JP2020511007A - 三次元メモリおよび方法 - Google Patents

三次元メモリおよび方法 Download PDF

Info

Publication number
JP2020511007A
JP2020511007A JP2019548927A JP2019548927A JP2020511007A JP 2020511007 A JP2020511007 A JP 2020511007A JP 2019548927 A JP2019548927 A JP 2019548927A JP 2019548927 A JP2019548927 A JP 2019548927A JP 2020511007 A JP2020511007 A JP 2020511007A
Authority
JP
Japan
Prior art keywords
source gas
doped
layer
forming
dopant source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019548927A
Other languages
English (en)
Other versions
JP7039608B2 (ja
Inventor
フア・ウェンユ
シア・ジリアン
ジアン・ヤンボ
リウ・ファンドン
ホン・ペイゼン
フ・フェンフア
ヤン・ヤオフア
ゼン・ミン
フオ・ゾンリアン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yangtze Memory Technologies Co Ltd
Original Assignee
Yangtze Memory Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yangtze Memory Technologies Co Ltd filed Critical Yangtze Memory Technologies Co Ltd
Publication of JP2020511007A publication Critical patent/JP2020511007A/ja
Application granted granted Critical
Publication of JP7039608B2 publication Critical patent/JP7039608B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/20EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/401Multistep manufacturing processes
    • H01L29/4011Multistep manufacturing processes for data storage electrodes
    • H01L29/40117Multistep manufacturing processes for data storage electrodes the electrodes comprising a charge-trapping insulator
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66833Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a charge trapping gate insulator, e.g. MNOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/792Field effect transistors with field effect produced by an insulated gate with charge trapping gate insulator, e.g. MNOS-memory transistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/20EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels
    • H10B43/23EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels
    • H10B43/27EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels the channels comprising vertical portions, e.g. U-shaped channels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/30EEPROM devices comprising charge-trapping gate insulators characterised by the memory core region
    • H10B43/35EEPROM devices comprising charge-trapping gate insulators characterised by the memory core region with cell select transistors, e.g. NAND
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/50EEPROM devices comprising charge-trapping gate insulators characterised by the boundary region between the core and peripheral circuit regions

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

本開示は、三次元メモリデバイスのための方法および構造を説明する。この方法は、底部基板を提供することと、底部基板上に複数のドープ層を形成することとを含む。複数のドープ層は、複数のドープ層の上面が実質的に平坦であり、かつ複数のドープ層の各々のドーピング濃度が複数のドープ層の上面に実質的に垂直な方向に沿って実質的に均一であるような厚さ範囲内の総厚を有する。

Description

関連出願の相互参照
本出願は、2017年3月7日に出願された中国特許出願第201710131749.3号の優先権を主張し、中国特許出願の内容全体は参照により本明細書に組み込まれる。
フラッシュメモリデバイスは急速に開発されている。フラッシュメモリデバイスは、電源を入れなくても相当に長い時間データを記憶することができ、高い統合レベル、高速アクセス、容易な消去、および書き換えなどの利点があり、したがって、不揮発性メモリストレージの主流になっている。異なる構造に基づいて、フラッシュメモリは非NANDフラッシュメモリ(例えばNORフラッシュメモリ)とNANDフラッシュメモリとに分かれる。NORフラッシュメモリと比較して、NANDフラッシュメモリは、より高いセル密度、より高いストレージ密度、ならびにより高速な書き込みおよび消去動作を可能にする。
平面フラッシュメモリの開発により、フラッシュメモリの半導体製造プロセスは大きく進歩した。ただし、平面フラッシュメモリの開発は、現在、露光技術の制限、開発技術の制限、ストレージ電子密度の制限を含む物理的な制限など、様々な課題に直面している。したがって、平面フラッシュメモリが直面する課題に対処し、より低い生産コストを追求するために、三次元(3D)フラッシュメモリアプリケーションが開発されている。
本開示は、フラッシュメモリデバイスを形成する方法を提供する。方法は、メモリデバイスの性能を向上させることができる。
前述の問題を解決するために、本開示は、メモリデバイスを形成する方法を提供する。この方法は、上部に制御回路を有する底部基板を提供することと、制御回路の上に上部基板を形成することとを含む。上部基板の形成中に、in−situドーピング法を使用して、上部基板にドーパント(例えば、導電性イオン)をドープすることができる。上部基板の厚さは最適化することができる。上部基板は、第1の基板層と、第1の基板層の上の第2の基板層とを含む。第1の基板層のドーパント濃度は、第2の基板層のドーパント濃度よりも高い。この方法は、上部基板の上にメモリセル回路を形成することをさらに含み、メモリセル回路および制御回路は導電的に接続される。
いくつかの実施形態において、最適化された厚さは約200nm〜約1000nmである。
いくつかの実施形態では、第1の基板層のドーパント濃度は、第2の基板層のドーパント濃度の約50倍〜約200倍である。
いくつかの実施形態では、第1の基板層のドーパント濃度は約1E18原子/cm〜約2E18原子/cmであり、第2の基板層のドーパント濃度は、約1E16原子/cm〜約3E16原子/cmである。
いくつかの実施形態では、メモリセル回路がN型である場合、ドーパントはP型であり、メモリセル回路がP型である場合、ドーパントはN型である。
いくつかの実施形態では、上部基板を形成することは、制御回路の上に第1の基板層を形成し、in−situドーピングプロセスを使用して第1の基板層をドーピングすることと、第1の基板層の上に第2の基板層を形成し、in−situドーピングプロセスを使用して第2の基板層をドーピングすることとを含む。
いくつかの実施形態では、第1の基板層を形成することは、第1の堆積プロセスを含み、第2の基板層を形成することは、第2の堆積プロセスを含む。
いくつかの実施形態では、第1の堆積プロセスは、低圧化学気相成長(LPCVD)プロセスを含み、第2の堆積プロセスは、別のLPCVDプロセスを含む。
一部の実施形態では、第1の堆積プロセスは、第1の反応ガスおよび第1のドーパントソースガスを含む。第1のドーパントソースガスは、第1の希釈ソースガスおよび第1の初期ドーパントソースガスを含む。第1の初期ドーパントソースガスは、第1の真性ドーパントソースガスおよび第1の真性希釈ソースガスを含む。第1の反応ガスは約30標準立方センチメートル毎分(sccm)〜約100sccmの流量を有し、第1のドーパントソースガスは約300sccm〜約500sccmの流量を有し、チャンバ圧力は約300ミリトール〜約500ミリトールであり、チャンバ温度は約500℃〜約550℃である。
いくつかの実施形態では、第1の反応ガスはシランを含み、第1の希釈ソースガスは窒素を含み、第1の真性ドーパントソースガスはジボランを含み、第1の真性希釈ソースガスは窒素を含み、第1の真性ドーパントソースガスは第1の初期ドーパントソースガスの0.8%〜1.5%のモル比を有する。
いくつかの実施形態では、第1のドーパントソースガスを取得することは、第1の初期ドーパントソースガスを提供することと、第1の初期ドーパントソースガスを第1の希釈ソースガスで希釈することとを含む。第1の希釈ソースガスと第1の初期ドーパントソースガスとの体積比は、約20:1〜約50:1である。
一部の実施形態では、第2の堆積プロセスは、第2の反応ガスおよび第2のドーパントソースガスを含む。第2のドーパントソースガスは、第2の希釈ソースガスおよび第2の初期ドーパントソースガスを含む。第2の初期ドーパントソースガスは、第2の真性ドーパントソースガスおよび第2の真性希釈ソースガスを含む。第2の反応ガスは約10sccm〜約30sccmの流量を有し、第2のドーパントソースガスは約2000sccm〜約3000sccmの流量を有し、チャンバ圧力は約300ミリトール〜約500ミリトールであり、チャンバ温度は約500℃〜約550℃である。
いくつかの実施形態では、第2の反応ガスはジシランを含み、第2の希釈ソースガスは窒素を含み、第2の真性ドーパントソースガスはジボランを含み、第2の真性希釈ソースガスは窒素を含み、第2の真性ドーパントソースガスは第2の初期ドーパントソースガスの0.8%〜1.5%のモル比を有する。
いくつかの実施形態では、第2のドーパントソースガスを取得することは、第2の初期ドーパントソースガスを提供することと、第2の初期ドーパントソースガスを第2の希釈ソースガスで希釈することとを含む。第2の希釈ソースガスと第2の初期ドーパントソースガスとの体積比は、約500:1〜約1000:1である。
一部の実施形態では、メモリセル回路は、3D NANDメモリセル回路を含む。
いくつかの実施形態では、メモリセル回路を形成することは、上部基板の上に誘電体スタックを形成することと、誘電体スタックを貫通する複数の貫通孔およびチャネル孔を形成することと、チャネル孔の底部にエピタキシャル基板層を形成することと、エピタキシャル基板層の形成後、チャネル孔内にチャネル層を形成することとを含む。いくつかの実施形態では、メモリセル回路を形成することは、誘電体スタックおよびチャネル層の上にキャッピング層を形成することと、キャッピング層および誘電体スタックを貫通するトレンチを形成することであって、トレンチはチャネル孔の片側に配置される、トレンチを形成することと、トレンチの底部の第2の基板層にソース線ドープ領域を形成することとをさらに含む。
いくつかの実施形態では、誘電体スタックは、ともに交互に積層されている複数の絶縁層および複数の犠牲層を含み、誘電体スタックの最上層および最下層は絶縁層である。いくつかの実施形態では、メモリセル回路を形成することは、ソース線ドープ領域の形成後、水平トレンチを形成するために犠牲層を除去することをさらに含み、制御ゲートが水平トレンチ内に形成される。さらに、制御ゲートの形成後、トレンチ内にソース線構造が形成される。
従来技術と比較して、本開示の技術的解決策は少なくとも以下の利点を有する。
開示されている方法では、制御回路の上に上部基板が形成され、上部基板の形成中に、in−situドーピングプロセスによって上部基板がドーパントによってドープされる。上部基板は、第1の基板層と、第1の基板層の上の第2の基板層とを含む。第1の基板層のドーパント濃度は第2の基板層のドーパント濃度よりも高いが、in−situドーピングのために第1の基板層から第2の基板層へのドーパント拡散は減少する。第2の基板層のドーパント分布は、第1の基板層のドーパント拡散による影響を受けにくい。第2の基板層におけるドーパント分布の均一性が改善される。さらに、第2の基板層内でドーパントはin−situドーピングによってドープされ、結果、第2の基板層内のドーパント分布は改善された均一性を有する。したがって、上部基板の上の様々な領域内のメモリセル回路の電気的特性は、改善された均一性を有することができる。
さらに、上部基板の形成中に、上部基板は、in−situドーピングプロセスを使用してドーパントによってドープされる。したがって、制御回路は、第1の基板層からのドーパント拡散の影響を受けにくい。したがって、制御回路の電気的安定性を向上させることができる。
本明細書に組み込まれ、本明細書の一部を形成する添付の図面は、本開示の実施形態を示し、本明細書とともに、さらに、本開示の原理を説明し、当業者が本開示を作成および使用することを可能にするのに役立つ。
三次元メモリデバイスの図である。 いくつかの実施形態による、典型的な製造プロセスの異なる段階における三次元メモリ構造の断面図である。 いくつかの実施形態による、典型的な製造プロセスの異なる段階における三次元メモリ構造の断面図である。 いくつかの実施形態による、典型的な製造プロセスの異なる段階における三次元メモリ構造の断面図である。 いくつかの実施形態による、典型的な製造プロセスの異なる段階における三次元メモリ構造の断面図である。 いくつかの実施形態による、三次元メモリ構造を形成するための製造プロセスの図である。
特定の構成および配置について説明するが、これは例示のみを目的として行われていることを理解されたい。当業者は、本開示の精神および範囲から逸脱することなく、他の構成および配置を使用することができることを認識するであろう。本開示を様々な他の用途でも使用することができることが、当業者には明らかであろう。
本明細書における「1つの実施形態」、「一実施形態」、「例示的な実施形態」、「いくつかの実施形態」などへの言及は、記載されている実施形態が特定の特徴、構造、または特性を含み得ることを示すが、すべての実施形態が特定の特徴、構造、または特性を必ずしも含むとは限らないことに留意されたい。さらに、そのような語句は必ずしも同じ実施形態を指すとは限らない。さらに、特定の特徴、構造、または特性が一実施形態に関連して記載されている場合、明示的に記載されているか否かに関係なく、他の実施形態に関連してそのような特徴、構造、または特性がもたらされることは、当業者の知識の範囲内であろう。
一般に、用語は少なくとも部分的に文脈の中での使用から理解され得る。例えば、本明細書において使用される場合、「1つまたは複数」という用語は、文脈に少なくとも部分的に依存して、任意の特徴、構造、または特性を単数の意味で記載するために使用されている場合があり、または複数の意味で特徴、構造または特性の組み合わせを記載するために使用されている場合がある。同様に、「a」、「an」、「the」などの用語は、同じく、文脈に少なくとも部分的に依存して、単数形の使用法を伝達するか、または複数形の使用法を伝達すると理解され得る。
本開示における「上(on)」、「上方(above)」、および「〜の上(over)」の意味するところは、「上」が何かの「直上」にあることを意味するだけでなく、中間の特徴または層を挟んで何かの「上」にあることも意味するように、また、「上方」または「〜の上」が、何かの「上方」または何か「の上」にあることを意味するだけでなく、中間の特徴または層を挟まずに何かの「上方」または何か「の上」にある(すなわち、何かの直上にある)ことも意味するように、最も広義に解釈されるべきであることは容易に理解されるべきである。
さらに、「下(beneath)」、「下方(below)」、「下側(lower)」、「上方(above)」、「上側(upper)」などのような空間的に相対的な用語は、本明細書においては、図に示されているような、ある要素または特徴の別の要素(複数可)または特徴(複数可)との関係を説明するために、説明を容易にするために使用され得る。空間的に相対的な用語は、図に示されている向きに加えて、使用中または動作中のデバイスの様々な向きを包含することを意図している。装置は他の方向に向けられ(90度または他の向きに回転され)てもよく、本明細書で使用される空間的に相対的な記述語もそれに応じて解釈され得る。
本明細書で使用される場合、「基板」という用語は、後続の材料層が追加される材料を指す。基板自体をパターニングすることができる。基板の上部に追加される材料は、パターニングすることもでき、またはパターニングしないままにすることもできる。さらに、基板は、シリコン、ゲルマニウム、ヒ化ガリウム、リン化インジウムなどのような幅広い半導体材料を含むことができる。代替的に、基板は、ガラス、プラスチック、またはサファイアウェハなどの非導電性材料から作製されうる。
本明細書で使用される場合、「層」という用語は、厚さのある領域を含む材料部分を指す。層は、下にあるもしくは上にある構造の全体にわたって延在することができ、または下にあるもしくは上にある構造の範囲よりも小さい範囲を有することができる。さらに、層は、均一または不均一な連続構造のうちの、当該連続構造の厚さよりも薄い厚さを有する領域であり得る。例えば、層は、連続構造の上面と底面との間の任意の水平面対の間に、または上面および底面に位置することができる。層は、水平に、垂直に、かつ/またはテーパ面に沿って延在することができる。基板は、層であり得、基板の中に1つもしくは複数の層を含み得、ならびに/または基板の上、上方、および/もしくは下方に1つもしくは複数の層を有し得る。層は複数の層を含むことができる。例えば、相互接続層は、1つまたは複数の導体層および接触層(相互接続層の中に接点、相互接続線、および/またはビアが形成される)、ならびに1つまたは複数の誘電体層を含むことができる。
本明細書で使用する場合、「公称/公称的に」という用語は、製品またはプロセスの設計段階の間に設定される、構成要素またはプロセス動作の特性またはパラメータの所望のまたは目標の値を、所望の値の上および/または下の値の範囲とともに参照する。値の範囲は、製造プロセスまたは許容誤差のわずかな変動に起因する可能性がある。本明細書で使用される場合、「約」という用語は、主題の半導体デバイスに関連付けられた特定の技術ノードに基づいて変化する可能性がある所与の量の値を示す。特定の技術ノードに基づいて、「約」という用語は、例えば値の10〜30%(例えば、値の±10%、±20%、または±30%)以内で変化する特定の量の値を示すことができる。
本明細書で使用される場合、「3Dメモリデバイス」という用語は、メモリストリングが基板に対して垂直方向に延伸するように、横向きの基板上にあるメモリセルトランジスタの垂直配向ストリング(NANDストリングなど、本明細書において「メモリストリング」として参照される)を有する半導体デバイスを指す。本明細書で使用される場合、「垂直/垂直方向に」という用語は、基板の外側面に対して公称的に垂直であることを意味する。
フラッシュメモリの製造では、メモリセルのサイズを縮小し、および/または、メモリセルが占有するスペースを増やすことによって、コスト/ビットを削減するために、より多くの手法が適用されている。1つの手法は、セル下周辺(PUC)技術である。この技術によれば、周辺回路(例えば、制御回路)をメモリセルの下に配置することができる。この配置により、フラッシュメモリデバイスの寸法を縮小し、メモリセルの形成のために多くのスペースを使用することができる。したがって、この技術は、フラッシュメモリデバイスのメモリ容量をさらに増加させ、フラッシュメモリデバイスを製造するコストを削減することができる。
図1は、PUC技術を使用したNANDフラッシュメモリ構造100を示している。図1に示すように、構造100は、底部基板105と、底部基板105の上の上部基板120とを含む。制御回路110(例えば、周辺デバイスを含む)が底部基板105の上に形成される。上部基板120は、ドーパントによってドープされ、制御回路110の上にある。メモリセル回路130は、上部基板120の上に形成され、複数のメモリセルを含む。メモリセル回路130と制御回路110とは導電的に接続されている。多くの場合、上部基板120は、制御回路110の上の第1の基板層と、第1の基板層の上の第2の基板層とを含む。第1の基板層のドーパント濃度は、第2の基板層のドーパント濃度よりも高いことが多い。第1の基板層および第2の基板層は、それぞれ、上部基板120の上面に実質的に垂直な方向に沿った2つの異なる深さへのイオン注入によって形成することができる。例えば、上部基板120の第1の深さでドープして、第1の基板層を形成するために第1のイオン注入を実行することができ、上部基板120の第2の深さでドープして、第2の基板層を形成するために第2のイオン注入を実行することができる。引き続いて、メモリセルが上部基板120の上に形成される。半導体チャネルおよびソース線が、それぞれエピタキシャル基板層およびソース線ドープ領域を通じて上部基板120の上面内に形成される。半導体チャネルおよびソース線は、メモリセルの動作(例えば、読み出し、書き込み、および消去)を制御するために(例えば、第2の基板層内の)半導体チャネルおよびソース線ドープ領域の底部にバイアスを印加することができるように、上部基板120の上面に導電接続することができる。
従来、イオン注入は、上部基板120の第1の基板層と第2の基板層の両方をドープするために使用されている。第1の基板層および第2の基板層におけるドーピングプロファイルは、ガウス分布であり得る。しかしながら、第1の基板層と第2の基板層との間のドーパント濃度の差のために、第1の基板層内のドーパントは第2の基板層に拡散する傾向がある。結果として、第2の基板層内のドーパントは、元のガウス分布とは異なるドーピングプロファイル(例えば、層状分布または増分分布)を形成する可能性がある。したがって、同じ深さでドーパント濃度が変化する可能性がある。また、イオン注入は、上部基板120に損傷を引き起こす可能性もある。エピタキシャル基板層およびソース線ドープ領域が形成されているとき、上部基板120の上面はリセスエッチングを受ける。製造誤差/変動のために、異なるエッチング深さが上部基板120内に形成され得る。第2の基板層内にドーパントが不均一に分布する結果として、異なる凹部の下に異なるドーパント濃度が形成される可能性があり、第2の基板層と、異なる半導体チャネル/ソース線との間の導電性が、異なる位置において変化する。導電性のこの差は、構造100のメモリセルの閾値電圧の均一性に悪影響を与える可能性がある。
例えば、ソース線ドープ領域は、第2の基板層および第1の基板層のドーパント型と反対のドーパント型(例えば、ドーパント極性)によってドープされるため、ソース線ドープ領域から第1の基板へのドーパント拡散が、第1の基板層および/または第2の基板層内のドーパントの一部を中性化し得、ドーパント分布が変化する。所望のメモリセル内のデータを消去するために第2の基板層にバイアスが印加されると、これらのメモリセル上で電圧が均等に分布されない場合がある。データ消去機能が影響を受ける可能性がある。したがって、従来のフラッシュメモリデバイスを改善する必要がある。
本開示は、PUC構成を有する三次元メモリデバイスを説明する。開示されているメモリデバイスでは、メモリセルは制御回路の上に配置され、制御回路とメモリセルとの間の上部基板(例えば、複合基板としても参照される)は、低圧化学気相成長(LPCVD)から形成することができ、in−situドーピングによりドーピングすることができる。したがって、第1の基板層および第2の基板層内のドーパント濃度は改善された均一性を有することができ、従来のイオン注入プロセスと比較して上部基板に形成される欠陥/損傷をより少なくすることができる。したがって、第2の基板層と第2の基板層の上面に形成される構造との間の電気的接続はより均一にすることができ、メモリセルはより均一な閾値電圧を有することができる。一方、ドーパント拡散を抑制することができ、かつ制御回路とメモリセルとの間の寄生容量を制御することができるように、第1の基板層および第2の基板層の厚さを制御することができる。加えて、メモリセル回路と制御回路との間に引き続いて形成される金属コンタクトビアのアスペクト比は、十分に低くなるように制御することができる。このことで、金属コンタクトビアをより容易に形成することができる。開示されている方法および構造を使用することにより、デバイス性能を向上させることができる。
図2〜図5は各々、いくつかの実施形態による、異なる製造ステップにおける三次元メモリデバイスを示す。典型を目的として、三次元メモリデバイスの類似または同じ部品には同じ参照符号を使用してラベル付けしている。ただし、参照符号は、発明を実施するための形態の関連部分を区別するために使用されているに過ぎず、機能、構成、または位置の何らかの類似性または相違を示すものではない。メモリデバイスの他の部分は、説明を容易にするために示されていない。一例として三次元メモリデバイスを使用しているが、様々な用途および設計において、開示されている構造は、例えば、ドーパント濃度の異なる隣接する層の間のドーパント不均一性を改善し、イオン注入によって引き起こされる損傷を低減するために、類似または異なる半導体デバイスに適用することもできる。開示された構造の特定の用途は、本開示の実施形態によって限定されるべきではない。
図2は、いくつかの実施形態による、三次元メモリデバイスを形成するための典型的な構造200を示す。構造200は、底部構造202を含むことができる。底部基板202はベース基板として参照することもでき、引き続いて形成される上部基板および上部基板の上のメモリセルの製造プラットフォームを提供する。いくつかの実施形態では、底部基板202は、三次元メモリ構造を形成するための任意の適切な材料を含む。例えば、底部基板202は、シリコン(例えば、単結晶シリコン、ポリシリコン、およびアモルファスシリコン)、シリコンゲルマニウム、炭化ケイ素、シリコンオンインシュレータ(SOI)、ゲルマニウムオンインシュレータ(GOI)、ガラス、窒化ガリウム、ヒ化ガリウム、および/または他の適切なIII−V族化合物を含むことができる。いくつかの実施形態では、底部基板202は単結晶シリコンを含む。
底部基板202は、底部基板202の上面の上に形成された制御回路210を含むことができる。例示を目的として、制御回路を含む半導体層は要素210によって表されている。制御回路210は、引き続いて形成されるメモリセルおよび三次元メモリデバイスの他の関連部分の動作を制御することができる。例えば、制御回路210は、引き続いて形成されるメモリセルの動作を制御するための制御信号を生成することができる。制御回路210は、トランジスタ213、コンタクトビア211、および金属相互接続212などの任意の適切な電子構成要素を含むことができる。他の部品(例えば、抵抗、コンデンサなど)は図2には示されていない。いくつかの実施形態では、メモリセルを接続する、引き続いて形成される金属コンタクトビアは、制御回路210から、引き続いて形成されるメモリセルに制御信号を送信することができるように、コンタクトビア211および/または金属相互接続212に導電接続することができる。
図3は、三次元メモリデバイスを形成するための典型的な構造300を示す。構造300は、底部基板202と、制御回路210の上に形成された第1の基板層220とを含むことができる。いくつかの実施形態では、構造300は、少なくとも第1の基板層220を堆積することにより構造200から形成され得る。第1の基板層220は、所望の高さのドーパント濃度を有し、引き続いて形成される上部基板の底部を形成することができる。
任意選択的に、制御回路210と第1の基板層220との間に、層間誘電体層(例えば、不動態化層、図3には示されていない)を形成することができる。層間誘電体層は、制御回路210と第1の基板層220との間の電気的分離を提供することができ、結果、第1の基板層200から制御回路210へのドーパント拡散を低減/防止することができる。いくつかの実施形態では、層間誘電体層の厚さは、制御回路210と引き続いて形成されるメモリセル回路との間の寄生容量に関連付けられる。したがって、層間誘電体層の厚さを過度に小さくすることはできない。一方、制御回路210と引き続いて形成されるメモリセル回路とを接続する金属コンタクトビアは、層間誘電体層を通して形成され得るため、層間誘電体層の厚さは、金属コンタクトビアのアスペクト比が層間誘電体層の厚さによって大きく影響されないように、過度に大きくすることはできない。いくつかの実施形態では、層間誘電体層の厚さは、約100nm〜約1000nmの範囲内であり得る。
層間誘電体層は、任意の適切な誘電体材料を含むことができ、任意の適切な堆積プロセスを使用して形成することができる。例えば、層間誘電体層は、酸化ケイ素(SiOx)、窒化ケイ素(SiN)、および/または酸窒化ケイ素(SiON)を含むことができ、CVD、物理気相成長(PVD)、プラズマ強化CVD(PECVD)、原子層堆積(ALD)、およびLPCVDによって形成することができる。いくつかの実施形態では、層間誘電体層は酸化ケイ素を含み、LPCVDによって形成することができる。任意の適切な前駆体ガス(例えば、オルトケイ酸テトラエチルおよび酸素、トリイソプロピルシランおよび酸素、ならびにシランおよび酸素)および/またはシリコンの酸化を使用して、酸化ケイ素を形成することができる。いくつかの実施形態において、酸化ケイ素は、ケイ素の酸化により形成され得る。任意選択的に窒素などの他のキャリアガスとともに、酸素をチャンバに流して、制御回路210の上面を酸化することができる。いくつかの実施形態では、酸化プロセスのチャンバ(例えば、反応)温度は摂氏約385度であり、チャンバ圧力は約1トールである。
第1の基板層220は、制御回路210の上に形成することができる。いくつかの実施形態では、第1の基板層220は、層間誘電体層の上に形成される。第1の基板層220は、ドープされたポリシリコン、ドープされたアモルファスシリコン、および/またはドープされた単結晶シリコンを含むことができ、CVD、PVD、PECVD、LPCVD、および/またはALDなどの任意の適切な堆積方法によって形成することができる。いくつかの実施形態では、第1の基板層220はアモルファスシリコンを含み、LPCVDにより形成される。いくつかの実施形態では、所望の型(例えば、N型またはP型)のドーパントを第1の基板層220にドープするために、第1の基板層220の成長中にin−situドーピングが実行される。いくつかの実施形態では、ホウ素(B)、アルミニウム(Al)、および/またはガリウム(Ga)などのP型ドーパントが第1の基板層220にドープされる。いくつかの実施形態では、引き続いて形成されるメモリセル回路はN型であり、ホウ素が第1の基板層220にドープされる。いくつかの実施形態では、第1の基板層220内のドーパント濃度は、約1E18原子/cm〜約2E18原子/cm の範囲内である。
シラン(SiH)を、LPCVDにおける前駆体ガスとして第1の基板層220のアモルファスシリコンを形成することでき、ジボラン(B)を、in−situドーピングプロセスのドーパント源(例えば、ホウ素)とすることができ、結果、形成されるアモルファスシリコンにホウ素を均一にドープすることができる。いくつかの実施形態では、第1の基板層220の厚さは、シランを前駆体ガスとして使用することにより改善された均一性を有することができる。いくつかの実施形態において、シランが第1の反応ガスとして参照され、ジボランが第1の真性ドーパントソースガスとして参照される。いくつかの実施形態では、窒素を使用して、第1の真性ドーパントソースガスを希釈して反応チャンバに運び、結果、第1の真性ドーパントソースガスが望ましい短期間内で第1の反応ガスと混合することができる。したがって、形成されたホウ素ドープアモルファスシリコンの第1の基板層220は、改善された均一性を有することができる。第1の真性ドーパントソースガスの流量は第1の反応ガスの流量よりはるかに低いため、いくつかの実施形態では、in−situドーピングプロセス中に、第1の真性ドーパントソースガスが第1の反応ガスとより均一に混合することを可能にするために、第1の真性ドーパントソースガスは第1の真性希釈ソースガス(例えば、N)と予混合される(例えば、in−situドーピングプロセスの前に混合される)。いくつかの実施形態では、第1の真性ドーパントソースガスと第1の真性希釈ソースガスとの混合物が、第1の初期ドーパントソースガスとして参照され、第1の真性ドーパントソースガスと第1の初期ドーパントソースガスとのモル比は約0.8%〜約1.5%の範囲内である。いくつかの実施形態では、モル比は約1%である。一部の実施形態では、第1の反応ガスと混合する前に、第1の真性ドーパントソースガスをさらに希釈することができ、かつより均一な分布を有することができるように、第1の初期ドーパントソースガスは、反応チャンバに流入する前に第1の希釈ソースガス(例えば、N)とさらに予混合される。いくつかの実施形態では、第1の希釈ソースガスと第1の初期ドーパントソースガスとの混合物が第1のドーパントソースガスとして参照され、第1の希釈ガスと第1の初期ドーパントソースガスとの体積比は約20:1〜約50:1の範囲内にある。
LPCVDおよびin−situドーピングプロセスを実行するために、第1のドーパントソースガス(例えば、希釈された第1の真性ドーパントソースガスを含む)を反応チャンバ内で第1の反応ガスと混合することができる。第1の真性ドーパントソースガスは、チャンバに流入する前に第1の真性希釈ソースガスおよび第1の希釈ソースガスによって希釈されるため、第1の真性ドーパントソースガスは、第1のドーパントソースガスにより均一に分布し、第1の真性ドーパントソースガスの量をより正確に検出/制御することができる。チャンバに流入すると、第1のドーパントソースガスのガス原子は、望ましい短時間でチャンバを均一に占有することができ、さらに、第1の真性ドーパントソースガスが望ましい短時間でチャンバ内に分布することを可能にする。したがって、第1の基板層内のドーパントをより均一に分布させることができ、第1の基板層のドーパント濃度をより正確に制御することができる。いくつかの実施形態では、第1の反応ガスの流量は約30〜約100sccmの範囲内であり、第1のドーパントソースガスの流量は約300〜約500sccmの範囲内であり、チャンバ圧力は約300〜約500ミリトールの範囲内であり、チャンバ温度は約500〜約550℃の範囲内である。いくつかの実施形態では、第1の真性ドーパントソースガスはまた、反応チャンバに直接流入するか、または別の比率で希釈ガスと予混合することもできる。
図4は、いくつかの実施形態による、三次元メモリデバイスを形成するための典型的な構造400を示す。構造400は、底部基板202、制御回路210の上に形成された第1の基板層220、および第1の基板層220の上に形成された第2の基板層230を含むことができる。第1の基板層220および第2の基板層230は、上部基板(例えば、複合基板)を形成することができ、第1の基板層220は、z軸(例えば、底部基板202の上面に垂直な方向)に沿った上部基板の下側部分であり得、第2の基板層230は、z軸に沿った上部基板の上側部分であり得る。いくつかの実施形態において、構造400は、第2の基板層230を堆積することにより構造300から形成され得る。第2の基板層230のドーパント濃度は、第1の基板層220のドーパント濃度よりも低くすることができる。第2の基板層230は、メモリセルおよびメモリセル回路の後続の形成のための基礎を提供することができる。第2の基板層230は、ドープされたポリシリコン、ドープされたアモルファスシリコン、および/またはドープされた単結晶シリコンを含むことができ、CVD、PVD、PECVD、LPCVD、および/またはALDなどの任意の適切な堆積方法によって形成することができる。いくつかの実施形態では、第2の基板層230はドープされたアモルファスシリコンを含み、LPCVDにより形成される。いくつかの実施形態では、第1の基板層220と同じ型(例えば、N型またはP型)のドーパントをドープするために、第2の基板層230の成長中にin−situドーピングが実行される。いくつかの実施形態では、ホウ素(B)、アルミニウム(Al)、および/またはガリウム(Ga)などのP型ドーパントが第2の基板層230にドープされる。いくつかの実施形態では、引き続いて形成されるメモリセル回路はN型であり、ホウ素が第2の基板層230にドープされる。
第1の基板層220のドーパント濃度は、第2の基板層230のドーパント濃度の約50倍〜約200倍とすることができる。いくつかの実施形態では、第2の基板層230のドーパント濃度は、約1E16原子/cm〜約3E16原子/cmの範囲内にある。
ジシラン(Si)を、LPCVDにおける前駆体ガスとして第2の基板層230のアモルファスシリコンを形成することでき、ジボラン(B)が、in−situドーピングプロセスのホウ素ドーパントを提供することができ、結果、形成されるアモルファスシリコンにホウ素を均一にドープすることができる。いくつかの実施形態において、ジシランが第2の反応ガスとして参照され、ジボランが第2の真性ドーパントソースガスとして参照される。いくつかの実施形態では、窒素を使用して、第2の真性ドーパントソースガスを希釈して反応チャンバに運び、結果、第2の真性ドーパントソースガスが望ましい短期間内で第2の反応ガスと混合することができる。したがって、形成されたホウ素ドープアモルファスシリコンの第2の基板層230は、改善された均一性を有することができる。第2の真性ドーパントソースガスの流量は第2の反応ガスの流量よりはるかに低いため、いくつかの実施形態では、in−situドーピングプロセス中に、第2の真性ドーパントソースガスが第2の反応ガスとより均一に混合することを可能にするために、第2の真性ドーパントソースガスは第2の真性希釈ソースガス(例えば、N)と予混合される(例えば、in−situドーピングプロセスの前に混合される)。いくつかの実施形態では、第2の真性ドーパントソースガスと第2の真性希釈ソースガスとの混合物が、第2の初期ドーパントソースガスとして参照され、第2の真性ドーパントソースガスと第2の初期ドーパントソースガスとのモル比は約0.8%〜約1.5%の範囲内である。いくつかの実施形態では、モル比は約1%である。一部の実施形態では、第2の反応ガスと混合する前に、第2の真性ドーパントソースガスをさらに希釈することができ、かつより均一な分布を有することができるように、第2の初期ドーパントソースガスは、反応チャンバに流入する前に第2の希釈ソースガス(例えば、N)とさらに予混合される。いくつかの実施形態では、第2の希釈ソースガスと第2の初期ドーパントソースガスとの混合物が第2のドーパントソースガスとして参照され、第2の希釈ガスと第2の初期ドーパントソースガスとの体積比は約500:1〜約1000:1の範囲内にある。いくつかの実施形態では、第2の真性ドーパントソースガスはまた、反応チャンバに直接流入するか、または別の比率で希釈ガスと予混合することもできる。
第2の真性ドーパントソースガスを希釈する理由は、第1の真性ドーパントソースガスを希釈する理由と同様であり得、ここでは繰り返されない。いくつかの実施形態では、第2の反応ガスの流量は約10〜約30sccmの範囲内であり、第2のドーパントソースガスの流量は約2000〜約3000sccmの範囲内であり、チャンバ圧力は約300〜約500ミリトールの範囲内であり、チャンバ温度は約500〜約550℃の範囲内である。
LPCVDおよびin−situドーピングを使用して第1の基板層220および第2の基板層230を形成すると、形成された第1の基板層220および第2の基板層230は、より良好な膜質(例えば、ピットホールまたはイオン注入による損傷を受けにくい)およびより均一な厚さを有することができる。真性ドーパントソースガスを反応チャンバに流す前に希釈することにより、少量の真性ドーパントソースガスの測定を容易にすることができ、真性ドーパントソースガスを反応チャンバ内でより均一に分布させることができる。第1の基板層220および第2の基板層230の各々へと形成されるドーパントは、より均一に分布することができ、ドーパント濃度を制御するのがより容易になり得る。いくつかの実施形態において、第1の基板層220および第2の基板層230におけるドーパント分布は、実質的に均一である(例えば、z軸に沿って)。
さらに、第1の基板層220および第2の基板層230の各々のドーパントは、z軸に沿って実質的に均一なドーピングプロファイル(例えば、実質的に同じドーピングレベル)を形成することができ、結果、第1の基板層220および第2の基板層230の各々のドーパントが、z軸に沿った拡散の影響を受けにくくなる。加えて第1の基板層220のドーパント濃度は、第2の基板層230のドーパント濃度の約50倍〜約200倍である。その範囲の理由は以下を含み得る。第1の基板層220のドーパント濃度は、前述のように、ソース線ドープ領域からのドーパント拡散によって引き起こされる影響を低減/排除するために、第2の基板層230のドーパント濃度よりも十分に高くすることができる。しかしながら、第1の基板層220の過度に高いドーパント濃度(例えば、200倍より高い)は、第1の基板層220から第2の基板層230へのドーパント拡散を増加させる可能性があり、第1の基板層220内でドーパントの分布を不均一にする(例えば、不均一なドーパント濃度)可能性がある。ドーパントの不均一な分布はさらに、引き続いて形成されるメモリセルの閾値電圧変動を引き起こす可能性がある。ドーパント濃度が高くなると、ドーピングのコストが高くなり得る。さらに、第1の基板層220の過度に低いドーパント濃度(例えば、50倍よりも低い)は、単位体積において十分なドーパントを提供しない可能性があり、引き続いて形成されるソース線ドープ領域によって引き起こされる第1の基板層220のドーパント中性化に起因する第1の基板層220のドーパント型の変化の影響を受けやすい。したがって、第1の基板層220のドーパント濃度の範囲を最適化すること(例えば、第2の基板層230のドーパント濃度の約50倍〜約200倍)によって、メモリセルの閾値電圧均一性が改善し、ドーパント型変化の感受性を低下させることができ、製造プロセスのコストを下げることができる。
さらに、第1の基板層220および第2の基板層230は、ともに最適化された厚さ範囲を有することができる。厚さ範囲を最適化する理由は以下を含み得る。過度に厚い第1の基板層220または第2の基板層230は、各基板内および/または第1の基板層220と第2の基板層230との間でドーパント拡散を引き起こす可能性がある。また、第1の基板層220が厚くなると、第1の基板層220の厚さが不均一になる可能性があり、第1の基板層220の上面が不均一性の影響をより受けやすくなる可能性がある。結果として、第2の基板層230の上面が、不均一性の影響をより受けやすくなり得、引き続いて第2の基板層230上に形成されるメモリセルに影響を及ぼす。一方、過度に薄い第1の基板層220または第2の基板層230は、堆積プロセスのパラメータを正確に制御する必要があるために、LPCVDを使用して形成することが困難であり得る。したがって、第1の基板層220および第2の基板層230の最適化された厚さ範囲は、ともに約200nm〜約1000nmであり得る。いくつかの実施形態では、第1の基板層220と第2の基板層230との合計厚さは約300nmであり得る。
開示されている方法を使用して第1の基板層220および第2の基板層230を形成することにより、第1の基板層220および第2の基板層230の各々において、改善された均一性を有するドーピングプロファイルを形成することができる。第1の基板層220および第2の基板層230のドーパント濃度および厚さを制御することにより、ドーパント拡散(例えば、z軸に沿った)を低減/抑制することができ、第2の基板層230の上面のドーパント濃度をより均一にすることができ、第2の基板層230の上に引き続いて形成される構造(例えば、メモリセル、半導体チャネル孔、およびゲート線スリットトレンチ)の導電性をより均一にすることができる。第1の基板層220および第2の基板層230の厚さを制御することにより、メモリセルの製造のために均一性/平坦性が改善された製造基盤を提供することができ、第1の基板層220と第2の基板層230との間の拡散をさらに抑制することができる。したがって、開示されている方法は、第1の基板層220が第1の基板層220においてより均一なドーパント濃度を有することを可能にし、メモリセルはより均一な閾値電圧を有することができる。さらに、制御回路210に向かう第1の基板層220のドーパント拡散を低減/抑制することができ、第1の基板層220と制御回路210との間の漏れ電流を低減することができ、制御回路210の電気的安定性を改善することができる。
図5は、いくつかの実施形態による、三次元メモリデバイスを形成するための典型的な構造500を示す。構造500は、制御回路210、制御回路210の上の第1の基板層220、第1の基板層の220上の第2の基板層230、および第2の基板層230の上のメモリセル回路240を含むことができる。メモリセル回路240は、制御回路210から制御信号を受信し、読み出し、書き込み、および/または消去などの様々な機能を実行することができる。いくつかの実施形態では、第2の基板層230の上にメモリセル回路240を形成した後、構造500を構造400から形成することができる。
いくつかの実施形態において、メモリセル回路240は、三次元NANDメモリセル回路を含む。図5に示すように、メモリセル回路240は、複数の交互する導体/誘電体層を有するメモリスタック241と、ゲート電極(例えば導体)をビット線に導電的に接続するコンタクトビア242と、半導体チャネル243と、ソース線ドープ領域244内に形成されたソース線245とを含むことができる。メモリセル回路240は、金属コンタクトビア246を通じて制御回路210に導電的に接続することができる。
メモリセル回路240(例えば、要素241〜245)の形成は、任意の適切な方法を使用して形成することができる。例えば、交互する誘電体スタック(例えば、材料層)は、第2の基板層230の上に形成され得る。誘電体スタックは、複数の交互する絶縁層(例えば、酸化ケイ素層)および複数の犠牲層(例えば、窒化ケイ素層)を含むことができる。誘電体スタックの最上層および最下層は、絶縁層にすることができる。誘電体スタックを通じて複数のチャネル孔を形成することができ、任意の適切な材料をチャネル孔に充填して半導体チャネルを形成することができる。さらに、引き続いて形成されるゲート電極およびビット線の漏れ電流を防ぐためのキャッピング層(例えば、酸化ケイ素などの適切な誘電体材料を含む)を誘電体スタックおよび半導体チャネル上に形成することができ、誘電体スタックを(例えば、フォトリソグラフィおよびフォローアップエッチングなどの任意の適切なパターニング操作を使用して)パターニングして、x軸に沿って延伸する1つまたは複数の垂直トレンチを形成することができる。垂直トレンチは、誘電体スタックおよびキャッピング層を貫通して、半導体チャネルのアレイを分離することができる。ソース線ドープ領域244は、例えばイオン注入により、垂直トレンチの底部(例えば、第2の基板層230内)に形成することができる。酸化ケイ素などの適切な誘電体材料を垂直トレンチの側壁に堆積させて、ゲート線スリットを形成することができる。さらに、ゲート線スリット内に開口部を形成することができ、ゲート線スリットの開口部/中心に適切な導電性材料を充填することによりソース線245を形成することができる。いくつかの実施形態では、ソース線ドープ領域244のドーパントは、第1の基板層220および第2の基板層230のドーパントとは反対のドーパント型を有する。いくつかの実施形態では、ソース線ドープ領域244のドーパントは、リン(P)、ヒ素(As)、および/またはアンチモン(Sb)などのN型ドーパントを含む。
いくつかの実施形態では、半導体チャネルを形成することは、チャネル孔を他の材料で充填する前に、チャネル孔の底部にエピタキシャル基板層247を形成することを含む。エピタキシャル基板層247は、第1の基板層220および第2の基板層230のドーパントと同じドーパント型(例えば、P型)のドーパントによってドープすることができる。いくつかの実施形態では、チャネル誘電体層がチャネル孔の側壁上に形成され、半導体チャネル層がゲート誘電体層の上に形成される。いくつかの実施形態では、キャッピング層はゲート誘電体層を被覆する。いくつかの実施形態では、チャネル誘電体層がチャネル孔内に形成され、半導体チャネル層によって囲まれる。一部の実施形態では、キャッピング層は、ゲート誘電体層およびチャネル誘電体層を被覆する。
いくつかの実施形態では、ソース線ドープ領域244が形成された後、誘電体スタック内の犠牲層が除去されて水平トレンチが形成される。適切な導電性材料(例えば、タングステン)を堆積させて、水平トレンチを充填し、制御ゲート電極を形成することができる。制御ゲートが形成された後、ゲート線スリット内にソース線245を形成することができる。いくつかの実施形態において、ゲート誘電体層は、導電性材料の堆積の前に水平トレンチに堆積される。いくつかの実施形態では、例えば酸化ケイ素などの誘電体充填材料を堆積させて、メモリセル回路240の部分を絶縁することができる。
いくつかの実施形態では、複数のビット線を制御ゲート電極上に形成することができる。ビット線は、x−z平面に垂直な方向に延伸することができる。いくつかの実施形態では、複数のコンタクトビアを制御ゲート電極上に形成することができる。コンタクトビアは、誘電体充填材料を貫通し、制御ゲート電極とビット線との間の信号伝送のために制御ゲート電極をビット線と接続することができる。
いくつかの実施形態では、メモリ回路240の誘電体充填材料、第2の基板層230、第1の基板層220、および制御回路210内の誘電体充填材料を通る金属コンタクトビアを形成して、金属セル回路240と制御回路210とを導電接続することができる。いくつかの実施形態では、メモリセル回路240、第2の基板層230、第1の基板層220、および制御回路210の誘電体充填材料の一部を通るコンタクトホールを形成することができ、適切な導電性材料を使用してンタクトホールを充填することができる。コンタクトホールは、例えば、フォトリソグラフィプロセスおよびフォローアップエッチングなどの任意の適切なパターニングプロセスによって形成することができる。一部の実施形態では、エッチングは、ドライエッチングおよび/またはウェットエッチングを含む。導電性材料は、銅、アルミニウム、および/またはタングステンなどの任意の適切な導電性材料を含むことができる。
開示されている方法および構造を使用すると、第2の基板層230のドーパント濃度は、z軸に沿ったおよび上面における均一性が改善される。第2の基板層230がエッチングされてソース線ドープ領域244などの構造が形成されると、ドーパント濃度の均一性が第2の基板層230の上面においてが改善されているため、第2の基板層230の上面の露出部分は実質的に同じ/均一なドーパント濃度を有することができる。したがって、第2の基板層230の上の異なる位置に形成されるソース線ドープ領域244は、実質的に同じドーパント濃度で第2の基板層230の部分の上に形成することができる。したがって、製造誤差によるエッチング深さの変動による、ソース線ドープ領域244の下のドーパント濃度の変動を少なくすることができる。ソース線ドープ領域244内のドーパントと第1の基板層220内のドーパントとの間のドーパント拡散および中性化を低減することができる。
さらに、半導体チャネル243の形成中、エピタキシャル基板層247を、チャネル孔内の他の材料の堆積の前にチャネル孔の底部に形成することができる。上述のように、ドーパント濃度は、第2の基板層230の上面において均一性を改善されている。エピタキシャル基板層247は、第2の基板層230の上面のエッチング部分の上に形成されるため、各エピタキシャル基板の下のドーパント濃度は実質的に同じであり得る。したがって、製造誤差によるエッチング深さの変動による、エピタキシャル基板層247の下のドーパント濃度の変動を少なくすることができる。したがって、エピタキシャル基板層247のドーパントと第2の基板層230のドーパントとの間の拡散は、各半導体チャネル243の下で実質的に均一なドーパント分布をもたらし得る。したがって、各半導体チャネル243と関連付けられるメモリセルの閾値電圧は、実質的に同じであり得る。
いくつかの実施形態では、開示されている方法を使用して、制御ユニット210上の複合基板内に3つ以上の基板(例えば、ドープ層)が形成される。3つ以上の基板は各々、均一なドーパント濃度および最適化された厚さ範囲を有することができる。いくつかの実施形態では、各基板のドーパント濃度は、z軸に沿って、引き続いて形成されるメモリセル回路に向かって減少する。基板の特定の数、ドーパント濃度、および厚さ範囲は、異なる用途/実施形態に依存し、本開示の実施形態によって限定されるべきではない。
図6は、いくつかの実施形態による、三次元メモリデバイスを形成するための典型的な方法600の図である。説明のために、方法600に示される動作は、図2〜図5の文脈で説明される。本開示の様々な実施形態において、方法600の動作は、異なる順序で実行されてもよく、および/または変化してもよい。
動作601において、底部基板が提供される。制御回路を、底部回路の上に配置することができる。底部基板はベース基板として参照することもでき、引き続いて形成される上部基板および上部基板の上のメモリセルの製造プラットフォームを提供する。いくつかの実施形態では、底部基板は、三次元メモリ構造を形成するための任意の適切な材料を含む。例えば、底部基板は、シリコン(例えば、単結晶シリコン、ポリシリコン、およびアモルファスシリコン)、シリコンゲルマニウム、炭化ケイ素、シリコンオンインシュレータ(SOI)、ゲルマニウムオンインシュレータ(GOI)、ガラス、窒化ガリウム、ヒ化ガリウム、および/または他の適切なIII−V族化合物を含むことができる。いくつかの実施形態では、底部基板は単結晶シリコンを含む。
いくつかの実施形態において、制御回路は、引き続いて形成されるメモリセルおよび三次元メモリデバイスの他の関連部分の動作を制御する。制御回路は、トランジスタ、コンタクトビア、および金属相互接続などの任意の適切な電子構成要素を含むことができる。底部基板および制御回路の詳細な説明については、図2の説明を参照することができる。
動作602において、複数のドープされた基板を底部基板の上に形成することができる。複数のドープ基板の各々は、実質的に均一なドーパント濃度を有することができる。複数のドープされた基板は、互いに積み重なって複合基板を形成することができる。いくつかの実施形態において、ドープされた基板の各々は、開示されているLPCVDならびに図3および4に記載されたin−situドーピングプロセスを使用して形成される。いくつかの実施形態では、ドープ基板のドーパント濃度は、z軸に沿って、底部基板の上面から離れる方向に向かって減少する。いくつかの実施形態では、各ドープ基板の厚さおよび複合基板の総厚は各々、ドーパント濃度の均一性を改善するために最適化された厚さ範囲内で制御される。いくつかの実施形態では、各ドープ基板のドーパント濃度は、例えば、隣接するドープ基板間のドーパント拡散を抑制し、各ドープ基板内で適切なドーパント型を保証するために、最適化されたドーパント濃度範囲内で制御される。いくつかの実施形態では、制御回路の上に第1の基板層が形成され、第1の回路の上に第2の基板層が形成される。第1の基板層のドーパント濃度は、第2の基板層のドーパント濃度の約50倍〜約200倍とすることができる。いくつかの実施形態では、第1の基板層のドーパント濃度は約1E18原子/cm〜約2E18原子/cmであり、第2の基板層のドーパント濃度は、約1E16原子/cm〜約3E16原子/cmである。いくつかの実施形態では、第1の基板層と第2の基板層との合計厚さは約200nm〜約1000nmであり得る。ドープ基板の形成の詳細な説明については、図3および図4の説明を参照することができる。
一部の実施形態では、制御回路と複合基板との間に層間誘電体層(例えば、不動態化層)を形成することができる。層間誘電体層は、制御回路と複合基板との間の電気的分離を提供することができ、結果、複合基板から制御回路へのドーパント拡散を低減/防止することができる。いくつかの実施形態では、層間誘電体層の厚さは、制御回路と引き続いて形成されるメモリセル回路との間の寄生容量に関連付けられる。最適化された厚さ範囲内で制御することができる。いくつかの実施形態では、層間誘電体層の厚さは、約100nm〜約1000nmの範囲内であり得る。いくつかの実施形態では、層間誘電体層は酸化ケイ素を含み、LPCVDによって形成することができる。
いくつかの実施形態において、複合基板のドープ基板および層間誘電体層は、LPCVDを使用して同じ反応チャンバ(例えば、炉)内で形成することができる。いくつかの実施形態では、層間誘電体層は、例えば摂氏約300度〜約400度などの同じ温度範囲下で形成することができる。いくつかの実施形態において、層間誘電体層は、例えば摂氏約385度などの実質的に同じ温度下で形成することができる。さらに、複合基板内にドープ基板を形成するために、チャンバ温度を変更することができる。いくつかの実施形態では、第1の基板層および第2の基板層は、例えば摂氏約500度〜約550度などの、同じ温度範囲下で形成することができる。いくつかの実施形態では、第1の基板層および第2の基板層は、例えば摂氏約532度などの、実質的に同じ温度下で形成することができる。開示されている堆積方法を使用すると、同じチャンバ内で異なる層を連続して形成することができ、形成される構造は汚染の影響を受けにくく、製造プロセスが単純化され、したがって、形成される膜の品質を改善することができる。
動作603において、メモリセル回路が複数のドープ基板の上に形成され、制御回路がメモリセル回路に導電的に接続される。メモリセル回路。メモリセル回路は、制御回路から制御信号を受信し、読み出し、書き込み、および/または消去などの様々な機能を実行することができる。いくつかの実施形態において、メモリセル回路は、三次元NANDメモリセル回路を含む。例えば、メモリセル回路は、複数の交互する導体/誘電体層を有するメモリスタックと、ゲート電極(例えば導体)をビット線に導電的に接続するコンタクトビアと、半導体チャネルと、ソース線ドープ領域内に形成されたソース線とを含むことができる。メモリセル回路は、任意の適切な方法を使用して形成することができる。いくつかの実施形態では、メモリセル回路は、次いで、金属コンタクトビアを通じて制御回路に導電的に接続される。金属コンタクトビアは、メモリセル回路をパターニングしてメモリセル回路、複合基板、および制御ユニットを貫通するコンタクトホールを形成することなど、任意の適切な方法によって形成することができる。適切な導電性金属をコンタクトホールに充填して、金属コンタクトビアを形成することができる。メモリセル回路の形成の詳細な説明については、図5の説明を参照することができる。
本開示は、PUC構成を有する三次元メモリデバイスを説明する。開示されているメモリデバイスでは、メモリセルは制御回路の上に配置され、制御回路とメモリセルとの間の上部基板(例えば、複合基板としても参照される)は、低圧化学気相成長(LPCVD)から形成することができ、in−situドーピングによりドーピングすることができる。したがって、第1の基板層および第2の基板層内のドーパント濃度は改善された均一性を有することができ、従来のイオン注入プロセスと比較して上部基板に形成される欠陥/損傷をより少なくすることができる。したがって、第2の基板層と第2の基板層の上面に形成される構造との間の電気的接続はより均一にすることができ、メモリセルはより均一な閾値電圧を有することができる。一方、ドーパント拡散を抑制することができ、かつ制御回路とメモリセルとの間の寄生容量を制御することができるように、第1の基板層および第2の基板層の厚さを制御することができる。加えて、メモリセル回路と制御回路との間に引き続いて形成される金属コンタクトビアのアスペクト比は、十分に低くなるように制御することができる。このことで、金属コンタクトビアをより容易に形成することができる。開示されている方法および構造を使用することにより、デバイス性能を向上させることができる。
いくつかの実施形態では、方法は、底部基板を提供することと、底部基板上に複数のドープ層を形成することとを含む。複数のドープ層は、複数のドープ層の上面が実質的に平坦であり、かつ複数のドープ層の各々のドーピング濃度が複数のドープ層の上面に実質的に垂直な方向に沿って実質的に均一であるような厚さ範囲内の総厚を有する。
いくつかの実施形態において、方法は、底部基板を提供することであって、底部基板は制御回路を含む、底部基板を提供することと、底部基板の上に複数のドープ層を形成することと、複数のドープ層の上にメモリセル回路を形成することとを含む。いくつかの実施形態では、方法は、制御回路とメモリセル回路とを導電的に接続することをさらに含む。複数のドープ層は、複数のドープ層の上面が実質的に平坦であり、かつ複数のドープ層の各々のドーピング濃度が複数のドープ層の上面に実質的に垂直な方向に沿って実質的に均一であるような厚さ範囲内の総厚を有する。
いくつかの実施形態では、三次元メモリは、底部基板と、底部基板の上の制御回路と、底部基板の上の複数のドープ層とを含む。メモリは、複数のドープ層の上のメモリセル回路と、制御回路とメモリセル回路とを導電的に接続する金属コンタクトビアとをさらに含む。複数のドープ層は、複数のドープ層の上面が実質的に平坦であり、かつ複数のドープ層の各々のドーピング濃度が複数のドープ層の上面に実質的に垂直な方向に沿って実質的に均一であるような厚さ範囲内の総厚を有する。
特定の実施形態の前述の説明は、本開示の一般的性質を十分に明らかにするため、当業者は、当該技術分野の技能の範囲内の知識を適用することにより、過度の実験なしに、本開示の一般的な概念から逸脱することなく、そのような特定の実施形態を容易に変更し、および/または、当該実施形態を様々な用途に適合させることができる。したがって、そのような適合および変更は、本明細書に提示された教示および案内に基づいて、開示された実施形態の等価物の意味および範囲内にあることを意図している。本明細書の語法または用語は説明のためのものであり、限定するものではなく、結果、本明細書の用語または語法は、教示および案内に照らして当業者によって解釈されるべきであることを理解されたい。
本開示の実施形態は、特定の機能の実施態様および特定の機能の実施態様の関係を示す機能的構成要素を用いて上記で説明されてきた。これらの機能的構成要素の境界は、説明の便宜上、本明細書において任意最良で画定されている。指定された機能と指定された機能の関係が適切に実行される限り、代替の境界が画定されてもよい。
概要および要約のセクションは、発明者(複数可)によって企図される本開示のすべてではないが1つまたは複数の例示的な実施形態を記載し得、したがって、本開示および添付の特許請求の範囲を限定することは決して意図されていない。
本開示の幅および範囲は、上記の例示的な実施形態のいずれによっても限定されるべきではなく、添付の特許請求の範囲および特許請求の範囲の等価物に従ってのみ定義されるべきである。
任意選択的に、制御回路210と第1の基板層220との間に、層間誘電体層(例えば、不動態化層、図3には示されていない)を形成することができる。層間誘電体層は、制御回路210と第1の基板層220との間の電気的分離を提供することができ、結果、第1の基板層20から制御回路210へのドーパント拡散を低減/防止することができる。いくつかの実施形態では、層間誘電体層の厚さは、制御回路210と引き続いて形成されるメモリセル回路との間の寄生容量に関連付けられる。したがって、層間誘電体層の厚さを過度に小さくすることはできない。一方、制御回路210と引き続いて形成されるメモリセル回路とを接続する金属コンタクトビアは、層間誘電体層を通して形成され得るため、層間誘電体層の厚さは、金属コンタクトビアのアスペクト比が層間誘電体層の厚さによって大きく影響されないように、過度に大きくすることはできない。いくつかの実施形態では、層間誘電体層の厚さは、約100nm〜約1000nmの範囲内であり得る。
動作601において、底部基板が提供される。制御回路を、底部基板の上に配置することができる。底部基板はベース基板として参照することもでき、引き続いて形成される上部基板および上部基板の上のメモリセルの製造プラットフォームを提供する。いくつかの実施形態では、底部基板は、三次元メモリ構造を形成するための任意の適切な材料を含む。例えば、底部基板は、シリコン(例えば、単結晶シリコン、ポリシリコン、およびアモルファスシリコン)、シリコンゲルマニウム、炭化ケイ素、シリコンオンインシュレータ(SOI)、ゲルマニウムオンインシュレータ(GOI)、ガラス、窒化ガリウム、ヒ化ガリウム、および/または他の適切なIII−V族化合物を含むことができる。いくつかの実施形態では、底部基板は単結晶シリコンを含む。
動作603において、メモリセル回路が複数のドープ基板の上に形成され、制御回路がメモリセル回路に導電的に接続される。メモリセル回路は、制御回路から制御信号を受信し、読み出し、書き込み、および/または消去などの様々な機能を実行することができる。いくつかの実施形態において、メモリセル回路は、三次元NANDメモリセル回路を含む。例えば、メモリセル回路は、複数の交互する導体/誘電体層を有するメモリスタックと、ゲート電極(例えば導体)をビット線に導電的に接続するコンタクトビアと、半導体チャネルと、ソース線ドープ領域内に形成されたソース線とを含むことができる。メモリセル回路は、任意の適切な方法を使用して形成することができる。いくつかの実施形態では、メモリセル回路は、次いで、金属コンタクトビアを通じて制御回路に導電的に接続される。金属コンタクトビアは、メモリセル回路をパターニングしてメモリセル回路、複合基板、および制御ユニットを貫通するコンタクトホールを形成することなど、任意の適切な方法によって形成することができる。適切な導電性金属をコンタクトホールに充填して、金属コンタクトビアを形成することができる。メモリセル回路の形成の詳細な説明については、図5の説明を参照することができる。

Claims (44)

  1. メモリ内の基板を形成する方法であって、
    底部基板を提供することと、
    前記底部基板上に複数のドープ層を形成することと
    を含み、
    前記複数のドープ層は、前記複数のドープ層の上面が実質的に平坦であり、かつ前記複数のドープ層の各々のドーピング濃度が前記複数のドープ層の前記上面に実質的に垂直な方向に沿って実質的に均一であるような厚さ範囲内の総厚を有する、
    方法。
  2. 前記複数のドープ層の前記各々のドーパント極性が同じであり、
    前記複数のドープ層のうちの1つのドーピング濃度は、前記複数のドープ層の前記上面に実質的に垂直な方向に沿って、前記複数のドープ層のうちの下側に隣接するものよりも低い、
    請求項1に記載の方法。
  3. 前記複数のドープ層を形成することは、前記基板の上に第1のドープ層を形成し、前記第1のドープ層の上に第2のドープ層を形成することを含み、前記第1のドープ層のドーピング濃度は、前記第2のドープ層のドーピング濃度よりも高い、
    請求項1または2に記載の方法。
  4. 前記第1のドープ層のドーピング濃度が、前記第2のドープ層のドーピング濃度の約50〜約200倍である、
    請求項3に記載の方法。
  5. 前記第1のドープ層のドーピング濃度が、約1E18原子/cm〜約2E18原子/cmの範囲内であり、前記第2のドープ層のドーピング濃度が、約1E16原子/cm〜約3E16原子/cmの範囲内である、
    請求項3または4に記載の方法。
  6. 前記厚さ範囲が約200nm〜約1000nmである、
    請求項1〜5のいずれか一項に記載の方法。
  7. 前記複数のドープ層のうちの少なくとも1つの形成が、in−situドーピングを含む、
    請求項2〜6のいずれか一項に記載の方法。
  8. 前記複数のドープ層の前記少なくとも1つの前記形成が、低圧化学気相成長(LPCVD)を含む、
    請求項2〜7のいずれか一項に記載の方法。
  9. 前記複数のドープ層の前記少なくとも1つの前記形成は、LPCVDおよびin−situドーピングを含む、
    請求項8に記載の方法。
  10. 前記複数のドープ層は、第1のドープ層および第2のドープ層を含み、前記第1のドープ層は、第1のLPCVDおよび第1のin−situドープにより形成され、前記第2のドープ層は、第2のLPCVDおよび第2のin−situドーピングにより形成される、
    請求項9に記載の方法。
  11. 前記第1のドープ層が第1のホウ素ドープシリコン層を含み、前記第2のドープ層が第2のホウ素ドープシリコン層を含む、
    請求項10に記載の方法。
  12. 前記第1のLPCVDおよび前記第1のin−situドーピングは、第1のシリコン層を形成するための第1の反応ガスを提供することと、前記第1のシリコン層をin−situドーピングして前記第1のホウ素ドープシリコン層を形成するための第1のドーパントソースガスを提供することを含み、前記第1の反応ガスはSiHを含み、前記第1のドーパントソースガスはBを含み、
    前記第2のLPCVDおよび前記第2のin−situドーピングは、第2のシリコン層を形成するための第2の反応ガスを提供することと、前記第2のシリコン層をin−situドーピングして前記第2のホウ素ドープシリコン層を形成するための第2のドーパントソースガスを提供することとを含み、前記第2の反応ガスはSiを含み、前記第2のドーパントソースガスはBを含む、
    請求項11に記載の方法。
  13. 前記第1のLPCVDおよび前記第1のin−situドーピングにおいて、前記第1のドーパントソースガスを提供することは、Bを含む第1の初期ドーパントソースガスを提供することと、前記第1の初期ドーパントソースガスを希釈するために第1の希釈ソースガスを提供することとを含み、前記第1の希釈ソースガスと前記第1の初期ドーパントソースガスとの体積比は約20:1〜約50:1の範囲内であり、前記第1の希釈ソースガスはNを含み、前記第2のLPCVDおよび前記第2のin−situドーピングにおいて、前記第2のドーパントソースガスを提供することは、Bを含む第2の初期ドーパントソースガスを提供することと、前記第1の初期ドーパントソースガスを希釈するために第2の希釈ソースガスを提供することとを含み、前記第2の希釈ソースガスと前記第2の初期ドーパントソースガスとの体積比は約500:1〜約1000:1の範囲内であり、前記第2の希釈ソースガスはNを含む、
    請求項12に記載の方法。
  14. 前記第1の初期ドーパントソースガスは、Bを含む第1の真性ドーパントソースガスおよびNを含む第1の真性希釈ソースガスを含み、前記第1の真性希釈ソースガスのモル比は、前記第1の初期ドーパントソースガスの約8%〜約1.5%であり、前記第2の初期ドーパントソースガスは、Bを含む第2の真性ドーパントソースガスおよびNを含む第2の真性希釈ソースガスを含み、前記第2の真性希釈ソースガスのモル比は、前記第2の初期ドーパントソースガスの約8%〜約1.5%である、
    請求項13に記載の方法。
  15. 前記第1のLPCVDおよび前記第1のin−situドーピングにおいて、前記第1のドーパントソースガスは、約300標準立方センチメートル毎分(sccm)〜約500sccmの流量を有し、前記第1の反応ガスは、約30sccm〜約100sccmの流量を有し、チャンバ圧力は約300ミリトール〜約500ミリトールであり、反応温度は約500℃〜約550℃であり、前記第2のLPCVDおよび前記第2のin−situドーピングにおいて、前記第2のドーパントソースガスは、約2000sccm〜約3000sccmの流量を有し、前記第2の反応ガスは約10sccm〜約300sccmの流量を有し、チャンバ圧力は約300ミリトール〜約500ミリトールであり、反応温度は約500℃〜約550℃である、
    請求項14に記載の方法。
  16. 三次元メモリを形成する方法であって、
    底部基板を提供することであり、制御回路を備える前記底部基板を提供することと、
    前記底部基板の上に複数のドープ層を形成することと、
    前記複数のドープ層の上にメモリセル回路を形成することと、
    前記制御回路と前記メモリセル回路とを導電的に接続することと
    を含み、
    前記複数のドープ層は、前記複数のドープ層の上面が実質的に平坦であり、かつ前記複数のドープ層の各々のドーピング濃度が前記複数のドープ層の前記上面に実質的に垂直な方向に沿って実質的に均一であるような厚さ範囲内の総厚を有する、
    方法。
  17. 前記複数のドープ層の前記各々のドーパント極性が同じであり、
    前記複数のドープ層のうちの1つのドーピング濃度は、前記複数のドープ層の前記上面に実質的に垂直な方向に沿って、前記複数のドープ層のうちの下側に隣接するものよりも低い、
    請求項16に記載の方法。
  18. 前記複数のドープ層を形成することは、前記基板の上に第1のドープ層を形成し、前記第1のドープ層の上に第2のドープ層を形成することを含み、前記第1のドープ層のドーピング濃度は、前記第2のドープ層のドーピング濃度よりも高い、
    請求項16または17に記載の方法。
  19. 前記第1のドープ層のドーピング濃度が、前記第2のドープ層のドーピング濃度の約50〜約200倍である、
    請求項18に記載の方法。
  20. 前記第1のドープ層のドーピング濃度が、約1E18原子/cm〜約2E18原子/cmの範囲内であり、前記第2のドープ層のドーピング濃度が、約1E16原子/cm〜約3E16原子/cmの範囲内である、
    請求項18または19に記載の方法。
  21. 前記厚さ範囲が約200nm〜約1000nmである、
    請求項16または17に記載の方法。
  22. 前記複数のドープ層の少なくとも1つの形成が、in−situドーピングおよび低圧化学気相成長(LPCVD)のうちの少なくとも1つを含む、
    請求項16〜21のいずれか一項に記載の方法。
  23. 前記複数のドープ層の前記少なくとも1つの前記形成は、LPCVDおよびin−situドーピングを含む、
    請求項22に記載の方法。
  24. 前記複数のドープ層は、第1のドープ層および第2のドープ層を含み、前記第1のドープ層は、第1のLPCVDおよび第1のin−situドープにより形成され、前記第2のドープ層は、第2のLPCVDおよび第2のin−situドーピングにより形成される、
    請求項16〜23のいずれか一項に記載の方法。
  25. 前記第1のドープ層が第1のホウ素ドープシリコン層を含み、前記第2のドープ層が第2のホウ素ドープシリコン層を含む、
    請求項16〜24のいずれか一項に記載の方法。
  26. 前記第1のLPCVDおよび前記第1のin−situドーピングは、第1のシリコン層を形成するための第1の反応ガスを提供することと、前記第1のシリコン層をin−situドーピングして前記第1のホウ素ドープシリコン層を形成するための第1のドーパントソースガスを提供することを含み、前記第1の反応ガスはSiHを含み、前記第1のドーパントソースガスはBを含み、前記第2のLPCVDおよび前記第2のin−situドーピングは、第2のシリコン層を形成するための第2の反応ガスを提供することと、前記第2のシリコン層をin−situドーピングして前記第2のホウ素ドープシリコン層を形成するための第2のドーパントソースガスを提供することとを含み、前記第2の反応ガスはSiを含み、前記第2のドーパントソースガスはBを含む、
    請求項25に記載の方法。
  27. 前記第1のLPCVDおよび前記第1のin−situドーピングにおいて、前記第1のドーパントソースガスを提供することは、Bを含む第1の初期ドーパントソースガスを提供することと、前記第1の初期ドーパントソースガスを希釈するために第1の希釈ソースガスを提供することとを含み、前記第1の希釈ソースガスと前記第1の初期ドーパントソースガスとの体積比は約20:1〜約50:1の範囲内であり、前記第1の希釈ソースガスはNを含み、前記第2のLPCVDおよび前記第2のin−situドーピングにおいて、前記第2のドーパントソースガスを提供することは、Bを含む第2の初期ドーパントソースガスを提供することと、前記第1の初期ドーパントソースガスを希釈するために第2の希釈ソースガスを提供することとを含み、前記第2の希釈ソースガスと前記第2の初期ドーパントソースガスとの体積比は約500:1〜約1000:1の範囲内であり、前記第2の希釈ソースガスはNを含む、
    請求項26に記載の方法。
  28. 前記第1の初期ドーパントソースガスは、Bを含む第1の真性ドーパントソースガスおよびNを含む第1の真性希釈ソースガスを含み、前記第1の真性希釈ソースガスのモル比は、前記第1の初期ドーパントソースガスの約8%〜約1.5%であり、前記第2の初期ドーパントソースガスは、Bを含む第2の真性ドーパントソースガスおよびNを含む第2の真性希釈ソースガスを含み、前記第2の真性希釈ソースガスのモル比は、前記第2の初期ドーパントソースガスの約8%〜約1.5%である、
    請求項27に記載の方法。
  29. 前記第1のLPCVDおよび前記第1のin−situドーピングにおいて、前記第1のドーパントソースガスは、約300標準立方センチメートル毎分(sccm)〜約500sccmの流量を有し、前記第1の反応ガスは、約30sccm〜約100sccmの流量を有し、チャンバ圧力は約300ミリトール〜約500ミリトールであり、反応温度は約500℃〜約550℃であり、前記第2のLPCVDおよび前記第2のin−situドーピングにおいて、前記第2のドーパントソースガスは、約2000sccm〜約3000sccmの流量を有し、前記第2の反応ガスは約10sccm〜約300sccmの流量を有し、チャンバ圧力は約300ミリトール〜約500ミリトールであり、反応温度は約500℃〜約550℃である、
    請求項28に記載の方法。
  30. 前記メモリセル回路の型は、前記複数のドープ層の前記各々の前記ドーパント極性と反対である、
    請求項16〜29のいずれか一項に記載の方法。
  31. 前記メモリセル回路は、三次元NANDメモリセル回路を含む、
    請求項30に記載の方法。
  32. 前記メモリセル回路を形成することは、前記複数のドープ層の上にゲート電極のスタックを形成することと、
    前記スタックを貫通する複数のチャネル孔を形成することであって、前記複数のチャネル孔の各々の底端部は、実質的に前記複数のドープ層の上部にある、チャネル孔を形成することと、
    前記複数のチャネル孔の前記各々の前記底端部にエピタキシャルチャネル部分を形成することと、
    前記複数のチャネル孔に基づいて複数の半導体チャネルを形成することと、
    前記複数のドープ層の前記上部に複数のソース線ドープ領域を形成することと、
    前記複数のソース線ドープ領域の上に複数のソース線を形成することと、
    前記複数のゲート電極の上に複数のコンタクトビアを形成することと
    を含む、
    請求項16〜31のいずれか一項に記載の方法。
  33. 前記ゲート電極のスタックを形成することは、前記複数のドープ層の上に誘電体層を提供することであって、犠牲層および絶縁層の交互するスタックを含む前記誘電体層を提供することと、
    複数の水平トレンチを形成するために前記犠牲層を除去することと、
    前記水平トレンチ内に前記ゲート電極のスタックを形成することと
    を含む、
    請求項32に記載の方法。
  34. 前記複数の半導体チャネルの下のドーパント濃度が実質的に同じであり、前記複数のソース線ドープ領域に隣接するドーパント濃度が実質的に同じである、
    請求項33に記載の方法。
  35. 前記制御回路と前記メモリセル回路とを導電的に接続することは、前記制御回路と前記メモリセル回路とを接続する金属コンタクトビアを形成することを含み、前記金属ビアは前記メモリセル回路、前記複数のドープ層、および前記制御回路を貫通する、
    請求項16〜34のいずれか一項に記載の方法。
  36. 前記底部基板の上の前記誘電体層は、約100nm〜約1000nmの厚さを有する、
    請求項16に記載の方法。
  37. 三次元メモリであって、
    底部基板と、
    前記底部基板の上の制御回路と、
    前記底部基板の上の複数のドープ層と、
    前記複数のドープ層の上のメモリセル回路と、
    前記制御回路と前記メモリセル回路とを導電的に接続する金属コンタクトビアと
    を備え、
    前記複数のドープ層は、前記複数のドープ層の上面が実質的に平坦であり、かつ前記複数のドープ層の各々のドーピング濃度が前記複数のドープ層の前記上面に実質的に垂直な方向に沿って実質的に均一であるような厚さ範囲内の総厚を有する、
    三次元メモリ。
  38. 前記複数のドープ層の前記各々のドーパント極性が同じであり、
    前記複数のドープ層のうちの1つのドーピング濃度は、前記複数のドープ層の前記上面に実質的に垂直な方向に沿って、前記複数のドープ層のうちの下側に隣接するものよりも低い、
    請求項37に記載のメモリ。
  39. 前記複数のドープ層は、前記基板の上の第1のドープ層と、前記第1のドープ層の上の第2のドープ層とを備え、前記第1のドープ層のドーピング濃度は、前記第2のドープ層のドーピング濃度よりも高い、
    請求項37または38に記載のメモリ。
  40. 前記第1のドープ層のドーピング濃度が、前記第2のドープ層のドーピング濃度の約50〜約200倍である、
    請求項39に記載のメモリ。
  41. 前記第1のドープ層のドーピング濃度が、約1E18原子/cm〜約2E18原子/cmの範囲内であり、前記第2のドープ層のドーピング濃度が、約1E16原子/cm〜約3E16原子/cmの範囲内である、
    請求項39または40に記載のメモリ。
  42. 前記厚さ範囲が約200nm〜約1000nmである、
    請求項37〜41のいずれか一項に記載のメモリ。
  43. 前記総厚が約300nmである、
    請求項42に記載のメモリ。
  44. 前記底部基板の上の前記誘電体層は、約100nm〜約1000nmの厚さを有する、
    請求項37〜41のいずれか一項に記載のメモリ。
JP2019548927A 2017-03-07 2018-03-01 三次元メモリおよび方法 Active JP7039608B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201710131749.3 2017-03-07
CN201710131749.3A CN106876401B (zh) 2017-03-07 2017-03-07 存储器件的形成方法
PCT/CN2018/077731 WO2018161838A1 (en) 2017-03-07 2018-03-01 Composite substrate of three-dimensional memory devices

Publications (2)

Publication Number Publication Date
JP2020511007A true JP2020511007A (ja) 2020-04-09
JP7039608B2 JP7039608B2 (ja) 2022-03-22

Family

ID=59170466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019548927A Active JP7039608B2 (ja) 2017-03-07 2018-03-01 三次元メモリおよび方法

Country Status (6)

Country Link
US (1) US20190013326A1 (ja)
JP (1) JP7039608B2 (ja)
KR (1) KR102381095B1 (ja)
CN (3) CN106876401B (ja)
TW (1) TWI653746B (ja)
WO (1) WO2018161838A1 (ja)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018117102A (ja) * 2017-01-20 2018-07-26 ソニーセミコンダクタソリューションズ株式会社 半導体装置
CN106876401B (zh) * 2017-03-07 2018-10-30 长江存储科技有限责任公司 存储器件的形成方法
US10651087B2 (en) 2017-08-31 2020-05-12 Yangtze Memory Technologies Co., Ltd. Method for forming three-dimensional integrated wiring structure and semiconductor structure thereof
US10607887B2 (en) 2017-08-31 2020-03-31 Yangtze Memory Technologies Co., Ltd. Method for forming three-dimensional integrated wiring structure and semiconductor structure thereof
WO2019042250A1 (zh) * 2017-08-31 2019-03-07 长江存储科技有限责任公司 存储器结构及其形成方法
WO2020051737A1 (en) 2018-09-10 2020-03-19 Yangtze Memory Technologies Co., Ltd. Memory device using comb-like routing structure for reduced metal line loading
KR102480631B1 (ko) * 2018-10-01 2022-12-26 삼성전자주식회사 반도체 장치 및 그 제조 방법
CN110896669B (zh) 2018-12-18 2021-01-26 长江存储科技有限责任公司 多堆叠三维存储器件以及其形成方法
CN110896668B (zh) 2018-12-18 2021-07-20 长江存储科技有限责任公司 多堆栈三维存储器件以及其形成方法
CN110914991B (zh) * 2018-12-18 2021-04-27 长江存储科技有限责任公司 具有转移的互连层的三维存储器件以及其形成方法
CN109768050B (zh) * 2018-12-18 2020-11-17 长江存储科技有限责任公司 三维存储器及其制备方法
KR102658194B1 (ko) * 2018-12-21 2024-04-18 삼성전자주식회사 반도체 장치
WO2020198944A1 (en) * 2019-03-29 2020-10-08 Yangtze Memory Technologies Co., Ltd. Memory stacks having silicon nitride gate-to-gate dielectric layers and methods for forming the same
WO2020206681A1 (en) * 2019-04-12 2020-10-15 Yangtze Memory Technologies Co., Ltd. Three-dimensional memory device with deposited semiconductor plugs and methods for forming the same
KR20200140139A (ko) 2019-06-05 2020-12-15 삼성전자주식회사 비휘발성 메모리 장치
US11355194B2 (en) 2019-06-05 2022-06-07 Samsung Electronics Co., Ltd. Non-volatile memory device
US11875855B2 (en) 2019-06-05 2024-01-16 Samsung Electronics Co., Ltd. Non-volatile memory device including signal lines arranged at the same level as a common source line and a gate arranged at the same level as a ground selection line
CN112510052B (zh) 2019-06-27 2023-09-12 长江存储科技有限责任公司 新型3d nand存储器件及形成其的方法
CN110892528A (zh) * 2019-10-12 2020-03-17 长江存储科技有限责任公司 半导体器件及其制作方法
US10879266B1 (en) 2020-01-16 2020-12-29 Macronix International Co., Ltd. Semiconductor device and operating method thereof
JP7451567B2 (ja) * 2020-01-28 2024-03-18 長江存儲科技有限責任公司 三次元メモリデバイス、および三次元メモリデバイスを形成するための方法
KR20220002575A (ko) 2020-01-28 2022-01-06 양쯔 메모리 테크놀로지스 씨오., 엘티디. 3차원 메모리 디바이스들 및 그 형성 방법
US11545456B2 (en) * 2020-08-13 2023-01-03 Micron Technology, Inc. Microelectronic devices, electronic systems having a memory array region and a control logic region, and methods of forming microelectronic devices
CN116322056A (zh) * 2021-04-30 2023-06-23 长江存储科技有限责任公司 三维存储器及制造三维存储器的方法
TWI775627B (zh) 2021-09-29 2022-08-21 鴻海精密工業股份有限公司 記憶體晶片及記憶體裝置
KR20230158725A (ko) * 2022-05-12 2023-11-21 삼성전자주식회사 반도체 메모리 장치, 그의 제조 방법 및 그를 포함하는 전자 시스템
CN116613055B (zh) * 2023-07-18 2024-02-02 粤芯半导体技术股份有限公司 掺杂多晶硅薄膜的形成方法及其表面缺陷去除方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57117269A (en) * 1981-01-13 1982-07-21 Nec Corp Semiconductor device and manufacture thereof
JP2000124144A (ja) * 1998-10-21 2000-04-28 Hitachi Ltd 半導体集積回路装置の製造方法、ならびに半導体ウエハおよびその製造方法
US20150372005A1 (en) * 2014-06-23 2015-12-24 Gukhyon Yon Three-dimensional semiconductor memory device and method of fabricating the same

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100269289B1 (ko) * 1997-02-19 2000-10-16 윤종용 실리콘막의결정화방법
US20030049372A1 (en) * 1997-08-11 2003-03-13 Cook Robert C. High rate deposition at low pressures in a small batch reactor
US6410090B1 (en) * 1998-09-29 2002-06-25 Applied Materials, Inc. Method and apparatus for forming insitu boron doped polycrystalline and amorphous silicon films
KR100530420B1 (ko) * 2003-07-11 2005-11-22 주식회사 하이닉스반도체 플래시 메모리 소자의 제조방법
EP1895582A4 (en) * 2005-04-27 2009-09-23 Spansion Llc SEMICONDUCTOR COMPONENT AND METHOD FOR THE PRODUCTION THEREOF
CN101826525B (zh) * 2009-03-06 2011-10-05 宜扬科技股份有限公司 具有双重离子注入的nor型闪存结构及其制造方法
KR101688614B1 (ko) * 2010-03-04 2016-12-22 삼성전자주식회사 트랜지스터
KR101176900B1 (ko) * 2010-09-06 2012-08-30 주식회사 유진테크 반도체 소자의 제조 방법
EP2450945B1 (en) * 2010-11-08 2013-05-29 Imec Method for producing a floating gate memory structure
JP5670704B2 (ja) 2010-11-10 2015-02-18 株式会社東芝 不揮発性半導体記憶装置及びその製造方法
KR101916222B1 (ko) * 2011-04-29 2018-11-08 삼성전자 주식회사 수직 구조의 비휘발성 메모리 소자 및 그 제조 방법
KR20140028969A (ko) * 2012-08-31 2014-03-10 에스케이하이닉스 주식회사 반도체 장치 및 그 제조 방법
US9425191B2 (en) * 2013-08-13 2016-08-23 Macronix International Co., Ltd. Memory device and manufacturing method of the same
CN104425226B (zh) * 2013-08-20 2017-12-29 中芯国际集成电路制造(上海)有限公司 浮栅及其形成方法、闪存单元及其形成方法
CN104465523B (zh) * 2013-09-24 2017-08-25 中芯国际集成电路制造(北京)有限公司 闪存存储器的制造方法
KR102161781B1 (ko) * 2014-02-03 2020-10-05 삼성전자주식회사 수직형 메모리 장치
KR20160029236A (ko) * 2014-09-04 2016-03-15 삼성전자주식회사 반도체 장치 및 그 제조 방법
KR102310511B1 (ko) * 2014-12-19 2021-10-08 삼성전자주식회사 반도체 소자 및 그 형성 방법
US9773733B2 (en) * 2015-03-26 2017-09-26 Mie Fujitsu Semiconductor Limited Semiconductor device
KR20160124294A (ko) * 2015-04-16 2016-10-27 삼성전자주식회사 주변 영역 상에 적층된 셀 영역을 갖는 반도체 소자 및 그의 제조방법
KR102437779B1 (ko) * 2015-08-11 2022-08-30 삼성전자주식회사 3차원 반도체 메모리 장치
KR20170027561A (ko) * 2015-09-02 2017-03-10 에스케이하이닉스 주식회사 반도체 장치
US9419013B1 (en) * 2015-10-08 2016-08-16 Samsung Electronics Co., Ltd. Semiconductor device and method of manufacturing the same
CN105261617B (zh) * 2015-10-28 2018-03-30 中国科学院微电子研究所 三维半导体器件及其制造方法
KR102452826B1 (ko) * 2015-11-10 2022-10-12 삼성전자주식회사 메모리 장치
JP2018041907A (ja) * 2016-09-09 2018-03-15 東芝メモリ株式会社 半導体装置及びその製造方法
CN106876401B (zh) * 2017-03-07 2018-10-30 长江存储科技有限责任公司 存储器件的形成方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57117269A (en) * 1981-01-13 1982-07-21 Nec Corp Semiconductor device and manufacture thereof
JP2000124144A (ja) * 1998-10-21 2000-04-28 Hitachi Ltd 半導体集積回路装置の製造方法、ならびに半導体ウエハおよびその製造方法
US20150372005A1 (en) * 2014-06-23 2015-12-24 Gukhyon Yon Three-dimensional semiconductor memory device and method of fabricating the same

Also Published As

Publication number Publication date
CN106876401B (zh) 2018-10-30
CN110088898A (zh) 2019-08-02
TW201842653A (zh) 2018-12-01
CN111524897B (zh) 2021-02-19
KR20190122796A (ko) 2019-10-30
CN110088898B (zh) 2020-07-28
TWI653746B (zh) 2019-03-11
JP7039608B2 (ja) 2022-03-22
WO2018161838A1 (en) 2018-09-13
KR102381095B1 (ko) 2022-03-30
US20190013326A1 (en) 2019-01-10
CN111524897A (zh) 2020-08-11
CN106876401A (zh) 2017-06-20

Similar Documents

Publication Publication Date Title
JP7039608B2 (ja) 三次元メモリおよび方法
US20210118867A1 (en) Three-dimensional memory device and fabrication method thereof
US20210066347A1 (en) Multilevel memory stack structure with tapered inter-tier joint region and methods of making thereof
TWI793427B (zh) 三維記憶體裝置及其製作方法
KR102003526B1 (ko) 반도체 메모리 소자 및 그 제조방법
US9786675B2 (en) Non-volatile memory devices including charge storage layers
US9401360B2 (en) Semiconductor devices including etching stop films
KR20160011742A (ko) 반도체 소자
US11121150B2 (en) Three-dimensional memory devices and fabricating methods thereof
US10916556B1 (en) Three-dimensional memory device using a buried source line with a thin semiconductor oxide tunneling layer
CN111788686B (zh) 三维存储器件及用于形成其的方法
CN112437983B (zh) 三维存储器件和用于形成三维存储器件的方法
CN111727504B (zh) 三维存储器件及用于形成其的方法
US12027207B2 (en) Vertical memory devices and methods for operating the same
WO2023108387A1 (en) Vertical memory devices and methods for forming the same
US11088147B2 (en) Apparatus with doped surfaces, and related methods with in situ doping

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191106

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210713

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220309

R150 Certificate of patent or registration of utility model

Ref document number: 7039608

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150