WO2013151133A1 - 配電装置および電力供給システム - Google Patents

配電装置および電力供給システム Download PDF

Info

Publication number
WO2013151133A1
WO2013151133A1 PCT/JP2013/060331 JP2013060331W WO2013151133A1 WO 2013151133 A1 WO2013151133 A1 WO 2013151133A1 JP 2013060331 W JP2013060331 W JP 2013060331W WO 2013151133 A1 WO2013151133 A1 WO 2013151133A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
pcs
storage battery
load
power supply
Prior art date
Application number
PCT/JP2013/060331
Other languages
English (en)
French (fr)
Inventor
彰人 近藤
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2013151133A1 publication Critical patent/WO2013151133A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Definitions

  • the present invention relates to a power distribution device having a power distribution function and a power supply system having the power distribution device.
  • FIG. 7 is a configuration diagram of the power supply system 101 and its surroundings.
  • the power supply system 101 has a configuration in which a solar battery 112 and a storage battery 114 are connected to a PCS 113.
  • the power system 103 and the load 104 are connected to the PCS 113 via the distribution board 102.
  • the PCS 113 performs power conversion, distribution, and the like, and plays a central role in causing the power supply system 101 to function properly.
  • the PCS 113 operates to distribute the generated power of the solar battery 112 to the storage battery 114 side, to convert the generated power of the solar battery 112 into alternating current and distribute it to the distribution board 102 side, and to discharge the storage battery 114 to alternating current.
  • the operation of converting and outputting to the distribution board 102 side is performed.
  • PCS has a complicated configuration so that the operation as described above is appropriately performed, and its control form is also complicated. If the PCS is provided with a function for comprehensively controlling the components and loads of the power supply system, the configuration and control form of the PCS will become even more complex, making it difficult to design and develop the PCS.
  • the present invention enables comprehensive control of the components and loads of the power supply system while suppressing the complexity of the configuration and control mode of the PCS and the like, and is suitable for loads that require high power.
  • An object of the present invention is to provide a power distribution device that facilitates easy power supply.
  • Another object of the present invention is to provide a power supply system using the power distribution apparatus.
  • a power distribution apparatus forms a power supply system together with a PCS that converts DC input power into AC and outputs it to the power system, and a storage battery that can be charged and discharged. Connected to the storage battery and connected to the DC load, and distributed from the PCS to the DC load, distributed from the PCS to the storage battery, and distributed from the storage battery to the DC load without going through the PCS It is assumed that the power distribution device includes a general control unit that controls all or part of the system-related elements.
  • the “system-related element” refers to each component of the power supply system (for example, PCS, storage battery, charger, etc.) and each load connected to the power supply system and supplied with power.
  • the overall control unit may acquire information on at least one of the voltage and current of the storage battery and control the PCS.
  • DC power before being converted into AC in the PCS may be used for power distribution from the PCS to the DC load and the storage battery.
  • the configuration is connected to the PCS, the storage battery, and the DC load.
  • the connection line may be connected to the PCS by being connected between the DC / DC converter and the DC / AC inverter.
  • the integrated control unit includes the PCS and It is good also as a structure which controls the said charger.
  • the PCS is more specifically configured as the configuration in which the integrated control unit receives forecast information on weather or solar radiation. Also good. More specifically, the general control unit may have a communication function with the EMS device.
  • the power supply system includes the power distribution device having the above configuration, the PCS, and the storage battery.
  • the power supply system may further include the charger, or may include a solar cell that outputs generated power to the PCS.
  • the power distribution device of the present invention it is possible to comprehensively control the components and load of the power supply system while suppressing the complexity of the configuration and control mode of the PCS and the like, and to the load that requires high power. Appropriate power supply becomes easy. Moreover, according to the electric power supply system which concerns on this invention, the advantage of the power distribution apparatus which concerns on this invention can be enjoyed.
  • FIG. 1 is a configuration diagram of a power supply system 1 according to the first embodiment and its surroundings.
  • the solid lines indicate power lines
  • the broken lines indicate communication lines.
  • the “power supply system” is a system that supplies power to a load or the like, and is formed by all or part of a series of components.
  • the power supply system 1 can be installed in a consumer such as a general household.
  • the power supply system 1 includes a multifunction switchboard 11, a solar battery 12, a PCS 13, and a storage battery 14 as power distribution devices.
  • a power system 3 and a load 4 are connected to the PCS 13 via a distribution board 2, and a DC load 5 (a load that consumes DC power) is connected to the multifunction switchboard 11.
  • the multi-function switchboard 11 includes a connection line 11a and a general control unit 11b.
  • the connection line 11a is a line to which the PCS 13, the storage battery 14, and the DC load 5 are connected. By connecting them, power distribution from the PCS 13 to the DC load 5 (distribution of the flow indicated by the dotted arrow S1 in FIG. 2), Distribution of power from the PCS 13 to the storage battery 14 (distribution of the flow indicated by the dotted arrow S2 in FIG. 2) and distribution of power from the storage battery 14 to the DC load 5 (distribution of the flow indicated by the dotted arrow S3 in FIG. 2) are performed. .
  • the power distribution from the storage battery 14 to the DC load 5 is performed without going through the PCS 13 as is apparent from FIG.
  • the power distribution from the PCS 13 to the DC load 5 power supply to the DC load 5 using mainly the generated power of the solar cell 12 is realized. Further, according to the power distribution from the PCS 13 to the storage battery 14, the storage battery 14 is mainly charged using the generated power of the solar battery 12. Further, according to the power distribution from the storage battery 14 to the DC load 5, power supply to the DC load 5 using mainly the discharge power of the storage battery 14 is realized. In addition, the distribution from the PCS 13 to the DC load 5 and the distribution from the PCS 13 to the storage battery 14 are performed in parallel, or the distribution from the PCS 13 to the DC load 5 and the distribution from the storage battery 14 to the DC load 5 are performed in parallel. It may be.
  • the general control unit 11b can communicate with the PCS 13, the load 4, the DC load 5, and the EMS [Energy Management System] device 6 and is connected to the components of the power supply system 1 and the power supply system 1. Comprehensively control the load and the like.
  • the EMS device 6 is a device that manages and optimizes energy use in a consumer, and this energy use includes power supply by the power supply system 1. Details of the function of the integrated control unit 11b will be described again.
  • the EMS device 6 and the load 4 and the DC load 5 are connected by a communication line, and communication between the general control unit 11b and the load 4 or the DC load 5 (for example, the load 4 or the load on the general control unit 11b)
  • the transmission of information representing the state of the DC load 5 and the transmission of various control commands to the load 4 and the DC load 5 may be performed via the EMS device 6.
  • the general control unit 11 b does not need to be directly connected to the load 4 or the DC load 5, and only needs to be connected to these via the EMS device 6.
  • the EMS device 6 may be configured to control (operate) the load 4 and the DC load 5.
  • the multifunction switchboard 11 may be provided with a switch for switching the conduction state of the connection line 11a in accordance with an instruction from the general control unit 11b, for example.
  • the switch include a state in which the PCS 13, the storage battery 14 and the DC load 5 are electrically connected to each other, a state in which only the PCS 13 and the storage battery 14 are electrically connected (between these and the DC load 5 is interrupted), a PCS 13 and a DC load. Between the state where only 5 is conducted (between these and the storage battery 14 is cut off), and the state where only the storage battery 14 and the DC load 5 are conducted (between these and the PCS 13 is cut off), One that switches the conduction state of the connection line 11a is mentioned.
  • Solar cell 12 has a PV array, a junction box, a current collection box, and the like, and outputs generated power (DC power) generated by receiving sunlight to PCS 13.
  • the PCS 13 includes a converter unit 13a, an inverter unit 13b, and a controller unit 13c.
  • the converter unit 13a is a DC / DC converter, and converts DC power received from the solar cell 12 side into DC power having a different voltage, for example, and outputs the DC power.
  • the inverter unit 13b is a DC / AC inverter, which converts DC power output from the converter unit 13a into AC and outputs the AC power.
  • the AC power output from the inverter unit 13 b is supplied to the power system 3 or the load 4 through the distribution board 2.
  • the PCS 13 outputs the input power from the solar battery 12 to the power system 3 side through the DC / DC converter and the DC / AC inverter in this order.
  • the inverter unit 13b is a bidirectional inverter (which performs DC-AC conversion in the direction from the converter unit 13a to the distribution board 2, and performs AC-DC conversion in the direction from the distribution panel 2 to the converter unit 13a). It may be.
  • the controller unit 13c controls the operations of the converter unit 13a and the inverter unit 13b.
  • the PCS 13 is connected to the multifunction switchboard 11 by connecting the converter unit 13a and the inverter unit 13b to the connection line 11a. Thereby, when the generated power of the solar battery 12 is distributed from the PCS 13 to the storage battery 14 or the DC load 5, the generated power (DC power) before being converted into AC in the PCS 13 is used. In this way, a direct current connection via the PCS 13 is made between the solar cell 12 and the storage battery 14 or the direct current load 5.
  • the storage battery 14 is formed to be chargeable / dischargeable, and performs charging using DC power received from the multifunction switchboard 11 side and discharging (outputting DC power) to the multifunction switchboard 11 side.
  • the comprehensive control unit 11b can monitor, for example, the connection line 11a to which the storage battery 14 is connected, and obtain at least one information (BAT information) of the current voltage and current in the storage battery 14. According to the BAT information, the current charge amount of the storage battery 14 can be obtained. In calculating the charge amount of the storage battery 14, information such as temperature may be used in addition to the BAT information.
  • the general control unit 11b can monitor and control the PCS 13 through communication with the PCS 13 (mainly the controller unit 13c).
  • the general control unit 11b can monitor the power conversion operation in the converter unit 13a and the inverter unit 13b and control the operation.
  • the general control unit 11b can monitor and control these loads through communication with the load 4 and the DC load 5. For example, the general controller 11b can monitor the magnitudes of these loads and control the magnitudes of these loads. Note that the general control unit 11b may directly monitor or control the load 4 or the DC load 5, or may indirectly perform the control via the EMS device 6. For example, the EMS device 6 may collect monitoring information on the load 4 and the DC load 5, and the general control unit 11b may receive the collected information.
  • the comprehensive control unit 11b can exchange information on energy use by communicating with the EMS device 6. Thereby, the comprehensive control unit 11b can perform control using information obtained from the EMS device 6, and the EMS device 6 uses the information obtained from the comprehensive control unit 11b to manage the energy use in the consumer and to optimize the use. Can be performed more appropriately.
  • the general control unit 11b and the EMS device 6 may operate in cooperation.
  • the general control unit 11 b issues a control request for the load 4 to the EMS device 6 in consideration of the overall state of the power supply system 1, and sends the request to the EMS device 6.
  • the control of the load 4 is entrusted. Thereby, it becomes easy to avoid the trouble by the competition of the control which the comprehensive control part 11b performs, and the control which the EMS apparatus 6 performs.
  • the general control unit 11b can receive reference information referred to for performing control from an external communication device.
  • the integrated control unit 11b can receive weather information from a communication device that provides weather information (such as weather or solar radiation prediction information) as reference information. According to the weather information, it is possible to predict the power generation amount of the solar cell 12 in the future (for example, today or tomorrow).
  • the general control unit 11b can perform various types of communication, monitoring, and control as described above, and appropriately controls each unit according to the situation at that time.
  • the general control unit 11b controls the PCS 13 so that the charging power is supplied from the PCS 13 side to the storage battery 14.
  • the general control unit 11b conserves the charge amount of the storage battery 14, and therefore the power supply to the DC load 5 is mainly performed on the PCS 13 side.
  • the PCS 13 is controlled as described below.
  • the comprehensive control unit 11b controls the PCS 13 so that the power supply from the PCS 13 side to the DC load 5 becomes an appropriate amount according to the magnitude of power required by the DC load 5 (load magnitude).
  • the components of the power supply system 1 and the loads connected to the power supply system 1 are comprehensively controlled. Therefore, highly efficient and flexible control is possible, and various operation methods are possible so that the efficiency of the entire power supply system 1 is improved.
  • the general control unit 11b which is the main body of such control operation is provided in the multifunction switchboard 11 having a relatively simple structure, and is not provided in the PCS 13 or the EMS device 6. Therefore, comprehensive control of the components of the power supply system 1 and the load connected to the power supply system 1 is possible while suppressing the complexity of the configuration and control form of the PCS 13 and the like. Even in the case of a general PCS, the function according to the PCS 13 according to the present embodiment can be exhibited only by improving the communication function with the multi-function switchboard 11 and the like without performing a large specification change on hardware.
  • the multifunction switchboard 11 having the comprehensive control unit 11b is separated from the PCS 13 and the EMS device 6 and the like, the complexity of maintenance and management is suppressed as much as possible. Even if an abnormality occurs in the overall control unit 11b, other devices such as the PCS 13 and the EMS device 6 are operated independently of the overall control unit 11b for the time being, and the operation of the power supply system 1 is performed. It is possible to avoid as much trouble as possible.
  • the integrated control system can be renewed by adopting the multifunction switchboard according to this embodiment. Easy to build.
  • the generated power of the solar cell 12 is distributed from the PCS 13 to the storage battery 14 or the DC load 5
  • the generated power (DC power) before being converted into AC in the PCS 13 is used. ing. Therefore, the conversion loss of electric power decreases and the charging / discharging efficiency of the storage battery 14 is good.
  • FIG. 4 is a configuration diagram of the power supply system 1 and its surroundings according to the second embodiment.
  • the power supply system 1 includes a charger 15 as a component in addition to the multifunction switchboard 11, the solar battery 12, the PCS 13, and the storage battery 14.
  • the charger 15 has an input side connected to the power system 3 and an output side connected to the storage battery 14 (between the storage battery 14 and the multifunction switchboard 11).
  • the charger 15 is configured to charge the storage battery 14 by converting the system power into direct current when receiving a charging instruction from the general control unit 11b.
  • the charger 15 does not need to be provided separately from other components, and may be provided, for example, inside the PCS 13.
  • the inverter unit 13b in the PCS 13 may be a bidirectional inverter so that the storage battery 14 is charged. In this case, the inverter unit 13 b can be viewed as the charger 15.
  • the power supply system 1 can charge not only the generated power of the solar battery 12 but also the storage battery 14 using system power. Whether or not the system power is used for charging the storage battery 14 can be controlled by the general control unit 11 b of the multifunction switchboard 11.
  • the comprehensive control unit 11b determines whether or not system power is used for charging the storage battery 14 according to the situation at the time when the storage battery 14 is charged. For example, in a situation where the generated power of the solar battery 12 is sufficiently obtained during the daytime when the weather is good, the general control unit 11b charges the storage battery 14 using the generated power of the solar battery 12 without using the system power. To be.
  • the general control unit 11b does not issue a charging instruction to the charger 15, and appropriately controls the PCS 13 so that charging power is supplied to the storage battery 14 through the path indicated by the dotted arrow F1 in FIG. .
  • route is a path
  • the general control unit 11b charges the storage battery 14 using the system power. That is, the general control unit 11b issues a charging instruction to the charger 15 so that charging power is supplied to the storage battery 14 through a path indicated by a dotted arrow F2 in FIG.
  • the path F2 is a path from the power system 3 to the storage battery 14 via the charger 15.
  • the general control unit 11b predicts the future power generation amount and load consumption amount of the solar battery 12 based on the reference information, for example, and minimizes the charging of the storage battery using the system power, It is possible to prevent the power generated by the solar cell 12 from being suppressed as much as possible.
  • the DC load 5 connected to the power supply system 1 of the third embodiment is assumed to be a load that requires a large amount of power that cannot be appropriately supplied by the power system 3.
  • the DC load 5 is an electric vehicle (EV), and demands such a large amount of electric power during rapid charging.
  • EV electric vehicle
  • a portion from the storage battery 14 to the DC load 5 through the connection line 11 a (a portion indicated by coloring in FIG. 6).
  • P) is a specification that can withstand high power.
  • the general control unit 11b causes the storage battery 14 to discharge the large amount of power, and this discharged power is supplied to the DC load 5 through the portion P. Thereby, appropriate electric power supply to the DC load 5 is achieved. At this time, in addition to the discharge power of the storage battery 14, the generated power of the solar battery 12 may be supplied to the DC load 5.
  • the large power is supplied to the DC load 5 from the storage battery 14 (or the storage battery 14 and the solar battery 12) and does not depend on the power system 3. Therefore, it is easy to appropriately supply large power to the DC load 5 regardless of the type of the power system 3.
  • the supply of large power can be performed without receiving any power from the power system 3 or can be performed while receiving power from the power system 3. According to the power supply system 1, even when a large amount of power is supplied while receiving power from the power system 3, the amount of power received from the power system 3 can be greatly reduced, and adverse effects on the power system 3 can be reduced. It is possible to make it.
  • the capacity of the PCS needs to be large, and when the capacity is small, the PCS needs to be modified or replaced.
  • the power supply system 1 it is possible to supply a large amount of power mainly through the route of the partial P (without going through the PCS 13), and thus it is necessary to increase the capacity of the PCS 13. There is no need to modify or replace the PCS.
  • the capacity of the PCS is determined based on the capacity of the solar battery.
  • the capacity of the storage battery when the storage battery is directly connected to the PCS so that a large amount of power is output from the PCS, the capacity of the storage battery and how much power is required. Since it is necessary to determine the capacity of the PCS in consideration of whether to output the PCS, it is necessary to prepare various PCSs.
  • the power supply system 1 it is possible to supply a large amount of power mainly through the route of the partial P (without going through the PCS 13). In this way, when determining the capacity of the PCS There is no need to consider the capacity of the storage battery, and it is not necessary to prepare various PCSs.
  • the power supply system 1 when the supply of large power is performed mainly through the route of the portion P, it is basically sufficient that the portion P can withstand the large power. Therefore, even when the power supply system 1 cannot withstand the supply of high power, it is possible to supply high power by simply modifying the part P (the multifunction switchboard 11 and its surroundings) to withstand high power. It can be.
  • the power supply system 1 it is possible to mainly use the output of the solar cell 12 for supplying large power. In this case, it is possible to prevent the discharge capacity of the storage battery 14 from decreasing or the life of the storage battery 14 from being shortened by discharging a large current as much as possible.
  • the multifunction switchboard 11 of each embodiment converts the DC input power (power generated by the solar battery 12) into AC and outputs it to the power system 3 side, and the storage battery 14 that can be charged and discharged.
  • the electric power supply system 1 is formed with each component including.
  • the multi-function switchboard 11 is connected to the PCS 13 and the storage battery 14 and connected to the DC load 5. Distribution of power to the DC load 5 is performed.
  • the multi-function switchboard 11 includes a general control unit 11b that controls all or part of system-related elements (solar cell 12, PCS 13, storage battery 14, charger 15, load 4, and DC load 5).
  • the multi-function switchboard 11 it is possible to comprehensively control the components or loads of the power supply system 1 while suppressing the complexity of the configuration and control form of the PCS 13, and appropriate to loads that require high power. Power supply becomes easy. Note that which of the system-related elements is to be controlled by the overall control unit 11b is not limited to the mode in the above-described embodiment, and various modes are possible.
  • the present invention can be used for a power supply system having a PCS.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Direct Current Feeding And Distribution (AREA)
  • Inverter Devices (AREA)

Abstract

 直流の入力電力を交流に変換して電力系統側へ出力するPCS、および、充放電可能である蓄電池とともに電力供給システムを形成し、前記PCSおよび前記蓄電池に接続されるとともに、直流負荷に接続され、前記PCSから前記直流負荷への配電、前記PCSから前記蓄電池への配電、および前記蓄電池から前記PCSを介さずに前記直流負荷への配電を行う配電装置であって、システム関連要素の全部または一部を制御する総合制御部を備える配電装置とする。

Description

配電装置および電力供給システム
 本発明は、配電の機能を有する配電装置、およびこれを有する電力供給システムに関する。
 従来、PCS(Power Conditioning Subsystem:パワーコンディショナ)を有する電力供給システムが提案されている。このような電力供給システムについて、PCSに太陽電池と蓄電池が接続されたものを例に挙げ、以下に簡潔に説明する。
 図7は、当該電力供給システム101およびその周辺の構成図である。本図に示すように電力供給システム101は、PCS113に太陽電池112と蓄電池114が接続された構成となっている。またPCS113には、分電盤102を介して、電力系統103および負荷104が接続される。
 PCS113は、電力の変換や分配等を行うものであり、電力供給システム101を適切に機能させるための中核的な役割を果たす。例えばPCS113は、太陽電池112の発電電力を蓄電池114側に分配する動作、太陽電池112の発電電力を交流に変換して分電盤102側に分配する動作、および蓄電池114の放電電力を交流に変換して分電盤102側に出力する動作を行う。
特開平10-248180号公報
 PCSは、先述したような動作が適切に行われるよう複雑な構成となっており、その制御形態も複雑である。電力供給システムの構成要素や負荷を総合的に制御する機能をPCSに設けるようにすると、PCSの構成や制御形態はより一層複雑となり、PCSの設計や開発等は難しくなる。
 また一般家庭のように低圧受電の場合には、電力系統からの受電電力が制限される。このような場合、大電力を要求する負荷(例えば、電気自動車の急速充電時の負荷)が接続されても、電力系統を用いて負荷へ適切に大電力を供給することは困難である。
 また蓄電池を用いて負荷へ大電力を供給する場合であっても、蓄電池からPCSを介して負荷へ大電力が供給される形態になっていると、PCSの容量を大きくしておく(大電力に耐え得る仕様としておく)必要がある。そのため、例えばPCSの改造や交換が必要となり、大電力を要求する負荷への適切な電力供給が容易に行えないこともある。
 本発明は上述した問題に鑑み、PCS等の構成や制御形態の複雑化を抑えつつ電力供給システムの構成要素や負荷の総合的な制御が可能になるとともに、大電力を要求する負荷への適切な電力供給が容易となる配電装置の提供を目的とする。また本発明は、当該配電装置を用いた電力供給システムの提供を目的とする。
 上記目的を達成するため本発明に係る配電装置は、直流の入力電力を交流に変換して電力系統側へ出力するPCS、および、充放電可能である蓄電池とともに電力供給システムを形成し、前記PCSおよび前記蓄電池に接続されるとともに、直流負荷に接続され、前記PCSから前記直流負荷への配電、前記PCSから前記蓄電池への配電、および前記蓄電池から前記PCSを介さずに前記直流負荷への配電を行う配電装置であって、システム関連要素の全部または一部を制御する総合制御部を備える構成とする。
 本構成によれば、PCS等の構成や制御形態の複雑化を抑えつつ電力供給システムの構成要素や負荷の総合的な制御が可能になるとともに、大電力を要求する負荷への適切な電力供給が容易となる。なお「システム関連要素」は、電力供給システムの各構成要素(例えばPCS、蓄電池、充電器など)、および電力供給システムに接続されて電力が供給される各負荷を指す。
 また上記構成としてより具体的には、前記総合制御部は、前記蓄電池の電圧および電流の少なくとも一方の情報を取得し、前記PCSを制御する構成としてもよい。
 また上記構成としてより具体的には、前記PCSから前記直流負荷および前記蓄電池への配電には、前記PCSにおいて交流に変換される前の直流電力が用いられる構成としてもよい。また前記PCSは前記入力電力をDC/DCコンバータおよびDC/ACインバータを順に介して電力系統側へ出力するものである場合において、上記構成は、前記PCS、前記蓄電池、および前記直流負荷に接続される接続ラインを備え、前記接続ラインは、前記DC/DCコンバータと前記DC/ACインバータの間に接続されることにより、前記PCSに接続される構成としてもよい。
 また前記PCS、前記蓄電池、および前記蓄電池を充電する充電器を含む各構成要素とともに、前記電力供給システムを形成する場合において、上記構成としてより具体的には、前記総合制御部は、前記PCSおよび前記充電器を制御する構成としてもよい。
 また前記PCSは前記入力電力として太陽電池の発電電力が入力されるものである場合において、上記構成としてより具体的には、前記総合制御部は、天候または日射量の予測情報を受信する構成としてもよい。また上記構成としてより具体的には、前記総合制御部は、EMS機器との通信機能を備える構成としてもよい。
 また本発明に係る電力供給システムは、上記構成の配電装置、前記PCS、および前記蓄電池を備える構成とする。また当該電力供給システムは、更に前記充電器を備える構成であってもよく、前記PCSに発電電力を出力する太陽電池を備える構成であってもよい。
 本発明に係る配電装置によれば、PCS等の構成や制御形態の複雑化を抑えつつ電力供給システムの構成要素や負荷の総合的な制御が可能になるとともに、大電力を要求する負荷への適切な電力供給が容易となる。また本発明に係る電力供給システムによれば、本発明に係る配電装置の利点を享受することができる。
第1実施形態の電力供給システムおよびその周辺の構成図である。 多機能配電盤の配電に関する説明図である。 第1実施形態の電力供給システムおよびその周辺の別の構成図である。 第2実施形態の電力供給システムおよびその周辺の構成図である。 蓄電池の充電電力の供給に関する説明図である。 第3実施形態の電力供給システムおよびその周辺の構成図である。 従来例の電力供給システムおよびその周辺の構成図である。
 本発明の実施形態について、第1実施形態から第3実施形態の各々を例に挙げて、以下に説明する。
1.第1実施形態
 まず第1実施形態について説明する。図1は、第1実施形態に係る電力供給システム1およびその周辺の構成図である。なお図1(後述する図2~図6も同様)における各配線のうち、実線で示すものは電力線であり、破線で示すものは通信線である。また「電力供給システム」は、負荷等へ電力を供給するシステムであり、一連の構成要素の全体または一部により形成される。電力供給システム1は、一般家庭等の需要家に設置され得る。
 図1に示すように電力供給システム1は、その構成要素として、配電装置である多機能配電盤11、太陽電池12、PCS13、および蓄電池14を有している。またPCS13には、分電盤2を介して電力系統3および負荷4が接続されており、多機能配電盤11には、直流負荷5(直流電力を消費する負荷)が接続される。
 多機能配電盤11は、接続ライン11aおよび総合制御部11bを備えている。接続ライン11aは、PCS13、蓄電池14、および直流負荷5が接続されるラインであり、これらを繋ぐことにより、PCS13から直流負荷5への配電(図2に点線矢印S1で示す流れの配電)、PCS13から蓄電池14への配電(図2に点線矢印S2で示す流れの配電)、および蓄電池14から直流負荷5への配電(図2に点線矢印S3で示す流れの配電)が行われるようにする。なお蓄電池14から直流負荷5への配電は、図2から明らかであるように、PCS13を介さずに行われる。
 PCS13から直流負荷5への配電によれば、主に、太陽電池12の発電電力を用いた直流負荷5への電力供給が実現される。またPCS13から蓄電池14への配電によれば、主に、太陽電池12の発電電力を用いた蓄電池14の充電が実現される。また蓄電池14から直流負荷5への配電によれば、主に、蓄電池14の放電電力を用いた直流負荷5への電力供給が実現される。なお、PCS13から直流負荷5への配電とPCS13から蓄電池14への配電が並行して行われる場合や、PCS13から直流負荷5への配電と蓄電池14から直流負荷5への配電が並行して行われる場合もあり得る。
 総合制御部11bは、PCS13、負荷4、直流負荷5、およびEMS[Energy Management System]機器6等との通信を行うことが可能であり、電力供給システム1の構成要素および電力供給システム1に接続される負荷等を総合的に制御する。なおEMS機器6は、需要家におけるエネルギー使用の管理や最適化を行う機器であり、このエネルギー使用には、電力供給システム1の電力供給によるものも含まれる。総合制御部11bの機能の詳細については、改めて説明する。
 また、EMS機器6と負荷4および直流負荷5との間を通信線で結んでおき、総合制御部11bと負荷4または直流負荷5との間の通信(例えば、総合制御部11bに対する負荷4または直流負荷5の状態を表す情報の伝送や、負荷4や直流負荷5に対する各種制御命令の伝送など)は、EMS機器6を介して行われるようにしても良い。この場合には図3に示すように、総合制御部11bは負荷4や直流負荷5に直接結ばれている必要はなく、EMS機器6を介してこれらに結ばれているだけで良い。またEMS機器6は、負荷4や直流負荷5等の制御(操作)を行うようになっていても良い。
 なお多機能配電盤11には、例えば総合制御部11bの指示に応じて接続ライン11aの導通状態を切替えるスイッチが設けられていても良い。当該スイッチの一例としては、PCS13と蓄電池14と直流負荷5を互いに導通させる状態、PCS13と蓄電池14の間だけを導通させる(これらと直流負荷5の間は遮断される)状態、PCS13と直流負荷5の間だけを導通させる(これらと蓄電池14の間は遮断される)状態、および蓄電池14と直流負荷5の間だけを導通させる(これらとPCS13の間は遮断される)状態の間で、接続ライン11aの導通状態を切替えるものが挙げられる。
 太陽電池12は、PVアレイ、接続箱、および集電箱などを有し、太陽光を受けて発電した発電電力(直流電力)をPCS13へ出力する。
 PCS13は、コンバータ部13a、インバータ部13b、およびコントローラ部13cを備えている。コンバータ部13aはDC/DCコンバータであり、太陽電池12側から受ける直流電力を、例えば電圧の異なる直流電力に変換して出力する。
 インバータ部13bはDC/ACインバータであり、コンバータ部13aの出力する直流電力を交流に変換して出力する。インバータ部13bが出力する交流電力は、分電盤2を介して電力系統3或いは負荷4に供給される。このようにPCS13は、太陽電池12からの入力電力をDC/DCコンバータおよびDC/ACインバータを順に介して電力系統3側へ出力する。
 なおインバータ部13bは、双方向のインバータ(コンバータ部13aから分電盤2の方向へは直流-交流変換を行い、分電盤2からコンバータ部13aの方向へは交流-直流変換を行うもの)であっても良い。またコントローラ部13cは、コンバータ部13aおよびインバータ部13bの動作を制御する。
 またPCS13は、コンバータ部13aとインバータ部13bの間が接続ライン11aへ接続されることにより、多機能配電盤11に接続されている。これにより、太陽電池12の発電電力がPCS13から蓄電池14或いは直流負荷5へ配電される際には、PCS13において交流に変換される前の発電電力(直流電力)が用いられる。このように太陽電池12と蓄電池14或いは直流負荷5との間は、PCS13を介した直流接続がなされている。
 蓄電池14は、充放電可能に形成されており、多機能配電盤11側から受け取る直流電力を用いた充電や、多機能配電盤11側への放電(直流電力の出力)を行う。
[総合制御部の機能]
 次に、多機能配電盤11が有する総合制御部11bの機能について、より詳細に説明する。
 総合制御部11bは、例えば蓄電池14が接続されている接続ライン11aを監視し、蓄電池14における現在の電圧および電流の少なくとも一方の情報(BAT情報)を取得することが可能である。BAT情報によれば、蓄電池14の現在の充電量などを求めることが可能である。なお蓄電池14の充電量の算出に際しては、BAT情報に加えて、温度等の情報が用いられるようにしても良い。
 また総合制御部11bは、PCS13(主にコントローラ部13c)との通信により、PCS13の監視および制御を行うことが可能である。例えば総合制御部11bは、コンバータ部13aおよびインバータ部13bにおける電力変換動作の監視、および当該動作の制御を行うことが可能である。
 また総合制御部11bは、負荷4および直流負荷5との通信により、これらの負荷の監視および制御を行うことが可能である。例えば総合制御部11bは、これらの負荷の大きさの監視、およびこれらの負荷の大きさの制御を行うことが可能である。なお総合制御部11bは、負荷4や直流負荷5の監視または制御を直接行うようになっていても良く、EMS機器6を介して間接的に行うようになっていても良い。例えば、EMS機器6が負荷4や直流負荷5の監視情報を取り纏めるようにしておき、総合制御部11bがこの取り纏められた情報を受け取るようになっていても良い。
 また総合制御部11bは、EMS機器6との通信により、エネルギー使用に関する情報のやり取りを行うことが可能である。これにより、総合制御部11bはEMS機器6から得られる情報を用いた制御が可能となり、また、EMS機器6は総合制御部11bから得られる情報を用いて、需要家におけるエネルギー使用の管理や最適化をより適切に行うことが可能となる。
 なお、EMS機器6が負荷等の制御(操作)を行うようにする場合、総合制御部11bとEMS機器6が協調して動作するようにしても良い。例えばEMS機器6が負荷4の制御を行うようにする場合、総合制御部11bは、電力供給システム1の全体の状況を考慮してEMS機器6に負荷4の制御依頼を出し、EMS機器6に負荷4の制御を任せるようにする。これにより、総合制御部11bが行う制御とEMS機器6が行う制御の競合による不具合を、回避させることが容易となる。
 また総合制御部11bは、外部の通信機器から、制御を行うために参照される参照情報を受信することが可能である。例えば総合制御部11bは、参照情報としての気象情報(天候または日射量の予測情報など)を提供する通信機器から、気象情報を受信することが可能である。気象情報によれば、今後(例えば今日や明日)における太陽電池12の発電量を予測することが可能となる。
 総合制御部11bは、上述した通り各種の通信、監視、および制御が可能となっており、そのときの状況に応じて各部を適切に制御する。
 例えば総合制御部11bは、BAT情報に基づいて蓄電池14の充電量が減っていることを検出した場合には、PCS13側から蓄電池14へ充電電力が供給されるように、PCS13を制御する。また例えば総合制御部11bは、参照情報に基づいて太陽電池12の発電電力が減少すると見込まれる場合には、蓄電池14の充電量を温存するため、直流負荷5への電力供給が主にPCS13側からなされるように、PCS13を制御する。また例えば総合制御部11bは、直流負荷5が要求する電力の大きさ(負荷の大きさ)に応じて、PCS13側から直流負荷5への電力供給が適量となるように、PCS13を制御する。なおこれらは一例であって、総合制御部11bによる制御の具体的形態は特に限定されない。
[本実施形態における利点等]
 本実施形態では、電力供給システム1の構成要素および電力供給システム1に接続される負荷等が総合的に制御される。そのため、高効率かつ柔軟な制御が可能となり、電力供給システム1の全体で効率が向上するように、様々な運用方法が可能となる。
 またこのような制御動作の主体である総合制御部11bは、比較的構造が簡単な多機能配電盤11に設けられ、PCS13やEMS機器6に設けられるようにはなっていない。そのため、PCS13等の構成や制御形態の複雑化を抑えつつ、電力供給システム1の構成要素および電力供給システム1に接続される負荷等の総合的な制御が可能である。一般的なPCSであっても、ハードウェアに大きな仕様変更を施すことなく、多機能配電盤11との通信機能等を改良するだけで、本実施形態に係るPCS13に準じた機能を発揮し得る。
 また総合制御部11bを有する多機能配電盤11は、PCS13やEMS機器6等とは分かれているため、保守や管理の複雑化が極力抑えられている。また総合制御部11bに異常が生じたような場合であっても、PCS13やEMS機器6などの他の機器についてはとりあえず総合制御部11bから独立して動作するようにし、電力供給システム1の運用等に出来るだけ支障を来さないようにすることが可能である。
 なお総合制御に対応したPCSやEMSを用いながら現時点では総合制御のシステムが導入されていない場合であっても、本実施形態に係る多機能配電盤を採用することにより、総合制御のシステムを新たに構築することが容易となる。
 また先述したように、太陽電池12の発電電力がPCS13から蓄電池14或いは直流負荷5へ配電される際には、PCS13において交流に変換される前の発電電力(直流電力)が用いられるようになっている。そのため電力の変換ロスが減り、蓄電池14の充放電の効率等が良好となっている。
2.第2実施形態
 次に第2実施形態について説明する。なお以下の説明では、第1実施形態と異なる部分の説明に重点をおき、第1実施形態と共通する部分については説明を省略することがある。
 図4は、第2実施形態に係る電力供給システム1およびその周辺の構成図である。図4に示すように電力供給システム1は、その構成要素として、多機能配電盤11、太陽電池12、PCS13、および蓄電池14に加え、充電器15を有している。
 充電器15は、入力側が電力系統3に接続され、出力側が蓄電池14(蓄電池14と多機能配電盤11の間)に接続されている。充電器15は、総合制御部11bから充電指示を受けたときに、系統電力を直流に変換して蓄電池14を充電するように形成されている。なお充電器15は、他の構成要素と別個に設けられる必要はなく、例えば、PCS13の内部に設けられていても良い。またPCS13内のインバータ部13bを双方向のインバータとし、蓄電池14を充電するように形成しても良い。この場合には、インバータ部13bを充電器15として見ることが出来る。
 充電器15を備えることにより電力供給システム1は、太陽電池12の発電電力を用いるだけでなく、系統電力を用いて蓄電池14を充電することも可能である。そして蓄電池14の充電に系統電力が用いられるようにするか否かは、多機能配電盤11の総合制御部11bによって制御可能である。
 総合制御部11bは、蓄電池14の充電が行われるようにする際、その時の状況に応じて、蓄電池14の充電に系統電力が用いられるようにするか否かを決定する。例えば天気の良い日中のように太陽電池12の発電電力が十分に得られる状況では、総合制御部11bは、系統電力が用いられずに、太陽電池12の発電電力を用いて蓄電池14が充電されるようにする。
 すなわち総合制御部11bは、充電器15に充電指示を出さず、PCS13を適切に制御することにより、図5に点線矢印F1で示す経路を通って蓄電池14に充電電力が供給されるようにする。なお当該経路は、太陽電池12からPCS13(コンバータ部13a)および多機能配電盤11(接続ライン11a)を介して蓄電池14に至る経路である。
 一方、例えば夜間、或いは曇天時のように太陽電池12の発電電力が十分に得られない状況では、総合制御部11bは、系統電力を用いて蓄電池14が充電されるようにする。すなわち総合制御部11bは、充電器15に充電指示を出し、図5に点線矢印F2で示す経路を通って蓄電池14に充電電力が供給されるようにする。なお経路F2は、電力系統3から充電器15を介して蓄電池14に至る経路である。
 なお本実施形態では蓄電池14の充電の制御形態に関し、上述した形態を含め様々な形態を採用することが可能である。例えば電気料金の安い深夜の時間帯に、系統電力を用いた蓄電池14の充電が行われるようにすることが可能である。そして更に昼間の時間帯では、深夜のうちに蓄電池14に充電しておいた電力を負荷への電力供給に用いるようにし、太陽電池12の発電電力を少しでも多く電力系統3へ逆潮流させて売電することが可能である。
 また太陽電池12の発電電力を電力系統3へ逆潮流させない運用を行う場合、蓄電池14が満充電となり、太陽電池12の発電電力を抑制しなければならない状況が発生し得る。しかしこの場合であっても、総合制御部11bは、例えば参照情報に基づいて今後の太陽電池12の発電量や負荷消費量を予測し、系統電力を用いる蓄電池の充電を最低限に抑えて、太陽電池12の発電電力が出来るだけ抑制されないようにすることが可能である。
3.第3実施形態
 次に第3実施形態について説明する。なお以下の説明では、第2実施形態と異なる部分の説明に重点をおき、第2実施形態と共通する部分については説明を省略することがある。また第3実施形態の電力供給システム1に接続される直流負荷5は、電力系統3では適切な供給ができない程度の大電力を要求する負荷であるとする。例えば直流負荷5は電気自動車(EV)であり、急速充電時にこのような大電力を要求する。
 電力供給システム1においては、大電力を要求する直流負荷5への適切な電力供給を可能とするため、蓄電池14から接続ライン11aを介して直流負荷5に至る部分(図6に着色で示す部分P)の仕様が、大電力に耐え得る仕様とされている。
 そして総合制御部11bは、直流負荷5が大電力を要求する際には、蓄電池14に大電力を放電させ、この放電電力が部分Pを通って直流負荷5へ供給されるようにする。これにより、直流負荷5への適切な電力供給が達成される。なおこの際、蓄電池14の放電電力に加えて太陽電池12の発電電力が、直流負荷5へ供給されるようにしても良い。
 本実施形態の電力供給システム1によれば、直流負荷5への大電力の供給は、蓄電池14(或いは蓄電池14と太陽電池12)からなされるようになっており、電力系統3に依存しない。そのため電力系統3の種類に関わらず、直流負荷5へ大電力を適切に供給することが容易である。
 例えば一般家庭やコンビニエンスストア等に多く見られるように低圧受電契約がなされている場合、電力系統3から大電力を適切に供給することは困難である。しかし電力システム1によれば、受電契約の内容に関わらず、大電力を適切に供給することは容易である。
 なお大電力の供給は、電力系統3から全く受電せずに行われるようにすることも可能であり、電力系統3から受電しつつ行われるようにすることも可能である。電力供給システム1によれば、電力系統3から受電しつつ大電力の供給が行われる場合であっても、電力系統3からの受電量を大きく減らすことができ、電力系統3に及ぼす悪影響を低減させることが可能である。
 また蓄電池をPCSに直結してPCSから大電力が出力されるようにする場合は、PCSの容量が大きくなっている必要があり、容量が小さい場合にはPCSの改造や交換が必要となる。しかし電力供給システム1によれば、大電力の供給が主に部分Pの経路で(PCS13を介さずに)行われるようにすることが可能であり、こうすることでPCS13の容量を大きくする必要はなく、PCSの改造や交換は不要である。
 なお、一般的にPCSの容量は太陽電池の容量に基づいて決められるが、蓄電池をPCSに直結してPCSから大電力が出力されるようにする場合は、蓄電池の容量やどの程度の大電力を出力するかをも考慮してPCSの容量を決める必要があるため、多種のPCSを準備する必要がある。しかし電力供給システム1によれば、大電力の供給が主に部分Pの経路で(PCS13を介さずに)行われるようにすることが可能であり、こうすることでPCSの容量を決める際に蓄電池の容量等を考慮する必要はなく、多種のPCSを準備する必要もない。
 また電力供給システム1によれば、大電力の供給が主に部分Pの経路で行われるようにする場合、基本的には部分Pが大電力に耐え得るようになっていれば良い。そのため、電力供給システム1が大電力の供給に耐えられない場合であっても、部分P(多機能配電盤11やその周辺)を大電力に耐え得るよう改造するだけで、大電力の供給を可能とすることできる。
 また電力供給システム1において、主に太陽電池12の出力が大電力の供給に用いられるようにすることも可能である。この場合には、大電流を放電することによって蓄電池14の放電容量が低下したり、蓄電池14の寿命が短くなったりすることを、出来るだけ防ぐことが可能となる。
4.その他
 上述した通り各実施形態の多機能配電盤11は、直流の入力電力(太陽電池12の発電電力)を交流に変換して電力系統3側へ出力するPCS13、および、充放電可能である蓄電池14を含む各構成要素とともに、電力供給システム1を形成する。
 また多機能配電盤11は、PCS13および蓄電池14に接続されるとともに、直流負荷5に接続され、PCS13から直流負荷5への配電、PCS13から蓄電池14への配電、および蓄電池14からPCS13を介さずに直流負荷5への配電を行う。また多機能配電盤11は、システム関連要素(太陽電池12、PCS13、蓄電池14、充電器15、負荷4、および直流負荷5など)の全部または一部を制御する総合制御部11bを備えている。
 そのため多機能配電盤11によれば、PCS13の構成や制御形態の複雑化を抑えつつ電力供給システム1の構成要素または負荷の総合的な制御が可能になるとともに、大電力を要求する負荷への適切な電力供給が容易となる。なお、システム関連要素のうちの何れを総合制御部11bの制御対象とするかについては、上記実施形態での態様に限られることなく、様々な態様とすることが可能である。
 また本発明の構成は、上記実施形態のほか、発明の主旨を逸脱しない範囲で種々の変更を加えることが可能である。すなわち、上記実施形態は、全ての点で例示であって、制限的なものではないと考えられるべきである。本発明の技術的範囲は、上記実施形態の説明ではなく、特許請求の範囲によって示されるものであり、特許請求の範囲と均等の意味及び範囲内に属する全ての変更が含まれると理解されるべきである。
 本発明は、PCSを有する電力供給システム等に利用することができる。
   1   電力供給システム
   11  多機能配電盤(配電装置)
   11a 接続ライン
   11b 総合制御部
   12  太陽電池
   13  PCS
   13a コンバータ部
   13b インバータ部
   13c コントローラ部
   14  蓄電池
   15  充電器
   2   分電盤
   3   電力系統
   4   負荷
   5   直流負荷
   6   EMS機器

Claims (10)

  1.  直流の入力電力を交流に変換して電力系統側へ出力するPCS、および、充放電可能である蓄電池とともに電力供給システムを形成し、
     前記PCSおよび前記蓄電池に接続されるとともに、直流負荷に接続され、
     前記PCSから前記直流負荷への配電、前記PCSから前記蓄電池への配電、および前記蓄電池から前記PCSを介さずに前記直流負荷への配電を行う配電装置であって、
     システム関連要素の全部または一部を制御する総合制御部を備えることを特徴とする配電装置。
  2.  前記総合制御部は、
     前記蓄電池の電圧および電流の少なくとも一方の情報を取得し、
     前記PCSを制御することを特徴とする請求項1に記載の配電装置。
  3.  前記PCSから前記直流負荷および前記蓄電池への配電には、
     前記PCSにおいて交流に変換される前の直流電力が用いられることを特徴とする請求項2に記載の配電装置。
  4.  前記PCSは前記入力電力をDC/DCコンバータおよびDC/ACインバータを順に介して電力系統側へ出力するものである、請求項3に記載の配電装置であって、
     前記PCS、前記蓄電池、および前記直流負荷に接続される接続ラインを備え、
     前記接続ラインは、
     前記DC/DCコンバータと前記DC/ACインバータの間に接続されることにより、前記PCSに接続されることを特徴とする配電装置。
  5.  前記PCS、前記蓄電池、および前記蓄電池を充電する充電器を含む各構成要素とともに、前記電力供給システムを形成する請求項1から請求項4の何れかに記載の配電装置であって、
     前記総合制御部は、
     前記PCSおよび前記充電器を制御することを特徴とする配電装置。
  6.  前記PCSは前記入力電力として太陽電池の発電電力が入力されるものである、請求項1から請求項5の何れかに記載の配電装置であって、
     前記総合制御部は、
     天候または日射量の予測情報を受信することを特徴とする配電装置。
  7.  前記総合制御部は、
     EMS機器との通信機能を備えることを特徴とする請求項1から請求項6の何れかに記載の配電装置。
  8.  請求項1から請求項7の何れかに記載の配電装置、前記PCS、および前記蓄電池を備えることを特徴とする電力供給システム。
  9.  請求項5に記載の配電装置、前記PCS、前記蓄電池、および、前記充電器を備えることを特徴とする電力供給システム。
  10.  請求項6に記載の配電装置、前記PCS、前記蓄電池、および、前記PCSに発電電力を出力する太陽電池を備えることを特徴とする電力供給システム。
PCT/JP2013/060331 2012-04-06 2013-04-04 配電装置および電力供給システム WO2013151133A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012087029A JP2013219881A (ja) 2012-04-06 2012-04-06 配電装置および電力供給システム
JP2012-087029 2012-04-06

Publications (1)

Publication Number Publication Date
WO2013151133A1 true WO2013151133A1 (ja) 2013-10-10

Family

ID=49300611

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/060331 WO2013151133A1 (ja) 2012-04-06 2013-04-04 配電装置および電力供給システム

Country Status (2)

Country Link
JP (1) JP2013219881A (ja)
WO (1) WO2013151133A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110809845A (zh) * 2017-07-07 2020-02-18 松下知识产权经营株式会社 蓄电池组件

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6247142B2 (ja) * 2014-04-18 2017-12-13 京セラ株式会社 電力制御装置および電力制御方法
JP2016032379A (ja) * 2014-07-30 2016-03-07 株式会社イーエフイー 電力供給システム
JP6505350B1 (ja) * 2018-10-12 2019-04-24 三菱電機株式会社 電力変換システム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007086472A1 (ja) * 2006-01-27 2007-08-02 Sharp Kabushiki Kaisha 電力供給システム
JP2011083087A (ja) * 2009-10-05 2011-04-21 Panasonic Electric Works Co Ltd 電力供給システム
JP2012070536A (ja) * 2010-09-24 2012-04-05 Mitsubishi Electric Corp 電力システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007086472A1 (ja) * 2006-01-27 2007-08-02 Sharp Kabushiki Kaisha 電力供給システム
JP2011083087A (ja) * 2009-10-05 2011-04-21 Panasonic Electric Works Co Ltd 電力供給システム
JP2012070536A (ja) * 2010-09-24 2012-04-05 Mitsubishi Electric Corp 電力システム

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110809845A (zh) * 2017-07-07 2020-02-18 松下知识产权经营株式会社 蓄电池组件
EP3651300A4 (en) * 2017-07-07 2020-05-13 Panasonic Intellectual Property Management Co., Ltd. STORAGE BATTERY UNIT
CN110809845B (zh) * 2017-07-07 2024-01-12 松下知识产权经营株式会社 蓄电池组件

Also Published As

Publication number Publication date
JP2013219881A (ja) 2013-10-24

Similar Documents

Publication Publication Date Title
JP5905557B2 (ja) パワーコンディショナシステム及び蓄電パワーコンディショナ
KR101277185B1 (ko) Dc 마이크로그리드 시스템 및 이를 이용한 ac 및 dc 복합 마이크로그리드 시스템
JP5265639B2 (ja) 共同住宅のエネルギー保存システム、並びに統合電力管理システム及びその制御方法
WO2011162025A1 (ja) 直流配電システム
US9899871B2 (en) Islanded operating system
JP5649440B2 (ja) 電力制御システム
WO2011042781A1 (ja) 電力供給システム
JP7165953B2 (ja) 電力変換システム
WO2015001767A1 (ja) 制御装置、電力管理システム
KR20170074631A (ko) 스마트 그리드 환경에서 에너지 분전 시스템
WO2013151133A1 (ja) 配電装置および電力供給システム
JP2020523971A (ja) エネルギー貯蔵システム
EP2797198A1 (en) Charging/discharging device and charging/discharging system using same
US20190103756A1 (en) Power storage system, apparatus and method for controlling charge and discharge, and program
KR102257906B1 (ko) 에너지 저장 시스템
KR20200079606A (ko) 부하 분산을 위한 dc ups 제어 시스템
US20160141916A1 (en) Power system, power management method, and program
JP7408108B2 (ja) 電力供給システム
JP6977167B2 (ja) エネルギー貯蔵システム
JP2013090456A (ja) パワーコンディショナ
JP2018137863A (ja) 蓄電池地域共用システム
JP6025637B2 (ja) 電力供給システム
CN103378624A (zh) 多重备援太阳能供电系统
KR20140113798A (ko) 무정전 기능을 갖는 하이브리드 배전시스템
JP2012223072A (ja) 系統連系システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13772337

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13772337

Country of ref document: EP

Kind code of ref document: A1