JP2019149572A - 発光素子、ディスプレイモジュール、照明モジュール、発光装置、表示装置、照明装置、電子機器 - Google Patents

発光素子、ディスプレイモジュール、照明モジュール、発光装置、表示装置、照明装置、電子機器 Download PDF

Info

Publication number
JP2019149572A
JP2019149572A JP2019091908A JP2019091908A JP2019149572A JP 2019149572 A JP2019149572 A JP 2019149572A JP 2019091908 A JP2019091908 A JP 2019091908A JP 2019091908 A JP2019091908 A JP 2019091908A JP 2019149572 A JP2019149572 A JP 2019149572A
Authority
JP
Japan
Prior art keywords
light
emitting element
emitting
compound
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019091908A
Other languages
English (en)
Other versions
JP6770608B2 (ja
Inventor
英子 吉住
Eiko Yoshizumi
英子 吉住
美樹 栗原
Miki Kurihara
美樹 栗原
広美 瀬尾
Hiromi Seo
広美 瀬尾
瀬尾 哲史
Tetsushi Seo
哲史 瀬尾
辰義 高橋
Tatsuyoshi Takahashi
辰義 高橋
朋香 原
Tomoka Hara
朋香 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Publication of JP2019149572A publication Critical patent/JP2019149572A/ja
Application granted granted Critical
Publication of JP6770608B2 publication Critical patent/JP6770608B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/02Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
    • C07D491/04Ortho-condensed systems
    • C07D491/044Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring
    • C07D491/048Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring the oxygen-containing ring being five-membered
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/20Delayed fluorescence emission
    • H10K2101/25Delayed fluorescence emission using exciplex
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/90Multiple hosts in the emissive layer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Photovoltaic Devices (AREA)

Abstract

【課題】発光効率が良好な発光素子を提供する。また、駆動電圧の低い発光素子を提供する。また、発光素子の輸送層やホスト材料、発光材料として用いることが可能な新規化合物を提供する。【解決手段】ベンゾフロピリミジン骨格を含む新規化合物を提供する。また、一対の電極間に、当該ベンゾフロピリミジン骨格を有する化合物を含む発光素子を提供する。【選択図】なし

Description

本発明は、発光素子、化合物、有機化合物、ディスプレイモジュール、照明モジュール
、発光装置、表示装置、照明装置及び電子機器に関する。
薄型軽量、入力信号に対する高速な応答性、低消費電力などのメリットから、次世代の
照明装置や表示装置として有機化合物を発光物質とする発光素子(有機EL素子)を用い
た表示装置の開発が加速している。
有機EL素子は電極間に発光層を挟んで電圧を印加することにより、電極から注入され
た電子およびホールが再結合して発光物質が励起状態となり、その励起状態が基底状態に
戻る際に発光する。発光物質が発する光の波長はその発光物質特有のものであり、異なる
種類の有機化合物を発光物質として用いることによって、様々な波長の発光を呈する発光
素子を得ることができる。
ディスプレイなど、画像を表示することを念頭においた表示装置の場合、フルカラーの
映像を再現するためには、少なくとも赤、緑、青の3色の光を得ることが必要になる。ま
た、照明装置は、高い演色性を得るために、可視光領域において満遍なく波長成分を有す
る光を得ることが理想的であり、現実的には、異なる波長の光を2種類以上合成すること
によって得られる光が照明用途として用いられることが多い。なお、赤と緑と青の3色の
光を合成することによって、高い演色性を有する白色光を得ることができることが知られ
ている。
発光物質が発する光は、その物質固有のものであることを先に述べた。しかし、寿命や
消費電力、そして発光効率など、発光素子としての重要な性能は、発光を呈する物質のみ
に依存する訳ではなく、発光層以外の層や、素子構造、そして、発光物質とホスト材料と
の性質や相性、キャリアバランスなども大きく影響する。そのため、この分野の成熟をみ
るためには多くの種類の発光素子用材料が必要となることに間違いはない。このような理
由により、様々な分子構造を有する発光素子用材料が提案されている(例えば特許文献1
参照)。
ところで、エレクトロルミネッセンスを利用した発光素子は、励起状態の生成割合が、
一重項励起状態1に対し、三重項励起状態3であることが一般に知られている。そのため
、三重項励起エネルギーを発光に変えることができる燐光材料を発光材料として用いた発
光素子は、一重項励起エネルギーを発光に変える蛍光材料を発光材料として用いた発光素
子と比較して、発光効率の高い発光素子を原理的に得ることができる。
ここで、ホスト−ゲスト型の発光層におけるホスト材料や、発光層に接する各キャリア
輸送層を構成する物質は、励起エネルギーを効率よく発光物質からの発光に変えるために
、発光物質よりも広いバンドギャップ若しくは高い三重項励起準位(三重項励起状態と一
重項基底状態とのエネルギー差)を有する物質が用いられる。
しかし、当該発光素子のホスト材料として用いられる物質の殆どは蛍光材料であり、当
該物質における三重項励起状態は、一重項励起状態よりもエネルギー的に低い位置にある
。このため、発光材料として同じ波長の光を発する蛍光材料を使用する場合と燐光材料と
を使用する場合を比較すると、後者の方がよりバンドギャップの広い物質をホスト材料と
して用いる必要がある。
そのため、短波長の燐光発光を効率良く得るためには、非常に大きいバンドギャップを
有するホスト材料及びキャリア輸送材料が必要となる。しかし、低駆動電圧や高い発光効
率など発光素子における重要な特性に対する要求をバランスよく実現しつつ、それほど大
きなバンドギャップを有する発光素子用材料となる物質を開発することは困難である。
特開2007−15933号公報
そこで、本発明の一態様では、発光効率が良好な発光素子を提供することを課題とする
。また、駆動電圧の低い発光素子を提供することを課題とする。また、発光効率が良好な
燐光を呈する発光素子を提供することを課題とする。また、発光効率が良好な緑色から青
色の燐光を呈する発光素子を提供することを課題とする。
また、本発明の一態様では発光素子のキャリア輸送層やホスト材料、発光材料として用い
ることが可能な新規化合物を提供することを課題とする。特に、緑色より短波長の燐光を
発する発光素子に用いても、特性の良好な発光素子を得ることが可能な新規化合物を提供
することを課題とする。
また、本発明の一態様では、三重項励起準位(T1準位)が高い複素環化合物を提供す
ることを課題とする。特に、緑色より短波長の燐光を発する発光素子に用いることで、発
光効率の良好な発光素子を得ることが可能な複素環化合物を提供することを課題とする。
また、本発明の一態様では、キャリア輸送性が高い複素環化合物を提供することを課題
とする。特に、緑色より短波長の燐光を発する発光素子に用いることが可能であり、駆動
電圧の低い発光素子を得ることが可能な複素環化合物を提供することを課題とする。
また、本発明の他の一態様では、上記複素環化合物を用いた、発光素子を提供すること
を課題とする。
また、本発明の他の一態様では、上記複素環化合物を用いた、消費電力の小さいディス
プレイモジュール、照明モジュール、発光装置、照明装置、表示装置及び電子機器を各々
提供することを課題とする。
なお、これらの課題の記載は、他の課題の存在を妨げるものではない。なお、本発明の
一態様は、これらの課題の全てを必ずしも同時に解決する必要はないものとする。なお、
これら以外の課題は、明細書、図面、請求項などの記載から、自ずと明らかとなることも
ある。
上記課題は、ベンゾフロピリミジン骨格を含む化合物及び当該化合物を発光素子に適用
することにより実現することができる。
すなわち、本発明の一態様は、下記一般式(G1)で表される化合物である。
上記一般式(G1)において、Aは、置換もしくは無置換の炭素数6乃至100のア
リール基、置換もしくは無置換のヘテロアリール基、または置換もしくは無置換のアリー
ル基と置換もしくは無置換のヘテロアリール基を含む炭素数6乃至100の基を表す。ま
た、R乃至Rは各々独立に水素、炭素数1乃至6のアルキル基、置換もしくは無置換
の炭素数5乃至7の単環式飽和炭化水素、置換もしくは無置換の炭素数7乃至10の多環
式飽和炭化水素、又は置換もしくは無置換の炭素数6乃至13のアリール基のいずれか一
を表す。
また、本発明の他の一態様は、下記一般式(G2)で表される化合物である。
上記一般式(G2)において、R乃至Rは各々独立に水素、炭素数1乃至6のアル
キル基、置換もしくは無置換の炭素数5乃至7の単環式飽和炭化水素、置換もしくは無置
換の炭素数7乃至10の多環式飽和炭化水素又は置換もしくは無置換の炭素数6乃至13
のアリール基のいずれか一を表す。また、αは置換又は無置換のフェニレン基を表し、n
は0乃至4の整数を表す。また、Htuniは正孔輸送性を有する骨格を表す。
また、本発明の他の一態様は、上記化合物において、nが2である化合物である。
また、本発明の他の一態様は、下記一般式(G3)で表される化合物である。
上記一般式(G3)において、R乃至Rは各々独立に水素、炭素数1乃至6のアル
キル基、置換もしくは無置換の炭素数5乃至7の単環式飽和炭化水素、置換もしくは無置
換の炭素数7乃至10の多環式飽和炭化水素、又は置換もしくは無置換の炭素数6乃至1
3のアリール基のいずれか一を表す。また、Htuniは正孔輸送性を有する骨格を表す
また、本発明の他の一態様は、上記化合物において、Htuniが置換又は無置換のジ
ベンゾチオフェニル基、置換又は無置換のジベンゾフラニル基及び置換又は無置換のカル
バゾリル基のいずれか一である化合物である。
また、本発明の他の一態様は、上記化合物において、Htuniが下記一般式(Ht−
1)乃至(Ht−6)で表される基のいずれか一である化合物である。
上記一般式において、R乃至R15は各々独立に水素、炭素数1乃至6のアルキル基
又は置換もしくは無置換のフェニル基のいずれか一を表す。また、R16は炭素数1乃至
6のアルキル基、又は置換もしくは無置換のフェニル基のいずれか一を表す。
また、本発明の他の一態様は、上記Aを表す置換もしくは無置換のアリール基または
置換もしくは無置換のアリール基と置換もしくは無置換のヘテロアリール基を含む基の炭
素数において、炭素数6乃至54である化合物である。
また、本発明の他の一態様は、上記Aを表す置換もしくは無置換のアリール基または
置換もしくは無置換のアリール基と置換もしくは無置換のヘテロアリール基を含む基の炭
素数において、炭素数6乃至33である化合物である。
また、本発明の他の一態様は、上記化合物において、R乃至R15がすべて水素であ
る化合物である。
また、本発明の他の一態様は、上記化合物において、R及びRが共に水素である化
合物である。
また、本発明の他の一態様は、上記化合物において、R乃至Rがすべて水素である
化合物である。
また、本発明の他の一態様は、上記化合物において、R、R及びR乃至R15
すべて水素である化合物である。
また、本発明の他の一態様は、上記化合物において、R乃至R15がすべて水素であ
る化合物である。
また、本発明の他の一態様は、下記構造式(100)で表される化合物である。
また、本発明の他の一態様は、下記構造式(200)で表される化合物である。
また、本発明の他の一態様は、下記構造式(300)で表される化合物である。
また、本発明の他の一態様は、下記構造式(115)で表される化合物である。
また、本発明の化合物を発光層のホスト材料または、キャリア輸送層を構成する材料と
して用いることが好ましい。
また、本発明の他の一態様は、上記化合物を部分構造として含む化合物である。
具体的には、当該化合物を配位子として含む有機金属錯体である。
また、本発明の他の一態様は、一対の電極間に、ベンゾフロピリミジン骨格を有する化
合物を含む発光素子である。
また、本発明の他の一態様は、一対の電極間に、発光層を有し、前記発光層は少なくと
も発光物質とベンゾフロピリミジン骨格を有する化合物を含む発光素子である。
また、本発明の他の一態様は、一対の電極間に、発光層を有し、前記発光層は、イリジ
ウム錯体とベンゾフロピリミジン骨格を有する化合物を含む発光素子である。
また、本発明の他の一態様は、一対の電極間に、キャリア輸送層、具体的には、電子輸
送層を含み、前記電子輸送層は、ベンゾフロピリミジン骨格を有する化合物を含む発光素
子である。
また、本発明の他の一態様は、一対の電極間に、発光層及び電子輸送層を有し、発光層
及び電子輸送層の少なくとも一方にベンゾフロピリミジン骨格を有する化合物を含む発光
素子である。
また、本発明の他の一態様は、上記ベンゾフロピリミジン骨格がベンゾフロ[3,2−
d]ピリミジン骨格である発光素子である。
また、上記ベンゾフロ[3,2−d]ピリミジン骨格を有する具体的な化合物は前述の
通りである。
また、本発明の他の一態様は、上記発光素子を有するディスプレイモジュールである。
また、本発明の他の一態様は、上記発光素子を有する照明モジュールである。
また、本発明の他の一態様は、上記発光素子と、発光素子を制御する手段を備えた発光
装置である。
また、本発明の他の一態様は、上記発光素子を表示部に有し、発光素子を制御する手段
を備えた表示装置である。
また、本発明の他の一態様は、上記発光素子を照明部に有し、発光素子を制御する手段
を備えた照明装置である。
また、本発明の他の一態様は、上記発光素子を有する電子機器である。
本発明にかかる発光素子は、発光効率の良好な発光素子である。また、駆動電圧の小さ
い発光素子である。また、発光効率の良好な緑色から青色領域の発光を呈する発光素子で
ある。
本発明にかかる複素環化合物は、広いエネルギーギャップを有する。また、優れたキャ
リア輸送性を有する。そのため、発光素子のキャリア輸送層を構成する材料や発光層にお
けるホスト材料、発光物質として好適に用いることが可能である。
また、本発明の他の一態様では、上記複素環化合物を用いた、消費電力の小さいディス
プレイモジュール、照明モジュール、発光装置、照明装置、表示装置及び電子機器を各々
提供することができる。
発光素子の概念図。 有機半導体素子の概念図。 アクティブマトリクス型発光装置の概念図。 アクティブマトリクス型発光装置の概念図。 アクティブマトリクス型発光装置の概念図。 パッシブマトリクス型発光装置の概念図。 電子機器を表す図。 光源装置を表す図。 照明装置を表す図。 照明装置及び電子機器を表す図。 車載表示装置及び照明装置を表す図。 電子機器を表す図。 4mDBTBPBfpm−IIのNMRチャート。 4mDBTBPBfpm−IIの吸収スペクトル及び発光スペクトル。 4mDBTBPBfpm−IIのLC/MS分析結果。 4mCzBPBfpmのNMRチャート。 4mCzBPBfpmの吸収スペクトル及び発光スペクトル。 4mCzBPBfpmのLC/MS分析結果。 発光素子1の電流密度−輝度特性。 発光素子1の電圧−輝度特性。 発光素子1の輝度−電流効率特性。 発光素子1の輝度−外部量子効率特性。 発光素子1の輝度−パワー効率特性。 発光素子1の発光スペクトル。 発光素子1の規格化輝度時間変化特性。 発光素子2の電流密度−輝度特性。 発光素子2の電圧−輝度特性。 発光素子2の輝度−電流効率特性。 発光素子2の輝度−外部量子効率特性。 発光素子2の輝度−パワー効率特性。 発光素子2の発光スペクトル。 発光素子2の規格化輝度時間変化特性。 発光素子3の電流密度−輝度特性。 発光素子3の電圧−輝度特性。 発光素子3の輝度−電流効率特性。 発光素子3の輝度−外部量子効率特性。 発光素子3の輝度−パワー効率特性。 発光素子3の発光スペクトル。 発光素子3の規格化輝度時間変化特性。 4mFDBtPBfpmのNMRチャート。
以下、本発明の実施の形態について説明する。ただし、本発明は多くの異なる態様で実
施することが可能であり、本発明の趣旨及びその範囲から逸脱することなくその形態及び
詳細を様々に変更し得ることは当業者であれば容易に理解される。従って、本実施の形態
の記載内容に限定して解釈されるものではない。
(実施の形態1)
本実施の形態で説明する本発明の一態様の化合物は、ベンゾフロピリミジン骨格を有す
る化合物である。当該骨格を有する化合物は、キャリア輸送性(特に電子輸送性)に優れ
る。このことから、駆動電圧の小さい発光素子を提供することができる。
また、当該化合物は高い三重項励起準位(T1準位)を有することができるため、燐光
物質を用いた発光素子に好適に用いることができる。具体的には、当該化合物が高い三重
項励起準位(T1準位)を有すると、燐光物質の励起エネルギーが当該化合物に移動して
しまうことを抑制することができるため、励起エネルギーを有効に発光に変換することが
できる。燐光物質としては、イリジウム錯体が代表的である。
なお、ベンゾフロピリミジン骨格としては、具体的にはベンゾフロ[3,2−d]ピリ
ミジン骨格等を挙げることができるが、これに限られない。
上記ベンゾフロピリミジン骨格を有する化合物の好ましい具体例を、下記一般式(G1
)で示す。
式中Aは、置換もしくは無置換の炭素数6乃至100のアリール基、置換もしくは無
置換のヘテロアリール基、または置換もしくは無置換のアリール基と置換もしくは無置換
のヘテロアリール基を含む炭素数6乃至100の基を表す。
上記炭素数6乃至100のアリール基としては、代表的には下記一般式(A−1)乃
至(A−6)で表される基が挙げられる。なお、以下はあくまで代表例であって炭素数
6乃至100のアリール基はこれらに限られない。
式中RA1乃至RA6は各々1乃至4の置換基を有し、かつ当該置換基は各々独立に水
素又は炭素数1乃至6のアルキル基、置換もしくは無置換の炭素数5乃至7の単環式飽和
炭化水素、置換もしくは無置換の炭素数7乃至10の多環式飽和炭化水素、置換もしくは
無置換の炭素数6乃至13のアリール基のいずれか一を表す。
また、上記ヘテロアリール基またはアリール基とヘテロアリール基を含む基としては、
代表的には下記一般式(A−10)乃至(A−25)で表される基が挙げられる。な
お、以下はあくまで代表例であってAはこれらの例示に限られない。

また、R乃至Rは各々独立に水素又は炭素数1乃至6のアルキル基、置換もしくは無
置換の炭素数5乃至7の単環式飽和炭化水素、置換もしくは無置換の炭素数7乃至10の
多環式飽和炭化水素、置換もしくは無置換の炭素数6乃至13のアリール基のいずれか一
を表す。
なお、R乃至Rにおける炭素数1乃至6のアルキル基の具体例としては、メチル基
、エチル基、プロピル基、イソプロピル基、ブチル基、sec−ブチル基、イソブチル基
、tert−ブチル基、ペンチル基、イソペンチル基、sec−ペンチル基、tert−
ペンチル基、ネオペンチル基、ヘキシル基、イソヘキシル基、sec−ヘキシル基、te
rt−ヘキシル基、ネオヘキシル基、3−メチルペンチル基、2−メチルペンチル基、2
−エチルブチル基、1,2−ジメチルブチル基、2,3−ジメチルブチル基等が挙げられ
、置換もしくは無置換の炭素数5乃至7の単環式飽和炭化水素の具体例としては、シクロ
プロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロオクチル基
、2−メチルシクロヘキシル基、2,6−ジメチルシクロヘキシル基等が挙げられ、置換
もしくは無置換の炭素数7乃至10の多環式飽和炭化水素の具体例としては、デカヒドロ
ナフチル基、アダマンチル基が挙げられ、置換もしくは無置換の炭素数6乃至13のアリ
ール基の具体例としては、フェニル基、o−トリル基、m−トリル基、p−トリル基、メ
シチル基、o−ビフェニル基、m−ビフェニル基、p−ビフェニル基、1−ナフチル基、
2−ナフチル基、フルオレニル基、9,9−ジメチルフルオレニル基などが挙げられる。
乃至Rについて、これらが置換基を有する場合、当該置換基としては炭素数1乃
至3のアルキル基に代表される特性に大きな変化を及ぼさない基を想定している。
また、本実施の形態で説明するベンゾフロピリミジンについて、さらに好ましい具体例
は、下記一般式(G2)で表すことができる。
式中、R乃至Rについては、上記一般式(G1)におけるR乃至Rと同様であ
るので、重複する記載を省略する。一般式(G1)におけるR乃至Rの記載を参照さ
れたい。
上記一般式(G2)中、αは置換又は無置換のフェニレン基を表し、nは0乃至4の整
数を表す。αについて、これらが置換基を有する場合、当該置換基としては炭素数1乃至
3のアルキル基に代表される、化合物の特性に大きな変化を及ぼさない基を想定している
なお、Htuniとベンゾフロピリミジン骨格の相互作用を抑制し、高い三重項励起準
位(T1準位)を維持するためには、nは1以上であることが好ましく、熱物性が向上し
分子の安定性を良くするためには、nは2であることが好ましい。さらに、nが2である
場合、αとnとで表される2価の基は1,1’−ビフェニル−3,3’−ジイル基である
ことが好ましい。
また、上記一般式(G2)中、Htuniは正孔輸送性を有する骨格を表す。Htuni
としては、高い三重項励起準位(T1準位)を維持するためには、置換又は無置換のジベ
ンゾチオフェニル基、置換又は無置換のジベンゾフラニル基、置換又は無置換のカルバゾ
リル基を用いることが好ましい。なお、これらが置換基を有する場合、当該置換基として
は炭素数1乃至3のアルキル基に代表される特性に大きな変化を及ぼさない基を想定して
いる。
Htuniの具体的な例としては、下記一般式(Ht−1)乃至(Ht−6)で表され
る基は合成が容易であり、好ましい例である。なお、もちろん、Htuniは以下の例示
に限られることはない。
乃至R15はそれぞれ独立に水素又は炭素数1乃至6のアルキル基又は置換又は無
置換のフェニル基のいずれか一を表す。また、R16は炭素数1乃至6のアルキル基、置
換又は無置換のフェニル基のいずれか一を表す。なお、これらが置換基を有する場合、当
該置換基としては炭素数1乃至3のアルキル基に代表される特性に大きな変化を及ぼさな
い基を想定している。
また、上記一般式(Ht−1)乃至(Ht−6)のいずれか一で表される基をHtun
として有する本発明の一態様の化合物は高い三重項励起準位(T1準位)を有し、かつ
正孔輸送性を持つため、好ましい構成である。また、上記一般式(Ht−1)乃至(Ht
−6)で表される基はベンゾフロピリミジン骨格と組み合わせた場合電子ドナー部位とし
て働く(ベンゾフロピリミジンが電子アクセプター部位として働く)。ゆえに膜の電荷輸
送性に着目した場合、一般式(Ht−1)乃至(Ht−6)のいずれか一で表される基を
Htuniとして有する本発明の一態様の化合物は、バルクでは導電性、界面ではキャリ
アの注入性がそれぞれ向上することで低電圧駆動が可能となるため、発光素子を構成する
材料として好ましい構成である。
また、上記一般式(Ht−1)乃至(Ht−6)で表される基におけるR乃至R15
すべて水素である構成は、原料の調達やその構成の合成が容易であり、好ましい構成であ
る。
また、同様の理由により、上記一般式(G2)で表される化合物において、R及びR
が共に水素である構成が好ましい。また、さらに、R乃至Rがすべて水素である構
成がさらに好ましい。
上述の化合物の代表的な例を以下に示す。なお、本実施の形態で説明する化合物は、以
下の例示により限定されることはない。
以上のような本発明の一態様の化合物は、キャリア輸送性に優れることからキャリア輸
送材料やホスト材料として好適である。これにより、駆動電圧の小さい発光素子を提供す
ることもできる。また、本発明の一態様の化合物は高い三重項励起準位(T1準位)を有
することができるため、発光効率の高い燐光発光素子を得ることができる。特に、緑色よ
り短波長側に発光のピークを有する燐光発光素子においても、良好な発光効率を有する発
光素子を提供することが可能となる。また、高い三重項励起準位(T1準位)を有すると
いうことは、広いバンドギャップを有するということもまた意味するため、青色蛍光を呈
する発光素子も効率よく発光させることができる。
続いて、上記一般式(G1)で表される化合物の合成方法について説明する。
一般式(G1)で表される化合物は、以下のような簡便な合成スキームにより合成できる
。例えば、下記合成スキーム(a)に示すように、ベンゾフロピリミジン誘導体のハロゲ
ン化合物(A1)とアリール基、ヘテロアリール基、またはアリール基とヘテロアリール
基を含む基であるAのボロン酸化合物(A2)を反応させることにより得られる。なお
、式中Xはハロゲン元素を表す。また、Bはボロン酸またはボロン酸エステルまたは環状
トリオールボレート塩等を表す。環状トリオールボレート塩はリチウム塩の他に、カリウ
ム塩、ナトリウム塩を用いても良い。
なお、合成スキーム(a)において、R乃至Rは各々独立に水素又は炭素数1乃至6
のアルキル基、置換もしくは無置換の炭素数5乃至7の単環式飽和炭化水素、置換もしく
は無置換の炭素数7乃至10の多環式飽和炭化水素、置換もしくは無置換の炭素数6乃至
13のアリール基のいずれか一を表す。
なお、ベンゾフロピリミジン誘導体のボロン酸化合物とAのハロゲン化合物を反応させ
ても良い。
上述の化合物(A1)、(A2)は、様々な種類が合成可能であるため、一般式(G1)
で表される化合物は数多くの種類を合成することができる。したがって、本発明の化合物
は、バリエーションが豊富であるという特徴がある。
以上、本発明の一態様である化合物の合成方法の一例について説明したが、本発明はこれ
に限定されることはなく、他のどのような合成方法によって合成されても良い。
また、本実施の形態で説明した化合物を、部分構造として含む化合物も本発明の一態様
である。このような化合物としては、たとえば当該構造を配位子として含む有機金属錯体
などを挙げることができる。
すなわち、当該化合物はベンゾフロピリミジン骨格を有する化合物を部分構造として含
み、当該部分構造は下記一般式(G1)で表すことができる。
上記一般式(G1)において、R乃至Rは、上記の説明において述べたR乃至R
の構成と同様であるので繰り返しとなる説明を省略する。
また、式中、Aは、置換もしくは無置換の炭素数6乃至100のアリール基、置換も
しくは無置換のヘテロアリール基、または置換もしくは無置換のアリール基と置換もしく
は無置換のヘテロアリール基を含む炭素数6乃至100の基を表す。Aとして用いるこ
とが可能な基の具体的な例としては、上記の一般式(G1)の説明で述べているので、省
略する。
なお、上記一般式(G1)で表される部分構造を含む化合物が有機金属錯体である場合
、その中心金属としてイリジウムや白金を用いると、燐光物質として利用することも可能
である。
(実施の形態2)
本実施の形態では、実施の形態1に記載の下記一般式(G1)で表される化合物を有機
半導体素子の一種である縦型トランジスタ(静電誘導トランジスタ:SIT)の活性層と
して用いる形態を例示する。
素子の構造としては、図2に示すように、一般式(G1)で表される化合物を含む薄膜
状の活性層1202をソース電極1201およびドレイン電極1203で挟み、ゲート電
極1204が活性層1202に埋め込まれた構造を有する。ゲート電極1204は、ゲー
ト電圧を印加するための手段に電気的に接続されており、ソース電極1201およびドレ
イン電極1203は、ソース−ドレイン間の電圧を制御するための手段に電気的に接続さ
れている。
このような素子構造において、ゲート電圧を印加しない状態においてソース−ドレイン
間に電圧を印加すると、電流が流れる(ON状態となる)。そして、その状態でゲート電
圧を印加するとゲート電極1204周辺に空乏層が発生し、電流が流れなくなる(OFF
状態となる)。以上の機構により、トランジスタとして動作する。
縦型トランジスタにおいては、発光素子と同様、キャリア輸送性と良好な膜質を兼ね備
えた材料が活性層に求められるが、一般式(G1)で表される化合物はその条件を十分に
満たしており、好適に用いることができる。
(実施の形態3)
本実施の形態では、ベンゾフロピリミジン骨格を含む化合物を有する発光素子の一態様
について図1(A)を用いて以下に説明する。
本実施の形態における発光素子は、一対の電極間に複数の層を有する。本形態において
、発光素子は、第1の電極101と、第2の電極102と、第1の電極101と第2の電
極102との間に設けられたEL層103とから構成されている。なお、図1(A)では
第1の電極101は陽極として機能し、第2の電極102は陰極として機能するものとし
て、図示する。つまり、第1の電極101の方が第2の電極102よりも電位が高くなる
ように、第1の電極101と第2の電極102に電圧を印加したときに、発光が得られる
構成となっている。もちろん、第1の電極が陰極として機能し、第2の電極が陽極として
機能してもかまわない。その場合、EL層の積層順は、以下に説明する順序と逆となる。
なお、本実施の形態における発光素子は、EL層103のいずれかの層に、ベンゾフロピ
リミジン骨格を有する化合物が含まれていればよい。なお、ベンゾフロピリミジン骨格を
有する化合物が含まれる層としては、発光層や電子輸送層が上記化合物の特性をより生か
すことができ、良好な特性を有する発光素子を得ることができるため好ましい。
陽極として機能する電極としては、仕事関数の大きい(具体的には4.0eV以上)金
属、合金、導電性化合物、およびこれらの混合物などを用いることが好ましい。具体的に
は、例えば、酸化インジウム−酸化スズ(ITO:Indium Tin Oxide)
、ケイ素若しくは酸化ケイ素を含有した酸化インジウム−酸化スズ、酸化インジウム−酸
化亜鉛、酸化タングステン及び酸化亜鉛を含有した酸化インジウム(IWZO)等が挙げ
られる。これらの導電性金属酸化物膜は、通常スパッタにより成膜されるが、ゾル−ゲル
法などを応用して作製しても構わない。例えば、酸化インジウム−酸化亜鉛は、酸化イン
ジウムに対し1wt%以上20wt%以下の酸化亜鉛を加えたターゲットを用いてスパッ
タリング法により形成することができる。また、酸化タングステン及び酸化亜鉛を含有し
た酸化インジウム(IWZO)は、酸化インジウムに対し酸化タングステンを0.5wt
%以上5wt%以下、酸化亜鉛を0.1wt%以上1wt%以下含有したターゲットを用
いてスパッタリング法により形成することができる。この他、金(Au)、白金(Pt)
、ニッケル(Ni)、タングステン(W)、クロム(Cr)、モリブデン(Mo)、鉄(
Fe)、コバルト(Co)、銅(Cu)、パラジウム(Pd)、または金属材料の窒化物
(例えば、窒化チタン)等が挙げられる。また、グラフェンを用いても良い。
EL層103の積層構造については特に限定されず、電子輸送性の高い物質を含む層ま
たは正孔輸送性の高い物質を含む層、電子注入性の高い物質を含む層、正孔注入性の高い
物質を含む層、バイポーラ性(電子及び正孔輸送性が高い物質)の物質を含む層、キャリ
アブロック性を有する層等を適宜組み合わせて構成すればよい。本実施の形態では、EL
層103は、陽極として機能する電極側から「正孔注入層111、正孔輸送層112、発
光層113、電子輸送層114、電子注入層115」の順に積層した構成を有するものと
して説明する。各層を構成する材料について以下に具体的に示す。
正孔注入層111は、正孔注入性の物質を含む層である。モリブデン酸化物やバナジウ
ム酸化物、ルテニウム酸化物、タングステン酸化物、マンガン酸化物等を用いることがで
きる。この他、フタロシアニン(略称:HPc)や銅フタロシアニン(CuPC)等の
フタロシアニン系の化合物、4,4’−ビス[N−(4−ジフェニルアミノフェニル)−
N−フェニルアミノ]ビフェニル(略称:DPAB)、N,N’−ビス{4−[ビス(3
−メチルフェニル)アミノ]フェニル}−N,N’−ジフェニル−(1,1’−ビフェニ
ル)−4,4’−ジアミン(略称:DNTPD)等の芳香族アミン化合物、或いはポリ(
エチレンジオキシチオフェン)/ポリ(スチレンスルホン酸)(PEDOT/PSS)等
の高分子等によっても正孔注入層111を形成することができる。
また、正孔注入層111として、正孔輸送性を有する物質に当該物質に対して電子受容
性を示す物質(以下単に電子受容性物質と称する)を含有させた複合材料を用いることも
できる。本明細書中において、複合材料とは、単に2つの材料を混合させた材料のことを
指すのではなく、複数の材料を混合することによって材料間での電荷の授受が行われ得る
状態になることを言う。この電荷の授受は、電界がかかっている場合にのみ実現される場
合も含むこととする。
なお、正孔輸送性を有する物質に電子受容性物質を含有させた複合材料を用いることに
より、材料の仕事関数に依らず電極を形成する材料を選ぶことができるようになる。つま
り、陽極として機能する電極として仕事関数の大きい材料だけでなく、仕事関数の小さい
材料も用いることができるようになる。電子受容性物質としては、7,7,8,8−テト
ラシアノ−2,3,5,6−テトラフルオロキノジメタン(略称:F−TCNQ)、ク
ロラニル等を挙げることができる。また、遷移金属酸化物も使用することができる。特に
元素周期表における第4族乃至第8族に属する金属の酸化物を好適に用いることができる
。具体的には、酸化バナジウム、酸化ニオブ、酸化タンタル、酸化クロム、酸化モリブデ
ン、酸化タングステン、酸化マンガン、酸化レニウムは電子受容性が高いため好ましい。
中でも特に、酸化モリブデンは大気中でも安定であり、吸湿性が低く、扱いやすいため電
子受容性物質として好適に用いることができる。
複合材料に用いる正孔輸送性を有する物質としては、芳香族アミン化合物、カルバゾー
ル化合物、芳香族炭化水素、高分子化合物(オリゴマー、デンドリマー、ポリマー等)な
ど、種々の有機化合物を用いることができる。なお、複合材料に用いる有機化合物として
は、正孔輸送性の高い有機化合物であることが好ましい。具体的には、1×10−6cm
/Vs以上の正孔移動度を有する物質であることが好ましい。ただし、電子よりも正孔
の輸送性の高い物質であれば、これら以外のものを用いてもよい。以下では、複合材料に
おける正孔輸送性を有する物質として用いることのできる有機化合物を具体的に列挙する
例えば、芳香族アミン化合物としては、N,N’−ジ(p−トリル)−N,N’−ジフ
ェニル−p−フェニレンジアミン(略称:DTDPPA)、4,4’−ビス[N−(4−
ジフェニルアミノフェニル)−N−フェニルアミノ]ビフェニル(略称:DPAB)、N
,N’−ビス{4−[ビス(3−メチルフェニル)アミノ]フェニル}−N,N’−ジフ
ェニル−(1,1’−ビフェニル)−4,4’−ジアミン(略称:DNTPD)、1,3
,5−トリス[N−(4−ジフェニルアミノフェニル)−N−フェニルアミノ]ベンゼン
(略称:DPA3B)等を挙げることができる。
複合材料に用いることのできるカルバゾール化合物としては、具体的には、3−[N−
(9−フェニルカルバゾール−3−イル)−N−フェニルアミノ]−9−フェニルカルバ
ゾール(略称:PCzPCA1)、3,6−ビス[N−(9−フェニルカルバゾール−3
−イル)−N−フェニルアミノ]−9−フェニルカルバゾール(略称:PCzPCA2)
、3−[N−(1−ナフチル)−N−(9−フェニルカルバゾール−3−イル)アミノ]
−9−フェニルカルバゾール(略称:PCzPCN1)等を挙げることができる。
また、複合材料に用いることのできるカルバゾール化合物としては、他に、4,4’−
ジ(N−カルバゾリル)ビフェニル(略称:CBP)、1,3,5−トリス[4−(N−
カルバゾリル)フェニル]ベンゼン(略称:TCPB)、9−[4−(10−フェニル−
9−アントリル)フェニル]−9H−カルバゾール(略称:CzPA)、1,4−ビス[
4−(N−カルバゾリル)フェニル]−2,3,5,6−テトラフェニルベンゼン等を用
いることができる。
また、複合材料に用いることのできる芳香族炭化水素としては、例えば、2−tert
−ブチル−9,10−ジ(2−ナフチル)アントラセン(略称:t−BuDNA)、2−
tert−ブチル−9,10−ジ(1−ナフチル)アントラセン、9,10−ビス(3,
5−ジフェニルフェニル)アントラセン(略称:DPPA)、2−tert−ブチル−9
,10−ビス(4−フェニルフェニル)アントラセン(略称:t−BuDBA)、9,1
0−ジ(2−ナフチル)アントラセン(略称:DNA)、9,10−ジフェニルアントラ
セン(略称:DPAnth)、2−tert−ブチルアントラセン(略称:t−BuAn
th)、9,10−ビス(4−メチル−1−ナフチル)アントラセン(略称:DMNA)
、2−tert−ブチル−9,10−ビス[2−(1−ナフチル)フェニル]アントラセ
ン、9,10−ビス[2−(1−ナフチル)フェニル]アントラセン、2,3,6,7−
テトラメチル−9,10−ジ(1−ナフチル)アントラセン、2,3,6,7−テトラメ
チル−9,10−ジ(2−ナフチル)アントラセン、9,9’−ビアントリル、10,1
0’−ジフェニル−9,9’−ビアントリル、10,10’−ビス(2−フェニルフェニ
ル)−9,9’−ビアントリル、10,10’−ビス[(2,3,4,5,6−ペンタフ
ェニル)フェニル]−9,9’−ビアントリル、アントラセン、テトラセン、ルブレン、
ペリレン、2,5,8,11−テトラ(tert−ブチル)ペリレン等が挙げられる。ま
た、この他、ペンタセン、コロネン等も用いることができる。このように、1×10−6
cm/Vs以上の正孔移動度を有し、炭素数14〜42である芳香族炭化水素を用いる
ことがより好ましい。
なお、複合材料に用いることのできる芳香族炭化水素は、ビニル骨格を有していてもよ
い。ビニル基を有している芳香族炭化水素としては、例えば、4,4’−ビス(2,2−
ジフェニルビニル)ビフェニル(略称:DPVBi)、9,10−ビス[4−(2,2−
ジフェニルビニル)フェニル]アントラセン(略称:DPVPA)等が挙げられる。
また、ポリ(N−ビニルカルバゾール)(略称:PVK)やポリ(4−ビニルトリフェ
ニルアミン)(略称:PVTPA)、ポリ[N−(4−{N’−[4−(4−ジフェニル
アミノ)フェニル]フェニル−N’−フェニルアミノ}フェニル)メタクリルアミド](
略称:PTPDMA)、ポリ[N,N’−ビス(4−ブチルフェニル)−N,N’−ビス
(フェニル)ベンジジン](略称:Poly−TPD)等の高分子化合物を用いることも
できる。
正孔輸送層112は、正孔輸送性を有する物質を含む層である。正孔輸送性を有する物
質としては、上述の複合材料として用いることができる正孔輸送性を有する物質として挙
げたものを同様に用いることができる。なお、繰り返しとなるため詳しい説明は省略する
。複合材料の記載を参照されたい。なお、実施の形態1で説明したベンゾフロピリミジン
骨格を有する化合物を正孔輸送層に含んでいても良い。
発光層113は、発光物質を含む層である。発光層113は、発光物質単独の膜で構成
されていても、ホスト材料中に発光物質を分散された膜で構成されていても良い。
発光層113において、発光物質として用いることが可能な材料としては特に限定は無
く、これら材料が発する光は蛍光であっても燐光であっても良い。上記発光物質としては
例えば、以下のようなものが挙げられる。蛍光物質としては、N,N’−ビス[4−(9
−フェニル−9H−フルオレン−9−イル)フェニル]−N,N’−ジフェニルピレン−
1,6−ジアミン(略称:1,6FLPAPrn)、N,N’−ビス[4−(9H−カル
バゾール−9−イル)フェニル]−N,N’−ジフェニルスチルベン−4,4’−ジアミ
ン(略称:YGA2S)、4−(9H−カルバゾール−9−イル)−4’−(10−フェ
ニル−9−アントリル)トリフェニルアミン(略称:YGAPA)、4−(9H−カルバ
ゾール−9−イル)−4’−(9,10−ジフェニル−2−アントリル)トリフェニルア
ミン(略称:2YGAPPA)、N,9−ジフェニル−N−[4−(10−フェニル−9
−アントリル)フェニル]−9H−カルバゾール−3−アミン(略称:PCAPA)、ペ
リレン、2,5,8,11−テトラ(tert−ブチル)ペリレン(略称:TBP)、4
−(10−フェニル−9−アントリル)−4’−(9−フェニル−9H−カルバゾール−
3−イル)トリフェニルアミン(略称:PCBAPA)、N,N’’−(2−tert−
ブチルアントラセン−9,10−ジイルジ−4,1−フェニレン)ビス[N,N’,N’
−トリフェニル−1,4−フェニレンジアミン](略称:DPABPA)、N,9−ジフ
ェニル−N−[4−(9,10−ジフェニル−2−アントリル)フェニル]−9H−カル
バゾール−3−アミン(略称:2PCAPPA)、N−[4−(9,10−ジフェニル−
2−アントリル)フェニル]−N,N’,N’−トリフェニル−1,4−フェニレンジア
ミン(略称:2DPAPPA)、N,N,N’,N’,N’’,N’’,N’’’,N’
’’−オクタフェニルジベンゾ[g,p]クリセン−2,7,10,15−テトラアミン
(略称:DBC1)、クマリン30、N−(9,10−ジフェニル−2−アントリル)−
N,9−ジフェニル−9H−カルバゾール−3−アミン(略称:2PCAPA)、N−[
9,10−ビス(1,1’−ビフェニル−2−イル)−2−アントリル]−N,9−ジフ
ェニル−9H−カルバゾール−3−アミン(略称:2PCABPhA)、N−(9,10
−ジフェニル−2−アントリル)−N,N’,N’−トリフェニル−1,4−フェニレン
ジアミン(略称:2DPAPA)、N−[9,10−ビス(1,1’−ビフェニル−2−
イル)−2−アントリル]−N,N’,N’−トリフェニル−1,4−フェニレンジアミ
ン(略称:2DPABPhA)、9,10−ビス(1,1’−ビフェニル−2−イル)−
N−[4−(9H−カルバゾール−9−イル)フェニル]−N−フェニルアントラセン−
2−アミン(略称:2YGABPhA)、N,N,9−トリフェニルアントラセン−9−
アミン(略称:DPhAPhA)クマリン545T、N,N’−ジフェニルキナクリドン
(略称:DPQd)、ルブレン、5,12−ビス(1,1’−ビフェニル−4−イル)−
6,11−ジフェニルテトラセン(略称:BPT)、2−(2−{2−[4−(ジメチル
アミノ)フェニル]エテニル}−6−メチル−4H−ピラン−4−イリデン)プロパンジ
ニトリル(略称:DCM1)、2−{2−メチル−6−[2−(2,3,6,7−テトラ
ヒドロ−1H,5H−ベンゾ[ij]キノリジン−9−イル)エテニル]−4H−ピラン
−4−イリデン}プロパンジニトリル(略称:DCM2)、N,N,N’,N’−テトラ
キス(4−メチルフェニル)テトラセン−5,11−ジアミン(略称:p−mPhTD)
、7,14−ジフェニル−N,N,N’,N’−テトラキス(4−メチルフェニル)アセ
ナフト[1,2−a]フルオランテン−3,10−ジアミン(略称:p−mPhAFD)
、2−{2−イソプロピル−6−[2−(1,1,7,7−テトラメチル−2,3,6,
7−テトラヒドロ−1H,5H−ベンゾ[ij]キノリジン−9−イル)エテニル]−4
H−ピラン−4−イリデン}プロパンジニトリル(略称:DCJTI)、2−{2−te
rt−ブチル−6−[2−(1,1,7,7−テトラメチル−2,3,6,7−テトラヒ
ドロ−1H,5H−ベンゾ[ij]キノリジン−9−イル)エテニル]−4H−ピラン−
4−イリデン}プロパンジニトリル(略称:DCJTB)、2−(2,6−ビス{2−[
4−(ジメチルアミノ)フェニル]エテニル}−4H−ピラン−4−イリデン)プロパン
ジニトリル(略称:BisDCM)、2−{2,6−ビス[2−(8−メトキシ−1,1
,7,7−テトラメチル−2,3,6,7−テトラヒドロ−1H,5H−ベンゾ[ij]
キノリジン−9−イル)エテニル]−4H−ピラン−4−イリデン}プロパンジニトリル
(略称:BisDCJTM)、N,N’−ビス[4−(9−フェニル−9H−フルオレン
−9−イル)フェニル]−N,N’−ジフェニルピレン−1,6−ジアミン(略称:1,
6FLPAPrn)などが挙げられる。青色燐光物質としては、トリス{2−[5−(2
−メチルフェニル)−4−(2,6−ジメチルフェニル)−4H−1,2,4−トリアゾ
ール−3−イル−κN2]フェニル−κC}イリジウム(III)(略称:[Ir(mp
ptz−dmp)])、トリス(5−メチル−3,4−ジフェニル−4H−1,2,4
−トリアゾラト)イリジウム(III)(略称:[Ir(Mptz)])、トリス[4
−(3−ビフェニル)−5−イソプロピル−3−フェニル−4H−1,2,4−トリアゾ
ラト]イリジウム(III)(略称:[Ir(iPrptz−3b)])のような4H
−トリアゾール骨格を有する有機金属イリジウム錯体や、トリス[3−メチル−1−(2
−メチルフェニル)−5−フェニル−1H−1,2,4−トリアゾラト]イリジウム(I
II)(略称:[Ir(Mptz1−mp)])、トリス(1−メチル−5−フェニル
−3−プロピル−1H−1,2,4−トリアゾラト)イリジウム(III)(略称:[I
r(Prptz1−Me)])のような1H−トリアゾール骨格を有する有機金属イリ
ジウム錯体や、fac−トリス[1−(2,6−ジイソプロピルフェニル)−2−フェニ
ル−1H−イミダゾール]イリジウム(III)(略称:[Ir(iPrpmi)])
、トリス[3−(2,6−ジメチルフェニル)−7−メチルイミダゾ[1,2−f]フェ
ナントリジナト]イリジウム(III)(略称:[Ir(dmpimpt−Me)])
のようなイミダゾール骨格を有する有機金属イリジウム錯体や、ビス[2−(4’,6’
−ジフルオロフェニル)ピリジナト−N,C2’]イリジウム(III)テトラキス(1
−ピラゾリル)ボラート(略称:FIr6)、ビス[2−(4’,6’−ジフルオロフェ
ニル)ピリジナト−N,C2’]イリジウム(III)ピコリナート(略称:FIrpi
c)、ビス{2−[3’,5’−ビス(トリフルオロメチル)フェニル]ピリジナト−N
,C2’}イリジウム(III)ピコリナート(略称:[Ir(CFppy)(pi
c)])、ビス[2−(4’,6’−ジフルオロフェニル)ピリジナト−N,C2’]イ
リジウム(III)アセチルアセトナート(略称:FIracac)のような電子吸引基
を有するフェニルピリジン誘導体を配位子とする有機金属イリジウム錯体が挙げられる。
なお、4H−トリアゾール骨格を有する有機金属イリジウム錯体は、信頼性や発光効率に
も優れるため、特に好ましい。また、緑色燐光物質の例としてはトリス(4−メチル−6
−フェニルピリミジナト)イリジウム(III)(略称:[Ir(mppm)])、ト
リス(4−t−ブチル−6−フェニルピリミジナト)イリジウム(III)(略称:[I
r(tBuppm)])、(アセチルアセトナト)ビス(6−メチル−4−フェニルピ
リミジナト)イリジウム(III)(略称:[Ir(mppm)(acac)])、(
アセチルアセトナト)ビス(6−tert−ブチル−4−フェニルピリミジナト)イリジ
ウム(III)(略称:[Ir(tBuppm)(acac)])、(アセチルアセト
ナト)ビス[6−(2−ノルボルニル)−4−フェニルピリミジナト]イリジウム(II
I)(略称:[Ir(nbppm)(acac)])、(アセチルアセトナト)ビス[
5−メチル−6−(2−メチルフェニル)−4−フェニルピリミジナト]イリジウム(I
II)(略称:[Ir(mpmppm)(acac)])、(アセチルアセトナト)ビ
ス(4,6−ジフェニルピリミジナト)イリジウム(III)(略称:[Ir(dppm
(acac)])のようなピリミジン骨格を有する有機金属イリジウム錯体や、(ア
セチルアセトナト)ビス(3,5−ジメチル−2−フェニルピラジナト)イリジウム(I
II)(略称:[Ir(mppr−Me)(acac)])、(アセチルアセトナト)
ビス(5−イソプロピル−3−メチル−2−フェニルピラジナト)イリジウム(III)
(略称:[Ir(mppr−iPr)(acac)])のようなピラジン骨格を有する
有機金属イリジウム錯体や、トリス(2−フェニルピリジナト−N,C2’)イリジウム
(III)(略称:[Ir(ppy)])、ビス(2−フェニルピリジナト−N,C
)イリジウム(III)アセチルアセトナート(略称:[Ir(ppy)(acac
)])、ビス(ベンゾ[h]キノリナト)イリジウム(III)アセチルアセトナート(
略称:[Ir(bzq)(acac)])、トリス(ベンゾ[h]キノリナト)イリジ
ウム(III)(略称:[Ir(bzq)])、トリス(2−フェニルキノリナト−N
,C2’)イリジウム(III)(略称:[Ir(pq)])、ビス(2−フェニルキ
ノリナト−N,C2’)イリジウム(III)アセチルアセトナート(略称:[Ir(p
q)(acac)])のようなピリジン骨格を有する有機金属イリジウム錯体の他、ト
リス(アセチルアセトナト)(モノフェナントロリン)テルビウム(III)(略称:[
Tb(acac)(Phen)])のような希土類金属錯体が挙げられる。なお、ピリ
ミジン骨格を有する有機金属イリジウム錯体は、信頼性や発光効率にも際だって優れるた
め、特に好ましい。赤色燐光物質の例としては、(ジイソブチリルメタナト)ビス[4,
6−ビス(3−メチルフェニル)ピリミジナト]イリジウム(III)(略称:[Ir(
5mdppm)(dibm)])、ビス[4,6−ビス(3−メチルフェニル)ピリミ
ジナト](ジピバロイルメタナト)イリジウム(III)(略称:[Ir(5mdppm
(dpm)])、ビス[4,6−ジ(ナフタレン−1−イル)ピリミジナト](ジピ
バロイルメタナト)イリジウム(III)(略称:[Ir(d1npm)(dpm)]
)のようなピリミジン骨格を有する有機金属イリジウム錯体や、(アセチルアセトナト)
ビス(2,3,5−トリフェニルピラジナト)イリジウム(III)(略称:[Ir(t
ppr)(acac)])、ビス(2,3,5−トリフェニルピラジナト)(ジピバロ
イルメタナト)イリジウム(III)(略称:[Ir(tppr)(dpm)])、(
アセチルアセトナト)ビス[2,3−ビス(4−フルオロフェニル)キノキサリナト]イ
リジウム(III)(略称:[Ir(Fdpq)(acac)])のようなピラジン骨
格を有する有機金属イリジウム錯体や、トリス(1−フェニルイソキノリナト−N,C
)イリジウム(III
)(略称:[Ir(piq)])、ビス(1−フェニルイソキノリナト−N,C2’
イリジウム(III)アセチルアセトナート(略称:[Ir(piq)(acac)]
)のようなピリジン骨格を有する有機金属イリジウム錯体の他、2,3,7,8,12,
13,17,18−オクタエチル−21H,23H−ポルフィリン白金(II)(略称:
PtOEP)のような白金錯体や、トリス(1,3−ジフェニル−1,3−プロパンジオ
ナト)(モノフェナントロリン)ユーロピウム(III)(略称:[Eu(DBM)
Phen)])、トリス[1−(2−テノイル)−3,3,3−トリフルオロアセトナト
](モノフェナントロリン)ユーロピウム(III)(略称:[Eu(TTA)(Ph
en)])のような希土類金属錯体が挙げられる。なお、ピリミジン骨格を有する有機金
属イリジウム錯体は、信頼性や発光効率にも際だって優れるため、特に好ましい。また、
ピラジン骨格を有する有機金属イリジウム錯体は、色度の良い赤色発光が得られるため、
白色発光素子に適用することで演色性を高めることができる。なお、ベンゾフロピリミジ
ン骨格を有する化合物も、青色から紫外領域の発光を呈することから、発光材料としての
使用も可能である。ベンゾフロピリミジン骨格を有する化合物を用いても良い。
また、以上で述べた物質の他、様々な物質の中から選択してもよい。
上記発光物質を分散するホスト材料としては、ベンゾフロピリミジン骨格を有する化合物
を用いることが好適である。
ベンゾフロピリミジン骨格を有する化合物は、バンドギャップが広く、高い三重項励起
準位(T1準位)を有するため、青色を発する蛍光物質や緑色から青色の間の色を発する
燐光物質など、エネルギーの高い発光を呈する発光物質を分散するホスト材料として特に
好適に用いることができる。もちろん、青色より長波長の蛍光を発する蛍光物質や、緑色
よりも長波長の燐光を発する燐光物質などを分散するホスト材料としても用いることが可
能である。また、当該化合物はキャリア輸送性(特に電子輸送性)が高いため、駆動電圧
の小さい発光素子を実現可能である。
また、ベンゾフロピリミジン骨格を有する化合物は発光層に隣接するキャリア輸送層(
好ましくは電子輸送層)を構成する材料として用いても有効である。当該化合物が広いバ
ンドギャップ若しくは高い三重項励起準位(T1準位)を有することで、発光材料が青色
の蛍光や緑色から青色の燐光など、エネルギーの高い発光を呈する材料であったとしても
、ホスト材料上で再結合したキャリアのエネルギーを、発光物質へ有効に移動させること
が可能となり、発光効率の高い発光素子を作製することが可能となる。なお、上記化合物
をホスト材料又はキャリア輸送層を構成する材料として用いる場合、発光材料としては、
当該化合物よりもバンドギャップが狭い若しくは一重項励起準位(S1準位)や三重項励
起準位(T1準位)が低い物質を選択することが好ましいが、これに限られることはない
上記ホスト材料として、ベンゾフロピリミジン骨格を有する化合物を使用しない場合、用
いることが可能な材料を以下に例示する。
電子輸送性を有する材料としては、ビス(10−ヒドロキシベンゾ[h]キノリナト)ベ
リリウム(II)(略称:BeBq)、ビス(2−メチル−8−キノリノラト)(4−
フェニルフェノラト)アルミニウム(III)(略称:BAlq)、ビス(8−キノリノ
ラト)亜鉛(II)(略称:Znq)、ビス[2−(2−ベンゾオキサゾリル)フェノラ
ト]亜鉛(II)(略称:ZnPBO)、ビス[2−(2−ベンゾチアゾリル)フェノラ
ト]亜鉛(II)(略称:ZnBTZ)などの金属錯体や、2−(4−ビフェニリル)−
5−(4−tert−ブチルフェニル)−1,3,4−オキサジアゾール(略称:PBD
)、3−(4−ビフェニリル)−4−フェニル−5−(4−tert−ブチルフェニル)
−1,2,4−トリアゾール(略称:TAZ)、1,3−ビス[5−(p−tert−ブ
チルフェニル)−1,3,4−オキサジアゾール−2−イル]ベンゼン(略称:OXD−
7)、9−[4−(5−フェニル−1,3,4−オキサジアゾール−2−イル)フェニル
]−9H−カルバゾール(略称:CO11)、2,2’,2’’−(1,3,5−ベンゼ
ントリイル)トリス(1−フェニル−1H−ベンゾイミダゾール)(略称:TPBI)、
2−[3−(ジベンゾチオフェン−4−イル)フェニル]−1−フェニル−1H−ベンゾ
イミダゾール(略称:mDBTBIm−II)などのポリアゾール骨格を有する複素環化
合物や、2−[3−(ジベンゾチオフェン−4−イル)フェニル]ジベンゾ[f,h]キ
ノキサリン(略称:2mDBTPDBq−II)、2−[3’−(ジベンゾチオフェン−
4−イル)ビフェニル−3−イル]ジベンゾ[f,h]キノキサリン(略称:2mDBT
BPDBq−II)、2−[3’−(9H−カルバゾール−9−イル)ビフェニル−3−
イル]ジベンゾ[f,h]キノキサリン(略称:2mCzBPDBq)、4,6−ビス[
3−(フェナントレン−9−イル)フェニル]ピリミジン(略称:4,6mPnP2Pm
)、4,6−ビス[3−(4−ジベンゾチエニル)フェニル]ピリミジン(略称:4,6
mDBTP2Pm−II)などのジアジン骨格を有する複素環化合物や、3,5−ビス[
3−(9H−カルバゾール−9−イル)フェニル]ピリジン(略称:35DCzPPy)
、1,3,5−トリ[3−(3−ピリジル)フェニル]ベンゼン(略称:TmPyPB)
などのピリジン骨格を有する複素環化合物が挙げられる。上述した中でも、ジアジン骨格
を有する複素環化合物やピリジン骨格を有する複素環化合物は、信頼性が良好であり好ま
しい。特に、ジアジン(ピリミジンやピラジン)骨格を有する複素環化合物は、電子輸送
性が高く、駆動電圧低減にも寄与する。なお、上述のベンゾフロピリミジン骨格を有する
化合物は、電子輸送性が比較的大きく、電子輸送性を有する材料に分類される。
また、上記ホスト材料として用いることが可能な、正孔輸送性を有する材料としては、4
,4’−ビス[N−(1−ナフチル)−N−フェニルアミノ]ビフェニル(略称:NPB
)、N,N’−ビス(3−メチルフェニル)−N,N’−ジフェニル−[1,1’−ビフ
ェニル]−4,4’−ジアミン(略称:TPD)、4,4’−ビス[N−(スピロ−9,
9’−ビフルオレン−2−イル)−N−フェニルアミノ]ビフェニル(略称:BSPB)
、4−フェニル−4’−(9−フェニルフルオレン−9−イル)トリフェニルアミン(略
称:BPAFLP)、4−フェニル−3’−(9−フェニルフルオレン−9−イル)トリ
フェニルアミン(略称:mBPAFLP)、4−フェニル−4’−(9−フェニル−9H
−カルバゾール−3−イル)トリフェニルアミン(略称:PCBA1BP)、4,4’−
ジフェニル−4’’−(9−フェニル−9H−カルバゾール−3−イル)トリフェニルア
ミン(略称:PCBBi1BP)、4−(1−ナフチル)−4’−(9−フェニル−9H
−カルバゾール−3−イル)トリフェニルアミン(略称:PCBANB)、4,4’−ジ
(1−ナフチル)−4’’−(9−フェニル−9H−カルバゾール−3−イル)トリフェ
ニルアミン(略称:PCBNBB)、9,9−ジメチル−N−フェニル−N−[4−(9
−フェニル−9H−カルバゾール−3−イル)フェニル]フルオレン−2−アミン(略称
:PCBAF)、N−フェニル−N−[4−(9−フェニル−9H−カルバゾール−3−
イル)フェニル]スピロ−9,9’−ビフルオレン−2−アミン(略称:PCBASF)
などの芳香族アミン骨格を有する化合物や、1,3−ビス(N−カルバゾリル)ベンゼン
(略称:mCP)、4,4’−ジ(N−カルバゾリル)ビフェニル(略称:CBP)、3
,6−ビス(3,5−ジフェニルフェニル)−9−フェニルカルバゾール(略称:CzT
P)、3,3’−ビス(9−フェニル−9H−カルバゾール)(略称:PCCP)などの
カルバゾール骨格を有する化合物や、4,4’,4’’−(ベンゼン−1,3,5−トリ
イル)トリ(ジベンゾチオフェン)(略称:DBT3P−II)、2,8−ジフェニル−
4−[4−(9−フェニル−9H−フルオレン−9−イル)フェニル]ジベンゾチオフェ
ン(略称:DBTFLP−III)、4−[4−(9−フェニル−9H−フルオレン−9
−イル)フェニル]−6−フェニルジベンゾチオフェン(略称:DBTFLP−IV)な
どのチオフェン骨格を有する化合物や、4,4’,4’’−(ベンゼン−1,3,5−ト
リイル)トリ(ジベンゾフラン)(略称:DBF3P−II)、4−{3−[3−(9−
フェニル−9H−フルオレン−9−イル)フェニル]フェニル}ジベンゾフラン(略称:
mmDBFFLBi−II)などのフラン骨格を有する化合物が挙げられる。上述した中
でも、芳香族アミン骨格を有する化合物やカルバゾール骨格を有する化合物は、信頼性が
良好であり、また、正孔輸送性が高く、駆動電圧低減にも寄与するため好ましい。
なお、ホスト材料としては、発光物質が燐光物質の場合は、当該燐光物質の三重項励起
準位(T1準位)よりも大きい三重項励起準位(T1準位)を有する物質を選択し、蛍光
物質の場合は当該蛍光物質よりもバンドギャップが大きい物質を選択することが好ましい
。また、発光層には、ホスト材料と燐光物質の他に、第3の物質が含まれていても良い。
ここで、燐光物質を用いた場合に、より発光効率の高い発光素子を得るための、ホスト
材料と、燐光物質とのエネルギー移動について考える。キャリアの再結合は、ホスト材料
と燐光物質との両方で行われるため、発光効率の向上のためには、ホスト材料から燐光物
質へのエネルギー移動を効率化する必要がある。
ホスト材料から燐光物質へのエネルギー移動には二つの機構が提唱されている。一つはデ
クスター機構、もう一つがフェルスター機構である。以下に各機構について説明する。こ
こで、励起エネルギーを与える側の分子をホスト分子、励起エネルギーを受け取る側の分
子をゲスト分子と記す。
≪フェルスター機構(双極子−双極子相互作用)≫
フェルスター機構は、エネルギー移動に、分子間の直接的接触を必要としない。ホスト分
子及びゲスト分子間の双極子振動の共鳴現象を通じてエネルギー移動が起こる。双極子振
動の共鳴現象によってホスト分子がゲスト分子にエネルギーを受け渡し、ホスト分子が基
底状態になり、ゲスト分子が励起状態になる。フェルスター機構の速度定数k →g
数式(1)に示す。
数式(1)において、νは、振動数を表し、f’(ν)は、ホスト分子の規格化された
発光スペクトル(一重項励起状態からのエネルギー移動を論じる場合は蛍光スペクトル、
三重項励起状態からのエネルギー移動を論じる場合は燐光スペクトル)を表し、ε(ν
)は、ゲスト分子のモル吸光係数を表し、Nは、アボガドロ数を表し、nは、媒体の屈折
率を表し、Rは、ホスト分子とゲスト分子の分子間距離を表し、τは、実測される励起状
態の寿命(蛍光寿命や燐光寿命)を表し、cは、光速を表し、φは、発光量子収率(一重
項励起状態からのエネルギー移動を論じる場合は蛍光量子収率、三重項励起状態からのエ
ネルギー移動を論じる場合は燐光量子収率)を表し、Kは、ホスト分子とゲスト分子の
遷移双極子モーメントの配向を表す係数(0〜4)である。なお、ランダム配向の場合は
=2/3である。
≪デクスター機構(電子交換相互作用)≫
デクスター機構は、ホスト分子とゲスト分子が軌道の重なりを生じる接触有効距離に近づ
き、励起状態のホスト分子の電子と基底状態のゲスト分子の電子の交換を通じてエネルギ
ー移動が起こる。デクスター機構の速度定数k →gを数式(2)に示す。
数式(2)において、hは、プランク定数であり、Kは、エネルギーの次元を持つ定数で
あり、νは、振動数を表し、f’(ν)は、ホスト分子の規格化された発光スペクトル
(一重項励起状態からのエネルギー移動を論じる場合は蛍光スペクトル、三重項励起状態
からのエネルギー移動を論じる場合は燐光スペクトル)を表し、ε’(ν)は、ゲスト
分子の規格化された吸収スペクトルを表し、Lは、実効分子半径を表し、Rは、ホスト分
子とゲスト分子の分子間距離を表す。
ここで、ホスト分子からゲスト分子へのエネルギー移動効率φETは、数式(3)で表さ
れる。kは、発光過程(一重項励起状態からのエネルギー移動を論じる場合は蛍光、三
重項励起状態からのエネルギー移動を論じる場合は燐光)の速度定数を表し、kは、非
発光過程(熱失活や項間交差)の速度定数を表し、τは、実測される励起状態の寿命を表
す。
まず、数式(3)より、エネルギー移動効率ΦETを高くするためには、エネルギー移動
の速度定数k →gを、他の競合する速度定数k+k(=1/τ)に比べて遙かに
大きくすれば良いことがわかる。そして、そのエネルギー移動の速度定数k →gを大
きくするためには、数式(1)及び数式(2)より、フェルスター機構、デクスター機構
のどちらの機構においても、ホスト分子の発光スペクトル(一重項励起状態からのエネル
ギー移動を論じる場合は蛍光スペクトル、三重項励起状態からのエネルギー移動を論じる
場合は燐光スペクトル)とゲスト分子の吸収スペクトルとの重なりが大きい方が良いこと
がわかる。
ここで、ホスト分子の発光スペクトルとゲスト分子の吸収スペクトルとの重なりを考える
上で、ゲスト分子の吸収スペクトルにおける最も長波長(低エネルギー)側の吸収帯が重
要である。
本実施の形態では、ゲスト材料として燐光性化合物を用いる。燐光性化合物の吸収スペク
トルにおいて、最も発光に強く寄与すると考えられている吸収帯は、基底状態から三重項
励起状態への直接遷移に相当する吸収波長近傍にあり、それは最も長波長側に現れる吸収
帯である。このことから、ホスト材料の発光スペクトル(蛍光スペクトル及び燐光スペク
トル)は、燐光性化合物の吸収スペクトルの最も長波長側の吸収帯と重なることが好まし
いと考えられる。
例えば、有機金属錯体、特に発光性のイリジウム錯体において、最も長波長側の吸収帯と
して、500〜600nm付近にブロードな吸収帯が現れる場合が多い。この吸収帯は、
主として、三重項MLCT(Metal to Ligand Charge Tran
sfer)遷移に由来する。ただし、該吸収帯には三重項π−π遷移や一重項MLCT
遷移に由来する吸収も一部含まれ、これらが重なって、吸収スペクトルの最も長波長側に
ブロードな吸収帯を形成していると考えられる。したがって、ゲスト材料に、有機金属錯
体(特にイリジウム錯体)を用いるときは、このように最も長波長側に存在するブロード
な吸収帯と、ホスト材料の発光スペクトルが大きく重なる状態が好ましい。
ここでまず、ホスト材料の三重項励起状態からのエネルギー移動を考えてみる。上述の議
論から、三重項励起状態からのエネルギー移動においては、ホスト材料の燐光スペクトル
とゲスト材料の最も長波長側の吸収帯との重なりが大きくなればよい。
しかしながら、このとき問題となるのは、ホスト分子の一重項励起状態からのエネルギー
移動である。三重項励起状態からのエネルギー移動に加え、一重項励起状態からのエネル
ギー移動も効率よく行おうとすると、上述の議論から、ホスト材料の燐光スペクトルだけ
でなく、蛍光スペクトルをもゲスト材料の最も長波長側の吸収帯と重ねるように設計しな
ければならない。換言すれば、ホスト材料の蛍光スペクトルが、燐光スペクトルと同じよ
うな位置に来るようにホスト材料を設計しなければ、ホスト材料の一重項励起状態及び三
重項励起状態の双方からのエネルギー移動を効率よく行うことはできないということにな
る。
ところが、一般に、S1準位とT1準位は大きく異なる(S1準位>T1準位)ため、蛍
光の発光波長と燐光の発光波長も大きく異なる(蛍光の発光波長<燐光の発光波長)。例
えば、燐光性化合物を用いた発光素子において良く用いられる4,4’−ジ(N−カルバ
ゾリル)ビフェニル(略称:CBP)は、500nm付近に燐光スペクトルを有するが、
一方で蛍光スペクトルは400nm付近であり、100nmもの隔たりがある。この例か
ら考えてみても、ホスト材料の蛍光スペクトルが燐光スペクトルと同じような位置に来る
ようにホスト材料を設計することは、極めて困難である。
また、S1準位はT1準位よりも高いため、蛍光スペクトルがゲスト材料の最も長波長側
の吸収スペクトルに近接するような波長にあるホスト材料のT1準位は、ゲスト材料のT
1準位を下回ってしまう。
そこで、燐光物質を発光物質として用いる場合、発光層に、ホスト材料、発光物質の他に
第3の物質を含み、ホスト材料および第3の物質は、励起錯体(エキサイプレックスとも
言う)を形成する組み合わせであることが好ましい。
この場合、発光層におけるキャリア(電子及びホール)の再結合の際にホスト材料と第
3の物質は、励起錯体を形成する。励起錯体の蛍光スペクトルは、ホスト材料単体、及び
第3の物質単体の蛍光スペクトルより長波長側にスペクトルを有する発光となるため、ホ
スト材料及び第3の物質のT1準位をゲスト材料のT1準位より高く保ったまま、一重項
励起状態からのエネルギー移動を最大限に高めることができる。また、励起錯体はT1準
位とS1準位が近接している状態であるため、蛍光スペクトルと燐光スペクトルがほぼ同
じ位置に存在する。このことから、ゲスト分子の一重項基底状態から三重項励起状態への
遷移に相当する吸収(ゲスト分子の吸収スペクトルにおける最も長波長側に存在するブロ
ードな吸収帯)に励起錯体の蛍光スペクトル及び燐光スペクトルの両方を大きく重ねるこ
とが可能となるため、エネルギー移動効率が高い発光素子を得ることができる。
第3の物質としては、上記ホスト材料や添加物として用いることが可能な材料として挙げ
た材料を用いることができる。また、ホスト材料及び第3の物質は、励起錯体を生じる組
み合わせであればよいが、電子を受け取りやすい化合物(電子輸送性を有する化合物)と
、ホールを受け取りやすい化合物(正孔輸送性を有する化合物)とを組み合わせることが
好ましい。
電子輸送性を有する化合物とホール輸送性を有する化合物でホスト材料と第3の物質を構
成する場合、その混合比によってキャリアバランスを制御することもできる。具体的には
、ホスト材料:第3の物質(又は添加物)=1:9〜9:1の範囲が好ましい。なお、こ
の際、一種類の発光物質が分散した発光層を2層に分割し、ホスト材料と第3の物質の混
合割合を異ならせる構成としても良い。これにより、発光素子のキャリアバランスを最適
化することができ、寿命を向上させることが可能となる。また、一方の発光層を正孔輸送
性の層とし、他方の発光層を電子輸送性の層としても良い。
以上のような構成を有する発光層は、複数の材料で構成されている場合、真空蒸着法で
の共蒸着や、混合溶液としてインクジェット法やスピンコート法やディップコート法など
を用いて作製することができる。
電子輸送層114は、電子輸送性を有する物質を含む層である。例えば、トリス(8−
キノリノラト)アルミニウム(略称:Alq)、トリス(4−メチル−8−キノリノラト
)アルミニウム(略称:Almq)、ビス(10−ヒドロキシベンゾ[h]キノリナト
)ベリリウム(略称:BeBq)、ビス(2−メチル−8−キノリノラト)(4−フェ
ニルフェノラト)アルミニウム(略称:BAlq)など、キノリン骨格またはベンゾキノ
リン骨格を有する金属錯体等からなる層である。また、この他ビス[2−(2−ヒドロキ
シフェニル)ベンズオキサゾラト]亜鉛(略称:Zn(BOX))、ビス[2−(2−
ヒドロキシフェニル)ベンゾチアゾラト]亜鉛(略称:Zn(BTZ))などのオキサ
ゾール系、チアゾール系配位子を有する金属錯体なども用いることができる。さらに、金
属錯体以外にも、2−(4−ビフェニリル)−5−(4−tert−ブチルフェニル)−
1,3,4−オキサジアゾール(略称:PBD)や、1,3−ビス[5−(p−tert
−ブチルフェニル)−1,3,4−オキサジアゾール−2−イル]ベンゼン(略称:OX
D−7)、3−(4−ビフェニリル)−4−フェニル−5−(4−tert−ブチルフェ
ニル)−1,2,4−トリアゾール(略称:TAZ)、バソフェナントロリン(略称:B
Phen)、バソキュプロイン(略称:BCP)なども用いることができる。ここに述べ
た物質は、主に10−6cm/Vs以上の電子移動度を有する物質である。なお、正孔
よりも電子の輸送性の高い物質であれば、上記以外の物質を電子輸送層として用いても構
わない。
また、ベンゾフロピリミジン骨格を有する化合物を電子輸送層114を構成する材料と
して用いても良い。ベンゾフロピリミジン骨格を有する化合物は、バンドギャップが広く
、三重項励起準位(T1準位)の高い物質であるため、発光層における励起エネルギーが
電子輸送層114に移動することを有効に防ぎ、それを原因とする発光効率の低下を抑制
し、発光効率の高い発光素子を得ることが可能となる。また、ベンゾフロピリミジン骨格
を有する化合物は、キャリア輸送性に優れるため、駆動電圧の小さい発光素子を提供する
ことが可能となる。
また、電子輸送層は、単層のものだけでなく、上記物質からなる層が二層以上積層した
ものとしてもよい。
また、電子輸送層と発光層との間に電子キャリアの移動を制御する層を設けても良い。
これは上述したような電子輸送性の高い材料に、電子トラップ性の高い物質を少量添加し
た層であって、電子キャリアの移動を抑制することによって、キャリアバランスを調節す
ることが可能となる。このような構成は、発光層を電子が突き抜けてしまうことにより発
生する問題(例えば素子寿命の低下)の抑制に大きな効果を発揮する。
また、発光層のホスト材料と、電子輸送層を構成する材料には、共通する骨格が存在する
ことが好ましい。これによって、キャリアの移動がよりスムーズになり、駆動電圧の低減
させることができる。さらに、上記ホスト材料と、電子輸送層を構成する材料を同じ物質
で構成すると効果が高い。
また、電子輸送層114と第2の電極102との間に、第2の電極102に接して電子
注入層115を設けてもよい。電子注入層115としては、リチウム、カルシウム、フッ
化リチウム(LiF)、フッ化セシウム(CsF)、フッ化カルシウム(CaF)等を
用いることができる。また、電子輸送性を有する物質と、当該物質に対する電子供与性を
有する物質(以下単に電子供与性物質と証する)との複合材料を用いることもできる。電
子供与性物質としては、アルカリ金属又はアルカリ土類金属又はそれらの化合物を挙げる
ことができる。なお、電子注入層115として、このような複合材料を用いることにより
、第2の電極102からの電子注入が効率良く行われるためより好ましい構成となる。こ
の構成とすることにより、陰極として、仕事関数の小さい材料だけでなく、その他の導電
材料を用いることも可能となる。
陰極として機能する電極を形成する物質としては、仕事関数の小さい(具体的には3.
8eV以下)金属、合金、電気伝導性化合物、およびこれらの混合物などを用いることが
できる。このような陰極材料の具体例としては、元素周期表の第1族または第2族に属す
る元素、すなわちリチウム(Li)やセシウム(Cs)等のアルカリ金属、およびマグネ
シウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)等のアルカリ土類金属及
びこれらを含む合金(MgAg、AlLi)やユウロピウム(Eu)、イッテルビウム(
Yb)等の希土類金属およびこれらを含む合金等が挙げられる。しかしながら、第2の電
極102と電子輸送層との間に、電子注入層を設けることにより、仕事関数の大小に関わ
らず、Al、Ag、ITO、ケイ素若しくは酸化ケイ素を含有した酸化インジウム−酸化
スズ等様々な導電性材料を第2の電極102として用いることができる。これら導電性材
料は、スパッタリング法やインクジェット法、スピンコート法等を用いて成膜することが
可能である。
また、EL層103の形成方法としては、乾式法、湿式法を問わず、種々の方法を用い
ることができる。例えば、真空蒸着法、インクジェット法またはスピンコート法など用い
ても構わない。また各電極または各層ごとに異なる成膜方法を用いて形成しても構わない
電極についても、ゾル−ゲル法や、金属材料のペーストを用いて湿式法で形成してもよ
い。また、スパッタリング法や真空蒸着法などの乾式法を用いて形成しても良い。
なお、第1の電極101と第2の電極102との間に設けられるEL層の構成は、上記
のものには限定されない。しかし、発光領域と電極やキャリア注入層に用いられる金属と
が近接することによって生じる消光が抑制されるように、第1の電極101および第2の
電極102から離れた部位に正孔と電子とが再結合する発光領域を設ける構成が好ましい
また、直接発光層に接する正孔輸送層や電子輸送層、特に発光層113における発光領
域に近い方に接するキャリア輸送層は、発光層で生成した励起子からのエネルギー移動を
抑制するため、そのエネルギーギャップが発光層を構成する発光物質もしくは、発光層に
含まれる発光物質が有するエネルギーギャップより大きいエネルギーギャップを有する物
質で構成することが好ましい。
以上のような構成を有する発光素子は、第1の電極101と第2の電極102との間に
生じた電位差により電流が流れ、発光性の高い物質を含む層である発光層113において
正孔と電子とが再結合し、発光するものである。つまり発光層113に発光領域が形成さ
れるような構成となっている。
発光は、第1の電極101または第2の電極102のいずれか一方または両方を通って
外部に取り出される。従って、第1の電極101または第2の電極102のいずれか一方
または両方は、透光性を有する電極で成る。第1の電極101のみが透光性を有する電極
である場合、発光は第1の電極101を通って基板側から取り出される。また、第2の電
極102のみが透光性を有する電極である場合、発光は第2の電極102を通って基板と
逆側から取り出される。第1の電極101および第2の電極102がいずれも透光性を有
する電極である場合、発光は第1の電極101および第2の電極102を通って、基板側
および基板と逆側の両方から取り出される。
本実施の形態における発光素子は、エネルギーギャップの大きいベンゾフロピリミジン
骨格を有する化合物が用いられていることから、発光物質がエネルギーギャップの大きい
、青色を発する蛍光物質や緑色から青色の間の色を発する燐光物質であっても、効率良く
発光させることができ、発光効率の良好な発光素子を得ることができるようになる。この
ことで、より低消費電力の発光素子を提供することが可能となる。また、ベンゾフロピリ
ミジン骨格を有する化合物は、キャリア輸送性に優れることから、駆動電圧の小さい発光
素子を提供することが可能となる。
このような発光素子はガラス、プラスチックなどからなる基板を支持体として作製すれ
ばよい。一基板上にこのような発光素子を複数作製することで、パッシブマトリクス型の
発光装置を作製することができる。また、ガラス、プラスチックなどからなる基板上に、
トランジスタを形成し、トランジスタと電気的に接続された電極上に当該発光素子を作製
してもよい。これにより、トランジスタによって発光素子の駆動を制御するアクティブマ
トリクス型の発光装置を作製できる。なお、トランジスタの構造は、特に限定されない。
スタガ型のTFTでもよいし逆スタガ型のTFTでもよい。また、TFTに用いる半導体
の結晶性についても特に限定されない。また、TFT基板に形成される駆動用回路につい
ても、N型およびP型のTFTからなるものでもよいし、若しくはN型のTFTまたはP
型のTFTのいずれか一方からのみなるものであってもよい。TFTを構成する半導体層
の材料としては、シリコン(Si)及びゲルマニウム(Ge)等の元素周期表における第
14族元素、ガリウムヒ素及びインジウムリン等の化合物、並びに酸化亜鉛及び酸化スズ
等の酸化物など、半導体特性を示す物質であればどのような材料を用いてもよい。半導体
特性を示す酸化物(酸化物半導体)としては、インジウム、ガリウム、アルミニウム、亜
鉛及びスズから選んだ元素の複合酸化物を用いることができる。例えば、酸化亜鉛(Zn
O)、酸化亜鉛を含む酸化インジウム(Indium Zinc Oxide)、並びに
酸化インジウム、酸化ガリウム、及び酸化亜鉛からなる酸化物(IGZO:Indium
Gallium Zinc Oxide)をその例に挙げることができる。また、有機
半導体を用いても良い。当該半導体層は、結晶質構造、非晶質構造のどちらの構造であっ
てもよい。また、結晶質構造の半導体層の具体例としては、単結晶半導体、多結晶半導体
、若しくは微結晶半導体が挙げられる。
(実施の形態4)
本実施の形態は、複数の発光ユニットを積層した構成の発光素子(以下、積層型素子と
もいう)の態様について、図1(B)を参照して説明する。この発光素子は、第1の電極
と第2の電極との間に、複数の発光ユニットを有する発光素子である。一つの発光ユニッ
トは、実施の形態3で示したEL層103と同様な構成を有する。つまり、実施の形態3
で示した発光素子は、1つの発光ユニットを有する発光素子であり、本実施の形態では、
複数の発光ユニットを有する発光素子ということができる。
図1(B)において、第1の電極501と第2の電極502との間には、第1の発光ユ
ニット511と第2の発光ユニット512が積層されており、第1の発光ユニット511
と第2の発光ユニット512との間には電荷発生層513が設けられている。第1の電極
501と第2の電極502はそれぞれ実施の形態3における第1の電極101と第2の電
極102に相当し、実施の形態3で説明したものと同様なものを適用することができる。
また、第1の発光ユニット511と第2の発光ユニット512は同じ構成であっても異な
る構成であってもよい。
電荷発生層513には、有機化合物と金属酸化物の複合材料が含まれている。この有機
化合物と金属酸化物の複合材料は、実施の形態3で示した正孔注入層に用いることができ
る複合材料を用いることができる。有機化合物としては、芳香族アミン化合物、カルバゾ
ール化合物、芳香族炭化水素、高分子化合物(オリゴマー、デンドリマー、ポリマー等)
など、種々の化合物を用いることができる。なお、有機化合物としては、正孔移動度が1
×10−6cm/Vs以上であるものを適用することが好ましい。ただし、電子よりも
正孔輸送性の高い物質であれば、これら以外のものを用いてもよい。有機化合物と金属酸
化物の複合材料は、キャリア注入性、キャリア輸送性に優れているため、低電圧駆動、低
電流駆動を実現することができる。なお、陽極側の界面が電荷発生層に接している発光ユ
ニットは、電荷発生層が正孔輸送層の役割も担うことができるため、正孔輸送層を設けな
くとも良い。
なお、電荷発生層513は、有機化合物と金属酸化物の複合材料を含む層と他の材料に
より構成される層を組み合わせた積層構造として形成してもよい。例えば、有機化合物と
金属酸化物の複合材料を含む層と、電子供与性物質の中から選ばれた一の化合物と電子輸
送性の高い化合物とを含む層とを組み合わせて形成してもよい。また、有機化合物と金属
酸化物の複合材料を含む層と、透明導電膜とを組み合わせて形成してもよい。
いずれにしても、第1の発光ユニット511と第2の発光ユニット512に挟まれる電
荷発生層513は、第1の電極501と第2の電極502に電圧を印加したときに、一方
の発光ユニットに電子を注入し、他方の発光ユニットに正孔を注入するものであれば良い
。例えば、図1(B)において、第1の電極の電位の方が第2の電極の電位よりも高くな
るように電圧を印加した場合、電荷発生層513は、第1の発光ユニット511に電子を
注入し、第2の発光ユニット512に正孔を注入するものであればよい。
本実施の形態では、2つの発光ユニットを有する発光素子について説明したが、3つ以
上の発光ユニットを積層した発光素子についても、同様に適用することが可能である。本
実施の形態に係る発光素子のように、一対の電極間に複数の発光ユニットを電荷発生層で
仕切って配置することで、電流密度を低く保ったまま、高輝度発光を可能とし、さらに長
寿命な素子を実現できる。また、低電圧駆動が可能で消費電力が低い発光装置を実現する
ことができる。
また、それぞれの発光ユニットの発光色を異なるものにすることで、発光素子全体とし
て、所望の色の発光を得ることができる。例えば、2つの発光ユニットを有する発光素子
において、第1の発光ユニットの発光色と第2の発光ユニットの発光色を補色の関係にな
るようにすることで、発光素子全体として白色発光する発光素子を得ることも可能である
。なお、補色とは、混合すると無彩色になる色同士の関係をいう。つまり、補色の関係に
ある色を発光する物質から得られた光を混合すると、白色発光を得ることができる。また
、3つの発光ユニットを有する発光素子の場合でも同様であり、例えば、第1の発光ユニ
ットの発光色が赤色であり、第2の発光ユニットの発光色が緑色であり、第3の発光ユニ
ットの発光色が青色である場合、発光素子全体としては、白色発光を得ることができる。
また、一方の発光ユニットでは燐光物質を用いた発光層を、他方の発光ユニットでは蛍光
物質を用いた発光層を適用することで、一つの発光素子において蛍光発光、燐光発光の両
方を効率よく発光させることができる。例えば、一方の発光ユニットでは、赤色と緑色の
燐光発光を得、他方の発光ユニットでは青色の蛍光発光を得ることで、発光効率の良好な
白色発光を得ることができる。
本実施の形態の発光素子はベンゾフロピリミジン骨格を有する化合物を含むことから、
発光効率の良好な発光素子とすることができる。また、駆動電圧の小さな発光素子とする
ことができる。又、当該化合物が含まれる発光ユニットは発光物質由来の光を色純度良く
得られるため、発光素子全体としての色の調製が容易となる。
なお、本実施の形態は、他の実施の形態と適宜組み合わせることが可能である。
(実施の形態5)
本実施の形態では、ベンゾフロピリミジン骨格を有する化合物を含む発光素子を用いた
発光装置について説明する。
本実施の形態では、ベンゾフロピリミジン骨格を有する化合物を含む発光素子を用いて
作製された発光装置の一例について図3を用いて説明する。なお、図3(A)は、発光装
置を示す上面図、図3(B)は図3(A)をA−BおよびC−Dで切断した断面図である
。この発光装置は、発光素子618の発光を制御するものとして、点線で示された駆動回
路部(ソース側駆動回路)601、画素部602、駆動回路部(ゲート側駆動回路)60
3を含んでいる。また、604は封止基板、625は乾燥材、605はシール材であり、
シール材605で囲まれた内側は、空間607になっている。
なお、引き回し配線608はソース側駆動回路601及びゲート側駆動回路603に入
力される信号を伝送するための配線であり、外部入力端子となるFPC(フレキシブルプ
リントサーキット)609からビデオ信号、クロック信号、スタート信号、リセット信号
等を受け取る。なお、ここではFPCしか図示されていないが、このFPCにはプリント
配線基板(PWB)が取り付けられていても良い。本明細書における発光装置には、発光
装置本体だけでなく、それにFPCもしくはPWBが取り付けられた状態をも含むものと
する。
次に、断面構造について図3(B)を用いて説明する。素子基板610上には駆動回路
部及び画素部が形成されているが、ここでは、駆動回路部であるソース側駆動回路601
と、画素部602中の一つの画素が示されている。
なお、ソース側駆動回路601はnチャネル型TFT623とpチャネル型TFT62
4とを組み合わせたCMOS回路が形成される。また、駆動回路は、種々のCMOS回路
、PMOS回路もしくはNMOS回路で形成しても良い。また、本実施の形態では、基板
上に駆動回路を形成したドライバ一体型を示すが、必ずしもその必要はなく、駆動回路を
基板上ではなく外部に形成することもできる。
また、画素部602はスイッチング用TFT611と、電流制御用TFT612とその
ドレインに電気的に接続された第1の電極613とを含む複数の画素により形成される。
なお、第1の電極613の端部を覆って絶縁物614が形成されている。ここでは、ポジ
型の感光性樹脂膜を用いることにより形成することができる。
また、上に形成される膜のカバレッジを良好なものとするため、絶縁物614の上端部
または下端部に曲率を有する面が形成されるようにする。例えば、絶縁物614の材料と
してポジ型の感光性アクリルを用いた場合、絶縁物614の上端部のみに曲率半径(0.
2μm〜3μm)を有する曲面を持たせることが好ましい。また、絶縁物614として、
ネガ型の感光材料、或いはポジ型の感光材料のいずれも使用することができる。
第1の電極613上には、EL層616、および第2の電極617がそれぞれ形成され
ている。ここで、陽極として機能する第1の電極613に用いる材料としては、仕事関数
の大きい材料を用いることが望ましい。例えば、ITO膜、またはケイ素を含有したイン
ジウム錫酸化物膜、2〜20wt%の酸化亜鉛を含む酸化インジウム膜、窒化チタン膜、
クロム膜、タングステン膜、Zn膜、Pt膜などの単層膜の他、窒化チタンとアルミニウ
ムを主成分とする膜との積層、窒化チタン膜とアルミニウムを主成分とする膜と窒化チタ
ン膜との3層構造等を用いることができる。なお、積層構造とすると、配線としての抵抗
も低く、良好なオーミックコンタクトがとれ、さらに陽極として機能させることができる
また、EL層616は、蒸着マスクを用いた蒸着法、インクジェット法、スピンコート
法等の種々の方法によって形成される。EL層616は、ベンゾフロピリミジン骨格を有
する化合物を含んでいる。また、EL層616を構成する他の材料としては、低分子化合
物、または高分子化合物(オリゴマー、デンドリマーを含む)であっても良い。
さらに、EL層616上に形成され、陰極として機能する第2の電極617に用いる材
料としては、仕事関数の小さい材料(Al、Mg、Li、Ca、またはこれらの合金や化
合物、MgAg、MgIn、AlLi等)を用いることが好ましい。なお、EL層616
で生じた光が第2の電極617を透過させる場合には、第2の電極617として、膜厚を
薄くした金属薄膜と、透明導電膜(ITO、2〜20wt%の酸化亜鉛を含む酸化インジ
ウム、ケイ素を含有したインジウム錫酸化物、酸化亜鉛(ZnO)等)との積層を用いる
のが良い。
なお、第1の電極613、EL層616、第2の電極617でもって、発光素子が形成
されている。当該発光素子は実施の形態3又は実施の形態4の構成を有する発光素子であ
る。なお、画素部は複数の発光素子が形成されてなっているが、本実施の形態における発
光装置では、実施の形態3又は実施の形態4で説明した構成を有する発光素子と、それ以
外の構成を有する発光素子の両方が含まれていても良い。
さらにシール材605で封止基板604を素子基板610と貼り合わせることにより、
素子基板610、封止基板604、およびシール材605で囲まれた空間607に発光素
子618が備えられた構造になっている。なお、空間607には、充填材が充填されてお
り、不活性気体(窒素やアルゴン等)が充填される場合の他、樹脂若しくは乾燥材又はそ
の両方で充填される場合もある。
なお、シール材605にはエポキシ系樹脂やガラスフリットを用いるのが好ましい。ま
た、これらの材料はできるだけ水分や酸素を透過しない材料であることが望ましい。また
、封止基板604に用いる材料としてガラス基板や石英基板の他、FRP(Fiber
Reinforced Plastics)、PVF(ポリビニルフロライド)、ポリエ
ステルまたはアクリル等からなるプラスチック基板を用いることができる。
以上のようにして、ベンゾフロピリミジン骨格を有する化合物を含む発光素子を用いて
作製された発光装置を得ることができる。
図4には白色発光を呈する発光素子を形成し、着色層(カラーフィルタ)等を設けるこ
とによってフルカラー化した発光装置の例を示す。図4(A)には基板1001、下地絶
縁膜1002、ゲート絶縁膜1003、ゲート電極1006、1007、1008、第1
の層間絶縁膜1020、第2の層間絶縁膜1021、周辺部1042、画素部1040、
駆動回路部1041、発光素子の第1の電極1024W、1024R、1024G、10
24B、隔壁1025、EL層1028、発光素子の第2の電極1029、封止基板10
31、シール材1032などが図示されている。
また、図4(A)では着色層(赤色の着色層1034R、緑色の着色層1034G、青
色の着色層1034B)は透明な基材1033に設けている。また、黒色層(ブラックマ
トリックス)1035をさらに設けても良い。着色層及び黒色層が設けられた透明な基材
1033は、位置合わせし、基板1001に固定する。なお、着色層、及び黒色層は、オ
ーバーコート層1036で覆われている。また、図4(A)においては、光が着色層を透
過せずに外部へと出る発光層と、各色の着色層を透過して外部に光が出る発光層とがあり
、着色層を透過しない光は白、着色層を透過する光は赤、青、緑となることから、4色の
画素で映像を表現することができる。
図4(B)では着色層(赤色の着色層1034R、緑色の着色層1034G、青色の着色
層1034B)をゲート絶縁膜1003と第1の層間絶縁膜1020との間に形成する例
を示した。このように、着色層は基板1001と封止基板1031の間に設けられていて
も良い。
また、以上に説明した発光装置では、TFTが形成されている基板1001側に光を取
り出す構造(ボトムエミッション型)の発光装置としたが、封止基板1031側に発光を
取り出す構造(トップエミッション型)の発光装置としても良い。トップエミッション型
の発光装置の断面図を図5に示す。この場合、基板1001は光を通さない基板を用いる
ことができる。TFTと発光素子の陽極とを接続する接続電極を作製するまでは、ボトム
エミッション型の発光装置と同様に形成する。その後、第3の層間絶縁膜1037を電極
1022を覆って形成する。この絶縁膜は平坦化の役割を担っていても良い。第3の層間
絶縁膜1037は第2の層間絶縁膜と同様の材料の他、他の公知の材料を用いて形成する
ことができる。
発光素子の第1の電極1024W、1024R、1024G、1024Bはここでは陽
極とするが、陰極であっても構わない。また、図5のようなトップエミッション型の発光
装置である場合、第1の電極を反射電極とすることが好ましい。EL層1028の構成は
、実施の形態3又は実施の形態4で説明したような構成とし、白色の発光が得られるよう
な素子構造とする。
図4、図5において、白色の発光が得られるEL層の構成としては、発光層を複数層用
いること、複数の発光ユニットを用いることなどにより実現すればよい。なお、白色発光
を得る構成はこれらに限らないことはもちろんである。
図5のようなトップエミッションの構造では着色層(赤色の着色層1034R、緑色の
着色層1034G、青色の着色層1034B)を設けた封止基板1031で封止を行うこ
とができる。封止基板1031には画素と画素との間に位置するように黒色層(ブラック
マトリックス)1035を設けても良い。着色層(赤色の着色層1034R、緑色の着色
層1034G、青色の着色層1034B)や黒色層(ブラックマトリックス)は図4(A
)のように、オーバーコート層によって覆われていても良い。なお封止基板1031は透
光性を有する基板を用いることとする。
また、ここでは赤、緑、青、白の4色でフルカラー表示を行う例を示したが特に限定さ
れず、赤、緑、青の3色でフルカラー表示を行ってもよい。
本実施の形態における発光装置は、実施の形態3又は実施の形態4に記載の発光素子(
ベンゾフロピリミジン骨格を有する化合物を含む発光素子)を用いているため、良好な特
性を備えた発光装置を得ることができる。具体的には、ベンゾフロピリミジン骨格を有す
る化合物は広いエネルギーギャップや高い三重項励起準位(T1準位)を有し、発光物質
からのエネルギーの移動を抑制することが可能であることから、発光効率の良好な発光素
子を提供することができ、もって、消費電力の低減された発光装置とすることができる。
また、ベンゾフロピリミジン骨格を有する化合物はキャリア輸送性が高いことから駆動電
圧の小さい発光素子を得ることができ、駆動電圧の小さい発光装置を得ることができる。
ここまでは、アクティブマトリクス型の発光装置について説明したが、以下からはパッ
シブマトリクス型の発光装置について説明する。図6には本発明を適用して作製したパッ
シブマトリクス型の発光装置を示す。なお、図6(A)は、発光装置を示す斜視図、図6
(B)は図6(A)をX−Yで切断した断面図である。図6において、基板951上には
、電極952と電極956との間にはEL層955が設けられている。電極952の端部
は絶縁層953で覆われている。そして、絶縁層953上には隔壁層954が設けられて
いる。隔壁層954の側壁は、基板面に近くなるに伴って、一方の側壁と他方の側壁との
間隔が狭くなっていくような傾斜を有する。つまり、隔壁層954の短辺方向の断面は、
台形状であり、底辺(絶縁層953の面方向と同様の方向を向き、絶縁層953と接する
辺)の方が上辺(絶縁層953の面方向と同様の方向を向き、絶縁層953と接しない辺
)よりも短い。このように、隔壁層954を設けることで、静電気等に起因した発光素子
の不良を防ぐことが出来る。また、パッシブマトリクス型の発光装置においても、低駆動
電圧で動作する実施の形態3又は実施の形態4に記載の発光素子(ベンゾフロピリミジン
骨格を有する化合物を含む発光素子)を有することによって、低消費電力で駆動させるこ
とができる。
以上、説明した発光装置は、マトリクス状に配置された多数の微小な発光素子をそれぞ
れ制御することが可能であるため、画像の表現を行う表示装置として好適に利用できる発
光装置である。
(実施の形態6)
本実施の形態では、実施の形態3又は実施の形態4に示す発光素子をその一部に含む電
子機器について説明する。実施の形態3又は実施の形態4に記載の発光素子は、ベンゾフ
ロピリミジン骨格を有する化合物を含むことから、消費電力が低減された発光素子であり
、その結果、本実施の形態に記載の電子機器は、消費電力が低減された表示部を有する電
子機器とすることが可能である。また、実施の形態3又は実施の形態4に記載の発光素子
は、駆動電圧の小さい発光素子であるため、駆動電圧の小さい電子機器とすることが可能
である。
上記発光素子を適用した電子機器として、例えば、テレビジョン装置(テレビ、または
テレビジョン受信機ともいう)、コンピュータ用などのモニタ、デジタルカメラ、デジタ
ルビデオカメラ、デジタルフォトフレーム、携帯電話機(携帯電話、携帯電話装置ともい
う)、携帯型ゲーム機、携帯情報端末、音響再生装置、パチンコ機などの大型ゲーム機な
どが挙げられる。これらの電子機器の具体例を以下に示す。
図7(A)は、テレビジョン装置の一例を示している。テレビジョン装置は、筐体71
01に表示部7103が組み込まれている。また、ここでは、スタンド7105により筐
体7101を支持した構成を示している。表示部7103により、映像を表示することが
可能であり、表示部7103は、実施の形態3又は実施の形態4で説明したものと同様の
発光素子をマトリクス状に配列して構成されている。当該発光素子は、ベンゾフロピリミ
ジン骨格を有する化合物を含むため発光効率の良好な発光素子とすることが可能である。
また、駆動電圧の小さい発光素子とすることが可能である。そのため、当該発光素子で構
成される表示部7103を有するテレビ装置は消費電力の低減されたテレビ装置とするこ
とができる。また、駆動電圧の小さいテレビ装置とすることが可能である。
テレビジョン装置の操作は、筐体7101が備える操作スイッチや、別体のリモコン操
作機7110により行うことができる。リモコン操作機7110が備える操作キー710
9により、チャンネルや音量の操作を行うことができ、表示部7103に表示される映像
を操作することができる。また、リモコン操作機7110に、当該リモコン操作機711
0から出力する情報を表示する表示部7107を設ける構成としてもよい。
なお、テレビジョン装置は、受信機やモデムなどを備えた構成とする。受信機により一
般のテレビ放送の受信を行うことができ、さらにモデムを介して有線または無線による通
信ネットワークに接続することにより、一方向(送信者から受信者)または双方向(送信
者と受信者間、あるいは受信者間同士など)の情報通信を行うことも可能である。
図7(B)はコンピュータであり、本体7201、筐体7202、表示部7203、キ
ーボード7204、外部接続ポート7205、ポインティングデバイス7206等を含む
。なお、このコンピュータは、実施の形態3又は実施の形態4で説明したものと同様の発
光素子をマトリクス状に配列して表示部7203に用いることにより作製される。当該発
光素子は、ベンゾフロピリミジン骨格を有する化合物を含むため発光効率の良好な発光素
子とすることが可能である。また、駆動電圧の小さい発光素子とすることが可能である。
そのため、当該発光素子で構成される表示部7203を有するコンピュータは消費電力の
低減されたコンピュータとすることができる。また、駆動電圧の小さいコンピュータとす
ることが可能である。
図7(C)は携帯型遊技機であり、筐体7301と筐体7302の2つの筐体で構成さ
れており、連結部7303により、開閉可能に連結されている。筐体7301には、実施
の形態3又は実施の形態4で説明したものと同様の発光素子をマトリクス状に配列して作
製された表示部7304が組み込まれ、筐体7302には表示部7305が組み込まれて
いる。また、図7(C)に示す携帯型遊技機は、その他、スピーカ部7306、記録媒体
挿入部7307、LEDランプ7308、入力手段(操作キー7309、接続端子731
0、センサ7311(力、変位、位置、速度、加速度、角速度、回転数、距離、光、液、
磁気、温度、化学物質、音声、時間、硬度、電場、電流、電圧、電力、放射線、流量、湿
度、傾度、振動、におい又は赤外線を測定する機能を含むもの)、マイクロフォン731
2)等を備えている。もちろん、携帯型遊技機の構成は上述のものに限定されず、少なく
とも表示部7304および表示部7305の両方、または一方に実施の形態3又は実施の
形態4で説明したものと同様の発光素子をマトリクス状に配列して作製された表示部を用
いていればよく、その他付属設備が適宜設けられた構成とすることができる。図7(C)
に示す携帯型遊技機は、記録媒体に記録されているプログラム又はデータを読み出して表
示部に表示する機能や、他の携帯型遊技機と無線通信を行って情報を共有する機能を有す
る。なお、図7(C)に示す携帯型遊技機が有する機能はこれに限定されず、様々な機能
を有することができる。上述のような表示部7304を有する携帯型遊技機は、表示部7
304に用いられている発光素子が、ベンゾフロピリミジン骨格を有する化合物を含むこ
とによって、良好な発光効率を有することから、消費電力の低減された携帯型遊技機とす
ることができる。また、表示部7304に用いられている発光素子がベンゾフロピリミジ
ン骨格を有する化合物を含むことによって、低い駆動電圧で駆動させることができること
から、駆動電圧の小さい携帯型遊技機とすることができる。
図7(D)は、携帯電話機の一例を示している。携帯電話機は、筐体7401に組み込
まれた表示部7402の他、操作ボタン7403、外部接続ポート7404、スピーカ7
405、マイク7406などを備えている。なお、携帯電話機は、実施の形態3又は実施
の形態4で説明したものと同様の発光素子をマトリクス状に配列して作製された表示部7
402を有している。当該発光素子は、ベンゾフロピリミジン骨格を有する化合物を含む
ため発光効率の良好な発光素子とすることが可能である。また、駆動電圧の小さい発光素
子とすることが可能である。そのため、当該発光素子で構成される表示部7402を有す
る携帯電話機は消費電力の低減された携帯電話機とすることができる。また、駆動電圧の
小さい携帯電話機とすることが可能である。
図7(D)に示す携帯電話機は、表示部7402を指などで触れることで、情報を入力
することができる構成とすることもできる。この場合、電話を掛ける、或いはメールを作
成するなどの操作は、表示部7402を指などで触れることにより行うことができる。
表示部7402の画面は主として3つのモードがある。第1は、画像の表示を主とする
表示モードであり、第2は、文字等の情報の入力を主とする入力モードである。第3は表
示モードと入力モードの2つのモードが混合した表示+入力モードである。
例えば、電話を掛ける、或いはメールを作成する場合は、表示部7402を文字の入力
を主とする文字入力モードとし、画面に表示させた文字の入力操作を行えばよい。この場
合、表示部7402の画面のほとんどにキーボードまたは番号ボタンを表示させることが
好ましい。
また、携帯電話機内部に、ジャイロ、加速度センサ等の傾きを検出するセンサを有する
検出装置を設けることで、携帯電話機の向き(縦か横か)を判断して、表示部7402の
画面表示を自動的に切り替えるようにすることができる。
また、画面モードの切り替えは、表示部7402を触れること、又は筐体7401の操
作ボタン7403の操作により行われる。また、表示部7402に表示される画像の種類
によって切り替えるようにすることもできる。例えば、表示部に表示する画像信号が動画
のデータであれば表示モード、テキストデータであれば入力モードに切り替える。
また、入力モードにおいて、表示部7402の光センサで検出される信号を検知し、表
示部7402のタッチ操作による入力が一定期間ない場合には、画面のモードを入力モー
ドから表示モードに切り替えるように制御してもよい。
表示部7402は、イメージセンサとして機能させることもできる。例えば、表示部7
402に掌や指で触れ、掌紋、指紋等を撮像することで、本人認証を行うことができる。
また、表示部に近赤外光を発光するバックライトまたは近赤外光を発光するセンシング用
光源を用いれば、指静脈、掌静脈などを撮像することもできる。
なお、本実施の形態に示す構成は、実施の形態1乃至実施の形態5に示した構成を適宜
組み合わせて用いることができる。
以上の様に、実施の形態3又は実施の形態4で説明したような、ベンゾフロピリミジン
骨格を有する化合物を含む発光素子を備えた発光装置の適用範囲は極めて広く、この発光
装置をあらゆる分野の電子機器に適用することが可能である。ベンゾフロピリミジン骨格
を有する化合物を用いることにより、消費電力の低減された電子機器を得ることができる
。また、駆動電圧の小さい電子機器を得ることができる。
また、ベンゾフロピリミジン骨格を有する化合物を含む発光素子は、光源装置に用いる
こともできる。ベンゾフロピリミジン骨格を有する化合物を含む発光素子を光源装置に用
いる一態様を、図8を用いて説明する。なお、光源装置とは、ベンゾフロピリミジン骨格
を有する化合物を含む発光素子を光の照射手段として有し、且つ少なくとも当該発光素子
へ電流を供給する入出力端子部を有するものとする。また、当該発光素子は、封止手段に
よって、外部雰囲気より遮断されていることが好ましい。
図8は、ベンゾフロピリミジン骨格を有する化合物を含む発光素子をバックライトに適
用した液晶表示装置の一例である。図8に示した液晶表示装置は、筐体901、液晶層9
02、バックライト903、筐体904を有し、液晶層902は、ドライバIC905と
接続されている。また、バックライト903には、上記化合物を含む発光素子が用いられ
おり、端子906により、電流が供給されている。
上記化合物を含む発光素子を液晶表示装置のバックライトに適用したことにより、消費
電力の低減されたバックライトが得られる。また、上記化合物を含む発光素子を用いるこ
とで、面発光の照明装置が作製でき、また大面積化も可能である。これにより、バックラ
イトの大面積化が可能であり、液晶表示装置の大面積化も可能になる。さらに、上記化合
物を含む発光素子を適用したバックライトは従来と比較し厚みを小さくできるため、表示
装置の薄型化も可能となる。
図9は、ベンゾフロピリミジン骨格を有する化合物を含む発光素子を、照明装置である
電気スタンドに用いた例である。図9に示す電気スタンドは、筐体2001と、光源20
02を有し、光源2002として上記化合物を含む発光素子が用いられている。
図10は、ベンゾフロピリミジン骨格を有する化合物を含む発光素子を、室内の照明装
置3001に適用した例である。上記化合物を含む発光素子は消費電力の低減された発光
素子であるため、消費電力の低減された照明装置とすることができる。また、上記化合物
を含む発光素子は、大面積化が可能であるため、大面積の照明装置として用いることがで
きる。また、上記化合物を含む発光素子は厚みが小さいため、薄型化した照明装置を作製
することが可能となる。
ベンゾフロピリミジン骨格を有する化合物を含む発光素子は、自動車のフロントガラス
やダッシュボードにも搭載することができる。図11に上記化合物を含む発光素子を自動
車のフロントガラスやダッシュボードに用いる一態様を示す。表示領域5000乃至表示
領域5005は上記化合物を含む発光素子を用いて設けられた表示である。
表示領域5000と表示領域5001は自動車のフロントガラスに設けられた上記化合
物を含む発光素子を搭載した表示装置である。上記化合物を含む発光素子は、第1の電極
と第2の電極を透光性を有する電極で作製することによって、反対側が透けて見える、い
わゆるシースルー状態の表示装置とすることができる。シースルー状態の表示であれば、
自動車のフロントガラスに設置したとしても、視界の妨げになることなく設置することが
できる。なお、駆動のためのトランジスタなどを設ける場合には、有機半導体材料による
有機トランジスタや、酸化物半導体を用いたトランジスタなど、透光性を有するトランジ
スタを用いると良い。
表示領域5002はピラー部分に設けられた上記化合物を含む発光素子を搭載した表示
装置である。表示領域5002には、車体に設けられた撮像手段からの映像を映し出すこ
とによって、ピラーで遮られた視界を補完することができる。また、同様に、ダッシュボ
ード部分に設けられた表示領域5003は車体によって遮られた視界を、自動車の外側に
設けられた撮像手段からの映像を映し出すことによって、死角を補い、安全性を高めるこ
とができる。見えない部分を補完するように映像を映すことによって、より自然に違和感
なく安全確認を行うことができる。
表示領域5004や表示領域5005はナビゲーション情報、スピードメーターやタコ
メーター、走行距離、給油量、ギア状態、エアコンの設定など、その他様々な情報を提供
することができる。表示は使用者の好みに合わせて適宜その表示項目やレイアウトを変更
することができる。なお、これら情報は表示領域5000乃至表示領域5003にも設け
ることができる。また、表示領域5000乃至表示領域5005は照明装置として用いる
ことも可能である。
ベンゾフロピリミジン骨格を有する化合物を含む発光素子は当該化合物を含むことによ
って、駆動電圧の小さい発光素子とすることができ、または消費電力の小さい発光素子と
することができる。このことから、表示領域5000乃至表示領域5005のような大き
な画面を数多く設けても、バッテリーに負荷をかけることが少なく、快適に使用すること
ができることから上記化合物を含む発光素子を用いた発光装置または照明装置は、車載用
の発光装置又は照明装置として好適に用いることができる。
図12(A)及び図12(B)は2つ折り可能なタブレット型端末の一例である。図1
2(A)は、開いた状態であり、タブレット型端末は、筐体9630、表示部9631a
、表示部9631b、表示モード切り替えスイッチ9034、電源スイッチ9035、省
電力モード切り替えスイッチ9036、留め具9033、操作スイッチ9038、を有す
る。なお、当該タブレット端末は、上記化合物を用いた発光素子を備えた発光装置を表示
部9631a、表示部9631bの一方又は両方に用いることにより作製される。
表示部9631aは、一部をタッチパネル領域9632aとすることができ、表示され
た操作キー9637にふれることでデータ入力をすることができる。なお、表示部963
1aにおいては、一例として半分の領域が表示のみの機能を有する構成、もう半分の領域
がタッチパネルの機能を有する構成を示しているが該構成に限定されない。表示部963
1aの全ての領域がタッチパネルの機能を有する構成としても良い。例えば、表示部96
31aの全面をキーボードボタン表示させてタッチパネルとし、表示部9631bを表示
画面として用いることができる。
また、表示部9631bにおいても表示部9631aと同様に、表示部9631bの一
部をタッチパネル領域9632bとすることができる。また、タッチパネルのキーボード
表示切り替えボタン9639が表示されている位置に指やスタイラスなどでふれることで
表示部9631bにキーボードボタンを表示することができる。
また、タッチパネル領域9632aとタッチパネル領域9632bに対して同時にタッ
チ入力することもできる。
また、表示モード切り替えスイッチ9034は、縦表示または横表示などの表示の向き
を切り替え、白黒表示やカラー表示の切り替えなどを選択できる。省電力モード切り替え
スイッチ9036は、タブレット型端末に内蔵している光センサで検出される使用時の外
光の光量に応じて表示の輝度を最適なものとすることができる。タブレット型端末は光セ
ンサだけでなく、ジャイロ、加速度センサ等の傾きを検出するセンサなどの他の検出装置
を内蔵させてもよい。
また、図12(A)では表示部9631bと表示部9631aの表示面積が同じ例を示
しているが特に限定されず、一方のサイズともう一方のサイズが異なっていてもよく、表
示の品質も異なっていてもよい。例えば一方が他方よりも高精細な表示を行える表示パネ
ルとしてもよい。
図12(B)は、閉じた状態であり、本実施の形態におけるタブレット型端末では、筐
体9630、太陽電池9633、充放電制御回路9634、バッテリー9635、DCD
Cコンバータ9636を備える例を示した。なお、図12(B)では充放電制御回路96
34の一例としてバッテリー9635、DCDCコンバータ9636を有する構成につい
て示している。
なお、タブレット型端末は2つ折り可能なため、未使用時に筐体9630を閉じた状態
にすることができる。従って、表示部9631a、表示部9631bを保護できるため、
耐久性に優れ、長期使用する上で信頼性の優れたタブレット型端末を提供できる。
また、この他にも図12(A)及び図12(B)に示したタブレット型端末は、様々な
情報(静止画、動画、テキスト画像など)を表示する機能、カレンダー、日付又は時刻な
どを表示部に表示する機能、表示部に表示した情報をタッチ入力操作又は編集するタッチ
入力機能、様々なソフトウェア(プログラム)によって処理を制御する機能、等を有する
ことができる。
タブレット型端末の表面に装着された太陽電池9633によって、電力をタッチパネル
、表示部、または映像信号処理部等に供給することができる。なお、太陽電池9633は
、筐体9630の一面または二面に設けられていると効率的なバッテリー9635の充電
を行う構成とすることができるため好適である。
また、図12(B)に示す充放電制御回路9634の構成、及び動作について図12(
C)にブロック図を示し説明する。図12(C)には、太陽電池9633、バッテリー9
635、DCDCコンバータ9636、コンバータ9638、スイッチSW1乃至SW3
、表示部9631について示しており、バッテリー9635、DCDCコンバータ963
6、コンバータ9638、スイッチSW1乃至SW3が、図12(B)に示す充放電制御
回路9634に対応する箇所となる。
まず外光により太陽電池9633により発電がされる場合の動作の例について説明する
。太陽電池で発電した電力は、バッテリー9635を充電するための電圧となるようDC
DCコンバータ9636で昇圧または降圧がなされる。そして、表示部9631の動作に
太陽電池9633で充電された電力が用いられる際にはスイッチSW1をオンにし、コン
バータ9638で表示部9631に必要な電圧に昇圧または降圧をすることとなる。また
、表示部9631での表示を行わない際には、SW1をオフにし、SW2をオンにしてバ
ッテリー9635の充電を行う構成とすればよい。
なお、太陽電池9633については、発電手段の一例として示したが、発電手段は特に
限定されず、圧電素子(ピエゾ素子)や熱電変換素子(ペルティエ素子)などの他の発電
手段によってバッテリー9635の充電を行う構成であってもよい。無線(非接触)で電
力を送受信して充電する無接点電力伝送モジュールや、また他の充電手段を組み合わせて
行う構成としてもよく、発電手段を有さなくとも良い。
また、上記表示部9631を具備していれば、図12に示した形状の電子機器に特に限
定されないことは言うまでもない。
≪合成例1≫
本合成例では、実施の形態1で説明したベンゾフロピリミジン骨格を有する化合物であ
る4−[3’−(ジベンゾチオフェン−4−イル)ビフェニル−3−イル]ベンゾフロ[
3,2−d]ピリミジン(略称:4mDBTBPBfpm−II)(構造式(100))
の合成方法について説明する。4mDBTBPBfpm−IIの構造式を下に示す。
<ステップ1; 4−(3’−ブロモビフェニル−3−イル)ジベンゾチオフェンの合成

まず、3−(ジベンゾチオフェン−4−イル)フェニルボロン酸48g、3−ヨードブロ
モベンゼン54g、トリス(2−メチルフェニル)ホスフィン(略称:P(o−toly
l))1.9g、2M炭酸カリウム水溶液160mL、トルエン800mL、エタノー
ル80mLを、還流管を付けた3L三口フラスコに入れ、フラスコ内を窒素置換し、80
℃まで加熱して溶解させた。この混合液に酢酸パラジウム(II)0.38gを加え、8
時間攪拌した。ここで、更にトリス(2−メチルフェニル)ホスフィン0.92g、酢酸
パラジウム(II)0.18gを加え、6時間攪拌した。その後、この溶液に水を加えて
、トルエンにて有機層を抽出した。得られた有機層を硫酸マグネシウムにて乾燥し、乾燥
した後の溶液をろ過した。この溶液の溶媒を留去した後、得られた残渣を熱トルエンに溶
かし、セライト(和光純薬工業株式会社、カタログ番号:531−16855以下同じ)
、アルミナ、フロリジール(和光純薬工業株式会社、カタログ番号:540−00135
以下同じ)、セライトの順で積層したろ過補助剤を通して熱ろ過した。溶媒を留去し、得
られた固体をトルエンとメタノールの混合溶媒にて再結晶することにより、白色固体を収
率34%で得た。また、ステップ1の合成スキームを下式(a−1)に示す。
<ステップ2:3’−(ジベンゾチオフェン−4−イル)−3−ビフェニルボロン酸の合
成>
上記ステップ1で得た4−(3’−ブロモビフェニル−3−イル)ジベンゾチオフェン
30gを、滴下ロートを付けた1L三口フラスコに入れ、フラスコ内を窒素置換した。さ
らにテトラヒドロフラン(脱水)300mLを加えたフラスコを低温槽で−78℃に冷却
した後、n−ブチルリチウム(1.6Mヘキサン溶液)50mLを滴下ロートより滴下し
、さらに滴下ロートにテトラヒドロフラン(脱水)64mLを入れて反応溶液に流しこん
だ。反応溶液を−78℃で1時間攪拌した後、ホウ酸トリメチル11mL滴下し、室温ま
で昇温してそのまま室温で18時間攪拌した。その後、この溶液に1M塩酸48mLを加
え、1時間攪拌した。得られた混合物に水を加え、酢酸エチルにて有機層を抽出した。得
られた有機層を、水、飽和食塩水で洗浄し、硫酸マグネシウムで乾燥した。乾燥した後の
溶液をろ過した。この溶液の溶媒を留去し、得られた固体をトルエンで洗浄することによ
り、白色固体を収率40%で得た。ステップ2の合成スキームを下記式(b−1)に示す
<ステップ3:4−[3’−(ジベンゾチオフェン−4−イル)ビフェニル−3−イル]
ベンゾフロ[3,2−d]ピリミジン(略称:4mDBTBPBfpm−II)の合成>
上記ステップ2で得た3’−(ジベンゾチオフェン−4−イル)−3−ビフェニルボロ
ン酸2.3g、4−クロロベンゾフロ[3,2−d]ピリミジン1.2g、2M炭酸カリ
ウム水溶液5.4mL、トルエン27mL、エタノール2.7mLを、還流管を付けた1
00mL三口フラスコに入れ、減圧下で撹拌することで脱気し、フラスコ内を窒素置換し
た。この混合物にテトラキス(トリフェニルホスフィン)パラジウム(0)(略称:Pd
(PPh)68mgを加え、80℃で2時間加熱し、反応させた。得られた混合物
を水、エタノールで洗浄し、トルエンにて再結晶することにより白色固体を1.8g、収
率60%で得た。ステップ3の合成スキームを下記式(c−1)に示す。
得られた白色固体2.3gを、トレインサブリメーション法により昇華精製した。昇華精
製条件は、圧力3.2Pa、アルゴンガスを流量15mL/minで流しながら、235
℃で固体を加熱した。昇華精製後、目的物の白色固体を0.5g、回収率22%で得た。
更に、上記の昇華精製で未昇華精製分の固体1.5gを、トレインサブリメーション法に
より昇華精製した。昇華精製条件は、圧力2.7Pa、アルゴンガスを流量5.0mL/
min、加熱温度245℃。昇華精製後、目的物の白色固体を1.4g、回収率92%で
得た。
なお、上記ステップ3で得られた白色固体の核磁気共鳴分光法(H−NMR)による分
析結果を下記に示す。これにより、4mDBTBPBfpm−IIが得られたことがわか
った。
H−NMR.δ(CDCl):7.44−7.54(m,4H),7.60−7.6
1(m,2H),7.66−7.51(m,4H),7.78−7.84(m,2H),
7.91−7.92(d,1H),8.17(ts,1H),8.20−8.23(m,
2H),8.31−8.32(d,1H),8.62−8.63(d,1H),8.96
−8.97(t,1H),9.30(s,1H).
また、H NMRチャートを図13(A)、(B)に示す。なお、図13(B)は、
図13(A)における7.2ppmから8.8ppmの範囲を拡大して表したチャートで
ある。測定結果から、目的物である4mDBTBPBfpm−IIが得られたことを確認
した。
≪4mDBTBPBfpm−IIの物性について≫
次に、4mDBTBPBfpm−IIのトルエン溶液の吸収スペクトル及び発光スペク
トルを図14(A)に、薄膜の吸収スペクトル及び発光スペクトルを図14(B)に示す
。スペクトルの測定には紫外可視分光光度計(日本分光株式会社製、V550型)を用い
た。トルエン溶液のスペクトルは、4mDBTBPBfpm−IIのトルエン溶液を石英
セルに入れて測定した。また、薄膜のスペクトルは、4mDBTBPBfpm−IIを石
英基板に蒸着してサンプルを作製した。なお、トルエン溶液の吸収スペクトルは石英セル
にトルエンのみを入れて測定した吸収スペクトルを差し引いた吸収スペクトルを図示し、
薄膜の吸収スペクトルは石英基板の吸収スペクトルを差し引いた吸収スペクトルを図示し
た。
図14(A)より、4mDBTBPBfpm−IIのトルエン溶液は282nm付近及
び320nm付近に吸収ピークが見られた。また、図14(B)より4mDBTBPBf
pm−IIの薄膜は244nm、268nm、290nm、326nm、及び340nm
付近に吸収ピークが見られ、発光波長のピークは410nm(励起波長340nm)であ
った。このように、4mDBTBPBfpm−IIは非常に短波長な領域に吸収及び発光
を示すことがわかった。
また、薄膜状態の4mDBTBPBfpm−IIのイオン化ポテンシャルの値を大気中
にて光電子分光法(理研計器社製、AC−2)で測定した。得られたイオン化ポテンシャ
ルの値を、負の値に換算した結果、4mDBTBPBfpm−IIのHOMO準位は−6
.38eVであった。図14(B)の薄膜の吸収スペクトルのデータより、直接遷移を仮
定したTaucプロットから求めた4mDBTBPBfpm−IIの吸収端は3.50e
Vであった。従って、4mDBTBPBfpm−IIの固体状態の光学的エネルギーギャ
ップは3.50eVと見積もられ、先に得たHOMO準位と、このエネルギーギャップの
値から、4mDBTBPBfpm−IIのLUMO準位が−2.88eVと見積もること
ができる。このように、4mDBTBPBfpm−IIは固体状態において3.50eV
の広いエネルギーギャップを有していることがわかった。
また、4mDBTBPBfpm−IIを液体クロマトグラフ質量分析(Liquid C
hromatography Mass Spectrometry,略称:LC/MS
分析)によって分析した。
LC/MS分析は、ウォーターズ社製Acquity UPLCおよびウォーターズ社
製Xevo G2 Tof MSを用いて行った。
MS分析では、エレクトロスプレーイオン化法(ElectroSpray Ioni
zation、略称:ESI)によるイオン化を行った。この時のキャピラリー電圧は3
.0kV、サンプルコーン電圧は30Vとし、検出はポジティブモードで行った。さらに
、以上の条件でイオン化された成分を衝突室(コリジョンセル)内でアルゴンガスと衝突
させてプロダクトイオンに解離させた。アルゴンを衝突させる際のエネルギー(コリジョ
ンエネルギー)は50eV及び70eVとした。なお、測定する質量範囲はm/z=10
0乃至1200とした。
結果を図15(A)及び(B)に示す。図15(A)はコリジョンエネルギー50eV
の時の、図15(B)はコリジョンエネルギー70eVの時のそれぞれ結果を表すグラフ
である。
≪合成例2≫
本合成例では、実施の形態1で説明したベンゾフロピリミジン骨格を有する化合物である
4−{3−[3’−(9H−カルバゾール−9−イル)]ビフェニル−3−イル}ベンゾ
フロ[3,2−d]ピリミジン(略称:4mCzBPBfpm)(構造式(300))の
合成例を具体的に例示する。4mCzBPBfpmの構造式を以下に示す。
<ステップ1;9−[3−(3−ブロモフェニル)フェニル]−9H−カルバゾールの合
成>
まず、3−(9H−カルバゾール−9−イル)フェニルボロン酸16g(56mmol)
、3−ヨードブロモベンゼン19g(67mmol)、トリ(オルト−トリル)ホスフィ
ン0.68g(2.2mmol)、2M炭酸カリウム水溶液56mL、トルエン250m
L、エタノール30mLを1L三口フラスコに入れ、フラスコ内を窒素置換した。この混
合物に酢酸パラジウム0.13g(0.56mmol)を入れ、80℃で14時間加熱撹
拌した。得られた反応混合物の水層をトルエンで抽出し、得られた抽出溶液と有機層を合
わせて水、飽和食塩水で洗浄した。この有機層に硫酸マグネシウムを加えて乾燥させ、得
られた混合物を自然ろ過して、ろ液を得た。このろ液を濃縮して油状物を得た。得られた
油状物をリサイクル分取HPLC LC−SakuraNEXTにより精製した。得られ
たフラクションを濃縮し、トルエンとメタノールで洗浄して9−[3−(3−ブロモフェ
ニル)フェニル]−9H−カルバゾールを得た(白色固体13g、収率58%)。ステッ
プ1の合成スキームを下記(a−2)に示す。
<ステップ2;3−[3’−(9H−カルバゾール−9−イル)]ビフェニルボロン酸の
合成>
合成内容:9−[3−(3’−ブロモフェニル)フェニル]−9H−カルバゾール13g
(33mmol)を500mL三口フラスコに入れ、フラスコ内を脱気、窒素置換した後
、テトラヒドロフラン160mLを加え、−78℃で撹拌した。この混合溶媒に、n−ブ
チルリチウム(1.65mol/Lヘキサン溶液)24mL(40mmol)を滴下し、
−78℃で1時間撹拌した。所定時間経過後、この混合溶液にホウ酸トリメチル4.7m
L(43mmol)を加え、20℃に昇温しながら18時間撹拌した。所定時間経過後、
反応溶液に1mol/L塩酸100mLを加え、30分間室温で撹拌した。この混合物の
水層を酢酸エチルで抽出し、得られた抽出溶液を飽和食塩水で洗浄した。有機層に無水硫
酸マグネシウムを加えて乾燥させ、得られた混合物を自然ろ過し、ろ液を濃縮して固体を
得た。この固体をトルエンで洗浄して、3−[3’−(9H−カルバゾール−9−イル)
]ビフェニルボロン酸を得た(白色固体6.0g、収率51%)。ステップ2の合成スキ
ームを下記(b−2)に示す。
<ステップ3:4−{3−[3’−(9H−カルバゾール−9−イル)]ビフェニル−3
−イル}ベンゾフロ[3,2−d]ピリミジン(略称:4mCzBPBfpm)の合成>
3−[3’−(9H−カルバゾール−9−イル)]ビフェニルボロン酸3.0g(8.3
mmol)、4−クロロベンゾフロ[3,2−d]ピリミジン1.7g(8.3mmol
)、2M炭酸カリウム水溶液8.3mL、トルエン40mL、エタノール4mLを200
mL三口フラスコに入れフラスコ内を窒素置換した。この混合物にビス(トリフェニルホ
スフィン)パラジウム(II)ジクロリド(Pd(PPhCl)68.3mg(
0.059mmol)を加え、80℃で6時間加熱撹拌した。得られた反応溶液の水層を
トルエンで抽出し、得られた抽出溶液と有機層を合わせて飽和食塩水で洗浄した。有機層
に無水硫酸マグネシウムを加えて乾燥させ、得られた混合物を自然ろ過してろ液を得た。
このろ液を濃縮して得た固体を再度トルエンに溶解し、セライト、アルミナ、セライトを
通してろ過した。得られたろ液を濃縮して得た固体を、トルエンにより再結晶して白色固
体を得た(収量2.0g、収率50%)。この白色固体2.0gを、トレインサブリメー
ション法により昇華精製した。昇華精製条件は、圧力2.3Pa、アルゴンガスを流量1
0mL/minで流しながら、250℃で固体を加熱した。昇華精製後、目的物の白色固
体を1.3g、回収率65%で得た。ステップ2の合成スキームを下記(c−2)に示す
なお、上記ステップ3で得られた白色固体の核磁気共鳴分光法(H−NMR)による分
析結果を下記に示す。
H−NMR.δ(CDCl):7.32(m,2H),7.44(m,2H),7.
52−7.55(m,3H),7.63−7.64(m,1H),7.69−7.77(
m,4H),7.85−7.88(m,2H),7.97(t,1H),8.18(d,
2H),8.31(d,1H),8.65(m,1H),8.92(t,1H),9.2
7(s,1H).
また、H NMRチャートを図16(A)、(B)に示す。なお、図16(B)は、
図16(A)における7.6ppmから9.4ppmの範囲を拡大して表したチャートで
ある。測定結果から、目的物である4mCzBPBfpmが得られたことを確認した。
≪4mCzBPBfpmの物性について≫
次に、4mCzBPBfpmのトルエン溶液の吸収スペクトル及び発光スペクトルを図
17(A)に、薄膜の吸収スペクトル及び発光スペクトルを図17(B)に示す。スペク
トルの測定には紫外可視分光光度計(日本分光株式会社製、V550型)を用いた。トル
エン溶液のスペクトルは、4mCzBPBfpmのトルエン溶液を石英セルに入れて測定
した。また、薄膜のスペクトルは、4mCzBPBfpmを石英基板に蒸着してサンプル
を作製した。なお、トルエン溶液の吸収スペクトルは石英セルにトルエンのみを入れて測
定した吸収スペクトルを差し引いた吸収スペクトルを図示し、薄膜の吸収スペクトルは石
英基板の吸収スペクトルを差し引いた吸収スペクトルを図示した。
図17(A)より、4mCzBPBfpmのトルエン溶液は294nm、324nm、
及び334nm付近に吸収ピークが見られ、発光波長のピークは422nm(励起波長3
30nm)であった。また、図17(B)より4mCzBPBfpmの薄膜は207nm
、243nm、262nm、289nm、295nm、326nm、及び341nm付近
に吸収ピークが見られ、発光波長のピークは440nm(励起波長341nm)であった
。このように、4mCzBPBfpmは非常に短波長な領域に吸収及び発光を示すことが
わかった。
また、薄膜状態の4mCzBPBfpmのイオン化ポテンシャルの値を大気中にて光電
子分光法(理研計器社製、AC−2)で測定した。得られたイオン化ポテンシャルの値を
、負の値に換算した結果、4mCzBPBfpmのHOMO準位は−6.13eVであっ
た。図17(B)の薄膜の吸収スペクトルのデータより、直接遷移を仮定したTaucプ
ロットから求めた4mCzBPBfpmの吸収端は3.49eVであった。従って、4m
CzBPBfpmの固体状態の光学的エネルギーギャップは3.49eVと見積もられ、
先に得たHOMO準位と、このエネルギーギャップの値から、4mCzBPBfpmのL
UMO準位が−2.64eVと見積もることができる。このように、4mCzBPBfp
mは固体状態において3.49eVの広いエネルギーギャップを有していることがわかっ
た。
また、4mCzBPBfpmを液体クロマトグラフ質量分析(Liquid Chrom
atography Mass Spectrometry,略称:LC/MS分析)に
よって分析した。
LC/MS分析は、ウォーターズ社製Acquity UPLCおよびウォーターズ社
製Xevo G2 Tof MSを用いて行った。
MS分析では、エレクトロスプレーイオン化法(ElectroSpray Ioni
zation、略称:ESI)によるイオン化を行った。この時のキャピラリー電圧は3
.0kV、サンプルコーン電圧は30Vとし、検出はポジティブモードで行った。さらに
、以上の条件でイオン化された成分を衝突室(コリジョンセル)内でアルゴンガスと衝突
させてプロダクトイオンに解離させた。アルゴンを衝突させる際のエネルギー(コリジョ
ンエネルギー)は50eV及び70eVとした。なお、測定する質量範囲はm/z=10
0乃至1200とした。
結果を図18(A)及び(B)に示す。図18(A)はコリジョンエネルギー50eV
の時の、図18(B)はコリジョンエネルギー70eVの時のそれぞれ結果を表すグラフ
である。
本実施例では、実施の形態1で説明したベンゾフロピリミジン骨格を有する化合物であ
る4mDBTBPBfpm−IIを、緑色を発する燐光物質を用いた発光層におけるホス
ト材料として用いた発光素子(発光素子1)について説明する。
なお、本実施例で用いた化合物の分子構造を下記構造式(i)〜(v)、(100)に
示す。素子構造は図1(A)の構造である。
≪発光素子1の作製≫
まず、第1の電極101として110nmの膜厚でケイ素を含むインジウム錫酸化物(
ITSO)が成膜されたガラス基板を用意した。ITSO表面は、2mm角の大きさで表
面が露出するよう周辺をポリイミド膜で覆い、電極面積は2mm×2mmとした。この基
板上に発光素子を形成するための前処理として、基板表面を水で洗浄し、200℃で1時
間焼成した後、UVオゾン処理を370秒行った。その後、10−4Pa程度まで内部が
減圧された真空蒸着装置に基板を導入し、真空蒸着装置内の加熱室において170℃で3
0分間の真空焼成を行った後、基板を30分程度放冷した。
次に、ITSOが形成された面が下方となるように、基板を真空蒸着装置内に設けられ
たホルダーに固定した。
真空蒸着装置内を10−4Paに減圧した後、上記構造式(i)で表される、4,4’
,4’’−(ベンゼン−1,3,5−トリイル)トリ(ジベンゾチオフェン)(略称:D
BT3P−II)、と酸化モリブデン(VI)とを、DBT3P−II:酸化モリブデン
=4:2(重量比)となるように共蒸着することにより、正孔注入層111を形成した。
膜厚は20nmとした。なお、共蒸着とは、異なる複数の物質をそれぞれ異なる蒸発源か
ら同時に蒸発させる蒸着法である。
続いて、上記構造式(ii)で表される4−フェニル−4’−(9−フェニルフルオレ
ン−9−イル)トリフェニルアミン(略称:BPAFLP)を20nm蒸着することによ
り正孔輸送層112を形成した。
さらに、正孔輸送層112上に、上記構造式(100)で表される4−[3’−(ジベ
ンゾチオフェン−4−イル)ビフェニル−3−イル]ベンゾフロ[3,2−d]ピリミジ
ン(略称:4mDBTBPBfpm−II)と、上記構造式(iii)で表されるトリス
(2−フェニルピリジナト−N,C2’)イリジウム(III)(略称:[Ir(ppy
])とを、4mDBTBPBfpm−II:[Ir(ppy)]=1:0.08(
重量比)となるように20nm共蒸着した後、4mDBTBPBfpm−IIと[Ir(
ppy)]とを4mDBTBPBfpm−II:[Ir(ppy)]=1:0.04
(重量比)となるように20nm共蒸着することによって発光層113を形成した。
次に、上記構造式(iv)で表される4,6−ビス[3−(4−ジベンゾチエニル)フ
ェニル]ピリミジン(略称:4,6mDBTP2Pm−II)を10nm、続いて上記構
造式(v)で表されるバソフェナントロリン(略称:BPhen)を15nm蒸着するこ
とにより、電子輸送層114を形成した。
さらに電子輸送層114上にフッ化リチウムを1nmとなるように蒸着することによっ
て電子注入層115を形成した。最後に、陰極として機能する第2の電極102としてア
ルミニウムを200nm成膜し、発光素子1を完成させた。上述した蒸着過程においては
、蒸着は全て抵抗加熱法を用いた。
≪発光素子1の動作特性≫
以上により得られた発光素子1を、窒素雰囲気のグローブボックス内において、発光素
子が大気に曝されないように封止する作業を行った後、この発光素子の動作特性について
測定を行った。なお、測定は室温(25℃に保たれた雰囲気)で行った。
発光素子1の電流密度−輝度特性を図19に、電圧−輝度特性を図20に、輝度−電流
効率特性を図21に、輝度−外部量子効率特性を図22に、輝度−パワー効率特性を図2
3に示す。
図21から、発光素子1は良好な輝度−電流効率特性を示し、発光効率が良好な発光素
子であることがわかった。これより、4mDBTBPBfpm−IIすなわち、実施の形
態1で説明したベンゾフロピリミジン骨格を有する化合物が高い三重項励起準位(T1準
位)及び、広いエネルギーギャップを有し、緑色を発する燐光物質であっても、有効に励
起することができることがわかる。また、図20から、発光素子1は、良好な電圧−輝度
特性を示し、駆動電圧の小さな発光素子であることがわかった。これは、4mDBTBP
Bfpm−IIすなわち、実施の形態1で説明したベンゾフロピリミジン骨格を有する化
合物が、優れたキャリア輸送性を有していることを示している。また、同様に、図19の
電流密度−輝度特性や、図22の輝度−外部量子効率特性も良好である。結果として、図
23に示すように発光素子1は非常に良好なパワー効率を示した。
続いて、作製した発光素子1に0.1mAの電流を流したときの発光スペクトルを図2
4に示す。発光強度は最大発光強度を1とした相対的な値として示す。図24より発光素
子1は発光物質である[Ir(ppy)]起因の緑色の発光を呈することがわかった。
また、初期輝度を5000cd/mとし、電流密度一定の条件で発光素子1を駆動し
て、信頼性試験を行った結果を図25に示す。図25では、初期輝度を100%とした規
格化輝度の変化を示している。この結果から、発光素子1は駆動時間に伴う輝度低下の小
さい、良好な信頼性を有する発光素子であることがわかる。
本実施例では、実施の形態1で説明したベンゾフロピリミジン骨格を有する化合物であ
る4mDBTBPBfpm−IIを、緑色を発する燐光物質を用いた発光層におけるホス
ト材料として用いた発光素子(発光素子2)について説明する。
なお、本実施例で用いた化合物の分子構造を下記構造式(i)〜(iii)、(v)、
(vi)、(100)に示す。素子構造は図1(A)の構造である。
≪発光素子2の作製≫
まず、第1の電極101として110nmの膜厚でケイ素を含むインジウム錫酸化物(
ITSO)が成膜されたガラス基板を用意した。ITSO表面は、2mm角の大きさで表
面が露出するよう周辺をポリイミド膜で覆い、電極面積は2mm×2mmとした。この基
板上に発光素子を形成するための前処理として、基板表面を水で洗浄し、200℃で1時
間焼成した後、UVオゾン処理を370秒行った。その後、10−4Pa程度まで内部が
減圧された真空蒸着装置に基板を導入し、真空蒸着装置内の加熱室において170℃で3
0分間の真空焼成を行った後、基板を30分程度放冷した。
次に、ITSOが形成された面が下方となるように、基板を真空蒸着装置内に設けられ
たホルダーに固定した。
真空装置内を10−4Paに減圧した後、上記構造式(i)で表される、4,4’,4
’’−(ベンゼン−1,3,5−トリイル)トリ(ジベンゾチオフェン)(略称:DBT
3P−II)、と酸化モリブデン(VI)とを、DBT3P−II:酸化モリブデン=4
:2(重量比)となるように共蒸着することにより、正孔注入層111を形成した。膜厚
は20nmとした。なお、共蒸着とは、異なる複数の物質をそれぞれ異なる蒸発源から同
時に蒸発させる蒸着法である。
続いて、上記構造式(ii)で表される4−フェニル−4’−(9−フェニルフルオレ
ン−9−イル)トリフェニルアミン(略称:BPAFLP)を20nm蒸着することによ
り正孔輸送層112を形成した。
さらに、正孔輸送層112上に、上記構造式(100)で表される4−[3’−(ジベ
ンゾチオフェン−4−イル)ビフェニル−3−イル]ベンゾフロ[3,2−d]ピリミジ
ン(略称:4mDBTBPBfpm−II)と、上記構造式(vi)で表されるN−(1
,1’−ビフェニル−4−イル)−9,9−ジメチル−N−[4−(9−フェニル−9H
−カルバゾール−3−イル)フェニル]−9H−フルオレン−2−アミン(略称:PCB
BiF)と、上記構造式(iii)で表されるトリス(2−フェニルピリジナトナト−N
,C2’)イリジウム(III)(略称:[Ir(ppy)])とを、4mDBTBP
Bfpm−II:PCBBiF:[Ir(ppy)]=0.5:0.5:0.05(重
量比)となるように20nm共蒸着した後、4mDBTBPBfpm−IIと、PCBB
iFと、[Ir(ppy)]とを、4mDBTBPBfpm−II:PCBBiF:[
Ir(ppy)]=0.8:0.2:0.05(重量比)となるように20nm共蒸着
することによって発光層113を形成した。
次に、4mDBTBPBfpm−IIを10nm、続いて上記構造式(v)で表される
バソフェナントロリン(略称:BPhen)を15nm蒸着することにより、電子輸送層
114を形成した。
さらに電子輸送層114上にフッ化リチウムを1nmとなるように蒸着することによっ
て電子注入層115を形成した。最後に、陰極として機能する第2の電極102としてア
ルミニウムを200nm成膜し、発光素子2を完成させた。上述した蒸着過程においては
、蒸着は全て抵抗加熱法を用いた。
≪発光素子2の動作特性≫
以上により得られた発光素子2を、窒素雰囲気のグローブボックス内において、発光素
子が大気に曝されないように封止する作業を行った後、この発光素子の動作特性について
測定を行った。なお、測定は室温(25℃に保たれた雰囲気)で行った。
発光素子2の電流密度−輝度特性を図26に、電圧−輝度特性を図27に、輝度−電流
効率特性を図28に、輝度−外部量子効率特性を図29に、輝度−パワー効率特性を図3
0に示す。
図28から、発光素子2は良好な輝度−電流効率特性を示し、発光効率が良好な発光素
子であることがわかった。これより、4mDBTBPBfpm−IIすなわち、実施の形
態1で説明したベンゾフロピリミジン骨格を有する化合物が高い三重項励起準位(T1準
位)及び、広いエネルギーギャップを有し、緑色を発する燐光物質であっても、有効に励
起することができることがわかる。また、図27から、発光素子2は、良好な電圧−輝度
特性を示し、駆動電圧の小さな発光素子であることがわかった。これは、4mDBTBP
Bfpm−IIすなわち、実施の形態1で説明したベンゾフロピリミジン骨格を有する化
合物が、優れたキャリア輸送性を有していることを示している。また、同様に、図26の
電流密度−輝度特性や、図29の輝度−外部量子効率特性も良好である。結果として、図
30に示すように発光素子2は非常に良好なパワー効率を示した。
続いて、作製した発光素子2に0.1mAの電流を流したときの発光スペクトルを図3
1に示す。発光強度は最大発光強度を1とした相対的な値として示す。図31より発光素
子2は発光物質である[Ir(ppy)]起因の緑色の発光を呈することがわかった。
また、初期輝度を5000cd/mとし、電流密度一定の条件で発光素子2を駆動し
て、信頼性試験を行った結果を図32に示す。図32では、初期輝度を100%とした規
格化輝度の変化を示している。この結果から、発光素子2は駆動時間に伴う輝度低下の小
さい、良好な信頼性を有する発光素子であることがわかる。
本実施例では、実施の形態1で説明したベンゾフロピリミジン骨格を有する化合物であ
る4mDBTBPBfpm−IIを、黄緑色を発する燐光物質を用いた発光層におけるホ
スト材料として用いた発光素子(発光素子3)について説明する。
なお、本実施例で用いた化合物の分子構造を下記構造式(i)、(ii)、(v)〜(
vii)、(100)に示す。素子構造は図1(A)の構造である。
≪発光素子3の作製≫
まず、第1の電極101として110nmの膜厚でケイ素を含むインジウム錫酸化物(
ITSO)が成膜されたガラス基板を用意した。ITSO表面は、2mm角の大きさで表
面が露出するよう周辺をポリイミド膜で覆い、電極面積は2mm×2mmとした。この基
板上に発光素子を形成するための前処理として、基板表面を水で洗浄し、200℃で1時
間焼成した後、UVオゾン処理を370秒行った。その後、10−4Pa程度まで内部が
減圧された真空蒸着装置に基板を導入し、真空蒸着装置内の加熱室において170℃で3
0分間の真空焼成を行った後、基板を30分程度放冷した。
次に、ITSOが形成された面が下方となるように、基板を真空蒸着装置内に設けられ
たホルダーに固定した。
真空装置内を10−4Paに減圧した後、上記構造式(i)で表される、4,4’,4
’’−(ベンゼン−1,3,5−トリイル)トリ(ジベンゾチオフェン)(略称:DBT
3P−II)、と酸化モリブデン(VI)とを、DBT3P−II:酸化モリブデン=4
:2(重量比)となるように共蒸着することにより、正孔注入層111を形成した。膜厚
は20nmとした。なお、共蒸着とは、異なる複数の物質をそれぞれ異なる蒸発源から同
時に蒸発させる蒸着法である。
続いて、上記構造式(ii)で表される4−フェニル−4’−(9−フェニルフルオレ
ン−9−イル)トリフェニルアミン(略称:BPAFLP)を20nm蒸着することによ
り正孔輸送層112を形成した。
さらに、正孔輸送層112上に、上記構造式(100)で表される4−[3’−(ジベ
ンゾチオフェン−4−イル)ビフェニル−3−イル]ベンゾフロ[3,2−d]ピリミジ
ン(略称:4mDBTBPBfpm−II)と、上記構造式(vi)で表されるN−(1
,1’−ビフェニル−4−イル)−9,9−ジメチル−N−[4−(9−フェニル−9H
−カルバゾール−3−イル)フェニル]−9H−フルオレン−2−アミン(略称:PCB
BiF)と、上記構造式(vii)で表されるビス[2−(6−tert−ブチル−4−
ピリミジニル−κN3)フェニル−κC](2,4−ペンタンジオナト−κO,O’)
イリジウム(III)(略称:[Ir(tBuppm)(acac)])とを、4mD
BTBPBfpm−II:PCBBiF:[Ir(tBuppm)(acac)]=0
.5:0.5:0.05(重量比)となるように20nm共蒸着した後、4mDBTBP
Bfpm−IIと、PCBBiFと、[Ir(tBuppm)(acac)]とを、4
mDBTBPBfpm−II:PCBBiF:[Ir(tBuppm)(acac)]
=0.8:0.2:0.05(重量比)となるように20nm共蒸着することによって発
光層113を形成した。
次に、4mDBTBPBfpm−IIを10nm、続いて上記構造式(v)で表される
バソフェナントロリン(略称:BPhen)を15nm蒸着することにより、電子輸送層
114を形成した。
さらに電子輸送層114上にフッ化リチウムを1nmとなるように蒸着することによっ
て電子注入層115を形成した。最後に、陰極として機能する第2の電極102としてア
ルミニウムを200nm成膜し、発光素子3を完成させた。上述した蒸着過程においては
、蒸着は全て抵抗加熱法を用いた。
≪発光素子3の動作特性≫
以上により得られた発光素子3を、窒素雰囲気のグローブボックス内において、発光素
子が大気に曝されないように封止する作業を行った後、この発光素子の動作特性について
測定を行った。なお、測定は室温(25℃に保たれた雰囲気)で行った。
発光素子3の電流密度−輝度特性を図33に、電圧−輝度特性を図34に、輝度−電流
効率特性を図35に、輝度−外部量子効率特性を図36に、輝度−パワー効率特性を図3
7に示す。
図35から、発光素子3は良好な輝度−電流効率特性を示し、発光効率が良好な発光素
子であることがわかった。これより、4mDBTBPBfpm−IIすなわち、実施の形
態1で説明したベンゾフロピリミジン骨格を有する化合物が高い三重項励起準位(T1準
位)及び、広いエネルギーギャップを有し、黄緑色の燐光物質であっても、有効に励起す
ることができることがわかる。また、図34から、発光素子3は、良好な電圧−輝度特性
を示し、駆動電圧の小さな発光素子であることがわかった。これは、4mDBTBPBf
pm−IIすなわち、実施の形態1で説明したベンゾフロピリミジン骨格を有する化合物
が、優れたキャリア輸送性を有していることを示している。また、同様に、図33の電流
密度−輝度特性や、図36の輝度−外部量子効率特性も非常に良好である。結果として、
図37に示すように発光素子3は非常に良好なパワー効率を示した。
続いて、作製した発光素子3に0.1mAの電流を流したときの発光スペクトルを図3
8に示す。発光強度は最大発光強度を1とした相対的な値として示す。図38より発光素
子3は発光物質である[Ir(tBuppm)(acac)]起因の黄緑色の発光を呈
することがわかった。
また、初期輝度を5000cd/mとし、電流密度一定の条件で発光素子3を駆動し
て、信頼性試験を行った結果を図39に示す。図39では、初期輝度を100%とした規
格化輝度の変化を示している。この結果から、発光素子3は駆動時間に伴う輝度低下の小
さい、良好な信頼性を有する発光素子であることがわかる。
≪合成例3≫
本合成例では、実施の形態1で説明したベンゾフロピリミジン骨格を有する化合物である
4−{3−[6−(9,9−ジメチルフルオレン−2−イル)ジベンゾチオフェン−4−
イル]フェニル}ベンゾフロ[3,2−d]ピリミジン(略称:4mFDBtPBfpm
)(構造式(115))の合成例を具体的に例示する。4mFDBtPBfpmの構造式
を以下に示す。
<ステップ1:4−(9,9−ジメチルフルオレン−2−イル)ジベンゾチオフェンの合
成>
まず、2−ブロモ−9,9−ジメチルフルオレン19g、ジベンゾチオフェン−4−イル
ボロン酸16g、トリス(2−メチルフェニル)ホスフィン(略称:P(o−tolyl
)0.43g、2M炭酸カリウム水溶液35mL、トルエン270mL,エタノール
90mLを、還流管を付けた三口フラスコに入れ、フラスコ内を窒素置換し、酢酸パラジ
ウム0.16g、を加え、90℃にて13時間加熱した。さらにP(o−tolyl)
(略称)0.21g、酢酸パラジウム79mgを加え、90℃で17時間加熱した。この
得られた混合物に水を加え、トルエンを用いて抽出を行った。抽出溶液を水、飽和食塩水
にて洗浄し、硫酸マグネシウムにて乾燥し、自然ろ過した。ろ液の溶媒を留去し、得られ
た残渣をトルエンに溶かし、セライト(和光純薬工業株式会社、カタログ番号:531−
16855 以下同じ)、アルミナ、フロリジール(和光純薬工業株式会社、カタログ番
号:540−00135 以下同じ)の順で積層したろ過補助剤を通してろ過した。溶媒
を留去し、トルエン:ヘキサン=1:10(体積比)を展開溶媒としたシリカゲルカラム
クロマトグラフィーにて精製した。得られた溶液の溶媒を留去し、トルエンとヘキサンの
混合溶媒にて再結晶することにより白色固体を収率70%で得た。また、ステップ1の合
成スキームを下記(a−3)に示す。
<ステップ2:6−(9,9−ジメチルフルオレン−2−イル)ジベンゾチオフェン−4
−イルボロン酸の合成>
次に、4−(9,9−ジメチルフルオレン−2−イル)ジベンゾチオフェン17gを三口
フラスコに入れ、フラスコ内を窒素脱気した。ここでテトラヒドロフラン(脱水)250
mLを入れ、フラスコを低温槽で−40℃に冷却した後、n−ブチルリチウム(1.6M
ヘキサン溶液)34mLを滴下し、室温にて1時間攪拌した。その後、フラスコを−40
℃に冷却し、ホウ酸トリメチル6.6mLを滴下し、室温まで昇温して、そのまま室温で
21時間攪拌した。ここで1M塩酸50mLを加え、1時間攪拌した。得られた混合物を
酢酸エチルで抽出し、飽和炭酸水素ナトリウム水溶液と飽和食塩水にて洗浄し、硫酸マグ
ネシウムを加え、ろ過した。ろ液の溶媒を留去し、トルエンを加えて超音波にて洗浄し、
吸引ろ過をすることにより黄白色固体を収率34%で得た。また、ステップ2の合成スキ
ームを下記(b−3)に示す。
<ステップ3:4−(3−ブロモフェニル)−6−(9,9−ジメチルフルオレン−2−
イル)ジベンゾチオフェンの合成>
続いて、6−(9,9−ジメチルフルオレン−2−イル)ジベンゾチオフェン−4−イル
ボロン酸7.1g、3−ヨード−ブロモベンゼン5.2g、P(o−tolyl)0.
57g、炭酸カリウム5.1g、トルエン74mL、エタノール19mL、水19mLを
、還流管を付けた三口フラスコに入れ、フラスコ内を窒素置換し、酢酸パラジウム0.2
1gを加え、80℃で8時間加熱した。得られた混合物をトルエンで抽出し、飽和食塩水
にて洗浄し、硫酸マグネシウムにて乾燥し、ろ過した。ろ液の溶媒を留去し、得られた残
渣をトルエンに溶かし、セライト、アルミナ、フロリジールの順に積層したろ過補助剤を
通してろ過した。溶媒を留去し、トルエン:ヘキサン=1:10(体積比)を展開溶媒と
したシリカゲルカラムクロマトグラフィーにて精製することにより黄白色固体を収率74
%で得た。ステップ3の合成スキームを下記(c−3)に示す。
<ステップ4:3−[6−(9,9−ジメチルフルオレン−2−イル)ジベンゾチオフェ
ン−4−イル]フェニルボロン酸ピナコールエステルの合成>
次に、4−(3−ブロモフェニル)−6−(9,9−ジメチルフルオレン−2−イル)ジ
ベンゾチオフェン2.5g、ビス(ピナコール)ジボロン1.2g、酢酸カリウム1.4
gを、還流管を付けた三口フラスコに入れ、フラスコ内を窒素置換し、ジオキサン300
mL、[1,1’−ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II) ジ
クロロメタン付加物(略称:Pd(dppf)Cl)0.19gを加え、90℃で9.
5時間加熱した。得られた混合物に水を加え、酢酸エチルで抽出し、飽和食塩水にて洗浄
し、硫酸マグネシウムにて乾燥し、ろ過した。ろ液の溶媒を留去し、得られた残渣をトル
エンに溶かし、セライト、アルミナ、フロリジールの順に積層したろ過補助剤を通してろ
過した。溶媒を留去し、トルエン:ヘキサン=1:10(体積比)を展開溶媒としたフラ
ッシュカラムクロマトグラフィーにて精製することにより、無色の油状物を収率17%で
得た。ステップ4の合成スキームを下記(d−3)に示す。
<ステップ5:4mFDBtPBfpmの合成>
最後に、3−[6−(9,9−ジメチルフルオレン−2−イル)ジベンゾチオフェン−4
−イル]フェニルボロン酸ピナコールエステル0.45g、4−クロロベンゾフロ[3,
2−d]ピリミジン0.14g、リン酸カリウム0.45g、ジオキサン4mL、t−ブ
タノール0.16gを三口フラスコに入れ、フラスコ内を窒素置換し、酢酸パラジウム1
.8mg、ジ(1−アダマンチル)−n−ブチルホスフィン5.6mgを加え、還流させ
反応を進めた。得られた混合物に水を加え、酢酸エチルで抽出し、飽和食塩水にて洗浄し
、硫酸マグネシウムを加え、自然ろ過した。ろ液の溶媒を留去し、トルエン:ヘキサン=
1:5(体積比)を展開溶媒としたフラッシュカラムクロマトグラフィーにて精製するこ
とにより黄色固体を収率10%で得た。ステップ5の合成スキームを下記式(e−3)に
示す。
なお、上記ステップ3で得られた黄色固体の核磁気共鳴分光法(H−NMR)による分
析結果を下記に示す。
H−NMR.δ(CDCl):1.37(s,6H),7.28−7.31(dt,
2H),7.37(d,1H),7.44−7.50(m,2H),7.58−7.66
(m,5H),7.69−7.73(m,3H),7.75−7.78(t,1H),7
.82(s,1H),7.93(d,1H),8.23−8.28(m,3H),8.6
4(td,1H),9.02(ts,1H),9.27(s,1H).
また、H NMRチャートを図40(A)、(B)に示す。なお、図40(B)は、
図40(A)における7.0ppmから9.5ppmの範囲を拡大して表したチャートで
ある。測定結果から、目的物である4mFDBtPBfpmが得られたことを確認した。
(参考例1)
本参考例では、実施例3で使用した4,6−ビス[3−(4−ジベンゾチエニル)フェ
ニル]ピリミジン(略称:4,6mDBTP2Pm−II)の合成方法について説明する
<4,6−ビス[3−(4−ジベンゾチエニル)フェニル]ピリミジン(略称:4,6m
DBTP2Pm−II)の合成>
100mLナスフラスコに、1.0g(6.7mmol)の4,6−ジクロロピリミジ
ンと、5.1g(17mmol)の3−(ジベンゾチオフェン−4−イル)フェニルボロ
ン酸と3.5g(34mmol)の炭酸ナトリウムと、20mLの1,3−ジメチル−3
,4,5,6−テトラヒドロ−2(1H)ピリミジノン(略称:DMPU)と、10mL
の水を加えた。この混合物を減圧しながら攪拌することで脱気した。この混合物に56m
g(81μmol)のビス(トリフェニルホスフィン)パラジウム(II)ジクロリドを
加え、アルゴン置換した。この反応容器にマイクロ波(2.45GHz 100W)を1
時間30分照射することで加熱しながら撹拌した。加熱後、この混合物に水を加え、濾過
し、ろ物を得た。得られた固体をジクロロメタンとエタノールで洗浄した。得られた固体
にトルエンを加え、セライト、アルミナ、フロリジールを通して吸引ろ過し、濾液を濃縮
して固体を得た。得られた固体を、トルエンを用いて再結晶し、白色固体を2.52g、
収率63%で得た。上記反応の合成スキームを下に示す。
得られた固体2.50gをトレインサブリメーション法により昇華精製した。圧力3.
6Pa、アルゴン流量5mL/minの条件で、300℃で加熱して行った。昇華精製後
、白色固体を1.98g、回収率79%で得た。
核磁気共鳴法(H−NMR)によって、この化合物が目的物である4,6−ビス[3
−(4−ジベンゾチエニル)フェニル]ピリミジン(略称:4,6mDBTP2Pm−I
I)であることを確認した。
得られた物質のH−NMRデータを以下に示す。
H NMR(CDCl,300MHz):δ=7.41−7.51(m,4H),
7.58−7.62(m,4H),7.68−7.79(m,4H),8.73(dt,
J1=8.4Hz,J2=0.9Hz,2H),8.18−8.27(m,7H),8.
54(t,J1=1.5Hz,2H),9.39(d,J1=0.9Hz,1H).
(参考例2)
本参考例では、実施例4及び5で用いたN−(1,1’−ビフェニル−4−イル)−9
,9−ジメチル−N−[4−(9−フェニル−9H−カルバゾール−3−イル)フェニル
]−9H−フルオレン−2−アミン(略称:PCBBiF)の合成方法について説明する
<ステップ1:N−(1,1’−ビフェニル−4−イル)−9,9−ジメチル−N−フェ
ニル−9H−フルオレン−2−アミンの合成>
1L三口フラスコに、N−(1,1’−ビフェニル−4−イル)−9,9−ジメチル−9
H−フルオレン−2−アミン45g(0.13mol)と、ナトリウムtert−ブトキ
シド36g(0.38mol)と、ブロモベンゼン21g(0.13mol)と、トルエ
ン500mLを入れた。この混合物を減圧しながら撹拌することで脱気し、脱気後、フラ
スコ内を窒素置換した。その後、ビス(ジベンジリデンアセトン)パラジウム(0)0.
8g(1.4mmol)と、トリ(tert−ブチル)ホスフィン(10wt%ヘキサン
溶液)12mL(5.9mmol)を加えた。ステップ1の合成スキームを下に示す。
この混合物を窒素気流下、90℃で2時間撹拌した。その後、混合物を室温まで冷やして
から、吸引濾過により固体を濾別した。得られた濾液を濃縮し、褐色液体約200mLを
得た。この褐色液体をトルエンと混合してから、得られた溶液をセライト、アルミナ、フ
ロリジールを用いて精製した。得られた濾液を濃縮して淡黄色液体を得た。この淡黄色液
体をヘキサンにて再結晶したところ、目的物の淡黄色粉末を収量52g、収率95%で得
た。
<ステップ2:N−(1,1’−ビフェニル−4−イル)−N−(4−ブロモフェニル)
−9,9−ジメチル−9H−フルオレン−2−アミンの合成>
1Lマイヤーフラスコに、N−(1,1’−ビフェニル−4−イル)−9,9−ジメチル
−N−フェニル−9H−フルオレン−2−アミン45g(0.10mol)を入れ、トル
エン225mLを加えて加熱しながら撹拌して溶解した。この溶液を室温まで放冷した後
、酢酸エチル225mLを加えて、N−ブロモこはく酸イミド(略称:NBS)18g(
0.10mol)を加えて、2.5時間室温にて撹拌した。撹拌終了後、この混合物を飽
和炭酸水素ナトリウム水溶液で3回、飽和食塩水で1回洗浄した。得られた有機層に硫酸
マグネシウムを加えて2時間静置し、乾燥した。この混合物を自然濾過して硫酸マグネシ
ウムを除去し、得られた濾液を濃縮したところ、黄色液体を得た。この黄色液体をトルエ
ンと混合し、この溶液をセライト、アルミナ、フロリジールを用いて精製した。得られた
溶液を濃縮して淡黄色固体を得た。この淡黄色固体をトルエン/エタノールにて再結晶し
たところ、目的物の白色粉末を収量47g、収率89%で得た。ステップ2の合成スキー
ムを下に示す。
<ステップ3:PCBBiFの合成>
1L三口フラスコにN−(1,1’−ビフェニル−4−イル)−N−(4−ブロモフェニ
ル)−9,9−ジメチル−9H−フルオレン−2−アミン41g(80mmol)、9−
フェニル−9H−カルバゾール−3−イルボロン酸25g(88mmol)を入れ、トル
エン240mLとエタノール80mLと炭酸カリウム水溶液(2.0mol/L)120
mLを加えて、この混合物を減圧しながら撹拌することで脱気し、脱気後、フラスコ内を
窒素置換した。さらに、酢酸パラジウム(II)27mg(0.12mmol)、トリ(
オルト−トリル)ホスフィン154mg(0.5mmol)を加え、再度、減圧しながら
撹拌することで脱気し、脱気後、フラスコ内を窒素置換した。この混合物を窒素気流下、
110℃で1.5時間撹拌した。ステップ3の合成スキームを示す。
その後、撹拌しながら室温まで放冷した後、この混合物の水層をトルエンで2回抽出した
。得られた抽出溶液と有機層をあわせてから、水で2回、飽和食塩水で2回洗浄した。こ
の溶液に硫酸マグネシウムを加えて静置し、乾燥した。この混合物を自然濾過して硫酸マ
グネシウムを除去し、得られた濾液を濃縮して褐色溶液を得た。この褐色溶液をトルエン
と混合してから、得られた溶液をセライト、アルミナ、フロリジールを通して精製した。
得られた濾液を濃縮して淡黄色固体を得た。この淡黄色固体を酢酸エチル/エタノールを
用いて再結晶したところ、目的物の淡黄色粉末を収量46g、収率88%で得た。
得られた淡黄色粉末38gをトレインサブリメーション法により昇華精製した。昇華精製
は、圧力3.7Pa、アルゴン流量15mL/minの条件で、淡黄色粉末を345℃で
加熱して行った。昇華精製後、目的物の淡黄色固体を収量31g、回収率83%で得た。
核磁気共鳴法(NMR)によって、この化合物が目的物であるN−(1,1’−ビフェニ
ル−4−イル)−9,9−ジメチル−N−[4−(9−フェニル−9H−カルバゾール−
3−イル)フェニル]−9H−フルオレン−2−アミン(略称:PCBBiF)であるこ
とを確認した。
得られた淡黄色固体のH−NMRデータを以下に示す。
H−NMR(CDCl,500MHz):δ=1.45(s、6H)、7.18(
d、J=8.0Hz、1H)、7.27−7.32(m、8H)、7.40−7.50(
m、7H)、7.52−7.53(m、2H)、7.59−7.68(m、12H)、8
.19(d、J=8.0Hz、1H)、8.36(d、J=1.1Hz、1H)。
101 第1の電極
102 第2の電極
103 EL層
111 正孔注入層
112 正孔輸送層
113 発光層
114 電子輸送層
501 第1の電極
502 第2の電極
511 第1の発光ユニット
512 第2の発光ユニット
513 電荷発生層
601 駆動回路部(ソース側駆動回路)
602 画素部
603 駆動回路部(ゲート側駆動回路)
604 封止基板
605 シール材
607 空間
608 配線
609 FPC(フレキシブルプリントサーキット)
610 素子基板
611 スイッチング用TFT
612 電流制御用TFT
613 第1の電極
614 絶縁物
616 EL層
617 第2の電極
618 発光素子
623 nチャネル型TFT
624 pチャネル型TFT
901 筐体
902 液晶層
903 バックライト
904 筐体
905 ドライバIC
906 端子
951 基板
952 電極
953 絶縁層
954 隔壁層
955 EL層
956 電極
1001 基板
1002 下地絶縁膜
1003 ゲート絶縁膜
1006 ゲート電極
1007 ゲート電極
1008 ゲート電極
1020 第1の層間絶縁膜
1021 第2の層間絶縁膜
1022 電極
1024W 発光素子の第1の電極
1024R 発光素子の第1の電極
1024G 発光素子の第1の電極
1024B 発光素子の第1の電極
1025 隔壁
1028 EL層
1029 発光素子の第2の電極
1031 封止基板
1032 シール材
1033 透明な基材
1034R 赤色の着色層
1034G 緑色の着色層
1034B 青色の着色層
1035 黒色層(ブラックマトリックス)
1037 第3の層間絶縁膜
1040 画素部
1041 駆動回路部
1042 周辺部
1201 ソース電極
1202 活性層
1203 ドレイン電極
1204 ゲート電極
2001 筐体
2002 光源
3001 照明装置
5000 表示領域
5001 表示領域
5002 表示領域
5003 表示領域
5004 表示領域
5005 表示領域
7101 筐体
7103 表示部
7105 スタンド
7107 表示部
7109 操作キー
7110 リモコン操作機
7201 本体
7202 筐体
7203 表示部
7204 キーボード
7205 外部接続ポート
7206 ポインティングデバイス
7301 筐体
7302 筐体
7303 連結部
7304 表示部
7305 表示部
7306 スピーカ部
7307 記録媒体挿入部
7308 LEDランプ
7309 操作キー
7310 接続端子
7311 センサ
7401 筐体
7402 表示部
7403 操作ボタン
7404 外部接続ポート
7405 スピーカ
7406 マイク
9630 筐体
9631 表示部
9631a 表示部
9631b 表示部
9632a タッチパネル領域
9632b タッチパネル領域
9633 太陽電池
9634 充放電制御回路
9635 バッテリー
9636 DCDCコンバータ
9637 操作キー
9638 コンバータ
9639 キーボード表示切り替えボタン
9033 留め具
9034 表示モード切り替えスイッチ
9035 電源スイッチ
9036 省電力モード切り替えスイッチ
9038 操作スイッチ

Claims (18)

  1. 一対の電極間に、発光層を有し、
    前記発光層は、発光物質と、式(G1)で表される化合物と、を有する発光素子。

    (式中、Aは、炭素数6乃至100の基を表し、前記基は、ベンゼン環、フルオレン環、フェナントレン環、トリフェニレン環、ジベンゾチオフェン環、ジベンゾフラン環、カルバゾール環、ベンゾイミダゾール環、ベンゾオキサゾール環、ベンゾチアゾール環、トリフェニルアミン構造のいずれか一または複数で構成され、前記環または前記構造は、置換基を有していてもよい。R乃至Rは、各々独立に、水素、炭素数1乃至6のアルキル基、置換もしくは無置換の炭素数5乃至7の単環式飽和炭化水素、置換もしくは無置換の炭素数7乃至10の多環式飽和炭化水素、置換もしくは無置換の炭素数6乃至13のアリール基のいずれかを表す。)
  2. 一対の電極間に、発光層を有し、
    前記発光層は、発光物質と、下記式(G2)で表される化合物と、を有する発光素子。

    (式中、Htuniは、置換もしくは無置換のジベンゾチオフェニル基、置換もしくは無置換のジベンゾフラニル基、置換もしくは無置換のカルバゾリル基、のいずれかを表す。αは、置換もしくは無置換のフェニレン基を表し、nは0乃至4の整数を表す。R乃至Rは、各々独立に、水素、炭素数1乃至6のアルキル基、置換もしくは無置換の炭素数5乃至7の単環式飽和炭化水素、置換もしくは無置換の炭素数7乃至10の多環式飽和炭化水素、置換もしくは無置換の炭素数6乃至13のアリール基のいずれかを表す。)
  3. 請求項2において、前記nが2である化合物を有する発光素子。
  4. 一対の電極間に、発光層を有し、
    前記発光層は、発光物質と、式(G4)で表される化合物と、を有する発光素子。

    (式中、Htuniは、置換もしくは無置換のジベンゾチオフェニル基、置換もしくは無置換のジベンゾフラニル基、置換もしくは無置換のカルバゾリル基のいずれかを表す。R乃至Rは、各々独立に、水素、炭素数1乃至6のアルキル基、置換もしくは無置換の炭素数5乃至7の単環式飽和炭化水素、置換もしくは無置換の炭素数7乃至10の多環式飽和炭化水素、置換もしくは無置換の炭素数6乃至13のアリール基のいずれかを表す。)
  5. 請求項2乃至請求項4のいずれか一項において、
    前記Htuniが下記式(Ht−1)乃至(Ht−6)で表される基のいずれかである化合物を有する発光素子。

    (式中、R乃至R15は、各々独立に、水素、炭素数1乃至6のアルキル基、置換もしくは無置換のフェニル基、のいずれかを表す。Arは炭素数1乃至6のアルキル基、置換もしくは無置換のフェニル基のいずれかを表す。)
  6. 一対の電極間に、発光層を有し、
    前記発光層は、発光物質と、式(100)、(115)、(200)、(300)のいずれかで表される化合物と、を有する発光素子。



  7. 請求項1乃至請求項6のいずれか一において、
    前記発光物質は、蛍光物質である発光素子。
  8. 請求項1乃至請求項6のいずれか一において、
    前記発光物質は、燐光物質である発光素子。
  9. 請求項1乃至請求項6のいずれか一において、
    前記発光物質は、有機金属錯体である発光素子。
  10. 請求項1乃至請求項9のいずれか一において、
    前記発光層は、さらに第3の物質を有する発光素子。
  11. 一対の電極間に、発光層を有し、
    前記発光層は、発光物質と、ベンゾフロピリミジン骨格を有する化合物と、第3の物質と、を有する発光素子。
  12. 請求項10または請求項11において、
    前記化合物と、前記第3の物質とは、励起錯体を形成する組み合わせである発光素子。
  13. 請求項1乃至請求項12のいずれか一に記載の発光素子を有するディスプレイモジュール。
  14. 請求項1乃至請求項12のいずれか一に記載の発光素子を有する照明モジュール。
  15. 請求項1乃至請求項12のいずれか一に記載の発光素子と、前記発光素子を制御する手段を備えた発光装置。
  16. 請求項1乃至請求項12のいずれか一に記載の発光素子を表示部に有し、前記発光素子を制御する手段を備えた表示装置。
  17. 請求項1乃至請求項12のいずれか一に記載の発光素子を照明部に有し、前記発光素子を制御する手段を備えた照明装置。
  18. 請求項1乃至請求項12のいずれか一に記載の発光素子を有する電子機器。
JP2019091908A 2013-03-26 2019-05-15 発光素子、ディスプレイモジュール、照明モジュール、発光装置、表示装置、照明装置、電子機器 Active JP6770608B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013064261 2013-03-26
JP2013064261 2013-03-26

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017160445A Division JP2017210483A (ja) 2013-03-26 2017-08-23 化合物

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2020160958A Division JP7030923B2 (ja) 2013-03-26 2020-09-25 発光素子の発光層用材料

Publications (2)

Publication Number Publication Date
JP2019149572A true JP2019149572A (ja) 2019-09-05
JP6770608B2 JP6770608B2 (ja) 2020-10-14

Family

ID=51619920

Family Applications (9)

Application Number Title Priority Date Filing Date
JP2014062578A Withdrawn JP2014209611A (ja) 2013-03-26 2014-03-25 発光素子、化合物、有機化合物、ディスプレイモジュール、照明モジュール、発光装置、表示装置、照明装置及び電子機器
JP2016082594A Active JP6069563B2 (ja) 2013-03-26 2016-04-18 発光素子、ディスプレイモジュール、照明モジュール、発光装置、表示装置、照明装置、電子機器
JP2016083437A Active JP6199435B2 (ja) 2013-03-26 2016-04-19 発光素子用材料および化合物
JP2016250220A Active JP6186491B2 (ja) 2013-03-26 2016-12-23 有機半導体素子
JP2017160445A Withdrawn JP2017210483A (ja) 2013-03-26 2017-08-23 化合物
JP2019091908A Active JP6770608B2 (ja) 2013-03-26 2019-05-15 発光素子、ディスプレイモジュール、照明モジュール、発光装置、表示装置、照明装置、電子機器
JP2020160958A Active JP7030923B2 (ja) 2013-03-26 2020-09-25 発光素子の発光層用材料
JP2022025669A Withdrawn JP2022075682A (ja) 2013-03-26 2022-02-22 有機半導体素子
JP2024012858A Pending JP2024036441A (ja) 2013-03-26 2024-01-31 有機半導体素子

Family Applications Before (5)

Application Number Title Priority Date Filing Date
JP2014062578A Withdrawn JP2014209611A (ja) 2013-03-26 2014-03-25 発光素子、化合物、有機化合物、ディスプレイモジュール、照明モジュール、発光装置、表示装置、照明装置及び電子機器
JP2016082594A Active JP6069563B2 (ja) 2013-03-26 2016-04-18 発光素子、ディスプレイモジュール、照明モジュール、発光装置、表示装置、照明装置、電子機器
JP2016083437A Active JP6199435B2 (ja) 2013-03-26 2016-04-19 発光素子用材料および化合物
JP2016250220A Active JP6186491B2 (ja) 2013-03-26 2016-12-23 有機半導体素子
JP2017160445A Withdrawn JP2017210483A (ja) 2013-03-26 2017-08-23 化合物

Family Applications After (3)

Application Number Title Priority Date Filing Date
JP2020160958A Active JP7030923B2 (ja) 2013-03-26 2020-09-25 発光素子の発光層用材料
JP2022025669A Withdrawn JP2022075682A (ja) 2013-03-26 2022-02-22 有機半導体素子
JP2024012858A Pending JP2024036441A (ja) 2013-03-26 2024-01-31 有機半導体素子

Country Status (6)

Country Link
US (5) US9905782B2 (ja)
JP (9) JP2014209611A (ja)
KR (5) KR102257137B1 (ja)
CN (3) CN109616572B (ja)
TW (4) TWI759889B (ja)
WO (1) WO2014157599A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021029337A (ja) * 2019-08-19 2021-03-01 株式会社ユニバーサルエンターテインメント 遊技機

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109616572B (zh) 2013-03-26 2023-01-17 株式会社半导体能源研究所 发光装置
US20170012216A1 (en) * 2014-01-10 2017-01-12 Samsung Sdi Co., Ltd. Condensed cyclic compound and organic light-emitting device including the same
US9502656B2 (en) * 2014-02-24 2016-11-22 Universal Display Corporation Organic electroluminescent materials and devices
KR102287012B1 (ko) * 2014-05-28 2021-08-09 덕산네오룩스 주식회사 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
KR102353647B1 (ko) * 2014-08-29 2022-01-20 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자, 표시 장치, 전자 기기, 및 조명 장치
KR102456659B1 (ko) 2014-12-26 2022-10-18 가부시키가이샤 한도오따이 에네루기 켄큐쇼 유기 화합물, 발광 소자, 디스플레이 모듈, 조명 모듈, 발광 장치, 표시 장치, 전자 기기, 및 조명 장치
US9991471B2 (en) * 2014-12-26 2018-06-05 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, display device, and electronic device
KR101842584B1 (ko) * 2015-02-13 2018-03-27 삼성에스디아이 주식회사 유기 광전자 소자용 화합물, 유기 광전자 소자 및 표시 장치
JP6764671B2 (ja) 2015-04-14 2020-10-07 株式会社半導体エネルギー研究所 複素環化合物、発光素子、発光装置、電子機器、および照明装置
JP6846876B2 (ja) 2015-05-12 2021-03-24 株式会社半導体エネルギー研究所 化合物、発光素子、ディスプレイモジュール、照明モジュール、発光装置、表示装置、照明装置、及び電子機器
KR102623039B1 (ko) * 2015-05-15 2024-01-08 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자, 발광 장치, 전자 기기 및 조명 장치
TWI837587B (zh) * 2015-05-21 2024-04-01 日商半導體能源研究所股份有限公司 發光元件、顯示裝置、電子裝置、及照明裝置
WO2016193845A1 (en) 2015-05-29 2016-12-08 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, display device, electronic device, and lighting device
KR20160140393A (ko) * 2015-05-29 2016-12-07 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자, 발광 장치, 표시 장치, 전자 기기 및 조명 장치
WO2017037571A1 (en) 2015-09-04 2017-03-09 Semiconductor Energy Laboratory Co., Ltd. Compound, light-emitting element, display device, electronic device, and lighting device
KR20180095919A (ko) 2015-12-25 2018-08-28 가부시키가이샤 한도오따이 에네루기 켄큐쇼 화합물, 발광 소자, 표시 장치, 전자 기기, 및 조명 장치
US9938309B2 (en) 2015-12-28 2018-04-10 Semiconductor Energy Laboratory Co., Ltd. Organometallic complex, light-emitting element, light-emitting device, electronic device, and lighting device
WO2018033820A1 (en) 2016-08-17 2018-02-22 Semiconductor Energy Laboratory Co., Ltd. Organic compound, light-emitting element, light-emitting device, electronic device, and lighting device
TWI766884B (zh) 2016-09-30 2022-06-11 德商麥克專利有限公司 具有二氮雜二苯并呋喃或二氮雜二苯并噻吩結構的化合物、其製法及其用途
JP7051832B2 (ja) 2016-09-30 2022-04-11 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング ジアザジベンゾフランまたはジアザジベンゾチオフェン構造を有するカルバゾール
KR102616441B1 (ko) * 2016-12-23 2023-12-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 유기 화합물, 발광 소자, 발광 장치, 전자 기기, 및 조명 장치
CN110073510B (zh) 2016-12-28 2022-07-19 株式会社半导体能源研究所 发光元件、有机化合物、发光装置、电子设备及照明装置
JP2018127402A (ja) * 2017-02-06 2018-08-16 国立大学法人山形大学 新規なベンゾフロピリミジン化合物、及びそれを用いた有機el素子
CN110382502B (zh) 2017-03-16 2022-11-29 株式会社半导体能源研究所 有机化合物、发光元件、发光装置、电子设备及照明装置
JP2019006763A (ja) * 2017-06-22 2019-01-17 株式会社半導体エネルギー研究所 有機化合物、発光素子、発光装置、電子機器、および照明装置
TWI787279B (zh) * 2017-06-23 2022-12-21 日商半導體能源研究所股份有限公司 有機化合物、發光元件、發光裝置、電子裝置及照明設備
KR101982791B1 (ko) 2017-07-20 2019-05-27 주식회사 엘지화학 신규한 헤테로 고리 화합물 및 이를 이용한 유기 발광 소자
CN110914252A (zh) * 2017-07-28 2020-03-24 株式会社半导体能源研究所 有机化合物、发光元件、发光装置、电子设备及照明装置
JP7144422B2 (ja) * 2017-08-10 2022-09-29 株式会社半導体エネルギー研究所 有機化合物、発光素子、表示装置、電子機器及び照明装置
KR102355917B1 (ko) 2017-10-26 2022-01-25 엘지디스플레이 주식회사 발광다이오드 및 전계발광 표시장치
WO2019082024A1 (en) 2017-10-27 2019-05-02 Semiconductor Energy Laboratory Co., Ltd. LIGHT EMITTING ELEMENT, DISPLAY DEVICE, ELECTRONIC DEVICE, AND LIGHTING DEVICE
WO2019087003A1 (en) 2017-11-02 2019-05-09 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display device, electronic device, and lighting device
US11462696B2 (en) 2018-01-19 2022-10-04 Semiconductor Energy Laboratory Co., Ltd. Organic compound, light-emitting element, light-emitting device, electronic device, and lighting device
JP7203839B2 (ja) * 2018-05-31 2023-01-13 株式会社半導体エネルギー研究所 有機化合物および発光素子
WO2019229584A1 (ja) * 2018-05-31 2019-12-05 株式会社半導体エネルギー研究所 有機化合物、発光素子、発光装置、電子機器、および照明装置
CN112739703A (zh) 2018-09-20 2021-04-30 株式会社半导体能源研究所 有机化合物、发光器件、发光装置、电子设备及照明装置
KR102177586B1 (ko) * 2018-11-26 2020-11-11 엘티소재주식회사 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2020109922A1 (ja) * 2018-11-30 2020-06-04 株式会社半導体エネルギー研究所 発光デバイス用組成物
JPWO2020109927A1 (ja) * 2018-11-30 2021-12-16 株式会社半導体エネルギー研究所 Elデバイス用組成物
JPWO2021161127A1 (ja) * 2020-02-14 2021-08-19
KR20220154098A (ko) 2020-03-18 2022-11-21 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 디바이스, 발광 장치, 전자 기기, 및 조명 장치
KR102688630B1 (ko) * 2020-10-12 2024-07-24 주식회사 엘지화학 신규한 화합물 및 이를 포함한 유기 발광 소자
US12063856B2 (en) 2021-03-31 2024-08-13 Semiconductor Energy Laboratory Co., Ltd. Mixed material for light-emitting device
TWI792342B (zh) * 2021-06-09 2023-02-11 國立臺灣科技大學 具高發電效能之可撓性清淨能源發電裝置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011084531A (ja) * 2009-10-19 2011-04-28 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、照明装置及び表示装置

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06220059A (ja) * 1993-01-28 1994-08-09 Tanabe Seiyaku Co Ltd 縮合ピリミジン誘導体及びその製法
ES2344007T3 (es) 2003-10-14 2010-08-16 The Arizona Board Of Regents On Behalf Of The University Of Arizona Inhibidores proteina quinasa.
US20090099165A1 (en) 2003-10-14 2009-04-16 Arizona Board Of Regents On Behalf Of The University Of Arizona Protein Kinase Inhibitors
US20080051414A1 (en) * 2003-10-14 2008-02-28 Arizona Board Of Regents On Behalf Of The University Of Arizona Protein Kinase Inhibitors
US20090143399A1 (en) * 2003-10-14 2009-06-04 Arizona Board Of Regents On Behalf Of The University Of Arizona Protein Kinase Inhibitors
CA2586316A1 (en) 2004-11-11 2006-05-18 Argenta Discovery Ltd. Pyrimidine compounds as histamine modulators
EP1776982A1 (en) 2005-10-18 2007-04-25 Argenta Discovery Limited Pyrimidine compounds as histamine modulators
JP4623641B2 (ja) 2005-02-23 2011-02-02 パナソニック株式会社 固体撮像装置の製造方法
US8586204B2 (en) 2007-12-28 2013-11-19 Universal Display Corporation Phosphorescent emitters and host materials with improved stability
JP2007015933A (ja) 2005-07-05 2007-01-25 Sony Corp アントラセン誘導体の合成方法、有機電界発光素子、および表示装置
EP1829879A1 (en) 2006-02-10 2007-09-05 Cellzome (UK) Ltd. Amino pyrimidine compounds for the treatment of inflammatory disorders
EP1860108A1 (en) 2006-05-24 2007-11-28 Cellzome (UK) Ltd. Enantiomers of Amino Pyrimidine compounds for the treatment of inflammatory disorders
WO2007090853A1 (en) 2006-02-10 2007-08-16 Cellzome (Uk) Ltd. Enantiomers of amino pyrimidine compounds for the treatment of inflammatory disorders
EP1860109A1 (en) 2006-05-24 2007-11-28 Cellzome (UK) Ltd. Azetidine amino pyrimidine compounds for the treatment of inflammatory disorders
WO2007090854A1 (en) 2006-02-10 2007-08-16 Cellzome (Uk) Ltd. Azetidine amino pyrimidine compounds for the treatment of inflammatory disorders
WO2009030981A2 (en) 2006-12-28 2009-03-12 Universal Display Corporation Long lifetime phosphorescent organic light emitting device (oled) structures
US20080314965A1 (en) 2007-06-23 2008-12-25 Roberts Mark D System and method for authentication of engineering notebook support information
KR102189768B1 (ko) 2007-08-08 2020-12-14 유니버셜 디스플레이 코포레이션 인광성 발광 다이오드의 단일 트리페닐렌 발색단
TWI531567B (zh) 2007-08-08 2016-05-01 環球展覽公司 有機電發光材料及裝置
WO2009069535A1 (en) * 2007-11-30 2009-06-04 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, and electronic device
US20090153034A1 (en) 2007-12-13 2009-06-18 Universal Display Corporation Carbazole-containing materials in phosphorescent light emittinig diodes
WO2009081222A1 (en) * 2007-12-21 2009-07-02 Glenmark Pharmaceuticals, S.A. Substituted tricyclic pyridine or pyrimidine vanilloid receptor ligands
JP2011507910A (ja) 2007-12-21 2011-03-10 ユニバーシティー オブ ロチェスター 真核生物の寿命を変更するための方法
US8221905B2 (en) * 2007-12-28 2012-07-17 Universal Display Corporation Carbazole-containing materials in phosphorescent light emitting diodes
WO2009085344A2 (en) 2007-12-28 2009-07-09 Universal Display Corporation Dibenzothiophene-containing materials in phosphorescent light emitting diodes
US9067947B2 (en) 2009-01-16 2015-06-30 Universal Display Corporation Organic electroluminescent materials and devices
JP5878461B2 (ja) * 2009-04-06 2016-03-08 ユニバーサル ディスプレイ コーポレイション 新規な配位子構造を含む金属錯体
US20110178107A1 (en) 2010-01-20 2011-07-21 Taigen Biotechnology Co., Ltd. Hcv protease inhibitors
JP6117465B2 (ja) * 2010-10-29 2017-04-19 株式会社半導体エネルギー研究所 カルバゾール化合物、有機半導体材料および発光素子用材料
US8415031B2 (en) 2011-01-24 2013-04-09 Universal Display Corporation Electron transporting compounds
CN105932170B (zh) 2011-02-16 2018-04-06 株式会社半导体能源研究所 发光元件
KR102310048B1 (ko) 2011-04-07 2021-10-08 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자
TWI570121B (zh) * 2011-11-25 2017-02-11 半導體能源研究所股份有限公司 發光元件、發光裝置、電子裝置、照明裝置及有機化合物
CN102690274A (zh) * 2012-05-24 2012-09-26 盛世泰科生物医药技术(苏州)有限公司 4-氯-2-甲基嘧啶苯并呋喃合成工艺
US8921549B2 (en) 2012-06-01 2014-12-30 Semiconductor Energy Laboratory Co., Ltd. Organometallic complex, light-emitting element, light-emitting device, electronic device, and lighting device
JP6015765B2 (ja) * 2012-10-22 2016-10-26 コニカミノルタ株式会社 透明電極、電子デバイスおよび有機エレクトロルミネッセンス素子
JP6137898B2 (ja) * 2013-03-26 2017-05-31 株式会社半導体エネルギー研究所 発光素子、照明装置、発光装置、表示装置、電子機器
CN109616572B (zh) * 2013-03-26 2023-01-17 株式会社半导体能源研究所 发光装置
US9324949B2 (en) * 2013-07-16 2016-04-26 Universal Display Corporation Organic electroluminescent materials and devices

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011084531A (ja) * 2009-10-19 2011-04-28 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、照明装置及び表示装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021029337A (ja) * 2019-08-19 2021-03-01 株式会社ユニバーサルエンターテインメント 遊技機

Also Published As

Publication number Publication date
CN105103327B (zh) 2018-09-07
CN109608473A (zh) 2019-04-12
KR20150132837A (ko) 2015-11-26
JP2016174161A (ja) 2016-09-29
JP6069563B2 (ja) 2017-02-01
JP6199435B2 (ja) 2017-09-20
CN109616572A (zh) 2019-04-12
US20210013428A1 (en) 2021-01-14
KR102257137B1 (ko) 2021-05-26
US9905782B2 (en) 2018-02-27
JP2014209611A (ja) 2014-11-06
KR20230021179A (ko) 2023-02-13
TWI759889B (zh) 2022-04-01
CN109608473B (zh) 2021-05-11
US11600789B2 (en) 2023-03-07
TWI623540B (zh) 2018-05-11
TW201443058A (zh) 2014-11-16
JP2017098561A (ja) 2017-06-01
TW202118767A (zh) 2021-05-16
JP2021006640A (ja) 2021-01-21
KR20200083675A (ko) 2020-07-08
US20230210005A1 (en) 2023-06-29
WO2014157599A1 (en) 2014-10-02
US20190173024A1 (en) 2019-06-06
US12069951B2 (en) 2024-08-20
CN105103327A (zh) 2015-11-25
KR102495679B1 (ko) 2023-02-06
JP2024036441A (ja) 2024-03-15
TWI707858B (zh) 2020-10-21
TW201829415A (zh) 2018-08-16
KR20210149205A (ko) 2021-12-08
US20180166641A1 (en) 2018-06-14
TWI662038B (zh) 2019-06-11
JP7030923B2 (ja) 2022-03-07
KR102332836B1 (ko) 2021-12-01
US10700291B2 (en) 2020-06-30
KR20210063439A (ko) 2021-06-01
JP2016147897A (ja) 2016-08-18
CN109616572B (zh) 2023-01-17
JP2017210483A (ja) 2017-11-30
JP6770608B2 (ja) 2020-10-14
KR102131476B1 (ko) 2020-07-07
US20140291645A1 (en) 2014-10-02
JP6186491B2 (ja) 2017-08-23
TW201936609A (zh) 2019-09-16
US10193086B2 (en) 2019-01-29
JP2022075682A (ja) 2022-05-18

Similar Documents

Publication Publication Date Title
JP7030923B2 (ja) 発光素子の発光層用材料
JP6899020B2 (ja) 発光装置
JP6234100B2 (ja) 発光素子、複素環化合物、ディスプレイモジュール、照明モジュール、発光装置、表示装置、照明装置及び電子機器
JP2020047930A (ja) 発光素子
JP2019131562A (ja) 有機化合物、発光素子、ディスプレイモジュール、照明モジュール、発光装置、表示装置、照明装置及び電子機器

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190611

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200609

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200901

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200925

R150 Certificate of patent or registration of utility model

Ref document number: 6770608

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250