WO2019073652A1 - 蓄電モジュールおよび電源システム - Google Patents

蓄電モジュールおよび電源システム Download PDF

Info

Publication number
WO2019073652A1
WO2019073652A1 PCT/JP2018/026939 JP2018026939W WO2019073652A1 WO 2019073652 A1 WO2019073652 A1 WO 2019073652A1 JP 2018026939 W JP2018026939 W JP 2018026939W WO 2019073652 A1 WO2019073652 A1 WO 2019073652A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
converter
control unit
bidirectional
battery
Prior art date
Application number
PCT/JP2018/026939
Other languages
English (en)
French (fr)
Inventor
修市 田川
浩平 柴田
浩司 野口
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2019547915A priority Critical patent/JP7028252B2/ja
Publication of WO2019073652A1 publication Critical patent/WO2019073652A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a storage module and a power supply system.
  • This storage system switches a switch connected to the system power supply side of the power conversion device, a control circuit for controlling the switch, and a supply source of drive power to the control circuit to either the storage battery or the system power supply. And switch means. If the control circuit determines that the storage battery is about to be in the overdischarge state, it switches the switch means so that the supply source of the drive power of the control circuit becomes the system power supply. On the other hand, when the control circuit determines that it is not just before the storage battery reaches the overdischarged state, it switches the switch means so that the supply source of the drive power of the control circuit is the storage battery.
  • the present invention has been made in view of the above, and it is an object of the present invention to provide a storage module and a power supply system which can be downsized while preventing the storage battery from being overdischarged at the time of a power failure. .
  • a storage module is AC power supplied from the system power supply is converted to DC power and supplied to the DC bus line, and DC power supplied from the DC bus line is converted to AC power to the AC load connected to the system power supply
  • a storage module connected to a power conditioner having a bidirectional AC-DC converter for supplying A storage battery, A discharge mode interposed between the storage battery and an input / output unit connected to the DC bus line, and converting DC power supplied from the storage battery and supplying the converted power to the input / output unit;
  • a bi-directional DC-DC converter operating in a charging mode, which converts DC power supplied via a writing output unit and supplies the DC power to the storage battery;
  • a switch interposed between the bidirectional DC-DC converter and the input / output unit;
  • a control unit having a power supply terminal connected between the input / output unit and the switch, and switching the switch to the open state according to the charge state of the storage battery when the switch is in the closed state; , And The control unit receives supply of drive power from the DC bus
  • the storage module according to the present invention is
  • the indicator indicating the state of charge is the SOC or battery voltage of the storage battery
  • the control unit may switch the switch to an open state when the switch is in a closed state and the SOC or the battery voltage becomes equal to or less than a preset reference value.
  • the storage module is When the control unit receives standby command information instructing to externally set the bidirectional DC-DC converter to a standby mode in which conversion of DC power is not performed, the control unit maintains the switch in the closed state, and The DC-DC converter may be set to the standby mode.
  • the power supply system viewed from another point of view is A DC bus line, a DC-DC converter for converting DC power supplied from a power generator into DC power of different voltage values and supplying the DC power to the DC bus line, and converting AC power supplied from a system power source to DC power And bi-directional AC-DC converter for supplying DC power to the DC bus line and converting DC power supplied from the DC bus to AC power and supplying the AC load connected to the system power supply.
  • Power conditioner A discharge mode interposed between a storage battery, the storage battery and an input / output unit connected to the DC bus line, and converting DC power supplied from the storage battery and supplying the converted power to the input / output unit; Bi-directional DC-DC converter operating in a charging mode for converting DC power supplied from the line through the input / output unit and supplying it to the storage battery, the bidirectional DC-DC converter, and the input / output unit And a power supply terminal connected between the input / output unit and the switch, and when the switch is in a closed state, according to the charge state of the storage battery.
  • a control unit for switching the switch to the open state receives supply of drive power from the DC bus line via the power supply terminal while the bidirectional DC-DC converter is operating in the charging mode, and the bidirectional DC-DC converter is configured to While operating in the discharge mode, the storage battery receives supply of drive power through the power supply terminal.
  • a power supply system is The power conditioner is A power consumption determination unit that determines whether the power consumption at the AC load has dropped below a predetermined reference power consumption; When it is determined by the power consumption determination unit that the power consumption at the AC load has dropped below the reference power consumption, the bidirectional DC-DC converter is commanded to be in a standby mode in which conversion of DC power is not performed. And a command unit for transmitting standby command information to the control unit. When the control unit receives the standby instruction information, the control unit may set the bidirectional DC / DC converter in the standby mode while maintaining the switch in the closed state.
  • the switch when the control unit has the power supply terminal connected between the input / output unit and the switch, and the switch is in the closed state, the switch is opened according to the charging state of the storage battery. Switch to Then, while the bidirectional DC-DC converter is operating in the charge mode, the control unit receives supply of drive power from the DC bus line via the power supply terminal, and the bidirectional DC-DC converter operates in the discharge mode. In the meantime, the battery receives supply of drive power from the storage battery through the power supply terminal. Thus, for example, even if a power failure occurs while the bi-directional DC-DC converter is operating in the charge mode and the power supply from the DC bus line to the input / output unit is cut off, the driving power from the storage battery to the control unit is immediately generated.
  • the control unit can continue the control of the switch according to the charge state of the storage battery even after the power failure. Therefore, the storage battery can be prevented from being overdischarged at the time of a power failure.
  • a standby power supply such as a battery, the storage module can be miniaturized accordingly.
  • FIG. 1 is a schematic configuration diagram of a power supply system according to an embodiment of the present invention. It is a circuit diagram of a battery module concerning an embodiment. It is a flowchart which shows an example of the flow of the battery module control process which the control part which concerns on embodiment performs. It is an example of the time chart of operation of a power supply system concerning an embodiment, and (A) is power consumption in exchange load, (B) is a state of HVDC bus, (C) is SOC of a battery, (D) is both. (E) shows the open / close state of the switch.
  • the power supply system according to the present embodiment is a distributed power supply system, and supplies power from a solar cell or a storage battery to an AC load in cooperation with a system power supply.
  • the power supply system according to the present embodiment includes a power conditioner and a storage module connected to the power conditioner.
  • the power conditioner converts AC power supplied from the system power supply into DC power and supplies it to the DC bus line, and converts DC power supplied from the DC bus line into AC power and is connected to the system power supply It has a bidirectional AC-DC converter for supplying an AC load.
  • the storage module is interposed between the storage battery and the bidirectional DC-DC converter interposed between the storage battery and the input / output unit connected to the DC bus line, and the bidirectional DC-DC converter and the input / output unit And a control unit that controls the open / close state of the switch.
  • the bidirectional DC-DC converter converts the DC power supplied from the storage battery and supplies it to the input / output unit, and converts the DC power supplied from the DC bus line via the input / output unit to the storage battery Operate in the charging mode to supply.
  • a control part prevents that a storage battery will be in an overdischarged state by switching a switch to an open state, when the charge condition of a storage battery will be in the state in front of an overdischarged state.
  • the power supply system includes, as shown in FIG. 1, a solar battery 1 which is a power generation device, a power conditioner 3 connected to the solar battery 1 and the system power supply 2, and a battery module 5. . Further, an AC load 4 such as a household appliance that operates by being supplied with AC power is connected to the system power supply 2.
  • the power conditioner 3 has an HVDC bus (DC bus line) 33 and a PV converter (DC-DC converter) 31 that supplies the HVDC bus 33. Further, the power conditioner 3 converts AC power supplied from the system power supply 2 into DC power and supplies it to the HVDC bus 33, and converts DC power supplied from the HVDC bus 33 into AC power to convert the system power. And a bi-directional AC-DC converter 32 for supplying an AC load 4 connected thereto.
  • the power conditioner 3 further includes a communication bus 34 and a power conditioner control unit 35 that controls the operation of the entire power conditioner 3.
  • the power conditioner control unit 35 transmits and receives control information to and from the PV converter 31 and the bidirectional AC-DC converter 32 via the communication bus 34, thereby the PV converter 31 and the bidirectional AC-DC converter 32. Control.
  • the voltage of the HVDC bus 33 is maintained at, for example, 360V.
  • the PV converter 31 converts the DC power received from the solar cell 1 into DC power of different voltage values and outputs the DC power to the HVDC bus 33.
  • the PV converter 31 has a function of maximizing the output power of the solar cell 1 by performing MPPT (maximum power point tracking) control.
  • the bidirectional AC-DC converter 32 converts AC power supplied from the system power supply 2 into DC power and supplies the DC power to the HVDC bus 33, and converts DC power supplied from the HVDC bus 33 into AC power to AC power.
  • Supply to load 4 The bidirectional AC-DC converter 32 may perform, for example, constant current control to control the current supplied to the HVDC bus 33 to a constant value.
  • the power conditioner control unit 35 includes an MPU (Micro Processing Unit) and a storage unit. Then, the MPU functions as a power consumption determination unit 351 and a command unit 352 by reading and executing a program stored in the storage unit.
  • the power consumption determination unit 351 determines the power consumption of the AC load 4 based on the power consumption measurement value information input via the communication bus 34 from a power measurement unit (not shown) that measures the power consumption of the AC load 4. It is determined whether or not the power consumption has dropped below a preset reference power consumption.
  • the command unit 352 outputs command information to the control unit 53 of the battery module 5 described later. It is assumed that the power consumption determination unit 351 determines that the power consumption of the AC load 4 has dropped below the reference power consumption. In this case, the command unit 352 transmits, to the control unit 53 via the communication bus 34, standby command information for commanding the bidirectional DC-DC converter 52 of the battery module 5 described later to be in the standby mode. On the other hand, it is assumed that the power consumption determination unit 351 changes the power consumption of the AC load 4 from the state of less than the reference power consumption to the state where the power consumption exceeds the reference power consumption.
  • the command unit 352 transmits operation command information for commanding the bidirectional DC-DC converter 52 to operate in the discharge mode or the charge mode to the control unit 53 via the communication bus 34.
  • the operation command information includes operation mode information indicating the operation mode of the bidirectional DC-DC converter 52.
  • the command unit 352 transmits operation command information including operation mode information indicating the changed operation mode to the control unit 53 each time the operation mode of the bidirectional DC-DC converter 52 needs to be changed.
  • the battery module 5 includes a battery (storage battery) 51, a bidirectional DC-DC converter 52, a control unit 53, a BMU (Battery Management Unit) 54, and a power supply circuit 55.
  • battery module 5 is connected between input / output unit te for performing input / output of DC power with HVDC bus 33 of power conditioner 3, and between bidirectional DC-DC converter 52 and input / output unit te.
  • the bidirectional DC-DC converter 52 is interposed between the battery 51 and the input / output unit te.
  • the battery module 5 is electrically connected to the HVDC bus 33 of the power conditioner 3 through the input / output unit te.
  • the input / output unit te has an input / output terminal te1 on the high potential side and an input / output terminal te2 on the low potential side (ground potential side).
  • the relay RL4 is a so-called double-pole double-throw type relay, and has a high potential side input / output end and a low potential side input / output end on the input / output portion te side of the bidirectional DC-DC converter 52, and an input / output terminal te1. , And te2 are simultaneously opened and closed.
  • the relay RL4 includes, for example, an electromagnetic relay or a semiconductor relay.
  • a capacitor C1 is connected between the input / output end of the input / output unit te side of the bidirectional DC-DC converter 52.
  • battery module 5 includes relay RL1 connected between the high potential side input / output terminal of battery 51 and the high potential side input / output terminal on battery 51 side of bidirectional DC-DC converter 52, and relay RL1. And an inrush current prevention circuit 56 connected in parallel.
  • the relay RL1 is, for example, a single-pole single-throw electromagnetic relay or a semiconductor relay.
  • the rush current prevention circuit 56 is a circuit for preventing an excessive current from flowing in the switching element Q1 when the relay RL1 is closed in a state where the capacitor C1 is not charged.
  • the inrush current prevention circuit 56 includes a diode D1, a switching element Q3 and a resistor R1.
  • the anode of the diode D1 is connected to the input / output terminal on the high potential side of the battery 51.
  • the switching element Q3 is, for example, an N-channel FET, and is connected to the cathode of the diode D1.
  • the resistor R1 is connected between the switching element Q3 and the high potential side input / output terminal on the battery 51 side of the bidirectional DC-DC converter 52.
  • the battery module 5 includes relays RL2 and RL3 interposed in series between the input / output terminal te1 and the high potential side input / output terminal on the input / output unit te side of the bidirectional DC-DC converter 52; It has a resistor R2 connected in parallel with RL2 and RL3.
  • the relays RL2 and RL3 are, for example, single pole single throw type electromagnetic relays or semiconductor relays.
  • Battery module 5 also includes a voltmeter V1 that measures the voltage between both ends of battery 51, a voltmeter V2 that measures the voltage between the input and output ends of battery 51 of bidirectional DC-DC converter 52, and a capacitor C1. And a voltmeter V3 that measures the voltage across the two terminals. Furthermore, the battery module 5 has a voltmeter V4 that measures the voltage between the relays RL2 and RL3 and between the low potential side input / output terminals on the input / output unit te side of the bidirectional DC-DC converter 52. The battery module 5 also has a voltmeter V5 that measures the voltage between the input / output terminals te1 and te2 of the input / output unit te. The voltmeters V 1, V 2, V 3, V 4 and V 5 each output a voltage signal having a magnitude proportional to the magnitude of the voltage value to be measured to the control unit 53.
  • the battery module 5 has an ammeter A1 interposed between the relay RL1 and the input / output end on the high potential side on the battery 51 side of the bidirectional DC-DC converter 52. Furthermore, the battery module 5 has an ammeter A2 interposed between the high potential side output end of the capacitor C1 and the relay RL2. The ammeters A1 and A2 output, to the control unit 53, voltage signals having a magnitude proportional to the magnitude of the current value to be measured.
  • the battery 51 is, for example, a battery pack including a plurality of battery cells connected in series with each other.
  • a battery cell of the battery 51 for example, a lead battery, a lithium ion battery, a molten salt battery, a nickel-cadmium battery, a nickel-hydrogen battery, a redox flow battery, a NAS battery, an electric double layer capacitor, an Li ion capacitor or the like can be adopted.
  • the output voltage of the battery 51 is set to, for example, 300V.
  • Bidirectional DC-DC converter 52 converts the DC power supplied from battery 51 and supplies it to input / output unit te, and the HVDC bus 33 of power conditioner 3 supplies it via input / output unit te. Operation in the charging mode in which the DC power is converted and supplied to the battery 51.
  • the bidirectional DC-DC converter 52 has an inductor L1 and switching elements Q1, Q2. One end of the inductor L1 is connected to the input / output end on the high potential side of the battery 51 via the relay RL1.
  • the switching element Q1 is, for example, an N-channel FET, and is connected between the other end of the inductor L1 and the input / output end on the high potential side of the capacitor C1.
  • the switching element Q2 is, for example, an N-channel FET, and is connected between the other end of the inductor L1 and the input / output end on the low potential side of the battery 51.
  • bi-directional DC-DC converter 52 boosts DC power supplied from battery 51 by turning on / off switching element Q 2 and supplies it to input / output unit te.
  • bi-directional DC-DC converter 52 reduces the DC power supplied from HVDC bus 33 through input / output unit te by supplying switching device Q1 to battery 51 by turning on / off switching element Q1 in the charge mode. .
  • the BMU 54 determines the SOC (State Of Charge) of the battery 51. Monitor). When the SOC of the battery 51 becomes equal to or less than a predetermined reference value, the BMU 54 outputs, to the control unit 53, an SOC decrease notification signal notifying that effect.
  • the power supply circuit 55 is electrically connected to the input / output unit te, and steps down DC power supplied from the input / output unit te and supplies the DC power to the control unit 53.
  • the power supply circuit 55 steps down the DC power of 360 V supplied from the input / output unit te to 5 V, for example, and supplies the DC power to the control unit 53.
  • the control unit 53 includes an MPU, a storage unit, a switching element drive circuit that drives the switching elements Q1, Q2, and Q3, and a relay drive circuit that drives the relays RL1, RL2, RL3, and RL4.
  • the control unit 53 also has output terminals Q1_t, Q2_t, and Q3_t connected to the gates Q1_g, Q2_g, and Q3_g of the switching elements Q1, Q2, and Q3, respectively.
  • the control unit 53 also has output terminals RL1_t, RL2_t, RL3_t, and RL4_t connected to control signal terminals (not shown) of the relays RL1, RL2, RL3, and RL4, respectively.
  • the switching element drive circuit outputs control signals to the gates Q1_g, Q2_g, and Q3_g of the switching elements Q1, Q2, and Q3 via the output terminals Q1_t, Q2_t, and Q3_t, based on the control signals input from the MPU.
  • the switching element drive circuit can output a PWM (Pulse Width Modulation) signal as a control signal to the gates Q1_g and Q2_g of the switching elements Q1 and Q2, respectively.
  • PWM Pulse Width Modulation
  • the relay drive circuit outputs control signals to the control signal terminals of the relays RL1, RL2, RL3, and RL4 via the output terminals RL1_t, RL2_t, RL3_t, and RL4_t, based on the control signals input from the MPU.
  • control unit 53 has input terminals V1_t, V2_t, V3_t, V4_t, V5_t, A1_t, A2_t connected to the voltmeters V1, V2, V3, V4, V5 and the ammeters A1, A2, respectively.
  • the control unit 53 receives voltage signals from the voltmeters V1, V2, V3, V4 and V5 and ammeters A1 and A2 via the input terminals V1_t, V2_t, V3_t, V4_t, V5_t, A1_t and A2_t, respectively.
  • Ru The control unit 53 also has a BMU terminal BMU_t connected to the BMU 54 and to which an SOC decrease notification signal is input from the BMU 54.
  • control unit 53 can communicate with the power conditioner control unit 35 via the communication bus 34 of the power conditioner 3. Then, the control unit 53 controls the bidirectional DC-DC converter 52 based on the standby instruction information or the operation instruction information input from the power conditioner control unit 35 via the communication bus 34.
  • the control unit 53 also has a power supply terminal Vcc_t connected between the input / output unit te and the relay RL4. Then, while the bi-directional DC-DC converter 52 is operating in the charge mode, the control unit 53 receives the supply of drive power from the HVDC bus 33 of the power conditioner 3 via the power supply terminal Vcc_t. On the other hand, control unit 53 receives supply of drive power from battery 51 via power supply terminal Vcc_t while bidirectional DC-DC converter 52 is operating in the discharge mode. Further, when the relay RL4 is in the closed state, the control unit 53 switches the relay RL4 to the open state in accordance with the charging state of the battery 51.
  • the indicator indicating the charge state of the battery 51 is, for example, the SOC (State Of Charge) of the battery 51. Then, when the relay RL4 is in the closed state, the control unit 53 switches the relay RL4 to the open state when the SOC of the battery 51 becomes lower than or equal to a predetermined reference SOC.
  • SOC State Of Charge
  • the battery module control process is started, for example, when the battery module 5 is connected to the power conditioner 3 and drive power is supplied from the HVDC bus 33 of the power conditioner 3 to the control unit 53 via the power supply circuit 55. Ru.
  • the control unit 53 operates the bidirectional DC-DC converter 52 in the discharge mode or the charge mode (step S101).
  • the control unit 53 operates the bidirectional DC-DC converter 52, for example, in an operation mode immediately before the relay RL4 of the previous time was opened.
  • control unit 53 turns on switching element Q3 of inrush current prevention circuit 56, and thereafter, is input from ammeters A1 and A2 and voltmeters V3 and V4.
  • the relay RL1 is turned on according to the magnitude of the voltage signal. This prevents the overcurrent from flowing through the switching elements Q1 and Q2.
  • the control unit 53 closes the relays RL2 and RL3 before operating the bidirectional DC-DC converter 52.
  • control unit 53 closes the relay RL4 (step S102). Subsequently, control unit 53 determines whether or not standby command information for instructing bidirectional DC-DC converter 52 to be in the standby mode is received from power conditioner control unit 35 via communication bus 34 (step S103).
  • step S103 If the control part 53 determines that standby instruction information is not received (step S103: No), it will perform the process of the below-mentioned step S105 as it is.
  • the power consumption determination unit 351 of the power conditioner control unit 35 determines that the power consumption of the AC load 4 has dropped below the preset reference power consumption, and the command unit 352 sends the standby command information to the control unit 53. Suppose you send it. In this case, the control unit 53 determines that the standby instruction information has been received (step S103: Yes), and sets the bidirectional DC-DC converter 52 in the standby mode (step S104).
  • control unit 53 stops the PWM signal output to the switching element Q1 or the switching element Q2, and maintains the switching elements Q1 and Q2 in the OFF state. At this time, DC power output from the battery 51 is supplied to the input / output unit te side of the bidirectional DC-DC converter 52 through the body diode of the switching element Q1.
  • control unit 53 determines whether or not operation command information has been received from power conditioner control unit 35 via communication bus 34 (step S105).
  • step S105 determines that the operation command information has not been received (step S105: No)
  • the control unit 53 executes the process of step S107 described later as it is.
  • the command unit 352 performs bidirectional DC ⁇ Operation command information for instructing the DC converter 52 to operate in the normal discharge mode or charge mode is transmitted to the control unit 53.
  • control unit 53 determines that the operation command information has been received (step S105: Yes), and operates the bidirectional DC-DC converter 52 again in the discharge mode or the charge mode (step S106).
  • control unit 53 operates the bidirectional DC-DC converter 52 in the discharge mode or the charge mode in accordance with the operation mode indicated by the operation mode information included in the operation command information.
  • control unit 53 determines whether or not an abnormal state of battery module 5 has occurred, based on voltage signals input from ammeters A 1 and A 2 and voltmeters V 1, V 2, V 3, V 4 and V 5. (Step S107). When the magnitude of the voltage signal input from the ammeters A1 and A2 is larger than the voltage value corresponding to the preset reference current value, the controller 53 causes an overcurrent to flow in the battery module 5, and the battery module 5 It is determined that an abnormal state of 5 has occurred.
  • step S107 determines that an abnormal state of battery module 5 has occurred.
  • controller 53 executes the process of step S109 described later.
  • control unit 53 determines that an abnormal state of battery module 5 has not occurred (step S107: No). In this case, control unit 53 determines whether or not the SOC of battery 51 has fallen to or below the SOC reference value SOCth set in advance, in accordance with the presence or absence of the SOC decrease signal from BMU 54 (step S108). When control unit 53 determines that the SOC of battery 51 exceeds SOC reference value SOCth (step S108: No), control unit 53 executes step S103 again.
  • control unit 53 determines that the SOC of battery 51 is less than or equal to SOC reference value SOCth (step S108: Yes)
  • control unit 53 sets bidirectional DC-DC converter 52 in the standby mode (step S109). At this time, the switching elements Q1 and Q2 are both maintained in the off state.
  • control unit 53 causes relay RL4 to be in an open state (step S110).
  • the battery 51 is electrically disconnected from the input / output unit te connected to the HVDC bus 33 of the power conditioner 3, and overdischarge of the battery 51 is prevented.
  • the drive power is not supplied to the control unit 53, and the battery module control process ends.
  • the power consumption P of the AC load 4 is higher than the power consumption reference value Pth, and as shown in FIG. 4B, the bidirectional DC-DC converter 52 is in the discharge mode or charge mode. It is assumed that it is operating.
  • drive power is supplied from the HVDC bus 33 of the power conditioner 3 to the control unit 53 via the power supply circuit 55.
  • the control unit 53 closes the relay RL4 and executes the above-described battery module control process.
  • the power consumption P of the AC load 4 becomes equal to or less than the power consumption reference value Pth at time T10.
  • standby instruction information is output from the power conditioner control unit 35 to the control unit 53, and the control unit 53 stops the PWM signal to be output to the bidirectional DC-DC converter 52, thereby a bidirectional DC-DC converter Set 52 to standby mode.
  • the power consumption P of the AC load 4 exceeds the power consumption reference value Pth again at time T11.
  • the normal operation command information is output from the power conditioner control unit 35 to the control unit 53, and the control unit 53 outputs the PWM signal to the bidirectional DC-DC converter 52 again, as shown in FIG. 4 (B).
  • the bi-directional DC-DC converter 52 is operated in the discharge mode or the charge mode.
  • control unit 53 closes relay RL 4 again to operate bidirectional DC-DC converter 52 again in the discharge mode or the charge mode.
  • the control unit when the control unit has the power supply terminal connected between the input / output unit and the switch, and the switch is in the closed state, The switch is switched to the open state according to the state of charge of the storage battery. Then, while the bidirectional DC-DC converter is operating in the charge mode, the control unit receives supply of drive power from the DC bus line via the power supply terminal, and the bidirectional DC-DC converter operates in the discharge mode. In the meantime, the battery receives supply of drive power from the storage battery through the power supply terminal.
  • the control unit can continue the control of the switch according to the charge state of the storage battery even after the power failure. Therefore, the storage battery can be prevented from being overdischarged at the time of a power failure.
  • a standby power supply such as a battery, the battery module 5 can be miniaturized accordingly.
  • control unit 53 when relay RL4 is in the closed state, control unit 53 according to the present embodiment switches relay RL4 to the open state when the SOC of battery 51 becomes equal to or less than the reference value. As a result, the state of charge of battery 51 can be directly monitored by the SOC, so control circuit 53 can be prevented from erroneously opening relay RL4 despite the fact that the SOC of battery 51 is sufficiently large. Be done.
  • control unit 53 upon receiving standby command information from command unit 352 of power conditioner control unit 35, control unit 53 according to the present embodiment waits for bidirectional DC-DC converter 52 while maintaining relay RL4 in the closed state. Set to mode. Accordingly, wasteful consumption of electricity of the battery 51 in the bidirectional DC-DC converter 52 is suppressed, for example, in a time zone in which the power consumption of the AC load 4 is equal to or less than a preset reference power consumption.
  • the battery voltage of each of the plurality of battery cells of the battery 51 may be adopted as an index indicating the charge state of the battery 51.
  • the control unit 53 may switch the relay RL4 to the open state when any of the battery voltages of the plurality of battery cells becomes lower than a preset reference value.
  • control unit 53 may put the bidirectional DC-DC converter 52 in the standby mode by maintaining the switching element Q1 in the on state and the switching element Q2 in the off state.
  • the control unit 53 determines that an abnormal state of the battery module 5 has occurred when an overcurrent flows in the battery module 5 or an overvoltage is applied to the battery module 5. .
  • the control unit 53 may determine that the abnormal state of the battery module 5 has occurred when the temperature in the vicinity of the battery 51, the switching elements Q1, Q2, etc. becomes higher than a preset temperature. May be In this case, for example, a temperature measuring device is disposed in the vicinity of the battery 51, the switching elements Q1, Q2, etc., and the control unit 53 is proportional to the height of the temperature measured by the temperature measuring device. The occurrence of the abnormal state of the battery module 5 may be determined based on the voltage signal at which the voltage value becomes high.
  • the power generation device is the solar cell 1
  • the power generation device using natural energy is not limited to the solar cell, and may be, for example, a wind power generator.
  • the present invention is suitable as a battery module connected to a power conditioner that performs grid connection.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

バッテリモジュール(5)は、バッテリ(51)と、バッテリ(51)とHVDCバス(33)に接続される入出力部(te)との間に介在する双方向DC-DCコンバータ(52)と、双方向DC-DCコンバータ(52)と入出力部(te)との間に介挿されたリレー(RL4)と、リレー(RL4)が閉状態の場合、バッテリ(51)の充電状態に応じて、リレー(RL4)を開状態へ切り替える制御部(53)と、を備える。制御部(53)は、双方向DC-DCコンバータ(52)が充電モードで動作している間、HVDCバス(33)から電源端子を介して駆動電力の供給を受け、双方向DC-DCコンバータ(52)が放電モードで動作している間、バッテリ(51)から電源端子を介して駆動電力の供給を受ける。

Description

蓄電モジュールおよび電源システム
 本発明は、蓄電モジュールおよび電源システムに関する。
 蓄電池と電力変換装置と蓄電システムコントローラとを備えた蓄電システムが提案されている(例えば特許文献1参照)。この蓄電システムは、電力変換装置の系統電源側に接続された開閉器と、開閉器を制御する制御回路と、制御回路への駆動電力の供給元を蓄電池と系統電源とのいずれか一方に切り替えるスイッチ手段と、を備える。制御回路は、蓄電池が過放電状態に至る直前であると判定すると、制御回路の駆動電力の供給元が系統電源となるようにスイッチ手段を切り替える。一方、制御回路は、蓄電池が過放電状態に至る直前ではないと判定すると、制御回路の駆動電力の供給元が蓄電池となるようにスイッチ手段を切り替える。
特開2012-175801号公報
 しかしながら、特許文献1に記載された蓄電システムでは、制御回路の駆動電力の供給元が系統電源となっているときに、停電が発生し系統電源から電力変換装置への電力供給が遮断されると、スイッチ手段を切り替えるために必要な駆動電力を制御回路へ供給できない虞がある。この場合、蓄電池に電気が貯えられているにも関わらず、それを制御回路へ供給することができず、制御回路による開閉器の制御が継続できなくなってしまう。また、系統電源から電力変換装置への電力供給が遮断された直後において、スイッチ手段を切り替えるために必要な駆動電力を制御回路へ供給するためには、制御回路へ供給する駆動電力の供給源となる大容量の電解コンデンサ、電池等の予備電源を別途設ける必要があるため、その分、蓄電システムが大型化してしまう。
 本発明は、上記事由に鑑みてなされたものであり、停電時において蓄電池が過放電状態となることを防止しつつ、小型化が図られた蓄電モジュールおよび電源システムを提供することを目的とする。
 上記目的を達成するために、本発明に係る蓄電モジュールは、
 系統電源から供給される交流電力を直流電力に変換して直流バスラインに供給するとともに、前記直流バスラインから供給される直流電力を交流電力に変換して前記系統電源に接続された交流負荷へ供給する双方向AC-DCコンバータを有するパワーコンディショナに接続される蓄電モジュールであって、
 蓄電池と、
 前記蓄電池と前記直流バスラインに接続される入出力部との間に介在し、前記蓄電池から供給される直流電力を変換して前記入出力部へ供給する放電モードと、前記直流バスラインから前記入出力部を介して供給される直流電力を変換して前記蓄電池へ供給する充電モードと、で動作する双方向DC-DCコンバータと、
 前記双方向DC-DCコンバータと前記入出力部との間に介挿された開閉器と、
 前記入出力部と前記開閉器との間に接続された電源端子を有し、前記開閉器が閉状態の場合、前記蓄電池の充電状態に応じて、前記開閉器を開状態へ切り替える制御部と、を備え、
 前記制御部は、前記双方向DC-DCコンバータが前記充電モードで動作している間、前記直流バスラインから前記電源端子を介して駆動電力の供給を受け、前記双方向DC-DCコンバータが前記放電モードで動作している間、前記蓄電池から前記電源端子を介して駆動電力の供給を受ける。
 また、本発明に係る蓄電モジュールは、
 前記充電状態を示す指標は、前記蓄電池のSOCまたは電池電圧であり、
 前記制御部は、前記開閉器が閉状態の場合、前記SOCまたは前記電池電圧が予め設定された基準値以下になると、前記開閉器を開状態に切り替える、ものであってもよい。
 また、本発明に係る蓄電モジュールは、
 前記制御部は、外部から前記双方向DC-DCコンバータを直流電力の変換を実行しない待機モードにするよう指令する待機指令情報を受信すると、前記開閉器を閉状態で維持しつつ、前記双方向DC-DCコンバータを前記待機モードに設定する、ものであってもよい。
 他の観点から見た本発明に係る電源システムは、
 直流バスラインと、発電装置から供給される直流電力を異なる電圧値の直流電力に変換して前記直流バスラインへ供給するDC-DCコンバータと、系統電源から供給される交流電力を直流電力に変換して前記直流バスラインに供給するとともに、前記直流バスラインから供給される直流電力を交流電力に変換して前記系統電源に接続された交流負荷へ供給する双方向AC-DCコンバータと、を有するパワーコンディショナと、
 蓄電池と、前記蓄電池と前記直流バスラインに接続される入出力部との間に介在し、前記蓄電池から供給される直流電力を変換して前記入出力部へ供給する放電モードと、前記直流バスラインから前記入出力部を介して供給される直流電力を変換して前記蓄電池へ供給する充電モードと、で動作する双方向DC-DCコンバータと、前記双方向DC-DCコンバータと前記入出力部との間に介挿された開閉器と、前記入出力部と前記開閉器との間に接続された電源端子を有し、前記開閉器が閉状態の場合、前記蓄電池の充電状態に応じて、前記開閉器を開状態へ切り替える制御部と、を備える蓄電モジュールと、を備え、
 前記制御部は、前記双方向DC-DCコンバータが前記充電モードで動作している間、前記直流バスラインから前記電源端子を介して駆動電力の供給を受け、前記双方向DC-DCコンバータが前記放電モードで動作している間、前記蓄電池から前記電源端子を介して駆動電力の供給を受ける。
 また、本発明に係る電源システムは、
 前記パワーコンディショナが、
 前記交流負荷での消費電力が予め設定された基準消費電力以下に低下したか否かを判定する消費電力判定部と、
 前記消費電力判定部により前記交流負荷での消費電力が前記基準消費電力以下に低下したと判定されると、前記双方向DC-DCコンバータを直流電力の変換を実行しない待機モードにするよう指令する待機指令情報を前記制御部へ送信する指令部と、を更に有し、
 前記制御部が、前記待機指令情報を受信すると、前記開閉器を閉状態で維持しつつ、前記双方向DC/DCコンバータを前記待機モードにする、ものであってもよい。
 本発明によれば、制御部が、入出力部と開閉器との間に接続された電源端子を有し、開閉器が閉状態の場合、蓄電池の充電状態に応じて、開閉器を開状態へ切り替える。そして、制御部は、双方向DC-DCコンバータが充電モードで動作している間、直流バスラインから電源端子を介して駆動電力の供給を受け、双方向DC-DCコンバータが放電モードで動作している間、蓄電池から電源端子を介して駆動電力の供給を受ける。これにより、例えば双方向DC-DCコンバータが充電モードで動作している間に停電が発生し直流バスラインから入出力部への電力供給が遮断された場合でも、直ちに蓄電池から制御部へ駆動電力が供給される。従って、制御部は、停電後も蓄電池の充電状態に応じた開閉器の制御を継続できる。それ故、停電時において、蓄電池が過放電状態となることを防止できる。また、停電時に制御部へ駆動電力の供給するための大容量の電解コンデンサ、電池等の予備電源を別途設ける必要がないため、その分、蓄電モジュールを小型化できる。
本発明の実施の形態に係る電源システムの概略構成図である。 実施の形態に係るバッテリモジュールの回路図である。 実施の形態に係る制御部が実行するバッテリモジュール制御処理の流れの一例を示すフローチャートである。 実施の形態に係る電源システムの動作のタイムチャートの一例であり、(A)は交流負荷での消費電力、(B)はHVDCバスの状態、(C)はバッテリのSOC、(D)は双方向DC-DCコンバータの動作モード、(E)は開閉器の開閉状態を示す。
 以下、本発明の実施の形態について図面を参照して詳細に説明する。本実施の形態に係る電源システムは、分散電源システムであり、系統電源と連係して太陽電池または蓄電池から交流負荷へ電力を供給する。本実施の形態に係る電源システムは、パワーコンディショナと、パワーコンディショナに接続される蓄電モジュールとを備える。パワーコンディショナは、系統電源から供給される交流電力を直流電力に変換して直流バスラインに供給するとともに、直流バスラインから供給される直流電力を交流電力に変換して系統電源に接続された交流負荷へ供給する双方向AC-DCコンバータを有する。蓄電モジュールは、蓄電池と、蓄電池と直流バスラインに接続される入出力部との間に介在する双方向DC-DCコンバータと、双方向DC-DCコンバータと入出力部との間に介挿された開閉器と、開閉器の開閉状態を制御する制御部と、を有する。双方向DC-DCコンバータは、蓄電池から供給される直流電力を変換して入出力部へ供給する放電モードと、直流バスラインから入出力部を介して供給される直流電力を変換して蓄電池へ供給する充電モードと、で動作する。そして、制御部は、蓄電池の充電状態が過放電状態の直前の状態になると、開閉器を開状態へ切り替えることにより、蓄電池が過放電状態となることを防止するものである。
 本実施の形態に係る電源システムは、図1に示すように、発電装置である太陽電池1と、太陽電池1および系統電源2に接続されたパワーコンディショナ3と、バッテリモジュール5と、を備える。また、系統電源2には、交流電力が供給されることにより動作する家庭用電化製品のような交流負荷4が接続されている。
 パワーコンディショナ3は、HVDCバス(直流バスライン)33と、HVDCバス33へ供給するPVコンバータ(DC-DCコンバータ)31と、を有する。また、パワーコンディショナ3は、系統電源2から供給される交流電力を直流電力に変換してHVDCバス33に供給するとともに、HVDCバス33から供給される直流電力を交流電力に変換して系統電源2に接続された交流負荷4へ供給する双方向AC-DCコンバータ32と、を有する。更に、パワーコンディショナ3は、通信バス34と、パワーコンディショナ3全体の動作を制御するパワーコンディショナ制御部35と、を有する。そして、パワーコンディショナ制御部35は、通信バス34を介してPVコンバータ31、双方向AC-DCコンバータ32との間で制御情報を送受信することにより、PVコンバータ31、双方向AC-DCコンバータ32を制御する。HVDCバス33の電圧は、例えば360Vに維持されている。
 PVコンバータ31は、太陽電池1から受けた直流電力を異なる電圧値の直流電力に変換してHVDCバス33へ出力する。PVコンバータ31は、MPPT(最大電力点追従)制御を行なうことにより、太陽電池1の出力電力の最大化を図る機能を有する。
 双方向AC-DCコンバータ32は、系統電源2から供給される交流電力を直流電力に変換してHVDCバス33に供給するとともに、HVDCバス33から供給される直流電力を交流電力に変換して交流負荷4へ供給する。双方向AC-DCコンバータ32は、例えばHVDCバス33に供給する電流を一定値に制御する定電流制御を行なってもよい。
 パワーコンディショナ制御部35は、MPU(Micro Processing Unit)と記憶部とを有する。そして、MPUは、記憶部が記憶するプログラムを読み込んで実行することにより、消費電力判定部351および指令部352として機能する。消費電力判定部351は、交流負荷4の消費電力を計測する電力計測部(図示せず)から通信バス34を介して入力される消費電力計測値情報に基づいて、交流負荷4での消費電力が予め設定された基準消費電力以下に低下したか否かを判定する。
 指令部352は、後述するバッテリモジュール5の制御部53へ指令情報を出力する。消費電力判定部351により交流負荷4での消費電力が基準消費電力以下に低下したと判定されたとする。この場合、指令部352は、後述するバッテリモジュール5の双方向DC-DCコンバータ52を待機モードにするよう指令する待機指令情報を、通信バス34を介して制御部53へ送信する。一方、消費電力判定部351により交流負荷4での消費電力が基準消費電力以下の状態から基準消費電力を上回った状態に変化したとする。この場合、指令部352は、双方向DC-DCコンバータ52を放電モードまたは充電モードで動作させるよう指令する動作指令情報を、通信バス34を介して制御部53へ送信する。この動作指令情報には、双方向DC-DCコンバータ52の動作モードを示す動作モード情報が含まれている。指令部352は、双方向DC-DCコンバータ52の動作モードを変更させる必要が生じる毎に変更後の動作モードを示す動作モード情報を含む動作指令情報を制御部53へ送信する。
 バッテリモジュール5は、バッテリ(蓄電池)51と、双方向DC-DCコンバータ52と、制御部53と、BMU(Battery Management Unit)54と、電源回路55と、を有する。また、バッテリモジュール5は、パワーコンディショナ3のHVDCバス33との間で直流電力の入出力を行うための入出力部teと、双方向DC-DCコンバータ52と入出力部teとの間に介挿されたリレー(開閉器)RL4と、を有する。双方向DC-DCコンバータ52は、バッテリ51と入出力部teとの間に介在している。バッテリモジュール5は、入出力部teを介してパワーコンディショナ3のHVDCバス33と電気的に接続されている。
 入出力部teは、図2に示すように、高電位側の入出力端子te1と、低電位側(接地電位側)の入出力端子te2と、を有する。リレーRL4は、いわゆる双極双投型のリレーであり、双方向DC-DCコンバータ52の入出力部te側における高電位側の入出力端、低電位側の入出力端それぞれと、入出力端子te1、te2それぞれとの間に介挿された接点を同時に開閉させる。リレーRL4は、例えば電磁リレーまたは半導体リレーを有する。双方向DC-DCコンバータ52の入出力部te側の入出力端間には、コンデンサC1が接続されている。
 また、バッテリモジュール5は、バッテリ51の高電位側の入出力端と双方向DC-DCコンバータ52のバッテリ51側における高電位側の入出力端との間に接続されたリレーRL1と、リレーRL1と並列に接続された突入電流防止回路56と、を有する。リレーRL1は、例えば単極単投型の電磁リレーまたは半導体リレーである。突入電流防止回路56は、コンデンサC1が充電されていない状態でリレーRL1を閉状態にしたときにスイッチング素子Q1に過大な電流が流れるのを防止するための回路である。突入電流防止回路56は、ダイオードD1とスイッチング素子Q3と抵抗R1とを有する。ダイオードD1は、アノードがバッテリ51の高電位側の入出力端に接続されている。スイッチング素子Q3は、例えばNチャネル型のFETであり、ダイオードD1のカソードに接続されている。抵抗R1は、スイッチング素子Q3と双方向DC-DCコンバータ52のバッテリ51側における高電位側の入出力端との間に接続されている。
 更に、バッテリモジュール5は、入出力端子te1と双方向DC-DCコンバータ52の入出力部te側における高電位側の入出力端との間に直列に介挿されたリレーRL2、RL3と、リレーRL2、RL3と並列に接続された抵抗R2を有する。リレーRL2、RL3は、例えば単極単投型の電磁リレーまたは半導体リレーである。
 また、バッテリモジュール5は、バッテリ51の両端間の電圧を計測する電圧計V1と、双方向DC-DCコンバータ52のバッテリ51側の入出力端間の電圧を計測する電圧計V2と、コンデンサC1の両端間の電圧を計測する電圧計V3と、を有する。更に、バッテリモジュール5は、リレーRL2、RL3の間と双方向DC-DCコンバータ52の入出力部te側における低電位側の入出力端との間の電圧を計測する電圧計V4を有する。また、バッテリモジュール5は、入出力部teの入出力端子te1、te2間の電圧を計測する電圧計V5を有する。電圧計V1、V2、V3、V4、V5は、それぞれ計測される電圧値の大きさに比例した大きさの電圧信号を制御部53へ出力する。
 また、バッテリモジュール5は、リレーRL1と双方向DC-DCコンバータ52のバッテリ51側における高電位側の入出力端との間に介挿された電流計A1を有する。更に、バッテリモジュール5は、コンデンサC1の高電位側の出力端とリレーRL2との間に介挿された電流計A2を有する。電流計A1、A2は、それぞれ計測される電流値の大きさに比例した大きさの電圧信号を制御部53へ出力する。
 バッテリ51は、例えば互いに直列に接続された複数の電池セルから構成される組電池である。バッテリ51の電池セルとしては、例えば鉛電池、リチウムイオン電池、溶融塩電池、ニッケル-カドミウム電池、ニッケル-水素電池、レドックスフロー電池、NAS電池、電気二重層キャパシタ、Liイオンキャパシタ等を採用できる。バッテリ51の出力電圧は、例えば300Vに設定されている。
 双方向DC-DCコンバータ52は、バッテリ51から供給される直流電力を変換して入出力部teへ供給する放電モードと、パワーコンディショナ3のHVDCバス33から入出力部teを介して供給される直流電力を変換してバッテリ51へ供給する充電モードと、で動作する。双方向DC-DCコンバータ52は、インダクタL1とスイッチング素子Q1、Q2とを有する。インダクタL1は、一端がバッテリ51の高電位側の入出力端にリレーRL1を介して接続されている。スイッチング素子Q1は、例えばNチャネル型のFETであり、インダクタL1の他端とコンデンサC1の高電位側の入出力端との間に接続されている。スイッチング素子Q2は、例えばNチャネル型のFETであり、インダクタL1の他端とバッテリ51の低電位側の入出力端との間に接続されている。双方向DC-DCコンバータ52は、放電モード時において、スイッチング素子Q2をオンオフ動作させることによりバッテリ51から供給される直流電力を昇圧して入出力部teへ供給する。また、双方向DC-DCコンバータ52は、充電モード時において、スイッチング素子Q1をオンオフ動作させることによりHVDCバス33から入出力部teを介して供給される直流電力を降圧してバッテリ51へ供給する。
 BMU54は、バッテリ51が有する複数の電池セルそれぞれの出力端間の電圧(電池電圧)を計測する計測回路(図示せず)から入力される計測信号に基づいて、バッテリ51のSOC(State Of Charge)を監視する。BMU54は、バッテリ51のSOCが予め設定された基準値以下になると、その旨を通知するSOC低下通知信号を制御部53へ出力する。
 電源回路55は、入出力部teに電気的に接続されており、入出力部teから供給される直流電力を降圧して制御部53へ供給する。電源回路55は、例えば入出力部teから供給される360Vの直流電力を5Vに降圧して制御部53へ供給する。
 制御部53は、MPUと記憶部とスイッチング素子Q1、Q2、Q3を駆動するスイッチング素子駆動回路とリレーRL1、RL2、RL3、RL4を駆動するリレー駆動回路とを有する。また、制御部53は、スイッチング素子Q1、Q2、Q3それぞれのゲートQ1_g、Q2_g、Q3_gに接続された出力端子Q1_t、Q2_t、Q3_tを有する。また、制御部53は、リレーRL1、RL2、RL3、RL4それぞれの制御信号端子(図示せず)に接続された出力端子RL1_t、RL2_t、RL3_t、RL4_tを有する。
 スイッチング素子駆動回路は、MPUから入力される制御信号に基づいて、出力端子Q1_t、Q2_t、Q3_tを介してスイッチング素子Q1、Q2、Q3それぞれのゲートQ1_g、Q2_g、Q3_gへ制御信号を出力する。スイッチング素子駆動回路は、スイッチング素子Q1、Q2それぞれのゲートQ1_g、Q2_gへ、制御信号としてPWM(Pulse Width Modulation)信号を出力しうる。リレー駆動回路は、MPUから入力される制御信号に基づいて、出力端子RL1_t、RL2_t、RL3_t、RL4_tを介してリレーRL1、RL2、RL3、RL4それぞれの制御信号端子へ制御信号を出力する。
 更に、制御部53は、電圧計V1、V2、V3、V4、V5および電流計A1、A2それぞれに接続された入力端子V1_t、V2_t、V3_t、V4_t、V5_t、A1_t、A2_tを有する。そして、制御部53には、電圧計V1、V2、V3、V4、V5および電流計A1、A2それぞれから入力端子V1_t、V2_t、V3_t、V4_t、V5_t、A1_t、A2_tを介して電圧信号が入力される。また、制御部53は、BMU54に接続され、BMU54からSOC低下通知信号が入力されるBMU端子BMU_tを有する。更に、制御部53は、パワーコンディショナ3の通信バス34を介してパワーコンディショナ制御部35と通信可能である。そして、制御部53は、パワーコンディショナ制御部35から通信バス34を介して入力される待機指令情報または動作指令情報に基づいて、双方向DC-DCコンバータ52を制御する。
 また、制御部53は、入出力部teとリレーRL4との間に接続された電源端子Vcc_tを有する。そして、制御部53は、双方向DC-DCコンバータ52が充電モードで動作している間、パワーコンディショナ3のHVDCバス33から電源端子Vcc_tを介して駆動電力の供給を受ける。一方、制御部53は、双方向DC-DCコンバータ52が放電モードで動作している間、バッテリ51から電源端子Vcc_tを介して駆動電力の供給を受ける。また、制御部53は、リレーRL4が閉状態の場合、バッテリ51の充電状態に応じて、リレーRL4を開状態へ切り替える。バッテリ51の充電状態を示す指標は、例えばバッテリ51のSOC(State Of Charge)である。そして、制御部53は、リレーRL4が閉状態の場合、バッテリ51のSOCが予め設定された基準SOC以下になると、リレーRL4を開状態に切り替える。
 次に、本実施の形態に係る制御部53が実行するバッテリモジュール制御処理について図3および図4を参照しながら説明する。バッテリモジュール制御処理は、例えばバッテリモジュール5がパワーコンディショナ3に接続され、パワーコンディショナ3のHVDCバス33から電源回路55を介して制御部53へ駆動電力が供給されたことを契機として開始される。まず、制御部53は、双方向DC-DCコンバータ52を放電モードまたは充電モードで動作させる(ステップS101)。ここで、制御部53は、例えば前回のリレーRL4が開状態にされた直前の動作モードで双方向DC-DCコンバータ52を動作させる。また、制御部53は、リレーRL1をオフ状態からオン状態に切り替える前に、突入電流防止回路56のスイッチング素子Q3をオン状態にし、その後、電流計A1、A2および電圧計V3、V4から入力される電圧信号の大きさに応じてリレーRL1をオンする。これにより、スイッチング素子Q1、Q2に過電流が流れるのを防止している。なお、制御部53は、双方向DC-DCコンバータ52を動作させる前にリレーRL2、RL3を閉状態にする。
 次に、制御部53は、リレーRL4を閉状態にする(ステップS102)。続いて、制御部53は、双方向DC-DCコンバータ52を待機モードにするよう指令する待機指令情報がパワーコンディショナ制御部35から通信バス34を介して受信したか否かを判定する(ステップS103)。
 制御部53は、待機指令情報を受信していないと判定すると(ステップS103:No)、そのまま後述のステップS105の処理を実行する。一方、パワーコンディショナ制御部35の消費電力判定部351が、交流負荷4の消費電力が予め設定された基準消費電力以下に低下したと判定し、指令部352が待機指令情報を制御部53へ送信したとする。この場合、制御部53は、待機指令情報を受信したと判定し(ステップS103:Yes)、双方向DC-DCコンバータ52を待機モードに設定する(ステップS104)。ここで、制御部53は、スイッチング素子Q1またはスイッチング素子Q2へ出力していたPWM信号を停止し、スイッチング素子Q1、Q2をオフ状態で維持する。このとき、バッテリ51から出力される直流電力は、スイッチング素子Q1のボディダイオードを通じて双方向DC-DCコンバータ52の入出力部te側へ供給される。
 その後、制御部53は、動作指令情報をパワーコンディショナ制御部35から通信バス34を介して受信したか否かを判定する(ステップS105)。制御部53は、動作指令情報を受信していないと判定すると(ステップS105:No)、そのまま後述のステップS107の処理を実行する。一方、パワーコンディショナ制御部35の消費電力判定部351が、交流負荷4の消費電力が基準消費電力以下の状態からそれを上回った状態になったと判定すると、指令部352が、双方向DC-DCコンバータ52を通常の放電モードまたは充電モードで動作させるよう指令する動作指令情報を制御部53へ送信する。この場合、制御部53は、動作指令情報を受信したと判定し(ステップS105:Yes)、再び双方向DC-DCコンバータ52を放電モードまたは充電モードで動作させる(ステップS106)。ここで、制御部53は、動作指令情報に含まれる動作モード情報が示す動作モードに応じて、双方向DC-DCコンバータ52を放電モードまたは充電モードで動作させる。
 次に、制御部53は、電流計A1、A2および電圧計V1、V2、V3、V4、V5から入力される電圧信号に基づいて、バッテリモジュール5の異常状態が発生したか否かを判定する(ステップS107)。制御部53は、電流計A1、A2から入力される電圧信号の大きさが予め設定された基準電流値に対応する電圧値よりも大きい場合、バッテリモジュール5に過電流が流れており、バッテリモジュール5の異常状態が発生したと判定する。また、制御部53は、電圧計V1、V2、V3、V4、V5から入力される電圧信号の大きさが予め設定された基準電圧値に対応する電圧値よりも大きい場合、バッテリモジュール5に過電圧が印加されており、バッテリモジュール5の異常状態が発生したと判定する。制御部53は、バッテリモジュール5の異常状態が発生したと判定すると(ステップS107:Yes)、後述のステップS109の処理を実行する。
 一方、制御部53が、バッテリモジュール5の異常状態が発生していないと判定したとする(ステップS107:No)。この場合、制御部53は、BMU54からのSOC低下信号の入力有無に応じて、バッテリ51のSOCが予め設定されたSOC基準値SOCth以下に低下したか否かを判定する(ステップS108)。制御部53は、バッテリ51のSOCがSOC基準値SOCthを上回っていると判定すると(ステップS108:No)、再びステップS103処理を実行する。
 一方、制御部53は、バッテリ51のSOCがSOC基準値SOCth以下であると判定すると(ステップS108:Yes)、双方向DC-DCコンバータ52を待機モードに設定する(ステップS109)。このとき、スイッチング素子Q1、Q2は、いずれもオフ状態で維持される。
 続いて、制御部53は、リレーRL4を開状態にする(ステップS110)。これにより、バッテリ51は、パワーコンディショナ3のHVDCバス33に接続された入出力部teと電気的に切り離され、バッテリ51の過放電が防止される。また、HVDCバス33から入出力部teへ直流電力が供給されていない状態において、制御部53へは駆動電力が供給されなくなり、バッテリモジュール制御処理が終了する。
 例えば図4(A)に示すように、交流負荷4の消費電力Pが消費電力基準値Pthより高く、図4(B)に示すように、双方向DC-DCコンバータ52が放電モードまたは充電モードで動作しているとする。この場合、図4(C)に示すように、パワーコンディショナ3のHVDCバス33から制御部53へ電源回路55を介して駆動電力が供給される。そして、制御部53は、図4(D)に示すように、リレーRL4を閉状態にして前述のバッテリモジュール制御処理を実行している。
 ここで、図4(A)に示すように、時刻T10において、交流負荷4の消費電力Pが消費電力基準値Pth以下になったとする。この場合、パワーコンディショナ制御部35から制御部53へ待機指令情報が出力され、制御部53は、双方向DC-DCコンバータ52へ出力するPWM信号を停止することにより、双方向DC-DCコンバータ52を待機モードに設定する。
 次に、図4(A)に示すように、時刻T11において、交流負荷4の消費電力Pが再び消費電力基準値Pthを上回ったとする。この場合、パワーコンディショナ制御部35から制御部53へ通常動作指令情報が出力され、制御部53は、再び双方向DC-DCコンバータ52へPWM信号を出力し、図4(B)に示すように、双方向DC-DCコンバータ52を放電モードまたは充電モードで動作させる。
 続いて、図4(C)に示すように、夜間の時刻T12において、停電が発生し系統電源2からパワーコンディショナ3への電力供給が遮断されると、双方向DC-DCコンバータ52は、放電モードで動作する。そうすると、図4(E)に示すように、バッテリ51の電気が継続的に消費され、バッテリ51のSOCが漸減していく。
 その後、図4(E)に示すように、時刻T13において、バッテリ51のSOCがSOC基準値SOCth以下に低下すると、BMU54から制御部53へSOC低下信号が入力される。このとき、制御部53は、双方向DC-DCコンバータ52を待機モードにするとともに、リレーRL4を開状態にする。これにより、バッテリ51から入出力部teを介してパワーコンディショナ3のHVDCバス33へ供給される電力が遮断され、バッテリ51のSOCがほとんど低下しなくなる。そして、制御部53は、その駆動電力の供給が遮断されることにより、バッテリモジュール制御処理を終了させる。
 次に、図4(C)に示すように、時刻T14において、停電が復旧し系統電源2からパワーコンディショナ3へ再び電力が供給されると、HVDCバス33から制御部53へその駆動電力が供給され、制御部53は再びバッテリモジュール制御処理を開始する。そして、制御部53は、図4(D)に示すように、リレーRL4を再び閉状態にし、双方向DC-DCコンバータ52を再び放電モードまたは充電モードで動作させる。
 以上説明したように、本実施の形態に係るバッテリモジュール5によれば、制御部が、入出力部と開閉器との間に接続された電源端子を有し、開閉器が閉状態の場合、蓄電池の充電状態に応じて、開閉器を開状態へ切り替える。そして、制御部は、双方向DC-DCコンバータが充電モードで動作している間、直流バスラインから電源端子を介して駆動電力の供給を受け、双方向DC-DCコンバータが放電モードで動作している間、蓄電池から電源端子を介して駆動電力の供給を受ける。これにより、例えば双方向DC-DCコンバータが充電モードで動作している間に停電が発生し直流バスラインから入出力部への電力供給が遮断された場合でも、直ちに蓄電池から制御部へ駆動電力が供給される。従って、制御部は、停電後も蓄電池の充電状態に応じた開閉器の制御を継続できる。それ故、停電時において、蓄電池が過放電状態となることを防止できる。また、停電時に制御部へ駆動電力の供給するための大容量の電解コンデンサ、電池等の予備電源を別途設ける必要がないため、その分、バッテリモジュール5を小型化できる。
 また、本実施の形態に係る制御部53は、リレーRL4が閉状態の場合、バッテリ51のSOCが基準値以下になると、リレーRL4を開状態に切り替える。これにより、バッテリ51の充電状態をSOCにより直接的に監視することができるので、バッテリ51のSOCが十分大きいにも関わらず、制御部53により誤ってリレーRL4を開状態にしてしまうことが抑制される。
 更に、本実施の形態に係る制御部53は、パワーコンディショナ制御部35の指令部352から待機指令情報を受信すると、リレーRL4を閉状態で維持しつつ、双方向DC-DCコンバータ52を待機モードに設定する。これにより、例えば交流負荷4の消費電力が予め設定された基準消費電力以下になる時間帯において、双方向DC-DCコンバータ52でのバッテリ51の電気の無駄な消費が抑制される。
(変形例)
 以上、本発明の実施の形態について説明したが、本発明は前述の実施の形態の構成に限定されるものではない。例えばバッテリ51の充電状態を示す指標として、バッテリ51が有する複数の電池セルそれぞれの電池電圧を採用してもよい。この場合、制御部53は、リレーRL4が閉状態の場合、複数の電池セルそれぞれの電池電圧のいずれかが予め設定された基準値以下になると、リレーRL4を開状態に切り替えるようにすればよい。
 実施の形態では、制御部53が、双方向DC-DCコンバータ52を待機モードにする際、スイッチング素子Q1、Q2が、いずれもオフ状態で維持される例について説明した。但し、これに限らず、例えば制御部53が、スイッチング素子Q1をオン状態、スイッチング素子Q2をオフ状態で維持することにより双方向DC-DCコンバータ52を待機モードにしてもよい。
 実施の形態では、制御部53が、バッテリモジュール5に過電流が流れた場合、或いは、バッテリモジュール5に過電圧が印加された場合、バッテリモジュール5の異常状態が発生したと判定する例について説明した。但し、これに限らず、例えば制御部53が、バッテリ51、スイッチング素子Q1、Q2等の近傍の温度が予め設定された温度よりも高くなるとバッテリモジュール5の異常状態が発生したと判定するようにしてもよい。この場合、例えばバッテリ51、スイッチング素子Q1、Q2等の近傍に温度計測器を配置し、制御部53が、温度計測器から入力される、温度計測器により計測された温度の高さに比例して電圧値が高くなる電圧信号に基づいて、バッテリモジュール5の異常状態の発生有無を判定するようにすればよい。
 実施の形態では、発電装置が、太陽電池1である例について説明したが、自然エネルギを利用した発電装置であれば太陽電池に限定されるものではなく、例えば風力発電機であってもよい。
 以上、本発明の実施の形態および変形例(なお書きに記載したものを含む。以下、同様。)について説明したが、本発明はこれらに限定されるものではない。本発明は、実施の形態および変形例が適宜組み合わされたもの、それに適宜変更が加えられたものを含む。
 本出願は、2017年10月13日に出願された日本国特許出願特願2017-199769号に基づく。本明細書中に日本国特許出願特願2017-199769号の明細書、特許請求の範囲および図面全体を参照として取り込むものとする。
 本発明は、系統連係を行うパワーコンディショナに接続されるバッテリモジュールとして好適である。
1:太陽電池、2:系統電源、3:パワーコンディショナ、4:交流負荷、5:バッテリモジュール、31:PVコンバータ、32:双方向AC-DCコンバータ、33:HVDCバス、34:通信バス、35:パワーコンディショナ制御部、51:バッテリ、52:双方向DC-DCコンバータ、53:制御部、54:BMU、55:電源回路、56:突入電流防止回路、351:消費電力判定部、352:指令部、A1、A2:電流計、A1_t、A2_t、V1_t、V2_t、V3_t、V4_t、V5_t:入力端子、C1:コンデンサ、D1,D2:ダイオード、L1:インダクタ、Q1、Q2、Q3:スイッチング素子、Q1_t,Q2_t,Q3_t,RL1_t,RL2_t,RL3_t,RL4_t:出力端子、R1、R2:抵抗、RL1、RL2、RL3、RL4:リレー、te:入出力部、te1,te2:入出力端子、V1、V2、V3、V4、V5:電圧計

Claims (5)

  1.  系統電源から供給される交流電力を直流電力に変換して直流バスラインに供給するとともに、前記直流バスラインから供給される直流電力を交流電力に変換して前記系統電源に接続された交流負荷へ供給する双方向AC-DCコンバータを有するパワーコンディショナに接続される蓄電モジュールであって、
     蓄電池と、
     前記蓄電池と前記直流バスラインに接続される入出力部との間に介在し、前記蓄電池から供給される直流電力を変換して前記入出力部へ供給する放電モードと、前記直流バスラインから前記入出力部を介して供給される直流電力を変換して前記蓄電池へ供給する充電モードと、で動作する双方向DC-DCコンバータと、
     前記双方向DC-DCコンバータと前記入出力部との間に介挿された開閉器と、
     前記入出力部と前記開閉器との間に接続された電源端子を有し、前記開閉器が閉状態の場合、前記蓄電池の充電状態に応じて、前記開閉器を開状態へ切り替える制御部と、を備え、
     前記制御部は、前記双方向DC-DCコンバータが前記充電モードで動作している間、前記直流バスラインから前記電源端子を介して駆動電力の供給を受け、前記双方向DC-DCコンバータが前記放電モードで動作している間、前記蓄電池から前記電源端子を介して駆動電力の供給を受ける、
     蓄電モジュール。
  2.  前記充電状態を示す指標は、前記蓄電池のSOCまたは電池電圧であり、
     前記制御部は、前記開閉器が閉状態の場合、前記SOCまたは前記電池電圧が予め設定された基準値以下になると、前記開閉器を開状態に切り替える、
     請求項1に記載の蓄電モジュール。
  3.  前記制御部は、外部から前記双方向DC-DCコンバータを直流電力の変換を実行しない待機モードにするよう指令する待機指令情報を受信すると、前記開閉器を閉状態で維持しつつ、前記双方向DC-DCコンバータを前記待機モードに設定する、
     請求項1または2に記載の蓄電モジュール。
  4.  直流バスラインと、発電装置から供給される直流電力を異なる電圧値の直流電力に変換して前記直流バスラインへ供給するDC-DCコンバータと、系統電源から供給される交流電力を直流電力に変換して前記直流バスラインに供給するとともに、前記直流バスラインから供給される直流電力を交流電力に変換して前記系統電源に接続された交流負荷へ供給する双方向AC-DCコンバータと、を有するパワーコンディショナと、
     蓄電池と、前記蓄電池と前記直流バスラインに接続される入出力部との間に介在し、前記蓄電池から供給される直流電力を変換して前記入出力部へ供給する放電モードと、前記直流バスラインから前記入出力部を介して供給される直流電力を変換して前記蓄電池へ供給する充電モードと、で動作する双方向DC-DCコンバータと、前記双方向DC-DCコンバータと前記入出力部との間に介挿された開閉器と、前記入出力部と前記開閉器との間に接続された電源端子を有し、前記開閉器が閉状態の場合、前記蓄電池の充電状態に応じて、前記開閉器を開状態へ切り替える制御部と、を備える蓄電モジュールと、を備え、
     前記制御部は、前記双方向DC-DCコンバータが前記充電モードで動作している間、前記直流バスラインから前記電源端子を介して駆動電力の供給を受け、前記双方向DC-DCコンバータが前記放電モードで動作している間、前記蓄電池から前記電源端子を介して駆動電力の供給を受ける、
     電源システム。
  5.  前記パワーコンディショナは、
     前記交流負荷での消費電力が予め設定された基準消費電力以下に低下したか否かを判定する消費電力判定部と、
     前記消費電力判定部により前記交流負荷での消費電力が前記基準消費電力以下に低下したと判定されると、前記双方向DC-DCコンバータを直流電力の変換を実行しない待機モードにするよう指令する待機指令情報を前記制御部へ送信する指令部と、を更に有し、
     前記制御部は、前記待機指令情報を受信すると、前記開閉器を閉状態で維持しつつ、前記双方向DC-DCコンバータを前記待機モードにする、
     請求項4に記載の電源システム。
PCT/JP2018/026939 2017-10-13 2018-07-18 蓄電モジュールおよび電源システム WO2019073652A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019547915A JP7028252B2 (ja) 2017-10-13 2018-07-18 蓄電モジュールおよび電源システム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-199769 2017-10-13
JP2017199769 2017-10-13

Publications (1)

Publication Number Publication Date
WO2019073652A1 true WO2019073652A1 (ja) 2019-04-18

Family

ID=66101347

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/026939 WO2019073652A1 (ja) 2017-10-13 2018-07-18 蓄電モジュールおよび電源システム

Country Status (2)

Country Link
JP (1) JP7028252B2 (ja)
WO (1) WO2019073652A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114336836A (zh) * 2021-12-27 2022-04-12 中国电子科技集团公司第十八研究所 一种便携式可重构电源模块
EP4047770A1 (en) * 2021-02-20 2022-08-24 Sungrow Power Supply Co., Ltd. Energy storage system and switching power supply thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012147661A (ja) * 2011-01-12 2012-08-02 Samsung Sdi Co Ltd エネルギー保存システム及びその制御方法
JP2012175801A (ja) * 2011-02-21 2012-09-10 Sanyo Electric Co Ltd 蓄電システム
JP2013027136A (ja) * 2011-07-20 2013-02-04 Seiko Electric Co Ltd 貯蔵電力制御装置、貯蔵電力制御方法及びプログラム
JP2013110871A (ja) * 2011-11-21 2013-06-06 Panasonic Corp 電力供給システム
JP2015033234A (ja) * 2013-08-02 2015-02-16 住友電気工業株式会社 電源システム

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3193486B2 (ja) * 1992-11-27 2001-07-30 本田技研工業株式会社 電動車両におけるバッテリー残量表示方法及び装置
JP6167551B2 (ja) 2013-02-18 2017-07-26 株式会社大一商会 遊技機
JP6249561B2 (ja) * 2014-02-05 2017-12-20 株式会社三社電機製作所 Pvパワーコンディショナ
JP2015164377A (ja) * 2014-02-28 2015-09-10 株式会社Nttファシリティーズ 直流給電システム、給電制御装置、及び給電制御方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012147661A (ja) * 2011-01-12 2012-08-02 Samsung Sdi Co Ltd エネルギー保存システム及びその制御方法
JP2012175801A (ja) * 2011-02-21 2012-09-10 Sanyo Electric Co Ltd 蓄電システム
JP2013027136A (ja) * 2011-07-20 2013-02-04 Seiko Electric Co Ltd 貯蔵電力制御装置、貯蔵電力制御方法及びプログラム
JP2013110871A (ja) * 2011-11-21 2013-06-06 Panasonic Corp 電力供給システム
JP2015033234A (ja) * 2013-08-02 2015-02-16 住友電気工業株式会社 電源システム

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4047770A1 (en) * 2021-02-20 2022-08-24 Sungrow Power Supply Co., Ltd. Energy storage system and switching power supply thereof
US11929614B2 (en) 2021-02-20 2024-03-12 Sungrow Power Supply Co., Ltd. Energy storage system and switching power supply thereof
CN114336836A (zh) * 2021-12-27 2022-04-12 中国电子科技集团公司第十八研究所 一种便携式可重构电源模块

Also Published As

Publication number Publication date
JP7028252B2 (ja) 2022-03-02
JPWO2019073652A1 (ja) 2020-11-05

Similar Documents

Publication Publication Date Title
US11462933B2 (en) Power storage module and power supply system
EP2629387A1 (en) Power management system
US20120047386A1 (en) Control apparatus and control method
EP2325970A2 (en) Energy management system and grid-connected energy storage system including the energy management system
US20120153726A1 (en) Energy storage system and method of controlling the same
US10454286B2 (en) Conversion circuit device for uninterruptible power supply (UPS) systems
WO2012050004A1 (ja) 電源システム
US20140239903A1 (en) Power conversion device having battery heating function
JP2024051003A (ja) 電力変換システム
JP7028252B2 (ja) 蓄電モジュールおよび電源システム
JP2019205309A (ja) 電力供給システム
JP2009148110A (ja) 充放電器とこれを用いた電源装置
EP3540897B1 (en) Energy storage apparatus
JP5336791B2 (ja) 電源装置
JPH0965582A (ja) 太陽電池を利用した電源システム
US10826320B2 (en) Solar power system
KR101476337B1 (ko) 에너지 저장 시스템 및 그 제어 방법
WO2018155442A1 (ja) 直流給電システム
CN218633432U (zh) 一种供电系统及供电设备
JP6165191B2 (ja) 電力供給システム
JP6923121B2 (ja) 電力供給装置
US11916511B1 (en) Solar-battery integrated DC system
KR20240029527A (ko) SoC에 따라 복수 동작 모드를 지원하는 배터리 시스템
JP2022164427A (ja) 接続ユニット、電池ユニット、発電システム及び発電システムの運転方法
CN116365652A (zh) 电池包控制方法、电池包及储能设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18867164

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019547915

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18867164

Country of ref document: EP

Kind code of ref document: A1