JP2023053035A - 電解コンデンサ - Google Patents

電解コンデンサ Download PDF

Info

Publication number
JP2023053035A
JP2023053035A JP2023017651A JP2023017651A JP2023053035A JP 2023053035 A JP2023053035 A JP 2023053035A JP 2023017651 A JP2023017651 A JP 2023017651A JP 2023017651 A JP2023017651 A JP 2023017651A JP 2023053035 A JP2023053035 A JP 2023053035A
Authority
JP
Japan
Prior art keywords
conductive polymer
layer
foil
inorganic
conductive layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023017651A
Other languages
English (en)
Inventor
康裕 津田
Yasuhiro Tsuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Publication of JP2023053035A publication Critical patent/JP2023053035A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/48Conductive polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/56Solid electrolytes, e.g. gels; Additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/0029Processes of manufacture
    • H01G9/0036Formation of the solid electrolyte layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/025Solid electrolytes
    • H01G9/028Organic semiconducting electrolytes, e.g. TCNQ
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/035Liquid electrolytes, e.g. impregnating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/042Electrodes or formation of dielectric layers thereon characterised by the material
    • H01G9/0425Electrodes or formation of dielectric layers thereon characterised by the material specially adapted for cathode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/048Electrodes or formation of dielectric layers thereon characterised by their structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/048Electrodes or formation of dielectric layers thereon characterised by their structure
    • H01G9/055Etched foil electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/07Dielectric layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/14Structural combinations or circuits for modifying, or compensating for, electric characteristics of electrolytic capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/145Liquid electrolytic capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/15Solid electrolytic capacitors

Abstract

【課題】導電性高分子層を含む電解コンデンサにおいて、電解液を用いる場合でも、容量を高めて、ESRを低減する。【解決手段】開示される電解コンデンサは、コンデンサ素子と電解液とを備える。コンデンサ素子は、誘電体層が形成された陽極箔と、陽極箔と対向し無機系導電層が形成された陰極箔と、陽極箔と陰極箔との間に介在し、かつ導電性高分子を含む導電性高分子層と、を備える。陰極箔の表面の拡面率は1.5~500cm2/cm2である。電解液はコンデンサ素子に含浸されている。無機系導電層の表面には無機系導電層と導電性高分子層とが接触している第1領域が形成され、無機系導電層の表面の凹部では無機系導電層と導電性高分子層とが接触していない第2領域が形成され、第2領域において無機系導電層と導電性高分子層との間に電解液が入り込んでおり、導電性高分子層はポリアニオンを含む。【選択図】図1

Description

本発明は、導電性高分子層(固体電解質層)と電解液とを含む電解コンデンサに関する。
小型かつ大容量で低ESRのコンデンサとして、誘電体層を形成した陽極体と、誘電体層の少なくとも一部を覆うように形成された導電性高分子層とを具備する電解コンデンサが有望視されている。
特許文献1では、内部に導電性高分子層を有するコンデンサ素子を含む固体電解コンデンサにおいて、コンデンサ素子の陰極箔上にカーボン層などを形成することで、陰極における静電容量の発生を抑制することが提案されている。特許文献1では、陽極箔と陰極とをセパレータを介して巻回した巻回体を、導電性高分子の原料を含む重合液に浸漬させて、熱重合することにより導電性高分子層を形成している。
特許文献2では、誘電体層が形成された陽極箔と、陰極箔と、これらの間に介在するセパレータと、誘電体層、セパレータおよび陰極箔の表面に形成された導電性高分子層とを含むコンデンサ素子に、電解液を含浸させた電解コンデンサが提案されている。特許文献2では、導電性高分子が粒子状に分散した分散体を、陽極箔、陰極箔およびセパレータに含浸させることにより、導電性高分子層を形成している。
特開2012-174865号公報 特開2008-010657号公報
特許文献1のような固体電解コンデンサでは、カーボン層などの無機系導電層を形成することで、高容量化が期待される。また、陰極の導電性が向上することでESRが低くなると期待される。一方、特許文献2では、電解液を用いることで、誘電体層の修復性が高まる。
しかし、特許文献1のように、導電性高分子の原料を含む重合液を用いる場合には、電解液を用いても誘電体層の修復性を高めることが難しい。また、導電性高分子を含む分散体や溶液を用いるとともに、電解液を用いる場合には、特許文献1のように無機系導電層を陰極側に形成すると、導電性高分子層と無機系導電層との間の密着性が不十分となることがある。密着性が不十分である場合、陰極と導電性高分子層との接触抵抗が増加して、ESRを低減することが難しい。
本発明は、導電性高分子を含む分散体や溶液を用いて形成された導電性高分子層を含む電解コンデンサにおいて、電解液を用いる場合でもESRを低減することができるとともに、高い容量を得ることを目的とする。
本発明の一局面は、コンデンサ素子と電解液とを備え、
前記コンデンサ素子は、
誘電体層が形成された陽極箔と、
前記陽極箔と対向し、かつ無機系導電層が形成された陰極箔と、
前記陽極箔と前記陰極箔との間に介在し、かつ導電性高分子を含む導電性高分子層と、を備え、
前記陰極箔の表面の拡面率は、1.5~500cm/cmであり、
前記電解液は、前記コンデンサ素子に含浸されており、
前記無機系導電層の表面には、前記無機系導電層と前記導電性高分子層とが接触している第1領域が形成され、前記無機系導電層の前記表面の凹部では、前記無機系導電層と前記導電性高分子層とが接触していない第2領域が形成され、
前記第2領域において、前記無機系導電層と前記導電性高分子層との間に前記電解液が入り込んでおり、
前記導電性高分子層は、ポリアニオンを含む、電解コンデンサに関する。
本発明の一局面は、コンデンサ素子と、前記コンデンサ素子に含浸された電解液とを備え、
前記コンデンサ素子は、
表面に誘電体層が形成された陽極箔と、
前記陽極箔に対向する陰極箔と、
前記陽極箔と前記陰極箔との間に介在する導電性高分子層とを備え、
前記陰極箔の表面には、無機系導電層が形成され、
前記無機系導電層は、表面に凸部と凹部とを有し、
前記凸部上には、前記無機系導電層と前記導電性高分子層とが接触した第1領域が形成され、
前記凹部上には、前記無機系導電層と前記導電性高分子層との間に前記電解液が入り込んだ第2領域が形成されており、
前記導電性高分子層は、ポリアニオンを含む、電解コンデンサに関する。
本発明の一局面は、コンデンサ素子と、前記コンデンサ素子に含浸された電解液とを備え、
前記コンデンサ素子は、
表面に誘電体層が形成された陽極箔と、
前記陽極箔に対向する陰極箔と、
前記陽極箔と前記陰極箔との間に介在する導電性高分子層とを備え、
前記陰極箔の表面には、無機系導電層が形成され、
前記無機系導電層は、表面に凸部と凹部とを有し、
前記凸部上には、前記無機系導電層と前記導電性高分子層とが接触した第1領域が形成され、
前記凹部上には、前記無機系導電層と前記導電性高分子層との間に前記電解液が入り込んだ第2領域が形成されている、電解コンデンサに関する。
本明細書は、他の電解コンデンサの例として以下の例を開示する。
[例1]
コンデンサ素子と電解液とを備え、
前記コンデンサ素子は、
誘電体層が形成された陽極箔と、
前記陽極箔と対向し、かつ無機系導電層が形成された陰極箔と、
前記陽極箔および前記陰極箔の間に介在し、かつ導電性高分子を含む導電性高分子層と、を備え、
前記陰極箔は、表面が粗面化されており、粗面化された前記表面に前記無機系導電層が形成されており、
前記導電性高分子層は、前記導電性高分子を含む分散体または溶液を用いて形成される、電解コンデンサ。
[例2]
前記陰極箔の前記表面の拡面率は、1.5~500cm2/cm2である、例1に記載の電解コンデンサ。
[例3]
前記陰極箔の前記表面は、エッチングにより粗面化されている、例1または2に記載の電解コンデンサ。
[例4]
前記無機系導電層の表面には、前記無機系導電層と前記導電性高分子層とが接触している第1領域と、前記無機系導電層と前記導電性高分子層とが接触していない第2領域とが形成されている、例1~3のいずれか1項に記載の電解コンデンサ。
[例5]
前記無機系導電層は、導電性カーボン、ニッケル、ニッケル化合物、チタン、およびチタン化合物からなる群より選択される少なくとも一種を含む、例1~4のいずれか1項に記載の電解コンデンサ。
[例6]
前記電解液は、沸点を有さないか、または沸点が180℃以上である第1溶媒を含む、例1~5のいずれか1項に記載の電解コンデンサ。
[例7]
前記第1溶媒はポリオールを含む、例6に記載の電解コンデンサ。
[例8]
前記電解液中に含まれる前記第1溶媒の量は、3~90質量%である、例6または7に記載の電解コンデンサ。
本発明によれば、導電性高分子を含む分散体や溶液を用いて形成された導電性高分子層を含む電解コンデンサにおいて、電解液を用いるにも拘わらず、ESRを低減することができるとともに、高容量を確保することができる。
本発明の一実施形態に係る電解コンデンサの断面模式図である。 図1の電解コンデンサにおけるコンデンサ素子の構成を説明するための概略図である。
以下に、図面を適宜参照しながら、本発明の電解コンデンサの実施形態について説明する。ただし、以下の実施形態は本発明を限定するものではない。
≪電解コンデンサ≫
図1は、本発明の一実施形態に係る製造方法により得られる電解コンデンサの断面模式図である。図2は、同電解コンデンサが含むコンデンサ素子の一部を展開した概略図である。
図1において、電解コンデンサは、コンデンサ素子10を備え、電解液(図示せず)とともに、外装ケース(具体的には、有底ケース11)内に収容されている。外装ケースは、内部にコンデンサ素子10を収容する有底ケース11と、有底ケース11の開口を塞ぐ絶縁性の封止部材12と、封止部材12を覆う座板13とを備える。有底ケース11の開口端近傍は、内側に絞り加工されており、開口端は封止部材12に加締めるようにカール加工されている。
図2に示すように、コンデンサ素子10は、リードタブ15Aに接続された陽極箔21と、リードタブ15Bに接続された陰極箔22と、セパレータ23とを備える。陽極箔21および陰極箔22は、セパレータ23を介して巻回されており、このようなコンデンサ素子10は、巻回体とも呼ばれる。コンデンサ素子10の最外周は、巻止めテープ24により固定される。なお、図2は、コンデンサ素子10の最外周を止める前の、一部が展開された状態を示している。
コンデンサ素子10において、陽極箔21は、表面が凹凸を有するように粗面化された金属箔であり、凹凸を有する金属箔上に誘電体層が形成されている。陽極箔21と対向する陰極箔22は、表面が凹凸を有するように粗面化された金属箔であり、凹凸を有する金属箔上に無機系導電層が形成されている。陽極箔21上の誘電体層の表面の少なくとも一部および陰極箔22上の無機系導電層の表面の少なくとも一部には、導電性高分子が付着して導電性高分子層を形成しているが、この場合に限らず、導電性高分子は陽極箔21と陰極箔22との間のどの位置に付着していてもよい。例えば、導電性高分子は、陽極箔21上に形成された誘電体層の表面の少なくとも一部を被覆し、さらに、陰極箔22上の無機系導電層の表面の少なくとも一部および/またはセパレータ23の表面の少なくとも一部を被覆していてもよい。
このように、陽極箔21と陰極箔22との間には導電性高分子層が形成されている。なお、電解コンデンサにおいては、一般に、陽極箔、陰極箔およびセパレータなどの表面の少なくとも一部を覆う導電性高分子(具体的には、導電性高分子を含む被膜)を、固体電解質層(または導電性高分子層)と称することがある。
以下に、本発明の実施形態に係る電解コンデンサの構成について、より詳細に説明する。
コンデンサ素子は、誘電体層が形成された陽極箔と、粗面化された表面に無機系導電層が形成されている陰極箔と、陽極箔および陰極箔の間に介在する導電性高分子層とを含んでいる。コンデンサ素子は、必要に応じてセパレータを含んでもよい。
(コンデンサ素子)
(陽極箔)
陽極箔としては、例えば、表面が粗面化された金属箔が挙げられる。金属箔を構成する金属の種類は特に限定されないが、誘電体層の形成が容易である点から、アルミニウム、タンタル、ニオブなどの弁作用金属、または弁作用金属を含む合金を用いることが好ましい。
金属箔表面の粗面化は、公知の方法により行うことができる。粗面化により、金属箔の表面に、複数の凹凸が形成される。粗面化は、例えば、金属箔をエッチング処理することにより行うことが好ましい。エッチング処理は、例えば、直流電解法または交流電解法などにより行ってもよい。
(誘電体層)
誘電体層は、陽極箔の表面に形成される。具体的には、誘電体層は、粗面化された金属箔の表面に形成されるため、陽極箔の表面の孔や窪み(ピット)の内壁面に沿って形成される。
誘電体層の形成方法は特に限定されないが、金属箔を化成処理することにより形成することができる。化成処理は、例えば、金属箔をアジピン酸アンモニウム溶液などの化成液に浸漬することにより行ってもよい。化成処理では、必要に応じて、金属箔を化成液に浸漬した状態で、電圧を印加してもよい。
通常は、量産性の観点から、大判の弁作用金属などで形成された金属箔に対して、粗面化処理および化成処理が行われる。その場合、処理後の箔を所望の大きさに裁断することによって、誘電体層が形成された陽極箔21が準備される。
(陰極箔)
陰極箔22には金属箔を用いてもよい。金属の種類は特に限定されないが、アルミニウム、タンタル、ニオブなどの弁作用金属または弁作用金属を含む合金を用いることが好ましい。
導電性高分子層の製法には、一般に、導電性高分子の微粒子を分散媒に分散させた分散体または導電性高分子を溶媒に溶解させた溶液を用いて形成される場合と、導電性高分子の前駆体(導電性高分子の原料となるモノマーまたはオリゴマーなど)と陽極箔および陰極箔を接触させた状態で重合させて形成される場合とがある。
後者の場合、陽極箔や陰極箔の表面で重合が進行することで導電性高分子層が形成されるため、比較的強固な被膜が形成される。しかし、被膜が緻密すぎるため、電解液が陽極箔の表面に行き渡りにくく、欠損した誘電体層の修復性に劣る。また、重合反応のための酸化剤やモノマー自体の強い反応性によって、陰極箔や陽極箔が腐食し、その結果、箔と導電性高分子層とのコンタクトも悪くなり、容量が低下したり、ESRが上昇したりする。重合後残留した酸化剤やモノマーは、洗浄によっても十分とりきれず、電解コンデンサの寿命にも悪影響を与える。
本発明では、導電性高分子の微粒子を分散媒に分散させた分散体または導電性高分子を溶媒に溶解させた溶液を用いて導電性高分子層を形成する。このような導電性高分子層は、分散体または溶液を陽極箔および陰極箔に接触させることにより、導電性高分子が陽極箔および陰極箔の周辺に付着することで形成される。このような導電性高分子層は、均質で、柔軟性が高く、電解液の保持性に優れるものの、導電性高分子層と陽極箔や陰極箔(または表面の無機系導電層)との密着性は低い。特に、電解液を用いる場合には、導電性高分子層と無機系導電層との間に電解液が浸み込んで、導電性高分子層と無機系導電層との接触が妨げられ易いため、高容量化が難しく、ESRを低減し難い。
本発明では、陰極箔の表面を粗面化し、粗面化した表面に無機系導電層を形成することで、分散体や溶液を用いて導電性高分子層を形成するにも拘わらず、導電性高分子層と無機系導電層との密着性を高めることができる。具体的に説明すると、粗面化した陰極箔の表面に無機系導電層を形成することで、無機系導電層の導電性高分子層と接触する側の表面にも凹凸が形成される。無機系導電層の表面の凸部では、無機系導電層と導電性高分子層とが接触している第1領域が形成され、凹部では、無機系導電層と導電性高分子層とが接触していない第2領域が形成される。第2領域では、無機系導電層と導電性高分子層との間に隙間が形成されるため、無機系導電層と導電性高分子層との間に電解液が浸み込んでも、この隙間に流れこむ。そのため、第1領域では、導電性高分子層と無機系導電層との間に電解液が入り込むのが抑制されたり、電解液が入り込む量もしくは層間に残存する量が低減されたりする。その結果、高い接触圧を確保することができ、導電性高分子層と無機系導電層との密着性の低下を抑制できるとともに、界面の抵抗が増加するのを抑制できる。
陰極箔表面の粗面化の程度は、拡面率で表すことができる。陰極箔表面の拡面率は、例えば、1.3~550cm2/cm2であり、1.5~500cm2/cm2が好ましく、2~120cm2/cm2であることがさらに好ましい。拡面率がこのような範囲である場合、第1領域と第2領域とがバランスよく形成されるため、導電性高分子層と無機系導電層との間の高い密着性を確保し易い。また、無機系導電層を形成する前に、水分、副生物またはガスなどが陰極箔表面に付着または吸着するのを抑制し易くなる。その結果、より均質な無機系導電層が形成され易くなるため、このような観点からも密着性の低下を抑制し易い。拡面率が、10~60cm2/cm2である場合、密着性の低下をさらに抑制できるため、長時間の使用において、容量の低下やESRの上昇を抑制することができる。
陰極箔の表面の粗面化は、公知の方法により行うことができ、例えば、エッチングにより粗面化してもよい。エッチング処理は、例えば、直流電解法または交流電解法などにより行ってもよい。充放電を繰り返した場合でも高容量を確保し易い観点から、粗面化はエッチングにより行うことが好ましい。
(無機系導電層)
無機系導電層は、層全体として、導電性を有する無機材料で形成されることが望ましく、有機系材料で形成される導電性高分子層とは区別される。
無機系導電層を形成する導電性の無機材料としては、導電性カーボンの他、金属または導電性の金属化合物などが挙げられる。導電性カーボンとしては、例えば、非晶質炭素、アセチレンブラックなどのカーボンブラック、ソフトカーボン、ハードカーボン、黒鉛、カーボンナノチューブなどの炭素繊維などが挙げられる。金属および金属化合物としては、空気との接触などにより不動態膜を形成しにくいものが好ましい。金属としては、例えば、チタン、チタン合金、ニッケル、ニッケル合金などが挙げられる。金属化合物としては、例えば、窒化物や炭化物などが挙げられ、窒化物が好ましい。金属化合物を構成する金属としては、チタンおよび/またはニッケルなどが例示できる。無機系導電層は、これらの無機材料を一種含んでいてもよく、二種以上含んでいてもよい。
無機系導電層は、上記の導電性の無機材料とバインダとを含んでもよいが、導電性の無機材料の割合ができるだけ高い方が好ましい。無機系導電層中の導電性の無機材料の量は、例えば、95質量%以上または99質量%以上であることが好ましい。また、無機系導電層は、上記の導電性の無機材料からなる層であってもよい。無機系導電層は、導電性の無機材料とバインダとを含む層を形成し、熱処理でバインダを除去することにより形成されるものであってもよい。中でも、無機系導電層は、導電性の無機材料(特に、非晶質炭素などの導電性カーボン)の堆積膜であることが好ましい。
なお、陰極箔と無機系導電層とが同じ材料で形成される場合でも、陰極箔と無機系導電層とは金属の分布状態が異なる(例えば、無機系導電層では陰極箔に比べて金属の分布状態が粗である)ため、例えば、断面の電子顕微鏡写真において、陰極箔と無機系導電層とを区別することができる。
無機系導電層と陰極箔との密着性を高める観点から、無機系導電層は、必要に応じて、導電性のベース層をさらに含んでもよい。無機系導電層の一部を構成するベース層は、例えば、上記で例示した導電性の無機材料のうち、金属、導電性の金属化合物などの導電性の無機材料を含むことが好ましい。金属としては、チタンが好ましく、金属化合物としては、窒化チタンが好ましい。
無機系導電層の厚みは、例えば、1nm~10μmである。無機系導電層が堆積膜である場合、無機系導電層の厚みは、例えば、1nm~100nmであり、導電性の無機材料とバインダとを含む層から形成される場合、無機系導電層の厚みは、例えば、100nm~10μmであってもよい。なお、無機系導電層の厚みは、断面の画像において複数箇所(例えば、10箇所)について測定した厚みを平均化した平均厚みであってもよい。
無機系導電層の厚みが上記のような範囲である場合、無機系導電層と導電性高分子層との密着性の低下を抑制し易く、高い導電性を確保し易い。
(セパレータ)
セパレータ23としては、例えば、セルロース、ポリエチレンテレフタレート、ビニロン、ポリアミド(例えば、脂肪族ポリアミド、アラミドなどの芳香族ポリアミド)の繊維を含む不織布などを用いてもよい。
コンデンサ素子10は、公知の方法により作製することができる。例えば、コンデンサ素子10は、誘電体層を形成した陽極箔21と無機系導電層を形成した陰極箔22とを、セパレータ23を介して重ね合わせた後、陽極箔21と陰極箔22との間に導電性高分子層を形成することにより作製してもよい。誘電体層を形成した陽極箔21と無機系導電層を形成した陰極箔22とを、セパレータ23を介して巻回することにより、図2に示されるような巻回体を形成し、陽極箔21と陰極箔22との間に導電性高分子層を形成することにより作製してもよい。巻回体を形成する際、リードタブ15A,15Bを巻き込みながら巻回することにより、図2に示すように、リードタブ15A,15Bを巻回体から植立させてもよい。
リードタブ15A,15Bの材料も特に限定されず、導電性材料であればよい。リードタブ15A、15Bは、その表面が化成処理されていてもよい。また、リードタブ15A、15Bの封止部材12と接触する部分や、リード線14A、14Bとの接続部分が、樹脂材料で覆われていてもよい。
リードタブ15A,15Bの各々に接続されるリード線14A,14Bの材料についても、特に限定されず、導電性材料などを用いてもよい。
陽極箔21、陰極箔22およびセパレータ23のうち、巻回体の最外層に位置するもの(図2では、陰極箔22)の外側表面の端部は、巻止めテープ24で固定される。なお、陽極箔21を大判の金属箔を裁断することによって準備した場合には、陽極箔21の裁断面に誘電体層を設けるために、巻回体などの状態のコンデンサ素子に対し、さらに化成処理を行ってもよい。
(導電性高分子層)
導電性高分子層は、陽極箔21と陰極箔22との間に介在する。導電性高分子層は、陽極箔21の表面に形成された誘電体層の少なくとも一部の表面に、誘電体層を覆うように形成することが好ましく、誘電体層のできるだけ多くの領域を覆うように形成することがより好ましい。導電性高分子層は、陰極箔22の表面に形成された無機系導電層の少なくとも一部の表面に、無機系導電層を覆うように形成することが好ましく、無機系導電層のできるだけ多くの領域を覆うように形成することがより好ましい。コンデンサ素子が、セパレータを含む場合、導電性高分子層は、誘電体層および無機系導電層の表面だけでなく、セパレータの表面に形成されていてもよい。
なお、導電性高分子の微粒子が分散媒に分散した分散体を用いて、導電性高分子層を形成する場合には、導電性高分子の微粒子の直径を、粗面化した陰極箔の表面の凹部の直径よりも小さくすることが好ましい、このようにすることで、導電性高分子の微粒子が、凹部の無機系導電層の表面にも付着し、電解コンデンサのESRをより低減することができる。
(導電性高分子)
導電性高分子層に含まれる導電性高分子としては、ポリピロール、ポリチオフェン、ポリフラン、ポリアニリン、ポリアセチレン、ポリフェニレン、ポリフェニレンビニレン、ポリアセン、ポリチオフェンビニレンなどが挙げられる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよく、2種以上のモノマーの共重合体でもよい。
なお、本明細書では、ポリピロール、ポリチオフェン、ポリフラン、ポリアニリンなどは、それぞれ、ポリピロール、ポリチオフェン、ポリフラン、ポリアニリンなどを基本骨格とする高分子を意味する。したがって、ポリピロール、ポリチオフェン、ポリフラン、ポリアニリンなどには、それぞれの誘導体も含まれ得る。例えば、ポリチオフェンには、ポリ(3,4-エチレンジオキシチオフェン)などが含まれる。
導電性高分子は、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。
導電性高分子の重量平均分子量は、特に限定されないが、例えば1,000~1,000,000である。
(ドーパント)
導電性高分子層は、ドーパントを含んでいてもよい。ドーパントは、導電性高分子にドープされた状態で導電性高分子層に含まれていてもよく、導電性高分子と結合した状態で導電性高分子層に含まれていてもよい。
ドーパントとしては、ポリアニオンを用いることができる。ポリアニオンの具体例としては、ポリビニルスルホン酸、ポリスチレンスルホン酸、ポリアリルスルホン酸、ポリアクリルスルホン酸、ポリメタクリルスルホン酸、ポリ(2-アクリルアミド-2-メチルプロパンスルホン酸)、ポリイソプレンスルホン酸、ポリアクリル酸などのポリアニオンが挙げられる。なかでも、ポリスチレンスルホン酸由来のポリアニオンが好ましい。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。また、これらは単独モノマーの重合体であってもよく、2種以上のモノマーの共重合体であってもよい。
ポリアニオンの重量平均分子量は、特に限定されないが、例えば1,000~1,000,000である。このようなポリアニオンを含む導電性高分子は、溶媒中に均質に分散し易く、誘電体層や無機系導電層の表面に均一に付着しやすい。
(電解液)
固体電解コンデンサでは、カーボン層のような無機系導電層を陰極箔の表面に形成すると、高容量化が期待される。しかし、電解液を用いると、陰極における静電容量の発生を抑制し難い。そのため、従来、無機系導電層と電解液とを組み合わせても現実には高容量化は難しいと考えられていた。ところが、意外にも、本発明では、粗面化した陰極箔表面に、無機系導電層を形成し、導電性高分子を含む分散体または溶液を用いて導電性高分子層を形成すると、電解液を用いる場合でも、導電性高分子層と無機系導電層との密着性が低下することが抑制され、高い容量を確保できるとともに、ESRを低減することができることが分かった。また、電解液を含むことで、誘電体層の修復機能をさらに向上させることもできる。
電解液としては、非水溶媒を用いてもよく、非水溶媒と非水溶媒に溶解したイオン性物質(溶質)とを含む溶液を用いてもよい。なお、非水溶媒とは、水および水を含む液体を除く液体の総称であり、有機溶媒やイオン性液体が含まれる。
非水溶媒としては、例えば、ポリオール(エチレングリコール、プロピレングリコールなどのアルキレングリコール;ポリエチレングリコールなどのポリアルキレングリコール;グリセリン、ポリグリセリンなどのグリセリン類など)、スルホランなどの環状スルホン類、γ-ブチロラクトン(γBL)などのラクトン類、N-メチルアセトアミド、N,N-ジメチルホルムアミド、N-メチル-2-ピロリドンなどのアミド類、酢酸メチルなどのエステル類、1,4-ジオキサンなどのエーテル類、メチルエチルケトンなどのケトン類、ホルムアルデヒドなどが挙げられる。非水溶媒は、一種を単独でまたは二種以上を組み合わせて使用してもよい。
電解液は、上記非水溶媒のうち、沸点を有さないか、または沸点が高い(例えば、180℃以上である)溶媒(第1溶媒)を少なくとも含むことが好ましい。電解液が第1溶媒を含む場合、電解コンデンサを長期間使用しても、電解液の枯渇を抑制できるため、長期にわたり高い信頼性を確保できる。しかし、電解液が第1溶媒を含む場合、充放電を繰り返すうちに、導電性高分子層と無機系導電層との間に浸み込んで、両層の密着性を損ない易い。特に、粗面化されていない陰極箔を用いる場合には、第1溶媒を含む電解液を用いると、導電性高分子層と無機系導電層との密着性が低く、導電性が低いため、容量を確保できず、ESRを低減できない。本発明では、陰極箔の粗面化された表面に無機系導電層を形成するため、電解液が第1溶媒を含む場合であっても、導電性高分子層と無機系導電層との高い密着性を確保することができる。
第1溶媒の沸点は、180℃以上であればよく、200℃以上であってもよい。第1溶媒としては、ポリオールが好ましい。ポリエチレングリコールやポリグリセリンなどは、分子量によって沸点を有さない場合もあるが、このような化合物(ただし、液体のもの)も第1溶媒として好ましい。
なお、第1溶媒は、必ずしも、電解コンデンサを組み立てる際に使用する電解液に含まれている必要はなく、電解コンデンサを組み立てる過程で用いられる処理液に含まれていてもよい。例えば、導電性高分子を含む分散体または溶液が第1溶媒を含んでいてもよい。導電性高分子層と陰極箔との密着性を確保し易い観点からは、分散体または溶液に含ませる第1溶媒の量は、分散体または溶液の50質量%以下であることが好ましい。第1溶媒は、沸点を有さないか、高沸点であるため、組み立てられた電解コンデンサ内に残存する。残存した第1溶媒は、電解コンデンサ内に収容された電解液に染み出すため、電解コンデンサ内の電解液には第1溶媒が含まれることになる。
電解液中に含まれる第1溶媒の量は、例えば、3~90質量%であり、10~80質量%であることが好ましい。また、電解液中に含まれる第1溶媒の量は、10~30質量%としてもよい。第1溶媒の量がこのような範囲である場合、導電性高分子層と無機系導電層との密着性が低下することが抑制されるとともに、誘電体層の修復機能を高めることができる。
電解液に含まれる溶質としては、アニオンおよびカチオンの塩が挙げられ、アニオンおよびカチオンの少なくとも一方が有機物である有機塩が好ましい。有機塩としては、マレイン酸トリメチルアミン、ボロジサリチル酸トリエチルアミン、フタル酸エチルジメチルアミン、フタル酸モノ1,2,3,4-テトラメチルイミダゾリニウム、フタル酸モノ1,3-ジメチル-2-エチルイミダゾリニウムなどが例示できる。溶質は、一種を単独でまたは二種以上を組み合わせて使用してもよい。
≪電解コンデンサの製造方法≫
以下に、本発明の実施形態に係る電解コンデンサの製造方法の一例について、工程ごとに説明する。
電解コンデンサは、導電性高分子を含む分散体または溶液(第1処理液)を調製する工程(第1工程)と、誘電体層が形成された陽極箔を準備する工程(第2工程)と、無機系導電層が形成された陰極箔を準備する工程(第3工程)と、陽極箔、陰極箔、および必要により陽極箔と陰極箔との間に介在するセパレータに、第1処理液を含浸させてコンデンサ素子を得る工程(第4工程)と、コンデンサ素子に電解液を含浸させる工程(第5工程)を経ることにより得ることができる。第4工程を経ることにより、導電性高分子層を形成することができる。適当な段階で、溶媒成分を除去してもよい。
(i)第1工程
第1工程では、導電性高分子(およびドーパント)と、溶媒(第2溶媒)とを含む第1処理液を調製する。
第1処理液は、例えば、導電性高分子(およびドーパント)を、第2溶媒に分散または溶解させることにより得ることができる。また、第1処理液は、例えば、第2溶媒中で、ドーパントの存在下、導電性高分子の原料(例えば、導電性高分子のモノマーおよび/またはオリゴマーなどの前駆体)を重合させることにより得ることもできる。重合により第1処理液を調製する場合、必要に応じて、未反応の原料や副生成物を除去してもよい。また、第2溶媒の一部を用いて重合を行った後、得られた混合物に第2溶媒の残部を添加してもよい。
第2溶媒は、特に限定されず、水でもよく、非水溶媒(有機溶媒、イオン性液体など)でもよい。なかでも、第2溶媒は、極性溶媒であることが好ましい。極性溶媒は、プロトン性溶媒であっても、非プロトン性溶媒であってもよい。
プロトン性溶媒としては、例えば、一価アルコール(メタノール、エタノール、プロパノール、ブタノールなど)、ポリオール(エチレングリコール、プロピレングリコールなどのアルキレングリコール;ポリエチレングリコールなどのポリアルキレングリコール;グリセリン、ポリグリセリンなどのグリセリン類など)、ジエチレングリコールモノブチルエーテルなどのグリコールモノエーテル、ホルムアルデヒドおよび水などが挙げられる。
非プロトン性溶媒としては、例えば、N-メチルアセトアミド、N,N-ジメチルホルムアミド、N-メチル-2-ピロリドンなどのアミド類、酢酸メチルなどのエステル類、メチルエチルケトン、γ-ブチロラクトンなどのケトン類、1,4-ジオキサンなどのエーテル類(環状エーテルなど)、ジメチルスルホキシド、スルホランなどのスルホン類、炭酸プロピレンなどのカーボネート化合物(環状カーボネートなど)などが挙げられる。
なかでも、第2溶媒は、プロトン性溶媒であることが好ましい。第1処理液の取り扱い性および導電性高分子の分散性を高める観点からは、第2溶媒が水を含むことが好ましい。第2溶媒が、ポリオールを含む場合、導電性高分子層の導電性を高め易い(つまり、ESRをさらに低下し易い)。よって、第2溶媒がポリオールを含む場合も好ましく、少なくとも水およびポリオールを含む第2溶媒を用いる場合も好ましい。
第1処理液としては、導電性高分子(およびドーパント)が第2溶媒中に分散した分散体が好ましい。分散体において、導電性高分子および/またはドーパントは、粒子(または粉末)であることが好ましい。分散体中に分散された粒子の平均粒径は、5~100nmであることが好ましい。平均粒径は、例えば、動的光散乱法による粒径分布から求めることができる。
第1処理液に含まれるドーパントの量は、導電性高分子100質量部に対して、10~1000質量部であることが好ましく、50~200質量部であることがさらに好ましい。
第1処理液における導電性高分子(ドーパントもしくはポリアニオンを含む)の濃度は0.5~3質量%であることが好ましい。このような濃度の第1処理液は、適度な量の導電性高分子を付着させるのに適するとともに、含浸されやすいため、生産性を向上させる上でも有利である。
第1処理液は、必要に応じて、公知の添加剤などを含んでいてもよい。
(ii)第2工程
第2工程では、前述のように、陽極箔の表面を例えば化成処理することにより、陽極箔の表面に誘電体層を形成する。
(iii)第3工程
第3工程では、表面に無機系導電層が形成された陰極箔を準備する。
無機系導電層は、粉末状の導電性の無機材料を陰極箔の表面に付着させるか、真空蒸着などの方法で形成することができる。また、無機系導電層は、導電性の無機材料とバインダとを含むペーストやスラリーを陰極箔の表面に塗布して塗膜を形成し、塗膜を乾燥することで形成してもよく、塗膜を熱処理してバインダを除去することにより形成してもよい。
導電性の無機材料(特に、非晶質炭素などの導電性カーボン)の堆積膜を含む無機系導電層は、例えば、化学気相蒸着、真空蒸着、スパッタリング、イオンプレーティングなどの気相法を利用して、陰極箔の表面に上記の無機材料などを堆積させることにより形成できる。例えば、金属窒化物を含む無機系導電層は、気相法を窒素ガス雰囲気下で行うことで形成してもよい。
第3工程では、必要に応じて、陰極箔の表面にベース層を形成し、ベース層上に上記のようにして導電性の無機材料を含む層を形成することで、無機系導電層を形成してもよい。無機系導電層を構成するベース層は、金属や導電性化合物などの導電性の無機材料を用いて、上記と同様にして形成することができる。ベース層は、気相法を利用して導電性の無機材料を陰極箔の表面に堆積させることにより形成することが好ましい。
(iv)第4工程
第4工程では、第1処理液を、誘電体層が形成された陽極箔、無機系導電層が形成された陰極箔、および必要によりセパレータに含浸させる。より具体的には、第4工程では、誘電体層が形成された陽極箔と、無機系導電層が形成された陰極箔とを、これらの間にセパレータを介在させた状態で巻回された巻回体に、第1処理液を含浸させてもよい。第1処理液の含浸は、巻回体を第1処理液に浸漬することにより行ってもよく、巻回体に第1処理液を注液することにより行ってもよい。なお、無機系導電層は、陰極箔を粗面化し、気相法により、粗面化された陰極箔の表面に導電性を有する無機材料を堆積させることにより形成できる。
第1処理液の含浸は、大気圧下で行ってもよいが、減圧下、例えば、10~100kPa、好ましくは40~100kPaの雰囲気下で行ってもよい。含浸は、必要に応じて、超音波振動下で行ってもよい。含浸時間は、コンデンサ素子10のサイズにもよるが、例えば1秒~5時間、好ましくは1分~30分である。
第1処理液を陽極箔および陰極箔(さらにセパレータ)に含浸させた後、必要に応じて、乾燥させてもよい。乾燥により、第2溶媒の少なくとも一部が除去される。乾燥は、加熱下で行ってもよく、必要に応じて、減圧下で行ってもよい。
このように、第4工程を経ることにより、陽極箔と陰極箔との間に導電性高分子層が形成され、これにより、コンデンサ素子10が形成される。
(v)第5工程
第5工程では、第4工程で得られたコンデンサ素子に、電解液を含浸させる。
コンデンサ素子10への電解液の含浸は、特に制限されず公知の方法で行うことができる。例えば、電解液にコンデンサ素子10を浸漬させてもよく、コンデンサ素子10を収容した容器内に電解液を注液してもよい。コンデンサ素子10への電解液の含浸は、必要に応じて、減圧下(例えば、10~100kPa)で行ってもよい。
(その他)
コンデンサ素子10は、封止してもよい。より具体的には、まず、リード線14A,14Bが有底ケース11の開口する上面に位置するように、コンデンサ素子10を有底ケース11に収納する。有底ケース11の材料としては、アルミニウム、ステンレス鋼、銅、鉄、真鍮などの金属あるいはこれらの合金を用いることができる。
次に、リード線14A,14Bが貫通するように形成された封止部材12を、コンデンサ素子10の上方に配置し、コンデンサ素子10を有底ケース11内に封止する。封止部材12は、絶縁性物質であればよい。絶縁性物質としては弾性体が好ましく、中でも耐熱性の高いシリコーンゴム、フッ素ゴム、エチレンプロピレンゴム、クロロスルホン化ポリエチレンゴム(ハイパロンゴムなど)、ブチルゴム、イソプレンゴムなどが好ましい。
次に、有底ケース11の開口端近傍に、横絞り加工を施し、開口端を封止部材12に加締めてカール加工する。そして、カール部分に座板13を配置することによって、図1に示すような電解コンデンサが完成する。その後、定格電圧を印加しながら、エージング処理を行ってもよい。
上記の実施形態では、巻回型の電解コンデンサについて説明したが、本発明の適用範囲は上記に限定されず、他の電解コンデンサ、例えば、陽極箔に代えて金属の焼結体を用いるチップ型の電解コンデンサや、陽極箔に代えて金属板を用いる積層型の電解コンデンサにも適用することができる。
以下、本発明を実施例および比較例に基づいて具体的に説明するが、本発明は以下の実施例に限定されるものではない。
《実施例1》
下記の手順で、図1に示すような、定格電圧35V、定格静電容量47μFの巻回型の電解コンデンサを作製し、評価を行った。
(1)電解コンデンサの製造
(誘電体層を有する陽極箔の準備)
厚さ100μmのアルミニウム箔にエッチング処理を行い、アルミニウム箔の表面を粗面化した。その後、アルミニウム箔の表面に、アジピン酸アンモニウム水溶液を用いる化成処理により、誘電体層を形成し、誘電体層を有する陽極箔を準備した。
(無機系導電層を有する陰極箔の準備)
陰極箔の表面に形成された無機系導電層を有する陰極箔を準備した。陰極箔としては、エッチング処理で表面を粗面化した、拡面率30cm2/cm2のアルミニウム箔(厚み:30μm)を用いた。陰極箔の表面に、導電性カーボンのイオンプレーティングにより無機系導電層を形成した。無機系導電層の厚みは8nmであった。
(巻回体の作製)
陽極箔および陰極箔に陽極リードタブおよび陰極リードタブを接続し、陽極箔と陰極箔とを、リードタブを巻き込みながら、セパレータを介して巻回することにより巻回体を得た。巻回体から突出する各リードタブの端部には、陽極リード線および陰極リード線をそれぞれ接続した。そして、作製された巻回体に対して、再度化成処理を行い、陽極箔の切断された端部に誘電体層を形成した。次に、巻回体の外側表面の端部を巻止めテープで固定した。
(第1処理液の調製)
3,4-エチレンジオキシチオフェンと、ドーパントとしてのポリスチレンスルホン酸とを、イオン交換水に溶かした混合溶液を調製した。得られた溶液を撹拌しながら、イオン交換水に溶解させた硫酸第二鉄および過硫酸ナトリウム(酸化剤)を添加し、重合反応を行った。反応後、得られた反応液を透析して、未反応モノマーおよび過剰な酸化剤を除去し、ポリスチレンスルホン酸がドープされたポリ3,4-エチレンジオキシチオフェン(PEDOT-PSS)を含む分散液を得た。分散液中のPEDOT-PSSの濃度は約2質量%であり、PSSとPEDOTとの質量比(=PSS:PEDOT)は、約2:1であった。得られた分散液に5質量%のエチレングリコール(第2溶媒)を添加して攪拌することにより、分散液状の第1処理液を調製した。
(第1処理液の含浸)
第1処理液を、巻回体に5分間含浸させた。次いで、巻回体を、150℃で20分間加熱することにより、溶媒成分を除去した。このようにして、陽極箔と陰極箔との間に導電性高分子層が形成されたコンデンサ素子を作製した。
(電解液の含浸)
次いで、コンデンサ素子に、減圧下で電解液を含浸させた。電解液としては、γBL:グリセリン:フタル酸モノ(エチルジメチルアミン)(溶質)=50:25:25(質量比)で含む溶液を用いた。電解液において、γBLおよびグリセリンは第1溶媒である。(コンデンサ素子の封止)
電解液を含浸させたコンデンサ素子を、図1に示すような外装ケースに収容し、封止して、電解コンデンサを作製した。同様にして、合計300個の電解コンデンサを作製した。
(2)性能評価
(a)静電容量およびESR値
電解コンデンサの初期特性として、静電容量(μF)およびESR値(mΩ)を測定した。具体的には、電解コンデンサについて4端子測定用のLCRメータを用いて、周波数120Hzにおける初期静電容量(μF)を測定した。また、4端子測定用のLCRメータを用いて、電解コンデンサの周波数100kHzにおけるESR値(mΩ)を測定した。
温度125℃で、4000時間高温放置試験をした後の静電容量(μF)およびESR値(mΩ)についても、上記の初期特性の場合と同様にして測定した。
静電容量およびESR値は、それぞれ、ランダムに選択した120個の電解コンデンサについて測定し、平均値を算出した。
(b)電解液中の第1溶媒量
電解コンデンサから電解液を抜き出して、ガスクロマトグラフィーにより、電解液中に含まれる第1溶媒の量(質量%)を測定した。その結果、電解液中の第1溶媒の量は76質量%であった。
《比較例1》
陰極箔として、粗面化していないアルミニウム箔(厚み:20μm)を用いたこと以外は、実施例1と同様に、電解コンデンサを作製し、性能評価を行った。なお、使用したアルミニウム箔の拡面率は1cm2/cm2であった。
《実施例2》
陰極箔として、エッチング処理で表面を粗面化した、拡面率1.5cm2/cm2のアルミニウム箔(厚み:30μm)を用いたこと以外は、実施例1と同様に、電解コンデンサを作製し、性能評価を行った。
《実施例3》
陰極箔として、エッチング処理で表面を粗面化した、拡面率2cm2/cm2のアルミニウム箔(厚み:20μm)を用いたこと以外は、実施例1と同様に、電解コンデンサを作製し、性能評価を行った。
《実施例4》
陰極箔として、エッチング処理で表面を粗面化した、拡面率10cm2/cm2のアルミニウム箔(厚み:20μm)を用いたこと以外は、実施例1と同様に、電解コンデンサを作製し、性能評価を行った。
《実施例5》
陰極箔として、エッチング処理で表面を粗面化した、拡面率60cm2/cm2のアルミニウム箔(厚み:40μm)を用いたこと以外は、実施例1と同様に、電解コンデンサを作製し、性能評価を行った。
《実施例6》
陰極箔として、エッチング処理で表面を粗面化した、拡面率80cm2/cm2のアルミニウム箔(厚み:50μm)を用いたこと以外は、実施例1と同様に、電解コンデンサを作製し、性能評価を行った。
《実施例7》
陰極箔として、エッチング処理で表面を粗面化した、拡面率120cm2/cm2のアルミニウム箔(厚み:70μm)を用いたこと以外は、実施例1と同様に、電解コンデンサを作製し、性能評価を行った。
《実施例8》
陰極箔として、エッチング処理で表面を粗面化した、拡面率500cm2/cm2のアルミニウム箔(厚み:130μm)を用いたこと以外は、実施例1と同様に、電解コンデンサを作製し、性能評価を行った。
《実施例9》
陰極箔の表面に、ニッケルの真空蒸着により無機系導電層(厚み10nm)を形成したこと以外は、実施例1と同様に、電解コンデンサを作成し、性能評価を行なった。
《実施例10》
陰極箔の表面に、真空蒸着により窒化チタンからなる無機系導電層(厚み10nm)を形成したこと以外は、実施例1と同様に、電解コンデンサを作成し、性能評価を行なった。
《比較例2》
実施例5と同じ陰極箔を、無機系導電層を形成せずに用いたこと以外は、実施例5と同様に、電解コンデンサを作製し、性能評価を行った。
《比較例3》
重合性モノマーである3,4-エチレンジオキシチオフェン1質量部と、酸化剤兼ドーパント成分としてのp-トルエンスルホン酸第二鉄2質量部と、溶剤であるn-ブタノール4質量部とを混合して溶液を調製した。得られた溶液中に、実施例1と同様に作製した巻回体を浸漬し、引き上げた後、85℃で60分間放置することにより、陽極箔と陰極箔との間に導電性高分子層が形成されたコンデンサ素子を作製した。得られたコンデンサ素子を用いる以外は、実施例1と同様に、電解コンデンサを作製し、性能評価を行なった。電解コンデンサの電解液中の第1溶媒の量は75質量%であった。
《比較例4》
比較例4では、電解液を用いない固体電解コンデンサを作製した。実施例1と同様に、陽極箔と陰極箔との間に導電性高分子層が形成されたコンデンサ素子を作製した。得られたコンデンサ素子を外装ケースに収容し、封止して、固体電解コンデンサとし、実施例1と同様に性能評価を行なった。
実施例および比較例の結果を表1に示す。実施例1~10はA1~A10であり、比較例1~4はB1~B4である。
Figure 2023053035000002
表1に示されるように、実施例では、初期の容量が高く、初期のESRも低く抑えられている。粗面化されていない陰極箔を用いた比較例1では、初期容量は高いものの、ESRが高くなった。また、無機系導電層を形成していない比較例2では、容量が低くなった。重合により導電性高分子層を形成した比較例3では、ESRが高くなった。
実施例では、4000時間高温で放置した後でも、比較的高い容量を確保できており、ESRの上昇が抑制されている。それに対し、4000時間高温で放置した後には、比較例1および3では容量が低下し、ESRが顕著に高くなっており、比較例2では、容量が大きく低下している。
表1には記載していないが、比較例4では、4000時間高温放置した後の、漏れ電流値の上昇が、実施例1~10および比較例1~4よりも大きな値となっていた。
本発明は、導電性高分子層と電解液とを含む電解コンデンサに利用することができる。
10:コンデンサ素子、11:有底ケース、12:封止部材、13:座板、14A,14B:リード線、15A,15B:リードタブ、21:陽極箔、22:陰極箔、23:セパレータ、24:巻止めテープ

Claims (13)

  1. コンデンサ素子と電解液とを備え、
    前記コンデンサ素子は、
    誘電体層が形成された陽極箔と、
    前記陽極箔と対向し、かつ無機系導電層が形成された陰極箔と、
    前記陽極箔と前記陰極箔との間に介在し、かつ導電性高分子を含む導電性高分子層と、を備え、
    前記陰極箔の表面の拡面率は、1.5~500cm/cmであり、
    前記電解液は、前記コンデンサ素子に含浸されており、
    前記無機系導電層の表面には、前記無機系導電層と前記導電性高分子層とが接触している第1領域が形成され、前記無機系導電層の前記表面の凹部では、前記無機系導電層と前記導電性高分子層とが接触していない第2領域が形成され、
    前記第2領域において、前記無機系導電層と前記導電性高分子層との間に前記電解液が入り込んでおり、
    前記導電性高分子層は、ポリアニオンを含む、電解コンデンサ。
  2. 前記陰極箔は、エッチングにより粗面化されている、請求項1に記載の電解コンデンサ。
  3. 前記無機系導電層は、カーボン、ニッケル、ニッケル化合物、チタン、およびチタン化合物からなる群より選択される少なくとも一種を含む、請求項1または2に記載の電解コンデンサ。
  4. 前記電解液は、第1溶媒を含み、
    前記第1溶媒は、沸点を有さないか、または沸点が180℃以上である、請求項1に記載の電解コンデンサ。
  5. 前記第1溶媒はポリオールを含む、請求項4に記載の電解コンデンサ。
  6. 前記ポリオールは、グリセリン類を含む、請求項5に記載の電解コンデンサ。
  7. 前記電解液中に含まれる前記第1溶媒の量は、3~90質量%である、請求項4~6のいずれか1項に記載の電解コンデンサ。
  8. コンデンサ素子と、前記コンデンサ素子に含浸された電解液とを備え、
    前記コンデンサ素子は、
    表面に誘電体層が形成された陽極箔と、
    前記陽極箔に対向する陰極箔と、
    前記陽極箔と前記陰極箔との間に介在する導電性高分子層とを備え、
    前記陰極箔の表面には、無機系導電層が形成され、
    前記無機系導電層は、表面に凸部と凹部とを有し、
    前記凸部上には、前記無機系導電層と前記導電性高分子層とが接触した第1領域が形成され、
    前記凹部上には、前記無機系導電層と前記導電性高分子層との間に前記電解液が入り込んだ第2領域が形成されており、
    前記導電性高分子層は、ポリアニオンを含む、電解コンデンサ。
  9. 前記無機系導電層は、カーボン、ニッケル、ニッケル化合物、チタン、およびチタン化合物からなる群より選択される少なくとも一種を含む、請求項8に記載の電解コンデンサ。
  10. 前記電解液は、第1溶媒を含み、
    前記第1溶媒は、沸点を有さないか、または沸点が180℃以上である、請求項8に記載の電解コンデンサ。
  11. 前記第1溶媒はポリオールを含む、請求項10に記載の電解コンデンサ。
  12. 前記ポリオールは、グリセリン類を含む、請求項11に記載の電解コンデンサ。
  13. 前記電解液中に含まれる前記第1溶媒の量は、3~90質量%である、請求項10~12のいずれか1項に記載の電解コンデンサ。
JP2023017651A 2015-04-28 2023-02-08 電解コンデンサ Pending JP2023053035A (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015091447 2015-04-28
JP2015091447 2015-04-28
JP2017515365A JP7054870B2 (ja) 2015-04-28 2016-03-10 電解コンデンサ
JP2021087039A JP7233015B2 (ja) 2015-04-28 2021-05-24 電解コンデンサおよびその製造方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2021087039A Division JP7233015B2 (ja) 2015-04-28 2021-05-24 電解コンデンサおよびその製造方法

Publications (1)

Publication Number Publication Date
JP2023053035A true JP2023053035A (ja) 2023-04-12

Family

ID=57199054

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2017515365A Active JP7054870B2 (ja) 2015-04-28 2016-03-10 電解コンデンサ
JP2021087039A Active JP7233015B2 (ja) 2015-04-28 2021-05-24 電解コンデンサおよびその製造方法
JP2023017651A Pending JP2023053035A (ja) 2015-04-28 2023-02-08 電解コンデンサ

Family Applications Before (2)

Application Number Title Priority Date Filing Date
JP2017515365A Active JP7054870B2 (ja) 2015-04-28 2016-03-10 電解コンデンサ
JP2021087039A Active JP7233015B2 (ja) 2015-04-28 2021-05-24 電解コンデンサおよびその製造方法

Country Status (5)

Country Link
US (4) US10262806B2 (ja)
JP (3) JP7054870B2 (ja)
CN (2) CN110400697B (ja)
DE (1) DE112016001993T5 (ja)
WO (1) WO2016174806A1 (ja)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110400697B (zh) * 2015-04-28 2023-03-03 松下知识产权经营株式会社 电解电容器
JP7117552B2 (ja) * 2015-05-28 2022-08-15 パナソニックIpマネジメント株式会社 電解コンデンサ
DE112016005410T5 (de) 2015-11-27 2018-09-20 Panasonic Intellectual Property Management Co., Ltd. Elektrolytkondensator und Verfahren zur seiner Herstellung
JP2018140126A (ja) * 2017-02-28 2018-09-13 株式会社三洋物産 遊技機
JP2018140123A (ja) * 2017-02-28 2018-09-13 株式会社三洋物産 遊技機
JP7287393B2 (ja) * 2018-06-11 2023-06-06 日本ケミコン株式会社 電極体、電極体を備える電解コンデンサ、及び電極体の製造方法
JP7076844B2 (ja) 2018-07-26 2022-05-30 サン電子工業株式会社 電解コンデンサ
CN116364438A (zh) 2018-09-20 2023-06-30 太阳电子工业株式会社 电解电容器
JP7363794B2 (ja) * 2018-09-21 2023-10-18 日本ケミコン株式会社 電極体、電極体を備える電解コンデンサ、及び電極体の製造方法
JP7308405B2 (ja) * 2018-10-31 2023-07-14 パナソニックIpマネジメント株式会社 電解コンデンサ及び電解コンデンサの製造方法
WO2020158783A1 (ja) 2019-01-31 2020-08-06 パナソニックIpマネジメント株式会社 導電性高分子分散液、電解コンデンサならびに電解コンデンサの製造方法
US11152161B2 (en) * 2019-09-03 2021-10-19 Kemet Electronics Corporation Aluminum polymer capacitor with enhanced internal conductance and breakdown voltage capability
KR20220110507A (ko) * 2019-12-17 2022-08-08 니폰 케미콘 가부시키가이샤 고체 전해 콘덴서 및 그 제조 방법
JPWO2021125182A1 (ja) 2019-12-17 2021-06-24
WO2021125220A1 (ja) * 2019-12-18 2021-06-24 日本ケミコン株式会社 電解コンデンサ
WO2022235814A1 (en) * 2021-05-04 2022-11-10 Saras Micro Devices, Inc. Infiltration and drying under pressure for conductive polymer coating on porous substrates
JP2023002273A (ja) * 2021-06-22 2023-01-10 日本ケミコン株式会社 電解コンデンサ、陰極体及び電解コンデンサの製造方法
JP2023002276A (ja) * 2021-06-22 2023-01-10 日本ケミコン株式会社 電解コンデンサ、陰極体及び電解コンデンサの製造方法
CN113611539B (zh) * 2021-07-13 2022-04-22 乳源县立东电子科技有限公司 一种低压软态腐蚀阳极铝箔及其制备方法和应用
JP2023023117A (ja) * 2021-08-04 2023-02-16 日本ケミコン株式会社 電解コンデンサ
WO2023054504A1 (ja) * 2021-09-30 2023-04-06 日本ケミコン株式会社 固体電解コンデンサ及び製造方法

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61180420A (ja) * 1985-02-05 1986-08-13 昭和アルミニウム株式会社 電解コンデンサ用陰極材料
JPS61214420A (ja) * 1985-03-19 1986-09-24 昭和アルミニウム株式会社 電解コンデンサ用陰極材料
US4734821A (en) 1986-05-13 1988-03-29 Asahi Glass Company Ltd. Electrolytic capacitor
JPS63100711A (ja) 1986-10-16 1988-05-02 昭和アルミニウム株式会社 電解コンデンサ用電極材料の製造方法
JPS63160322A (ja) 1986-12-24 1988-07-04 昭和アルミニウム株式会社 電解コンデンサ用アルミニウム電極材料
DE3773870D1 (de) 1986-12-24 1991-11-21 Showa Aluminium Co Ltd Eine aluminium-kondensatorelektrode fuer elektrolytische kondensatoren und verfahren zu ihrer herstellung.
JPH0529180A (ja) * 1991-07-22 1993-02-05 Elna Co Ltd 電解コンデンサ
JP3439064B2 (ja) * 1997-03-27 2003-08-25 三洋電機株式会社 固体電解コンデンサ
JPH11283874A (ja) * 1998-01-28 1999-10-15 Matsushita Electric Ind Co Ltd 電解コンデンサ
KR101112019B1 (ko) 2002-11-08 2012-02-24 미쯔비시 가가꾸 가부시끼가이샤 전해콘덴서
JP2005100276A (ja) 2003-09-26 2005-04-14 Mazda Motor Corp 情報処理システム、情報処理装置、情報処理方法及びプログラム
JP2005109276A (ja) * 2003-09-30 2005-04-21 Nippon Chemicon Corp 固体電解コンデンサ
JP2005223197A (ja) 2004-02-06 2005-08-18 Shoei Co Ltd 電解コンデンサ
JP4379156B2 (ja) * 2004-03-03 2009-12-09 パナソニック株式会社 アルミ電解コンデンサ
KR101000098B1 (ko) 2004-09-29 2010-12-09 도요 알루미늄 가부시키가이샤 캐패시터용 전극부재, 그의 제조 방법 및 그 전극부재를구비하는 캐패시터
JP4392313B2 (ja) 2004-09-29 2009-12-24 東洋アルミニウム株式会社 固体電解コンデンサ用電極部材とその製造方法、および固体電解コンデンサ用電極部材を用いた固体電解コンデンサ
JP5093978B2 (ja) 2004-09-30 2012-12-12 日本ケミコン株式会社 固体電解コンデンサ及びその製造方法
JP2006190878A (ja) * 2005-01-07 2006-07-20 Saga Sanyo Industries Co Ltd 電解コンデンサ及びその製造方法
JP5305569B2 (ja) 2006-06-29 2013-10-02 三洋電機株式会社 電解コンデンサの製造方法および電解コンデンサ
JP2008066502A (ja) * 2006-09-07 2008-03-21 Matsushita Electric Ind Co Ltd 電解コンデンサ
CN101093751B (zh) * 2006-11-17 2010-05-19 深圳清华大学研究院 高比容阴极箔的制备方法
US8837115B2 (en) * 2009-09-30 2014-09-16 Sanyo Electric Co., Ltd. Electrolytic capacitor
JP2011082313A (ja) 2009-10-06 2011-04-21 Shin Etsu Polymer Co Ltd 固体電解キャパシタ及びその製造方法
CN102763181B (zh) 2010-02-15 2017-02-15 松下知识产权经营株式会社 电解电容器
JP4940362B1 (ja) * 2011-02-21 2012-05-30 日本蓄電器工業株式会社 固体電解コンデンサ用電極箔
BR112013021247B1 (pt) 2011-02-21 2021-06-22 Japan Capacitor Industrial Co., Ltd Material de eletrodo, capacitor eletrolítico sólido, folha de catodo para uso em um capacitor eletrolítico sólido, coletor de corrente para um eletrodo, eletrodos positivo e negativo para uma bateria secundária eletrolítica não aquosa e para um capacitor híbrido eletrolítico não aquoso, bateria secundária eletrolítica não aquosa, eletrodo para um capacitor de camada elétrica dupla eletrolítica não aquosa, capacitor de camada elétrica dupla eletrolítica não aquosa, e, capacitor híbrido eletrolítico não aquoso
JP5327255B2 (ja) * 2011-03-29 2013-10-30 パナソニック株式会社 電解コンデンサの製造方法
CN103534774B (zh) 2011-05-16 2015-05-27 松下电器产业株式会社 电极箔、其制造方法以及电容器
JP5934878B2 (ja) * 2011-07-25 2016-06-15 パナソニックIpマネジメント株式会社 電解コンデンサおよびその製造方法
US8573678B2 (en) * 2011-08-03 2013-11-05 Cyc Engineering, Inc. Tension control assembly for flexible tonneau cover system of pick-up truck
JP6618106B2 (ja) * 2012-07-31 2019-12-11 日本ケミコン株式会社 固体電解コンデンサ及びその製造方法
JP2014130854A (ja) 2012-12-28 2014-07-10 Carlit Holdings Co Ltd 電解コンデンサ用電解液及び電解コンデンサ
JP6187740B2 (ja) 2013-03-25 2017-08-30 エルナー株式会社 アルミニウム電解コンデンサの製造方法
WO2014208607A1 (ja) 2013-06-28 2014-12-31 カーリットホールディングス株式会社 電解コンデンサ用電解液及び電解コンデンサ
CN110400697B (zh) 2015-04-28 2023-03-03 松下知识产权经营株式会社 电解电容器
JP7117552B2 (ja) * 2015-05-28 2022-08-15 パナソニックIpマネジメント株式会社 電解コンデンサ

Also Published As

Publication number Publication date
US10896783B2 (en) 2021-01-19
US20190259541A1 (en) 2019-08-22
CN110400697B (zh) 2023-03-03
CN107533923B (zh) 2019-08-30
JPWO2016174806A1 (ja) 2018-02-22
US20210098199A1 (en) 2021-04-01
JP7054870B2 (ja) 2022-04-15
WO2016174806A1 (ja) 2016-11-03
US11348739B2 (en) 2022-05-31
DE112016001993T5 (de) 2018-01-04
US10685788B2 (en) 2020-06-16
US20180047511A1 (en) 2018-02-15
US10262806B2 (en) 2019-04-16
JP2021145135A (ja) 2021-09-24
JP7233015B2 (ja) 2023-03-06
US20200266004A1 (en) 2020-08-20
CN107533923A (zh) 2018-01-02
CN110400697A (zh) 2019-11-01

Similar Documents

Publication Publication Date Title
JP7233015B2 (ja) 電解コンデンサおよびその製造方法
JP7361284B2 (ja) 電解コンデンサの製造方法
JP7233016B2 (ja) 電解コンデンサおよびその製造方法
JP6528087B2 (ja) 電解コンデンサの製造方法
JP6803519B2 (ja) 電解コンデンサの製造方法
US9892858B2 (en) Method for manufacturing electrolytic capacitor
WO2021166927A1 (ja) 電解コンデンサおよびその製造方法
JP7407371B2 (ja) 電解コンデンサ
JP2023029570A (ja) 電解コンデンサ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230224