■製)を使用して、従来法と比較した本発明の特
性を評価した。使用したアトマイズ鋼粉の組成、粒度分
布を第11表および第12表にそれぞれまとめて示す。
Example 3 Using commercially available steel powder obtained by the oil atomization method and using wax (lost wax -21, manufactured by Kato Yoko ■) as an adhesive binder, the characteristics of the present invention were evaluated in comparison with the conventional method. did. The composition and particle size distribution of the atomized steel powder used are summarized in Tables 11 and 12, respectively.

第11表 第13表 次いで、このようにして造粒した粉末を使って、950
℃X60分、水゛紫雲囲気中で熱処理した後、粉砕し、
60メソシユで分級した粉末の実施例2と同様にして調
査した各種特性を第14表にまとめて示す。
Table 11 Table 13 Next, using the powder granulated in this way, 950
After heat treatment in an atmosphere of water and water for 60 minutes at
Table 14 summarizes the various properties of the powder classified by 60 mesosius, which were investigated in the same manner as in Example 2.

これらの結果から、圧縮性、焼結性の向上が認められる
From these results, it is recognized that compressibility and sinterability are improved.

試料隘2−4のように、粗粒粉、微粒粉に分けずに、そ
れらの混合物にバインダーを添加しただけでは焼結体の
強度、靭性の低下が著しい。
As in sample No. 2-4, if a binder is merely added to a mixture of coarse powder and fine powder without separating them into coarse powder and fine powder, the strength and toughness of the sintered body are significantly reduced.

第14表 なお、第10図は、バインダーの添加量と焼結体の引張
強度との関係を示すグラフである。バインダーを添加す
ることにより強度は改善され、その効果は1重世%以上
のバインダーを配合する場合に見られ、一方、10重量
%を越えると、むしろ強度が低下する。バインダーの種
類を問わず、共通して見られる傾向である。ここで、引
張強度は実施例2と同様にして得られる焼結体について
測定されたものである。
Table 14 FIG. 10 is a graph showing the relationship between the amount of binder added and the tensile strength of the sintered body. The strength is improved by adding a binder, and this effect is seen when the binder is added in an amount of 1 weight % or more, whereas if it exceeds 10 weight %, the strength actually decreases. This is a common tendency regardless of the type of binder. Here, the tensile strength was measured on a sintered body obtained in the same manner as in Example 2.

実施例4 本例では、粗粒粉として純鉄粉を、微粒粉として添加合
金元素のN1% MO% CLI粉を配合した場合につ
いて説明する。
Example 4 In this example, a case will be described in which pure iron powder is blended as coarse powder and N1% MO% CLI powder as an added alloying element is blended as fine powder.

使用した粉末の性状を第15表に示す。Table 15 shows the properties of the powder used.

第15表 このようにして用意した粉末を次に、第16表に示す混
合方法によって混合し、実施例2にしたがって焼結した
。そのときの混合方法および焼結体の特性を第16表に
まとめて示す。なお、バインダーは鉱物油(スーパーハ
イランド40、日本石油■製)を使用した。
Table 15 The powder thus prepared was then mixed according to the mixing method shown in Table 16 and sintered according to Example 2. The mixing method and characteristics of the sintered body at that time are summarized in Table 16. Note that mineral oil (Super Highland 40, manufactured by Nippon Oil Corporation) was used as the binder.

これらの結果からも明らかなように、N1%MOを添加
した場合には、引張強度で約10 kgf/mm2、衝
撃値で約0.5kgf/ms+”の向上が認められる。
As is clear from these results, when N1% MO is added, the tensile strength is improved by about 10 kgf/mm2, and the impact value is improved by about 0.5 kgf/ms+''.

Cuはこれらに比べれば顕著な向上は認められないが、
特性の向上は認められる。これはCuは1083℃とい
う低融点物質であるため、初期圧粉体の状態でまぶされ
ていなくても、溶けることによってその差違をすくなく
しているためである。それに比べNi、Mo、特にMo
は難拡散性であるため、よりその効果が顕著に現れてい
る。
Although no significant improvement was observed in Cu compared to these,
Improvement in characteristics is recognized. This is because Cu is a substance with a low melting point of 1083° C., so even if it is not coated in the initial green compact state, the difference is minimized by melting. Compared to that, Ni, Mo, especially Mo
Since it is difficult to diffuse, its effect is more pronounced.

第16表 1 。Table 16 1.

Thoughts

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、粉末の集合状態を模式的に示す図;第2図は
、粗粒粉と微粒粉の定義を説明する図;第3図は、本発
明にかかる方法の各工程を示すフローシート; 第4図は、本発明における分級、造粒そして加撚処理工
程における粒子形態の変化を模式的に示r説明図; 第5図ないし第8図は、本発明方法の各具体化列を示す
フローシート;##≠ 第9図は、本発明の実施例により得られた金属立子の顕
微鏡写真図−おJv” 第10図は、バインダー添加量と焼結体引張強度との関
係を示すグラフである。 氷3凹 第57 扉、ろ7 番7回 ユδ図
Fig. 1 is a diagram schematically showing the state of aggregation of powder; Fig. 2 is a diagram explaining the definition of coarse powder and fine powder; Fig. 3 is a flowchart showing each step of the method according to the present invention. Sheet; Figure 4 is an explanatory diagram schematically showing changes in particle morphology during the classification, granulation, and twisting processing steps in the present invention; Figures 5 to 8 are diagrams showing each embodiment of the method of the present invention; ##≠ Figure 9 is a microscopic photograph of the metal stand obtained in the example of the present invention - OJv'' Figure 10 shows the relationship between the amount of binder added and the tensile strength of the sintered body. This is a graph showing the ice 3 concave 57th door, ro 7 7th yu δ diagram.

Claims (8)

【特許請求の範囲】[Claims] (1)金属粉末を粗粒分と微粒分とに区分し、両者を適
正な配合比で混合して、粗粒粉の周囲に微粒粉が均一に
付着した粒子集合体に造粒することを特徴とする粉末冶
金用金属粉末の製造方法。
(1) The metal powder is divided into coarse particles and fine particles, and the two are mixed in an appropriate mixing ratio to form a particle aggregate in which fine particles are uniformly attached around the coarse particles. Features: A method for producing metal powder for powder metallurgy.
(2)別々の製造ラインにより製造された粗粒粉と微粒
粉とを配合、混合して造粒する、特許請求の範囲第1項
記載の方法。
(2) The method according to claim 1, wherein coarse powder and fine powder produced by separate production lines are blended, mixed, and granulated.
(3)同一の製造ラインにより製造された金属粉末を分
級し、得られた粗粒粉と微粒粉とを配合、混合して造粒
する、特許請求の範囲第1項記載の方法。
(3) The method according to claim 1, wherein metal powders produced on the same production line are classified, and the obtained coarse powder and fine powder are blended, mixed, and granulated.
(4)金属粉末の製造方法が液体アトマイズ法であるこ
とを特徴とする、特許請求の範囲第2項または第3項記
載の方法。
(4) The method according to claim 2 or 3, wherein the metal powder manufacturing method is a liquid atomization method.
(5)粗粒粉表面を粉末全量の1〜10重量%の粘着性
バインダーで濡らした後、該粗粒粉と微粒粉とを配合、
混合する、特許請求の範囲第1項ないし第4項のいずれ
かに記載の方法。
(5) After wetting the surface of the coarse powder with an adhesive binder of 1 to 10% by weight of the total amount of powder, blending the coarse powder and fine powder;
5. A method according to any one of claims 1 to 4, which comprises mixing.
(6)前記粘着性バインダーが水、植物油、鉱物油、パ
ラフィンおよび樹脂から成る群から選んだ1種である、
特許請求の範囲第5項記載の方法。
(6) the adhesive binder is one selected from the group consisting of water, vegetable oil, mineral oil, paraffin and resin;
A method according to claim 5.
(7)前記金属粉末が油アトマイズ鋼粉末である、特許
請求の範囲第1項ないし第6項のいずれかに記載の方法
(7) The method according to any one of claims 1 to 6, wherein the metal powder is oil atomized steel powder.
(8)金属粉末の粗粒紛と微粒紛の成分または組成が互
いに異なることを特徴とする、特許請求の範囲第1項な
いし第7項のいずれかに記載の方法。
(8) The method according to any one of claims 1 to 7, wherein the coarse powder and the fine powder of the metal powder have different components or compositions.
JP62036583A 1986-02-20 1987-02-19 Production of metallic powder for powder metallurgy Pending JPS62278201A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE19873742960 DE3742960A1 (en) 1986-12-19 1987-12-18 Dewatering plate
FR8717768A FR2608652A1 (en) 1986-12-19 1987-12-18 DRAINING SHEET FOR CONSTRUCTION WORKS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP61-36082 1986-02-20
JP3608286 1986-02-20

Publications (1)

Publication Number Publication Date
JPS62278201A true JPS62278201A (en) 1987-12-03

Family

ID=12459820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62036583A Pending JPS62278201A (en) 1986-02-20 1987-02-19 Production of metallic powder for powder metallurgy

Country Status (1)

Country Link
JP (1) JPS62278201A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004062837A1 (en) * 2003-01-08 2004-07-29 Toudaitlo, Ltd. Magnesium composite powder, method for producing same, magnesium base composite material and method for producing same
JP2005294683A (en) * 2004-04-02 2005-10-20 Mitsubishi Materials Corp Seizing iron powder for resin-bonded soft-magnetic material, and production method thereof
JP2008081840A (en) * 2006-08-28 2008-04-10 Matsushita Electric Works Ltd Metal powder for metal photofabrication and method of metal photofabrication using the same
JP2010077515A (en) * 2008-09-29 2010-04-08 Hitachi Powdered Metals Co Ltd Method for producing sintered valve guide

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004062837A1 (en) * 2003-01-08 2004-07-29 Toudaitlo, Ltd. Magnesium composite powder, method for producing same, magnesium base composite material and method for producing same
CN100431742C (en) * 2003-01-08 2008-11-12 株式会社东京大学Tlo Magnesium composite powder, method for producing same, magnesium base composite material and method for producing same
JP2005294683A (en) * 2004-04-02 2005-10-20 Mitsubishi Materials Corp Seizing iron powder for resin-bonded soft-magnetic material, and production method thereof
JP2008081840A (en) * 2006-08-28 2008-04-10 Matsushita Electric Works Ltd Metal powder for metal photofabrication and method of metal photofabrication using the same
JP4661842B2 (en) * 2006-08-28 2011-03-30 パナソニック電工株式会社 Method for producing metal powder for metal stereolithography and metal stereolithography
JP2010077515A (en) * 2008-09-29 2010-04-08 Hitachi Powdered Metals Co Ltd Method for producing sintered valve guide

Similar Documents

Publication Publication Date Title
KR101644785B1 (en) Process for producing agglomerates of finely particulate iron carriers
KR100741600B1 (en) Powder composition comprising aggregates of iron powder and additives and a flow agent and a process for its preparation
CN110653373B (en) Matrix material for porous diamond grinding tool and preparation method
KR101531346B1 (en) Method for manufacturing diffusion bonding iron-based powders
JPS62278201A (en) Production of metallic powder for powder metallurgy
JPH0645802B2 (en) High strength alloy steel powder for powder metallurgy
US4705565A (en) High speed steel sintering powder made from reclaimed grinding sludge and objects sintered therefrom
JPH0754002A (en) Metal powder for part manufacturing by compression molding and sintering and preparation of said powder
US3419383A (en) Producing pulverulent iron for powder metallurgy by multistage reduction
CN110508800A (en) A kind of prealloy powder for being used with combined binder grinding tool of mill hard brittle material and preparation method thereof, grinding tool
US2160670A (en) Method of manufacturing hard frittered alloys
CN113136486B (en) Production method and formula of pellets added with low-nickel high-iron nickel ore
WO2020172744A1 (en) Metallic iron powder
JP2953308B2 (en) Sinter production method
JP2002105542A (en) Method for producing sintered ore for blast furnace
FR2555478A1 (en) PROCESS FOR PRODUCTION OF A PRODUCT OPENED FROM ALLOY POWDER AND OPEN PRODUCT OBTAINED
JP2003531961A (en) Method of sintering carbon steel parts using hydrocolloid binder as carbon source
JPS6156281B2 (en)
RU2364469C1 (en) Method of iron powder production
RU2360769C2 (en) Method of iron powder receiving
JP2004162170A (en) Atomized iron powder for powder metallurgy and its producing method
JPH0689363B2 (en) High strength alloy steel powder for powder metallurgy
CN106906355A (en) The shaft furnace preparation method of vanadium titano-magnetite acid pellet
JPH0796688B2 (en) Pretreatment method for sintering raw material
CN117862491A (en) Al (aluminum) alloy 2 O 3P Al-Fe composite material and preparation method thereof