DE4410046C2 - Method and material for producing a three-dimensional object by sintering - Google Patents

Method and material for producing a three-dimensional object by sintering

Info

Publication number
DE4410046C2
DE4410046C2 DE4410046A DE4410046A DE4410046C2 DE 4410046 C2 DE4410046 C2 DE 4410046C2 DE 4410046 A DE4410046 A DE 4410046A DE 4410046 A DE4410046 A DE 4410046A DE 4410046 C2 DE4410046 C2 DE 4410046C2
Authority
DE
Germany
Prior art keywords
component
powder
melting
melting point
powder material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
DE4410046A
Other languages
German (de)
Other versions
DE4410046C1 (en
Inventor
Hans J Langer
Christian Wilkening
Peter Keller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EOS GmbH
Original Assignee
EOS GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6513632&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=DE4410046(C2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by EOS GmbH filed Critical EOS GmbH
Priority to DE4410046A priority Critical patent/DE4410046C2/en
Application granted granted Critical
Publication of DE4410046C1 publication Critical patent/DE4410046C1/en
Publication of DE4410046C2 publication Critical patent/DE4410046C2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C7/00Patterns; Manufacture thereof so far as not provided for in other classes
    • B22C7/02Lost patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/141Processes of additive manufacturing using only solid materials
    • B29C64/153Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing

Description

Die Erfindung betrifft ein Verfahren zum Herstellen eines dreidimensionalen Objekts nach dem Oberbegriff des Anspruchs 1 sowie ein Pulvermaterial zur Verwen­ dung in einem derartigen Verfahren nach Anspruch 6.The invention relates to a method for manufacturing a three-dimensional object according to the generic term of claim 1 and a powder material for use dung in such a method according to claim 6.

Aus der US-PS 4863538 ist ein Verfahren bekannt, bei dem eine vorbe­ stimmte Menge eines pulverförmigen Kunststoffmateri­ als auf eine Unterlage bzw. eine vorher erzeugte Schicht eines Objekts aufgebracht, dort verteilt und mittels ei­ nes Laserstrahls an den dem Objekt entsprechenden Stellen bestrahlt wird, so daß das Material dort zusammens­ intert (sogenanntes Lasersintern).A method is known from US Pat. No. 4,863,538 known, where a vorbe agreed amount of a powdered plastic material than on a base or a previously created layer applied to an object, distributed there and by means of egg laser beam to the object corresponding to the object Places is irradiated so that the material there together intert (so-called laser sintering).

Daneben ist es bekannt, ein Feinguß-Urmodell zu­ nächst aus Wachs herzustellen und anschließend durch eine Tauchbeschichtung mit einer wenige Millimeter dicken Keramikschicht zu umhüllen. Durch Erhitzung wird die Keramikschicht zur fertigen Form gehärtet und gleichzeitig das Wachsmodell darin durch Ausschmel­ zen entfernt. Nachteil des Wachses ist jedoch dessen geringe mechanische Stabilität bzw. Sprödigkeit und thermische Beständigkeit. Ferner läßt sich Wachs nur schlecht maschinell bearbeiten.In addition, it is known to be an investment model next to make from wax and then through a dip coating with a few millimeters to encase thick ceramic layer. By heating the ceramic layer is hardened to the finished shape and at the same time the wax model in it by melting out zen removed. However, the disadvantage of wax is that low mechanical stability or brittleness and thermal resistance. Furthermore, wax can only be used poorly machined.

Mit einem Verfahren nach der US-A-4 863 538 wäre es möglich, die Herstellung des Wachsmodells zu erleich­ tern. Allerdings ist die Verwendung von Wachspulver im Lasersinterprozeß wegen der Überhitzungsgefahr des Pulverbettes schwierig und erfordert zusätzliche Maßnahmen wie Kühlung. Aus diesem Grund wurde bereits die Verwendung von Polycarbonat als Material in Betracht gezogen. Dieses Material verlangt aber bei der Sinterung eine sehr genaue Temperaturregelung der obersten Pulverschicht von etwa 2 bis 5°C unterhalb des Schmelzpunktes des Materials. Auch erlaubt die ge­ genüber dem Wachs erheblich höhere Schmelztempera­ tur kein einfaches Übernehmen des üblichen Aus­ schmelzprozesses. Schließlich ist die Viskosität der Polycarbonat-Schmelze erheblich höher als die von ge­ schmolzenem Wachs, so daß die Keramikhülle nicht durch einfaches Ausfließen der Schmelze entleert wer­ den kann, sondern die Schmelze regelrecht ausgebrannt werden muß.With a method according to US-A-4 863 538 it is possible to facilitate the production of the wax model tern. However, the use of wax powder in the laser sintering process because of the risk of overheating of the powder bed difficult and requires additional Measures like cooling. For this reason already the use of polycarbonate as a material taken into consideration. But this material requires a very precise temperature control during sintering the top powder layer from about 2 to 5 ° C below the melting point of the material. The ge Much higher melting temperature than wax not a simple takeover of the usual off melting process. After all, the viscosity is the Polycarbonate melt significantly higher than that of ge melted wax so that the ceramic shell does not emptied by simply pouring out the melt that can, but the melt literally burned out must become.

Aus der DE-OS 41 33 923 ist ein Verfahren zum Her­ stellen eines Feinguß-Urmodells mittels Stereolithogra­ phie bekannt, bei der jeweils eine Schicht eines flüssi­ gen, UV-aushärtbaren Materials aufgebracht und durch Einwirkung eines Laserstrahls an den der Form entspre­ chenden Stellen verfestigt wird. Die Feingußmodelle werden zweckmäßig aus zwei Werkstoffen mit unter­ schiedlichen Schmelzpunkten angefertigt, um Form­ schäden durch Schalensprengung beim Ausschmelzen der Modelle zu verhindern.From DE-OS 41 33 923 is a method for Her make an investment model using stereolithography phie known, each with a layer of a liquid gene, UV-curable material applied and through Exposure of a laser beam to the shape appropriate places is solidified. The investment cast models are expediently made of two materials with under different melting points made to shape damage from shell explosion when melting out to prevent the models.

Aus der US-PS 4 944 817 ist ein Verfahren nach dem Oberbegriff des Patentanspruches 1 bekannt.From U.S. Patent 4,944,817 is a procedure according to The preamble of claim 1 is known.

Es ist daher Aufgabe der Erfindung, ein Verfahren der eingangs genannten Art und ein dafür geeignetes Mate­ rial zu schaffen, mit dem die genannten Probleme ver­ mieden werden. Insbesondere soll die Herstellung des Modells in einfacher Weise und vorzugsweise bei Raumtemperatur und das Ausschmelzen ohne die Ge­ fahr der Zerstörung der Überzugsschicht möglich sein.It is therefore an object of the invention to provide a method of type mentioned above and a suitable mate rial with which the problems mentioned ver be avoided. In particular, the manufacture of Model in a simple manner and preferably at Room temperature and melting without the Ge risk of destruction of the coating layer.

Diese Aufgabe wird durch ein Verfahren mit den Merkmalen des Anspruchs 1 bzw. durch ein Material mit den Merkmalen des Anspruchs 6 gelöst.This task is accomplished through a process with the Features of claim 1 or by a material solved with the features of claim 6.

Das erfindungsgemäße Verfahren basiert also auf dem aus der obengenannten US-A-4 863 538 bekannten Lasersinterverfahren, auf das hiermit zur weiteren Er­ läuterung verwiesen wird. Im Unterschied zum bekann­ ten Verfahren wird jedoch bei der Erfindung kein ein­ heitliches Pulvermaterial, sondern eine Mischung aus zwei Komponenten mit unterschiedlichem Schmelzpunkt verwendet. Eine erste Komponente be­ steht im wesentlichen aus einem Pulvermaterial mit ho­ hem Schmelzpunkt, vorzugsweise über 150°C, und eine zweite Komponente weist ein Pulvermaterial mit dem gegenüber niedrigerem Schmelzpunkt von beispiels­ weise 60 bis 130, vorzugsweise etwa 90°C auf. Die Ver­ wendung der niedrigschmelzenden zweiten Komponen­ te hat dabei auch den Vorteil, daß die Lasersinterung etwa bei Raumtemperatur durchgeführt werden kann, wodurch der Aufbau der Sintermaschine erheblich ein­ facher gehalten werden kann.The method according to the invention is therefore based on that known from the aforementioned US-A-4,863,538 Laser sintering process, to which further Er purification is referred. In contrast to the known However, no method is used in the invention uniform powder material, but a mixture of two components with different Melting point used. A first component be essentially consists of a powder material with ho hem melting point, preferably above 150 ° C, and a second component has a powder material with the towards lower melting point of example have 60 to 130, preferably about 90 ° C. The Ver application of the low-melting second components te also has the advantage that the laser sintering can be done at room temperature, which significantly increases the structure of the sintering machine can be kept more diverse.

Als erste Komponente wird entweder ein Kunststoff­ pulver wie Polyamid oder ein Metall- oder Keramikpul­ ver verwendet. Als zweite Komponente kommt insbe­ sondere ein thermoplastischer Kunststoff wie Copolya­ mid oder Copolyester in Frage. Die Korngröße der bei­ den Komponenten liegt vorzugsweise im Bereich von 50 bis 100 µm.The first component is either a plastic powder such as polyamide or a metal or ceramic powder ver used. The second component comes in particular especially a thermoplastic such as Copolya mid or copolyester in question. The grain size of the at the components are preferably in the range of 50 to 100 µm.

Der Anteil der ersten bzw. zweiten Komponente an der Gesamtmenge des Materials kann entsprechend den gewünschten mechanischen Eigenschaften des ferti­ gen Objekts eingestellt werden; beispielsweise führt ein hoher Anteil der niedrigschmelzenden Komponente, al­ so von Copolyester oder Copolyamid, zu flexiblen Ob­ jekten, während bei einem niedrigeren Anteil eine er­ höhte Härte und Steifigkeit erreicht wird. Auch wird von dem Mischungsverhältnis ebenso wie durch die Auswahl der beiden Komponenten die für das Aus­ schmelzen erforderliche Temperatur bestimmt. Günsti­ ge Mischungsverhältnisse liegen etwa im Bereich von 50 bis 90 Vol.-% und vorzugsweise 75 bis 85 Vol.-% der ersten Komponente und dem entsprechenden Rest der zweiten Komponente.The proportion of the first or second component the total amount of material can be made accordingly the desired mechanical properties of the ferti be set to object; for example introduces high proportion of the low-melting component, al so from copolyester or copolyamide to flexible whether projects, while at a lower proportion he high hardness and rigidity is achieved. Also will of the mixing ratio as well as by the Selection of the two components for the off melting required temperature determined. Favorable Mixing ratios are approximately in the range of 50 to 90 vol .-% and preferably 75 to 85 vol .-% of first component and the corresponding rest of the second component.

Nach der schichtweisen Verfestigung des Objekts durch Lasersinterung und gegebenenfalls einer Nachbe­ handlung wird das Objekt durch eine Tauchbeschich­ tung mit einer wenige Millimeter dicken Keramik­ schicht umhüllt. In einem weiteren Verarbeitungsschritt wird das Objekt zusammen mit der Keramikschicht auf eine Temperatur erhitzt die über der Schmelztempera­ tur der zweiten Komponente, aber unter der Schmelz­ temperatur der ersten Komponente liegt. Diese Tempe­ ratur liegt je nach verwendetem Material bei etwa 60 bis 130°C. Es schmilzt also nur die niedrigschmelzende zweite Komponente, wodurch aber das Gefüge des in gewissem Umfang porösen Sintermaterials des Objekts, das im Vergleich zum Vollmaterial nur eine Dichte von 50 bis 75% aufweist, in sich zusammenbricht und die Viskosität des Gesamtmaterials auf Werte vergleichbar derjenigen von ausschmelzendem Wachs absinkt, so daß das Material aus der Keramikhülle durch entspre­ chende geeignete Löcher ausfließen kann. Wegen des Aufschmelzens lediglich der niedrigschmelzenden zwei­ ten Komponente treten beim Schmelzen nur geringe innere Spannungen und damit geringe Verzugserschei­ nungen auf, so daß die Gefahr, daß die Keramikhülle, die gleichzeitig bei der Erhitzungstemperatur gehärtet wird, beschädigt oder zerstört wird, durch das erfin­ dungsgemäße Verfahren reduziert wird.After the object has been solidified in layers by laser sintering and, if necessary, post-processing the object is treated by a dip coating with a few millimeters thick ceramic layer wrapped. In a further processing step the object along with the ceramic layer a temperature heats it above the melting temperature structure of the second component, but under the enamel temperature of the first component. This tempe Depending on the material used, the temperature is around 60 up to 130 ° C. So it only melts the low-melting second component, whereby the structure of the in to a certain extent porous sintered material of the object, that in comparison to the solid material only a density of 50 to 75%, collapses and the Viscosity of the entire material comparable to values that of melting wax drops, so that the material from the ceramic cover by correspond suitable holes can flow out. Because of the Melting only the low-melting two th component occurs only slightly when melting internal tensions and thus low warpage on, so that the risk that the ceramic shell, the hardened at the same time at the heating temperature is damaged, or destroyed by the inventions process according to the invention is reduced.

Claims (10)

1. Verfahren zum Herstellen eines dreidimensiona­ len Objekts, insbesondere eines Feinguß-Urmo­ dells durch Lasersintern, bei dem jeweils eine Schicht eines pulverförmigen Materials aufgebracht und durch Einwirkung elektromagnetischer Strahlung an den dem Objekt entsprechenden Stellen verfe­ stigt wird, wobei als Mate­ rial eine Mischung von zwei Komponenten mit ver­ schiedenem Schmelzpunkt verwendet wird, dadurch gekennzeichnet, daß das Objekt nach der Verfestigung und nach Beschichtung mit einer Überzugsschicht auf eine zwischen den Schmelzpunkten der beiden Komponenten liegende Temperatur er­ hitzt wird und dadurch die niedrigschmelzende Komponente ausge­ schmolzen wird und das Gesamtmaterial aus der Überzugsschicht ausfließt.1. A method for producing a three-dimensional object, in particular an investment casting Urmo dells by laser sintering, in each of which a layer of a powdery material is applied and is stabilized by the action of electromagnetic radiation at the locations corresponding to the object, using a mixture of materials two components with different melting point is used, characterized in that the object after solidification and after coating with a coating layer is heated to a temperature between the melting points of the two components and thereby the low-melting component is melted out and the entire material from the Coating layer flows out. 2. Verfahren nach Anspruch 1, dadurch ge­ kennzeichnet, daß als erste Komponente ein Kunst­ stoff mit einem Schmelzpunkt von mindestens 150°C, beispielsweise Polyamid, und als zweite Komponente ein thermoplastischer Kunststoff ver­ wendet wird.2. The method according to claim 1, characterized ge indicates that the first component is an art substance with a melting point of at least 150 ° C, for example polyamide, and second Component a thermoplastic ver is applied. 3. Verfahren nach Anspruch 1, dadurch ge­ kennzeichnet, daß als erste Komponente ein Me­ tall- oder Keramikpulver und als zweite Kompo­ nente ein thermoplastischer Kunststoff verwendet wird.3. The method according to claim 1, characterized ge indicates that a Me tall or ceramic powder and as a second compo nente uses a thermoplastic material becomes. 4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß auf eine im Bereich von 60°C bis 130°C liegende Temperatur erhitzt wird.4. The method according to any one of claims 1 to 3, characterized in that on one in the area heated from 60 ° C to 130 ° C becomes. 5. Verfahren nach einem der vorhergehenden An­ sprüche, dadurch gekennzeichnet, daß die Verfesti­ gung durch Bestrahlung der Schicht des Materials mittels eines Laserstrahls und vorzugsweise bei Raumtemperatur erfolgt.5. Method according to one of the preceding An sayings, characterized in that the Verfesti by irradiation of the layer of material by means of a laser beam and preferably at Room temperature. 6. Pulvermaterial zur Verwendung bei dem Verfahren nach einem der Ansprüche 1 bis 5, bestehend aus einer ersten Komponente mit einem Schmelzpunkt von mindestens 150°C und einer zweiten Komponente mit einem niedri­ geren Schmelzpunkt.6. Powder material for use in the method according to one of claims 1 to 5, consisting of a first component with a melting point of at least 150 ° C and a second component with a low lower melting point. 7. Pulvermaterial nach Anspruch 6, dadurch ge­ kennzeichnet, daß die zweite Komponente ein niedrigschmelzendes, vorzugsweise thermoplasti­ sches Kunststoffpulver wie z. B. Copolyamid oder Copolyester ist.7. Powder material according to claim 6, characterized ge indicates that the second component is a low melting, preferably thermoplastic plastic powder such. B. copolyamide or Is copolyester. 8. Pulvermaterial nach Anspruch 6 oder 7, dadurch gekennzeichnet, daß die erste Komponente ein hochschmelzendes Kunststoffpulver, z. B. Polya­ mid, ein Metal- oder Keramikpulver ist.8. Powder material according to claim 6 or 7, characterized characterized in that the first component high-melting plastic powder, e.g. B. Polya mid, is a metal or ceramic powder. 9. Pulvermaterial nach einem der Ansprüche 6 bis 8, dadurch gekennzeichnet, daß die Korngröße des Pulvers zwischen 50 µm und 100 µm beträgt.9. Powder material according to one of claims 6 to 8, characterized in that the grain size of the Powder is between 50 microns and 100 microns. 10. Pulvermaterial nach einem der Ansprüche 6 bis 9, dadurch gekennzeichnet, daß der Schmelzpunkt der zweiten Komponente bei etwa 60 bis 130°C, vorzugsweise bei etwa 90°C bis 100°C liegt.10. Powder material according to one of claims 6 to 9, characterized in that the melting point the second component at about 60 to 130 ° C, is preferably about 90 ° C to 100 ° C.
DE4410046A 1994-03-23 1994-03-23 Method and material for producing a three-dimensional object by sintering Expired - Fee Related DE4410046C2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE4410046A DE4410046C2 (en) 1994-03-23 1994-03-23 Method and material for producing a three-dimensional object by sintering

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE4410046A DE4410046C2 (en) 1994-03-23 1994-03-23 Method and material for producing a three-dimensional object by sintering

Publications (2)

Publication Number Publication Date
DE4410046C1 DE4410046C1 (en) 1995-05-24
DE4410046C2 true DE4410046C2 (en) 2000-11-30

Family

ID=6513632

Family Applications (1)

Application Number Title Priority Date Filing Date
DE4410046A Expired - Fee Related DE4410046C2 (en) 1994-03-23 1994-03-23 Method and material for producing a three-dimensional object by sintering

Country Status (1)

Country Link
DE (1) DE4410046C2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19545167A1 (en) * 1995-12-04 1997-06-05 Bayerische Motoren Werke Ag Method of manufacturing a prototype component or tool from a stereo-sintered polystyrene pattern
DE102016221219A1 (en) 2016-10-27 2018-05-03 Schaeffler Technologies AG & Co. KG Method and plant for producing a friction lining made of sintered metal

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE192367T1 (en) * 1994-05-27 2000-05-15 Eos Electro Optical Syst PROCESS FOR USE IN FOUNDRY TECHNOLOGY
DE19707906C2 (en) * 1996-12-23 1999-06-24 Univ Magdeburg Tech Process for the production of hollow metal molds
DE19709081A1 (en) * 1997-03-06 1998-09-10 Michael Demerath Rapid prototyping of sand casting moulds and cores by layered build=up
DE19729770C1 (en) * 1997-07-11 1998-11-05 Daniel Graf Manufacture of metal products of arbitrary form by layered build=up and laser engraving of layers
DE19929290A1 (en) * 1999-06-25 2000-12-28 Volkswagen Ag Process for the production of magnesium-containing metal castings
DE10256097A1 (en) 2002-12-02 2004-06-17 Eos Gmbh Electro Optical Systems Plastic powder for laser sintering
EP2123430B1 (en) 2008-05-20 2020-07-01 EOS GmbH Electro Optical Systems Influencing specific mechanical properties of three-dimensional objects manufactured by a selective sintering by means of electromagnetic radiation from a powder comprising at least one polymer or copolymer
DE102008024288A1 (en) 2008-05-20 2009-12-03 Eos Gmbh Electro Optical Systems Preparing a three-dimensional object from a powder, comprising polymer or copolymer containing an aromatic group that non-linearly links to the main chain, comprises selective sintering of the powder by electromagnetic radiation
DE102008024281A1 (en) 2008-05-20 2009-12-03 Eos Gmbh Electro Optical Systems Producing a three-dimensional object by selectively sintering a polymer powder comprises using a polymer that has a branching group in the main chain, has a modified terminal group and/or has a bulky group in the main chain
US9895842B2 (en) 2008-05-20 2018-02-20 Eos Gmbh Electro Optical Systems Selective sintering of structurally modified polymers
US9330406B2 (en) 2009-05-19 2016-05-03 Cobra Golf Incorporated Method and system for sales of golf equipment
US8007373B2 (en) * 2009-05-19 2011-08-30 Cobra Golf, Inc. Method of making golf clubs
DE102010062875A1 (en) 2010-12-13 2012-06-14 Bayerische Motoren Werke Aktiengesellschaft Producing component, preferably plastic component for motor vehicle, comprises laser sintering, where powdery material is used as sintering material, which comprises thermoplastic polyurethane
DE102018219303A1 (en) 2018-11-12 2020-05-14 Eos Gmbh Electro Optical Systems Warp-optimized plastic powder
DE102018219302A1 (en) 2018-11-12 2020-05-14 Eos Gmbh Electro Optical Systems Selective sintering of polymer-based building materials
DE102019212298A1 (en) 2019-08-16 2021-02-18 Eos Gmbh Electro Optical Systems Selective sintering of polymer-based composite materials
US11578201B2 (en) 2020-01-08 2023-02-14 Eos Of North America, Inc. Biodegradable material for additive manufacturing
WO2023280379A1 (en) 2021-07-05 2023-01-12 Eos Gmbh Electro Optical Systems Biodegradeable plastics for use in additive manufacturing processes
DE102021119991A1 (en) 2021-08-02 2023-02-02 Eos Gmbh Electro Optical Systems Chemical treatment of components

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4863538A (en) * 1986-10-17 1989-09-05 Board Of Regents, The University Of Texas System Method and apparatus for producing parts by selective sintering
US4944817A (en) * 1986-10-17 1990-07-31 Board Of Regents, The University Of Texas System Multiple material systems for selective beam sintering
WO1992010343A1 (en) * 1990-12-07 1992-06-25 Board Of Regents, The University Of Texas System Producing parts by compound formation of precursor powders
DE4133923A1 (en) * 1991-10-12 1993-04-15 Borsig Babcock Ag LOST MODEL AND METHOD FOR THEIR PRODUCTION
EP0287657B1 (en) * 1986-10-17 1994-12-28 Board Of Regents, The University Of Texas System Method and apparatus for producing parts by selective sintering

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4863538A (en) * 1986-10-17 1989-09-05 Board Of Regents, The University Of Texas System Method and apparatus for producing parts by selective sintering
US4944817A (en) * 1986-10-17 1990-07-31 Board Of Regents, The University Of Texas System Multiple material systems for selective beam sintering
EP0287657B1 (en) * 1986-10-17 1994-12-28 Board Of Regents, The University Of Texas System Method and apparatus for producing parts by selective sintering
WO1992010343A1 (en) * 1990-12-07 1992-06-25 Board Of Regents, The University Of Texas System Producing parts by compound formation of precursor powders
DE4133923A1 (en) * 1991-10-12 1993-04-15 Borsig Babcock Ag LOST MODEL AND METHOD FOR THEIR PRODUCTION

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DE-Z: "konstruieren und gießen" 17, (1992), 4, S.13-19 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19545167A1 (en) * 1995-12-04 1997-06-05 Bayerische Motoren Werke Ag Method of manufacturing a prototype component or tool from a stereo-sintered polystyrene pattern
DE102016221219A1 (en) 2016-10-27 2018-05-03 Schaeffler Technologies AG & Co. KG Method and plant for producing a friction lining made of sintered metal
WO2018077340A1 (en) 2016-10-27 2018-05-03 Schaeffler Technologies AG & Co. KG Method and system for producing a friction lining made of sintered metal

Also Published As

Publication number Publication date
DE4410046C1 (en) 1995-05-24

Similar Documents

Publication Publication Date Title
DE4410046C2 (en) Method and material for producing a three-dimensional object by sintering
EP1448359B1 (en) Method for producing three-dimensional work pieces in a laser material machining unit or a stereolithography unit
DE69910384T2 (en) METHOD FOR THE PRODUCTION OF FIRE-RESISTANT MOLDED BODIES
EP2300218B1 (en) Dual method for the small-scale manufacture of products
EP2794152B1 (en) Method for manufacturing a compact component, and component that can be produced by means of the method
DE102004008054B4 (en) Metal powder composition for use in selective laser sintering
DE10108612C1 (en) Selective laser sintering of a powder used as a rapid prototyping process comprises adding the powder to an encapsulated chamber, and forming a powder cake
DE10344902B4 (en) Method for producing a three-dimensional object
DE10128664A1 (en) Method and device for producing ceramic moldings
DE102010046579A1 (en) Component, preferably aircraft component, which is formed of powder to be solidified by energy radiation source, comprises cavity with solidified powder, which is not solidified by energy radiation source and for forming damping element
EP1513670A1 (en) Laser sintering method with increased process precision, and particles used for the same
EP1400339A1 (en) Method for manufacturing a three-dimensional object
DE102007023152A1 (en) Method for producing a casting, casting mold and casting produced therewith
DE10206447B4 (en) Method and device for holding a metallic component to be connected and method for connecting a metallic component to another component
DE102018202506A1 (en) Controlled solidification additive manufacturing process and associated apparatus
AT14301U1 (en) Method for producing a component
EP2493644A2 (en) Method and device for producing a component
DE2636131A1 (en) POWDER METAL ITEM WITH AN ABRASION-RESISTANT SURFACE
WO2013029584A1 (en) Method for manufacturing, repairing and/or exchanging a rotor/stator combination system, and a rotor/stator combination system manufactured in accordance wih the method
DE102017103650A1 (en) METHOD FOR SELECTIVE LASER RADIANT ROLLING
DE102021200994A1 (en) Irradiation strategy for additive manufacturing with pulsed irradiation
WO2017162480A1 (en) Method for the additive manufacturing of a component comprising a number of building materials
AT523693B1 (en) Process for manufacturing a three-dimensional component
WO2021185606A1 (en) Method for producing a sintered hybrid component
DE102007058976A1 (en) Process to fabricate a metal form component by laser build-up of low carbon metal powder lasers

Legal Events

Date Code Title Description
8100 Publication of patent without earlier publication of application
D1 Grant (no unexamined application published) patent law 81
8363 Opposition against the patent
8366 Restricted maintained after opposition proceedings
8305 Restricted maintenance of patent after opposition
D3 Patent maintained restricted (no unexamined application published)
8339 Ceased/non-payment of the annual fee