JP2019169776A - 遷移状態取得装置、時間デジタル変換器及びa/d変換回路 - Google Patents

遷移状態取得装置、時間デジタル変換器及びa/d変換回路 Download PDF

Info

Publication number
JP2019169776A
JP2019169776A JP2018054278A JP2018054278A JP2019169776A JP 2019169776 A JP2019169776 A JP 2019169776A JP 2018054278 A JP2018054278 A JP 2018054278A JP 2018054278 A JP2018054278 A JP 2018054278A JP 2019169776 A JP2019169776 A JP 2019169776A
Authority
JP
Japan
Prior art keywords
signal
time
signals
value
delay line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018054278A
Other languages
English (en)
Other versions
JP7087517B2 (ja
Inventor
正義 轟原
Masayoshi Gohara
正義 轟原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2018054278A priority Critical patent/JP7087517B2/ja
Priority to US16/360,077 priority patent/US10707891B2/en
Publication of JP2019169776A publication Critical patent/JP2019169776A/ja
Application granted granted Critical
Publication of JP7087517B2 publication Critical patent/JP7087517B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/50Analogue/digital converters with intermediate conversion to time interval
    • H03M1/502Analogue/digital converters with intermediate conversion to time interval using tapped delay lines
    • GPHYSICS
    • G04HOROLOGY
    • G04FTIME-INTERVAL MEASURING
    • G04F10/00Apparatus for measuring unknown time intervals by electric means
    • G04F10/005Time-to-digital converters [TDC]
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/099Details of the phase-locked loop concerning mainly the controlled oscillator of the loop
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/50Analogue/digital converters with intermediate conversion to time interval
    • H03M1/54Input signal sampled and held with linear return to datum
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/10Calibration or testing
    • H03M1/1009Calibration
    • H03M1/1014Calibration at one point of the transfer characteristic, i.e. by adjusting a single reference value, e.g. bias or gain error
    • H03M1/1019Calibration at one point of the transfer characteristic, i.e. by adjusting a single reference value, e.g. bias or gain error by storing a corrected or correction value in a digital look-up table

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Analogue/Digital Conversion (AREA)

Abstract

【課題】発振部の遷移状態を取得する際の煩雑性を低減させることが可能な遷移状態取得装置を提供すること。【解決手段】多段遅延線、及び前記多段遅延線の一端から他端に至る信号経路上に設けられた組み合わせ回路を含み、第1の信号に基づいて発振する発振部と、前記多段遅延線の出力信号を第2の信号に同期して取り込んで保持するラッチ部と、を含み、前記発振部は、前記第1の信号に基づいて、前記多段遅延線の状態の遷移を開始し、前記ラッチ部が前記多段遅延線の出力信号を取り込むタイミングの間隔は、前記多段遅延線の状態遷移が一巡する時間よりも短い、遷移状態取得装置。【選択図】図1

Description

本発明は、遷移状態取得装置、時間デジタル変換器及びA/D変換回路に関する。
特許文献1には、周期が測定される時間間隔を表す入力パルス信号が供給され、入力パルス信号の終了において、リング発振器の状態がラッチされ、測定される時間間隔の長さに対する「粗」値が高周波数カウンターで記録されたカウント値から得られ、リング発振器の周期フラクションの「細密」値がラッチされた値から得られる時間間隔測定回路が開示されている。したがって、この「粗」値と「細密」値を合成することでリング発振器の遷移状態を取得することができる。
特開平8−297177号公報
しかしながら、特許文献1に記載の時間間隔測定回路では、測定される時間間隔の長さに対する「粗」値を得るための高周波数カウンターとリング発振器の周期フラクションの「細密」値を得るためのラッチを分ける必要があるため、「粗」カウント値と「細密」カウント値を合成する際の整合性を取るために特別な工夫が必要となり、煩雑性が生じるという問題がある。
本発明に係る遷移状態取得装置の一態様は、
多段遅延線、及び前記多段遅延線の一端から他端に至る信号経路上に設けられた組み合わせ回路を含み、第1の信号に基づいて発振する発振部と、
前記多段遅延線の出力信号を第2の信号に同期して取り込んで保持するラッチ部と、
を含み、
前記発振部は、前記第1の信号に基づいて、前記多段遅延線の状態の遷移を開始し、
前記ラッチ部が前記多段遅延線の出力信号を取り込むタイミングの間隔は、前記多段遅延線の状態遷移が一巡する時間よりも短い。
前記遷移状態取得装置の一態様において、
前記発振部は、
複数の前記多段遅延線を含み、
前記複数の前記多段遅延線の少なくとも一部は、並列に接続され、
前記複数の前記多段遅延線から出力される特定の複数の信号の値の遷移は、遷移する前後のハミング距離が1であってもよい。
前記遷移状態取得装置の一態様は、
前記ラッチ部が保持している値に基づいて、前記多段遅延線の状態が遷移した回数をカウントする計数部を含んでもよい。
前記遷移状態取得装置の一態様は、
前記ラッチ部が保持している値に基づいて、前記多段遅延線の状態が遷移した回数をカウントする計数部を含み、
前記計数部は、
前記特定の複数の信号を前記ラッチ部が取り込んで保持している値に基づいて、前記多段遅延線の状態が遷移した回数の概算値としての第1のカウント値を求め、
前記特定の複数の信号を前記ラッチ部が取り込んで保持している値に基づいて、前記複数の前記多段遅延線のうち、前記ラッチ部が前記特定の複数の信号を取り込んだタイミングにおいて状態が遷移していた前記多段遅延線を特定し、特定した前記多段遅延線から出力される信号を前記ラッチ部が取り込んで保持している値に対してポピュレーションカウントを行って第2のカウント値を求め、
前記第1のカウント値と前記第2のカウント値に基づいて、前記多段遅延線の状態が遷移した回数を求めてもよい。
本発明に係る時間デジタル変換器の一態様は、
前記遷移状態取得装置の一態様と、
前記遷移状態取得装置の前記計数部がカウントした計数値を取り込んで保持する計数値保持部と、
前記計数値保持部で保持された前記計数値を積算し、前記第1の信号の時間イベントと前記第2の信号の時間イベントとの時間間隔に対応する第1の時間デジタル値を生成する積算部と、
を含む。
前記時間デジタル変換器の一態様において、
前記第2の信号の時間イベントは、前記第1の信号の時間イベントとは独立して設定されていてもよい。
前記時間デジタル変換器の一態様は、
時間デジタル値生成部を含み、
前記発振部は、
複数の前記第1の信号の各々に基づいて、前記多段遅延線の状態の遷移を開始し、
前記計数部は、
前記複数の前記第1の信号の各々に対して前記多段遅延線の状態が遷移した回数をカウントし、
前記計数値保持部は、
前記計数部がカウントした複数の前記計数値を取り込んで保持し、
前記積算部は、
前記計数値保持部で保持された前記複数の前記計数値の各々を積算し、前記複数の前記第1の信号の各々の時間イベントと前記第2の信号の時間イベントとの時間間隔に対応する複数の前記第1の時間デジタル値を生成し、
前記時間デジタル値生成部は、
前記複数の前記第1の時間デジタル値に基づいて、前記複数の前記第1の信号の少なくとも2つの時間イベントの時間間隔に対応する第2の時間デジタル値を生成してもよい。
本発明に係る時間デジタル変換器の一態様は、
複数の前記遷移状態取得装置の一態様と、
複数の計数値保持部と、
複数の積算部と、
時間デジタル値生成部と、
を含み、
前記複数の前記遷移状態取得装置は、
複数の前記第1の信号の各々に基づいて、前記多段遅延線の状態の遷移を開始し、
前記複数の前記計数値保持部は、
前記複数の前記遷移状態取得装置の各々の前記計数部がカウントした計数値を取り込んで保持し、
前記複数の前記積算部は、
前記複数の前記計数値保持部で保持された複数の前記計数値の各々を積算し、前記複数の前記第1の信号の各々の時間イベントと前記第2の信号の時間イベントとの時間間隔に対応する複数の第1の時間デジタル値を生成し、
前記時間デジタル値生成部は、
前記複数の前記積算部が生成した複数の前記第1の時間デジタル値に基づいて、前記複数の前記第1の信号の少なくとも2つの時間イベントの時間間隔に対応する第2の時間デジタル値を生成する。
前記時間デジタル変換器の一態様において、
前記第2の信号の時間イベントは、前記複数の前記第1の信号の時間イベントとは独立して設定されていてもよい。
本発明に係るA/D変換回路の一態様は、
入力されたアナログ信号をデジタル信号に変換して出力するA/D変換回路であって、
前記時間デジタル変換器の一態様と、
前記第2の信号に基づいて基準波形信号を生成する基準波形信号生成回路と、
前記アナログ信号の電圧と前記基準波形信号の電圧とを比較して前記第1の信号を出力する比較器と、
を含み、
前記時間デジタル変換器が生成する前記第1の時間デジタル値に基づく前記デジタル信号を出力する。
本発明に係るA/D変換回路の一態様は、
入力されたアナログ信号をデジタル信号に変換して出力するA/D変換回路であって、
前記時間デジタル変換器の一態様と、
前記アナログ信号の電圧をサンプリングして保持するサンプルホールド回路と、
前記第2の信号に基づいて基準波形信号を生成する基準波形信号生成回路と、
前記サンプルホールド回路が保持する電圧と前記基準波形信号の電圧とを比較して前記第1の信号を出力する比較器と、
を含み、
前記時間デジタル変換器が生成する前記第1の時間デジタル値に基づく前記デジタル信号を出力する。
本実施形態の遷移状態取得装置の機能ブロック図。 遷移状態取得装置の第1構成例における発振部及びラッチ部を示す図。 第1構成例における計数部を示す図。 遷移状態取得装置の第2構成例における発振部を示す図。 第2構成例における多段遅延線の構成を示す図。 参照テーブル26−0の真理値表を示す図。 参照テーブル26−1,26−2,26−3の真理値表を示す図。 第2構成例におけるラッチ部及び計数部を示す図。 参照テーブル49の真理値表を示す図。 時間デジタル変換器の第1実施形態の構成を示す図。 演算部の具体的な構成例を示す図。 時間デジタル変換器におけるタイミングチャートの一例を示す図。 時間デジタル変換器におけるタイミングチャートの他の一例を示す図。 図12の例における計数値CNTの時間変化を示す図。 図13の例における計数値CNTの時間変化を示す図。 時間デジタル変換器の第2実施形態の構成を示す図。 時間デジタル変換器の第3実施形態の構成を示す図。 A/D変換回路の第1実施形態の構成を示す図。 A/D変換回路の第1実施形態における各種信号の波形の一例を示す図。 A/D変換回路の第1実施形態の変形例を示す図。 A/D変換回路の第2実施形態の構成を示す図。 A/D変換回路の第2実施形態における各種信号の波形の一例を示す図。 A/D変換回路の第2実施形態の変形例を示す図。
以下、本発明の好適な実施形態について図面を用いて詳細に説明する。なお、以下に説明する実施の形態は、特許請求の範囲に記載された本発明の内容を不当に限定するものではない。また以下で説明される構成の全てが本発明の必須構成要件であるとは限らない。
1.遷移状態取得装置
1−1.機能構成
図1は、本実施形態の遷移状態取得装置1の機能ブロック図である。図1に示すように、本実施形態の遷移状態取得装置1は、制御部10、発振部20、ラッチ部30及び計数部40を含む。
制御部10は、被測定信号Xの立ち上がりエッジを検出してイネーブル信号ENをアクティブにして出力する。本実施形態では、イネーブル信号ENはハイレベルがアクティブであるものとする。制御部10は、イネーブル信号ENをハイレベルにした後に、発振部20から出力される信号Dに基づいて、発振部20が有する多段遅延線21が所定の状態まで遷移したか否かを判定し、遷移したと判定した場合、イネーブル信号ENをハイレベルからローレベルに切り替える。また、制御部10は、イネーブル信号ENをハイレベルからローレベルに切り替えた後、所定時間後にアクティブとなるリセット信号RSTを生成して出力する。本実施形態では、リセット信号RSTはハイレベルがアクティブであるものとする。制御部10は、リセット信号RSTをハイレベルにした後に所定時間が経過した時点で、リセット信号RSTをハイレベルからローレベルに切り替える。イネーブル信号ENは発振部20に供給され、リセット信号RSTは計数部40に供給される。
発振部20は、多段遅延線21と組み合わせ回路22とを有する。多段遅延線21は、入力端から最終段の出力端に至る信号経路が、複数のバッファー素子やインバーター素子等の遅延素子のチェーンで構成された遅延線であり、1つの入力端と複数段の出力端とを有する。多段遅延線21は、タップ付き遅延線(TDL:Tapped Delay Line)とも呼ばれる。本実施形態では、チェーンの先頭にある遅延素子の入力端が多段遅延線21の入力端となる。また、チェーンを構成する複数の遅延素子の各々の入力端及びチェーンの最後尾にある遅延素子の出力端が多段遅延線21の各段の出力端となる。すなわち、チェーンの先頭にある遅延素子の入力端は多段遅延線21の初段の出力端でもあり、チェーンの最後尾にある遅延素子の出力端は多段遅延線21の最終段の出力端である。したがって、本実施形態では、多段遅延線21の最終段を除く各段の出力端からは複数の遅延素子の各々の入力信号が出力され、多段遅延線21の最終段の出力端からはチェーンの最後尾にある遅延素子の出力信号が出力される。
なお、前述の信号Dは、多段遅延線21の複数段の出力端から出力される信号の少なくとも1つであってもよい。
組み合わせ回路22は、多段遅延線21の一端である最終段の出力端から他端である入力端に至る信号経路上に設けられている。発振部20は、イネーブル信号ENがローレベルのときは発振を停止しており、イネーブル信号ENがハイレベルのときに発振する。具体的には、イネーブル信号ENがローレベルのときは、多段遅延線21の最終段の出力端から出力される信号が組み合わせ回路22において論理反転されずに多段遅延線21の入力端に入力されることで、発振部20の発振が停止する。また、イネーブル信号ENがハイレベルのときは、多段遅延線21の最終段の出力端から出力される信号が組み合わせ回路22において論理反転されて多段遅延線21の入力端に入力されることにより多段遅延線21の状態が遷移し、発振部20が発振する。本実施形態では、被測定信号Xの立ち上がりエッジによりイネーブル信号ENがローレベルからハイレベルに切り換わるので、発振部20は、被測定信号Xに基づいて、多段遅延線21の状態の遷移を開始する。なお、発振部20の発振周期は、多段遅延線21及び組み合わせ回路22を信号が伝播するのに要する遅延時間に応じて決まり、遅延時間が短いほど発振周期が短い。
ラッチ部30は、多段遅延線21の各段の出力端からの出力信号を基準クロック信号CLKに同期して取り込んで保持する。
計数部40は、ラッチ部30が保持している値Lに基づいて、多段遅延線21の状態が遷移した回数をカウントする。計数部40は、リセット信号RSTが入力されてもよく、この場合、計数部40は、リセット信号RSTがローレベルのときに多段遅延線21の状態が遷移した回数をカウントし、リセット信号RSTがハイレベルのときにカウントした値をゼロに初期化する。
なお、被測定信号Xは本発明における「第1の信号」に相当する。また、基準クロック信号CLKは本発明における「第2の信号」に相当する。
以下、本実施形態の遷移状態取得装置1の具体的な構成例について説明する。
1−2.第1構成例
図2は、遷移状態取得装置1の第1構成例における発振部20及びラッチ部30を示す図である。
図2に示すように、遷移状態取得装置1の第1構成例において、発振部20は、31個のバッファー素子23−0〜23−30、論理反転回路24及び2入力の論理積回路25を含む。バッファー素子23−i(iは0〜29の各々)の出力端はバッファー素子23−(i+1)の入力端と電気的に接続されている。バッファー素子23−30の出力端は論理反転回路24の入力端と電気的に接続されている。論理積回路25は、一方の入力端にイネーブル信号ENが入力され、他方の入力端は論理反転回路24の出力端と電気的に接続されている。論理積回路25の出力端はバッファー素子23−0の入力端と電気的に接続されている。なお、チェーンを構成する31個のバッファー素子23−0〜23−30は、図1に示した多段遅延線21に相当する。また、論理反転回路24及び2入力の論理積回路25からなる回路は、図1に示した組み合わせ回路22に相当する。
このような構成の発振部20では、イネーブル信号ENをローレベルにすることにより論理積回路25の出力信号がローレベルに保たれるので、発振を停止した状態に留めることができる。このとき、多段遅延線21は、バッファー素子23−0〜23−30にそれぞれ入力される信号D0〜D30及びバッファー素子23−30から出力される信号D31がすべてローレベルである第1状態になっている。
イネーブル信号ENがハイレベルになると、ローレベルの信号D31の論理反転信号が
論理反転回路24及び論理積回路25を通過することにより、論理積回路25の出力信号がローレベルからハイレベルに変化し、バッファー素子23−0に入力される信号D0がハイレベルとなる。これにより、多段遅延線21は、第1状態から、信号D0がハイレベルであり、且つ、信号D1〜D31がローレベルである第2状態に遷移する。次に、ハイレベルの信号D0がバッファー素子23−0を通過するとバッファー素子23−0の出力信号がローレベルからハイレベルに変化し、バッファー素子23−1に入力される信号D1がハイレベルとなる。これにより、多段遅延線21は、第2状態から、信号D0,D1がハイレベルであり、且つ、信号D2〜D31がローレベルである第3状態に遷移する。以降、多段遅延線21は、状態遷移を繰り返し、信号D0〜D31がすべてハイレベルである第33状態となる。
次に、ハイレベルの信号D31が論理反転回路24及び論理積回路25を通過すると論理積回路25の出力信号がハイレベルからローレベルに変化し、バッファー素子23−0に入力される信号D0がローレベルとなる。これにより、多段遅延線21は、第33状態から、信号D0がローレベルであり、且つ、信号D1〜D31がハイレベルである第34状態に遷移する。次に、ローレベルの信号D0がバッファー素子23−0を通過するとバッファー素子23−0の出力信号がハイレベルからローレベルに変化し、バッファー素子23−1に入力される信号D1がローレベルとなる。これにより、多段遅延線21は、第34状態から、信号D0,D1がローレベルであり、且つ、信号D2〜D31がハイレベルである第35状態に遷移する。以降、多段遅延線21は、状態遷移を繰り返し、信号D0〜D30がローレベルであり、且つ、信号D31がハイレベルである第64状態となる。
次に、ローレベルの信号D30がバッファー素子23−30を通過するとバッファー素子23−30の出力信号がハイレベルからローレベルに変化し、バッファー素子23−30から出力される信号D31がローレベルとなる。これにより、多段遅延線21は、第64状態から、信号D0〜D31がすべてローレベルである第1状態に戻る。このように、イネーブル信号ENがハイレベルの間、多段遅延線21は第1状態から第64状態までの状態遷移を繰り返し、これにより、発振部20が発振する。
なお、バッファー素子23−0の入力端が多段遅延線21の入力端及び初段(第1段)の出力端に相当し、バッファー素子23−0〜23−30の各出力端がそれぞれ多段遅延線21の第2段〜最終段(第32段)の出力端に相当する。そして、多段遅延線21の初段〜最終段の出力端からはそれぞれ信号D0〜D31が出力される。
ラッチ部30は、32個のDフリップフロップ31−0〜31−31を含む。Dフリップフロップ31−i(iは0〜30の各々)は、データ入力端子(D)がバッファー素子23−iの入力端と電気的に接続され、クロック入力端子には基準クロック信号CLKが入力される。そして、Dフリップフロップ31−iは、基準クロック信号CLKの立ち上がりエッジに同期して、信号Diを取り込んでその論理レベルに応じた値Liを保持する。また、Dフリップフロップ31−31は、データ入力端子(D)がバッファー素子23−30の出力端と電気的に接続され、クロック入力端子には基準クロック信号CLKが入力される。そして、Dフリップフロップ31−31は、基準クロック信号CLKの立ち上がりエッジに同期して、信号D31を取り込んでその論理レベルに応じた値L31を保持する。
図3は、遷移状態取得装置1の第1構成例における計数部40を示す図である。図3に示すように、計数部40は、カウント回路41、乗算器42、加算器43、Dフリップフロップ44、減算器45、加算器46及びDフリップフロップ47を含む。なお、図3では図示の簡略化のため、Dフリップフロップ44及びDフリップフロップ47はそれぞれ
1つのみ図示されているが、実際にはDフリップフロップ44は6個存在し、Dフリップフロップ47はN個存在する。
カウント回路41は、ラッチ部30が保持している32ビットの値L0〜L31に対して0又は1の数をポピュレーションカウントし、0〜32のいずれかの値を有する6ビットの信号を出力する。具体的には、カウント回路41は、L0が0であればL0〜L31に対して0の数をカウントし、L0が1であればL0〜L31に対して1の数をカウントする。
乗算器42は、L0を論理反転した値と32との乗算を行い、0又は32の値を有する6ビットの信号を出力する。すなわち、乗算器42は、L0が1であれば0を出力し、L0が0であれば32を出力する。なお、乗算器42は、L0を論理反転した値を5ビットシフトする簡易な回路として実現することができる。
加算器43は、カウント回路41から出力される6ビットの信号の値と乗算器42から出力される6ビットの信号の値とを加算して6ビットの計算値を出力する。
ここで、多段遅延線21が第j状態(jは1〜64の各々)のときにラッチ部30が信号D0〜D31を取り込んだ場合、加算器43から出力される6ビットの信号の値はj−1となる。
例えば、多段遅延線21の状態が、信号D0がハイレベルであり、且つ、D1〜D31がローレベルである第2状態から、信号D0〜D31がすべてハイレベルである第33状態までは、ハイレベルの信号が多段遅延線21を伝播している状態である。そして、多段遅延線21の状態が第2状態から第33状態までのいずれかのときに、基準クロック信号CLKの立ち上がりエッジが到来すると、信号D0の論理レベルに対応する値L0は1となる。したがって、例えば、多段遅延線21が第33状態のときにラッチ部30が信号D0〜D31を取り込んだ場合、カウント回路41から出力される6ビットの信号の値が32になり、乗算器42から出力される6ビットの信号の値が0になるので、加算器43から出力される7ビットの信号の値は32になる。
また、例えば、多段遅延線21の状態が、信号D0がローレベルであり、且つ、D1〜D31がハイレベルである第34状態から、信号D0〜D31がすべてローレベルである第1状態までは、ローレベルの信号が多段遅延線21を伝播している状態である。そして、多段遅延線21の状態が第34状態から第1状態までのいずれかのときに、基準クロック信号CLKの立ち上がりエッジが到来すると、信号D0の論理レベルに対応する値L0は0となる。したがって、例えば、多段遅延線21が第34状態のときにラッチ部30が信号D0〜D31を取り込んだ場合、カウント回路41から出力される6ビットの信号の値が1になり、乗算器42から出力される6ビットの信号の値が32になるので、加算器43から出力される7ビットの信号の値は33になる。なお、多段遅延線21が第1状態のときにラッチ部30が信号D0〜D31を取り込んだ場合、カウント回路41から出力される6ビットの信号の値は32であり、乗算器42から出力される6ビットの信号の値は32であるので、これらの加算値は64(7ビットの値1000000)となるが、加算器43から出力される信号は6ビットであるためその値は0(=0000000)となる。
6個のDフリップフロップ44の各々は、基準クロック信号CLKの立ち上がりエッジに同期して、加算器43から出力される6ビットの信号の各値を取り込んで保持する。
減算器45は、加算器43から出力される6ビットの信号の値から6個のDフリップフ
ロップ44が保持している6ビットの値を減算し、0〜63のいずれかの値を有する6ビットの信号を出力する。減算器45から出力される6ビットの信号の値は、基準クロック信号CLKの直近の1周期の時間に多段遅延線21の状態が遷移した回数に相当する。
加算器46は、減算器45から出力される6ビットの信号の値と6個のDフリップフロップ47が保持している6ビットの値とを加算し、Nビットの信号を出力する。また、加算器46は、加算値がNビットの上限値以上の場合は当該上限値を有するNビットの信号を出力する。例えば、N=7であれば、加算器46は0〜127のいずれかの値を有する7ビットの信号を出力する。
N個のDフリップフロップ47の各々は、基準クロック信号CLKの立ち上がりエッジに同期して、加算器46から出力されるNビットの信号の各値を取り込んで保持する。N個のDフリップフロップ47が保持するNビットの値は、Nビットの計数値CNTとして計数部40から出力される。この計数値CNTは、イネーブル信号ENがローレベルからハイレベルに遷移した時からの多段遅延線21の状態が遷移した回数に相当する。なお、リセット信号RSTがローレベルからハイレベルに変化すると、6個のDフリップフロップ44及びN個のDフリップフロップ47がそれぞれ保持する値はすべて0に初期化される。これにより、計数値CNTも0に初期化され、次の計測が可能になる。
以上に説明したように、本実施形態の遷移状態取得装置1の第1構成例によれば、多段遅延線21の状態が遷移した回数を計数値CNTとして取得することができる。
なお、イネーブル信号ENがローレベルからハイレベルに遷移してから、ラッチ部30が信号D0〜D31を最初に取り込むタイミング、すなわち、基準クロック信号CLKの最初の立ち上がりエッジまでの時間が長いほど、この間に多段遅延線21の状態が遷移した回数が多いので計数値CNTの値が大きくなる。したがって、計数値CNTの値を用いることにより、イネーブル信号ENがローレベルからハイレベルに遷移してから基準クロック信号CLKの最初の立ち上がりエッジまでの時間を計測することが可能である。
ただし、ラッチ部30が信号D0〜D31を取り込んでから次に信号D0〜D31を取り込むまでの間に、多段遅延線21の状態が64回以上遷移すると、計数値CNTが誤った値となる。例えば、多段遅延線21の状態が第1状態のときにラッチ部30が信号D0〜D31を取り込み、その後、多段遅延線21の状態が65回遷移して第2状態になったときにラッチ部30が信号D0〜D31を取り込んだ場合、65回の状態遷移が1回の状態遷移とみなされ、計数値CNTは1しか増えないことになる。そのため、正しい計数値CNTが得られるように、ラッチ部30が信号D0〜D31を取り込むタイミングの間隔、すなわち、基準クロック信号CLKの1周期の時間は、多段遅延線21の状態遷移が一巡する時間よりも短いことが必要である。多段遅延線21の状態遷移が一巡する時間とは、多段遅延線21の状態が64回遷移するのに要する時間である。なお、基準クロック信号CLKの1周期の時間を短くすることが難しい場合には、多段遅延線21の段数(遅延素子の数)を増やすか、各遅延素子の信号伝播時間を長くすればよい。
以上に説明したように、本実施形態の遷移状態取得装置1の第1構成例では、ラッチ部30が多段遅延線21から出力される信号D0〜D31を取り込むタイミングの間隔が、多段遅延線21の状態遷移が一巡する時間よりも短いことにより、ラッチ部30が保持している値L0〜L31と発振部20の状態とを1対1に対応づけることができる。したがって、本実施形態の遷移状態取得装置1の第1構成例によれば、基準クロック信号CLKの立ち上がりエッジ毎に、ラッチ部30が保持している値L0〜L31に基づいて発振部20の遷移状態を取得することができるので、発振部20の遷移状態を取得する際の煩雑性を低減させることができる。
また、本実施形態の遷移状態取得装置1の第1構成例によれば、計数部40が、ラッチ部30が保持している値L0〜L31に基づいて、多段遅延線21の状態が遷移した回数をカウントすることにより、多段遅延線21の状態が遷移した回数を計数値CNTとして取得することができる。そして、イネーブル信号ENがローレベルからハイレベルに遷移してから、ラッチ部30が信号D0〜D31を最初に取り込むタイミング、すなわち、基準クロック信号CLKの最初の立ち上がりエッジまでの時間が長いほど、この間に多段遅延線21の状態が遷移した回数が多いので計数値CNTが大きくなる。したがって、計数値CNTを用いることにより、イネーブル信号ENがローレベルからハイレベルに遷移してから基準クロック信号CLKの最初の立ち上がりエッジまでの時間を計測することが可能である。
1−3.第2構成例
図4は、遷移状態取得装置1の第2構成例における発振部20を示す図である。本構成例では、発振部20は、複数の多段遅延線21を有し、複数の多段遅延線21の少なくとも一部は並列に接続されている。具体的には、図4に示すように、遷移状態取得装置1の第2構成例では、発振部20は、4つの多段遅延線21−0〜21−3及び4つの参照テーブル26−0〜26−3を含み、3つの多段遅延線21−0〜21−3が並列に接続されている。
多段遅延線21−0は、入力端が参照テーブル26−0の出力端子と電気的に接続され、最終段の出力端が参照テーブル26−1〜26−3の各々の第1入力端子と電気的に接続されている。多段遅延線21−0の入力端には参照テーブル26−0から出力される信号D0が入力され、多段遅延線21−0の最終段の出力端から信号T0が出力される。
図5は、多段遅延線21−0の構成を示す図である。図5に示すように、多段遅延線21−0は、7個のバッファー素子27−0〜27−6を含む。バッファー素子27−i(iは0〜5の各々)の出力端はバッファー素子27−(i+1)の入力端と電気的に接続されている。バッファー素子27−0の入力端が多段遅延線21−0の入力端及び初段(第1段)の出力端に相当し、バッファー素子27−1〜27−6の各出力端がそれぞれ多段遅延線21−0の第2段〜最終段(第8段)の出力端に相当する。そして、多段遅延線21−0の初段〜最終段の出力端からはそれぞれ信号D0〜D7が出力され、信号D7は信号T0として、参照テーブル26−1〜26−3に供給される。
多段遅延線21−1は、入力端が参照テーブル26−1の出力端子と電気的に接続され、出力端が参照テーブル26−0の第1入力端子と電気的に接続されている。多段遅延線21−1の入力端には参照テーブル26−1から出力される信号D8が入力され、多段遅延線21−1の最終段の出力端から信号T1が出力される。そして、多段遅延線21−1の初段〜最終段(第8段)の出力端からはそれぞれ信号D8〜D15が出力され、信号D15は信号T1として、参照テーブル26−0に供給される。なお、多段遅延線21−1の構成は、図5に示した多段遅延線21−0の構成と同じであるため図示を省略する。
多段遅延線21−2は、入力端が参照テーブル26−2の出力端子と電気的に接続され、出力端が参照テーブル26−0の第2入力端子と電気的に接続されている。多段遅延線21−2の入力端には参照テーブル26−2から出力される信号D16が入力され、多段遅延線21−2の最終段の出力端から信号T2が出力される。そして、多段遅延線21−2の初段〜最終段(第8段)の出力端からはそれぞれ信号D16〜D23が出力され、信号D23は信号T2として、参照テーブル26−0に供給される。なお、多段遅延線21−2の構成は、図5に示した多段遅延線21−0の構成と同じであるため図示を省略する。
多段遅延線21−3は、入力端が参照テーブル26−3の出力端子と電気的に接続され、出力端が参照テーブル26−0の第3入力端子と電気的に接続されている。多段遅延線21−3の入力端には参照テーブル26−3から出力される信号D24が入力され、多段遅延線21−3の最終段の出力端から信号T3が出力される。そして、多段遅延線21−3の初段〜最終段(第8段)の出力端からはそれぞれ信号D24〜D31が出力され、信号D31は信号T3として、参照テーブル26−0に供給される。なお、多段遅延線21−3の構成は、図5に示した多段遅延線21−0の構成と同じであるため図示を省略する。
参照テーブル26−0は、第1入力端子に信号T1が入力され、第2入力端子に信号T2が入力され、第3入力端子に信号T3が入力され、第4入力端子にイネーブル信号ENが入力される。
参照テーブル26−1は、第1入力端子に信号T0が入力され、第2入力端子に信号D8が入力され、第3入力端子に信号D16が入力され、第4入力端子に信号D24が入力される。
参照テーブル26−2は、第1入力端子に信号T0が入力され、第2入力端子に信号D8が入力され、第3入力端子に信号D16が入力され、第4入力端子に信号D24が入力される。
参照テーブル26−3は、第1入力端子に信号T0が入力され、第2入力端子に信号D8が入力され、第3入力端子に信号D16が入力され、第4入力端子に信号D24が入力される。
そして、参照テーブル26−0は、図6に示す真理値表に従い、信号T1,T2,T3及びイネーブル信号ENの論理レベルの組み合わせに応じた論理レベルの信号D0を出力する。また、参照テーブル26−1,26−2,26−3は、図7に示す真理値表に従い、信号D8,D16,D24及び信号T0の論理レベルの組み合わせに応じた論理レベルの信号D8,D16,D24をそれぞれ出力する。なお、図6及び図7において、「0」はローレベルに対応し、「1」はハイレベルに対応している。
なお、参照テーブル26−0〜26−3からなる回路は、図1に示した組み合わせ回路22に相当する。
このような構成の発振部20では、イネーブル信号ENをローレベルにすることにより、発振を停止した状態に留めることができる。多段遅延線21−0〜21−3が、信号D0〜D31がすべてローレベルである第1状態で、発振が停止している場合、イネーブル信号ENがハイレベルになると、信号T3,T2,T1がすべてローレベルであるので、参照テーブル26−0から出力される信号D0がローレベルからハイレベルに変化する。これにより、多段遅延線21−0〜21−3は、第1状態から、信号D1〜D31がローレベルであり、且つ、信号D0がハイレベルである第2状態に遷移する。以降、多段遅延線21−0をハイレベルの信号が伝播していくことにより、多段遅延線21−0〜21−3が状態遷移を繰り返し、信号D8〜D31がローレベルであり、且つ、信号D0〜D7がハイレベルである第9状態となる。この第9状態では、信号T3,T2,T1はローレベルであり、且つ、信号T0はハイレベルである。
次に、信号D24,D16,D8がローレベルであり、且つ、信号T0がハイレベルであるので、参照テーブル26−1から出力される信号D8がローレベルからハイレベルに
変化する。これにより、多段遅延線21−0〜21−3は、第9状態から、信号D9〜D31がローレベルであり、且つ、信号D0〜D8がハイレベルである第10状態に遷移する。以降、多段遅延線21−1をハイレベルの信号が伝播していくことにより、多段遅延線21−0〜21−3が状態遷移を繰り返し、信号D16〜D31がローレベルであり、且つ、信号D0〜D15がハイレベルである第17状態となる。この第17状態では、信号T3,T2はローレベルであり、且つ、信号T1,T0はハイレベルである。
次に、信号T3,T2がローレベルであり、且つ、信号T1がハイレベルであるので、参照テーブル26−0から出力される信号D0がハイレベルからローレベルに変化する。これにより、多段遅延線21−0〜21−3は、第17状態から、信号D0,D16〜D31がローレベルであり、且つ、信号D1〜D15がハイレベルである第18状態に遷移する。以降、多段遅延線21−0をローレベルの信号が伝播していくことにより、多段遅延線21−0〜21−3が状態遷移を繰り返し、信号D0〜D7,D16〜D31がローレベルであり、且つ、信号D8〜D15がハイレベルである第25状態となる。この第25状態では、信号T3,T2,T0はローレベルであり、且つ、信号T1はハイレベルである。
次に、信号D24,D16,T0がローレベルであり、且つ、信号D8がハイレベルであるので、参照テーブル26−2から出力される信号D16がローレベルからハイレベルに変化する。これにより、多段遅延線21−0〜21−3は、第25状態から、信号D0〜D7,D17〜D31がローレベルであり、且つ、信号D8〜D16がハイレベルである第26状態に遷移する。以降、多段遅延線21−2をハイレベルの信号が伝播していくことにより、多段遅延線21−0〜21−3が状態遷移を繰り返し、信号D0〜D7,D24〜D31がローレベルであり、且つ、信号D8〜D23がハイレベルである第33状態となる。この第33状態では、信号T3,T0はローレベルであり、且つ、信号T2,T1はハイレベルである。
次に、信号T3がローレベルであり、且つ、信号T2,T1がハイレベルであるので、参照テーブル26−0から出力される信号D0がローレベルからハイレベルに変化する。これにより、多段遅延線21−0〜21−3は、第33状態から、信号D1〜D7,D24〜D31がローレベルであり、且つ、信号D0,D8〜D23がハイレベルである第34状態に遷移する。以降、多段遅延線21−0をハイレベルの信号が伝播していくことにより、多段遅延線21−0〜21−3が状態遷移を繰り返し、信号D24〜D31がローレベルであり、且つ、信号D0〜D23がハイレベルである第41状態となる。この第41状態では、信号T3はローレベルであり、且つ、信号T2,T1,T0はハイレベルである。
次に、信号D24がローレベルであり、且つ、信号D16,D8,T0がハイレベルであるので、参照テーブル26−1から出力される信号D8がハイレベルからローレベルに変化する。これにより、多段遅延線21−0〜21−3は、第41状態から、信号D8,D24〜D31がローレベルであり、且つ、信号D0〜D7,D9〜D23がハイレベルである第42状態に遷移する。以降、多段遅延線21−1をローレベルの信号が伝播していくことにより、多段遅延線21−0〜21−3が状態遷移を繰り返し、信号D8〜D15,D24〜D31がローレベルであり、且つ、信号D0〜D7,D16〜D23がハイレベルである第49状態となる。この第49状態では、信号T3,T1はローレベルであり、且つ、信号T2,T0はハイレベルである。
次に、信号T3,T1がローレベルであり、且つ、信号T2がハイレベルであるので、参照テーブル26−0から出力される信号D0がハイレベルからローレベルに変化する。これにより、多段遅延線21−0〜21−3は、第49状態から、信号D0,D8〜D1
5,D24〜D31がローレベルであり、且つ、信号D1〜D7,D16〜D23がハイレベルである第50状態に遷移する。以降、多段遅延線21−0をローレベルの信号が伝播していくことにより、多段遅延線21−0〜21−3が状態遷移を繰り返し、信号D0〜D15,D24〜D31がローレベルであり、且つ、信号D16〜D23がハイレベルである第57状態となる。この第57状態では、信号T3,T1,T0はローレベルであり、且つ、信号T2はハイレベルである。
次に、信号D24,D8,T0がローレベルであり、且つ、信号D16がハイレベルであるので、参照テーブル26−3から出力される信号D24がローレベルからハイレベルに変化する。これにより、多段遅延線21−0〜21−3は、第57状態から、信号D0〜D15,D23〜D31がローレベルであり、且つ、信号D16〜D24がハイレベルである第58状態に遷移する。以降、多段遅延線21−3をハイレベルの信号が伝播していくことにより、多段遅延線21−0〜21−3が状態遷移を繰り返し、信号D0〜D15がローレベルであり、且つ、信号D16〜D31がハイレベルである第65状態となる。この第65状態では、信号T1,T0はローレベルであり、且つ、信号T3,T2はハイレベルである。
次に、信号T1がローレベルであり、且つ、信号T3,T2がハイレベルであるので、参照テーブル26−0から出力される信号D0がローレベルからハイレベルに変化する。これにより、多段遅延線21−0〜21−3は、第65状態から、信号D1〜D15がローレベルであり、且つ、信号D0,D16〜D31がハイレベルである第66状態に遷移する。以降、多段遅延線21−0をハイレベルの信号が伝播していくことにより、多段遅延線21−0〜21−3が状態遷移を繰り返し、信号D8〜D15がローレベルであり、且つ、信号D0〜D7,D16〜D31がハイレベルである第73状態となる。この第73状態では、信号T1はローレベルであり、且つ、信号T3,T2,T0はハイレベルである。
次に、信号D8がローレベルであり、且つ、信号D24,D16,T0がハイレベルであるので、参照テーブル26−1から出力される信号D8がローレベルからハイレベルに変化する。これにより、多段遅延線21−0〜21−3は、第73状態から、信号D9〜D15がローレベルであり、且つ、信号D0〜D8,D16〜D31がハイレベルである第74状態に遷移する。以降、多段遅延線21−1をハイレベルの信号が伝播していくことにより、多段遅延線21−0〜21−3が状態遷移を繰り返し、信号D0〜D31がすべてハイレベルである第81状態となる。この第81状態では、信号T3,T2,T1,T0はすべてハイレベルである。
次に、信号T3,T2,T1がハイレベルであるので、参照テーブル26−0から出力される信号D0がハイレベルからローレベルに変化する。これにより、多段遅延線21−0〜21−3は、第81状態から、信号D0がローレベルであり、且つ、信号D1〜D31がハイレベルである第82状態に遷移する。以降、多段遅延線21−0をローレベルの信号が伝播していくことにより、多段遅延線21−0〜21−3が状態遷移を繰り返し、信号D0〜D7がローレベルであり、且つ、信号D8〜D31がハイレベルである第89状態となる。この第89状態では、信号T0はローレベルであり、且つ、信号T3,T2,T1はハイレベルである。
次に、信号T0がローレベルであり、且つ、信号D24,D16,D8がハイレベルであるので、参照テーブル26−2から出力される信号D16がハイレベルからローレベルに変化する。これにより、多段遅延線21−0〜21−3は、第89状態から、信号D0〜D7,D16がローレベルであり、且つ、信号D8〜D15,D15〜D31がハイレベルである第90状態に遷移する。以降、多段遅延線21−2をローレベルの信号が伝播
していくことにより、多段遅延線21−0〜21−3が状態遷移を繰り返し、信号D0〜D7,D16〜D23がローレベルであり、且つ、信号D8〜D15,D24〜D31がハイレベルである第97状態となる。この第97状態では、信号T2,T0はローレベルであり、且つ、信号T3,T1はハイレベルである。
次に、信号T2がローレベルであり、且つ、信号T3,T1がハイレベルであるので、参照テーブル26−0から出力される信号D0がローレベルからハイレベルに変化する。これにより、多段遅延線21−0〜21−3は、第97状態から、信号D1〜D7,D16〜D23がローレベルであり、且つ、信号D0,D8〜D15,D24〜D31がハイレベルである第98状態に遷移する。以降、多段遅延線21−0をハイレベルの信号が伝播していくことにより、多段遅延線21−0〜21−3が状態遷移を繰り返し、信号D16〜D23がローレベルであり、且つ、信号D0〜D15,D24〜D31がハイレベルである第105状態となる。この第105状態では、信号T2はローレベルであり、且つ、信号T3,T1,T0はハイレベルである。
次に、信号D16がローレベルであり、且つ、信号D24,D8,T0がハイレベルであるので、参照テーブル26−1から出力される信号D8がハイレベルからローレベルに変化する。これにより、多段遅延線21−0〜21−3は、第105状態から、信号D8,D16〜D23がローレベルであり、且つ、信号D0〜D7,D9〜D15,D24〜D31がハイレベルである第106状態に遷移する。以降、多段遅延線21−1をローレベルの信号が伝播していくことにより、多段遅延線21−0〜21−3が状態遷移を繰り返し、信号D8〜D23がローレベルであり、且つ、信号D0〜D7,D24〜D31がハイレベルである第113状態となる。この第113状態では、信号T2,T1はローレベルであり、且つ、信号T3,T0はハイレベルである。
次に、信号T2,T1がローレベルであり、且つ、信号T3がハイレベルであるので、参照テーブル26−0から出力される信号D0がハイレベルからローレベルに変化する。これにより、多段遅延線21−0〜21−3は、第113状態から、信号D0,D8〜D23がローレベルであり、且つ、信号D1〜D7,D24〜D31がハイレベルである第114状態に遷移する。以降、多段遅延線21−0をローレベルの信号が伝播していくことにより、多段遅延線21−0〜21−3が状態遷移を繰り返し、信号D0〜D23がローレベルであり、且つ、信号D24〜D31がハイレベルである第121状態となる。この第121状態では、信号T2,T1,T0はローレベルであり、且つ、信号T3はハイレベルである。
次に、信号D16,D8,T0がローレベルであり、且つ、信号D24がハイレベルであるので、参照テーブル26−3から出力される信号D24がハイレベルからローレベルに変化する。これにより、多段遅延線21−0〜21−3は、第121状態から、信号D0〜D24がローレベルであり、且つ、信号D25〜D31がハイレベルである第122状態に遷移する。以降、多段遅延線21−3をローレベルの信号が伝播していくことにより、多段遅延線21−0〜21−3が状態遷移を繰り返し、信号D0〜D30がローレベルであり、且つ、信号D31がハイレベルである第128状態となった後、信号D0〜D31がすべてローレベルである第1状態に戻る。
図8は、遷移状態取得装置1の第2構成例におけるラッチ部30及び計数部40を示す図である。
図8に示すように、ラッチ部30は、32個のDフリップフロップ31−0〜31−31を含む。8個のDフリップフロップ31−0〜31−7は、データ入力端子(D)が多段遅延線21−0の初段〜最終段(第8段)の出力端とそれぞれ電気的に接続されている
。8個のDフリップフロップ31−8〜31−15は、データ入力端子(D)が多段遅延線21−1の初段〜最終段(第8段)の出力端とそれぞれ電気的に接続されている。8個のDフリップフロップ31−16〜31−23は、データ入力端子(D)が多段遅延線21−2の初段〜最終段(第8段)の出力端とそれぞれ電気的に接続されている。8個のDフリップフロップ31−24〜31−31は、データ入力端子(D)が多段遅延線21−3の初段〜最終段(第8段)の出力端とそれぞれ電気的に接続されている。また、Dフリップフロップ31−0〜31−31のクロック入力端子には基準クロック信号CLKが入力される。そして、Dフリップフロップ31−i(iは0〜31の各々)は、基準クロック信号CLKの立ち上がりエッジに同期して、信号Diを取り込んでその論理レベルに応じた値Liを保持する。
計数部40は、カウント回路41、乗算器42、加算器43、Dフリップフロップ44、減算器45、加算器46、Dフリップフロップ47、マルチプレクサー48及び参照テーブル49を含む。なお、図8では図示の簡略化のため、Dフリップフロップ44及びDフリップフロップ47はそれぞれ1つのみ図示されているが、実際にはDフリップフロップ44は7個存在し、Dフリップフロップ47はN個存在する。
参照テーブル49は、第1入力端子にDフリップフロップ31−0が保持している値L0が入力され、第2入力端子にDフリップフロップ31−8が保持している値L8が入力され、第3入力端子にDフリップフロップ31−16が保持している値L16が入力され、第4入力端子にDフリップフロップ31−24が保持している値L24が入力される。そして、参照テーブル49は、図9に示す真理値表に従い、4ビットの値L24,L16,L8,L0に基づいて、ビット選択信号BSEL、2ビットの多段遅延線選択信号TSEL及び4ビットの遷移数復調用信号NUMを出力する。ビット選択信号BSELは計数対象が0と1のいずれであるかを示す信号である。多段遅延線選択信号TSELは信号が伝播中の多段遅延線が多段遅延線21−0〜21−3のいずれであるかを示す信号である。遷移数復調用信号NUMは信号が伝播し終わった多段遅延線の数を示す信号である。
マルチプレクサー48は、2ビットの多段遅延線選択信号TSELに基づいて、8ビットの値L7〜L0、8ビットの値L15〜L8、8ビットの値L23〜L16及び8ビットの値L31〜L24のいずれか1つを選択して8ビットの信号を出力する。具体的には、マルチプレクサー48は、多段遅延線選択信号TSELの値が0であれば、8ビットの値L7〜L0を選択して出力する。また、マルチプレクサー48は、多段遅延線選択信号TSELの値が1であれば、8ビットの値L15〜L8を選択して出力する。また、マルチプレクサー48は、多段遅延線選択信号TSELの値が2であれば、8ビットの値L23〜L16を選択して出力する。また、マルチプレクサー48は、多段遅延線選択信号TSELの値が3であれば、8ビットの値L31〜L24を選択して出力する。
カウント回路41は、マルチプレクサー48から出力される8ビットの信号の値に対して、ビット選択信号BSELに基づき0又は1の数をポピュレーションカウントし、0〜8のいずれかの値を有する4ビットの信号を出力する。具体的には、カウント回路41は、ビット選択信号BSELの値が0であれば0の数をカウントし、ビット選択信号BSELの値が1であれば1の数をカウントする。
乗算器42は、4ビットの遷移数復調用信号NUMの値と8との乗算を行う。すなわち、乗算器42は、遷移数復調用信号NUMの値の8倍の値を有する7ビットの信号を出力する。なお、乗算器42は、遷移数復調用信号NUMの値を3ビットシフトする簡易な回路として実現することができる。
加算器43は、カウント回路41から出力される4ビットの信号の値と乗算器42から
出力される7ビットの信号の値とを加算し、0〜127のいずれかの値を有する7ビットの信号を出力する。
ここで、多段遅延線21−0〜21−3が第j状態(jは1〜128の各々)のときにラッチ部30が信号D0〜D31を取り込んだ場合、加算器43から出力される7ビットの信号の値はj−1となる。
例えば、多段遅延線21−0〜21−3の状態が、信号D0,D16〜D31がローレベルであり、且つ、信号D1〜D15がハイレベルである第18状態から、信号D0〜D7,D16〜D31がローレベルであり、且つ、信号D8〜D15がハイレベルである第25状態までは、ハイレベルの信号が多段遅延線21−0を伝播し、さらにハイレベルの信号が多段遅延線21−1を伝播し終わって、次に、ローレベルの信号が多段遅延線21−0を伝播している状態である。そして、多段遅延線21−0〜21−3の状態が第18状態から第25状態までのいずれかのときに、基準クロック信号CLKの立ち上がりエッジが到来すると、信号D24,D16,D8,D0の論理レベルに対応する4ビットの値L24,L16,L8,L0は0,0,1,0となる。このとき、図9に示すように、ビット選択信号BSELの値は0(ローレベルの信号が伝播していることを示す)であり、多段遅延線選択信号TSELの値は0(信号が多段遅延線21−0を伝播中であることを示す)、遷移数復調用信号NUMは2(信号が伝播し終わった多段遅延線の数が2であることを示す)である。したがって、例えば、多段遅延線21−0〜21−3が第25状態のときにラッチ部30が信号D0〜D31を取り込んだ場合、カウント回路41から出力される4ビットの信号の値が8になるので、加算器43から出力される7ビットの信号の値は24になる。
なお、多段遅延線21−0〜21−3が第1状態のときにラッチ部30が信号D0〜D31を取り込んだ場合、カウント回路41から出力される4ビットの信号の値は8であり、乗算器42から出力される7ビットの信号の値は120であるので、これらの加算値は128(8ビットの値10000000)となるが、加算器43から出力される信号は7ビットであるためその値は0(=0000000)となる。
7個のDフリップフロップ44の各々は、基準クロック信号CLKの立ち上がりエッジに同期して、加算器43から出力される7ビットの信号の各値を取り込んで保持する。
減算器45は、加算器43から出力される7ビットの信号の値から7個のDフリップフロップ44が保持している7ビットの値を減算し、0〜127のいずれかの値を有する7ビットの信号を出力する。減算器45から出力される7ビットの信号の値は、基準クロック信号CLKの直近の1周期の時間に多段遅延線21−0〜21−3の状態が遷移した回数に相当する。
例えば、基準クロック信号CLKの直近の1周期の時間に多段遅延線21−0〜21−3の状態が第1状態から第16状態まで15回遷移した場合、加算器43から出力される7ビットの信号の値は15になり、且つ、7個のDフリップフロップ44が保持している7ビットの値は0になる。したがって、減算器45から出力される7ビットの信号の値は、この間の多段遅延線21−0〜21−3の状態遷移回数に等しい15となる。また、基準クロック信号CLKの直近の1周期の時間に多段遅延線21−0〜21−3の状態が第124状態から第28状態まで32回遷移した場合、加算器43から出力される7ビットの信号の値は123になり、且つ、7個のDフリップフロップ44が保持している7ビットの値は27になる。したがって、これらの減算値は−96(8ビットの値10100000)となるが、減算器45から出力される信号は7ビットであるためその値は32(=0100000)となる。
加算器46は、減算器45から出力される7ビットの信号の値と7個のDフリップフロップ47が保持している7ビットの値とを加算し、Nビットの信号を出力する。また、加算器46は、加算値がNビットの上限値以上の場合は当該上限値を有するNビットの信号を出力する。例えば、N=8であれば、加算器46は0〜255のいずれかの値を有する8ビットの信号を出力する。
N個のDフリップフロップ47の各々は、基準クロック信号CLKの立ち上がりエッジに同期して、加算器46から出力されるNビットの信号の各値を取り込んで保持する。N個のDフリップフロップ47が保持するNビットの値は、Nビットの計数値CNTとして計数部40から出力される。この計数値CNTは、イネーブル信号ENがローレベルからハイレベルに遷移した時からの多段遅延線21−0〜21−3の状態が遷移した回数に相当する。なお、リセット信号RSTがローレベルからハイレベルに変化すると、7個のDフリップフロップ44及びN個のDフリップフロップ47がそれぞれ保持する値はすべて0に初期化される。これにより、計数値CNTも0に初期化され、次の計測が可能になる。
ただし、ラッチ部30が信号D0〜D31を取り込んでから次に信号D0〜D31を取り込むまでの間に、多段遅延線21−0〜21−3の状態が128回以上遷移すると、計数値CNTが誤った値となる。例えば、多段遅延線21−0〜21−3の状態が第1状態のときにラッチ部30が信号D0〜D31を取り込み、その後、多段遅延線21−0〜21−3の状態が129回遷移して第2状態になったときにラッチ部30が信号D0〜D31を取り込んだ場合、129回の状態遷移が1回の状態遷移とみなされ、計数値CNTは1しか増えないことになる。そのため、正しい計数値CNTが得られるように、ラッチ部30が信号D0〜D31を取り込むタイミングの間隔、すなわち、基準クロック信号CLKの1周期の時間は、多段遅延線21−0〜21−3の状態遷移が一巡する時間よりも短いことが必要である。多段遅延線21−0〜21−3の状態遷移が一巡する時間とは、多段遅延線21−0〜21−3の状態が128回遷移するのに要する時間である。なお、基準クロック信号CLKの1周期の時間を短くすることが難しい場合には、多段遅延線21−0〜21−3の各段数(遅延素子の数)を増やすか、各遅延素子の信号伝播時間を長くすればよい。
また、発振部20における多段遅延線21−0〜21−3の状態遷移のタイミングと基準クロック信号CLKの立ち上がりエッジとは非同期である。そのため、仮に、多段遅延線21−0〜21−3において、信号D24,D16,D8,D0のうちの2つ以上の論理レベルが変化する状態遷移が存在すると、ラッチ部30が、基準クロック信号CLKの立ち上がりエッジに同期して、遷移前の状態でも遷移後の状態でもない過渡状態における信号D24,D16,D8,D0の値を取り込み、4ビットの値L24,L16,L8,L0が誤った値となる可能性がある。その結果、参照テーブル49が4ビットの値L24,L16,L8,L0に基づいて出力するビット選択信号BSEL、多段遅延線選択信号TSEL及び遷移数復調用信号NUMも誤った値となり、正しい計数値CNTが得られないことになる。
これに対して、本構成例では、信号D24,D16,D8,T0の値が、「0000」、「0001」、「0011」、「0010」、「0110」、「0111」、「0101」、「0100」、「1100」、「1101」、「1111」、「1110」、「1010」、「1011」、「1001」、「1000」、「0000」、・・・の順に、すなわち、4ビットのグレイコードに従って遷移するように、多段遅延線21−0〜21−3の状態が遷移する。グレイコードは、ハミング距離が1であり、隣り合う2つのコードは1ビットのみが変化する。したがって、ラッチ部30が、基準クロック信号CLKの
立ち上がりエッジに同期して、必ず、多段遅延線21−0〜21−3の遷移前の状態もしくは遷移後の状態における信号D24,D16,D8,D0の値を取り込むことになり、4ビットの値L24,L16,L8,L0が常に正しい値となる。
このように、本構成例によれば、4つの多段遅延線21−0〜21−3から出力され、参照テーブル49で用いられる特定の4つの信号D24,D16,D8,D0の値の遷移は、遷移する前後のハミング距離が1であり、遷移の前後で信号D24,D16,D8,D0の値の1つのみが変化するので、正しい計数値CNTが得られる。
なお、4つの信号D24,D16,D8,D0の値の遷移は、遷移する前後のハミング距離が1であればよく、グレイコードに従った遷移でなくてもよい。
以上に説明したように、本実施形態の遷移状態取得装置1の第2構成例では、ラッチ部30が多段遅延線21−0〜21−3から出力される信号D0〜D31を取り込むタイミングの間隔が、多段遅延線21−0〜21−3の状態遷移が一巡する時間よりも短いことにより、ラッチ部30が保持している値L0〜L31と発振部20の状態とを1対1に対応づけることができる。したがって、本実施形態の遷移状態取得装置1の第2構成例によれば、基準クロック信号CLKの立ち上がりエッジ毎に、ラッチ部30が保持している値L0〜L31に基づいて発振部20の遷移状態を取得することができるので、発振部20の遷移状態を取得する際の煩雑性を低減させることができる。
また、本実施形態の遷移状態取得装置1の第2構成例では、計数部40は、マルチプレクサー48、参照テーブル49及び乗算器42により、特定の4つの信号D24,D16,D8,D0をラッチ部30が取り込んで保持している値L24,L16,L8,L0に基づいて、多段遅延線21−0〜21−3の状態が遷移した回数の概算値としての第1のカウント値を求める。また、計数部40は、参照テーブル49により、ラッチ部30が取り込んで保持している値L24,L16,L8,L0に基づいて、4つの多段遅延線21−0〜21−3のうち、ラッチ部30が信号D24,D16,D8,D0を取り込んだタイミングにおいて状態が遷移していた多段遅延線を特定し、カウント回路41により、特定した多段遅延線から出力される信号をラッチ部30が取り込んで保持している値に対して、ポピュレーションカウントを行って第2のカウント値を求める。そして、計数部40は、加算器43、Dフリップフロップ44、減算器45、加算器46及びDフリップフロップ47により、第1のカウント値と第2のカウント値に基づいて、多段遅延線21−0〜21−3の状態が遷移した回数を求める。したがって、本実施形態の遷移状態取得装置1の第2構成例によれば、多段遅延線21−0〜21−3の状態が遷移した回数を計数値CNTとして取得することができる。そして、イネーブル信号ENがローレベルからハイレベルに遷移してから、ラッチ部30が信号D0〜D31を最初に取り込むタイミング、すなわち、基準クロック信号CLKの最初の立ち上がりエッジまでの時間が長いほど、この間に多段遅延線21−0〜21−3の状態が遷移した回数が多いので計数値CNTの値が大きくなる。したがって、計数値CNTの値を用いることにより、イネーブル信号ENがローレベルからハイレベルに遷移してから基準クロック信号CLKの最初の立ち上がりエッジまでの時間を計測することが可能である。
また、本実施形態の遷移状態取得装置1の第2構成例では、多段遅延線21−0〜21−3の段数の総数が32でありながら、第1構成例において多段遅延線21の段数を64とした場合と同様の計数値CNTが得られる。したがって、本実施形態の遷移状態取得装置1の第2構成例によれば、ラッチ部30が信号D0〜D31を取り込むタイミングの間隔を多段遅延線21−0〜21−3の状態遷移が一巡する時間よりも短くすることが比較的容易であり、回路面積の低減にも有利である。
また、本実施形態の遷移状態取得装置1の第2構成例では、カウント回路41が、ラッチ部30が保持する32ビットの値L0〜L31のうちの8ビットの値についてポピュレーションカウントを行えばよいので、カウント回路41のサイズを低減させることができる。
2.時間デジタル変換器
次に、上記の遷移状態取得装置1を用いた時間デジタル変換器(TDC:Time to Digital Converter)について説明する。
2−1.第1実施形態
時間デジタル変換器2の第1実施形態は、被測定信号Xの時間イベントと基準クロック信号CLKの時間イベントとの時間間隔に対応する時間デジタル値TDを生成する。時間イベントとは、立ち上がりエッジ及び立ち上がりエッジの少なくとも一方である。
図10は、時間デジタル変換器2の第1実施形態の構成を示す図である。図10に示すように、時間デジタル変換器2の第1実施形態は、遷移状態取得装置1及び演算部3を含む。
演算部3は、計数値保持部50、積算部60及び変換部70を含む。
計数値保持部50は、基準クロック信号CLKに同期して、遷移状態取得装置1から出力される計数値CNTを取り込んで計数値DCNTとして保持する。計数値保持部50は、遷移状態取得装置1から出力されるリセット信号RSTがローレベルのときに計数値DCNTを保持し、リセット信号RSTがハイレベルになると計数値DCNTは0に初期化される。
積算部60は、基準クロック信号CLKに同期して、計数値保持部50で保持された計数値DCNTを積算し、被測定信号Xの時間イベントと基準クロック信号CLKの時間イベントとの時間間隔に対応する時間デジタル値TDを生成する。積算部60は、リセット信号RSTがローレベルのときに計数値DCNTを積算し、リセット信号RSTがハイレベルになると時間デジタル値TDは0に初期化される。なお、時間デジタル値TDは、本発明における「第1の時間デジタル値」に相当する。
変換部70は、積算部60が生成した時間デジタル値TDを変換した時間デジタル値TDXを生成する。例えば、変換部70は、時間デジタル値TDに対して所定のスケーリングを行って時間デジタル値TDXを生成してもよいし、所定の変換式あるいはテーブル情報に従って時間デジタル値TDを時間デジタル値TDXに変換してもよい。なお、演算部3は、変換部70を含まなくてもよい。
本実施形態では、基準クロック信号CLKの時間イベントは、被測定信号Xの時間イベントとは独立して設定されている。すなわち、基準クロック信号CLKの時間イベントと被測定信号Xの時間イベントとは非同期である。したがって、時間デジタル値TDあるいは時間デジタル値TDXは、被測定信号Xの時間イベントに対応するタイムスタンプとして用いることができる。
なお、遷移状態取得装置1は、時間デジタル値TDあるいは時間デジタル値TDXを不図示の端子から外部に出力してもよいし、時間デジタル値TDあるいは時間デジタル値TDXをレジスター等の記憶部に記憶し、通信インターフェース回路を介して外部に出力してもよい。
以下では、演算部3は、変換部70を含まないものとして説明する。
図11は、演算部3の具体的な構成例を示す図である。図11の例では、演算部3は、Dフリップフロップ51、加算器61及びDフリップフロップ62を含む。なお、図11では図示の簡略化のため、Dフリップフロップ51及びDフリップフロップ62はそれぞれ1つのみ図示されているが、実際にはDフリップフロップ51はN個存在し、Dフリップフロップ62はM個存在する。なお、N個のDフリップフロップ51は、図10に示した計数値保持部50に相当する。また、加算器61及びM個のDフリップフロップ62からなる回路は、図10に示した積算部60に相当する。
N個のDフリップフロップ51は、基準クロック信号CLKの立ち上がりエッジに同期して、遷移状態取得装置1から出力されるNビットの計数値CNTを取り込んで計数値DCNTとして保持する。
加算器61は、N個のDフリップフロップ51が保持しているNビットの計数値DCNTとM個のDフリップフロップ62が保持しているMビットの値とを加算し、Mビットの信号を出力する。また、加算器61は、加算値がMビットの上限値以上の場合は当該上限値を有するMビットの信号を出力する。例えば、M=8であれば、加算器61は0〜255のいずれかの値を有する8ビットの信号を出力する。
M個のDフリップフロップ62の各々は、基準クロック信号CLKの立ち上がりエッジに同期して、加算器61から出力されるMビットの信号の各値を取り込んで時間デジタル値TDとして保持する。なお、リセット信号RSTがローレベルからハイレベルに変化すると、N個のDフリップフロップ51及びM個のDフリップフロップ62がそれぞれ保持する値はすべて0に初期化される。これにより、時間デジタル値TDも0に初期化され、次の計測が可能になる。
次に、図12及び図13を用いて、時間デジタル変換器2の詳細な動作を説明する。図12及び図13は、時間デジタル変換器2におけるタイミングチャートの一例を示す図である。図12の例では、被測定信号Xの立ち上がりエッジと基準クロック信号CLKの立ち上がりエッジとの時間間隔はP1であり、図13の例では、被測定信号Xの立ち上がりエッジと基準クロック信号CLKの立ち上がりエッジとの時間間隔P2はP1よりも短い。
図12の例では、時刻t0において、被測定信号Xがローレベルからハイレベルに遷移すると、遷移状態取得装置1の発振部20の状態遷移が開始し、状態遷移回数が1ずつ増えていく。
時刻t0から時間P1が経過した時刻t1において、被測定信号Xがハイレベルに遷移した後の基準クロック信号CLKの最初の立ち上がりエッジが到来し、当該エッジに同期して計数値CNTが0から4に変わる。
時刻t2において、基準クロック信号CLKの2番目の立ち上がりエッジが到来し、当該エッジに同期して計数値CNTが4から12に変わる。また、当該エッジに同期して計数値DCNTが0から4に変わる。
時刻t3において、基準クロック信号CLKの3番目の立ち上がりエッジが到来し、当該エッジに同期して、計数値CNTが12から20に変わり、計数値DCNTが4から12に変わる。また、当該エッジに同期して時間デジタル値TDが0から4に変わる。
時刻t4において、基準クロック信号CLKの4番目の立ち上がりエッジが到来し、当該エッジに同期して、計数値CNTが20から29に変わり、計数値DCNTが12から20に変わり、時間デジタル値TDが4から16に変わる。
時刻t5において、基準クロック信号CLKの5番目の立ち上がりエッジが到来し、当該エッジに同期して、計数値CNTが29から37に変わり、計数値DCNTが20から29に変わり、時間デジタル値TDが16から36に変わる。
図13の例でも、時刻t0において、被測定信号Xがローレベルからハイレベルに遷移すると、遷移状態取得装置1の発振部20の状態遷移が開始し、状態遷移回数が1ずつ増えていく。
時刻t0から時間P2が経過した時刻t1において、被測定信号Xがハイレベルに遷移した後の基準クロック信号CLKの最初の立ち上がりエッジが到来し、当該エッジに同期して計数値CNTが0から2に変わる。
時刻t2において、基準クロック信号CLKの2番目の立ち上がりエッジが到来し、当該エッジに同期して計数値CNTが2から10に変わる。また、当該エッジに同期して計数値DCNTが0から2に変わる。
時刻t3において、基準クロック信号CLKの3番目の立ち上がりエッジが到来し、当該エッジに同期して、計数値CNTが10から19に変わり、計数値DCNTが2から10に変わる。また、当該エッジに同期して時間デジタル値TDが0から2に変わる。
時刻t4において、基準クロック信号CLKの4番目の立ち上がりエッジが到来し、当該エッジに同期して、計数値CNTが19から27に変わり、計数値DCNTが10から19に変わり、時間デジタル値TDが2から12に変わる。
時刻t5において、基準クロック信号CLKの5番目の立ち上がりエッジが到来し、当該エッジに同期して、計数値CNTが27から35に変わり、計数値DCNTが19から27に変わり、時間デジタル値TDが12から31に変わる。
ここで、図12の例における時刻t0から時刻t1までの時間P1は、図13の例における時刻t0から時刻t1までの時間P2よりも長い。また、各時刻において、図12の例における時間デジタル値TDは、図13の例における時間デジタル値TDよりも大きい値となるように遷移していく。したがって、被測定信号Xがローレベルからハイレベルに遷移した後、基準クロック信号CLKの立ち上がりエッジが所定回到来した時点で、積算部60による積算を停止して時間デジタル値TDを保持すると、被測定信号Xの立ち上がりエッジと基準クロック信号CLKの立ち上がりエッジとの時間間隔が長いほど、時間デジタル値TDが大きな値となる。
図14は、図12の例における計数値CNTの時間変化を示す図である。また、図15は、図13の例における計数値CNTの時間変化を示す図である。図14及び図15において、横軸は時間であり、縦軸は計数値CNTである。図14及び図15において、計数値CNTの積算値に対応する斜線部分の面積が最終的に得られる時間デジタル値TDに相当する。なお、図15には、図12の例における計数値CNTの時間変化(図14に示す計数値CNTの時間変化)も破線で示されている。
図14及び図15に示すように、時刻t0において変化した直後の計数値CNTが大きいほど、すなわち、被測定信号Xの立ち上がりエッジと基準クロック信号CLKの立ち上
がりエッジとの時間間隔が長いほど、時間デジタル値TDが大きくなっている。換言すれば、計数値CNTは、被測定信号Xの立ち上がりエッジと基準クロック信号CLKの立ち上がりエッジとの時間間隔に応じた時間による重み付けがされており、計数値CNTの時間による重み付けが大きいほど時間デジタル値TDが大きくなる。そして、被測定信号Xの立ち上がりエッジと基準クロック信号CLKの立ち上がりエッジとの時間間隔の測定分解能は、遷移状態取得装置1の発振部20の状態遷移の1周期の時間が短いほど高くなる。また、図14に示す時間デジタル値TDと図15に示す時間デジタル値TDとの差は、計数値CNTが上限値に達するまでの時間が長いほど大きくなるので、計数値CNTの上限値が大きいほど測定分解能が高くなると言える。また、計数値CNTの上限値を大きくすることで測定のダイナミックレンジが広くなる。
以上に説明した時間デジタル変換器2の第1実施形態によれば、時間による重み付けがされた計数値CNTが計数値保持部50で保持された計数値DCNTを積算部60によって積算することでノイズシェープ効果が得られる。そのため、遷移状態取得装置1の発振部20の多段遅延線21を構成する複数の遅延素子の信号伝播時間のばらつきによるノイズ成分が高周波側にシフトし、積算部60により高周波成分が取り除かれるので、被測定信号Xの時間イベントに対するタイムスタンプの精度を向上させることができる。また、ノイズシェープ効果が得られることにより、当該複数の遅延素子の信号伝播時間のばらつきを校正する必要がない。
また、時間デジタル変換器2の第1実施形態によれば、遷移状態取得装置1の発振部20の多段遅延線21を構成する遅延素子の数を増やさなくても、計数値CNTの上限値を大きくすることで、分解能やダイナミックレンジを向上させることができる。
また、遷移状態取得装置1から出力される計数値CNTに上限値が設定されていることにより、被測定信号Xの時間イベントと基準クロック信号CLKの時間イベントとの時間間隔に対して時間デジタル値TDが線形に変化するので、時間デジタル値TDをタイムスタンプとして扱うことが容易である。
2−2.第2実施形態
時間デジタル変換器2の第2実施形態は、複数の被測定信号Xの時間イベントの少なくとも2つの時間間隔に対応する時間デジタル値TDY1〜TDYmを生成する。
図16は、時間デジタル変換器2の第2実施形態の構成を示す図である。図16に示すように、時間デジタル変換器2の第2実施形態は、遷移状態取得装置1及び演算部3を含む。
遷移状態取得装置1は、n個(n≧2)の被測定信号X1〜Xnの時間イベントを検出し、被測定信号X1〜Xnの各々に対応する計数値CNTを順番に出力する。本実施形態では、被測定信号X1〜Xnの各時間イベントが、この順に所定の時間以上の間隔で到来するものとする。遷移状態取得装置1は、被測定信号Xi(iは1〜n−1の各々)の時間イベントが到来して被測定信号Xiに対する計数値CNTを出力した後、リセット信号RSTによって計数値CNTを0に初期化し、その後、被測定信号Xi+1の時間イベントが到来して被測定信号Xi+1に対する計数値CNTを出力する。
具体的には、図1に示した構成の遷移状態取得装置1において、発振部20は、被測定信号X1〜Xnの各々に基づいて多段遅延線21の状態の遷移を開始し、ラッチ部30は、被測定信号X1〜Xnの各々に対して多段遅延線21から順番に出力される信号を保持する。そして、計数部40は、ラッチ部30が順番に保持している値に基づいて、被測定信号X1〜Xnの各々に対して多段遅延線21の状態が遷移した回数をカウントし、被測
定信号X1〜Xnに対するn個の計数値CNTを順番に出力する。
演算部3は、計数値保持部50、積算部60及び時間デジタル値生成部80を含む。
計数値保持部50は、基準クロック信号CLKに同期して、遷移状態取得装置1から順番に出力されるn個の計数値CNTを取り込んで計数値DCNTとして保持する。計数値保持部50は、遷移状態取得装置1から出力されるリセット信号RSTがローレベルのときに計数値DCNTを保持し、リセット信号RSTがハイレベルになると計数値DCNTは0に初期化される。
積算部60は、基準クロック信号CLKに同期して、計数値保持部50で順番に保持されたn個の計数値DCNTの各々を積算し、被測定信号X1〜Xnの各々の時間イベントと基準クロック信号CLKの時間イベントとの時間間隔に対応するn個の時間デジタル値TDを順番に生成する。積算部60は、リセット信号RSTがローレベルのときに計数値DCNTを積算し、リセット信号RSTがハイレベルになると時間デジタル値TDは0に初期化される。
時間デジタル値生成部80は、基準クロック信号CLKに同期して、被測定信号X1〜Xnに対するn個の時間デジタル値TDに基づいて、被測定信号X1〜Xnの少なくとも2つの時間イベントの時間間隔に対応する時間デジタル値TDY1〜TDYmを生成する。例えば、m=n−1であり、時間デジタル値TDYi(iは1〜n−1の各々)は、被測定信号Xi+1に対する時間デジタル値TDと被測定信号Xiに対する時間デジタル値TDとの差分であってもよい。すなわち、時間デジタル値TDYiはXiの時間イベントとXi+1の時間イベントとの時間間隔に対応していてもよい。なお、時間デジタル値TDは本発明における「第1の時間デジタル値」に相当し、時間デジタル値TDY1〜TDYmの各々は本発明における「第2の時間デジタル値」に相当する。
本実施形態では、基準クロック信号CLKの時間イベントは、被測定信号X1〜Xnの時間イベントとは独立して設定されている。すなわち、基準クロック信号CLKの時間イベントと被測定信号X1〜Xnの時間イベントとは非同期である。したがって、時間デジタル値TD1〜TDnは、被測定信号X1〜Xnの時間イベントの時間間隔に対応するタイムスタンプとして用いることができ、これらのタイムスタンプを用いて、被測定信号X1〜Xnの少なくとも2つの時間イベントの時間間隔に対応する時間デジタル値TDY1〜TDYmを取得することができる。
時間デジタル値生成部80は、時間デジタル値TDY1〜TDYmに対して所定のスケーリングを行って出力してもよいし、所定の変換式あるいはテーブル情報に従って時間デジタル値TDY1〜TDYmを変換して出力してもよい。
以上に説明した時間デジタル変換器2の第2実施形態によれば、時間デジタル変換器2の第1実施形態と同様の効果を奏することができる。
また、時間デジタル変換器2の第2実施形態によれば、被測定信号X1〜Xnに対して、遷移状態取得装置1、計数値保持部50及び積算部60を共用して、時間デジタル値TDY1〜TDYmを生成するので、小型化が可能である。
2−3.第3実施形態
時間デジタル変換器2の第3実施形態は、第2実施形態と同様、複数の被測定信号Xの時間イベントの少なくとも2つの時間間隔に対応する時間デジタル値TDY1〜TDYmを生成する。ただし、時間デジタル変換器2の第3実施形態では、複数の遷移状態取得装
置1が用いられる。
図17は、時間デジタル変換器2の第3実施形態の構成を示す図である。図17に示すように、時間デジタル変換器2の第3実施形態は、n個(n≧2)の遷移状態取得装置1−1〜1−n及び演算部3を含む。
遷移状態取得装置1−1〜1−nは、n個の被測定信号X1〜Xnの各々に基づいて、多段遅延線21の状態の遷移を開始し、被測定信号X1〜Xnの時間イベントをそれぞれ検出し、計数値CNT1〜CNTnをそれぞれ出力する。
演算部3は、n個の計数値保持部50−1〜50−n、n個の積算部60−1〜60−n及び時間デジタル値生成部80を含む。
計数値保持部50−1〜50−nは、基準クロック信号CLKに同期して、遷移状態取得装置1−1〜1−nの各々から出力される計数値CNT1〜CNTnを取り込んで計数値DCNT1〜DCNTnとして保持する。計数値保持部50−1〜50−nは、遷移状態取得装置1−1〜1−nからそれぞれ出力されるリセット信号RST1〜RSTnがローレベルのときに計数値DCNT1〜DCNTnを保持し、リセット信号RST1〜RSTnがハイレベルになると計数値DCNT1〜DCNTnは0に初期化される。
積算部60−1〜60−nは、基準クロック信号CLKに同期して、計数値保持部50−1〜50−nで保持された計数値DCNT1〜DCNTnの各々を積算し、被測定信号X1〜Xnの各々の時間イベントと基準クロック信号CLKの時間イベントとの時間間隔に対応するn個の時間デジタル値TD1〜TDnを生成する。積算部60−1〜60−nは、リセット信号RST1〜RSTnがローレベルのときに計数値DCNT1〜DCNTnを積算し、リセット信号RST1〜RSTnがハイレベルになると時間デジタル値TD1〜TDnは0に初期化される。
時間デジタル値生成部80は、基準クロック信号CLKに同期して、積算部60−1〜60−nが生成した時間デジタル値TD1〜TDnに基づいて、被測定信号X1〜Xnの少なくとも2つの時間イベントの時間間隔に対応する時間デジタル値TDY1〜TDYmを生成する。例えば、m=n−1であり、時間デジタル値TDYi(iは1〜n−1の各々)は、時間デジタル値TDi+1と時間デジタル値TDiとの差分であってもよい。すなわち、時間デジタル値TDYiはXiの時間イベントとXi+1の時間イベントとの時間間隔に対応していてもよい。なお、時間デジタル値TD1〜TDnの各々は本発明における「第1の時間デジタル値」に相当し、時間デジタル値TDY1〜TDYmの各々は本発明における「第2の時間デジタル値」に相当する。
本実施形態では、基準クロック信号CLKの時間イベントは、被測定信号X1〜Xnの時間イベントとは独立して設定されている。すなわち、基準クロック信号CLKの時間イベントと被測定信号X1〜Xnの時間イベントとは非同期である。したがって、時間デジタル値TD1〜TDnは、被測定信号X1〜Xnの時間イベントの時間間隔に対応するタイムスタンプとして用いることができ、これらのタイムスタンプを用いて、被測定信号X1〜Xnの少なくとも2つの時間イベントの時間間隔に対応する時間デジタル値TDY1〜TDYmを取得することができる。
時間デジタル値生成部80は、時間デジタル値TDY1〜TDYmに対して所定のスケーリングを行って出力してもよいし、所定の変換式あるいはテーブル情報に従って時間デジタル値TDY1〜TDYmを変換して出力してもよい。
以上に説明した時間デジタル変換器2の第3実施形態によれば、時間デジタル変換器2の第1実施形態と同様の効果を奏することができる。
また、時間デジタル変換器2の第3実施形態によれば、被測定信号X1〜Xnに対して、遷移状態取得装置1−1〜1−n、計数値保持部50−1〜50−n及び積算部60−1〜60−nが並行して動作するので、被測定信号X1〜Xnの時間イベントが到来する時間間隔が短い場合でも時間デジタル値TDY1〜TDYmを生成することができる。
3.A/D変換回路
次に、上記の時間デジタル変換器2を用いたA/D変換回路について説明する。
3−1.第1実施形態
図18は、A/D変換回路100の第1実施形態の構成を示す図である。図18に示すように、A/D変換回路100の第1実施形態は、基準波形信号生成回路102、比較器103及び時間デジタル変換器2を含み、入力されたアナログ信号AINをデジタル信号DOUTに変換して出力する。
基準波形信号生成回路102は、基準クロック信号CLKに基づいて、基準波形信号REFを生成する。基準波形信号REFは、基準クロック信号CLKと同じ周期で電圧が変化する信号であり、例えば、三角波信号、ランプ波信号、正弦波信号、余弦波信号等であってもよい。
比較器103は、アナログ信号AINの電圧と基準波形信号生成回路102が生成した基準波形信号REFの電圧とを比較して被測定信号Xを出力する。
時間デジタル変換器2は、被測定信号Xの時間イベントと基準クロック信号CLKの時間イベントとの時間間隔に対応する時間デジタル値TDを出力する。
そして、A/D変換回路100は、時間デジタル値TDに基づくデジタル信号DOUTを出力する。例えば、A/D変換回路100は、時間デジタル値TDを有するデジタル信号DOUTとして出力してもよいし、時間デジタル値TDを、アナログ信号AINの電圧に対して線形に変化する値を有するデジタル信号DOUTに変換して出力してもよい。
図19は、A/D変換回路100の第1実施形態における各種信号の波形の一例を示す図である。図19の例では、基準波形信号REFは、基準クロック信号CLKの立ち上がりエッジで最低電圧となり、基準クロック信号CLKの立ち下がりエッジで最高電圧となる三角波信号である。また、被測定信号Xは、アナログ信号AINの電圧が基準波形信号REFの電圧よりも高ければハイレベルとなり、アナログ信号AINの電圧が基準波形信号REFの電圧よりも低ければローレベルとなっている。
図19の例では、アナログ信号AINの電圧の値がVa,Vb,Vcであるときの被測定信号Xの立ち上がりエッジと基準クロック信号CLKの立ち上がりエッジとの時間間隔がそれぞれta,tb,tcになっている。そして、Va<Vb<Vcに対してta<tb<tcであり、被測定信号Xの立ち上がりエッジと基準クロック信号CLKの立ち上がりエッジとの時間間隔はアナログ信号AINの電圧に対して線形に変化している。したがって、A/D変換回路100は、ta,tb,tcに対応する時間デジタル値TDを有するデジタル信号DOUTとして出力することができる。
A/D変換回路100の第1実施形態によれば、時間デジタル変換器2を用いることにより、高精度、高分解能、高速処理、低消費電力化、小型化等を実現することができる。
図20は、A/D変換回路100の第1実施形態の変形例を示す図である。図20に示すA/D変換回路100は、図18に示したA/D変換回路100に対してキャリブレーション機能が付加されている。図20において、図18と同様の構成要素には同じ符号が付されており、その説明を省略する。
図20に示すA/D変換回路100は、基準波形信号生成回路102、比較器103及び時間デジタル変換器2を含み、さらに、マルチプレクサー104、切替信号生成回路105及び補正回路106を含む。
マルチプレクサー104は、切替信号SELがローレベルのときはアナログ信号AINを選択し、切替信号SELがハイレベルのときは基準電圧VRを選択し、選択したアナログ信号AIN又は基準電圧VRをアナログ信号AINXとして出力する。基準電圧VRはあらかじめ決められた一定電圧である。
切替信号生成回路105は、基準クロック信号CLKに同期して切替信号SELを生成する。例えば、切替信号生成回路105は、A/D変換回路100がA/D変換処理を開始する直前に、あるいは、定期的に、切替信号SELをローレベルからハイレベルにし、所定時間経過後にハイレベルからローレベルにする。
マルチプレクサー104から出力されるアナログ信号AINXは比較器103に入力され、基準波形信号生成回路102、比較器103及び時間デジタル変換器2により、時間デジタル値TDに変換される。
補正回路106は、切替信号SELがハイレベルのときは、基準クロック信号CLKに同期して、基準値と基準電圧VRに対して生成された時間デジタル値TDとの差を算出し、当該差を補正値として不図示のレジスターに記憶する。また、補正回路106は、切替信号SELがローレベルのときは、レジスターに記憶されている補正値を用いて、アナログ信号AINに対して生成された時間デジタル値TDを補正してデジタル信号DOUTを生成する。
A/D変換回路100の第1実施形態の変形例によれば、基準電圧VRを用いたキャリブレーションを実行することにより、温度変化、電源電圧変化、経時変化等の影響を補正することができるので、A/D変換を高精度に行うことができる。
3−2.第2実施形態
図21は、A/D変換回路100の第2実施形態の構成を示す図である。図21に示すように、A/D変換回路100の第2実施形態は、サンプルホールド回路101、基準波形信号生成回路102、比較器103及び時間デジタル変換器2を含み、入力されたアナログ信号AINをデジタル信号DOUTに変換して出力する。
サンプルホールド回路101は、基準クロック信号CLKに同期して、アナログ信号AINの電圧をサンプリングして保持する。
基準波形信号生成回路102は、基準クロック信号CLKに基づいて、基準波形信号REFを生成する。基準波形信号REFは、基準クロック信号CLKと同じ周期で電圧が変化する信号であり、例えば、三角波信号、ランプ波信号、正弦波信号、余弦波信号等であってもよい。
比較器103は、サンプルホールド回路101が保持する電圧VHと基準波形信号生成
回路102が生成した基準波形信号REFの電圧とを比較して被測定信号Xを出力する。
時間デジタル変換器2は、被測定信号Xの時間イベントと基準クロック信号CLKの時間イベントとの時間間隔に対応する時間デジタル値TDを出力する。
そして、A/D変換回路100は、時間デジタル値TDに基づくデジタル信号DOUTを出力する。例えば、A/D変換回路100は、時間デジタル値TDを有するデジタル信号DOUTとして出力してもよいし、時間デジタル値TDを、アナログ信号AINの電圧に対して線形に変化する値を有するデジタル信号DOUTに変換して出力してもよい。
図22は、A/D変換回路100の第2実施形態における各種信号の波形の一例を示す図である。図22の例では、基準クロック信号CLKの立ち上がりエッジ毎に、アナログ信号AINの電圧がサンプリングされて保持されている。また、基準波形信号REFは、基準クロック信号CLKの立ち上がりエッジで最低電圧となり、基準クロック信号CLKの立ち下がりエッジで最高電圧となる三角波信号である。また、被測定信号Xは、電圧VHが基準波形信号REFの電圧よりも高ければハイレベルとなり、電圧VHが基準波形信号REFの電圧よりも低ければローレベルとなっている。
図22の例では、アナログ信号AINの電圧が保持された電圧VHの値がVa,Vb,Vcであるとき、被測定信号Xの立ち上がりエッジと基準クロック信号CLKの立ち上がりエッジとの時間間隔がそれぞれta,tb,tcになっている。そして、Va<Vb<Vcに対してta<tb<tcであり、被測定信号Xの立ち上がりエッジと基準クロック信号CLKの立ち上がりエッジとの時間間隔はアナログ信号AINの電圧に対して線形に変化している。したがって、A/D変換回路100は、ta,tb,tcに対応する時間デジタル値TDを有するデジタル信号DOUTとして出力することができる。
A/D変換回路100の第2実施形態によれば、時間デジタル変換器2を用いることにより、高精度、高分解能、高速処理、低消費電力化、小型化等を実現することができる。また、サンプルホールド回路101によりサンプルタイミングを一定に保つことができるので、A/D変換タイミングのジッターを軽減することができる。
図23は、A/D変換回路100の第2実施形態の変形例を示す図である。図23に示すA/D変換回路100は、図21に示したA/D変換回路100に対してキャリブレーション機能が付加されている。図23において、図21と同様の構成要素には同じ符号が付されており、その説明を省略する。
図23に示すA/D変換回路100は、サンプルホールド回路101、基準波形信号生成回路102、比較器103及び時間デジタル変換器2を含み、さらに、マルチプレクサー104、切替信号生成回路105及び補正回路106を含む。
マルチプレクサー104は、切替信号SELがローレベルのときはアナログ信号AINを選択し、切替信号SELがハイレベルのときは基準電圧VRを選択し、選択したアナログ信号AIN又は基準電圧VRをアナログ信号AINXとして出力する。基準電圧VRはあらかじめ決められた一定電圧である。
切替信号生成回路105は、基準クロック信号CLKに同期して切替信号SELを生成する。例えば、切替信号生成回路105は、A/D変換回路100がA/D変換処理を開始する直前に、あるいは、定期的に、切替信号SELをローレベルからハイレベルにし、所定時間経過後にハイレベルからローレベルにする。
マルチプレクサー104から出力されるアナログ信号AINXはサンプルホールド回路101に入力され、サンプルホールド回路101、基準波形信号生成回路102、比較器103及び時間デジタル変換器2により、時間デジタル値TDに変換される。
補正回路106は、切替信号SELがハイレベルのときは、基準クロック信号CLKに同期して、基準値と基準電圧VRに対して生成された時間デジタル値TDとの差を算出し、当該差を補正値として不図示のレジスターに記憶する。また、補正回路106は、切替信号SELがローレベルのときは、レジスターに記憶されている補正値を用いて、アナログ信号AINに対して生成された時間デジタル値TDを補正してデジタル信号DOUTを生成する。
A/D変換回路100の第2実施形態の変形例によれば、基準電圧VRを用いたキャリブレーションを実行することにより、温度変化、電源電圧変化、経時変化等の影響を補正することができるので、A/D変換を高精度に行うことができる。また、サンプルホールド回路101によりサンプルタイミングを一定に保つことができるので、A/D変換タイミングのジッターを軽減することができる。
本発明は本実施形態に限定されず、本発明の要旨の範囲内で種々の変形実施が可能である。
上述した実施形態および変形例は一例であって、これらに限定されるわけではない。例えば、各実施形態および各変形例を適宜組み合わせることも可能である。
本発明は、実施の形態で説明した構成と実質的に同一の構成(例えば、機能、方法及び結果が同一の構成、あるいは目的及び効果が同一の構成)を含む。また、本発明は、実施の形態で説明した構成の本質的でない部分を置き換えた構成を含む。また、本発明は、実施の形態で説明した構成と同一の作用効果を奏する構成又は同一の目的を達成することができる構成を含む。また、本発明は、実施の形態で説明した構成に公知技術を付加した構成を含む。
1,1−1〜1−n…遷移状態取得装置、2…時間デジタル変換器、3…演算部、10…制御部、20…発振部、21,21−0〜21−3…多段遅延線、22…組み合わせ回路、23−0〜23−30…バッファー素子、24…論理反転回路、25…論理積回路、26−0〜26−3参照テーブル、27−0〜27−6…バッファー素子、30…ラッチ部、31−0〜31−31…Dフリップフロップ、40…計数部、41…カウント回路、42…乗算器、43…加算器、44…Dフリップフロップ、45…減算器、46…加算器、47…Dフリップフロップ、48…マルチプレクサー、49…参照テーブル、50,50−1〜50−n…計数値保持部、51…Dフリップフロップ、60,60−1〜60−n…積算部、61…加算器、62…Dフリップフロップ、70…変換部、80…時間デジタル値生成部、100…A/D変換回路、101…サンプルホールド回路、102…基準波形信号生成回路、103…比較器、104…マルチプレクサー、105…切替信号生成回路、106…補正回路

Claims (11)

  1. 多段遅延線、及び前記多段遅延線の一端から他端に至る信号経路上に設けられた組み合わせ回路を含み、第1の信号に基づいて発振する発振部と、
    前記多段遅延線の出力信号を第2の信号に同期して取り込んで保持するラッチ部と、
    を含み、
    前記発振部は、前記第1の信号に基づいて、前記多段遅延線の状態の遷移を開始し、
    前記ラッチ部が前記多段遅延線の出力信号を取り込むタイミングの間隔は、前記多段遅延線の状態遷移が一巡する時間よりも短い、遷移状態取得装置。
  2. 請求項1において、
    前記発振部は、
    複数の前記多段遅延線を含み、
    前記複数の前記多段遅延線の少なくとも一部は、並列に接続され、
    前記複数の前記多段遅延線から出力される特定の複数の信号の値の遷移は、遷移する前後のハミング距離が1である、遷移状態取得装置。
  3. 請求項1において、
    前記ラッチ部が保持している値に基づいて、前記多段遅延線の状態が遷移した回数をカウントする計数部を含む、遷移状態取得装置。
  4. 請求項2において、
    前記ラッチ部が保持している値に基づいて、前記多段遅延線の状態が遷移した回数をカウントする計数部を含み、
    前記計数部は、
    前記特定の複数の信号を前記ラッチ部が取り込んで保持している値に基づいて、前記多段遅延線の状態が遷移した回数の概算値としての第1のカウント値を求め、
    前記特定の複数の信号を前記ラッチ部が取り込んで保持している値に基づいて、前記複数の前記多段遅延線のうち、前記ラッチ部が前記特定の複数の信号を取り込んだタイミングにおいて状態が遷移していた前記多段遅延線を特定し、特定した前記多段遅延線から出力される信号を前記ラッチ部が取り込んで保持している値に対してポピュレーションカウントを行って第2のカウント値を求め、
    前記第1のカウント値と前記第2のカウント値に基づいて、前記多段遅延線の状態が遷移した回数を求める、遷移状態取得装置。
  5. 請求項3または4に記載の遷移状態取得装置と、
    前記遷移状態取得装置の前記計数部がカウントした計数値を取り込んで保持する計数値保持部と、
    前記計数値保持部で保持された前記計数値を積算し、前記第1の信号の時間イベントと前記第2の信号の時間イベントとの時間間隔に対応する第1の時間デジタル値を生成する積算部と、
    を含む、時間デジタル変換器。
  6. 請求項5において、
    前記第2の信号の時間イベントは、前記第1の信号の時間イベントとは独立して設定されている、時間デジタル変換器。
  7. 請求項5または6において、
    時間デジタル値生成部を含み、
    前記発振部は、
    複数の前記第1の信号の各々に基づいて、前記多段遅延線の状態の遷移を開始し、
    前記計数部は、
    前記複数の前記第1の信号の各々に対して前記多段遅延線の状態が遷移した回数をカウントし、
    前記計数値保持部は、
    前記計数部がカウントした複数の前記計数値を取り込んで保持し、
    前記積算部は、
    前記計数値保持部で保持された前記複数の前記計数値の各々を積算し、前記複数の前記第1の信号の各々の時間イベントと前記第2の信号の時間イベントとの時間間隔に対応する複数の前記第1の時間デジタル値を生成し、
    前記時間デジタル値生成部は、
    前記複数の前記第1の時間デジタル値に基づいて、前記複数の前記第1の信号の少なくとも2つの時間イベントの時間間隔に対応する第2の時間デジタル値を生成する、時間デジタル変換器。
  8. 請求項3または4に記載の複数の遷移状態取得装置と、
    複数の計数値保持部と、
    複数の積算部と、
    時間デジタル値生成部と、
    を含み、
    前記複数の前記遷移状態取得装置は、
    複数の前記第1の信号の各々に基づいて、前記多段遅延線の状態の遷移を開始し、
    前記複数の前記計数値保持部は、
    前記複数の前記遷移状態取得装置の各々の前記計数部がカウントした計数値を取り込んで保持し、
    前記複数の前記積算部は、
    前記複数の前記計数値保持部で保持された複数の前記計数値の各々を積算し、前記複数の前記第1の信号の各々の時間イベントと前記第2の信号の時間イベントとの時間間隔に対応する複数の第1の時間デジタル値を生成し、
    前記時間デジタル値生成部は、
    前記複数の前記積算部が生成した複数の前記第1の時間デジタル値に基づいて、前記複数の前記第1の信号の少なくとも2つの時間イベントの時間間隔に対応する第2の時間デジタル値を生成する、時間デジタル変換器。
  9. 請求項8において、
    前記第2の信号の時間イベントは、前記複数の前記第1の信号の時間イベントとは独立して設定されている、時間デジタル変換器。
  10. 入力されたアナログ信号をデジタル信号に変換して出力するA/D変換回路であって、
    請求項5乃至9のいずれか一項に記載の時間デジタル変換器と、
    前記第2の信号に基づいて基準波形信号を生成する基準波形信号生成回路と、
    前記アナログ信号の電圧と前記基準波形信号の電圧とを比較して前記第1の信号を出力する比較器と、
    を含み、
    前記時間デジタル変換器が生成する前記第1の時間デジタル値に基づく前記デジタル信号を出力する、A/D変換回路。
  11. 入力されたアナログ信号をデジタル信号に変換して出力するA/D変換回路であって、
    請求項5乃至9のいずれか一項に記載の時間デジタル変換器と、
    前記アナログ信号の電圧をサンプリングして保持するサンプルホールド回路と、
    前記第2の信号に基づいて基準波形信号を生成する基準波形信号生成回路と、
    前記サンプルホールド回路が保持する電圧と前記基準波形信号の電圧とを比較して前記第1の信号を出力する比較器と、
    を含み、
    前記時間デジタル変換器が生成する前記第1の時間デジタル値に基づく前記デジタル信号を出力する、A/D変換回路。
JP2018054278A 2018-03-22 2018-03-22 遷移状態取得装置、時間デジタル変換器及びa/d変換回路 Active JP7087517B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018054278A JP7087517B2 (ja) 2018-03-22 2018-03-22 遷移状態取得装置、時間デジタル変換器及びa/d変換回路
US16/360,077 US10707891B2 (en) 2018-03-22 2019-03-21 Transition state acquisition device, time-to-digital converter, and A/D conversion circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018054278A JP7087517B2 (ja) 2018-03-22 2018-03-22 遷移状態取得装置、時間デジタル変換器及びa/d変換回路

Publications (2)

Publication Number Publication Date
JP2019169776A true JP2019169776A (ja) 2019-10-03
JP7087517B2 JP7087517B2 (ja) 2022-06-21

Family

ID=67983801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018054278A Active JP7087517B2 (ja) 2018-03-22 2018-03-22 遷移状態取得装置、時間デジタル変換器及びa/d変換回路

Country Status (2)

Country Link
US (1) US10707891B2 (ja)
JP (1) JP7087517B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021032761A (ja) * 2019-08-27 2021-03-01 セイコーエプソン株式会社 周波数計測回路及び周波数計測装置
JP7408981B2 (ja) * 2019-09-30 2024-01-09 セイコーエプソン株式会社 状態遷移器、時間デジタル変換器及びa/d変換回路
US11664813B2 (en) * 2019-09-30 2023-05-30 Seiko Epson Corporation Delay circuit, time to digital converter, and A/D conversion circuit

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0491513A (ja) * 1990-08-07 1992-03-25 Nec Corp クロック信号サンプリング回路
JP2004007385A (ja) * 2002-04-24 2004-01-08 Denso Corp A/d変換方法及び装置
US20090296532A1 (en) * 2008-05-29 2009-12-03 Hong-Yean Hsieh High-Resolution Circular Interpolation Time-To-Digital Converter
US20120249198A1 (en) * 2011-03-28 2012-10-04 Freescale Semiconductor, Inc Dual loop phase locked loop with low voltage-controlled oscillator gain
JP2015128278A (ja) * 2013-11-27 2015-07-09 ソニー株式会社 A/d変換装置、グレイコード生成装置、信号処理装置、撮像素子、並びに、電子機器
WO2017029984A1 (ja) * 2015-08-19 2017-02-23 国立大学法人 鹿児島大学 アナログデジタル変換器

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3127517B2 (ja) 1991-10-04 2001-01-29 株式会社デンソー パルス発生装置及びパルス発生方法
GB2296142B (en) 1994-12-16 1998-03-18 Plessey Semiconductors Ltd Circuit arrangement for measuring a time interval
JP4850473B2 (ja) * 2005-10-13 2012-01-11 富士通セミコンダクター株式会社 デジタル位相検出器
EP1995875B1 (en) * 2007-05-17 2010-07-28 Denso Corporation A/D converter circuit and A/D conversion method
KR101082415B1 (ko) * 2007-07-24 2011-11-11 고려대학교 산학협력단 계층구조 위상 디지털 변환기
JP5106583B2 (ja) 2010-06-09 2012-12-26 株式会社半導体理工学研究センター 時間デジタル変換回路、及びその校正方法
KR101202742B1 (ko) * 2011-04-05 2012-11-19 연세대학교 산학협력단 시간-디지털 변환기 및 변환방법
KR101797625B1 (ko) * 2012-02-16 2017-11-15 한국전자통신연구원 저전력 고해상도 타임투디지털 컨버터
JP5780356B2 (ja) * 2012-03-27 2015-09-16 富士通株式会社 時間対デジタル変換器、および制御方法
JP2014045268A (ja) * 2012-08-24 2014-03-13 Toshiba Corp 時間デジタル変換回路、および、デジタル時間変換回路
JP6085523B2 (ja) * 2013-05-30 2017-02-22 ルネサスエレクトロニクス株式会社 半導体装置及び半導体装置の動作方法
US10007235B2 (en) * 2016-09-23 2018-06-26 Microsemi Semiconductor Ulc Time-to-digital converter with phase-scaled course-fine resolution
JP6812781B2 (ja) * 2016-12-19 2021-01-13 セイコーエプソン株式会社 遅延回路、カウント値生成回路および物理量センサー

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0491513A (ja) * 1990-08-07 1992-03-25 Nec Corp クロック信号サンプリング回路
JP2004007385A (ja) * 2002-04-24 2004-01-08 Denso Corp A/d変換方法及び装置
US20090296532A1 (en) * 2008-05-29 2009-12-03 Hong-Yean Hsieh High-Resolution Circular Interpolation Time-To-Digital Converter
US20120249198A1 (en) * 2011-03-28 2012-10-04 Freescale Semiconductor, Inc Dual loop phase locked loop with low voltage-controlled oscillator gain
JP2015128278A (ja) * 2013-11-27 2015-07-09 ソニー株式会社 A/d変換装置、グレイコード生成装置、信号処理装置、撮像素子、並びに、電子機器
WO2017029984A1 (ja) * 2015-08-19 2017-02-23 国立大学法人 鹿児島大学 アナログデジタル変換器

Also Published As

Publication number Publication date
JP7087517B2 (ja) 2022-06-21
US10707891B2 (en) 2020-07-07
US20190296762A1 (en) 2019-09-26

Similar Documents

Publication Publication Date Title
JP5559142B2 (ja) 位相測定装置、および周波数測定装置
JP4666409B2 (ja) 較正パルス注入による時間−デジタル変換
JP2019169776A (ja) 遷移状態取得装置、時間デジタル変換器及びa/d変換回路
CN108061848B (zh) 基于fpga的加法进位链延时的测量方法及系统
JPWO2013122221A1 (ja) 積分型ad変換装置およびcmosイメージセンサ
US11664813B2 (en) Delay circuit, time to digital converter, and A/D conversion circuit
US10972116B2 (en) Time to digital converter and A/D conversion circuit
JP7322483B2 (ja) 時間デジタル変換器、及びa/d変換回路
CN112578180B (zh) 延迟电路、时间数字转换器及a/d转换电路
JP2024023650A (ja) A/d変換回路
JP2019169777A (ja) 時間デジタル変換器及びa/d変換回路
Priyanka et al. Design and implementation of time to digital converters
US6950375B2 (en) Multi-phase clock time stamping
Tancock et al. Temperature characterisation of the DSP delay line
JP2013205092A (ja) 時間測定装置
US20180017944A1 (en) Heterogeneous sampling delay line-based time to digital converter
Deng et al. A high-precision coarse-fine time-to-digital converter with the analog-digital hybrid interpolation
JP2020042005A (ja) 時間計測回路及び積分型a/dコンバータ
Lee A low power two-step cyclic time-to-digital converter without startup time error in 180 nm CMOS
CN114567306A (zh) 转移状态输出装置、时间数字转换器以及a/d转换电路
JP2009210522A (ja) 等価サンプリング装置
Jiang et al. A wide-range, high-resolution time to digital converter using a three-level structure
JP2008187537A (ja) A/d変換器
JP2014120901A (ja) 時間デジタル変換回路および時間デジタル変換方法
KR20010036583A (ko) 링 발진기를 이용한 클럭 발생기

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220523

R150 Certificate of patent or registration of utility model

Ref document number: 7087517

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150