JP2020047728A - 磁気メモリ - Google Patents

磁気メモリ Download PDF

Info

Publication number
JP2020047728A
JP2020047728A JP2018174070A JP2018174070A JP2020047728A JP 2020047728 A JP2020047728 A JP 2020047728A JP 2018174070 A JP2018174070 A JP 2018174070A JP 2018174070 A JP2018174070 A JP 2018174070A JP 2020047728 A JP2020047728 A JP 2020047728A
Authority
JP
Japan
Prior art keywords
magnetic
columnar body
pillars
electrode
conductive line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018174070A
Other languages
English (en)
Inventor
善寛 上田
Yoshihiro Ueda
善寛 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kioxia Corp
Original Assignee
Kioxia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kioxia Corp filed Critical Kioxia Corp
Priority to JP2018174070A priority Critical patent/JP2020047728A/ja
Priority to US16/290,571 priority patent/US10714202B2/en
Publication of JP2020047728A publication Critical patent/JP2020047728A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C19/00Digital stores in which the information is moved stepwise, e.g. shift registers
    • G11C19/02Digital stores in which the information is moved stepwise, e.g. shift registers using magnetic elements
    • G11C19/08Digital stores in which the information is moved stepwise, e.g. shift registers using magnetic elements using thin films in plane structure
    • G11C19/0808Digital stores in which the information is moved stepwise, e.g. shift registers using magnetic elements using thin films in plane structure using magnetic domain propagation
    • G11C19/0841Digital stores in which the information is moved stepwise, e.g. shift registers using magnetic elements using thin films in plane structure using magnetic domain propagation using electric current
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1659Cell access
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
    • H10B61/10Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having two electrodes, e.g. diodes or MIM elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • H10N50/85Magnetic active materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Mram Or Spin Memory Techniques (AREA)
  • Hall/Mr Elements (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

【課題】一つの実施形態は、低コストで構成できる磁気メモリを提供することを目的とする。【解決手段】一つの実施形態によれば、導電ラインと第1の柱状体と第2の柱状体とを有する磁気メモリが提供される。導電ラインは、第1の方向に延びている。第1の方向は、基板の表面に沿った方向である。第1の柱状体は、メモリセルアレイ領域に配されている。第1の柱状体は、第2の方向に延びている。第2の方向は、基板の表面に交差する方向である。第1の柱状体は、一端が導電ラインに接続されている。第1の柱状体は、データを記憶するために配置されている。第2の柱状体は、周辺領域に配されている。第2の柱状体は、第2の方向に延びている。第2の柱状体は、一端が導電ラインに接続されている。第2の柱状体は、導電ラインと制御回路を電気的に接続するために配置されている。第1の柱状体と第2の柱状体とは、同一の磁性材料を含む。【選択図】図4

Description

本実施形態は、磁気メモリに関する。
磁気メモリは、複数の柱状体(複数の磁性体柱)が配列されてメモリセルアレイが構成される。このとき、磁気メモリを低コストで構成することが望まれる。
特開2016−9806号公報
一つの実施形態は、低コストで構成できる磁気メモリを提供することを目的とする。
一つの実施形態によれば、導電ラインと第1の柱状体と第2の柱状体とを有する磁気メモリが提供される。導電ラインは、第1の方向に延びている。第1の方向は、基板の表面に沿った方向である。第1の柱状体は、メモリセルアレイ領域に配されている。第1の柱状体は、第2の方向に延びている。第2の方向は、基板の表面に交差する方向である。第1の柱状体は、一端が導電ラインに接続されている。第1の柱状体は、データを記憶するために配置されている。第2の柱状体は、周辺領域に配されている。第2の柱状体は、第2の方向に延びている。第2の柱状体は、一端が導電ラインに接続されている。第2の柱状体は、導電ラインと制御回路を電気的に接続するために配置されている。第1の柱状体と第2の柱状体とは、同一の磁性材料を含む。
図1は、実施形態にかかる磁気メモリの構成を示すブロック図である。 図2は、実施形態におけるメモリセルアレイ領域及び周辺領域の構成を示す回路図である。 図3は、実施形態における書き込み動作及び読み出し動作を示す図である。 図4は、実施形態におけるメモリセルアレイ領域及び周辺領域の構成を示す断面図である。 図5は、実施形態における複数チップの貼り合わせの構成を示す断面図である。
以下に添付図面を参照して、実施形態にかかる磁気メモリを詳細に説明する。なお、この実施形態により本発明が限定されるものではない。
(実施形態)
実施形態にかかる磁気メモリについて説明する。磁気メモリは、メモリセルアレイ領域において、複数の柱状体(複数の磁性体柱)が配列されてメモリセルアレイが構成される。例えば、磁気メモリは、磁性体柱にシフト電流を流して磁性体柱における磁壁をシフトさせながら磁性体柱内に磁区の磁化の方向を制御して磁性体内に情報を書き込む。磁気メモリは、磁性体柱にシフト電流を流して磁性体柱における磁壁を書き込み時と逆方向にシフトさせながら磁性体柱内の磁区の磁化の方向を検知して磁性体内から情報を読み出す。このため、磁気メモリには、各磁性体の両端にそれぞれシフト電流を流すための制御回路が電気的に接続可能に構成され得る。
一方、磁気メモリの製造工程において、複数の柱状体(複数の磁性体柱)を形成する陽極酸化処理が高電界を伴うため、シフト電流を流すための制御回路は、複数の磁性体柱の下方に設けると、複数の磁性体柱の形成時に制御回路が電気的に破壊される可能性がある。このため、シフト電流を流すための制御回路は、メモリセルアレイを構成する複数の磁性体柱の上方に設けられ得る。このため、磁気メモリは、メモリセルアレイ領域の周辺に配される周辺領域において、制御回路に接続するための配線として、磁性体柱の下端に対応した高さから上方までプラグが引き出され得る。周辺領域のプラグがタングステンなどの導電物質で形成される場合、周辺領域のプラグとメモリセルアレイ領域の複数の磁性体柱とを別々の工程で形成する必要があるため、磁気メモリの製造コストが増大する可能性がある。
そこで、本実施形態では、磁気メモリにおいて、周辺領域のプラグを磁性体柱で構成し、周辺領域の磁性体柱とメモリセルアレイ領域の磁性体柱とを共通の工程で形成容易に構成することで、磁気メモリの低コストでの構成を目指す。
具体的には、磁気メモリを次のように構成する。基板に沿った第1の方向に延びた導電ライン(ソースライン)をメモリセルアレイ領域から周辺領域まで延ばす。そして、メモリセルアレイ領域に複数の第1の磁性体柱を配列させるとともに、周辺領域に複数の第2の磁性体柱を配列させる。複数の第1の磁性体柱と複数の第2の磁性体柱とは、互いに同一の磁性材料を含む。複数の第1の磁性体柱と複数の第2の磁性体柱とは、基板からの高さが互いに均等になる高さ位置に設けられ得る。メモリセルアレイ領域において複数の第1の磁性体柱の下端を導電ラインに電気的に接続させるとともに、周辺領域において複数の第2の磁性体柱の下端を導電ラインに電気的に接続させる。そして、メモリセルアレイ領域において複数の第1の磁性体柱の上端を、プラグ、他の導電ライン(ビットライン)、導電パッド(電極)経由で第1の制御回路に電気的に接続させるとともに、周辺領域において複数の第2の磁性体柱の上端をプラグ、導電パッド(電極)経由で第2の制御回路に電気的に接続させる。これにより、複数の第1の磁性体柱と複数の第2の磁性体柱とが共通の工程で形成容易に構成されるので、第1の制御回路側及び第2の制御回路側から各第1の磁性体柱の両端にシフト電流を流す構成を低コストで実現可能である。
より具体的には、磁気メモリ1は、図1に示すように構成され得る。図1は、磁気メモリ1の構成を示すブロック図である。
図1に示す磁気メモリ1は、メモリセルアレイ10、ビット線(BL)デコーダ20、ソース線(SL)デコーダ30、読み出し回路40、シフト制御回路50、フィールド線(FL)ドライバ60、書き込み制御回路80、及びコントローラ70を有する。シフト制御回路50は、第1の制御回路51及び第2の制御回路52を有する。
メモリセルアレイ10は、複数の磁性体柱MML1を有する。各磁性体柱MML1は、データを記憶するための複数の磁区(あるいは磁壁)を含む。メモリセルアレイ10では、磁性体柱MML1が行列状に配列される。磁性体柱MML1は、ビット線BLとソース線SLとの間に電気的に接続される。磁性体柱MML1は、磁性細線又は磁気記憶細線とも呼ばれる。
ビット線(BL)デコーダ20は、ロウアドレスに基づいて複数のビット線BLから1つのビット線BLを選択する。ソース線デコーダ30は、カラムアドレスに基づいて複数のソース線SLから1つのソース線SLを選択する。書き込み制御回路80は、メモリセルアレイ10内の磁性体柱へのデータの書き込みを行う。フィールド線ドライバ60は、書き込み時に、書き込み制御回路80からの制御に従い、フィールド線に電流を流し、フィールド線から書き込みデータに応じた誘導磁場を発生させる。読み出し回路40は、センスアンプを有し、メモリセルアレイ10内の磁性体柱からデータの読み出しを行う。
シフト制御回路50は、書き込み動作及び読み出し動作において、第1の制御回路51及び第2の制御回路52を用いて、磁性体柱内の磁区(あるいは磁壁)を移動させる電圧を印加し、磁性体柱MML1に配列された各磁区をシフトさせるシフト電流を出力する。第1の制御回路51は、ビット線BLを介して磁性体柱MML1の上端に電気的に接続可能に構成される。第2の制御回路52は、磁性体柱MML2及びソース線SLを介して、磁性体柱MML1の下端に電気的に接続可能に構成される。磁性体柱MML2については後述する。
図1に示す磁気メモリ1が実装されるチップは、メモリセルアレイ領域MAR及び周辺領域PHRを含む。メモリセルアレイ領域MARは、メモリセルアレイ10が配さる領域であり、周辺領域PHRは、メモリセルアレイ領域MARの周辺に配される領域である。メモリセルアレイ領域MAR及び周辺領域PHRの回路構成は、例えば、図2に示すように構成され得る。図2は、メモリセルアレイ領域MAR及び周辺領域PHRの構成を示す回路図である。図2では、基板101の表面1011(図3参照)に垂直な方向をZ方向とし、Z方向に垂直な平面内で互いに直交する2方向をX方向及びY方向とする。
図2に示すように、複数のソースラインSLは、メモリセルアレイ領域MAR及び周辺領域PHRに跨って配されている。各ソースラインSLは、Y方向に所定ピッチを持って配列されるとともに、X方向に沿ってメモリセルアレイ領域MARから周辺領域PHRまで延びている。
メモリセルアレイ領域MARでは、複数のビットラインBL及び複数のフィールドラインFLが複数のソースラインSLの+Z側に配されている。複数のビットラインBLは、Z方向から透視した場合に複数のソースラインSLに交差する。各ビットラインBLは、X方向に所定ピッチを持って配列されるとともに、Y方向に延びている。各フィールドラインFLは、X方向に所定ピッチを持って配列されるとともに、磁性体柱MML1の上端近傍を通過するようにY方向に延びている。
複数の磁性体柱MML1は、Z方向における複数のビットラインBL及び複数のソースラインSLの間に配され、複数のビットラインBL及び複数のソースラインSLの交差するXY位置に配置されている。複数の磁性体柱MML1がX方向及びY方向にて形成される面上にマトリクス状に配列されている。
各磁性体柱MML1は、Z方向に延びている。各磁性体柱MML1の+Z側端は、磁気抵抗効果素子(あるいは抵抗変化素子、可変抵抗素子)11、及び選択素子(セレクタ)12を順に介してビットラインBLに電気的に接続される。すなわち、磁性体柱MML1の+Z側端は、磁気抵抗効果素子11の−Z側端に電気的に接続され、磁気抵抗効果素子11の+Z側端は選択素子12の−Z側端に電気的に接続される。選択素子12の+Z側端は、ビットラインBLに電気的に接続される。さらに、磁性体柱MML1の−Z側端は、ソースラインSLに電気的に接続される。フィールドラインFLは、磁性体柱MML1の+Z側端の近傍を通るが、磁性体柱MML1には電気的に接続されない。
磁気抵抗効果素子11は、例えば、磁化状態に応じて抵抗が変化するMTJ(Magnetic Tunnel Junction)素子を含む。選択素子12は、例えば、閾値電圧以上の電圧が印加されると低抵抗状態となり、闘値電圧より低い電圧が印加されると高抵抗状態となる素子を含む。選択素子12は、例えば2端子間スイッチ素子であってもよい。2端子間に印加する電圧が閾値以下の場合、そのスイッチ素子は高抵抗状態、例えば電気的に非導通状態である。2端子間に印加する電圧が闘値以上の場合、スイッチ素子は低抵抗状態、例えば電気的に導通状態に変わる。スイッチ素子は、電圧がどちらの極性でもこの機能を有していてもよい。このスイッチ素子には、Te、SeおよびSからなる群より選択された少なくとも1種以上のカルコゲン元素を含む。または、上記カルコゲン元素を含む化合物であるカルコグナイドを含んでいてもよい。このスイッチ素子は他にも、B、Al、Ga、1n、C、Si、Ge、Sn、As、P、Sbからなる群より選択された少なくとも1種以上の元素を含んでもよい。
例えば、略同一のX座標となる位置でY方向に配列された複数の磁性体柱MML1、磁気抵抗効果素子11及び選択素子12は、選択素子12の他端にて同ーのビットラインBLに接続される。一方、略同一のY座標となる位置でX方向に配列された複数の磁性体柱MML1、磁気抵抗効果素子11及び選択素子12は、磁性体柱MMLの他端にて同一のソースラインSLに接続される。
また、メモリセルアレイ領域MARでは、複数の電極EL1、複数の電極EL2、及び第1の制御回路51が複数のビットラインBLの+Z側に配されている。複数の電極EL1は、複数のビットラインBLに対応している。各電極EL1は、対応するビットラインBLに電気的に接続される。複数の電極EL2は、複数の電極EL1に対応している。各電極EL2は、対応する電極EL1の+Z側の面に接触し、対応する電極EL1に電気的に接続される。第1の制御回路51は、複数の電極EL2の+Z側に配され、複数の電極EL2に電気的に接続される。
一方、周辺領域PHRでは、複数の接続ラインCLが複数のソースラインSLの+Z側に配されている。複数の接続ラインCLは、Z方向から透視した場合に複数のソースラインSLに重なる。複数の磁性体柱MML2は、Z方向における複数の接続ラインCL及び複数のソースラインSLの間に配されている。複数の磁性体柱MML2は、X方向及びY方向にて形成される面上にマトリクス状に配列されている。
各磁性体柱MML2は、Z方向に延びている。磁性体柱MML2の+Z側端は、接続ラインCLに電気的に接続され、磁性体柱MML2の−Z側端は、ソースラインSLに電気的に接続される。
すなわち、X方向に並ぶ複数の磁性体柱MML2は、接続ラインCLとソースラインSLとの間を電気的に並列接続している。これにより、X方向に並ぶ複数の磁性体柱MML2は、接続ラインCLとソースラインSLとの接続における等価的な導電率を向上させることができる。
また、周辺領域PHRでは、複数の電極EL11、複数の電極EL12、及び第1の制御回路51が複数の接続ラインCLの+Z側に配されている。複数の電極EL11は、複数の接続ラインCLに対応している。各電極EL11は、対応する接続ラインCLに電気的に接続される。複数の電極EL12は、複数の電極EL11に対応している。各電極EL12は、対応する電極EL11の+Z側の面に接触し、対応する電極EL11に電気的に接続される。第2の制御回路52は、複数の電極EL12の+Z側に配され、複数の電極EL12に電気的に接続される。
次に、磁気メモリ1における書き込み及び読み出し動作について説明する。データの読み出しおよび書き込みでは、読み出しまたは書き込みの対象の磁区が、読み出しまたは書き込みのための機構の位置(以下、読み出し位置または書き込み位置と記す)までシフトされる。すなわち、読み出しまたは書き込みの対象磁区が読み出し位置または書き込み位置まで移動するように、磁区間の磁壁がシフトされる。磁壁のシフトは、例えば、磁性体柱MMLに電流(シフト電流)を流すことにより行われる。
例えば、書き込み動作において、シフト制御回路50は、第2の制御回路52からシフト電流を出力させる。このシフト電流は、図2に示す構成において、電極EL12→電極EL11→接続ラインCL→磁性体柱MML2→ソースラインSL→磁性体柱MML1→ビットラインBL→電極EL1→電極EL2→第1の制御回路51と伝達される。これにより、磁性体柱MML1に+Z方向のシフト電流が流され、書き込み動作に伴う磁性体柱MML1における各磁区のシフト動作が行われ得る。
あるいは、読み出し動作において、シフト制御回路50は、第1の制御回路52からシフト電流を出力させる。このシフト電流は、電極EL2→電極EL1→ビットラインBL→磁性体柱MML1→ソースラインSL→磁性体柱MML2→接続ラインCL→電極EL11→電極EL12→第2の制御回路55と伝達される。これにより、磁性体柱MML1に−Z方向のシフト電流が流され、読み出し動作に伴う磁性体柱MML1における各磁区のシフト動作が行われ得る。
図2に示す回路構成を用いた書き込み及び読み出し動作について図3を用いてより詳細に説明する。図3は、磁性体柱MML1に対する書き込み及び読み出しのシーケンスを概念的に示す図である。
まず、書き込みのシーケンスを述べる。書き込みでは、図3(a)に示す書き込み前の状態から、図3(b)に示すように、書き込みユニットにより“0”を書き込むと、磁性体柱MML1の1番目の磁区間に“0”が書き込まれ、+Z方向のシフト電流Is1が流され、1番目の磁区が2番目の位置にシフトされる。次に、図3(c)に示すように、書き込みユニットにより“1”を書き込むと、+Z方向のシフト電流Is1が流され、磁性体柱MML1の1番目の磁区間の“0”は2番目の磁区間にシフトし、1番目の磁区間に“1”が書き込まれる。さらに、図3(d)に示すように、書き込みユニットにより“0”を書き込むと、+Z方向のシフト電流Is1が流され、磁性体柱MML1の2番目の磁区間の“0”は3番目の磁区間にシフトし、1番目の磁区間の“1”は2番目の磁区間にシフトし、1番目の磁区間に“0”が書き込まれる。
その後の書き込みでも同様に、図3(e)〜図3(i)に示すように、+Z方向のシフト電流Is1が流され、先に書き込んだデータが書き込み位置から離れる方向にシフトされ、1番目の磁区間にデータが書き込まれて行く。
次に、読み出しのシーケンスを述べる。図3(j)〜図3(r)は、磁性体柱MML1に対する読み出しの概略図である。読み出しでは、図3(j)に示すように、磁性体柱MML1に読み出し電流が流され、読み出しユニットにより磁性体柱MML1の1番目の磁区間に記憶された“1”が読み出される。
次に、図3(j)に示すように、磁性体柱MML1に−Z方向のシフト電流Is2が流され、磁性体柱MML1内の磁区が読み出し位置に近づく方向にシフトされる。これにより、例えば、読み出し前に2番目に存在した磁区間の“0”は1番目の磁区間にシフトし、3番目に存在した磁区間の“1”は2番目の磁区間にシフトする。続いて、図3(k)に示すように、磁性体柱MML1に読み出し電流が流され、読み出しユニットにより磁性体柱MML1の1番目の磁区間に記憶された“0”が読み出される。
次に、図3(k)に示すように、磁性体柱MML1に−Z方向のシフト電流Is2が流され、磁性体柱MML1内の磁区が読み出し位置に近づく方向にシフトされる。これにより、例えば、図3(k)に示した読み出しで、2番目に存在した磁区間の“1”は1番目の磁区間にシフトし、3番目に存在した磁区間の“0”は2番目の磁区間にシフトする。続いて、図3(l)に示すように、磁性体柱MML1に読み出し電流が流され、読み出しユニットにより磁性体柱MML1の1番目の磁区間に記憶された“1”が読み出される。
その後の読み出しでも同様に、図3(m)〜図3(r)に示すように、−Z方向のシフト電流Is2が流され、磁性体柱MML1内の各磁区(あるいは各磁壁)が読み出し位置に近づく方向にシフトされ、1番目の磁区間に記憶されたデータが読み出される。
また、図2に示す回路構成は、例えば、図4に示すように実装され得る。図4は、メモリセルアレイ領域MAR及び周辺領域PHRの構成を示す断面図である。図5は、複数チップの貼り合わせの構成を示す断面図である。
図4に示すように、メモリセルアレイ領域MARでは、基板101の表面1011の+Z側に、層間絶縁膜102を介して導電ライン100が配されている。基板101は、半導体(例えば、シリコン)を主成分とする材料で形成され得る。層間絶縁膜102は、半導体酸化物(例えば、酸化シリコン)などの絶縁体を主成分とする材料で形成され得る。導電ライン100は、導電体(例えば、アルミニウム又はタングステン)を主成分とする材料で形成され得る。導電ライン100は、ソースラインSLとして機能するパターンであり、X方向に延びたライン形状を有する。図示しないが、複数の導電ライン100が層間絶縁膜102を介して基板101の表面1011に沿った方向(Y方向)に配列されている(図2参照)。
同様に、周辺領域PHRでは、基板101aの表面1011aの+Z側に、層間絶縁膜102aを介して導電ライン100aが配されている。基板101aは、半導体(例えば、シリコン)を主成分とする材料で形成され得る。層間絶縁膜102aは、絶縁体(例えば、酸化シリコン)を主成分とする材料で形成され得る。導電ライン100aは、導電体(例えば、アルミニウム又はタングステン)を主成分とする材料で形成され得る。導電ライン100aは、ソースラインSLとして機能するパターンであり、−X方向にメモリセルアレイ領域MARまで延びたライン形状を有する。すなわち、導電ライン100aは、メモリセルアレイ領域MARにおける導電ライン100に物理的に接続されているとともに電気的に接続されている。図示しないが、複数の導電ライン100aが層間絶縁膜102aを介して基板101aの表面1011aに沿った方向(Y方向)に配列されている(図2参照)。
メモリセルアレイ領域MARでは、複数の導電ライン100及び層間絶縁膜102の+Z側には、複数の柱状体103及び層間絶縁膜104が配されている。柱状体103は、磁性体(例えば、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、マンガン(Mn)、クロム(Cr)よりなる群から選択された少なくとも一つの元素を含む磁性合金など)を主成分とする材料で形成され得る。層間絶縁膜104は、金属酸化物(例えば、アルミナ)を主成分とする材料で形成され得る。複数の柱状体103は、複数の磁性体柱MML1として機能する部材であり、X方向に配列されているとともに図示しないがY方向にも配列されている(図2参照)。各柱状体103は、XY方向の寸法(直径)がZ方向に周期的に変化してもよく、Z方向に周期的にくびれが繰り返される形状を有していてもよい。これにより、柱状体103が磁性体柱MML1として機能する際に、シフト動作の前後において磁性体柱MML1内で磁区の位置が安定的に決まり得る。
同様に、周辺領域PHRでは、複数の導電ライン100a及び層間絶縁膜102aの+Z側には、複数の柱状体103a及び層間絶縁膜104aが配されている。柱状体103aは、磁性体(例えば、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、マンガン(Mn)、クロム(Cr)よりなる群から選択された少なくとも一つの元素を含む磁性合金など)を主成分とする材料で形成され得る。柱状体103aは、メモリセルアレイ領域MARにおける柱状体103と同一の材料を含むことができる。柱状体103aは、メモリセルアレイ領域MARにおける柱状体103と均等な高さ位置に配され得る。層間絶縁膜104aは、金属酸化物(例えば、アルミナ)を主成分とする材料で形成され得る。複数の柱状体103aは、複数の磁性体柱MML1として機能する部材であり、X方向に配列されているとともに図示しないがY方向にも配列されている(図2参照)。各柱状体103aは、メモリセルアレイ領域MARにおける柱状体103に対応した形状を有することができる。各柱状体103aは、XY方向の寸法(直径)がZ方向に周期的に変化してもよく、Z方向に周期的にくびれが繰り返される形状を有していてもよい。これにより、柱状体103aが磁性体柱MML1として機能する際に、シフト動作の前後において磁性体柱MML1内で磁区の位置が安定的に決まり得る。層間絶縁膜102aは、メモリセルアレイ領域MARにおける層間絶縁膜102と同一の材料を含むことができる。
なお、複数の柱状体103,103a及び層間絶縁膜104,104aを含む構造は、陽極酸化法によるウエットエッチングプロセスで形成され得る。例えば、アルミニウムなどの金属基板を用意し、金属基板を陽極として電解質溶液(硫酸、シュウ酸、リン酸など)中に配置し、金属基板に通電する。このとき、金属基板における陽極の部分が酸化されて金属イオンとなり融解する。この金属イオンは液中の酸素と結合して金属酸化物となり、金属基板における陽極表面に残り成長していく。つまり、金属基板に、金属酸化物(例えば、アルミナ)が成長していくことになる。この際、溶解と成長が同時に進むことで、陽極のアルミニウム表面には、アルミナの微細なホールが並ぶことになる。このホールの寸法は、アルミニウム純度や電圧や電界質溶液や処理時間によって決定される。例えば、99.995%以上の純度のアルミニウム基板に対して、硫酸を用いて数十Vで数十分処理した場合には、径20nm、ピッチが60nm、深さ10μmのホールの配列が枝分かれなく形成される。
すなわち、メモリセルアレイ領域MARにおける複数の柱状体103及び層間絶縁膜104を含む構造と周辺領域PHRにおける複数の柱状体103a及び層間絶縁膜104aを含む構造とは、陽極酸化法によるウエットエッチングプロセスで一括して共通の工程で形成されるのに適した構造である。
メモリセルアレイ領域MARでは、各柱状体103の+Z側に、MTJ素子105、プラグ106、セレクタ108、導電ライン109が順に積層され、各柱状体103の+Z側端部近傍に、層間絶縁膜110を介して導電ライン107が配されている。層間絶縁膜110は、半導体酸化物(例えば、酸化シリコン)などの絶縁体を主成分とする材料で形成され得る。MTJ素子105は、柱状体103の+Z側端部に接触しており、MTJ素子11として機能し、磁気抵抗効果を有する所定の材料の積層構造で形成され得る。プラグ106は、Z方向に延び、導電体(例えば、タングステン)を主成分とする材料で形成され得る。セレクタ108は、セレクタ12として機能し、セレクト動作を示す所定の材料の積層構造で形成され得る。導電ライン109は、導電体(例えば、アルミニウム)を主成分とする材料で形成され得る。導電ライン109は、ビットラインBLとして機能するパターンであり、層間絶縁膜110を介してX方向に配列されるとともに、図示しないがY方向に延びたライン形状を有する。導電ライン107は、導電体(例えば、アルミニウム及びタングステン)を主成分とする材料で形成され得る。導電ライン107は、フィールドラインFLとして機能するパターンであり、層間絶縁膜110を介してX方向に配列されるとともに、図示しないがY方向に延びたライン形状を有する。
一方、周辺領域PHRでは、各柱状体103の+Z側に、プラグ111a、導電ライン112aが順に積層されている。プラグ111aは、導電体(例えば、タングステン)を主成分とする材料で形成され得る。プラグ111aは、柱状体103aの+Z側端部に接触しているとともに、Z方向に延び、導電ライン112aの−Z側の端部に接触している。複数のプラグ111aは、層間絶縁膜110aを介してX方向に配列されている。導電ライン112aは、導電体(例えば、アルミニウム及びタングステン)を主成分とする材料で形成され得る。導電ライン112aは、接続ラインCLとして機能し、X方向に延びて複数のプラグ111aに電気的に接続されている。
また、磁気メモリ1は、図5に示すように、複数のチップCH1,CH2の貼り合わせで構成され得る。図5では、複数のチップCH1,CH2が貼り合わせられた状態が示されている。図4に示す構成は、メモリチップとしてのチップCH1に含まれ得る。チップCH1では、図4に示す構成に加えて、次の構成を含むことができる。
メモリセルアレイ領域MARでは、導電ライン109の+Z側に、プラグ113、導電パッド114が順に積層されている。プラグ113、導電パッド114の周囲には、層間絶縁膜115が配されている。層間絶縁膜115は、半導体酸化物(例えば、酸化シリコン)などの絶縁体を主成分とする材料で形成され得る。プラグ113は、導電体(例えば、タングステン)を主成分とする材料で形成され得る。プラグ113は、導電ライン109の+Z側端部に接触しているとともに、Z方向に延び、導電パッド114の−Z側端部に接触している。導電パッド114は、電極EL1として機能するパターンであり、導電体(例えば、銅)を主成分とする材料で形成され得る。図5では、1つの導電ライン109に対応したプラグ113及び導電パッド114を例示しており、図示しないが、他の導電ライン109に対応したプラグ113及び導電パッド114も同様に設けられ得る。
同様に、周辺領域PHRでは、導電ライン109aの+Z側に、プラグ113a、導電パッド114aが順に積層されている。プラグ113a、導電パッド114aの周囲には、層間絶縁膜115aが配されている。層間絶縁膜115aは、半導体酸化物(例えば、酸化シリコン)などの絶縁体を主成分とする材料で形成され得る。プラグ113aは、導電体(例えば、タングステン)を主成分とする材料で形成され得る。プラグ113aは、導電ライン109aの+Z側端部に接触しているとともに、Z方向に延び、導電パッド114aの−Z側端部に接触している。導電パッド114aは、電極EL11として機能するパターンであり、導電体(例えば、銅)を主成分とする材料で形成され得る。図5では、1つの導電ライン109aに対応したプラグ113a及び導電パッド114aを例示しており、図示しないが、他の導電ライン109aに対応したプラグ113a及び導電パッド114aも同様に設けられ得る。
一方、CMOSチップとしてのチップCH2は、チップCH1に対応した構成を有する。すなわち、チップCH2は、チップCH1に貼り合わせられた場合に導電パッド114,114aに重なる位置に、導電パッド200,200aを有する。すなわち、チップCH2は、次の構成を含むことができる。
メモリセルアレイ領域MARでは、導電パッド114の+Z側に、導電パッド200、プラグ201が順に積層されている。導電パッド200の+Z側の面は、導電パッド200の−Z側の面に接触している。導電パッド200は、電極EL2として機能するパターンであり、導電体(例えば、銅)を主成分とする材料で形成され得る。プラグ201は、導電パッド114の+Z側端部に接触しているとともに、Z方向に延び、導電膜202の−Z側端部に接触している。プラグ201は、導電体(例えば、銅及びタングステン)を主成分とする材料で形成され得る。導電膜202は、導電体(例えば、銅及びアルミニウム)を主成分とする材料で形成され得る。導電膜202は、プラグ203に接続されている。プラグ203は、導電体(例えば、タングステン)を主成分とする材料で形成され得る。プラグ203は、Z方向に延び、基板206のウェル領域207内の半導体領域208に接続されている。また、基板206の−Z側には、所定の電極膜204が配され得る。導電膜202、プラグ203、半導体領域208、電極膜204を含む構成は、第1の制御回路51の一部として機能し得る。
同様に、周辺領域PHRでは、導電パッド114aの+Z側に、導電パッド200a、プラグ201aが順に積層されている。導電パッド200aの+Z側の面は、導電パッド200aの−Z側の面に接触している。導電パッド200aは、電極EL12として機能するパターンであり、導電体(例えば、銅)を主成分とする材料で形成され得る。プラグ201aは、導電パッド114aの+Z側端部に接触しているとともに、Z方向に延び、導電膜202aの−Z側端部に接触している。プラグ201aは、導電体(例えば、タングステン)を主成分とする材料で形成され得る。導電膜202aは、導電体(例えば、銅及びアルミニウム)を主成分とする材料で形成され得る。導電膜202aは、プラグ203aに接続されている。プラグ203aは、導電体(例えば、銅及びタングステン)を主成分とする材料で形成され得る。プラグ203aは、Z方向に延び、基板206aのウェル領域207a内の半導体領域208aに接続されている。また、基板206の−Z側には、所定の電極膜204aが配され得る。導電膜202a、プラグ203a、半導体領域208a、電極膜204aを含む構成は、第2の制御回路52の一部として機能し得る。
なお、図5では、複数の柱状体103,103aのそれぞれが略円柱形状である場合が例示されているが、複数の柱状体103,103aは、図4に示すようなZ方向に周期的にくびれが繰り返される形状を有していてもよい。
以上のように、本実施形態では、磁気メモリ1において、周辺領域PHRのプラグを磁性体柱MML2で構成し、周辺領域PHRの磁性体柱MML2とメモリセルアレイ領域MARの磁性体柱MML1とを共通の工程で形成容易に構成する。これにより、低コストで構成することに適した磁気メモリ1を実現できる。
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
1 磁気メモリ、100,100a 導電ライン、103,103a 柱状体。

Claims (7)

  1. 基板の表面に沿った第1の方向に延びた導電ラインと、
    メモリセルアレイ領域に配され、前記基板の表面に交差する第2の方向に延び、一端が前記導電ラインに接続され、データを記憶するために配置された第1の柱状体と、
    周辺領域に配され、前記第2の方向に延び、一端が前記導電ラインに接続され、前記導電ラインと制御回路を電気的に接続するために配置された第2の柱状体と、
    を備え、
    前記第1の柱状体と前記第2の柱状体とは、同一の磁性材料を含む
    磁気メモリ。
  2. 前記第1の柱状体及び前記第2の柱状体は、互いに対応する形状を有する
    請求項1に記載の磁気メモリ。
  3. 前記第1の柱状体及び前記第2の柱状体は、それぞれ、前記第2の方向に周期的にくびれが繰り返される形状を有する
    請求項2に記載の磁気メモリ。
  4. 前記第1の柱状体及び前記第2の柱状体のそれぞれの上端部から下端部にかけて配置され、第1の材料で形成された第1の絶縁膜と、
    前記第1の絶縁膜の上に配され、第2の材料で形成された第2の絶縁膜と、
    をさらに備えた
    請求項1から3のいずれか1項に記載の磁気メモリ。
  5. 前記第1の材料は、金属酸化物を主成分とする材料を含み、
    前記第2の材料は、半導体酸化物を主成分とする材料を含む
    請求項4に記載の磁気メモリ。
  6. 前記周辺領域には、複数の前記第2柱状体が第1の方向に配列され、前記複数の第2の柱状体の上方に配され、前記複数の第2の柱状体が電気的に接続された第1の電極をさらに備えた
    請求項1から5のいずれか1項に記載の磁気メモリ。
  7. 前記制御回路に電気的に接続可能である第2の電極をさらに備え、
    前記導電ライン、前記第1の柱状体、前記複数の第2の柱状体、及び前記第1の電極は、第1のチップに配され、
    前記制御回路及び前記第2の電極は、第2のチップに配され、
    前記第1の電極と前記第2の電極とが電気的に接続され、前記第1の電極と前記第2の電極とが前記複数の第2柱状体と前記制御回路の間に配置されるように、前記第1のチップと前記第2のチップとが互いに貼り合わされている
    請求項6に記載の磁気メモリ。
JP2018174070A 2018-09-18 2018-09-18 磁気メモリ Pending JP2020047728A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018174070A JP2020047728A (ja) 2018-09-18 2018-09-18 磁気メモリ
US16/290,571 US10714202B2 (en) 2018-09-18 2019-03-01 Magnetic memory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018174070A JP2020047728A (ja) 2018-09-18 2018-09-18 磁気メモリ

Publications (1)

Publication Number Publication Date
JP2020047728A true JP2020047728A (ja) 2020-03-26

Family

ID=69773160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018174070A Pending JP2020047728A (ja) 2018-09-18 2018-09-18 磁気メモリ

Country Status (2)

Country Link
US (1) US10714202B2 (ja)
JP (1) JP2020047728A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11120858B2 (en) 2019-09-17 2021-09-14 Kioxia Corporation Magnetic memory

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022051104A (ja) 2020-09-18 2022-03-31 キオクシア株式会社 スイッチング素子

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101466237B1 (ko) * 2008-07-14 2014-12-01 삼성전자주식회사 자구벽 이동을 이용한 정보저장장치 및 그 동작방법
JP5431400B2 (ja) 2011-03-28 2014-03-05 株式会社東芝 磁気記憶素子
JP6224479B2 (ja) * 2014-02-18 2017-11-01 東京エレクトロン株式会社 重合膜の成膜方法および成膜装置
JP6220292B2 (ja) 2014-03-11 2017-10-25 株式会社東芝 磁気メモリ、磁気メモリの再生方法、および磁気メモリの記録方法
JP6271350B2 (ja) 2014-06-25 2018-01-31 東芝メモリ株式会社 磁気メモリ、シフトレジスタメモリ、および磁気メモリの製造方法
JP6721902B2 (ja) * 2014-11-27 2020-07-15 国立研究開発法人理化学研究所 磁気素子、スキルミオンメモリ、スキルミオンメモリ搭載固体電子デバイス、データ記録装置、データ処理装置及び通信装置
JP6397773B2 (ja) * 2015-01-30 2018-09-26 東芝メモリ株式会社 磁気記憶装置及び磁気記憶方法
JP2017143175A (ja) * 2016-02-10 2017-08-17 株式会社東芝 磁気記憶装置
JP2019054165A (ja) * 2017-09-15 2019-04-04 東芝メモリ株式会社 磁気記憶装置
JP2019054191A (ja) * 2017-09-19 2019-04-04 東芝メモリ株式会社 磁気記憶装置
JP2019160372A (ja) * 2018-03-14 2019-09-19 東芝メモリ株式会社 磁気記憶装置
JP2019164848A (ja) 2018-03-19 2019-09-26 東芝メモリ株式会社 磁気記憶装置
JP7010741B2 (ja) * 2018-03-19 2022-01-26 キオクシア株式会社 磁気記憶装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11120858B2 (en) 2019-09-17 2021-09-14 Kioxia Corporation Magnetic memory

Also Published As

Publication number Publication date
US10714202B2 (en) 2020-07-14
US20200090775A1 (en) 2020-03-19

Similar Documents

Publication Publication Date Title
CN107204201A (zh) 磁存储器
US11676677B2 (en) Magnetic storage device
US9396811B2 (en) Magnetic memory, method of recording data to and reproducing data from magnetic memory, and method of operating magnetic memory
JP2017059595A (ja) 磁気メモリ
US9490427B2 (en) Resistive random access memory cell structure
JP2020047728A (ja) 磁気メモリ
JP2015170700A (ja) 不揮発性半導体記憶装置
CN111697129B (zh) 磁存储装置以及磁存储装置的制造方法
JP2021044444A (ja) 磁気記憶装置
US11120858B2 (en) Magnetic memory
JP2013069753A (ja) 半導体記憶装置およびその製造方法
US11711925B2 (en) Magnetic memory
CN112289922B (zh) 磁传感器及其制作方法
TWI811638B (zh) 磁性記憶體
TWI754790B (zh) 記憶裝置
US20220302370A1 (en) Magnetic memory
TW202336751A (zh) 記憶裝置及記憶裝置之製造方法
JP2023127466A (ja) 磁気メモリ