JP2024051003A - 電力変換システム - Google Patents

電力変換システム Download PDF

Info

Publication number
JP2024051003A
JP2024051003A JP2024024903A JP2024024903A JP2024051003A JP 2024051003 A JP2024051003 A JP 2024051003A JP 2024024903 A JP2024024903 A JP 2024024903A JP 2024024903 A JP2024024903 A JP 2024024903A JP 2024051003 A JP2024051003 A JP 2024051003A
Authority
JP
Japan
Prior art keywords
power
circuit
storage battery
power conversion
function
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2024024903A
Other languages
English (en)
Inventor
功 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2024024903A priority Critical patent/JP2024051003A/ja
Publication of JP2024051003A publication Critical patent/JP2024051003A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • H02J3/322Arrangements for balancing of the load in a network by storage of energy using batteries with converting means the battery being on-board an electric or hybrid vehicle, e.g. vehicle to grid arrangements [V2G], power aggregation, use of the battery for network load balancing, coordinated or cooperative battery charging
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Abstract

【課題】蓄電池を備えることが可能な電力変換システムのシステム変更を容易にする。【解決手段】電力変換システムは、直流電力を交流電力に変換するD/A回路4と、太陽電池2a乃至2dで発電された直流電力がD/A回路4へ供給された際には、太陽電池2a乃至2dで発電された直流電力をD/A回路4で交流電力へ変換させることを可能にする第1の機能と、蓄電池13a乃至13dから出力された直流電力がD/A回路4へ供給された際には、太陽電池2a乃至2dで発電された直流電力又は蓄電池13a乃至13dから出力された直流電力の少なくともいずれか一方をD/A回路4で交流電力に変換させることを可能にする第2の機能と、第1の機能又は第2の機能のいずれか一方を蓄電池の有無に基づいて選択する第3の機能とを備える。【選択図】図1

Description

本発明は、太陽電池で発電された直流電力を交流電力へ変換する電力変換回路を備える電力変換システムに関するものであり、特に蓄電池の接続の有無に基づいて運転モードを変える電力変換システムに関するものである。
近年、太陽電池で発電された直流電力を交流電力に変換し建屋内の負荷で自己消費すると共に、この際の余剰電力を系統へ売電するシステム、またはこの交流電力の全量を系統へ売電するシステムが用いられるようになってきている。これらのシステムは太陽電池の発電に依存しているため、夜間や暗いときなどでは実質的に活用できないものであった。特に、系統の停電時は余剰電力を売電することができず、また夜間に再利用をすることもできないものであった。
このため、特許文献1に記載されているように、蓄電池を用いて余剰電力を一旦蓄え必要に応じて再利用する電力変換システムが提案されている。
特許5124114号公報
特許文献1に記載されたものは、蓄電池からこの電力変換システムの制御電源が確保できるように、蓄電池を接続することを前提としたシステムである。
しかしながら、充分な蓄電量を確保しようとするとシステムを設置するスペースに対して蓄電池の占める割合が大きくなるため住宅等においてはあまり利用されていなかった。 また、後日蓄電池を活用できるシステムを要望した場合は、新たに蓄電池を用いたシステムに全体を入れ換える必要があり、一度設置したら10年程度の耐用年数があるシステムでは入れ換えや普及が進まない問題点となっていた。
また、単に蓄電池(または電池)の取り外しを可能とした電子機器があるが、この電子機器では蓄電池(または電池)の有無にかかわらず直流電力を交流電力へ変換でないものであった。すなわち、系統の停電時などでは建屋内の負荷へ交流電力を供給することができないものであった。
また、太陽電池で発電された直流電力を交流電力に変換する電力変換装置に電気自動車に搭載される蓄電池を接続できるように構成したシステムがある。このシステムではシステム自体が大きなものとなり電気自動車と合わせて設置場所の確保が必要となるものであった。
本発明の電力変換システムは、直流電力を交流電力に変換する電力変換回路と、太陽電池で発電された直流電力が前記電力変換回路へ供給された際には、前記太陽電池で発電された直流電力を前記電力変換回路で前記交流電力へ変換させることを可能にする第1の機能と、蓄電池から出力された直流電力が前記電力変換回路へ供給された際には、前記太陽電池で発電された直流電力又は前記蓄電池から出力された直流電力の少なくともいずれか一方を前記電力変換回路で前記交流電力に変換させることを可能にする第2の機能と、第1の機能又は第2の機能のいずれか一方を蓄電池の有無に基づいて選択する第3の機能と、を備えることを特徴とするものである。
本発明の電力変換システムは、このような構成を備えることによって、単一の電力変換システムで蓄電池を備える状態と蓄電池を備えない状態とを運転モードを切り換えて動作させることができるものである。
図1は、本発明の一実施形態の電力変換システムを含む説明図である。 図2はD/D回路の1例を示す説明図である。 図3はD/A回路の1例を示す説明図である。 図4はチョッパ式双方向D/D回路の説明図である。 図5は制御部の一部の動作を示す説明図である。
本発明の電力変換システムは、直流電力を交流電力に変換する電力変換回路と、太陽電池で発電された直流電力が電力変換回路へ供給された際には、太陽電池で発電された直流電力を電力変換回路で交流電力へ変換させることを可能にする第1の機能と、蓄電池から出力された直流電力が電力変換回路へ供給された際には、太陽電池で発電された直流電力又は蓄電池から出力された直流電力の少なくともいずれか一方を電力変換回路で交流電力に変換させることを可能にする第2の機能と、第1の機能又は第2の機能のいずれか一方を蓄電池の有無に基づいて選択する第3の機能と、を備える。
図1は、本発明の一実施形態の電力変換システムを含む説明図である。1はパワーコンディショナであり、太陽電池2a乃至太陽電池2d(以下、「太陽電池2a乃至2d」と称す。)で発電された直流電力を昇圧する直流/直流変換回路3a乃至直流/直流変換回路3d(以下、「D/D回路3a乃至3d」と称す。)、D/D回路3a乃至3dから出力される直流電力を交流電力に変換する電力変換回路4(以下、「D/A回路」と称す。)などを備えている。夫々の太陽電池2a乃至2dは夫々の端子(図中マルで表記)を介して夫々の対応するD/D回路3a乃至3dに電気的に接続される。夫々の太陽電池2a乃至2dで発電された直流電力は夫々の対応するD/D回路3a乃至3dに供給される。尚、夫々のD/D回路3a乃至3dと対応する端子との間には直流電力の供給を遮断する開閉器を備えているが、図1では図示を省略している。
D/D回路3aは太陽電池2aから出力される直流電力が最大の値又は目標とする値になるように昇圧比を変えるものである。昇圧の回路方式は限定されるものではなく、例えば、主にリアクタ、スイッチング素子、ダイオード、平滑用コンデンサを用いた非絶縁のチョッピング方式、また主にスイッチング素子、絶縁トランス、整流回路、コンデンサを用いた絶縁フォワード型がある。さらにチャージポンプ型、フライバック型、共振型などを用いることも可能である。昇圧比の制御は制御部5で行われる。尚、D/D回路3b乃至3dも同様な構成あるため説明は省略する。
D/A回路4には直流電力を所定の周波数(例えば、系統6と連系運転する際は系統6と同期する周波数、自立運転を行う際は50Hz/60Hzのいずれかの周波数)の交流電力に変換する電力変換回路である。例えば、PWM(Pulse Width Modulation)方式に基づき、複数のスイッチング素子(半導体など)のオンとオフのスイッチングを繰り返して疑似正弦波を生成した後フィルター回路で高周波成分を除去または減衰させて交流電力を成すものである。図1ではD/A回路4はこのフィルター回路を含めて表記しているが、別体で表記してもよいものである。また、変換回路の構成としてはこのようなPWM方式に限らず、NPC(Neutral Point Clamped)方式によるインバータ、階調制御型インバータや、インバータブリッジ回路の出力
側や入力側をクランプしたものなど直流/交流の変換方式は限定されるものでない。
D/A回路4には少なくとも、交流電力を出力すると共に、この交流電力の周波数、ピーク電圧(実効値でもよい)、電圧と電流との位相差を制御できるものであればよい。D/A回路4はD/D回路3a乃至3dと同様に制御部5で制御される。尚、この制御部5の構成は、マイクロプロセッサ(一般的なマイコン)を単数/複数用いたものや、またDSP(Digital Signal Processor)を中心に構成したものなどを用いることができ、その構成は限定されるものではない。
7は切り換え回路(例えばリレー回路や半導体スイッチによる回路)であり、系統6との連系運転の際の交流電力の出力と、自立運転の際の交流電力の出力とを切り換える。系統6との連系運転の際は、D/A回路4から出力される交流電力は切り換え回路7、系統連系リレー8を介して系統6へ供給される。すなわち、太陽電池2a乃至2dで発電された直流電力をD/D回路3a乃至3dとD/A回路4とを用いて系統6と同期可能な交流電力に変換するものであり、この太陽電池で発電された直流電力を電力変換回路で交流電力へ変換させる動作が第1の機能に相当する。この第1の機能には系統6の停電検知、系統6への出力抑制制御、切り換え回路7の動作など系統連系運転に必要な制御を含めてもよいものである。尚、この交流電力のピーク電圧を系統6のピーク電圧より高く制御することにより系統6へ供給する電力が制御される。また、この交流電力の電圧と電流との位相差を制御して無効電力を系統6へ注入することによりパワーコンディショナ1の単独運転検知に用いることが可能である。
図2はD/D回路3aの1例を示す説明図である。リアクトル、スイッチング素子、ダイオード、コンデンサをチョッパ型の昇圧回路を構成するように結線したものである。図3はD/A回路4の1例を示す説明図である。4個(三相交流電力を成す場合は6個)のスイッチング素子を単相ブリッジ状(三相交流電力の際は三相ブリッジ状)に結線したものであり、出力側にはリアクタとコンデンサとから成るフィルター回路とリアクタによる回生電流を短絡させるために2個のスイッチング素子を直列に用いた出力クランプ回路とが構成されている。
9は電力検出器であり、例えば系統6へ供給する電力または系統6から供給される電力を検出して制御部5へ出力するものである。電力検出の方式としては、直接電力を検出するもの、電圧と電流を検出して演算で求めるもの、電圧波形から積分して求めるものなどを用いることができその検出方式は限定されるものでない。
図1に記載のものでは、配電盤用ブレーカー10が系統連系リレー8と電力検出器9との間の電力配線に接続され系統6、パワーコンディショナ1の両方から交流電力を得ることができるように構成されている。配電盤用ブレーカー10には例えば子ブレーカー10a、子ブレーカー10bが接続され、子ブレーカー10bは建屋内の一般的な負荷へ交流電力を供給し、子ブレーカー10aは切換器11を介して特定負荷へ電力を供給する。特定負荷は系統6が停電などの異常で電力が供給されない時にも交流電力を供給する優先順位が高い負荷であり、緊急通報システムや冷蔵庫など、また利用者が指定した電気機器が含まれる。
系統6の停電などでパワーコンディショナ1が単独運転状態になっていることを制御部5が判断し、切り換え回路7を自立運転側に切り換えて交流電力を出力しているときは、切換器11はパワーコンディショナ1の切り換え回路7から交流電力が供給されていることを検知し、パワーコンディショナ1からの交流電力を特定負荷へ供給する。切換器11は、パワーコンディショナ1から交流電力が供給されていない時は、子ブレーカー10aからの交流電力を特定負荷に供給するものである。
12はモニターであり、制御部5と信号線で制御信号やデータの送受が可能に構成されている。モニター12は制御部5と有線接続、無線接続は問わず信号通信が可能に構成され、このモニター12には通信ネットワーク経由で接続されるパーソナルコンピュータ、携帯通信機、携帯端末、専用端末なども用いることができる。モニター12は、太陽電池の発電量、系統6への売電量、系統6からの買電量などを表示すると共に、通信ネットワークを介して外部のサーバーから制御信号や系統6へ供給する電力の上限を決める信号などを受信し、制御部5と連動して動作し、また発電量などのデータをサーバーや他のモニターなどにも送信することができるものである。
13a乃至13dは蓄電池であり、夫々は少なくとも充放電制御(定電圧充電、定電流充電、放電量の制御など)、充電率(SOC)の表示(送信)、過充電、過放電に対する保護動作などの機能を備えるものであればよく、電池の種類は限定されない。14a、14bはコンバータであり、夫々パワーコンディショナ1から供給される直流電圧を蓄電池(例えば蓄電池13aであり、他の蓄電池13b乃至13dも同様である)の充電制御が機能する電圧まで降圧し、蓄電池の放電電圧をD/A回路4が機能する電圧まで昇圧する双方向D/D回路15a、15b(双方向D/D回路15c、15d)及びコンバータ制御部16a(コンバータ制御部16b)を備える。
図4は双方向D/D回路15a(双方向D/D回路15b乃至15dも同様であり説明は省略する。)の1例を示すチョッパ式双方向D/D回路の説明図である。この回路は図2に示したチョッパ型の昇圧回路にスイッチング素子とコンデンサとから成る降圧回路を付加したものである。低圧側の直流電圧を昇圧する際は、リアクタ18a、スイッチング素子18b、ダイオード18c、コンデンサ18dがチョッパ型の昇圧回路を成し、フィードバック値に基づき高圧側に目標電圧が得られるようにスイッチング素子18bのONデューティを可変制御する。高圧側の直流電圧を降圧する際は、スイッチング素子18e、リアクタ18a、コンデンサ18fがチョッパ型の降圧回路を成し、フィードバック値に基づき低圧側に目標電圧が得られるようにスイッチング素子18eのONデューティを可変制御する。
従って、例えば蓄電池13aを充電するときは、パワーコンディショナ1から供給される直流電力を双方向D/D回路15aで充電用の電圧まで降圧して行い、蓄電池13aが放電をするときは、双方向D/D回路15aで昇圧した直流電力をパワーコンディショナ1へ供給する。
双方向D/D回路13aは図4に示したチョッパ式に限らず絶縁トランスを用いたプッシュプル型の双方向DC/DCコンバータ、フルブリッジ型の双方向DC/DCコンバータ、DAB(Dual Active Bridge)方式による双方向DC/DCコンバータ、LLC共振コンバータを用いる双方向DC/DCコンバータなどを用いることができ、限定されるものではない。
コンバータ制御部16aは、双方向D/D回路13a、双方向D/D回路13bの昇圧動作、降圧動作を制御すると共に蓄電池13a、蓄電池13bの状態や充電率(SOC)を蓄電池13a、蓄電池13bと接続された信号線(一点鎖線で記載)を介して取得する。また、コンバータ制御部16aは信号線(一点鎖線で記載)を介してパワーコンディショナ1の制御部5と接続され相互に制御信号や充電率(SOC)データの送受が行えるように構成されている。
コンバータ14aは2台の蓄電池13a、13bが接続されているが、接続される蓄電池の数はこれに限るものではなく増減させてもよいものである。この場合、接続される蓄電池ごとに双方向D/D回路を設けてもよく、また出力容量の大きい双方向D/D回路に複数の蓄電池を接続するように構成してもよいものである。コンバータ14bはコンバータ14aと同様に構成することができるので説明は省略する。
コンバータ14a、コンバータ14bの夫々の双方向D/D回路の一方は、パワーコンディショナ1のD/D回路3a乃至3dとD/A回路4とをつなげ直流電力が流れる直流ライン19へ開閉器17を介して接続されている。従って、この直流ライン19が双方向D/D回路の高圧側に接続されることになり、蓄電池から放電された直流電力をD/A回路4で交流電力に変換させることを可能にするものである。開閉器17は開閉動作が連動する信号用の補助接片17aを有し、その補助接片17aの開閉の状態は制御部5よりスキャンされ制御に用いられる。尚、開閉器17は手動で開閉状態を切り換えるスイッチである。すなわち、蓄電池を接続した場合(蓄電池がある場合)に作業者が開閉器17を手動で閉じるものである。
開閉器17が閉じられ少なくともコンバータ14a、コンバータ14bのいずれか一方のD/D回路の高圧側がパワーコンディショナ1の直流ライン19に接続されている場合には、第1の機能(太陽電池で発電された直流電力を交流電力に変換する機能)に基づく動作に加えて蓄電池の充放電制御を行うことが可能になるものである。この蓄電池から出力された直流電力をD/D回路で昇圧して直流ライン19を介してD/A回路4へ供給することにより蓄電池からの直流電力を交流電力に変換することが可能になる。
従って、太陽電池で発電された直流電力又は蓄電池から出力された直流電力の少なくともいずれか一方をD/A回路4で交流電力に変換させることを可能にする。(第2の機能)
コンバータ14a(コンバータ14bも同様)の放電制御は、制御部5から送信される制御信号(放電終了に用いる充電率(SOC)と単位時間あたりの放電量)に基づいてコンバータ制御部16aが行う。
コンバータ14aに接続される蓄電池13a、13bの合算された充電率(SOC)が例えば10%を下回った際に放電終了の処理を行い放電終了の信号(SOC=10%)を制御部5へ送信する。尚、放電終了を判断する充電率(SOC)は10%に限るものではなく任意に設定できるものである。災害や停電等に備えて充電率(SOC)を常に一定以上確保したいときは50%、60%(90%でも可能)などの大きめの値を用い、蓄電池を効率よく活用したい場合は0%、10%などの小さい値を設定すればよい。この充電率(SOC)の値は制御部5に設定された運転モードに応じてあらかじめ設定されていてもよいものである。
また、双方向D/D回路15a(双方向D/D回路15bも同様)は単位時間当たりの放電量が例えばAA「W」(蓄電池の許容放電量以下の値)で設定された場合は、双方向D/D回路15aの低圧側の電力(蓄電池の電圧と電流との積)がAA「W」に成るように双方向D/D回路15aの昇圧比が制御される。尚、蓄電池が2台接続されているときは、2台の蓄電池の放電量の合計がAA「W」になるように夫々の放電量が分配制御されるものである。
また、双方向D/D回路15a、双方向D/D回路15bの昇圧動作によりパワーコンディショナ1の直流ライン19の電圧が所定の保護用電圧以上に上昇した際は、制御部5がこの電圧上昇を判断しコンバータ制御部16aへ放電量をBB「W」(<AA「W」)まで減らす信号を送信する。
このAA「W」の放電量は、例えば負荷の電力消費に対して太陽電池2a乃至2dの発電量が不足している際の補充として算出してもよく、またこの不足分は系統6からの買電量が一定量を超える分の補充として算出してもよく、さらに1日のうち特定の時間帯にこれらの補充として算出してもよく、自立運転時の特定負荷の消費電力相当として算出してもよく、電力変換システムの設計仕様に合わせて設定すればよい。尚、これらの算出は夫々の運転モードに設定し、利用者が運転モードを任意に選択するように構成してもよい。
コンバータ14a(コンバータ14bも同様)の充電制御は、制御部5から送信される制御信号(充電終了に用いる充電率(SOC)と単位時間あたりの充電量)に基づいてコンバータ制御部16aが行う。
コンバータ14aに接続される蓄電池13a、13bの夫々の充電率(SOC)が例えば100%を超えた際に充電終了の処理を行い充電終了の信号(SOC=100%)を制御部5へ送信する。尚、充電終了を判断する充電率(SOC)は100%に限るものではなく任意に設定できるものである。例えば、蓄電池へのストレスを考慮してSOC=90%としてもよいものであり、また充電特性から95%などを充電終了の判断に用いてもよいものである。
また、双方向D/D回路15a(双方向D/D回路15bも同様)は単位時間当たりの充電量が例えばCC「W」(蓄電池の許容充電電圧以下、及び許容電流以下を満たす値)で設定された場合は、双方向D/D回路15aの低圧側の電力(蓄電池の電圧と電流との積)がCC「W」に成るように双方向D/D回路15aの降圧比が制御される。
蓄電池にリチウムイオン電池を用いた場合は、CC「W」以内で定電流定電圧充電(CCCV)を用いることができる。定電流充電の際の電流値は蓄電池の公称容量値の10%に相当する1C「A」であり、定電圧充電の際の電圧値はセル相当で4.2「V」を用いるがこれに限るものではない。制御部5から送信されるCC「W」の値が小さいときは、0.7C、0.5Cなどの値を用いてもよいものである。
制御部5から送信される単位時間当たりの充電量の値は、例えば負荷の電力消費に対する太陽電池2a乃至2dの発電量の余剰分から算出してもよく、充電を優先する場合は1Cによる充電が可能な値を算出してもよく、また、夜間に充電を行う際も1C(充電に要する時間を長くしてもよい場合は、0.5C、0.7Cなどの小さい値にしてもよい)による充電が可能な値を算出してもよい。
コンバータ14aは蓄電池の種類を手動で設定する設定部を備え、リチウムイオン電池、ニッケル水素電池、鉛電池などの設定が行える。コンバータ14aは設定された電池の種類に応じて適した充電制御/放電制御を行うものである。尚、この設定はモニター12の操作で設定するようにすることも可能である。
モニター12は、蓄電池の発電量や売電情報などを表示することができると共に、パワーコンディショナ1の各種設定機能を備えている。操作ボタン又は表示部のタッチパネルを操作することにより、少なくともパワーコンディショナ1、蓄電池を備える電力変換システムの運転モードの切換え、表示項目の切換え、コンバータの接続数の設定などを行うことが可能である。また、家庭内のホーム・エネルギー・マネジメント・システムとの接続も可能であり、当該システムとの間で制御信号やデータのやり取りをすることも可能である。
また、電池の接続(有無)を開閉器(手動スイッチ)17と連動する補助接片17aの状態のスキャンに変えてモニター12の操作でモニターに蓄電池の有無の状態を電気的に記憶させた後、その記憶データを制御部5へ送信してパワーコンディショナ1に設定させてもよいものである。
運転モードには、例えば、第1の運転モードでは、太陽電池2a乃至2dで発電された直流電力がD/D回路3a乃至3dで昇圧された後にD/A回路4へ供給された際(太陽電池が発電を行っている際)には、太陽電池で発電された直流電力をD/A回路4で交流電力へ変換して系統6又は負荷へ供給する運転モードである。(第1の機能を包含する機能)。
第2の運転モードでは、第1の運転モードの動作に加えて、太陽電池2a乃至2dの発電電力より負荷が消費している電力が少なく余剰電力が生じているときに、この余剰電力の大きさに応じて蓄電池13a乃至13dに単位時間当たりCC「W」の充電を行い、この充電中にさらに余剰電力が残る場合及び蓄電池13a乃至13dの充電終了が判断された場合にはこの余剰電力(直流電力)を交流電力に変換して系統へ売電するものである。
太陽電池2a乃至2dの発電量が少ないとき、この発電がないとき、この発電量より負荷の消費電力が大きいとき、系統6からの単位時間当たりの買電量が所定の値を超えるときなどに単位時間当たりAA「W」の直流電力の放電を直流ライン19へ行うものである。尚、負荷の消費電力に対して放電量が少ないときは、その不足の電力は系統6から補填されるものである。また、停電時は切り換え回路7が切り換わり特定負荷へのみ交流電力が供給されるようになるものである。すなわち、蓄電池から出力された直流電力が直流ライン19を介してD/A回路4へ供給された際には、太陽電池で発電された直流電力又は蓄電池から出力された直流電力の少なくともいずれか一方をD/A回路4で交流電力に変換させるものである。(第2の機能を包含する機能)
D/A回路4は太陽電池で発電された電力又は蓄電池から放電された電力のいずれか一方、また陽電池で発電された電力と蓄電池から放電された電力とを合算した直流電力を交流電力に変換することができるものである。
第3の運転モードでは、第1の運転モードの動作に加えて、夜間(特定の時間帯、深夜電力などが有効な時間帯など)に蓄電池13a乃至13dの充電を行い、太陽電池12a乃至12dの発電量が負荷の電力消費量より少ないときに不足分を蓄電池13a乃至13dから放電するものである。この際、第2の運転モードと同様に太陽電池で発電された直流電力又は蓄電池から出力された直流電力の少なくともいずれか一方をD/A回路4で交流電力に変換させるものである。(第2の機能に相当)
太陽電池12a乃至12dの発電量が負荷の電力消費量を超える場合は、この余剰分を系統6へ売電するものである。尚、蓄電池13a乃至13dの合計の蓄電率(SOC)が所定値以下のときは、蓄電池の単位時間当たりの売電量が設定値を超える分を蓄電池13a乃至13dへ充電するように構成してもよいものである。
第4の運転モードでは、第3の運転モードに加えて、蓄電池13a乃至13dの放電を充電率(SOC)60%(充電率(SOC)は70%、80%など利用状況に応じて変更してもよいものである。)を下回らないようにするものである。夜間に充電率(SOC)を100%まで充電し、太陽電池12a乃至12dの発電量に余裕のある時は日中でも可能なまで充電を行うものである。この際、第2の運転モードと同様に太陽電池で発電された直流電力又は蓄電池から出力された直流電力の少なくともいずれか一方をD/A回路4で交流電力に変換させるものである。(第2の機能に相当)
運転モードはこれら第1の運転モード乃至第4の運転モードに限るものではなく、少なくとも第1の機能及び第2の機能を包含していればよく、運転モードの仕様は想定する使用状況に応じて任意に設定すればよいものである。
図5は制御部5の動作のうち第3の機能に相当する動作の概略を示す説明図である。ステップS1で蓄電池の有無を判断する。この判断は、まず開閉器17(手動スイッチ)の設定された状態に対応する補助接片17aの開閉状態をスキャンし、補助接片17aが閉じているときは、さらにコンバータ制御部16aと制御部5との間で信号通信が可能か否かを判断し、この信号通信が可能であればコンバータ14aが接続されていると判断する。すなわち、少なくとも蓄電池13aまたは蓄電池13bのいずれか一方が接続(有る)されていると判断することができる。尚、コンバータ14bの接続の有無も同様に行われる。また補助接片の17aの状態のスキャンに変えてモニター12に記憶された蓄電池の有無状態を電気的に設定した状態(データ)を用いることも可能である。また、少なくとも補助接片17aの状態、コンバータ制御部16a、16bと信号通信が可能な状態、モニター12のデータのいずれか一つを用いて蓄電池の有無の判断を行うことも可能である。
また、蓄電池の有無の判断にはコンバータ制御部16aに放電を指示する信号を送信した際に開閉器17のコンバータ14a側の電位が上昇したか否かによって蓄電池から直流電力が出力されているか否かの判断ができる。この場合、コンバータ制御部16aと制御部5との間で信号通信が可能であることも同時に判断することができる。蓄電池の有無が判断された後はその状態を保持し運転モードの選択のステップへ進む。
ステップS1で蓄電池無が判断されたとき(蓄電池有が判断されなかったとき)はステップS2へ進み第1の運転モードを設定しステップS7で電力変換システムの運転が行われる。ステップS1で蓄電池有りが判断されたときはステップS3へ進み第2の運転モード乃至第4の運転モードからの選択を可能にした後、いずれの運転モードが選択されているかを判断する。この運転モードの選択はモニター12を操作して設定されるが、パワーコンディショナ1に設ける設定スイッチや信号線で制御部5につながる他の情報機器等で選択を行うようにすることも可能である。第2の運転モードが選択されているときはステップS4で第2の運転モードを設定しステップS7で電力変換システムの運転が行われる。第3の運転モードが選択されているときはステップS5で第3の運転モードを設定しステップS7で電力変換システムの運転が行われる。第4の運転モードが選択されているときはステップS6で第4の運転モードを設定しステップS7で電力変換システムの運転が行われる。
本発明の電力変換システムは、太陽電池で発電された直流電力又は蓄電池から出力された直流電力の少なくともいずれか一方を電力変換回路で交流電力に変換させることを可能にした電力変換システムに適用できるものである。
以上、本発明の一実施形態について説明したが、以上の説明は本発明の理解を容易にするためのものであり、本発明を限定するものではない。本発明はその趣旨を逸脱することなく、変更、改良され得ると共に本発明にはその等価物が含まれることは勿論である。
1 パワーコンディショナ
2a乃至2d 太陽電池
3a乃至3d D/D回路
4 D/A回路
5 制御部
6 系統
12 モニター
13a乃至14d 蓄電池
14a、14b コンバータ
15a乃至15d 双方向D/D回路
16a乃至16b コンバータ制御部
17 開閉器
17a 補助接片
19 直流ライン

Claims (7)

  1. 直流ラインの直流電力を交流電力に変換する電力変換回路と、
    蓄電池を接続するための端子と、
    太陽電池で発電された直流電力が前記直流ラインへ供給された際には、前記太陽電池で発電された直流電力を前記電力変換回路で前記交流電力へ変換させることを可能にする第1の機能と、
    蓄電池から出力された直流電力が前記直流ラインへ供給された際には、前記太陽電池で発電された直流電力又は前記蓄電池から出力された直流電力の少なくともいずれか一方を前記電力変換回路で前記交流電力に変換させることを可能にする第2の機能と、
    第1の機能又は第2の機能のいずれか一方を、前記端子を介して前記直流ラインに接続される蓄電池の有無に基づいて選択する第3の機能と、
    を備えることを特徴とする電力変換システム。
  2. 前記端子に接続され切替可能に設けられた切替スイッチを更に備える請求項1に記載の電力変換システム。
  3. 前記蓄電池を取り付ける際に前記切替スイッチを手動で切り替えることによって前記第3の機能を起動させる、請求項2に記載の電力変換システム。
  4. 第3の機能は、前記蓄電池から出力される直流電力の有無に基づいて自動的に行なう構成を備える請求項1又は2に記載の電力変換システム。
  5. 前記蓄電池から出力される直流電力は前記電力変換回路の直流入力側に供給されることを特徴とする請求項1~4のいずれか一項に記載の電力変換システム。
  6. 前記電力変換回路と通信可能な操作部を更に備え、前記第3の機能は前記操作部の操作により起動させる、請求項1~5のいずれか一項に記載の電力変換システム。
  7. 前記操作部は表示部を備える、請求項6に記載の電力変換システム。
JP2024024903A 2016-11-21 2024-02-21 電力変換システム Pending JP2024051003A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2024024903A JP2024051003A (ja) 2016-11-21 2024-02-21 電力変換システム

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016225648A JP6895604B2 (ja) 2016-11-21 2016-11-21 電力変換システム
JP2021083399A JP7165953B2 (ja) 2016-11-21 2021-05-17 電力変換システム
JP2022166046A JP7450176B2 (ja) 2016-11-21 2022-10-17 電力変換システム
JP2024024903A JP2024051003A (ja) 2016-11-21 2024-02-21 電力変換システム

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2022166046A Division JP7450176B2 (ja) 2016-11-21 2022-10-17 電力変換システム

Publications (1)

Publication Number Publication Date
JP2024051003A true JP2024051003A (ja) 2024-04-10

Family

ID=62146184

Family Applications (4)

Application Number Title Priority Date Filing Date
JP2016225648A Active JP6895604B2 (ja) 2016-11-21 2016-11-21 電力変換システム
JP2021083399A Active JP7165953B2 (ja) 2016-11-21 2021-05-17 電力変換システム
JP2022166046A Active JP7450176B2 (ja) 2016-11-21 2022-10-17 電力変換システム
JP2024024903A Pending JP2024051003A (ja) 2016-11-21 2024-02-21 電力変換システム

Family Applications Before (3)

Application Number Title Priority Date Filing Date
JP2016225648A Active JP6895604B2 (ja) 2016-11-21 2016-11-21 電力変換システム
JP2021083399A Active JP7165953B2 (ja) 2016-11-21 2021-05-17 電力変換システム
JP2022166046A Active JP7450176B2 (ja) 2016-11-21 2022-10-17 電力変換システム

Country Status (2)

Country Link
JP (4) JP6895604B2 (ja)
WO (1) WO2018092821A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020065337A (ja) * 2018-10-16 2020-04-23 株式会社エクソル 電力供給システム
CN111193288B (zh) * 2020-01-16 2021-08-17 华北电力大学 一种基于综合恢复策略的含分布式电源配网恢复重构方法
WO2023089828A1 (ja) * 2021-11-22 2023-05-25 三菱電機株式会社 周波数安定化装置

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01170336A (ja) * 1987-12-24 1989-07-05 Mitsubishi Electric Corp 蓄電池充放電制御回路
JPH06266455A (ja) * 1993-03-16 1994-09-22 Kansai Electric Power Co Inc:The バッテリ併用型太陽光発電設備
JPH08308106A (ja) * 1995-05-10 1996-11-22 Omron Corp 太陽光発電システムの逆流防止装置
JPH1023671A (ja) * 1996-07-03 1998-01-23 Omron Corp パワーコンディショナおよび分散型電源システム
JP2004112948A (ja) 2002-09-19 2004-04-08 Ebara Corp 電源供給システム及びその運転方法
JP2007166818A (ja) 2005-12-15 2007-06-28 Sharp Corp 電源システムおよびその制御方法
JP2013110870A (ja) 2011-11-21 2013-06-06 Panasonic Corp 電力変換装置
JP5996313B2 (ja) * 2012-07-23 2016-09-21 トヨタホーム株式会社 電力供給制御装置及び電力供給システム
JP2014027856A (ja) * 2012-07-30 2014-02-06 Mitsubishi Electric Corp 系統連系装置
CN104541433B (zh) 2012-08-30 2017-05-31 株式会社安川电机 蓄电装置
US9780564B2 (en) 2012-09-28 2017-10-03 Eaton Corporation Dual-input inverter and method of controlling same
JP6141631B2 (ja) 2012-12-14 2017-06-07 シャープ株式会社 電力供給システム
JP2014121216A (ja) 2012-12-18 2014-06-30 Jfe Engineering Corp 蓄電設備および急速充電器
JP6097592B2 (ja) * 2013-01-30 2017-03-15 積水化学工業株式会社 地域内電力需給制御システム
JP2014158327A (ja) 2013-02-14 2014-08-28 Hot Plan:Kk 電力供給装置
JP6080632B2 (ja) * 2013-03-19 2017-02-15 本田技研工業株式会社 電力供給システム
JP6158562B2 (ja) 2013-04-01 2017-07-05 京セラ株式会社 電力変換装置、制御システム、及び制御方法
JP6151633B2 (ja) 2013-12-24 2017-06-21 京セラ株式会社 電力制御装置、電力制御システム、および電力制御方法
WO2015159426A1 (ja) * 2014-04-18 2015-10-22 三菱電機株式会社 充放電制御システム、制御装置、充放電制御方法、及び、プログラム
JP6121949B2 (ja) * 2014-07-10 2017-04-26 株式会社西日本エイテック 太陽光発電向け蓄電システム
JP6376997B2 (ja) * 2015-03-13 2018-08-22 シャープ株式会社 電力システムおよび電力システムの制御方法

Also Published As

Publication number Publication date
JP7450176B2 (ja) 2024-03-15
JP2021158914A (ja) 2021-10-07
JP6895604B2 (ja) 2021-06-30
JP2022179781A (ja) 2022-12-02
WO2018092821A1 (ja) 2018-05-24
JP2018085780A (ja) 2018-05-31
JP7165953B2 (ja) 2022-11-07

Similar Documents

Publication Publication Date Title
KR101369692B1 (ko) 전력 저장 시스템 및 그 제어방법
RU2160955C2 (ru) Способ и устройство для покрытия пикового потребления энергии в сетях переменного или трехфазного тока
JP5903622B2 (ja) 電力供給システムおよび充放電用パワーコンディショナ
JP2024051003A (ja) 電力変換システム
WO2011162025A1 (ja) 直流配電システム
JP5485857B2 (ja) 電力管理システム
EP2479863B1 (en) System for controlling electric power supply to devices
EP2983265B1 (en) Electric power conversion device, control system, and control method
KR20200048913A (ko) 폐배터리 기반의 독립형 가정용 에너지 저장 시스템
JP6194527B2 (ja) 系統連系電源装置
WO2015001767A1 (ja) 制御装置、電力管理システム
JP2020523971A (ja) エネルギー貯蔵システム
JP2018098820A (ja) 電力変換システム
WO2013151133A1 (ja) 配電装置および電力供給システム
JPH10248180A (ja) 電力変換装置
EP3487034B1 (en) Power conversion system, power supply system, and power conversion apparatus
WO2019073652A1 (ja) 蓄電モジュールおよび電源システム
CN116632986B (zh) 一种直流储充系统及其充电控制方法
CN220421472U (zh) 一种直流储充系统
JP2016220292A (ja) 電力供給システム
JP2023095009A (ja) 電力システム及びその運転方法
KR20150019821A (ko) 소형 에너지 저장 및 분산 제어 시스템
CN115483744A (zh) 一种储能系统的转换电源和自主补电方法
CN113437743A (zh) 供电系统
CN114512998A (zh) 移动式电化学储能车的控制方法、装置、系统及设备

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240227

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240227