JP2019051776A - 車両用の空調装置 - Google Patents

車両用の空調装置 Download PDF

Info

Publication number
JP2019051776A
JP2019051776A JP2017176201A JP2017176201A JP2019051776A JP 2019051776 A JP2019051776 A JP 2019051776A JP 2017176201 A JP2017176201 A JP 2017176201A JP 2017176201 A JP2017176201 A JP 2017176201A JP 2019051776 A JP2019051776 A JP 2019051776A
Authority
JP
Japan
Prior art keywords
air
flow path
volume
air volume
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017176201A
Other languages
English (en)
Other versions
JP6858458B2 (ja
Inventor
中村 崇
Takashi Nakamura
崇 中村
智弘 丸山
Tomohiro Maruyama
智弘 丸山
秀介 河井
Shusuke Kawai
秀介 河井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marelli Corp
Original Assignee
Calsonic Kansei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Calsonic Kansei Corp filed Critical Calsonic Kansei Corp
Priority to JP2017176201A priority Critical patent/JP6858458B2/ja
Priority to US16/118,681 priority patent/US10988001B2/en
Publication of JP2019051776A publication Critical patent/JP2019051776A/ja
Application granted granted Critical
Publication of JP6858458B2 publication Critical patent/JP6858458B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H3/00Other air-treating devices
    • B60H3/02Moistening ; Devices influencing humidity levels, i.e. humidity control
    • B60H3/024Moistening ; Devices influencing humidity levels, i.e. humidity control for only dehumidifying the air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00985Control systems or circuits characterised by display or indicating devices, e.g. voice simulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00007Combined heating, ventilating, or cooling devices
    • B60H1/00207Combined heating, ventilating, or cooling devices characterised by the position of the HVAC devices with respect to the passenger compartment
    • B60H2001/00214Devices in front of the passenger compartment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H3/00Other air-treating devices
    • B60H3/02Moistening ; Devices influencing humidity levels, i.e. humidity control
    • B60H2003/028Moistening ; Devices influencing humidity levels, i.e. humidity control the devices comprising regeneration means

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Drying Of Gases (AREA)

Abstract

【課題】デシカント材を介した顕熱移動を抑制する。【解決手段】車両用の空調装置1は、空調空気に含まれる水分の吸着と、吸着した水分の再生用流体への放出が可能なデシカント材5と、空調空気が通流するデフダクト16と、再生用流体が通流する第2流路3と、デフダクト16における空調空気の風量と、第2流路3における再生用流体の風量を制御する制御装置と、を有する。デシカント材5は、デフダクト16と第2流路3とに跨がって設けられており、デシカント材5に空調空気に含まれる水分を吸着させて、空調空気が除湿される。制御装置は、再生用流体の風量が、空調空気の目標除湿量を達成する風量に達した後は、再生用流体の風量を、除湿対象の空気の風量よりも少ない風量にする。【選択図】図1

Description

本発明は、車両用の空調装置に関する。
特許文献1には、空調用の空気の流路上に吸湿器を配置した車両用の空調装置が開示されている。
特開平08−067136号公報
この空調装置の吸湿器は、吸湿材(デシカント材)と再生用ヒータとを組み合わせて構成されている。この吸湿器では、流路内を通流する空気に含まれる水分を吸湿材に吸着して、空気を除湿する。さらに、吸湿材が飽和した際に、再生用ヒータで吸湿材を過熱して吸湿材に含まれる水分を放出させることで、吸湿材を再生する。
しかし、特許文献1の空調装置では、吸湿材を再生しているときには、空気の除湿を行えないため、空気を連続して除湿できない仕様となっている。
ここで、空気の除湿を連続して行えるようにするために、以下のようにすることが考えられる。
(a)ひとつの吸湿材(デシカント材)に、水分を吸着する吸着領域と、吸着した水分を脱着させる脱着領域とを設定する。
(b)例えば、デシカント材の吸着領域を、除湿対象の空気が通流する流路内に設置し、脱着領域を、デシカント材から水分を脱着させて回収するための回収用の空気の流路内に設置する。
この場合、空気に含まれる水分をデシカント材の吸着領域に吸着させて、空気を除湿する一方で、デシカント材の脱着領域から水分を脱着させて回収用の空気に取り込ませることで、水分の吸着と脱着を連続的に行うことができる。
ここで、除湿対象の空気の風量が増加すると、デシカント材に吸着される水分量(除湿量)もまた多くなる。そのため、デシカント材から回収用の空気に取り込ませる水分の量を増やすために、除湿対象の空気の風量の増加に追従して、回収用の空気の風量を増加させることが一般的である。
しかしながら、除湿対象の空気の除湿に並行して、除湿対象の空気と回収用の空気との間での熱量の交換(顕熱交換)がデシカント材を介して行われる。
そのため、除湿対象の空気の風量の増加に追従して、回収用の空気の風量を増加させると、顕熱交換による除湿対象の空気の温度変化が大きくなるので、除湿対象の空気の温度が目的の温度から乖離してしまう。
そこで、除湿対象の空気と回収用の空気との間でのデシカント材を介した顕熱移動を抑制できるようにすることが求められている。
本発明は、
除湿対象の空気に含まれる水分の吸着と、吸着した水分の回収用の空気への放出が可能なデシカント材と、
前記除湿対象の空気が通流する第1流路と、
前記回収用の空気が通流する第2流路と、
前記第1流路における前記除湿対象の空気の風量と、前記第2流路における前記回収用の空気の風量を制御する制御手段と、を有し、
前記第1流路と前記第2流路とに跨がって設けられた前記デシカント材に、前記除湿対象の空気に含まれる水分を吸着させて、前記除湿対象の空気を除湿するように構成された車両用の空調装置において、
前記制御手段は、
前記回収用の空気の風量が前記除湿対象の空気の目標除湿量を達成する風量に達した後は、
前記回収用の空気の風量を、前記除湿対象の空気の風量よりも少ない風量にする構成の車両用の空調装置とした。
本発明によれば、除湿対象の空気と回収用の空気との間でのデシカント材を介した顕熱移動を抑制できる。
第1実施形態にかかる車両用の空調装置の概略構成図である。 車両用の空調装置の制御装置の制御対象を説明する図である。 交差領域に設けられたデシカント材を説明する図である。 デシカント材の構成を説明する図である。 除湿対象の空気と回収用の空気の風量比を説明する図である。 第2実施形態にかかるにかかる車両用の空調装置の概略構成図である。 接触領域に設けられたデシカント材を説明する図である。 第3実施形態にかかるにかかる車両用の空調装置の概略構成図である。 変形例にかかる除湿対象の空気と回収用の空気の風量比を説明する図である。
[第1実施形態]
以下、本発明の第1実施形態を、除湿対象の空気が、空調装置1の温度調節部10で温度が調整された空気(空調空気)である場合を例に挙げて説明する。
図1は、本実施形態にかかる車両用の空調装置1の概略構成図である。
図2は、車両用の空調装置1が備える制御装置7の制御対象を説明する図である。
図1に示すように、車両用の空調装置1は、車室90内に供給する空調空気(温度が調整された空気)を調整する温度調節部10を有している。
温度調節部10は、エバポレータ12と、ヒータコア13と、ミックスドア14と、混合部15とを有している。
エバポレータ12は、シロッコファン6A側から送風された空気を冷却する。
エバポレータ12の下流側には、ヒータコア13とミックスドア14とが設けられている。ミックスドア14は、エバポレータ12で冷却された空気のヒータコア13側への流入量を調整し、ヒータコア13は、エバポレータ12側から流入した空気を暖める。
この空調装置1では、エバポレータ12により冷却された空気と、ヒータコア13を経由して暖められた空気と、を混合部15内で混合して、所定温度の空調空気を調整する。
空調空気の温度の調節は、ヒータコア13側に流入する空気の量を、ミックスドア14により調整することで行われる。
混合部15には、ダクト(デフダクト16、ベントダクト17、フットダクト18)への供給口(デフ側供給口16a、ベント側供給口17a、フット側供給口18a)が開口している。
各供給口(デフ側供給口16a、ベント側供給口17a、フット側供給口18a)には、開閉弁16v、17v、18vが設けられている。各開閉弁16v、17v、18vの開閉は、制御装置7(図2参照)により行われる。
そのため、混合部15で温度が調整された空調空気は、ダクト(デフダクト16、ベントダクト17、フットダクト18)のうちの少なくとも1つのダクトを通って、最終的に、車室90内に供給される。
デフダクト16は、ウインドシールドガラスWの下部の近傍に開口する吹出口16bと、デフ側供給口16aとを接続している。
吹出口16bは、この吹出口16bから吹き出す空調空気が、ウインドシールドガラスWの車幅方向の略全面に当たるようにするために、車幅方向に所定長さを有している。
ベントダクト17は、車室90内のインストルメントパネル91で開口する吹出口17b、17cと、ベント側供給口17aと、を接続している。
フットダクト18は、車室90内の床の近傍に開口する吹出口18bと、フット側供給口18aと、を接続している。
空調装置1は、車室90内(車内)の空気の取込口21aと、車外の空気の取込口23aから取り込んだ空気の少なくとも一方が通流する第1流路2を有している。
ここで、以下の説明においては、取込口21aから取り込んだ車室90内の空気を「内気」、取込口23aや、後記する取込口3aから取り込んだ車外の空気を「外気」とも標記する。
第1流路2は、通流路21と、送風路22と、を有している。通流路21は、長手方向の一端に、車室90内の空気の取込口21aを有している。送風路22は、長手方向の一端に、温度調節部10との接続口22aを有している。
送風路22の内部には、シロッコファン6Aのロータ61が設けられている。ロータ61は、モータM1の回転駆動力で軸線X回りに一体に回転する。モータM1の駆動は、制御装置7(図2参照)により制御される。
シロッコファン6Aでは、ロータ61が軸線X回りに回転すると、ロータ61の回転軸(軸線X)方向から空気が吸引されると共に、吸引された空気が、軸線Xの径方向に送出される。
そのため、第1流路2では、送風路22におけるロータ61が設けられた領域に、通流路21が軸線X方向から接続されている。
通流路21の長手方向の途中位置には、車外の空気の取込口23aを有する外気導入部23が接続されている。外気導入部23と通流路21との接続部には、外気導入部23の開口23bを開閉する切替弁41が設けられている。
切替弁41の仕切壁411は、内気導入位置(図1:実線参照)と、外気導入位置(図1:仮想線参照)との間を変位する。この仕切壁411の変位と、仕切壁411の配置は、制御装置7(図2参照)が制御する。
仕切壁411が内気導入位置に配置されると、外気導入部23の開口23bが仕切壁411により閉じられて、通流路21と外気導入部23との連通が遮断される。
これにより、取込口21aを介して通流路21内に取り込んだ車室90内の空気(内気)が、通流路21を通って、送風路22内に供給される。
仕切壁411が外気導入位置(図1:仮想線参照)に配置されると、取込口21aから通流路21への空気(内気)の流入が阻止されると共に、取込口23aから通流路21への空気(外気)の流入が許容される。
これにより、取込口23aから外気導入部23の内部空間231に取り込まれた車外の空気(外気)が、通流路21を通って送風路22内に供給される。
なお、仕切壁411は、内気導入位置と外気導入位置の間に配置される場合もある。この場合には、車室90内の空気(内気)と車外の空気(外気)の両方が、送風路22内に供給される。
送風路22内に供給された空気(内気および/または外気)は、温度調節部10で温度が調整されたのち、デフダクト16と、ベントダクト17と、フットダクト18とのうちの少なくとも1つのダクトを通って、空調空気として車室90内に供給される。
デフダクト16では、デフ側供給口16aと吹出口16bとの間の領域に、第2流路3との交差領域25が設けられている。
交差領域25では、デフダクト16と第2流路3とが略直交している。第2流路3の長手方向の一端と他端は、それぞれ、外気の取込口3aと外気の排出口3bになっている。
第2流路3では、デフダクト16との交差領域25よりも下流側に、シロッコファン6Bのロータ61が設けられている。ロータ61は、モータM2の回転駆動力で軸線X回りに回転する。モータM2の駆動は、制御装置7(図2参照)により制御される。
シロッコファン6Bでは、ロータ61が軸線X回りに回転すると、ロータ61の回転軸(軸線X)方向から空気が吸引されると共に、吸引された空気が、軸線Xの径方向に送出される。
そのため、ロータ61が軸線X回りに回転すると、車外の空気(外気)が、取込口3aから第2流路3内に取り込まれる。
そして、第2流路3内に取り込まれた空気(外気)は、デフダクト16との交差領域25を通過した後、排出口3bから車外に排出される。
第2流路3とデフダクト16との交差領域25には、デシカント材5が設けられている。
デシカント材5は、デフダクト16を通流する空調空気を除湿するために設けられている。
図3は、交差領域25に設けられたデシカント材5を説明する図である。
図4は、デシカント材5の構成を説明する図である。図4の(a)は、デシカント材5の一部を分解して示した斜視図である。図4の(b)は、デシカント材5の一部の領域を空気の通流方向から見た平面図であって、デシカント材5の基本構成を説明する図である。
図3に示すように、デフダクト16と第2流路3との交差領域25では、デフダクト16を通流する空気の移動方向と、第2流路3を通流する空気の移動方向とが直交している。
図4の(a)、(b)に示すように、デシカント材5は、間隔を開けて互いに略平行に配置された複数の板状基材51と、板状基材51、51の間に配置された波状基材52とを有している。
波状基材52は、板状基材51の並び方向で隣接する一対の板状基材51、51の間に設けられている。
板状基材51は、正面視において矩形形状を成す板状部材である。この板状基材51の四辺のうちの対向する二辺510、510と、残りの対向する二辺511、511は、側面視においてそれぞれ直線状を成している。対向する二辺510、510と、対向する二辺511、511は、正面視において互いに直交している。
波状基材52は、正面視において矩形形状を成す板状部材である。この波状基材52の四辺のうちの対向する二辺520、520は、側面視において直線状を成しており、残りの二辺521、521は、側面視において波状を成している。
波状基材52は、当該波状基材52を挟んで一方側に位置する板状基材51と、他方側に位置する板状基材51とに交互に接して設けられている。
波状基材52と板状基材51との接触点P1、P2は、接着剤53で接続されている。
波状基材52と、この波状基材52の一方側に位置する板状基材51との接触点P1、P1の間隔Pと、波状基材52と、この波状基材52の他方側に位置する板状基材51との接触点P2、P2の間隔Pは、略同じピッチとなっている。
デシカント材5では、板状基材51と、波状基材52とが交互に配置されている。板状基材51の並び方向で隣り合う波状基材52A、52Bは、向きを90度ずつ異ならせて設けられている。
一対の板状基材51、51の間には、波状基材52A、52Bと一対の板状基材51、51とで囲まれた複数の空間Sa、Sbが、略同じ開口断面積で形成されている。
そして、波状基材52Aと、この波状基材52Aの両側に位置する板状基材51、51との間に形成される空間Saと、波状基材52Bと、この波状基材52Bの両側に位置する板状基材51、51との間に形成される空間Sbとが直交している。
本実施形態のデシカント材5では、波状基材52Aが形成する空間Saを、空調空気(除湿対象の空気)が通流し、波状基材52Bが形成する空間Sbを、再生用流体(回収用の空気)が通流する。
以下の説明においては、空間Sa、Sbを、説明の便宜上、それぞれ流路Sa、Sbとも標記する。さらに、空間Sa、Sb(流路Sa、Sb)を特に区別しない場合には、単純に空間S(流路S)と標記する。波状基材52A、52Bについても、特に区別しない場合には、単純に波状基材52と標記する。
デシカント材5では、空調空気の流路Saを形成する波状基材52A(第1波状基材)と、再生用流体の流路Sbを形成する波状基材52B(第2波状基材)とが、板状基材51の並び方向で交互に設けられている。
本実施形態では、デシカント材5を構成する板状基材51と波状基材52(52A、52B)は、水分の吸着と脱着が可能な不織布や、紙で形成されている。
ここで、吸着と脱着の効率の向上を期待して、板状基材51と波状基材52に、高分子系の吸着材Sxや、無機系の吸着材のような、水分の吸着と脱着が可能な材料を担持させていることが好ましい。
図4に示すデシカント材5では、板状基材51と波状基材52(52A、52B)の表面が、吸着材Sxの層で覆われている。
そして、波状基材52(52A、52B)と板状基材51との接触点P1、P2では、表面が吸着材Sxの層で覆われた板状基材51と波状基材52(52A、52B)とが、接着剤53で隙間無く接続されている(図4の(b)参照)。
ここで、本明細書における用語「吸着材」は、水分を保持(吸着)する特性を有する有機系の高分子材料や無機材料であって、この材料の表面に、水分を吸着させるもの(一般的な吸着材)だけではなく、材料の内部に水分を収容するものの両方を意味している。
また、吸着材において水分は、基材に保持された吸着材の間での移動と、吸着材と基材との間での移動が可能な状態で保持されている。
かかる構成を有する空調装置1の動作を説明する。
車両V(図1参照)において、外気を取り込まずに車室90内を空調している場合には、空調装置1は、車室90内から取り込んだ空気(内気)を、温度調整の後に、車室90内に循環させている。
そのため、循環させる空気(空調空気)の絶対湿度が、車室90内の状況などに応じて経時的に上昇することになる。
ここで、絶対湿度が高い空調空気を車室90内に循環させると、ウインドシールドガラスWなどに曇りが生じることがある。
そのため、空調装置1は、車室90内から取り込んだ空気を除湿するデシカントモードを、動作モードの1つとして有している。
以下、空調装置1の動作モードが、デシカントモードである場合について説明する。
ここで、デシカントモードでは、空調空気に含まれる水分をデシカント材5に吸着させて、空調空気を除湿する一方で、車外から取り込んだ空気(再生用流体)により、デシカント材5から水分を脱着させる。これにより、デシカント材5における水分の吸着が連続して行えるようになっている。
<デシカントモード>
デシカントモードでは、制御装置7が切替弁41を操作して、仕切壁411を、内気導入位置(図1:実線参照)に配置させる。
これにより、第1流路2の通流路21と、外気導入部23との連通が遮断されて、通流路21内を、取込口21aから取り込んだ空気(内気)のみが通流できる状態となる。
この状態で、制御装置7がモータM1を駆動して、シロッコファン6Aのロータ61を軸線X回りに回転させる。これにより、ロータ61の上流側に位置する通流路21内に、車室90内の空気(内気)が、取込口21aから流入する。
さらに、制御装置7がモータM2を駆動して、シロッコファン6Bのロータ61を軸線X回りに回転させる。これにより、車外の空気(再生用流体)が第2流路3内に流入し、第2流路3内に、長手方向の一端の取込口3aから他端の排出口3bに向かう空気(再生用流体)の流れが形成される。
第2流路3内に取込口3aから流入した車外の空気(再生用流体)は、デフダクト16との交差領域25を通過した後、排出口3bから排出される。
交差領域25では、第2流路3とデフダクト16とが略直交する向きで交差している。交差領域25内では、第2流路3を通流する空気(再生用流体)の流路と、デフダクト16を通流する空調空気の流路とに跨がって、デシカント材5が設けられている。
前記したようにデシカント材5では、波状基材52Aと板状基材51との間に形成された流路Sa内を、温度調節部10で温度が調節された空調空気が通過する。
板状基材51と波状基材52は、水分の吸着と脱着が可能な材料(例えば、不織布)で形成されている。さらに、板状基材51と波状基材52の表面には、水分の吸着と脱着が可能な吸着材が少なくとも担持されている。
そのため、空調空気がデシカント材5を通過する際に、流路Saを囲む板状基材51、51と波状基材52Aと吸着材Sxとに、空調空気に含まれる水分が吸着される。
これにより、温度調節部10で温度が調節された空調空気が、デシカント材5で除湿される。
さらに、デシカント材5では、波状基材52Bと板状基材51との間に形成された流路Sb内を、車室90外(車外)から取り込んだ再生用流体が通過する。
デシカントモードでは、車外から取り込んだ空気(再生用流体)は、少なくとも絶対湿度の低い空気である。そして、本実施形態では、デシカントモードにおいて、第2流路3を通流する車外の空気(外気)を、デシカント材5から水分を脱着させる再生用流体として用いている。
そのため、再生用流体が波状基材52Bと板状基材51との間に形成された流路Sbを通過する際に、流路Sbを囲む板状基材51と波状基材52Bと吸着材Sxとに吸着されている水分が、再生用流体に取り込まれる。
これにより、デシカント材5における再生用流体が通流する流路Sbを囲む板状基材51と波状基材52Aと吸着材Sxとから、水分が脱着されて、デシカント材5が賦活される。
よって、デシカント材5では、車室90外(車外)から取り込んだ再生量流体が通流する流路Sbを囲む領域の方が、空調空気が通流する流路Saを囲む領域よりも水分の吸着量が少なくなる。
そのため、デシカント材5全体での水分の分布を均一化させようとする作用が発揮される。その結果、空調空気が通流する流路Saを囲む領域(吸着領域)から、車室90外(車外)から取り込んだ再生用流体が通流する流路Sbを囲む領域(脱着領域)に向けて水分が移動する(図3参照)。
ここで、吸着材Sxに吸着されている水分は、吸着材Sxの表面や内部を移動できるようになっている。そのため、吸着材Sxに吸着されている水分もまた、空調空気が通流する流路Saを囲む領域(吸着領域)から、車室90外(車外)から取り込んだ再生用流体が通流する流路Sbを囲む領域(脱着領域)に向けて移動する。
さらに、図4の(a)、(b)に示すように、デシカント材5では、空調空気の流路Saと、再生用流体の流路Sbとが、板状基材51を間に挟んで隣接している。
そのため、空調空気と再生用流体との間での板状基材51を介した水分の移動が生じやすくなっている。
さらに、デシカント材5では、空調空気の流路Saを画成する波状基材52Aが、この波状基材52Aを挟んで一方側に位置する板状基材51と、他方側に位置する板状基材51とに交互に接している。
そのため、空調空気から波状基材52Aに吸着された水分は、再生用流体の流路Sbに接する板状基材51まで移動した後、この板状基材51における流路Sb側の表面から脱着されて、再生用流体に取り込まれることになる(図3の拡大図参照)。
さらに、デシカント材5では、再生用流体の流路Sbを画成する波状基材52Bが、この波状基材52Bを挟んで一方側に位置する板状基材51と、他方側に位置する板状基材51とに交互に接している。
そのため、空調空気から取り込まれて板状基材51、51に移動した水分は、波状基材52Bとの接触点を介して、波状基材52B内に移動する。そして、波状基材52Bに移動した水分は、波状基材52Bの表面から脱着されて、再生用流体に取り込まれることになる。
このように、(1)空調空気から取り除かれてデシカント材5における流路Saを囲む領域(吸着領域)に吸着された水分が、水分の吸着量が少ない流路Sbを囲む領域(脱着領域)側に移動する。
そして、(2)流路Sbを囲む領域(脱着領域)に移動した水分が、流路Sbを通流する車外の空気(外気:再生用流体)に取り込まれる。
これにより、デフダクト16と第2流路3を、それぞれ空調空気と再生用流体とが連続して通流している状態では、デシカント材5における脱着領域が、デシカント材5における吸着領域よりも少ない水分の吸着量で常に保持される。
その結果、デシカント材5における流路Saを囲む領域(吸着領域)に吸着された水分が、デシカント材5における流路Sbを囲む領域(脱着領域)側に常に移動することになるので、デシカント材5での水分の吸着量が飽和しないことになる。
そのため、従来のデシカント材の場合のように、デシカント材で水分吸着量が飽和した場合に、例えばヒータを駆動して、デシカント材の再生処理を行う必要が生じない。すなわち、再生用流体を連続して通流させるだけで、空調空気(除湿対象の空気)の除湿を連続して行えることになる。
これにより、車室90内に供給される空調空気の絶対湿度を低減させることができる。
なお、デシカントモードの際に温度調節部10に供給する空気は、その総てが、取込口21aから取り込んだ車室90内の空気(内気)である必要は無い。
温度調節部10に供給する空気(内気)は、外気導入部23から取り込んだ車外の空気(外気)を含んでいても良い。
このように、空調空気(除湿対象の空気)の除湿を行う際には、空調空気からデシカント材5に吸着させた水分を、デシカント材5から再生用流体(回収用の空気)に放出させることで、デシカント材5での水分の吸着量が飽和することを防いでいる。
ここで、空調空気の風量は、車室90内の空調条件に応じて変化する。例えば、冬季における暖房運転の開始直後のように、車室90内を短時間で暖める必要がある場合には、空調空気の風量は最大になる。
空調空気の風量が増加すると、デシカント材5に取り込まれる水分の量(除湿量)もまた多くなるので、デシカント材5から再生用流体に放出させる水分の量を増やす必要がある。そのため、空調空気の風量の増加に追従して、再生用流体の風量を増加させることが一般的に行われている。
しかしながら、空調空気の除湿に並行して、空調空気と再生用流体との間での熱量の交換(顕熱交換)がデシカント材5を介して行われる。
そのため、空調空気の温度が、デシカント材5を介した空調空気と再生用流体との顕熱交換により変化する。そして、空調空気の風量の増加に追従して、再生用流体の風量を増加させると、熱量の交換量が増える結果、デシカント材5の前後での空調空気の温度変化が大きくなる。
例えば、冬季における空調装置1の暖房運転時には、空調空気は、車室90内に供給する温度の高い空気であり、再生用流体は、車外から取り込んだ温度の低い空気である。
この場合には、顕熱交換により空調空気の熱が再生用流体側に奪われて、空調空気から無駄に排出される熱量が増えてしまう結果、空調装置1における暖房効率を低下させる一因となる。
本願発明者は、空調空気(除湿対象の空気)の風量が増加した際に、再生用流体(回収用の空気)の風量を変えずに保持すると、空調空気からデシカント材5に取り込まれる水分の量(除湿量)が、再生用流体の風量に応じて決まる一定量になるという点、
再生用流体(回収用の空気)の風量を、空調空気(除湿対象の空気)の風量よりも多くしても、空調空気(除湿対象の空気)からデシカント材5に取り込まれる水分量が上がらない点、を実験を通じて見出した。
そして、この知見をもとに、鋭意検討した結果、以下の構成(a)を採用することで、冬季における空調装置1の暖房運転時に、空調空気の除湿量を確保しつつ、顕熱交換による空調空気の温度の変化を抑制できることを見出した。
(a)再生用流体の風量が空調空気の目標除湿量を達成する風量に達した後は、再生用流体の空気の風量を、空調空気の風量に追従させて増加させるのではなく、空調空気の風量よりも少ない風量であって、目標除湿量を達成できる風量以上にする。
以下、空調空気(除湿対象の空気)と再生用流体(回収用の空気)の風量制御であって、空調装置1の動作モードが、冬季におけるデシカントモードである場合の制御を説明する。
図5は、空調空気(除湿対象の空気)と再生用流体(回収用の空気)との風量比の関係を説明する図である。
制御装置7は、モータM1、M2(図1参照)を駆動して、シロッコファン6A、6Bのロータ61、61を回転させる。
シロッコファン6Aのロータ61が回転すると、デフダクト16を通流する空調空気の風量が、ロータ61の回転数に応じて変化する。
シロッコファン6Bのロータ61が回転すると、第2流路3を通流する再生用流体の風量が、ロータ61の回転数に応じて変化する。
空調装置1の動作モードがデシカントモードになると、制御装置7は、切替弁41の仕切壁411を内気導入位置(図1:実線参照)に配置する。
さらに、制御装置7は、少なくとも開閉弁16vを開いて、温度調節部10と車室90内とを、デフダクト16を介して連通させる。
そして、制御装置7は、モータM1を駆動してシロッコファン6Aのロータ61を回転させる。
これにより、空調装置1の温度調節部10に、車室90内から取り込んだ空気(内気)が供給されて、デフダクト16には、温度調節部10で温度が調節された空気(空調空気)が供給される。
さらに、制御装置7は、モータM2を駆動してシロッコファン6Bのロータ61を回転させる。これにより、第2流路3には、車外の空気(再生用流体)が流入する。
よって、デフダクト16と第2流路3との交差領域25に設けられたデシカント材5では、波状基材52Aが形成する流路Saを、空調空気(除湿対象の空気)が通流し、波状基材52Bが形成する流路Sbを、再生用流体(回収用の空気)が通流する。
制御装置7には、車室90内の温度および相対湿度を示す信号と、車外の温度および相対湿度を示す信号が、温度センサと湿度センサから入力される(図2参照)。
制御装置7は、車室90内(車内)の温度および相対湿度から車内の絶対湿度H_inを算出すると共に、車室90外(車外)の温度および相対湿度から車外の絶対湿度H_outを算出する。
さらに、制御装置7は、車内の絶対湿度H_inと車外の絶対湿度H_outとの差(絶対湿度差ΔH)を求め、求めた絶対湿度差ΔHと、車両に応じて決まる目標吸湿量MC_targetとから、第2流路3を通流する再生用流体の風量Vを決定する。
本実施形態では、最小の風量として1.5m3/minを想定している。
本実施形態では、制御装置7は、再生用流体の風量Vが下限風量VLに達するまでの間は、空調空気の風量の増加に追従させて、再生用流体の風量Vを増加させる。
この際に、制御装置7は、空調空気の風量の増加に所定の相関を持って、再生用流体の風量Vを増加させる。
図5では、再生用流体の風量Vが下限風量VLに達するまでの間(目標吸湿量の達成前の領域)では、空調空気の風量の増加に対して、1:1の関係で再生用流体の風量Vを増加させる場合(実線aの領域)を示している。
この実線aに沿って再生用流体の風量Vを増加させている間は、空調空気の風量と再生用流体の風量Vは、常に略同じ風量となる。
ここで、空調空気の風量と、再生用流体の風量Vとの関係であって、再生用流体の風量Vが下限風量VLに達するまでの間における関係は、この図5において実線aで示した態様にのみ限定されるものではない。
例えば、再生用流体の風量Vが、空調空気の風量に対して僅かに少なくなるようにしつつ、再生用流体の風量を、下限風量VLに向けて増加させるようにしても良い(図中、一点鎖線a’参照)。
本実施形態では、制御装置7は、再生用流体の風量Vが下限風量VLに達した後は、再生用流体の風量Vの目標値Vtを、空調用空気の風量の増加に追従させて、1:1の関係で増加させないようにする。
具体的には、空調用空気の風量に対して1:1の関係となる風量Vを規定する線分(図5、破線L参照)よりも小さい値に設定する。
再生用流体の風量Vが、下限風量VLよりも多くなる領域(目標吸湿量の達成後の領域)では、風量Vが増加するにつれて、デシカント材5を介した空調空気と再生用流体との間での顕熱交換量が多くなる。
冬季における空調装置1の暖房運転時にデシカントモードを行うと、空調空気は、温度調節部10で調節された温度の高い空気であり、再生用流体は、車外から取り込まれた温度の低い空気であるので、空調空気の温度が顕熱交換により低下する。
そうすると、車室90内に供給される空調空気は、デシカント材5で除湿されて絶対湿度が低くなるものの、目的とされていた温度(目的温度)よりも低い温度で車室90内に供給される。
この場合、車室90内を目的の温度に空調するためには、温度調節部10で調整する空調空気の温度をより高くする必要があり、空調装置1における暖房効率が低下する。
空調空気の風量の増加に追従して、再生用流体の風量を単純に増加させると、顕熱交換による空調空気の温度変化が大きくなるので、デシカント材5で除湿された後の空調空気は、目的温度からの乖離幅が増大する。
そうすると、空調装置1における暖房効率がいっそう低下する。
本実施形態では、制御装置7が、再生用流体の風量を、空調空気の風量よりも少ない風量にすることで、顕熱交換による空調空気の温度変化の程度(温度低下の程度)を小さくしている。
これにより、空調空気の目的温度からの乖離幅を小さくして、空調装置1における暖房効率を向上させている。
特に、制御装置7が、再生用流体の風量を、空調空気の風量に対して1:1の関係となる風量未満にすると共に、再生用流体の風量の下限を、空調空気の目標除湿量を達成する風量VL(下限風量)に設定している。
そのため、空調空気の目標除湿量を達成するために必要な再生用流体の風量VLを維持しつつ、再生用流体の風量を、空調空気の風量よりも少ない風量に抑えている。これにより、空調空気の目標除湿量を確保しつつ、空調空気の温度が、顕熱交換により目的温度から大きく乖離することを防止している。
この場合において、制御装置7は、以下の(a)から(b)の何れかにより、再生用流体の風量Vを決定する。
(a)再生用流体の風量Vが下限風量VLに到達した後は、空調空気の増加に関係なく、再生用流体の風量Vを下限風量VL保持する(図5における線分b参照)。
(b)再生用流体の風量Vが下限風量VLに到達した後は、下限風量VLよりも多い風量であって、空調空気の風量よりも少ない風量の範囲内に、再生用流体の風量Vを設定する(図5における破線Lと線分bの間)。
(c)(b)の場合において、空調空気の風量が増加するにつれて、空調空気の風量に1:1で対応する風量からの乖離量ΔVを大きくする(図5における線分c参照)。
このようにすることで、空調空気の除湿量を確保しつつ、空調空気の目的とされていた温度からの乖離幅を小さくして、空調装置における暖房効率を向上させている。
なお、(b)、(c)の場合には、空調空気の風量と、再生量流体の風量Vとの関係を規定するマップデータを、実験等を通じて予め用意しておくことが好ましい。そして、制御装置7が、空調空気の風量に基づいてマップデータを参照して、再生用流体の風量Vを決定するようにしても良い。
また、空調空気の目標除湿量を達成するために必要な再生用流体の下限風量VLもまた、実験などを通じて予め設定しておくことが好ましい。
この場合には、車内の絶対湿度H_inと車外の絶対湿度H_outとの絶対湿度差ΔHが最も小さいときを基準として、下限風量VLを設定しておくことが好ましい。
絶対湿度差ΔHが小さくなると、空調空気から再生量流体への水分の移動量が少なくなり、空調空気からの水分の吸着量(吸湿量)が少なくなる。
よって、絶対湿度差ΔHが最も小さいときを基準とすると、設定される下限風量VLは、空調空気を除湿するために必要な再生用流体の最小の風量となる。
なお、本実施形態では、下限風量VLの設定にあたり、車両に応じて決まる目標吸湿量MC_targetを考慮することが好ましい。
車室90内の絶対湿度に影響を及ぼす要素として、車両Vにおける乗員定数や、車室90内の容積がある。乗員定数や車室90内の容積は車両毎に異なるので、車両に応じて決まる目標吸湿量MC_targetを考慮することで、空調空気を除湿するために必要な再生用流体の最小の風量をより適切に決定できる。
なお、空調装置1の動作モードには、デシカントモードの他に、外気/内気混合モード、外気モード、内気モードがある。
これら外気/内気混合モード、外気モード、内気モードの何れのモードにおいても、制御装置7は、第2流路3に付設されたシロッコファン6Bを駆動させない。
そのため、再生用流体として機能する車外の空気(外気)が第2流路3内を通流しないので、デフダクト16を通流する空調空気は、除湿されることなくそのまま車室90内に供給される。
以上の通り、実施形態にかかる車両用の空調装置1は、以下の構成を有している。
(1)車両用の空調装置1は、
空調空気(除湿対象の空気)に含まれる水分の吸着と、吸着した水分の再生用流体(回収用の空気)への放出が可能なデシカント材5と、
空調空気が通流するデフダクト16(第1流路)と、
再生用流体が通流する第2流路3と、
デフダクト16における空調空気の風量と、第2流路3における再生用流体の風量を制御する制御装置7(制御手段)と、を有する。
デシカント材5は、デフダクト16と第2流路3とに跨がって設けられている。
空調装置1では、デシカント材5に、空調空気に含まれる水分を吸着させて、空調空気が除湿される。
制御装置7は、
再生用流体の風量Vが、空調空気の目標除湿量を達成する風量VLに達した後は、再生用流体の風量Vを、空調空気の風量よりも少ない風量にする。
空調空気の風量が増加すると、デシカント材5に取り込まれる水分の量(除湿量)が多くなる。
そのため、デシカント材5が吸着した水分で飽和することを防ぐために、再生用流体の流量を空調空気の風量の増加に追従して増加させて、デシカント材5から再生用流体に放出させる水分の量を増やす必要がある。
しかしながら、デシカント材5では、空調空気の除湿に並行して、空調空気と再生用流体との間での熱量の交換(顕熱交換)が行われている。そして、交換される熱量の総量は、再生用流体の流量が増えるにつれて多くなる。よって、再生用流体の風量を増加させると、熱量の交換量が増える結果、デシカント材5の前後での空調空気の温度変化が大きくなる。
上記のように、再生用流体の風量Vが空調空気の目標除湿量を達成する風量VLに達した後は、再生用流体の風量Vを、空調空気の風量よりも少ない風量にすると、以下のような効果が得られる。
(a)空調空気(除湿対象の空気)の目標除湿量を達成しつつ、再生用流体(回収用の空気)と空調空気(除湿対象の空気)との間でのデシカント材5を介した熱量の交換量を抑えることができる。
(b)再生用流体(回収用の空気)と空調空気(除湿対象の空気)との間でのデシカント材5を介した顕熱移動が抑制される結果、顕熱交換により空調空気(除湿対象の空気)から無駄に排出される熱量を抑えることができる。
さらに、
(c)冬季における空調装置1の暖房運転時には、空調空気(除湿対象の空気)の風量の増加に追従して再生用流体(回収用の空気)の風量を増加させる場合に比べて、デシカント材5の温度を高い温度に保持することができる。
(d)デシカント材5の温度が高くなると、材料側(板状基材51、波状基材、吸着材Sx)の活性化エネルギーが高くなるので、水分の移動速度が速くなる。
空調装置1は、以下の構成を有している。
(2)制御装置7は、
再生用流体の風量Vが、空調空気の目標除湿量を達成する風量VLに達した後は、
空調空気の風量の下限を、空調空気の目標除湿量を達成する風量VLにする。
このように構成すると、デシカント材5を介した空調空気と再生用流体との間での顕熱交換により、空調空気から無駄に排出される熱量を抑えることができる。
また、デシカント材5で除湿された後の空調空気の温度と、目的温度との乖離幅を小さくすることができる。
これにより、冬季における空調装置1の暖房運転時に、除湿された後の空調空気の温度を、目的温度により近い温度にすることができる。
よって、除湿された後の空調空気を、目的温度で車室90内に供給するために、温度調節部10で調整する空調空気の温度を高くする程度を抑えることができる。よって、空調装置1における暖房効率が低下を抑制できる。
空調装置1は、以下の構成を有している。
(3)制御装置7は、
再生用流体の風量Vが、空調空気の目標除湿量を達成する風量VLに達した後は、
再生用流体の風量を、空調空気の目標除湿量を達成する風量VLで保持する。
このように構成すると、空調空気の目標除湿量を確保しつつ、顕熱交換により空調空気から無駄に排出される熱量を抑えることができる。
空調装置1は、以下の構成を有している。
(4)デフダクト16(第1流路)は、車両用の空調装置1が備える温度調節部10で温度が調整された空気(空調空気)が通流する流路であり、
第2流路3は、車外から取り込んだ空気(外気:再生用流体)が通流する流路である。
このように構成すると、冬季における空調装置1の暖房運転時には、空調空気(除湿対象の空気)は、車室90内に供給する温度の高い空気であり、再生用流体(回収用の空気)は、車外から取り込んだ温度の低い空気である。
この場合には、空調空気の風量の増加に追従して再生用流体の風量を増加させる場合に比べて、顕熱交換により空調空気から無駄に排出される熱量を抑えることができる。
これにより、温度が調整された空調空気の温度低下の程度を抑えることができるので、空調装置1における暖房効率の低下を抑制できる。
空調装置1は、以下の構成を有している。
(5)デシカント材5は、デフダクト16(第1流路)と第2流路3とが交差した交差領域25に設けられている。
交差領域25に設けられたデシカント材5では、空調空気(除湿対象の空気)と再生用流体(回収用の空気)との間でのデシカント材5を介した顕熱移動が生じやすい。
そのため、上記のように構成することで、顕熱交換により、空調空気(除湿対象の空気)から無駄に排出される熱量を抑えることができる。
空調装置1は、以下の構成を有している。
(6)デシカント材5は、
間隔をあけて並んだ複数の板状基材51と、
板状基材51の並び方向で隣接する板状基材51、51の間に配置された波状基材52と、を有している。
波状基材52は、当該波状基材52を挟んで一方側に位置する板状基材51と、他方側に位置する板状基材51とに交互に接して設けられている。
波状基材52は、一方側の板状基材51と、他方側の板状基材51との間に空気の流路Sを形成している。
波状基材52は、空調空気(除湿対象の空気)の流路Sa(通流路)を形成する波状基材52A(第1波状基材)と、再生用流体(回収用の空気)の流路Sb(通流路)を形成する波状基材52B(第2波基材)とを、有している。
デシカント材5では、波状基材52Aと波状基材52Bとが、板状基材51の並び方向で交互に配置されている。
このような構成のデシカント材5では、空調空気(除湿対象の空気)の流路Sa(通流路)と再生用流体(回収用の空気)の流路Sb(通流路)とが板状基材51を間に挟んで隣接している。
そのため、空調空気(除湿対象の空気)と再生用流体(回収用の空気)との間での顕熱移動が生じやすくなっている。
そのため、再生用流体の風量Vが、空調空気の目標除湿量を達成する風量VLに達した後は、再生用流体の風量Vを、除湿対象の空気の風量よりも少ない風量にすることで、顕熱交換により除湿対象の空気から無駄に排出される熱量を抑えることができる。
空調装置1は、以下の構成を有している。
(7)制御装置7は、
再生用流体の風量Vが、空調空気の目標除湿量を達成する風量VLに達するまでの間は、再生用流体(回収用の空気)の風量を、空調空気(除湿対象の空気)の風量の増加に所定の相関、好ましくは、1:1の相関を持って増加させる(図5、実線a参照)。
このように構成すると、再生用流体の風量Vが、空調空気の目標除湿量を達成する風量VLに達するまでの間、デシカント材5から脱着される水分の量を確保して、デシカント材5が空調空気から取り込んだ空気で飽和することを好適に防止できる。
空調装置1は、以下の構成を有している。
(7)空調空気の目標除湿量を達成する再生用流体の風量Vの下限値VLは、1.5m3/minである。
このように構成すると、空調空気の目標除湿量を確保しつつ、顕熱交換により空調空気から無駄に排出される熱量を抑えることができる。
[第2実施形態]
次に、本発明の第2実施形態にかかる空調装置1Aを説明する。
図6は、本実施形態にかかる車両用の空調装置1Aの概略構成図である。
図6に示すように、空調装置1Aは、デフダクト16と第2流路3とが、互いの壁部を接触させて設けられた接触領域26を有している。
この接触領域26では、デフダクト16と第2流路3とに跨がってデシカント材5Aが設けられている。
デシカント材5Aは、デフダクト16と第2流路3における空気の通流方向に交差する向き(直交する向き)で設けられている。
図7は、デシカント材5Aを説明する図である。図7の(a)は、デシカント材5Aの基本構成と作用を説明する図であり、図7の(b)は、デシカント材5Aの配置を説明する斜視図である。
図7の(a)に示すように、デシカント材5Aは、間隔を開けて互いに略平行に配置された複数の板状基材51と、板状基材51、51の間に配置された波状基材52とを有している。
波状基材52は、板状基材51の並び方向で隣接する一対の板状基材51、51の間に設けられている。
波状基材52は、当該波状基材52の長手方向で、波状基材52を挟んで一方側に位置する板状基材51と、他方側に位置する板状基材51とに、交互に接して設けられている。
波状基材52と板状基材51との接触部は、接着剤53により接着されており、互いに平行に配置された板状基材51、51の間に波状基材52を位置させることで、デシカント材5A全体としての剛性強度を高めている。
実施の形態では、デシカント材5Aにおける板状基材51と波状基材52とで囲まれた空間S(Sa、Sb)が、空気(空調空気、再生用流体)が通過する流路(以下、空間Sa、Sbを流路Sa、Sbとも標記する)となっている。
デシカント材5Aでは、板状基材51と波状基材52の表面に、高分子系の吸着材Sxや、無機系の吸着材のような、水分の吸着と脱着が可能な材料を担持させていることが好ましい。
図7に示すように、デシカント材5Aは、流路Sa、Sbを、デフダクト16と第2流路3における空気(空調空気、再生用流体)の移動方向に沿わせた向きで、デフダクト16と第2流路3とに跨がって設けられている。
そのため、デフダクト16内を空調空気が通流し、第2流路3内を再生用流体が通流している場合には、板状基材51と波状基材52とにおけるデフダクト16内に位置する領域(吸着領域)に、空調空気に含まれる水分が吸着されるようになっている。
そして、吸着された水分が、板状基材51と波状基材52とにおける第2流路3内に位置する領域(脱着領域)まで移動して、第2流路3内を通流する再生用流体に取り込まれるようになっている。
そのため、前記した第1実施形態の場合と同様に、デフダクト16と第2流路3を、それぞれ空調空気と再生用流体が連続して通流している状態では、デシカント材5Aにおいて水分の吸着量が飽和しないようになっている。
このデシカント材5Aを備える空調装置1Aにおいても、以下の構成(a)が採用されており、冬季における空調装置1の暖房運転時に、空調空気の除湿量を確保しつつ、顕熱交換による空調空気の温度の変化を抑制できるようになっている。
(a)再生用流体の風量が空調空気の目標除湿量を達成する風量に達した後は、再生用流体の空気の風量を、空調空気の風量に追従させて増加させるのではなく、空調空気の風量よりも少ない風量であって、目標除湿量を達成できる風量以上にする。
すなわち、本実施形態でも、制御装置7は、再生用流体の風量Vが目標除湿量を達成する風量VLに達するまでの間は、空調空気の風量の増加に追従させて、再生用流体の風量Vを増加させる。
この際に、制御装置7は、空調空気の風量の増加に所定の相関を持って、再生用流体の風量Vを増加させる。
そして、制御装置7は、再生用流体の風量Vが下限風量VLに達した後は、再生用流体の風量Vの目標値Vtを、空調用空気の風量の増加に追従させて、1:1の関係で増加させないようにする。
具体的には、空調用空気の風量に対して1:1の関係となる風量Vを規定する線分(図5、破線L参照)よりも小さい値に設定する。
制御装置7は、以下の(a)から(c)の何れかにより、再生用流体の風量Vを決定する。
(a)再生用流体の風量Vが下限風量VLに到達した後は、空調空気の増加に関係なく、再生用流体の風量Vを下限風量VL保持する(図5における線分b参照)。
(b)再生用流体の風量Vが下限風量VLに到達した後は、下限風量VLよりも多い風量であって、空調空気の風量よりも少ない風量の範囲内に、再生用流体の風量Vを設定する(図5における破線Lと線分bの間)。
(c)(b)の場合において、空調空気の風量が増加するにつれて、空調空気の風量に1:1で対応する風量からの乖離量ΔVを大きくする(図5における線分c参照)。
このようにすることで、空調空気の除湿量を確保しつつ、空調空気の目的とされていた温度からの乖離幅を小さくして、空調装置における暖房効率を向上させている。
以上の通り、第2実施形態車両用の空調装置1Aは、以下の構成を有している。
(8)車両用の空調装置1Aは、
空調空気(除湿対象の空気)に含まれる水分の吸着と、吸着した水分の再生用流体(回収用の空気)への放出が可能なデシカント材5Aと、
空調空気が通流するデフダクト16(第1流路)と、
再生用流体が通流する第2流路3と、
デフダクト16における空調空気の風量と、第2流路3における再生用流体の風量を制御する制御装置7(制御手段)と、を有する。
デシカント材5Aは、デフダクト16と第2流路3とが、互いの壁部同士を接触させて設けられた接触領域26に設けられている。
デシカント材5Aは、デフダクト16と第2流路3とに跨がって設けられている。
空調装置1では、デシカント材5Aに、空調空気に含まれる水分を吸着させて、空調空気が除湿される。
制御装置7は、
再生用流体の風量Vが、空調空気の目標除湿量を達成する風量VLに達した後は、再生用流体の風量Vを、除湿対象の空気の風量よりも少ない風量にする。
このように構成すると、以下のような効果が得られる。
(a)空調空気(除湿対象の空気)の目標除湿量を達成しつつ、再生用流体(回収用の空気)と空調空気(除湿対象の空気)との間でのデシカント材5Aを介した熱量の交換量を抑えることができる。
(b)再生用流体(回収用の空気)と空調空気(除湿対象の空気)との間でのデシカント材5Aを介した顕熱移動が抑制される結果、顕熱交換により空調空気(除湿対象の空気)から無駄に排出される熱量を抑えることができる。
(c)冬季における空調装置1Aの暖房運転時には、空調空気(除湿対象の空気)の風量の増加に追従して再生用流体(回収用の空気)の風量を増加させる場合に比べて、デシカント材5Aの温度を高い温度に保持することができる。
(d)デシカント材5Aの温度が高くなると、材料側(板状基材51、波状基材、吸着材Sx)の活性化エネルギーが高くなるので、水分の移動速度が速くなる。
[第3実施形態]
次に、本発明の第3実施形態にかかる空調装置1Bを説明する。
図8は、本実施形態にかかる車両用の空調装置1Bの概略構成図である。
図8に示すように、空調装置1Bは、第1流路2の通流路21に、第2流路3が交差する交差領域27を有しており、この交差領域27に、前記したデシカント材5が設けられている。
冬季における暖房運転時には、空調装置1Bの動作モードがデシカントモードである場合、車室90内から取り込まれた温度と絶対湿度の高い空気(内気:除湿対象の空気)が、交差領域27を通過する。この内気は、第2流路3を通流する再生用流体(外気:回収用の空気)よりも温度が高い空気である。そのため、前記した第1実施形態の場合と同様に、内気(除湿対象の空気)と外気(回収用の空気)との間でデシカント材5を介した顕熱移動が生じる。
よって、この空調装置1Bの場合にも、以下の構成(a)が採用されており、冬季における空調装置1の暖房運転時に、内気(除湿対象の空気)除湿量を確保しつつ、顕熱交換による内気(除湿対象の空気)の温度の変化を抑制できるようになっている。
(a)再生用流体の風量が内気(除湿対象の空気)の目標除湿量を達成する風量に達した後は、再生用流体の風量を、内気(除湿対象の空気)の風量に追従させて増加させるのではなく、内気(除湿対象の空気)の風量よりも少ない風量であって、目標除湿量を達成できる風量以上にする。
以上の通り、第3実施形態にかかる車両用の空調装置1Bは、以下の構成を有している。
(9)車両用の空調装置1Bは、
車室90内から取り込んだ空気(除湿対象の空気:内気)に含まれる水分の吸着と、吸着した水分の再生用流体(回収用の空気:外気)への放出が可能なデシカント材5と、
車室90内から取り込んだ空気(内気)が少なくとも通流する第1流路2と、
再生用流体が通流する第2流路3と、
第1流路2における内気(除湿対象の空気)の風量と、第2流路3における再生用流体(回収用の空気)の風量を制御する制御装置7(制御手段)と、を有する。
デシカント材5は、第2流路3の通流路21と第2流路3との交差領域27に設けられている。
デシカント材5は、通流路21と第2流路3とに跨がって設けられている。
空調装置1では、デシカント材5に、内気に含まれる水分を吸着させて、空調空気が除湿される。
制御装置7は、
再生用流体の風量Vが、内気(除湿対象の空気)の目標除湿量を達成する風量VLに達した後は、再生用流体の風量Vを、内気(除湿対象の空気)の風量よりも少ない風量にする。
このような構成の空調装置1Bとすることによっても、以下のような効果が得られる。(a)内気(除湿対象の空気)の目標除湿量を達成しつつ、再生用流体(回収用の空気)と内気(除湿対象の空気)との間でのデシカント材5を介した熱量の交換量を抑えることができる。
(b)再生用流体(回収用の空気)と内気(除湿対象の空気)との間でのデシカント材5を介した顕熱移動が抑制される結果、顕熱交換により内気(除湿対象の空気)から無駄に排出される熱量を抑えることができる。
(c)冬季における空調装置1の暖房運転時には、内気(除湿対象の空気)の風量の増加に追従して再生用流体(回収用の空気)の風量を増加させる場合に比べて、デシカント材5の温度を高い温度に保持することができる。
(d)デシカント材の温度が高くなると、材料側(板状基材51、波状基材、吸着材Sx)の活性化エネルギーが高くなるので、水分の移動速度が速くなる。
なお、除湿対象の空気は、車室90内から取り込んだ空気(内気)のみである態様に限定されるものではなく、取込口3aから取り込んだ車外の空気(外気)との混合空気であっても良い。
図9は、変形例にかかる除湿対象の空気(空調空気、内気)と回収用の空気(再生用流体)との風量比の関係を説明する図である。
この図9では、除湿対象の空気(空調空気、内気)の風量が、一定の割合で増加している(破線L参照)のに対し、回収用の空気(再生用流体)が、目標吸湿量を達成可能な下限風量VLで保持される場合を示している。
前記した実施形態では、再生用流体の風量Vが下限風量VLに達するまでの間は、制御装置7が、空調空気の風量の増加に追従させて、再生用流体の風量Vを増加させる場合を例示した(図5参照)。
図9に示すように、除湿対象の空気の風量に関係なく、再生用流体の風量Vを、除湿対象の空気の目標吸湿量を達成可能な下限風量VLで保持するようにしても良い(図9、線分d参照)。
この場合には、再生用流体の通流路(第2流路3)に設けたシロッコファン6Bに風量制御が必要とされないので、より安価かつより小型のファンで、シロッコファン6Bを代替できる。これにより、空調装置1、1A、1Bの作成コストの低減が可能になる。
また、シロッコファン6Bをより小型のファンに代替することで、空調装置1、1A、1Bの設置に必要な空間の容積をより抑えることができる。
これにより、車両Vにおける限られた空間を有効に活用しつつ、空調装置1、1A、1Bの設置の自由度の向上が期待できる。
本願発明は、前記した実施の形態および変形例に示した態様にのみ限定されるものではない。発明の技術的な思想の範囲内で、適宜変更可能である。
1、1A、1B 空調装置
2 第1流路
3 第2流路
3a 取込口
3b 排出口
5、5A デシカント材
6A、6B シロッコファン
7 制御装置
10 温度調節部
12 エバポレータ
13 ヒータコア
14 ミックスドア
15 混合部
16 デフダクト
17 ベントダクト
18 フットダクト
21 通流路
22 送風路
23 外気導入部
25、27 交差領域
26 接触領域
41 切替弁
51 板状基材
52(52A、52B) 波状基材
53 接着剤
61 ロータ
90 車室
91 インストルメントパネル
231 内部空間
411 仕切壁
H 絶対湿度
L 破線
M1、M2 モータ
P 間隔(ピッチ)
P1、P2 接触点
S(Sa、Sb) 流路(空間)
Sx 吸着材
V 車両
W ウインドシールドガラス

Claims (9)

  1. 除湿対象の空気に含まれる水分の吸着と、吸着した水分の回収用の空気への放出が可能なデシカント材と、
    前記除湿対象の空気が通流する第1流路と、
    前記回収用の空気が通流する第2流路と、
    前記第1流路における前記除湿対象の空気の風量と、前記第2流路における前記回収用の空気の風量を制御する制御手段と、を有し、
    前記第1流路と前記第2流路とに跨がって設けられた前記デシカント材に、前記除湿対象の空気に含まれる水分を吸着させて、前記除湿対象の空気を除湿するように構成された車両用の空調装置において、
    前記制御手段は、
    前記回収用の空気の風量が前記除湿対象の空気の目標除湿量を達成する風量に達した後は、
    前記回収用の空気の風量を、前記除湿対象の空気の風量よりも少ない風量にすることを特徴とする車両用の空調装置。
  2. 前記制御手段は、
    前記回収用の空気の風量が前記除湿対象の空気の目標除湿量を達成する風量に達した後は、
    前記回収用の空気の風量の下限を、前記除湿対象の空気の目標除湿量を達成する風量にすることを特徴とする請求項1に記載の車両用の空調装置。
  3. 前記制御手段は、
    前記回収用の空気の風量が前記除湿対象の空気の目標除湿量を達成する風量に達した後は、
    前記回収用の空気の風量を、一定値で保持することを特徴とする請求項1または請求項2に記載の車両用の空調装置。
  4. 前記第1流路は、温度調節部で温度が調整された空気が通流する流路であり、
    前記第2流路は、車外から取り込んだ空気が通流する流路であることを特徴とする請求項1から請求項3の何れか一項に記載の車両用の空調装置。
  5. 前記第1流路は、(車両用の空調装置が備える)温度調節部に供給されて、前記温度調節部で温度が調整される空気が通流する流路であり、
    前記第2流路は、車外から取り込んだ空気が通流する流路であることを特徴とする請求項1から請求項3の何れか一項に記載の車両用の空調装置。
  6. 前記デシカント材は、前記第1流路と前記第2流路とが交差した交差領域に設けられていることを特徴とする請求項1から請求項5の何れか一項に記載の車両用の空調装置。
  7. 前記デシカント材は、前記第1流路と前記第2流路とが、互いの壁部同士を接触させて設けられた接触領域に設けられていることを特徴とする請求項1から請求項5の何れか一項に記載の車両用の空調装置。
  8. 前記制御手段は、
    前記回収用の空気の風量が、前記除湿対象の空気の目標除湿量を達成する風量に達するまでの間は、前記回収用の空気の風量を、前記除湿対象の空気の風量の増加に所定の相関を持って増加させることを特徴とする請求項1に記載の車両用の空調装置。
  9. 前記回収用の空気の風量の一定値の下限は、1.5m3/minであることを特徴とする請求項1または請求項3に記載の車両用の空調装置。
JP2017176201A 2017-09-13 2017-09-13 車両用の空調装置 Active JP6858458B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017176201A JP6858458B2 (ja) 2017-09-13 2017-09-13 車両用の空調装置
US16/118,681 US10988001B2 (en) 2017-09-13 2018-08-31 Air conditioning device for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017176201A JP6858458B2 (ja) 2017-09-13 2017-09-13 車両用の空調装置

Publications (2)

Publication Number Publication Date
JP2019051776A true JP2019051776A (ja) 2019-04-04
JP6858458B2 JP6858458B2 (ja) 2021-04-14

Family

ID=65630421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017176201A Active JP6858458B2 (ja) 2017-09-13 2017-09-13 車両用の空調装置

Country Status (2)

Country Link
US (1) US10988001B2 (ja)
JP (1) JP6858458B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6640807B2 (ja) * 2017-09-27 2020-02-05 本田技研工業株式会社 車両用空調装置
US10744980B2 (en) * 2018-08-10 2020-08-18 Honda Motor Co., Ltd. Electric vehicle with cleaning device
FR3111588A1 (fr) * 2020-06-17 2021-12-24 Renault Dispositif de séchage d’air d’un habitacle de véhicule automobile.

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5799411A (en) * 1980-12-09 1982-06-21 Nippon Soken Inc Air conditioner and ventilator for car
JPH11344239A (ja) * 1998-06-01 1999-12-14 Denso Corp 除湿装置および車両用空調装置
JP2000280724A (ja) * 1999-03-31 2000-10-10 Nissan Motor Co Ltd 車両用空調装置
JP2002340370A (ja) * 2001-05-18 2002-11-27 Osaka Gas Co Ltd 排熱カスケード利用システム
JP2011085270A (ja) * 2009-10-13 2011-04-28 Yamatake Corp デシカント空調システムおよびその運転方法
JP2011112343A (ja) * 2009-11-30 2011-06-09 Mitsubishi Electric Corp 空調装置及び空調システム
JP2013019583A (ja) * 2011-07-11 2013-01-31 Panasonic Corp 乾燥装置
JP2013067320A (ja) * 2011-09-26 2013-04-18 Panasonic Corp 車両用空調装置
US20140165637A1 (en) * 2011-08-25 2014-06-19 Jun Ma Coupled air-conditioning device
US20140190658A1 (en) * 2011-09-28 2014-07-10 Halla Visteon Climate Control Corp. Air conditioner for vehicle
JP2016101835A (ja) * 2014-11-28 2016-06-02 カルソニックカンセイ株式会社 車両用の空調装置
WO2016147819A1 (ja) * 2015-03-19 2016-09-22 株式会社デンソー 加湿装置、車両用空調装置
JP2017015368A (ja) * 2015-07-06 2017-01-19 大阪瓦斯株式会社 空調システム
JP2017072347A (ja) * 2015-10-09 2017-04-13 大阪瓦斯株式会社 空調システム

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5514035A (en) * 1994-07-07 1996-05-07 Denniston; James G. T. Desiccant based cabin windshield defog/defrost system
US5873256A (en) * 1994-07-07 1999-02-23 Denniston; James G. T. Desiccant based humidification/dehumidification system
JPH0867136A (ja) 1994-08-30 1996-03-12 Nippondenso Co Ltd 車両用空調装置
JP2001246931A (ja) * 2000-03-07 2001-09-11 Zexel Valeo Climate Control Corp 車両用脱臭装置
JP2006170518A (ja) * 2004-12-15 2006-06-29 Samsung Electronics Co Ltd 除加湿装置
JP2011185572A (ja) * 2010-03-10 2011-09-22 Osaka Gas Co Ltd デシカント空調装置
WO2016147821A1 (ja) * 2015-03-19 2016-09-22 株式会社デンソー 加湿装置、車両用空調装置
WO2018168118A1 (ja) * 2017-03-16 2018-09-20 カルソニックカンセイ株式会社 車両用の空調装置

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5799411A (en) * 1980-12-09 1982-06-21 Nippon Soken Inc Air conditioner and ventilator for car
JPH11344239A (ja) * 1998-06-01 1999-12-14 Denso Corp 除湿装置および車両用空調装置
JP2000280724A (ja) * 1999-03-31 2000-10-10 Nissan Motor Co Ltd 車両用空調装置
JP2002340370A (ja) * 2001-05-18 2002-11-27 Osaka Gas Co Ltd 排熱カスケード利用システム
JP2011085270A (ja) * 2009-10-13 2011-04-28 Yamatake Corp デシカント空調システムおよびその運転方法
JP2011112343A (ja) * 2009-11-30 2011-06-09 Mitsubishi Electric Corp 空調装置及び空調システム
JP2013019583A (ja) * 2011-07-11 2013-01-31 Panasonic Corp 乾燥装置
US20140165637A1 (en) * 2011-08-25 2014-06-19 Jun Ma Coupled air-conditioning device
JP2013067320A (ja) * 2011-09-26 2013-04-18 Panasonic Corp 車両用空調装置
US20140190658A1 (en) * 2011-09-28 2014-07-10 Halla Visteon Climate Control Corp. Air conditioner for vehicle
JP2016101835A (ja) * 2014-11-28 2016-06-02 カルソニックカンセイ株式会社 車両用の空調装置
WO2016147819A1 (ja) * 2015-03-19 2016-09-22 株式会社デンソー 加湿装置、車両用空調装置
JP2017015368A (ja) * 2015-07-06 2017-01-19 大阪瓦斯株式会社 空調システム
JP2017072347A (ja) * 2015-10-09 2017-04-13 大阪瓦斯株式会社 空調システム

Also Published As

Publication number Publication date
JP6858458B2 (ja) 2021-04-14
US20190077229A1 (en) 2019-03-14
US10988001B2 (en) 2021-04-27

Similar Documents

Publication Publication Date Title
JP4514624B2 (ja) 車両用空調装置
CN107531133B (zh) 加湿装置、车辆用空调装置
CN111201404B (zh) 调湿装置
JP6217522B2 (ja) 加湿装置
JP2019051776A (ja) 車両用の空調装置
US20180099542A1 (en) Cooling device, and air-conditioner for vehicle
KR101558001B1 (ko) 차량용 공조시스템
JP6415277B2 (ja) 車両用の空調装置
JP6558494B2 (ja) 車両用空調装置
JP2016064695A (ja) 車両用空調装置
JP2018154203A (ja) 車両用の空調装置
WO2019177121A1 (ja) 車両用の空調装置
WO2018056151A1 (ja) 車両用の空調装置
JP2014237352A (ja) 車両用空調装置
JP2008155853A (ja) 車両用空調装置
JP6964941B2 (ja) 車両用の空調装置
JP2017210221A (ja) 車両用の空調装置
JP6717288B2 (ja) 加湿器、空調装置
JP2019051777A (ja) 車両用の空調装置
JP2014100925A (ja) 車両用空調装置
KR101467268B1 (ko) 차량용 공조장치
WO2018180062A1 (ja) 空調装置
KR101463494B1 (ko) 차량용 공조장치
JP2013216132A (ja) 車両用空調装置
JP2001334118A (ja) 除加湿装置及び空気調和装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201124

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20201210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201215

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20210205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210323

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210323

R150 Certificate of patent or registration of utility model

Ref document number: 6858458

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250