JP6397773B2 - 磁気記憶装置及び磁気記憶方法 - Google Patents

磁気記憶装置及び磁気記憶方法 Download PDF

Info

Publication number
JP6397773B2
JP6397773B2 JP2015017660A JP2015017660A JP6397773B2 JP 6397773 B2 JP6397773 B2 JP 6397773B2 JP 2015017660 A JP2015017660 A JP 2015017660A JP 2015017660 A JP2015017660 A JP 2015017660A JP 6397773 B2 JP6397773 B2 JP 6397773B2
Authority
JP
Japan
Prior art keywords
magnetic
array
shift register
unit
register unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015017660A
Other languages
English (en)
Other versions
JP2016143432A (ja
Inventor
剛 近藤
剛 近藤
博史 森瀬
博史 森瀬
大寺 泰章
泰章 大寺
拓哉 島田
拓哉 島田
ミカエル アルノー カンサ
ミカエル アルノー カンサ
佳晃 長田
佳晃 長田
岩田 佳久
佳久 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kioxia Corp
Original Assignee
Toshiba Memory Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Memory Corp filed Critical Toshiba Memory Corp
Priority to JP2015017660A priority Critical patent/JP6397773B2/ja
Priority to US15/007,794 priority patent/US9886199B2/en
Publication of JP2016143432A publication Critical patent/JP2016143432A/ja
Application granted granted Critical
Publication of JP6397773B2 publication Critical patent/JP6397773B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0602Interfaces specially adapted for storage systems specifically adapted to achieve a particular effect
    • G06F3/061Improving I/O performance
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C19/00Digital stores in which the information is moved stepwise, e.g. shift registers
    • G11C19/02Digital stores in which the information is moved stepwise, e.g. shift registers using magnetic elements
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0628Interfaces specially adapted for storage systems making use of a particular technique
    • G06F3/0655Vertical data movement, i.e. input-output transfer; data movement between one or more hosts and one or more storage devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0668Interfaces specially adapted for storage systems adopting a particular infrastructure
    • G06F3/0671In-line storage system
    • G06F3/0683Plurality of storage devices
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/161Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect details concerning the memory cell structure, e.g. the layers of the ferromagnetic memory cell
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1659Cell access
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1673Reading or sensing circuits or methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1675Writing or programming circuits or methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C19/00Digital stores in which the information is moved stepwise, e.g. shift registers
    • G11C19/02Digital stores in which the information is moved stepwise, e.g. shift registers using magnetic elements
    • G11C19/08Digital stores in which the information is moved stepwise, e.g. shift registers using magnetic elements using thin films in plane structure
    • G11C19/0808Digital stores in which the information is moved stepwise, e.g. shift registers using magnetic elements using thin films in plane structure using magnetic domain propagation

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mram Or Spin Memory Techniques (AREA)
  • Hall/Mr Elements (AREA)

Description

本発明の実施形態は、磁気記憶装置及び磁気記憶方法に関する。
磁性線を用いた磁気記憶装置が提案されている。高密度の記憶と同時に、実用的な入出力スピードが望まれる。
米国特許出願公開第2010/0128510A1号明細書
本発明の実施形態は、実用的な磁気記憶装置及び磁気記憶方法を提供する。
本発明の実施形態によれば、磁気記憶装置は、第1メモリアレイと第1駆動部とを含む第1メモリ部と、第2メモリアレイと第2駆動部とを含む第2メモリ部と、制御部と、を含む。前記第1メモリアレイは、第1磁気シフトレジスタ部を含む。前記第2メモリアレイは、第2磁気シフトレジスタ部を含む。前記制御部は、入力データを複数の1次元ビット入力配列に分割する。前記複数の1次元ビット入力配列は、第1配列と、第2配列と、を含む。前記制御部は、前記第1配列を前記第1磁気シフトレジスタ部に後入れ先出しの形式で格納させ、前記第2配列を前記第2磁気シフトレジスタ部に後入れ先出しの形式で格納させる。前記複数の1次元ビット入力配列は、第3配列と、第4配列と、をさらに含む。前記制御部は、前記第1配列を前記第1磁気シフトレジスタ部の一部に後入れ先出しの形式で格納させ、前記第2配列を前記第2磁気シフトレジスタ部の一部に後入れ先出しの形式で格納させ、前記第3配列を前記第1磁気シフトレジスタ部の別の一部に後入れ先出しの形式で格納させ、前記第4配列を前記第2磁気シフトレジスタ部の別の一部に後入れ先出しの形式で格納させる。
本発明の実施形態によれば、磁気記憶方法は、入力データを、第1配列と、第2配列と、を含む複数の1次元ビット入力配列に分割し、前記第1配列を第1磁気シフトレジスタ部に後入れ先出しの形式で格納させ、前記第2配列を第2磁気シフトレジスタ部に後入れ先出しの形式で格納させることを含む。前記第1磁気シフトレジスタ部は、第1メモリアレイに含まれる。前記第2磁気シフトレジスタ部は、第2メモリアレイに含まれる。前記第1メモリアレイは、第1駆動部を含む第1メモリ部に含まれる。前記第2メモリアレイは、第2駆動部を含む第2メモリ部に含まれる。前記複数の1次元ビット入力配列は、第3配列と、第4配列と、をさらに含む。前記第1配列を前記第1磁気シフトレジスタ部の一部に後入れ先出しの形式で格納する。前記第2配列を前記第2磁気シフトレジスタ部の一部に後入れ先出しの形式で格納する。前記第3配列を前記第1磁気シフトレジスタ部の別の一部に後入れ先出しの形式で格納する。前記第4配列を前記第2磁気シフトレジスタ部の別の一部に後入れ先出しの形式で格納する。
第1の実施形態に係る磁気記憶装置を示す模式図である。 図2(a)及び図2(b)は、第1の実施形態に係る磁気記憶装置を示す模式図である。 第1の実施形態に係る磁気記憶装置を示す模式図である。 図4(a)及び図4(b)は、第1の実施形態に係る磁気記憶装置を示す模式図である。 図5(a)及び図5(b)は、第1の実施形態に係る磁気記憶装置の動作を示す模式図である。 第1の実施形態に係る磁気記憶装置の動作を示す模式図である。 第1の実施形態に係る磁気記憶装置の動作を示す模式図である。 図8(a)及び図8(b)は、磁気記憶装置の特性を示す模式図である。 磁気記憶装置の動作を示す模式図である。 磁気記憶装置の特性を例示する模式図である。 図11(a)及び図11(b)は、第1の実施形態に係る磁気記憶装置の動作を示すフローチャート図である。 第1の実施形態に係る磁気記憶装置の動作を示す模式図である。 図13(a)及び図13(b)は、第1の実施形態に係る磁気記憶装置の動作を示す模式図である。 第3の実施形態に係る磁気記憶装置の動作を示す模式図である。 図15(a)及び図15(b)は、第2の実施形態に係る磁気記憶装置の動作を示す模式図である。 第2の実施形態に係る磁気記憶装置の動作を示す模式図である。 第1の実施形態に係る磁気記憶装置の動作を示す模式図である。 図18(a)及び図18(b)は、実施形態に係る磁気記憶装置を示す模式図である。 実施形態に係る磁気記憶装置の一部を示す模式的斜視図である。 実施形態に係る磁気記憶装置の一部を示す模式的断面図である。
以下に、本発明の各実施の形態について図面を参照しつつ説明する。
なお、図面は模式的または概念的なものであり、各部分の厚みと幅との関係、部分間の大きさの比率などは、必ずしも現実のものと同一とは限らない。また、同じ部分を表す場合であっても、図面により互いの寸法や比率が異なって表される場合もある。
なお、本願明細書と各図において、既出の図に関して前述したものと同様の要素には同一の符号を付して詳細な説明は適宜省略する。
(第1の実施形態)
図1は、第1の実施形態に係る磁気記憶装置を例示する模式図である。
図1に表したように、本実施形態に係る磁気記憶装置110は、複数のメモリ部MUと、制御部CUと、を含む。この例では、磁気記憶装置110には、センスラッチ部71と、入力バッファ72と、出力バッファ73と、ルックアップテーブル74がさらに設けられている。これらの要素は、制御部CUに含まれると見なしても良い。
複数のメモリ部MUは、メモリ領域部MUUに含まれる。実施形態において、磁気記憶装置110に複数のメモリ領域部MUUが設けられても良い。
例えば、複数のメモリ部MUは、第1メモリ部MAT1および第2メモリ部MAT2などを含む。メモリ部MUの数が、N(Nは2以上)である場合、複数のメモリ部MUは、第Nメモリ部MATNを含む。
複数のメモリ部MUの1つは、メモリアレイ50と、駆動部60と、を含む。例えば、メモリアレイ50は、例えば、第1メモリアレイMML_ARRAY−1、第2メモリアレイMML_ARRAY−2、及び、第NメモリアレイMML_ARRAY−Nなどである。駆動部60は、例えば、第1駆動部60−1、第2駆動部60−2、及び、第N駆動部60−Nなどである。
1つの駆動部60は、例えば、シフトドライバDWS−Dと、シフトセレクタDWS−CSと、読み書きドライバRW−Dと、読み書きセレクタRW−CSと、を含む。これらの要素については、後述する。
例えば、第1メモリ部MAT1は、第1メモリアレイMML_ARRAY−1と、第1駆動部60−1と、含む。例えば、第2メモリ部MAT2は、第2メモリアレイMML_ARRAY−2と、第2駆動部60−2と、含む。例えば、第Nメモリ部MATNは、第NメモリアレイMML_ARRAY−Nと、第N駆動部60−Nと、含む。
メモリアレイ50及び駆動部60の例については、後述する。
複数の駆動部60のそれぞれに、データ転送線DTLの一端が接続される。必要に応じて、データ転送線DTLの経路上に、選択スイッチ60sが設けられる。データ転送線DTLの他端が、センスラッチ部71に接続される。センスラッチ部71は、センスアンプSAを含む。センスアンプSAは、複数のデータ転送線DTLに接続される。センスラッチ部71は、例えば、ラッチ回路をさらに含む。
入力バッファ72は、入力部72aと、デマルチプレクサ72bと、を含む。磁気記憶装置110への入力データ(記憶させるデータ)が、入力部72aに入力される。入力部72aの出力がデマルチプレクサ72bに供給される。デマルチプレクサ72bの出力がセンスラッチ部71に供給される。デマルチプレクサ72bの出力に基づく、センスラッチ部71の出力が、データ転送線DTLを介して、駆動部60に供給される。
出力バッファ73は、マルチプレクサ73bと、出力部73aと、を含む。センスラッチ部71の出力(センスアンプSAの出力)が、マルチプレクサ73bに供給される。マルチプレクサ73bの出力が、出力部73aに供給される。出力部73aの出力が、磁気記憶装置110の出力データとなる。この出力データが、記憶されていたデータに対応する。
制御部CUに、入出力命令I/O_Cが入力される。制御部CUは、この入出力命令I/O_Cに基づいて、メモリ領域部MUU、センスラッチ部71、入力バッファ72及び出力バッファ73を制御する。この制御の際に、ルックアップテーブル74が用いられる。制御部CUの動作に応じた返値RVが、制御部CUから出力される。
図2(a)及び図2(b)は、第1の実施形態に係る磁気記憶装置を例示する模式図である。
図2(a)に例示するように、メモリ領域部MUUに複数のメモリ部MUが設けられる。複数のメモリ部MUは、例えばマトリクス状に配置される。例えば、メモリ領域部MUUにおいて、行方向に沿って並ぶメモリ部MUの数は、例えば64である。そして、列方向に沿って並ぶメモリ部MUの数は、例えば64である。この場合、1つのメモリ領域部MUUに設けられるメモリ部MUの数は、4096(すなわち64×64)である。メモリ領域部MUUに、第1メモリ部MAT1及び第2メモリ部MAT2などが設けられている。
図2(b)は、第1メモリ部MAT1及び第2メモリ部MAT2を拡大して示している。第1メモリ部MAT1及び第2メモリ部MAT2のそれぞれにおいて、複数の磁気シフトレジスタ部20が設けられる。複数の磁気シフトレジスタ部20のそれぞれは、後述する磁気シフトレジスタMML(磁性線)を含む。複数の磁気シフトレジスタ部20は、例えばマトリクス状に配置される。例えば、第1メモリ部MAT1は、第1磁気シフトレジスタ部20aを含む。例えば、第2メモリ部MAT2は、第2磁気シフトレジスタ部20bを含む。
第1メモリ部MAT1において、行方向に並ぶ磁気シフトレジスタ部20の数は、例えば、1024である。そして、行方向に並ぶ磁気シフトレジスタ部20の数は、例えば、1024である。この場合、1つのメモリ部MU(例えば第1メモリ部MAT1)に設けられる磁気シフトレジスタ部20の数は、1M(すなわち、1024×1024)である。
第2メモリ部MAT2においても、1024×1024の磁気シフトレジスタ部20が設けられる。第2メモリ部MAT2に設けられる磁気シフトレジスタ部20の数は、例えば、1Mである。
1つの磁気シフトレジスタ部20(磁気シフトレジスタMML)の容量は、例えば256ビットである。この場合、1つのメモリ部MU(第1メモリ部MAT1及び第2メモリ部MAT2などのそれぞれ)の容量は、256Mビットとなる。
従って、上記の例の場合、1つのメモリ領域部MUUの容量は、4096×256Mビット(すなわち、1テラビット)となる。
図2(b)に例示するように、第1メモリ部MAT1の第1駆動部60−1に、第1読み書きドライバRW−D−1が設けられる。第1読み書きドライバRW−D−1に第1プリアンプPA1が設けられる。第1メモリ部MAT1に含まれる複数の磁気シフトレジスタ部20が配線ICLにより接続される。配線ICLが、選択スイッチSSを介して、第1プリアンプPA1に接続される。第1プリアンプPA1の出力が、選択スイッチ60sを介して、センスアンプSAに入力される。
同様に、第2メモリ部MAT2の第2駆動部60−2に、第2読み書きドライバRW−D−2が設けられる。第2読み書きドライバRW−D−2に第2プリアンプPA2が設けられる。第2メモリ部MAT2の複数の磁気シフトレジスタ部20に接続された配線ICLが、選択スイッチSSを介して、第2プリアンプPA2に接続される。第2プリアンプPA2の出力が、選択スイッチ60sを介して、センスアンプSAに入力される。
図3は、第1の実施形態に係る磁気記憶装置を例示する模式図である。
図3は、1つのメモリ部MUを例示している。
メモリ部MUは、複数の磁気シフトレジスタ部20を含む。磁気シフトレジスタ部20は、磁性線10を含む。X軸方向に並ぶ磁気シフトレジスタ部20の数をn(nは、2以上の整数)とする。Y軸方向に並ぶ磁気シフトレジスタ部20の数をm(mは、2以上の整数)とする。Y軸方向は、X軸方向と交差(例えば直交)している。X軸方向とY軸方向とに交差(例えば直交)する方向をZ軸方向とする。複数の磁気シフトレジスタ部20の磁気シフトレジスタMMLは、例えば、Z軸方向に沿って延在している。
複数の磁気シフトレジスタ部20のそれぞれは、例えば、複数の磁性線10のそれぞれ(例えば、磁性線L1−1、L1−2、L1−n、L2−1、L2−2、L2−n、Lm−1、Lm−2、及び、Lm−nなど)を含む。磁性線10は、磁気シフトレジスタMMLに対応する。
磁性線L1−1、L1−2、L1−n、L2−1、L2−2、L2−n、Lm−1、Lm−2、及び、Lm−nのそれぞれの一端には、シフト用のトランジスタST(ST1−1、ST1−2、ST1−n、ST2−1、ST2−2、ST2−n、STm−1、STm−2、及び、STm−n)のそれぞれの一端が接続される。これらのシフト用のトランジスタSTのゲートは、シフトセレクタDWS−CS(例えば、Domain Wall Shift Column Selector)と接続される。この接続に、配線SWL_1、SWL_2及びSWL_nが用いられる。シフト用のトランジスタSTのそれぞれ他端は、シフトドライバDWS−D(例えば、Domain Wall Shift Driver)と接続される。この接続に、配線SBL_1、SBL_2及びSBL_mが用いられる。
磁性線L1−1、L1−2、L1−n、L2−1、L2−2、L2−n、Lm−1、Lm−2、及び、Lm−nのそれぞれに、入出力部13が設けられる。1つの入出力部13に、入出力用のトランジスタRWT(RWT1−1、RWT1−2、RWT1−n、RWT2−1、RWT2−2、RWT2−n、RWTm−1、RWTm−2、及び、RWTm−n)のそれぞれの一端が接続される。これらの入出力用のトランジスタRWTのゲートは、読み書きセレクタRW−CSと接続される。この接続に、配線RWWL_1、RWWL_2及びRWWL_nが用いられる。入出力用のトランジスタRWTのそれぞれの他端は、読み書きドライバRW−Dと接続される。この接続に、配線RWBL_1、RWL_2及びRWL_mが用いられる。
この例では、磁性線L1−1、L1−2、L1−n、L2−1、L2−2、L2−n、Lm−1、Lm−2、及び、Lm−nのそれぞれの他端は、磁性線ドライバMML−Dと接続されている。
シフトドライバDWS−D、シフトセレクタDWS−CS、読み書きドライバRW−D、読み書きセレクタRW−CS及び磁性線ドライバMML−Dは、制御部CUと接続され、制御される。
図4(a)及び図4(b)は、第1の実施形態に係る磁気記憶装置を例示する模式図である。
これらの図は、第1メモリ部MAT1及び第2メモリ部MAT2のそれぞれに含まれる1つの磁気シフトレジスタ部20を例示している。
図4(a)に示すように、第1メモリ部MAT1に含まれるメモリアレイ50(第1メモリアレイMML_ARRAY−1)は、第1磁気シフトレジスタ部20aを含む。
第1磁気シフトレジスタ部20aは、第1トランジスタTr1と、第2トランジスタTr2と、磁性線10(第1磁性線10a)と、磁性層11(第1磁性層11a)と、中間層12(第1中間層12a)と、を含む。磁性層11(第1磁性層11a)と、中間層12(第1中間層12a)と、は、入出力部13(第1入出力部13a)に含まれる。
第1トランジスタTr1は、シフト用のトランジスタSTである。第1トランジスタTr1は、第1端子Tra1と、第2端子Trb1と、第1ゲートTrg1と、を含む。第1端子Tra1は、例えば、ソース及びドレインの一方である。第2端子Trb1は、ソース及びドレインの他方である。
第2トランジスタTr2は、入出力用のトランジスタRWTである。第2トランジスタTr2は、第3端子Tra2と、第4端子Trb2と、第2ゲートTrg2と、を含む。第3端子Tra2は、例えば、ソース及びドレインの一方である。第4端子Trb2は、ソース及びドレインの他方である。
磁性線10(第1磁性線10a)は、複数の磁区15を含む。第1磁性線10aには、磁壁16が設けられる。磁壁16は、複数の磁区15の間に設けられ、複数の磁区15を区分する。第1磁性線10aは、第1端部10aeと、第1他端部10afと、を有する。第1端部10aeは、第1トランジスタTr1の第1端子Tra1に接続される。
磁性層11(第1磁性層11a)と磁性線10(第1磁性線10a)との間に、中間層12(第1中間層12a)が設けられる。第1磁性層11aは、第2トランジスタTr2の第3端子Tra2と電気的に接続されている。
第1駆動部60−1は、第1シフトドライバDWS−D−1と、第1シフトセレクタDWS−CS−1と、第1読み書きドライバRW−D−1と、第1読み書きセレクタRW−CS−1と、を含む。
第1シフトドライバDWS−D−1は、第1トランジスタTr1の第2端子Trb1と電気的に接続される。
第1シフトセレクタDWS−CS−1は、第1トランジスタTr1の第1ゲートTrg1と電気的に接続される。
第1読み書きドライバRW−D−1は、第2トランジスタTr2の第4端子Trb2と電気的に接続される。
第1読み書きセレクタRW−CS−1は、第2トランジスタTr2の第2ゲートTrg2と電気的に接続される。
この例では、第1駆動部60−1は、第1磁性線ドライバMML−D−1をさらに含んでいる。第1磁性線ドライバMML−D−1は、第1磁性線10aの第1他端部10afと接続される。
図4(b)に示すように、第2メモリ部MAT2に含まれる第2メモリアレイMML_ARRAY−2は、第2磁気シフトレジスタ部20bを含む。
第2磁気シフトレジスタ部20bは、第3トランジスタTr3と、第4トランジスタTr4と、第2磁性線10b)と、第2磁性層11bと、第2中間層12bと、を含む。第2磁性層11bと第2中間層12とは、第2入出力部13bに含まれる。
第3トランジスタTr3は、シフト用のトランジスタSTである。第3トランジスタTr3は、第5端子Tra3と、第6端子Trb3と、第3ゲートTrg3と、を含む。第5端子Tra3は、例えば、ソース及びドレインの一方である。第6端子Trb3は、ソース及びドレインの他方である。
第4トランジスタTr4は、入出力用のトランジスタRWTである。第4トランジスタTr4は、第7端子Tra4と、第8端子Trb4と、第4ゲートTrg4と、を含む。第7端子Tra4は、例えば、ソース及びドレインの一方である。第8端子Trb4は、ソース及びドレインの他方である。
第2磁性線10bは、複数の磁区15を含む。第2磁性線10bには、磁壁16が設けられる。第2磁性線10bは、第2端部10beと、第2他端部10bfと、を有する。第2端部10beは、第3トランジスタTr3の第5端子Tra3に接続される。
第2磁性層11bと第2磁性線10bとの間に、第2中間層12bが設けられる。第2磁性層11bは、第4トランジスタTr4の第7端子Tra4と電気的に接続されている。
第2駆動部60−2は、第2シフトドライバDWS−D−2と、第2シフトセレクタDWS−CS−2と、第2読み書きドライバRW−D−2と、第2読み書きセレクタRW−CS−2と、を含む。
第2シフトドライバDWS−D−2は、第3トランジスタTr3の第6端子Trb3と電気的に接続される。
第2シフトセレクタDWS−CS−2は、第3トランジスタTr3の第3ゲートTrg3と電気的に接続される。
第2読み書きドライバRW−D−2は、第4トランジスタTr4の第8端子Trb4と電気的に接続される。
第2読み書きセレクタRW−CS−2は、第4トランジスタTr4の第4ゲートTrg4と電気的に接続される。
この例では、第2駆動部60−2は、第2磁性線ドライバMML−D−2をさらに含んでいる。第2磁性線ドライバMML−D−2は、第2磁性線10bの第2他端部10bfと接続される。
図4(a)に示した例では、中間層12(第1中間層12a)は、第1端部10aeと磁性層11(第1磁性層11a)との間に設けられている。図4(b)に示した例では、第2中間層12bは、第2端部10beと第2磁性層11bとの間に設けられている。
磁性線10(第1磁性線10a)の少なくとも一部は、第1方向D1に延在している。磁性線10(第1磁性線10a)の上記少なくとも一部に含まれる磁区15の磁化15mは、1つの状態(第1状態)において、第1磁化方向15maである。第1磁化方向15maは、第1方向D1と交差する。そして、磁性線10(第1磁性線10a)の上記の少なくとも一部に含まれる磁区15の磁化15mは、別の状態(第2状態)において、第2磁化方向15mbである。第2磁化方向15mbは、第1方向D1と交差し第1磁化方向15maとは逆である。
第2磁性線10bの少なくとも一部は、第1方向D1に延在している。第2磁性線10bの上記少なくとも一部に含まれる磁区15の磁化15mは、第1状態において、第1磁化方向15maである。そして、第2磁性線10bの上記の少なくとも一部に含まれる磁区15の磁化15mは、第2状態において、第2磁化方向15mbである。
上記の第1方向D1は、例えば、Z軸方向である。
磁性線10の複数の磁区15の磁化15mは、入出力部13に供給される信号により制御される。これにより、上記の第1磁化方向15ma及び第2磁化方向15mbが形成される。磁性線10中の複数の磁区15の磁化15mの方向(第1磁化方向15ma及び第2磁化方向15mb)が、記憶する情報に対応する。
例えば、磁性線10に流れる電流により、複数の磁区15の磁化15mがシフトする。例えば、第1磁性線10aにおいて第1端部10aeから第1他端部10afに向かって電流が流れたときに、磁化15mは、第1端部10aeから第1他端部10afに向かって移動する。例えば、第1磁性線10aにおいて第1他端部10afから第1端部10aeに向かって電流が流れたときに、磁化15mは、第1他端部10afから第1端部10aeに向かって移動する。電流の向きと、磁化15mのシフトの向きが逆でも良い。
例えば、第1磁性線10aに情報を記憶する(書き込む)場合には、第1端部10aeから第1他端部10afに向かう電流のパルスを第1磁性線10aに供給し、第1入出力部13aにより、第1磁性線10aに、第1磁化方向15maまたは第2磁化方向15mbを形成する。電流のパルスにより、第1磁性線10aを磁化方向がシフトされる。
例えば、第1磁性線10aに記憶された情報を再生する(読み出す)場合には、第1他端部10afから第1端部10aeに向かう電流のパルスを第1磁性線10aに供給し、第1入出力部13aにより、第1磁性線10aの磁化15mの方向(第1磁化方向15maまたは第2磁化方向15mb)を読み出す。第1入出力部13aでは、例えば、磁気抵抗効果などにより、磁化15mが検出される。
このように、第1磁気シフトレジスタ部20a(第1磁性線10a、磁気シフトレジスタMML)への情報の書き込みと読み出しは、後入れ先出し(LIFO:Last In, First Out)の形式で行われる。同様に、第2磁気シフトレジスタ部20b(第2磁性線10b、磁気シフトレジスタMML)への情報の書き込みと読み出しは、後入れ先出しの形式で行われる。後入れ先出しは、先入れ後出し(FILO:First In, Last Out)に対応する。
図5(a)及び図5(b)は、第1の実施形態に係る磁気記憶装置の動作を例示する模式図である。
図5(a)に示すように、書き込み動作WOにおいて、例えば、書き込む情報が「0110011101・・・・・・・・0001」である場合に、書き込みビットの順序WOOは、図5(a)中の矢印の方向である。
図5(b)は、図5(a)で示す状態で書き込まれた情報を読み出すときの状態を示している。図5(b)に示すように、読み出し動作ROにおいて、読み出される情報は、「1000・・・・・・・・1011100110」であり、読み出しビットの順序ROOは、図5(b)中の矢印の方向である。
磁性線10(磁気シフトレジスタMML)を用いた磁気記憶装置においては、情報の書き込み及び読み出しの際に、書き込まれた情報(磁区15の磁化15m)を磁性線10に沿って移動させる。すなわち、書き込み時に情報が磁性線10中を移動する。そして、読み出し時にも情報が移動する。後入れ先出しの書き込みと読み出しが行われ、破壊読み出しが行われる。
以下、実施形態に係る磁気記憶装置110の動作の例について説明する。すなわち、第1メモリ部MAT1と、第2メモリ部MAT2と、制御部CUと、を含む磁気記憶装置110において、以下の動作が行われる。第1メモリ部MAT1は、第1メモリアレイMML_ARRAY−1と第1駆動部60−1とを含む。第2メモリ部MAT2は、第2メモリアレイMML_ARRAY−と第2駆動部60−2とを含む。以下の動作は、制御部CUにより制御される。
図6は、第1の実施形態に係る磁気記憶装置の動作を例示する模式図である。
図6に示すように、磁気記憶装置110において、以下の書き込み動作WOを行う。
制御部CUは、入力データBIAを複数の1次元ビット入力配列BDAに分割する。入力データは、例えば、入力バッファ72に供給される。例えば、複数の1次元ビット入力配列BDAのそれぞれの大きさ(長さ)は、例えば、互いに同じである。複数の1次元ビット入力配列BDAは、例えば、第1配列BDA1及び第2配列BDA2などを含む。複数の1次元ビット入力配列BDAは、第x配列BDAxを含む(xは2以上の整数)。
制御部CUは、第1配列BDA1を第1メモリアレイMML_ARRAY−1(第1メモリ部MAT1)の第1磁気シフトレジスタ部20a(第1磁性線10a)に後入れ先出しの形式で格納させる。そして、制御部CUは、第2配列BDA2を第2メモリアレイMML_ARRAY−2(第2メモリ部MAT2)の第2磁気シフトレジスタ部20b(第2磁性線10b)に後入れ先出しの形式で格納させる。制御部CUは、第x配列BDAxを第xメモリアレイの第x磁気シフトレジスタ部20x(第x磁性線10x)に後入れ先出しの形式で格納させる。
このように、実施形態においては、入力データBIAを複数の1次元ビット入力配列BDAに分割し、複数の1次元ビット入力配列BDAのそれぞれを、異なるメモリアレイの磁性線10(磁気シフトレジスタMML)に格納する。
図7は、第1の実施形態に係る磁気記憶装置の動作を例示する模式図である。
図7に示すように、磁気記憶装置110において、以下の読み出し動作ROを行う。
制御部CUは、第1磁気シフトレジスタ部20a(第1磁性線10a)に格納された第1配列BDA1と、第2磁気シフトレジスタ部20b(第2磁性線10b)に格納された第2配列BDA2と、を並べて得られた部分を含むデータBOAを出力する。
書き込み動作WOにおいて、制御部CUが、第x配列BDAxを第xメモリアレイの第x磁気シフトレジスタ部20x(第1磁性線10x)に後入れ先出しの形式で格納した場合は、読み出し動作ROにおいて、制御部CUは、第x磁気シフトレジスタ部20x(第x磁性線10x)に格納された第x配列BDAxを並べて得られる部分を含むデータBOAを出力する。
これにより、複数の磁気シフトレジスタの並列動作が可能となり高速化が可能になる。
すなわち、実施形態に係る磁気記憶装置110においては、複数のメモリアレイ50が設けられる。メモリアレイ50は、複数の磁気シフトレジスタMMLを含む。磁気シフトレジスタMMLは、1次元のビット配列を、後入れ先出し(先入れ後出し)の形式で格納できる。磁気シフトレジスタMMLは、1次元のビット配列を、例えば、スタックの形式で格納できる。
磁気記憶装置110においては、外部からの入力データを指定のアドレスに格納する際に、入力データを、同じ長さの複数の1次元ビット入力配列に分割する。そして、1次元ビット入力配列の指定アドレスに対応した磁気シフトレジスタMMLを、複数のメモリアレイ50の中から選ぶ。そして、分割された1次元ビット入力配列を、メモリアレイ50の1つの磁気シフトレジスタMMLに、指定アドレスで指定された順序で、1つずつ格納する。この動作は、制御部CUで行われる。
さらに、指定のアドレスに格納してある出力データを出力するように外部から命令を受けた場合に、以下を行う。指定されたアドレスに対応した磁気シフトレジスタMMLをメモリアレイ50から、1つずつ選ぶ。メモリアレイ50の1つの磁気シフトレジスタMMLから読み出した1次元ビット出力配列を、指定アドレスで指定された順序で並べて、出力データとして、外部に出力する。この動作は、制御部CUで行われる。
磁気記憶装置110においては、磁性線10(磁気シフトレジスタ部20)に記憶した情報(磁区15の磁化15mの方向)を検出する際に、例えば、MTJ(Magnetic Tunnel Junction )素子などの抵抗変化素子が用いられる。このような素子で得られる信号は、比較的小さい。高感度で信号を検出するために、大きなセンスアンプSAが設けられる。
実施形態においては、磁性線10のそれぞれにプリアンプを設けるのではなく、複数の磁性線10に対して1つのプリアンプを設けることで回路部の面積が小さくできる。すなわち、第1メモリアレイMML_ARRAY−1は、複数の磁気シフトレジスタ部(第1磁気シフトレジスタ部20aなど)を含む。このとき、第1駆動部60−1は、第1メモリアレイMML_ARRAY−1に含まれる複数の磁気シフトレジスタ部に接続された第1プリアンプPA1を含む。第2メモリアレイMML_ARRAY−2は、複数の磁気シフトレジスタ部(第2磁気シフトレジスタ部20bなど)を含む。第2駆動部60−2は、第2メモリアレイMML_ARRAY−2に含まれる複数の磁気シフトレジスタ部に接続された第2プリアンプPA2を含む。例えば、メモリアレイ50に1つのプリアンプ(例えば第1プリアンプPA1及び第2プリアンプPA2など)が設けられる。これにより、プリアンプを含む回路部の面積を小さくできる。これにより、メモリ領域のチップ全体に対する占有率を高くできる。
一方、プリアンプの動作速度には限界がある。このため、記憶させる情報(入力データ)を1つのメモリアレイ50に格納し、それを読み出す参考例においては、格納した情報の読み出し要する時間が長くなる。
これに対して、実施形態においては、並列動作が行われる。すなわち、記憶させる情報(入力データ)を複数の1次元ビット入力配列に分割し、分割された1次元ビット入力配列を、異なるメモリアレイ50の磁性線10に分割して格納する。このため、記憶させた情報の読み出しに要する時間は、分割した数に応じて短くできる。
例えば、入出力の単位として定めた大きさのデータを、1次元ビット配列に分割する。1次元ビット配列のビット長は、磁気シフトレジスタMMLのビット長以下である。書き込み動作WOにおいては、複数のメモリアレイ50から1つずつ選択した磁気シフトレジスタMMLに、分割された1次元ビット配列を書き込む。読出し動作ROにおいては、メモリアレイ50から選択された磁気シフトレジスタMMLから、1次元ビット配列を1つずつ読み出し、所定の順序に整列して出力データとする。
このように、実施形態においては、並列動作が行われる。磁気シフトレジスタMMLを並列動作させることで、高い入出力スピードが得られる。そして、複数の磁気シフトレジスタMMLに対して1つのプリアンプを設けることで、回路部のチップ内の占有面積を小さくできる。プリアンプの動作速度、及び、配線抵抗による遅延などに基づく転送速度に対応した動作が得られ、信頼性の高い、記憶/再生動作が実現できる。
実施形態によれば、実用的な磁気記憶装置が提供できる。
例えば、NANDフラッシュメモリにおいては、入力データを物理的にも近い場所に一括して記憶させることができる。
これに対して、磁性線10を用いる記憶装置においては、データを分散させて保持することが有効である。磁性線を用いた記憶装置においては、シフト動作を行うことで、EBRが増大する。このため、入出力は、一括して行うことが好ましい。
実施形態においては、実用的な磁気記憶動作が可能になる。
発明者の検討によると、磁性線10中の情報の移動に伴って、情報が劣化する場合があることが分かった。すなわち、磁性線10中を磁化15mの方向が移動すると、磁化15mの方向が不安定になる場合があることが分かった。情報の劣化を抑制する特殊な動作が望まれる。
図8(a)及び図8(b)は、磁気記憶装置の特性を例示する模式図である。
図8(a)は、発明者が行った実験を示す模式図である。図8(b)は、実験結果を示すグラフ図である。
図8(a)に示すように、実験用の磁性線10においては、一端部10aeの幅が、磁性線10の他の部分の幅よりも狭い。一端部10aeに磁壁16が形成される。磁性線10に電流パルスを与えることにより、磁壁16が、一端部10aeから他端部10afに向けて移動する。他端部10afに到達した磁壁が電気的に検出される。検出は、光学的に行われても良い。一端部10aeの幅が、他の部分の幅よりも狭いことで、一端部10aeの位置に、安定して、磁壁16が形成できる。
初期状態St0においては、磁壁16は、一端部10aeに位置する。1つの電流パルスが供給される(1回目パルス印加後状態St1)と、磁壁16は、一端部10aeから他端部10afに向けて移動する。n個の電流パルスが供給される(n回目パルス印加後状態Stn)と、磁壁16は、他端部10afに到達し、この磁壁16の到達が検出される。このような磁壁16の移動(初期状態St0からn回目パルス印加後状態Stn)を複数回(例えば20回)行う。そして、磁壁16が他端部10afに到達するまでに供給した電流パルスの回数を求める。
図8(b)は、実験結果の例である。この例では、磁壁16の移動が20回行われている。図8(b)の横軸は、磁壁16が他端部10afに到達するまでに供給した電流パルスの回数PA_nである。縦軸は、出現回数D_Nである。
図8(b)に示すように、8回の電流パルスの供給で磁壁16が他端部10afに到達したのは、5回である。9回の電流パルスの供給で磁壁16が他端部10afに到達したのは、12回である。10回の電流パルスの供給で磁壁16が他端部10afに到達したのは、2回である。12回の電流パルスの供給で磁壁16が他端部10afに到達したのは、1回である。このように、電流パルスの供給で磁壁16する距離には、ばらつきがある。すなわち、磁壁16の移動速度には、ばらつきがある。このようなばらつきは、磁気記憶において誤動作の原因となる。図8(b)の点線で示すように、出現回数D_Nは、例えば、ワイブル分布の特性を示すことが分かった。
図9は、磁気記憶装置の動作を例示する模式図である。
図9は、磁気シフトレジスタ部20(磁性線10)における記憶状態の移動(磁壁16の移動)を例示している。
図9において、初期の記憶状態MStで所定の情報「0011011001」が記憶されている。図9では、1ビットシフト分の電流パルスを与えてこの情報をシフトさせた後の3つの状態を例示している。第1の移動後状態CASE1は、「正しいシフト動作」に対応する。この場合、すべての磁壁16が同じ速度で移動する。この場合は、初期の記憶状態MStの情報が維持されている。
一方、第2の移動後状態CASE2は、誤動作の例である。この場合、2番目の磁壁16が他の磁壁よりも早い速度で移動している。この場合は、2倍である。3番目の磁壁16が前の磁壁16に追いついて、情報の一部が変化している。すなわち、初期の記憶状態MStの情報が維持されず、情報が変化している。
第3の移動後状態CASE3も、誤動作の例である。この場合、2番目の磁壁16の移動速度が遅い。この例では、2番目の磁壁16の移動していないように描かれている。この場合も、初期の記憶状態MStの情報が維持されず、情報が変化している。
このように、磁壁16の移動速度にばらつきがあると、磁気記憶において誤動作が生じる。この誤動作は、情報をシフトの回数が多くなると顕著となる。すなわち、読み書きせず、単になるシフト動作だけでも、シフト動作の回数が多くなると、情報が劣化する。
本実施形態は、シフト動作に伴う情報の劣化を抑制するという新たな課題に着目している。この情報の劣化は、磁気シフトレジスタに特有の課題である。
実施形態に係る磁気記憶装置110においては、第1メモリ部MAT1と、第2メモリ部MAT2と、が設けられる。入力データBIAを複数の1次元ビット入力配列BDAに分割する。この複数の1次元ビット入力配列BDAは、第1配列BDA1と、第2配列BDA2と、を含んでいる。実施形態においては、第1配列BDA1を(第1メモリ部MAT1)の第1磁気シフトレジスタ部20a(第1磁性線10a)に後入れ先出しの形式で格納させ、第2配列BDA2を第2メモリ部MAT2の第2磁気シフトレジスタ部20b(第2磁性線10b)に後入れ先出しの形式で格納させる。これにより、データ(情報)の移動の回数を少なくすることができる。これにより、信頼性の高い、記憶/再生動作が実現できる。
図10は、磁気記憶装置の特性を例示する模式図である。
図10は、磁性線10の磁壁16の存在確率の例を示している。図10の横軸は、磁性線10(第1磁性線10a)の延在方向(第1方向D1)である。横軸は、磁壁16の第1方向D1上における位置に対応する。縦軸は、磁壁16の存在確率Pである。
図10には、2つの磁壁16の存在確率Pの分布が示されている。第1の磁壁存在確率分布P01の第1方向D1上の位置と、第2の磁壁存在確率分布P02の第1方向D1上の位置とは、互いに異なる。1ビットを表現するための距離Dbit(第1方向D1上の距離)は、これらの存在確率分布の間の距離以上である。もし、設定された距離Dbitが、これらの存在確率分布の間の距離よりも小さいと、情報に誤りが生じ易い。
例えば、第1の磁壁存在確率分布P01と、第2の磁壁存在確率分布P02と、に重なりが生じる場合がある。すなわち、複数回の磁壁16の移動によって、第1の磁壁存在確率分布P01と、第2の磁壁存在確率分布P02と、に重なりが生じる確率P12がある。この重なりが生じる確率P12が高いと、情報の誤りが生じる。重なりが生じる確率P12は、低いことが好ましい。
例えば、実施形態において、第1の磁壁存在確率分布P01と、第2の磁壁存在確率分布P02と、の重なりが生じる確率P12(図10参照)は、例えば、10−4以下である。実施形態において、例えば、ビットエラー訂正技術が応用される。ビットエラーレートが10−4以下である場合に、このビットエラー訂正技術が実用的に有効である。このとき、例えば、上記の重なりが生じる確率P12を10−4以下とする。これにより、情報の誤りが実用的に抑制できる。
図11(a)及び図11(b)は、第1の実施形態に係る磁気記憶装置の動作を例示するフローチャート図である。
図11(a)に示すように、書き込み動作Oにおいては、入力データビット列が入力バッファ72に入力される(ステップS11)。
書き込み指定論理アドレス及び書き込み命令(入出力命令I/O_C)が制御部CUに入力される(ステップS12)。
入力データビット列を、複数の1次元ビット配列に分割する(ステップS13)。複数の1次元ビット配列のそれぞれは、決められた長さを有する。
ルックアップテーブル74(参照テーブル)の内容に従って、入力された論理アドレスから、対応する磁気シフトレジスタMMLの物理アドレスを導出する(ステップS14)。物理アドレスは、1次元ビット配列を書き込む磁気シフトレジスタMMLに割り当てられている。
1次元ビット配列を、上記により指定された物理アドレスに対応した磁気シフトレジスタMMLが存在するメモリアレイ50の入出力ドライバ(読み書きドライバRW−D)へ入力する(ステップS15)。
入出力ドライバを使って、入力された1次元ビット配列を、指定された磁気シフトレジスタMMLへ入力する(ステップS16)。
図11(b)に示すように、読み出し動作WOにおいては、読出し指定論理アドレス及び読出し命令(入出力命令I/O_C)が、制御部CUに入力される(ステップS21)。
ルックアップテーブル74(参照テーブル)の内容に従って、入力された論理アドレスから、1次元ビット配列が保持されている磁気シフトレジスタMMLに割り当てられている物理アドレスを導出する(ステップS22)。
入出力ドライバを使って、指定された磁気シフトレジスタMMLから1次元ビット配列を読み出して、入出力ドライバに保持する(ステップS23)。
読み出した1次元配列を、参照テーブルに保持された情報により定められる順序で、出力バッファ73内に並べる(ステップS24)。
並べた配列を、出力バッファ73から外部へ出力する(ステップS25)。
図12は、第1の実施形態に係る磁気記憶装置の動作を例示する模式図である。
第1〜第Nメモリ部MAT1〜MATNが、設けられている。例えば、第1ページに対応する複数の1次元ビット入力配列のそれぞれが、第1〜第Nメモリ部MAT1〜MATNのそれぞれの磁気シフトレジスタMMLに格納される。第2ページに対応する複数の1次元ビット入力配列のそれぞれが、第1〜第Nメモリ部MAT1〜MATNのそれぞれの別の磁気シフトレジスタMMLに格納される。第3ページに対応する複数の1次元ビット入力配列のそれぞれが、第1〜第Nメモリ部MAT1〜MATNのそれぞれのさらに別の磁気シフトレジスタMMLに格納される。第4ページに対応する複数の1次元ビット入力配列のそれぞれが、第1〜第Nメモリ部MAT1〜MATNのそれぞれのさらに別の磁気シフトレジスタMMLに格納される。例えば、メモリ部MUの数(すなわち、”N”)が128であり、分割数(複数の1次元ビット配列の数)は、128である。
図13(a)及び図13(b)は、第1の実施形態に係る磁気記憶装置の動作を例示する模式図である。
図13(a)に示すように、例えば、1つの磁気シフトレジスタMMLのサイズ(サイズ)を256ビットとする。そして、1つのページに対応する磁気シフトレジスタMMLの数を128とする。このとき、ページサイズは4KBである。そして、ページの数を16とする。1つの磁気シフトレジスタMMLのデータは、連続的に読み出されるとする。例えば、I/Oバッファにおいて、読み書き(多重の読み書き)のサイズは、4KB×16(=64KB)となる。バッファのサイズは、128KB(すなわち、2×64KB)である。読み書きの速度を、例えば、4Gbpsとする。
図13(b)に示すように、アクセス時間は、256bit×500ns(ナノ秒)であり、すなわち、128μs(マイクロ秒)となる。このように、アクセス時間を短くできる。
(第2の実施形態)
本実施形態においては、書き込み動作及び読み出し動作が、第1の実施形態とは異なる。本実施形態に係る磁気記憶装置には、図1〜図4(a)及び図4(b)について説明した第1の実施形態の構成を適用できる。
図14は、第3の実施形態に係る磁気記憶装置の動作を例示する模式図である。
図14に示すように、本実施形態においては、1つのページのデータが、複数のメモリ部MU(第1〜第Nメモリ部MAT1〜MATN)に分散されて格納される。この図の例では、分散の数は、例えば、4である。メモリ部MUの数(すなわち、”N”)が128であり、分割数(複数の1次元ビット配列の数)は、512である。
例えば、入力データが複数の1次元ビット入力配列に分割される。本実施形態における分割数は、第1の実施形態における分割数よりも多い。例えば、本実施形態における分割数は、第1の実施形態における分割数の4倍である。
第1ページに対応する複数の1次元ビット入力配列の第1の部分が、第1〜第Nメモリ部MAT1〜MATNのそれぞれの磁気シフトレジスタMMLの第1の部分(第1層Layer−1)に格納される。第2ページに対応する複数の1次元ビット入力配列の第2の部分が、第1〜第Nメモリ部MAT1〜MATNのそれぞれの磁気シフトレジスタMMLの第2の部分(第2層Layer−2)に格納される。第3ページに対応する複数の1次元ビット入力配列の第3の部分が、第1〜第Nメモリ部MAT1〜MATNのそれぞれの磁気シフトレジスタMMLの第3の部分(第3層Layer−3)に格納される。第4ページに対応する複数の1次元ビット入力配列の第4の部分が、第1〜第Nメモリ部MAT1〜MATNのそれぞれの磁気シフトレジスタMMLの第4の部分(第4層Layer−4)に格納される。
図15(a)及び図15(b)は、第2の実施形態に係る磁気記憶装置の動作を例示する模式図である。
図15(a)に示すように、例えば、1つの磁気シフトレジスタMMLの1つの部分のサイズを64ビットとする。すなわち、1つの磁気シフトレジスタMMLからのデータの1回の出し入れを64ビットとする。そして、1つのページに対応する磁気シフトレジスタMMLの数を512とする。このとき、ページサイズは4KBである。そして、ページの数を4とする。1つの磁気シフトレジスタMMLのデータは、連続的に読み出されるとする。例えば、I/Oバッファにおいて、読み書き(多重の読み書き)のサイズは、4KB×4(=16KB)となる。バッファのサイズは、32KB(すなわち、2×16KB)である。読み書きの速度を、例えば、4Gbpsとする。
図15(b)に示すように、アクセス時間は、64bit×500nsであり、すなわち、32μsとなる。このように、本実施形態においては、アクセス時間をさらに短くできる。
図16は、第2の実施形態に係る磁気記憶装置の動作を例示する模式図である。
図16に示すように、本実施形態に係る磁気記憶装置において、以下の書き込み動作WOを行う。
制御部CUは、入力データBIAを複数の1次元ビット入力配列BDAに分割する例えば、複数の1次元ビット入力配列BDAのそれぞれの大きさ(長さ)は、例えば、互いに同じである。複数の1次元ビット入力配列BDAは、例えば、第1配列BDA1及び第2配列BDA2に加えて、第3配列BDA3及び第4配列BDA4などを含む。複数の1次元ビット入力配列BDAは、第x配列BDAx、及び、第(x+n)配列BDA(x+n)を含む(xは2以上の整数、nは1以上の整数)。
例えば、第1配列BDA1を、第1層Layer−1に対応させる。第2配列BDA2を、第1層Layer−1に対応させる。第3配列BDA3を、第2層Layer−2に対応させる。第4配列BDA4を、第2層Layer−2に対応させる。
制御部CUは、第1配列BDA1を第1メモリアレイMML_ARRAY−1(第1メモリ部MAT1)の第1磁気シフトレジスタ部20a(第1磁性線10a)の一部(第1層Layer−1)に後入れ先出しの形式で格納させる。そして、制御部CUは、第2配列BDA2を第2メモリアレイMML_ARRAY−2(第2メモリ部MAT2)の第2磁気シフトレジスタ部20b(第2磁性線10b)の一部(第1層Layer−1)に後入れ先出しの形式で格納させる。制御部CUは、第3配列BDA3を第1磁気シフトレジスタ部20a(第1磁性線10a)の別の一部(第2層Layer−2)に後入れ先出しの形式で格納させする。制御部CUは、第4配列BDA4を第2磁気シフトレジスタ部20b(第2磁性線10b)の別の一部(第2層Layer−2)に後入れ先出しの形式で格納させる。
制御部CUは、第x配列BDAxを第xメモリアレイの第x磁気シフトレジスタ部20x(第x磁性線10x)の一部に後入れ先出しの形式で格納させる。制御部CUは、第(x+n)配列BDA(x+n)を第xメモリアレイの第x磁気シフトレジスタ部20x(第x磁性線10x)の別の一部に後入れ先出しの形式で格納させる。nは、例えば1である。
図17は、第1の実施形態に係る磁気記憶装置の動作を例示する模式図である。
図17に示すように、本実施形態に係る磁気記憶装置において、以下の読み出し動作ROを行う。
制御部CUは、第1磁気シフトレジスタ部20a(第1磁性線10a)の上記の一部に格納された第1配列BDA1と、第2磁気シフトレジスタ部20b(第2磁性線10b)の上記の一部に格納された第2配列BDA2と、第1磁気シフトレジスタ部20aの上記の別の一部に格納された第3配列BDA3と、第2磁気シフトレジスタ部20bの上記の別の一部に格納された第4配列BDA4と、を並べて得られた部分を含むデータBOAを出力する。
書き込み動作WOにおいて、制御部CUが、第x配列BDAxを第xメモリアレイの第x磁気シフトレジスタ部20x(第1磁性線10x)の一部に後入れ先出しの形式で格納し、第(x+n)配列BDA(x+n)を第xメモリアレイの第x磁気シフトレジスタ部20x(第x磁性線10x)の別の一部に後入れ先出しの形式で格納させた場合は、読み出し動作ROにおいて、制御部CUは、第x磁気シフトレジスタ部20x(第x磁性線10x)の上記の一部に格納された第x配列BDAxと、第x磁気シフトレジスタ部20x(第x磁性線10x)の上記の一部に格納された第(x+n)配列BDA(x+n)と、を並べて得られる部分を含むデータBOAを出力する。
図18(a)及び図18(b)は、実施形態に係る磁気記憶装置を例示する模式図である。
図18(a)に示すように、1つのメモリ領域部MUUが、2つのグループ(バンク)に分割される。2つのバンクのそれぞれは、複数のメモリ部MUを含む。この例は、例えば、1つのメモリ部MU(例えば第1メモリ部MAT1)に1つのプリアンプが設けられる例に対応する。1つのバンクについて読み出し動作が行われる。このとき、他方のバンクにおいて、書き込みが行われる。
図18(b)に示すように、1つのメモリ領域部MUUが、4つのグループ(バンク)に分割される。4つのバンクのそれぞれは、複数のメモリ部MUを含む。この例は、例えば、1つのメモリ部MU(例えば第1メモリ部MAT1)に2つのプリアンプが設けられる例に対応する。1つのバンクについて読み出し動作が行われる。このとき、他の3つのバンクのいずれかにおいて、書き込みが行われる。
例えば、バンクの数が多いと、効率良く、メモリ空間を共有できる。プリアンプの面積は比較的大きい。このため、プリアンプの数には、実用的に、制限がある。
図19は、実施形態に係る磁気記憶装置の一部を例示する模式的斜視図である。
図19は、磁気シフトレジスタ部20(第1磁気シフトレジスタ部20a)を例示している。
磁性線10(第1磁性線10a)の少なくとも一部は、第1軸10axを軸として第1方向D1に延在する。第1方向D1は、例えばZ軸方向である。磁性線10(第1磁性線10a)の上記少なくとも一部に含まれる磁区15の磁化15mは、第1状態において第1磁化方向15maである。磁性線10(第1磁性線10a)の上記の少なくとも一部に含まれる磁区15の磁化15mは、第2状態において第2磁化方向15mbである。
第1磁化方向15maは、第1方向D1と交差する。第1磁化方向15maは、第1軸10axから、第1軸10axから離間した位置に向かう方向である。第2磁化方向15mbは、第1方向D1と交差する。第2磁化方向15mbは、第1軸10axから離間した位置から、第1軸10axに向かう方向である。
入出力部13(第1入出力部13a)が磁性層11(第1磁性層11a)の第1端部10aeの近傍に設けられている。磁性線10(第1磁性線10a)の第1端部10aeと磁性層11(第1磁性層11a)との間に、中間層12(第1中間層12a)が設けられている。この例では、磁性層11及び中間層12、第1軸10axに対して同心状である。
図20は、実施形態に係る磁気記憶装置の一部を例示する模式的断面図である。
例えば、基板8の一部に、第1トランジスタTr1が設けられる。基板8の別の一部に、第2トランジスタTr2が設けられる。基板8には、例えば、シリコン基板などの半導体基板が用いられる。
第1トランジスタTr1の第1端子Tra1の上に、磁性線10(第1磁性線10a)が設けられている。この例では、磁性線10は、基板8の上面に対して垂直な方向(第1方向D1)に沿って延在している。第1トランジスタTr1の第2端子Trb1が、配線SBL(配線SBL_1)に接続される。第1トランジスタTr1の第1ゲートTrg1が、配線SWL(配線SWL_1)に接続される。
第2トランジスタTr2の第3端子Tra2の上に、磁性層11(第1磁性層11a)が設けられる。第2トランジスタTr2の第4端子Trb2が、配線RWBL(配線RWBL_1)に接続される。第2トランジスタTr2の第2ゲートTrg2が、配線RWWL(配線RWWL_1)に接続される。
磁性線10及び上記の配線の周りには、絶縁層8aが設けられる。磁性線10は、筒状である。磁性線10の中に、軸部10iが設けられている。
磁性層11(第1磁性層11aなど)及び磁性線10(第1磁性線10aなど)には、例えば、強磁性体、フェリ磁性体、または、人工格子が用いられる。
この強磁性体は、例えば、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、マンガン(Mn)、及びクロム(Cr)から選択される少なくとも1つの元素と、白金(Pt)、パラジウム(Pd)、イリジウム(Ir)、ルテニウム(Ru)、及びロジウム(Rh)から選択される少なくとも1つの元素と、を含む合金が用いられる。この強磁性体として、例えば、CoPt、NiFe、または、CoCrPtなどが用いられる。この強磁性体の特性は、例えば、組成の調整、及び、熱処理等の条件などによって調整できる。
このフェリ磁性体として、例えば、希土類と遷移金属とを含むアモルファス合金(例えば、TbFeCoまたはGdFeCo等)が用いられる。このアモルファス合金を用いると、磁化が膜面に対して垂直になり易い。このアモルファス合金は、例えば、スパッタにより形成される。
この人工格子として、Co/Ptの積層体、Co/Pdの積層体、または、Co/Niの積層体などが用いられる。これらの積層体を用いると、磁化が膜面に対して垂直になり易い。これらの積層構造は、例えば、最密六方構造の<0001>配向を有する。これらの積層構造は、例えば、面心立方構造の<111>配向を有する。
磁性層11の厚さ(第1方向D1に対して垂直な方向の長さ)は、例えば、5ナノメートル(nm)以上50nm以下である。
磁性層11のダンピング係数は、磁気シフトレジスタ部20のダンピング係数よりも大きいことが好ましい。
電流を流した際に磁気シフトレジスタ部20で発生するスピントルクの反作用によって、磁性層11の磁化の向きが変化してしまう可能性がある。磁性層11のダンピング係数は、磁気シフトレジスタ部20のダンピング係数よりも大きく設定することで、例えば、この磁化の向きの変化を抑制できる。
この場合、スピントルクによる磁性層11の磁化の反転に必要な時間が長くなる。電流を流す時間が短くすることで、磁性層11の磁化が反転しにくくなる。
磁性層11と磁性線10との間に中間層12を配置することで、磁性線10の磁化15mの向きと、磁性層11の磁化の向きと、を互いに独立させることができる。中間層12は、例えば、Ta、Ru、Pt、Pd、Ir、Cu、Au、Ag、Cr及びAlからなる群から選択された少なくとも1つを含む。中間層12として、この群から選択された2つ以上を含む合金を用いても良い。中間層12として、この群から選択された少なくとも1つと、他の元素と、を含む合金を用いても良い。中間層12は、この群から選択された1つの層と、この群から選択された別の1つの層と、の積層膜を含んでも良い。中間層12として、酸化マグネシウム(MgO)、酸化アルミニウム(Al)、または、酸化シリコン(SiO)などの非磁性絶縁体を用いても良い。中間層12の厚さ(第1方向D1に対して垂直な方向の長さ)は、例えば1.5nm以上20nm以下である。
磁性線10の厚さ(第1方向D1に対して垂直な方向の長さ)は、例えば、0.5nm以上、10nm以下である。これにより、例えば、均一な伝導特性及び均一な磁気特性が得易い。磁性線10の長さ(第1方向D1に沿った長さ)は、例えば、20nm以上20マイクロメートル(μm)以下である。磁性線10の長さが20nm以上であることで、磁壁16が安定して得られる。磁性線10の長さが20μm以下であることで、例えば、電圧降下の影響を抑制し易くなる。
(第3の実施形態)
本実施形態は、磁気記憶方法に係る。
本実施形態に係る磁気記憶方法においては、入力データBIAを、第1配列BDA1と、第2配列BDAと、を含む複数の1次元ビット入力配列BDAに分割する。例えば、図11(a)に関して説明したステップS13を実施する。
そして、第1配列BDA1を第1磁気シフトレジスタ部20aに後入れ先出しの形式で格納させ、第2配列BDA2を第2磁気シフトレジスタ部20bに後入れ先出しの形式で格納させる。例えば、図11(a)に関して説明した、ステップS14〜S16の少なくとも一部を実施する。
第1磁気シフトレジスタ部20aは、第1メモリアレイMML_ARRAY−1に含まれる。第2磁気シフトレジスタ部20bは、第2メモリアレイMML_ARRAY−2に含まれる。第1メモリアレイMML_ARRAY−1は、第1駆動部60−1を含む第1メモリ部MAT1に含まれる。第2メモリアレイMML_ARRAY−2は、第2駆動部60−2を含む第2メモリ部MAT2に含まれる。
本実施形態に係る磁気記憶方法よれは、実用的な磁気記憶方法が提供できる。すなわち、磁気シフトレジスタMMLを並列動作させることで、高い入出力スピードが得られる。そして、複数の磁気シフトレジスタMMLに対して1つのプリアンプを設けることで、回路部のチップ内の占有面積を小さくできる。プリアンプの動作速度、及び、配線抵抗による遅延などに基づく転送速度に対応した動作が得られ、信頼性の高い、記憶/再生動作が実現できる。そして、データ(情報)の移動の回数を少なくすることができ、信頼性の高い、記憶/再生動作が実現できる。
本実施形態において、複数の1次元ビット入力配列BDAの大きさ(または、長さ)は、例えば、互いに同じである。
本実施形態に係る磁気記憶方法においては、例えば、第1磁気シフトレジスタ部20aに格納された第1配列BDA1と、第2磁気シフトレジスタ部20aに格納された第2配列BDA2と、を並べて得られる部分を含むデータを出力する。
例えば、分割された複数の1次元ビット入力配列BDAは、第3配列BDA3と、第4配列BDA4と、をさらに含んでも良い。このとき、以下を実施しても良い。第1配列BDA1を第1磁気シフトレジスタ部20aの一部に後入れ先出しの形式で格納する。第2配列BDA2を第2磁気シフトレジスタ部20bの一部に後入れ先出しの形式で格納する。第3配列BDA3を第1磁気シフトレジスタ部20aの別の一部に後入れ先出しの形式で格納する。第4配列BDA4を第2磁気シフトレジスタ部20bの別の一部に後入れ先出しの形式で格納する。
本実施形態において、以下を実施しても良い。第1磁気シフトレジスタ部20aの一部に格納された第1配列BDA1と、第2磁気シフトレジスタ部20bの一部に格納された第2配列BDA2と、第1磁気シフトレジスタ部20aの別の一部に格納された第3配列BDA3と、第2磁気シフトレジスタ部20bの別の一部に格納された第4配列BDA4と、を並べて得られる部分を含むデータを出力する。
実施形態によれば、実用的な磁気記憶装置及び磁気記憶方法が提供できる。
なお、本願明細書において、「垂直」及び「平行」は、厳密な垂直及び厳密な平行だけではなく、例えば製造工程におけるばらつきなどを含むものであり、実質的に垂直及び実質的に平行であれば良い。
以上、具体例を参照しつつ、本発明の実施の形態について説明した。しかし、本発明は、これらの具体例に限定されるものではない。例えば、磁気記憶装置に含まれるメモリ部、メモリアレイ、駆動部、磁気シフトレジスタ及び制御部などの各要素の具体的な構成に関しては、当業者が公知の範囲から適宜選択することにより本発明を同様に実施し、同様の効果を得ることができる限り、本発明の範囲に包含される。
また、各具体例のいずれか2つ以上の要素を技術的に可能な範囲で組み合わせたものも、本発明の要旨を包含する限り本発明の範囲に含まれる。
その他、本発明の実施の形態として上述した磁気記憶装置及び磁気記憶方法を基にして、当業者が適宜設計変更して実施し得る全ての磁気記憶装置及び磁気記憶方法も、本発明の要旨を包含する限り、本発明の範囲に属する。
その他、本発明の思想の範疇において、当業者であれば、各種の変更例及び修正例に想到し得るものであり、それら変更例及び修正例についても本発明の範囲に属するものと了解される。
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
8…基板、 8a…絶縁層、 10…磁性線、 10a…第1磁性線、 10ae…第1端部、 10af…第1他端部、 10ax…第1軸、 10b…第2磁性線、 10be…第2端部、 10bf…第2他端部、 10i…軸部、 10x…第x磁性線、 11…磁性層、 11a、11b…第1、第2磁性層、 12…中間層、 12a、12b…第1、第2中間層、 13…入出力部、 13a、13b…入出力部、 15…磁区、 15m…磁化、 15ma、15mb…第1、第2磁化方向、 16…磁壁、 20…磁気シフトレジスタ部、 20a、20b…第1、第2磁気シフトレジスタ部、 20x…第x磁気シフトレジスタ部、 50…メモリアレイ、 60…駆動部、 60−1、60−2、60−N…第1、第2、第N駆動部、 60s…選択スイッチ、 71…センスラッチ部、 72…入力バッファ、 72a…入力部、 72b…デマルチプレクサ、 73…出力バッファ、 73a…出力部、 73b…マルチプレクサ、 74…ルックアップテーブル、 110…磁気記憶装置、 BDA…1次元ビット入力配列、 BDA1、BDA2、BDA3、BDA4、BDAx、BDA(x+n)…第1、第2、第3、第4、第x、第(x+n)配列、 BIA…入力データ、 BOA…データ、 CASE1〜CASE3…第1〜第3移動後状態、 CU…制御部、 D_N…出現回数、 D1…第1方向、 DTL…データ転送線、 DWS−CS…シフトセレクタ、 DWS−D…シフトドライバ、 Dbit…距離、 I/O_C…入出力命令、 ICL…配線、 L1−1、L1−2、L1−n、L2−1、L2−2、L2−n、Lm−1、Lm−2、Lm−n…磁性線、 Layer−1〜−4…第1〜第4層、 MAT1、MAT2、MATN…第1、第2、第Nメモリ部、 MML_ARRAY−1、MML_ARRAY−2…第1、第2メモリアレイ、 MML−D…磁性線ドライバ、 MML…磁気シフトレジスタ、 MSt…記憶状態、 MU…メモリ部、 MUU…メモリ領域部、 P…存在確率、 P01、P02…磁壁存在確率分布、 P12…確率、 PA_n…回数、 PA1、PA1…第1、第2プリアンプ、 RO…読み出し動作、 ROO…順序、 RV…返値、 RW−CS…読み書きセレクタ、 RW−D…読み書きドライバ、 RWBL…配線、 RWT…読み書きトランジスタ、 RWWL…配線、 SA…センスアンプ、 SBL…配線、 SS…選択スイッチ、 ST…トランジスタ、 SWL…配線、 St0…初期状態、 St1…1回目パルス印加後状態、 Stn…n回目パルス印加後状態、 Tr1〜Tr4…第1〜第4トランジスタ、 Tra1、Trb1…第1、第2端子、 Tra2、Trb2…第3、第4端子、 Tra3、Trb3…第5、第6端子、 Tra4、Trb4…第7、第8端子、 Trg1〜Trg4…第1〜第4ゲート、 WO…書き込み動作、 WOO…順序

Claims (13)

  1. 第1メモリアレイと第1駆動部とを含む第1メモリ部と、
    第2メモリアレイと第2駆動部とを含む第2メモリ部と、
    制御部と、
    を備え、
    前記第1メモリアレイは、第1磁気シフトレジスタ部を含み、
    前記第2メモリアレイは、第2磁気シフトレジスタ部を含み、
    前記制御部は、入力データを複数の1次元ビット入力配列に分割し、
    前記複数の1次元ビット入力配列は、第1配列と、第2配列と、を含み、
    前記制御部は、前記第1配列を前記第1磁気シフトレジスタ部に後入れ先出しの形式で格納させ、前記第2配列を前記第2磁気シフトレジスタ部に後入れ先出しの形式で格納させ
    前記複数の1次元ビット入力配列は、第3配列と、第4配列と、をさらに含み、
    前記制御部は、
    前記第1配列を前記第1磁気シフトレジスタ部の一部に後入れ先出しの形式で格納させ、
    前記第2配列を前記第2磁気シフトレジスタ部の一部に後入れ先出しの形式で格納させ、
    前記第3配列を前記第1磁気シフトレジスタ部の別の一部に後入れ先出しの形式で格納させ、
    前記第4配列を前記第2磁気シフトレジスタ部の別の一部に後入れ先出しの形式で格納させる、磁気記憶装置。
  2. 前記制御部は、前記第1磁気シフトレジスタ部の前記一部に格納された前記第1配列と、前記第2磁気シフトレジスタ部の前記一部に格納された前記第2配列と、前記第1磁気シフトレジスタ部の前記別の一部に格納された前記第3配列と、前記第2磁気シフトレジスタ部の前記別の一部に格納された前記第4配列と、を並べて得られる部分を含むデータを出力する請求項記載の磁気記憶装置。
  3. 前記複数の1次元ビット入力配列の大きさは、互いに同じである請求項1または2に記載の磁気記憶装置。
  4. 前記制御部は、前記第1磁気シフトレジスタ部に格納された前記第1配列と、前記第2磁気シフトレジスタ部に格納された前記第2配列と、を並べて得られる部分を含むデータを出力する請求項1〜3のいずれか1つに記載の磁気記憶装置。
  5. 前記第1磁気シフトレジスタ部は、
    第1端子と第2端子と第1ゲートとを含む第1トランジスタと、
    第3端子と第4端子と第2ゲートとを含第2トランジスタと、
    複数の磁区を含む磁性線であって前記磁性線の第1端部は前記1端子と接続された磁性線と、
    前記第3端子と電気的に接続された磁性層と、
    前記磁性線と前記磁性層との間に設けられた中間層と、
    を含み、
    前記第1駆動部は、
    前記第2端子と電気的に接続されたシフトドライバと、
    前記第1ゲートと電気的に接続されたシフトセレクタと、
    前記第4端子と電気的に接続された読み書きドライバと、
    前記第2ゲートと電気的に接続された読み書きセレクタと、
    前記磁性線の第1他端部に接続された磁性線ドライバと、
    を含む請求項1〜のいずれか1つに記載の磁気記憶装置。
  6. 前記中間層は、前記第1端部と前記磁性層との間に設けられた請求項記載の磁気記憶装置。
  7. 前記磁性線の少なくとも一部は、第1方向に延在し、
    前記磁性線の前記少なくとも一部に含まれる前記磁区の磁化は、第1状態において、前記第1方向と交差する第1磁化方向であり、
    前記磁性線の前記少なくとも一部に含まれる前記磁区の前記磁化は、第2状態において、前記第1方向と交差し前記第1磁化方向とは逆の第2磁化方向である請求項またはに記載の磁気記憶装置。
  8. 前記磁性線の前記少なくとも一部は、第1軸を軸として第1方向に延在し、
    前記磁性線の前記少なくとも一部に含まれる前記磁区の磁化は、第1状態において第1磁化方向であり、
    前記磁性線の前記少なくとも一部に含まれる前記磁区の磁化は、第2状態において第2磁化方向であり、
    前記第1磁化方向は、前記第1方向と交差し、
    前記第1磁化方向は、前記第1軸から、前記第1軸から離間した位置に向かう方向であり、
    前記第2磁化方向は、前記第1方向と交差し、
    前記第2磁化方向は、前記第1軸から離間した位置から、前記第1軸に向かう方向である請求項またはに記載の磁気記憶装置。
  9. 前記第1メモリアレイは、複数の磁気シフトレジスタ部を含み、
    前記第1駆動部は、前記第1メモリアレイに含まれる前記複数の磁気シフトレジスタ部に接続された第1プリアンプを含み、
    前記第2メモリアレイは、複数の磁気シフトレジスタ部を含み、
    前記第2駆動部は、前記第2メモリアレイに含まれる前記複数の磁気シフトレジスタ部に接続された第2プリアンプを含む請求項1〜のいずれか1つに記載の磁気記憶装置。
  10. 入力データを、第1配列と、第2配列と、を含む複数の1次元ビット入力配列に分割し、
    前記第1配列を第1磁気シフトレジスタ部に後入れ先出しの形式で格納させ、前記第2配列を第2磁気シフトレジスタ部に後入れ先出しの形式で格納させ、
    前記第1磁気シフトレジスタ部は、第1メモリアレイに含まれ、
    前記第2磁気シフトレジスタ部は、第2メモリアレイに含まれ、
    前記第1メモリアレイは、第1駆動部を含む第1メモリ部に含まれ、
    前記第2メモリアレイは、第2駆動部を含む第2メモリ部に含まれ、
    前記複数の1次元ビット入力配列は、第3配列と、第4配列と、をさらに含み、
    前記第1配列を前記第1磁気シフトレジスタ部の一部に後入れ先出しの形式で格納し、
    前記第2配列を前記第2磁気シフトレジスタ部の一部に後入れ先出しの形式で格納し、
    前記第3配列を前記第1磁気シフトレジスタ部の別の一部に後入れ先出しの形式で格納し、
    前記第4配列を前記第2磁気シフトレジスタ部の別の一部に後入れ先出しの形式で格納する、磁気記憶方法。
  11. 前記第1磁気シフトレジスタ部の前記一部に格納された前記第1配列と、前記第2磁気シフトレジスタ部の前記一部に格納された前記第2配列と、前記第1磁気シフトレジスタ部の前記別の一部に格納された前記第3配列と、前記第2磁気シフトレジスタ部の前記別の一部に格納された前記第4配列と、を並べて得られる部分を含むデータを出力する請求項1記載の磁気記憶方法。
  12. 前記複数の1次元ビット入力配列の大きさは、互いに同じである請求項10または11に記載の磁気記憶方法。
  13. 前記第1磁気シフトレジスタ部に格納された前記第1配列と、前記第2磁気シフトレジスタ部に格納された前記第2配列と、を並べて得られる部分を含むデータを出力する請求項10〜12のいずれか1つに記載の磁気記憶方法。
JP2015017660A 2015-01-30 2015-01-30 磁気記憶装置及び磁気記憶方法 Active JP6397773B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015017660A JP6397773B2 (ja) 2015-01-30 2015-01-30 磁気記憶装置及び磁気記憶方法
US15/007,794 US9886199B2 (en) 2015-01-30 2016-01-27 Magnetic memory device and magnetic storage method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015017660A JP6397773B2 (ja) 2015-01-30 2015-01-30 磁気記憶装置及び磁気記憶方法

Publications (2)

Publication Number Publication Date
JP2016143432A JP2016143432A (ja) 2016-08-08
JP6397773B2 true JP6397773B2 (ja) 2018-09-26

Family

ID=56553047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015017660A Active JP6397773B2 (ja) 2015-01-30 2015-01-30 磁気記憶装置及び磁気記憶方法

Country Status (2)

Country Link
US (1) US9886199B2 (ja)
JP (1) JP6397773B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11120858B2 (en) 2019-09-17 2021-09-14 Kioxia Corporation Magnetic memory

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017059593A (ja) 2015-09-14 2017-03-23 株式会社東芝 磁気メモリおよびその製造方法
JP2018014468A (ja) 2016-07-22 2018-01-25 株式会社東芝 磁気メモリ
JP2019164848A (ja) 2018-03-19 2019-09-26 東芝メモリ株式会社 磁気記憶装置
JP2020047728A (ja) * 2018-09-18 2020-03-26 キオクシア株式会社 磁気メモリ
JP2020046916A (ja) 2018-09-19 2020-03-26 キオクシア株式会社 メモリシステム
JP2020149223A (ja) 2019-03-12 2020-09-17 キオクシア株式会社 メモリシステム
JP2020149741A (ja) 2019-03-12 2020-09-17 キオクシア株式会社 メモリシステム
JP2021043912A (ja) 2019-09-13 2021-03-18 キオクシア株式会社 メモリシステム
JP2021047690A (ja) 2019-09-19 2021-03-25 キオクシア株式会社 メモリシステム

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4099499B2 (ja) * 2005-08-10 2008-06-11 株式会社システム・ファブリケーション・テクノロジーズ 半導体装置
US20100110747A1 (en) * 2005-08-10 2010-05-06 Liquid Design Systems, Inc. Semiconductor memory device
GB2438003B (en) 2006-05-09 2008-05-14 Ingenia Holdings Data storage device and method
US7710770B2 (en) 2006-05-09 2010-05-04 Ingenia Holdings Uk Limited Data storage device and method
US8228706B2 (en) * 2008-07-07 2012-07-24 International Business Machines Corporation Magnetic shift register memory device
JP5178448B2 (ja) * 2008-10-17 2013-04-10 株式会社東芝 不揮発性半導体記憶装置
GB2465370A (en) * 2008-11-13 2010-05-19 Ingenia Holdings Magnetic data storage comprising a synthetic anti-ferromagnetic stack arranged to maintain solitons
US8374052B2 (en) * 2009-05-08 2013-02-12 Samsung Electronics Co., Ltd. Information storage devices using magnetic domain wall movement and methods of operating the same
KR20110029811A (ko) * 2009-09-16 2011-03-23 삼성전자주식회사 수직 나노 와이어를 포함하는 정보 저장 장치
JP5443420B2 (ja) * 2011-03-23 2014-03-19 株式会社東芝 半導体記憶装置
JP5431400B2 (ja) * 2011-03-28 2014-03-05 株式会社東芝 磁気記憶素子
JP5592909B2 (ja) * 2012-03-06 2014-09-17 株式会社東芝 磁気メモリ
JP6093146B2 (ja) * 2012-10-25 2017-03-08 株式会社東芝 磁性細線を有する磁気メモリおよびその書き込み方法
US9123878B2 (en) 2013-09-09 2015-09-01 Kabushiki Kaisha Toshiba Magnetic memory device utilizing magnetic domain wall motion

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11120858B2 (en) 2019-09-17 2021-09-14 Kioxia Corporation Magnetic memory

Also Published As

Publication number Publication date
US20160224242A1 (en) 2016-08-04
US9886199B2 (en) 2018-02-06
JP2016143432A (ja) 2016-08-08

Similar Documents

Publication Publication Date Title
JP6397773B2 (ja) 磁気記憶装置及び磁気記憶方法
EP2245630B1 (en) Mram device with shared source line
US7855908B2 (en) Information storage devices using magnetic domain wall motion and methods of operating the same
JP4435207B2 (ja) 磁気ランダムアクセスメモリ
JP5091969B2 (ja) 半導体記憶装置
JP2003151260A (ja) 薄膜磁性体記憶装置
JP2002050173A (ja) 不揮発性記憶装置
US7719882B2 (en) Advanced MRAM design
JP2006523358A (ja) 異なるメモリセルに対する同時読み取りおよび書き込み
WO2005124558A2 (en) Method and system for optimizing the number of word line segments in a segmented mram array
US8947918B2 (en) Semiconductor memory device
JP2011258288A (ja) 半導体記憶装置
US6980464B2 (en) Magnetic random access memory
JP2013196717A (ja) 半導体記憶装置およびその駆動方法
KR102657583B1 (ko) 가변 저항 메모리 소자
CN113380944A (zh) 磁存储装置
KR101847890B1 (ko) 슈도 페이지 모드 메모리 아키텍쳐 및 방법
US7154775B2 (en) Magnetic random access memory
US20160055895A1 (en) Semiconductor storage device
JP5140859B2 (ja) 半導体装置
JP2003208785A (ja) 磁気記憶装置ならびに磁気記憶装置の書き換えおよび読み出し方法
TWI722475B (zh) 半導體記憶裝置
JP5036854B2 (ja) 半導体装置
JP2001148189A (ja) データ書き込み方法
TW202324402A (zh) 磁性記憶體裝置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171205

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20180116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180803

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180903

R150 Certificate of patent or registration of utility model

Ref document number: 6397773

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350