WO2018180062A1 - 空調装置 - Google Patents

空調装置 Download PDF

Info

Publication number
WO2018180062A1
WO2018180062A1 PCT/JP2018/006458 JP2018006458W WO2018180062A1 WO 2018180062 A1 WO2018180062 A1 WO 2018180062A1 JP 2018006458 W JP2018006458 W JP 2018006458W WO 2018180062 A1 WO2018180062 A1 WO 2018180062A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
ventilation path
passage
recovery
heating device
Prior art date
Application number
PCT/JP2018/006458
Other languages
English (en)
French (fr)
Inventor
明規 桑山
小松原 祐介
輝 大岩
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017246836A external-priority patent/JP6696498B2/ja
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2018180062A1 publication Critical patent/WO2018180062A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H3/00Other air-treating devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H3/00Other air-treating devices
    • B60H3/02Moistening ; Devices influencing humidity levels, i.e. humidity control

Definitions

  • This disclosure relates to a vehicle air conditioner.
  • an air conditioner with a humidifier in which a non-water supply type humidifier operable with no water supply is installed in comparison with an air conditioner that performs air conditioning in a vehicle interior is known.
  • a non-water-supply type humidifier is disposed below the air conditioning case constituting the outer shell of the air conditioner.
  • a hygroscopic material and a blower are provided inside the humidifier.
  • An air conditioner with a humidifier introduces air that has been cooled by the evaporator of the air conditioner and has a high relative humidity (hereinafter referred to as “recovered wind”) into the humidifier by driving a blower provided in the humidifier.
  • the moisture contained in the air is adsorbed by the moisture absorbent.
  • the air conditioner with a humidifier is capable of blowing out the air thus humidified toward a passenger's face through a duct connected to the humidifier.
  • the air conditioner with a humidifier described in Patent Document 1 described above introduces the recovered air into the humidifier from a recovery air intake port provided between the evaporator and the heater core in the bottom wall of the ventilation path.
  • the internal pressure of the space near the bottom wall of the ventilation path provided with the recovery air outlet varies greatly depending on the opening of the air mix door. Therefore, this air conditioner with a humidifier has a problem that it becomes difficult to introduce the recovered air with a stable air volume into the humidifier when the opening of the air mix door changes.
  • this air conditioner with a humidifier can adjust the volume of the collected air introduced into the humidifier from the ventilation path by driving control of a blower provided inside the humidifier.
  • this air conditioner with a humidifier has a problem that the manufacturing cost increases and the physique of the humidifier increases in size by providing a blower inside the humidifier.
  • the present disclosure aims to provide an air conditioner capable of supplying a recovered air with a stable air volume to a hygroscopic material in an air conditioner with a humidifier.
  • an air conditioner that performs air conditioning in a vehicle interior, An air conditioning case that forms a ventilation path through which air flows; A cooling device for cooling the air flowing through the ventilation path; A heating device that is disposed downstream of the cooling device and heats the air flowing through the ventilation path; An air mix door that is provided between the cooling device and the heating device and adjusts the ratio of the air volume that bypasses the heating device after passing through the cooling device and the air volume that passes through the heating device; An accommodating portion for accommodating a moisture absorbent capable of adsorbing and desorbing moisture contained in air; A recovery air passage that communicates a recovery air outlet provided between the cooling device and the heating device among the side walls of the air passage and the accommodating portion; The recovery air outlet is provided at a position on the side wall of the ventilation path that includes a height range (hereinafter referred to as “heating device projection range”) in which the heating device is projected perpendicularly to the cooling device.
  • heating device projection range a height range in which the heating device is projected perpendicularly to the cooling
  • the inventor has noticed by simulation that the space in the heating device projection range in the ventilation path has a smaller change in internal pressure depending on the opening of the air mix door than the space above and below the space. It was. For this reason, by providing a recovery wind vent at the position of the side wall of the ventilation path that includes the heating device projection range, the influence of the opening of the air mix door is reduced, and the housing is stabilized from the recovery wind vent through the recovery wind path. It is possible to supply a recovery air with a reduced air volume. Therefore, this air conditioner can stably hold moisture in the hygroscopic material and can stably blow out the humidified air from the humidifier to the occupant.
  • the space of the heating device projection range is larger than when the wind that passed through the cooling device passes through the heating device.
  • the internal pressure of the space in the heating device projection range is higher than the internal pressure of the space above and below the space. Therefore, it is possible to secure the minimum recovered air volume with a relatively large air volume by providing the recovered air outlet in the position including the heater core projection range in the side wall of the ventilation path. Therefore, the flow passage cross-sectional areas of the recovery wind outlet and the recovery wind passage can be reduced, and the size of the air conditioner can be reduced.
  • an air conditioner which performs air conditioning of a vehicle interior, An air conditioning case that forms a ventilation path through which air flows; A cooling device for cooling the air flowing through the ventilation path; A heating device that is disposed downstream of the cooling device and heats the air flowing through the ventilation path; An air mix door that is provided between the cooling device and the heating device and adjusts the ratio of the air volume that does not pass through the heating device after passing through the cooling device and the air volume that passes through the heating device; An accommodating portion for accommodating a moisture absorbent capable of adsorbing and desorbing moisture contained in air; Of the cool air passages through which the cool air flows from the cooling device toward the heating device, a recovery air passage provided upstream of the air mix door and a recovery air passage communicating with the housing portion are provided.
  • the inventor has shown that the change in internal pressure according to the opening degree of the air mix door is smaller in the cold air passage through which the cold air flows from the cooling device toward the heating device than in the space above or below the cold air passage. I noticed. For this reason, by providing a recovery wind outlet in the cold air passage, the influence of the opening degree of the air mix door can be reduced, and a recovery air with a stable air volume can be supplied from the recovery air outlet to the accommodating portion through the recovery air passage. Is possible. Therefore, this air conditioner can stably hold moisture in the hygroscopic material and can stably blow out the humidified air from the humidifier to the occupant.
  • the minimum value of the internal pressure in the cold air passage where the cold air flows from the cooling device to the heating device is above the cold air passage. Or it becomes a value higher than the minimum value of the internal pressure in the lower space. Therefore, it is possible to secure the minimum recovered air volume with a relatively large air volume by providing the recovered air outlet in the cool air passage through which the cool air flows from the cooling device to the heating device. Therefore, the flow passage cross-sectional areas of the recovery wind outlet and the recovery wind passage can be reduced, and the size of the air conditioner can be reduced.
  • FIG. 4 is a cross-sectional view of the temperature adjustment unit of the air conditioner and the humidifier in the section taken along the line IV-IV in FIG. 3. It is explanatory drawing explaining operation
  • the air conditioner of this embodiment is mounted inside the instrument panel of the vehicle.
  • This air conditioner adjusts the temperature and humidity of air taken from inside or outside the vehicle interior, and air is conditioned in the vehicle interior by blowing the air into the vehicle interior from a plurality of outlets provided in the vehicle interior. It is.
  • this air conditioner can also blow humid air toward a passenger's face or the like from a predetermined outlet provided in the passenger compartment without requiring water supply.
  • the air conditioner 1 includes an air conditioning case 2, a blower 3, an evaporator 4 as a cooling device, a heater core 5 as a heating device, a hygroscopic material 6, and the like.
  • the air conditioning case 2 constitutes the outer shell of the air conditioner 1.
  • the air conditioning case 2 is formed of a resin (for example, polypropylene) having a certain degree of elasticity and excellent in strength.
  • a ventilation path 10 through which air flows is formed inside the air conditioning case 2.
  • a partition plate 13 that partitions the ventilation path 10 into an upper ventilation path 11 on the upper side in the gravity direction and a lower ventilation path 12 on the lower side in the gravity direction is provided.
  • the air-conditioning case 2 has an inside air introduction port 14 for introducing vehicle interior air (ie, inside air) into the air passage 10 and an air flow outside the vehicle compartment (ie, outside air) on the most upstream side of the air passage 10 in the air flow direction.
  • 10 has an outside air inlet 15 for introduction into the air.
  • the inside air introduction port 14 and the outside air introduction port 15 are connected to a duct (not shown) configured as a separate member from the air conditioning case 2. Air is introduced into the upper ventilation path 11 and the lower ventilation path 12 from the inside air introduction port 14 or the outside air introduction port 15 through these ducts.
  • an inside / outside air switching door 16 as an inside / outside air switching unit is provided.
  • the inside / outside air switching door 16 opens and closes the inside air introduction port 14 and the outside air introduction port 15.
  • the inside / outside air switching door 16 may be provided with a door for opening / closing the inside air introduction port 14 and a door for opening / closing the outside air introduction port 15 separately.
  • the air conditioner 1 of the present embodiment can switch the air conditioning mode for introducing outside air or inside air to the upper ventilation path 11 and the lower ventilation path 12 by rotating the inside / outside air switching door 16 to a desired position. Is possible.
  • this air conditioning mode an outside air mode, an inside air mode, and an inside / outside air two-layer mode can be set.
  • the inside / outside air switching door 16 opens the outside air introduction port 15 and closes the inside air introduction port 14. At this time, the outside air inlet 15, the upper ventilation path 11, and the lower ventilation path 12 communicate with each other. Thereby, outside air is introduced into the upper ventilation path 11 and the lower ventilation path 12.
  • the inside / outside air switching door 16 closes the outside air inlet 15 and opens the inside air inlet 14. At this time, the inside air inlet port 14, the upper ventilation path 11, and the lower ventilation path 12 communicate with each other. Thus, the inside air is introduced into the upper ventilation path 11 and the lower ventilation path 12.
  • FIG. 1 shows the position of the inside / outside air switching door 16 when the inside / outside air two-layer mode is selected.
  • the blower 3 is provided in the ventilation path 10 inside the air conditioning case 2.
  • the blower 3 includes a first centrifugal fan 31, a second centrifugal fan 32, an electric motor (not shown), and the like.
  • the first centrifugal fan 31 and the second centrifugal fan 32 rotate, and air is introduced into the upper ventilation path 11 and the lower ventilation path 12 from the inside air introduction port 14 or the outside air introduction port 15. Air blown by the first centrifugal fan 31 flows through the upper ventilation path 11, and air blown by the second centrifugal fan 32 flows through the lower ventilation path 12.
  • the air flowing through the ventilation path 10 is defroster blowing opening 19, face blowing opening 20, foot blowing opening 21, exhaust passage 43, or humidified air passage provided on the most downstream side in the air flow direction. 44 is blown out.
  • the fan which the air blower 3 has is not restricted to a centrifugal fan, For example, it is good also as an axial fan or a cross flow fan.
  • the evaporator 4 is a heat exchanger that cools the air flowing through the ventilation path 10.
  • the evaporator 4 constitutes a vapor compression refrigeration cycle together with a compressor, a condenser, an expansion valve, and the like (not shown).
  • the evaporator 4 is disposed downstream of the expansion valve and upstream of the compressor in the refrigeration cycle.
  • the refrigerant that has been decompressed by the expansion valve and is in a gas-liquid two-layer state flows.
  • the air flowing through the ventilation path 10 is cooled by heat exchange between the refrigerant flowing inside the tube of the evaporator 4 and the air flowing through the ventilation path 10.
  • the heater core 5 is provided downstream of the evaporator 4 in the air flow direction.
  • the heater core 5 is a heat exchanger that heats the air flowing through the ventilation path 10.
  • Warm water for example, engine cooling water
  • the air flowing through the ventilation path 10 is heated by heat exchange between the hot water flowing inside the tube of the heater core 5 and the air flowing through the ventilation path 10.
  • a PCT heater or the like may be provided together with the heater core 5.
  • Two air mix doors 17 are provided in the ventilation path 10 between the evaporator 4 and the heater core 5.
  • the air mix door 17 is a sliding film door and is driven by the rotation of the gear 18.
  • the air mix door 17 adjusts the ratio between the amount of air that bypasses the heater core 5 after passing through the evaporator 4 and the amount of air that passes through the heater core 5 after passing through the evaporator 4.
  • the air conditioning case 2 has a plurality of outlet openings for sending conditioned air from the ventilation path 10 to the vehicle interior on the most downstream side in the air flow direction of the ventilation path 10.
  • the plurality of blowing openings are configured by a defroster blowing opening 19, a face blowing opening 20, a foot blowing opening 21, and the like.
  • the defroster blowout opening 19 and the face blowout opening 20 are provided in the upper part of the air conditioning case 2 in the gravity direction.
  • the face blowing opening 20 blows air-conditioned air toward the upper body of the occupant seated in the front seat.
  • a face door 22 is provided in the vicinity of the face blowing opening 20.
  • the face door 22 opens and closes the face blowing opening 20.
  • a face duct (not shown) is connected to the face blowing opening 20.
  • the face duct is a duct that connects the face outlet 20 and a face outlet (not shown) provided in the passenger compartment.
  • the defroster blowout opening 19 blows conditioned air toward the windshield of the vehicle.
  • a defroster door 23 is provided in the vicinity of the defroster outlet opening 19. The defroster door 23 opens and closes the defroster outlet opening 19. When the defroster door 23 opens the defroster blowout opening 19, the conditioned air flowing through the ventilation path 10 is blown out from the defroster blowout opening 19 through a defroster duct (not shown) toward the front windshield of the vehicle.
  • the foot blowout openings 21 are respectively provided at the left and right portions in the vehicle width direction in a state where the air conditioner 1 is mounted on the vehicle.
  • the foot blowing opening 21 blows air-conditioned air toward the lower body side of the occupant seated in the right front seat and the left front seat of the vehicle.
  • a foot door 24 is provided at a location where the ventilation path 10 and the foot outlet opening 21 communicate with each other.
  • the foot door 24 communicates or blocks the ventilation path 10 and the foot outlet opening 21.
  • the air conditioner 1 of the present embodiment includes an accommodating portion 25 that can accommodate the hygroscopic material 6.
  • the air conditioning case 2 and the accommodating portion 25 are configured as separate members.
  • the hygroscopic material 6 is accommodated in the accommodating space 26 formed inside the accommodating portion 25.
  • the hygroscopic material 6 is a roll-shaped or rectangular parallelepiped in which a moisture-absorbing substance having a characteristic of collecting moisture in the air or desorbing moisture in the air according to the humidity of the air is carried on a corrugated plate-like member. It is a shape.
  • the hygroscopic material 6 may be one in which the above-described hygroscopic substance is supported on a honeycomb-like structure formed in a columnar shape or a rectangular parallelepiped shape.
  • a polymer adsorbent of an organic material, or zeolite, silica gel, or the like of an inorganic material can be employed.
  • the hygroscopic material 6 has an air inflow surface 61 and an air outflow surface 62.
  • the air that has flowed in from the air inflow surface 61 of the hygroscopic material 6 flows through the gap between the structures formed inside the hygroscopic material 6, and flows out from the air outflow surface 62.
  • the space on the side where the air inflow surface 61 of the hygroscopic material 6 is arranged in the accommodation space 26 inside the accommodating portion 25 is referred to as the inflow space 261, and the air outflow surface 62 of the hygroscopic material 6 is The space on the side where it is arranged will be referred to as the outflow space 262.
  • the hygroscopic material 6 collects moisture contained in the air.
  • the hygroscopic material 6 desorbs moisture into the air.
  • the collection air passage 41, the warm air passage 42, the exhaust air passage 43, and the humidified air passage 44 are connected to the housing portion 25.
  • the recovery air passage 41 communicates the recovery air outlet 40 provided in the side wall 200 of the ventilation path 10 and the inflow space 261 of the housing portion 25.
  • the recovery air outlet 40 is an opening provided in the side wall 200 of the ventilation path 10 in order to introduce the air, which has been cooled by the evaporator 4 and has a high relative humidity, into the recovery air passage 41.
  • the recovery air passage 41 is a passage for taking out the air cooled by the evaporator 4 from the recovery air outlet 40 and introducing it into the inflow space 261 of the housing portion 25.
  • the recovery air outlet 40 is provided between the evaporator 4 and the heater core 5 in the side wall 200 of the ventilation path 10. Further, the recovery air outlet 40 is provided at a position including a height range (hereinafter referred to as “heater core projection range HS”) in which the heater core 5 is projected perpendicularly to the evaporator 4. It should be noted that at least a part of the recovery wind outlet 40 may be provided at a position including the heater core projection range HS. Further, the position including the heater core projection range HS includes not only the position directly beside the evaporator 4 but also the position between the evaporator 4 and the heater core 5 in the side wall 200 of the ventilation path 10.
  • the side wall 200 of the ventilation path 10 is a wall in a direction intersecting the gravitational direction in a state where the air conditioner 1 is mounted on the vehicle, and includes not only a wall in the vehicle width direction but also a wall in the vehicle front-rear direction. Contains.
  • the space of the heater core projection range HS in the ventilation path 10 has a smaller change in internal pressure according to the opening of the air mix door 17 than the space above and below the space. For this reason, by providing the recovery wind outlet 40 at a position including the heater core projection range HS on the side wall 200 of the ventilation path 10, the influence of the opening degree of the air mix door 17 is reduced, and the recovery wind path 40 extends from the recovery wind outlet 40. 41, it is possible to supply a collection air with a stable air volume to the accommodating portion 25. This will be described in detail later based on a simulation performed by the inventors.
  • the recovery wind outlet 40 is provided on the side wall 200 of the lower ventilation path 12.
  • the inside air circulates in the lower ventilation path 12.
  • the humidity of the inside air circulation is high due to the sweating of the passengers. Therefore, by providing the recovery wind take-off port 40 on the side wall 200 of the lower ventilation path 12 where the inside air circulation is performed, air having a high absolute humidity and a high relative humidity can be supplied from the recovery wind take-off port 40 to the storage unit 25 through the recovery wind passage 41. It is possible to supply.
  • the recovery air outlet 40 is provided on one side wall 200 of the ventilation path 10 and the other side wall 200 of the ventilation path 10.
  • the recovery air outlet 40 provided in one side wall 200 of the ventilation path 10 is referred to as a first recovery air outlet 401
  • the recovery air outlet 40 provided in the other side wall 200 of the ventilation path 10 is referred to as a second recovery air outlet.
  • the recovery wind passage 41 that communicates the first recovery wind outlet 401 and the housing portion 25 is referred to as a first recovery wind passage 411
  • the recovery wind passage 41 that communicates the second recovery wind outlet 402 and the housing portion 25 Is referred to as a second recovery air passage 412.
  • the recovery air passage 41 of the present embodiment is provided outside the first recovery air passage 411 provided outside the one side wall 200 of the air conditioning case 2 and the other side wall 200 of the air conditioning case 2.
  • a second recovery air passage 412 is provided.
  • the warm air passage 42 is a passage for introducing air heated by the heater core 5 and having a low relative humidity into the inflow space 261 of the housing portion 25.
  • the exhaust passage 43 has one end connected to the accommodating portion 25 and the other end opened to the outside of the accommodating portion 25.
  • the exhaust passage 43 is a passage for discharging air from the outflow space 262 of the housing portion 25.
  • the humidified air passage 44 has one end connected to the housing portion 25 and the other end connected to a face outlet (not shown) provided in the passenger compartment.
  • the other end of the humidified air passage 44 may be connected to a humidified air outlet (not shown) provided in the vehicle compartment separately from the face outlet.
  • the humidified air passage 44 is a passage for blowing the air humidified in the accommodation space 26 toward the vehicle interior.
  • the recovery wind door 51 for connecting and blocking the recovery wind passage 41 and the storage space 26, and the communication air and blocking of the warm air passage 42 and the storage space 26 are provided.
  • a warm air door 52 is provided.
  • an exhaust door 53 for communicating and blocking the exhaust passage 43 and the accommodating space 26, and a communication and blocking for the humidified air passage 44 and the accommodating space 26 are performed.
  • a humidified air door 54 is provided.
  • the recovery air passage 41 and the accommodation space 26 communicate with each other.
  • 43 and the accommodation space 26 communicate with each other. Further, the warm air passage 42 and the accommodating space 26 are blocked, and the humidified air passage 44 and the accommodating space 26 are blocked.
  • the air introduced into the accommodation space 26 from the recovery air passage 41 flows in the moisture absorbent material 6 from the air inflow surface 61 of the moisture absorbent material 6.
  • moisture contained in the air introduced into the accommodation space 26 from the recovery air passage 41 is adsorbed by the hygroscopic material 6.
  • the air whose humidity has been lowered through the hygroscopic material 6 is discharged from the exhaust passage 43 to the outside of the air conditioning case 2.
  • the warm air passage 42 and the accommodation space 26 communicate with each other, and the humidified air passage 44 and the accommodation space. 26 communicates. Further, the recovery air passage 41 and the accommodation space 26 are blocked, and the exhaust passage 43 and the accommodation space 26 are blocked.
  • the air introduced into the accommodation space 26 from the warm air passage 42 flows through the moisture absorbing material 6 from the air inflow surface 61 of the moisture absorbing material 6.
  • the moisture contained in the hygroscopic material 6 is released to the air introduced from the warm air passage 42 into the accommodation space 26.
  • the air whose humidity has increased through the moisture absorbent 6 passes through the humidified air passage 44 and is blown out from the face air outlet or the humidified air air outlet into the vehicle interior.
  • the air conditioner 1 of this embodiment can humidify a vehicle interior without water supply.
  • FIG. 8 is a graph showing the relationship between the internal pressure of the ventilation path 10 measured at the positions P1 to P4 shown in FIGS. 5 to 7 and the opening degree of the air mix door 17 based on the simulation.
  • the positions of P2 and P3 shown in FIGS. 5 to 7 are positions including the heater core projection range HS in the ventilation path 10.
  • the positions of P1 and P4 shown in FIGS. 5 to 7 are positions that do not include the heater core projection range HS in the ventilation path 10.
  • the relationship between the internal pressure of the ventilation path 10 measured at the positions P1 and P4 and the opening degree of the air mix door 17 is indicated by a broken line.
  • the relationship between the internal pressure of the ventilation path 10 measured at the positions P2 and P3 and the opening of the air mix door 17 is indicated by a solid line.
  • FIG. 5 shows a state where the opening degree of the air mix door 17 is 0%.
  • the air mix door 17 covers substantially the entire airflow inflow surface of the heater core 5 and opens the upper and lower passages from the heater core 5. Therefore, almost all of the air that has passed through the evaporator 4 flows around the heater core 5.
  • the positions P2 and P3 are higher in internal pressure than the positions P1 and P4 because the air mix door 17 closes the heater core 5 on the downstream side.
  • FIG. 6 shows a state where the opening degree of the air mix door 17 is 50%.
  • the air mix door 17 opens approximately half of the airflow inflow surface of the heater core 5 and covers the remaining approximately half. Therefore, the air that has passed through the evaporator 4 flows separately into air that passes through the heater core 5 and air that bypasses the heater core 5.
  • the internal pressures at the positions P2 and P3 are higher than the positions at P1 and P4 due to the ventilation resistance of the heater core 5 on the downstream side.
  • FIG. 7 shows a state where the opening degree of the air mix door 17 is 100%.
  • the air mix door 17 opens substantially the entire airflow inflow surface of the heater core 5 and closes the passages above and below the heater core 5. Therefore, almost all of the air that has passed through the evaporator 4 flows through the heater core 5.
  • the air mix door 17 opens the heater core 5 on the downstream side of the positions of P2 and P3.
  • the air mix door 17 closes the passage. Therefore, the internal pressures of P1 and P4 are higher than the positions of P2 and P3 because the air mix door 17 closes the passage on the downstream side. Therefore, as described with reference to FIGS. 5 to 8, the positions of P2 and P3 are smaller in changes in the internal pressure according to the opening degree of the air mix door 17 than the positions of P1 and P4. .
  • FIG. 9 shows the relationship between the amount of recovered air flowing through the recovery air passage 41 and the opening degree of the air mix door 17 when the recovery air outlet 40 is provided on the side wall 200 of the ventilation path 10 corresponding to each position P1 to P4. It is a graph showing the relationship.
  • the volume of the collected wind flowing through the collected wind passage 41 and the opening of the air mix door 17 Is shown by a broken line. Further, in the graph of FIG.
  • the volume of the collected wind flowing through the collected wind passage 41 corresponds to the internal pressure of the ventilation path 10 shown in FIG. That is, the recovery air intake 40 is provided on the side wall 200 of the ventilation path 10 corresponding to the positions P2 and P3, compared to the case where the recovery air intake 40 is provided on the side wall 200 of the ventilation path 10 corresponding to the positions P1 and P4.
  • the change in the volume of the collected air corresponding to the opening degree of the air mix door 17 is smaller in the case of the case. Therefore, by providing the recovery air intake 40 at a position including the heater core projection range HS in the side wall 200 of the air passage 10, the influence of the opening degree of the air mix door 17 is reduced, and the recovery air passage 40 extends from the recovery air intake 40. 41, it is possible to supply a collection air with a stable air volume to the accommodating portion 25.
  • the internal pressure is low even if the recovery wind vent 40 is provided at any position of P1 to P4.
  • the volume of the collected wind is the lowest.
  • the volume of the collected wind when the collected wind outlet 40 is provided at the positions P2 and P3 is larger than the volume of the collected wind when the collected wind outlet 40 is provided at the positions P1 and P4. It has become big. Therefore, it is possible to secure the minimum recovered air volume with a relatively large air volume by providing the recovered air outlet 40 at a position including the heater core projection range HS in the side wall 200 of the ventilation path 10.
  • the operation range shown by the arrow in FIG. 8 and FIG. 9 shows the region where the humidifier is generally assumed to be used by the occupant. Humidifiers are often used from late autumn to winter to early spring. In that case, it is assumed that the air mix door 17 operates within the range of the operation range shown in FIGS. 8 and 9.
  • the air conditioner 1 of the present embodiment described above has the following operational effects.
  • the recovery air outlet 40 of the recovery air passage 41 is provided on the side wall 200 of the lower ventilation path 12 at a position including the heater core projection range HS between the evaporator 4 and the heater core 5. ing.
  • the space of the heater core projection range HS in the ventilation path 10 has a smaller change in internal pressure according to the opening degree of the air mix door 17 than the space above and below the space. Therefore, it is possible to reduce the influence of the opening degree of the air mix door 17 and supply the recovery air with a stable air volume from the recovery air outlet 40 to the accommodating portion 25 through the recovery air passage 41. Therefore, this air conditioner 1 can stably hold moisture in the moisture absorbent material 6 and can stably blow out humidified air from the humidifier to the occupant.
  • the internal pressure of the space in the heater core projection range HS is higher than the internal pressure of the space above and below the space. Therefore, it is possible to secure the minimum recovered air volume with a relatively large air volume by providing the recovered air outlet 40 at a position including the heater core projection range HS in the side wall 200 of the ventilation path 10. Therefore, the flow passage cross-sectional areas of the recovery wind outlet 40 and the recovery air passage 41 can be reduced, and the size of the air conditioner 1 can be reduced.
  • the recovery wind vent 40 is a first recovery wind vent 401 provided on one side wall 200 of the air conditioning case 2 and a second provided on the other side wall 200 of the air conditioning case 2. And a recovery wind outlet 402.
  • the conditioned air blown out from each outlet opening provided on the right side in the vehicle width direction of the air conditioning case 2 and the conditioned air blown out from each outlet opening provided on the left side in the vehicle width direction can be maintained.
  • the ventilation path 10 in the air conditioning case 2 is divided by the partition plate 13 into an upper ventilation path 11 on the upper side in the gravity direction and a lower ventilation path 12 on the lower side in the gravity direction.
  • the collection air outlet 40 is provided in the side wall 200 on the lower ventilation path 12 side.
  • the inside air circulates when the inside / outside air two-layer mode or the inside air mode is performed.
  • the humidity of the inside air circulation is high due to the sweating of the passengers. Therefore, by providing the recovery wind take-off port 40 on the side wall 200 of the lower ventilation path 12 where the inside air circulation is performed, air having a high absolute humidity and a high relative humidity can be supplied from the recovery wind take-off port 40 to the storage unit 25 through the recovery wind passage 41. It is possible to supply.
  • the air conditioner 1 further includes a warm air passage 42, an exhaust passage 43, and a humidified air passage 44.
  • the air-conditioning case 2 can be provided with the function of the non-supply water humidifier which can be operated by non-supply water.
  • the heater core 5 is in contact with the bottom wall 201 of the air conditioning case 2 or is provided near the bottom wall 201.
  • the partition plate 13 is not provided, and the ventilation path 10 is not partitioned into the upper ventilation path 11 and the lower ventilation path 12. That is, the air conditioner 1 does not set the inside / outside air two-layer mode.
  • a single air mix door 17 is provided in the ventilation path 10 between the evaporator 4 and the heater core 5.
  • the recovery air outlet 40 of the recovery air passage 41 is provided in the side wall 200 of the ventilation path 10 at a position including the heater core projection range HS between the evaporator 4 and the heater core 5.
  • the space of the heater core projection range HS in the ventilation path 10 has a smaller change in internal pressure according to the opening degree of the air mix door 17 than the space above the space. For this reason, by providing the recovery wind outlet 40 at a position including the heater core projection range HS on the side wall 200 of the ventilation path 10, the influence of the opening degree of the air mix door 17 is reduced, and the recovery wind path 40 extends from the recovery wind outlet 40. 41, it is possible to supply a collection air with a stable air volume to the accommodating portion 25.
  • the internal pressure of the space in the heater core projection range HS is higher than the internal pressure of the space above the space. Therefore, it is possible to secure the minimum recovered air volume with a relatively large air volume by providing the recovered air outlet 40 at a position including the heater core projection range HS in the side wall 200 of the ventilation path 10. Therefore, the flow passage cross-sectional areas of the recovery wind outlet 40 and the recovery air passage 41 can be reduced, and the size of the air conditioner 1 can be reduced. Therefore, the second embodiment can achieve the same operational effects as the first embodiment.
  • 3rd Embodiment changes the structure of the accommodating part 25 with respect to 1st Embodiment, Since others are the same as that of 1st Embodiment, only a different part from 1st Embodiment is demonstrated.
  • the accommodating portion 25 is configured integrally with the air conditioning case 2.
  • the accommodating portion 25 includes a cylindrical portion 27 formed in a cylindrical shape, a first conical portion 28 provided on one axial direction of the cylindrical portion 27, and a second provided on the other axial direction of the cylindrical portion 27. It is configured by a conical portion 29 and the like.
  • the accommodating portion 25 is provided so that the apex 281 of the first conical portion 28 is lower than the apex 291 of the second conical portion 29 in a state where the air conditioner 1 is mounted on the vehicle.
  • the accommodating portion 25 is inclined with respect to the evaporator 4 so that the distance L1 between the apex 281 of the first conical portion 28 and the evaporator 4 is closer than the distance L2 between the apex 291 of the second conical portion 29 and the evaporator 4. Is provided.
  • the recovery air passage 41 and the warm air passage 42 are connected to the first conical portion 28.
  • the exhaust passage 43 and the humidified air passage 44 are connected to the second conical portion 29.
  • the first conical portion 28 is provided with an opening 410 of the recovery air passage 41 and an opening 420 of the warm air passage 42.
  • the second conical portion 29 is provided with an opening 430 of the exhaust passage 43 and an opening 440 of the humidified air passage 44.
  • a first conical door 55 is provided inside the first conical portion 28 of the accommodating portion 25.
  • a second conical door 56 is provided inside the second conical portion 29 of the accommodating portion 25.
  • the first conical door 55 is formed in a conical umbrella shape, and has an opening 550 in a part in the circumferential direction.
  • the first conical door 55 is provided to be rotatable around the axis of the first conical portion 28. As shown in FIG. 12, when the opening 410 of the recovery air passage 41 provided in the first conical portion 28 and the opening 550 of the first conical door 55 overlap, the recovery air passage 41 and the accommodation space 26 are separated. The warm air passage 42 and the accommodation space 26 are blocked from each other.
  • the warm air passage 42 and the accommodation space 26 communicate with each other.
  • the collection air passage 41 and the accommodation space 26 are blocked.
  • the second conical door 56 is formed in a conical umbrella shape, and has an opening 560 in a part in the circumferential direction.
  • the second conical door 56 is provided to be rotatable around the axis of the second conical portion 29.
  • the opening 440 of the humidified air passage 44 provided in the second conical portion 29 and the opening 560 of the second conical door 56 overlap, the accommodation space 26 and the humidified air passage 44 communicate with each other, The exhaust passage 43 is blocked.
  • the opening 430 of the exhaust passage 43 provided in the second conical portion 29 and the opening 560 of the second conical door 56 overlap, the accommodation space 26 and the exhaust passage 43 communicate with each other, and the accommodation space. 26 and the humidified air passage 44 are blocked.
  • the air inflow surface 61 of the hygroscopic material 6 is inclined with respect to the direction of the wind introduced from the recovery wind passage 41 into the accommodation space 26 and the direction of the wind introduced from the warm air passage 42 into the accommodation space 26. Is accommodated in the accommodating space 26 in a state inclined with respect to the angle.
  • the 1st cone door 55 and the 2nd cone door 56 are connected by the connection member which is not shown in figure, and rotate synchronously. Therefore, by the rotation of the first conical door 55 and the second conical door 56, the recovery air passage 41 and the accommodation space 26 communicate with each other, and the exhaust passage 43 and the accommodation space 26 communicate with each other. At this time, the warm air passage 42 and the accommodating space 26 are blocked, and the humidified air passage 44 and the accommodating space 26 are blocked. In this state, the air introduced into the accommodation space 26 from the recovery air passage 41 spreads along the air inflow surface 61 of the hygroscopic material 6 and flows into the hygroscopic material 6 in a wide range.
  • the humidified air passage 44 and the accommodation space 26 communicate with each other.
  • the recovery air passage 41 and the storage space 26 are blocked, and the exhaust passage 43 and the storage space 26 are blocked.
  • the air introduced into the accommodation space 26 from the warm air passage 42 spreads along the air inflow surface 61 of the hygroscopic material 6 and flows into the hygroscopic material 6 over a wide range. Thereby, the moisture contained in the hygroscopic material 6 is released to the air introduced from the warm air passage 42 into the accommodation space 26.
  • the air conditioner 1 of this embodiment can humidify a vehicle interior without water supply.
  • the third embodiment described above can also exhibit the same effects as the first and second embodiments. Furthermore, in 3rd Embodiment, the air-conditioning case 2 and the accommodating part 25 are comprised integrally. Therefore, the physique of the air conditioner 1 can be reduced in size.
  • the heater core 5 is provided in a state of being inclined with respect to the evaporator 4. Specifically, the heater core 5 is installed such that the upper end is closer to the evaporator 4 than the lower end. The heater core 5 is in contact with the bottom wall 201 of the air conditioning case 2 or is provided near the bottom wall 201.
  • the partition plate 13 is not provided in the air conditioning case 2, and the ventilation path 10 is not partitioned into an upper ventilation path and a lower ventilation path. That is, the air conditioner 1 according to the fourth embodiment does not set the inside / outside air two-layer mode.
  • the air passage 10 is provided with a guide wall 70 for guiding cold air on the downstream side of the air mix door 17.
  • the guide wall 70 is provided from the substantially central position of the ventilation path 10 to the upper end of the heater core 5 on the downstream side of the air mix door 17. Therefore, the cold air that has passed through the evaporator 4 flows through the passage between the guide wall 70 and the bottom wall 201 of the air conditioning case 2 and is guided to the heater core 5.
  • a passage through which cool air flows from the evaporator 4 toward the heater core 5 when the air mix door 17 is eliminated is referred to as a cold air passage 100.
  • the range of the cool air passage 100 upstream of the air mix door 17 in the cool air passage 100 is indicated by a one-dot chain line range indicated by reference numeral 100 a.
  • the upper edge of the cool air passage 100 upstream from the air mix door 17 is a position corresponding to the end of the guide wall 70 on the evaporator 4 side.
  • the recovery wind outlet 40 of the recovery air passage 41 is provided within the range of the alternate long and short dash line indicated by reference numeral 100a. That is, the recovery air outlet 40 is provided upstream of the air mix door 17 in the cold air passage 100 through which the cool air flows from the evaporator 4 toward the heater core 5.
  • FIG. 17 shows a state where the opening degree of the air mix door 17 is 0%.
  • FIG. 18 shows a state where the opening degree of the air mix door 17 is 50%.
  • FIG. 19 shows a state where the opening degree of the air mix door 17 is 100%.
  • FIG. 20 is a graph showing the relationship between the internal pressure of the ventilation path 10 measured at the positions P5 and P6 shown in FIGS. 17 to 19 and the opening of the air mix door 17 based on the simulation. Note that P5 in FIGS. 17 to 19 is a position above the cool air passage 100, and P6 is a position of the cool air passage 100.
  • the change in internal pressure according to the opening degree of the air mix door 17 is smaller at the position P6 than at the position P5. Moreover, the internal pressure in the position of P6 becomes the minimum value when the opening degree of the air mix door 17 is 100%. On the other hand, the internal pressure at the position P5 has a minimum value when the opening degree of the air mix door 17 is 0%. At that time, the minimum value of the internal pressure at the position P6 is higher than the minimum value of the internal pressure at the position P5.
  • the air that has passed through the evaporator 4 is divided into air that passes through the heater core 5 and air that does not pass through the heater core 5. To flow. At this time, due to the airflow resistance of the heater core 5, the internal pressure at the position P6 is higher than the internal pressure at the position P5.
  • the position of P6 has a smaller change in internal pressure in accordance with the opening of the air mix door 17 than the position of P5. That is, the cold air passage 100 has a smaller change in internal pressure according to the opening of the air mix door 17 than the space above the cold air passage 100.
  • the volume of the collected air flowing through the collected air passage 41 corresponds to the internal pressure of the ventilation path 10. Therefore, compared with the case where the recovery wind outlet 40 is provided at the position of P5, the case where the recovery wind outlet 40 is provided at the position corresponding to the position of P6 corresponds to the opening degree of the air mix door 17. The change in the volume of the collected wind is reduced.
  • the effect of the opening degree of the air mix door 17 is reduced by providing the recovery wind take-off port 40 upstream of the air mix door 17 in the cold air passage 100, and the air is accommodated from the recovery wind take-off port 40 through the recovery wind passage 41. It is possible to supply the recovered air with a stable air volume to the section 25.
  • the fourth embodiment can achieve the same operational effects as the first to third embodiments.
  • 5th Embodiment changes the position and angle of the heater core 5 with respect to 1st Embodiment.
  • the heater core 5 is provided in an inclined state with respect to the evaporator 4. Specifically, the heater core 5 is installed such that the upper end is closer to the evaporator 4 than the lower end. The heater core 5 is provided at an intermediate position between the bottom wall 201 and the upper wall 202 in the ventilation path 10 of the air conditioning case 2.
  • the ventilation path 10 is divided into an upper ventilation path 11 and a lower ventilation path 12 by a partition plate 13. That is, the air conditioner 1 can set the inside / outside air two-layer mode in addition to the outside air mode and the inside air mode.
  • the ventilation path 10 is provided with an upper guide wall 71 for guiding the cool air from the predetermined position on the downstream side of the evaporator 4 to the position corresponding to the upper end of the heater core 5 on the upstream side of the air mix door 17. It has been. Further, in the ventilation path 10, a lower guide wall for guiding cold air from a predetermined position downstream of the evaporator 4 to a position corresponding to the lower end of the heater core 5 on the upstream side of the air mix door 17. 72 is provided. Between the evaporator 4 and the heater core 5, a cold air passage 100 through which cool air flows from the evaporator 4 toward the heater core 5 is formed between the upper guide wall 71 and the lower guide wall 72.
  • the range of the cold air passage 100 upstream of the air mix door 17 in the cold air passage 100 is indicated by a one-dot chain line indicated by reference numeral 100a.
  • the recovery wind outlet 40 of the recovery air passage 41 is provided within the range of the alternate long and short dash line indicated by reference numeral 100a. That is, the recovery air outlet 40 is provided upstream of the air mix door 17 in the cold air passage 100 through which the cool air flows from the evaporator 4 toward the heater core 5. In detail, it is preferable that the recovery wind outlet 40 is provided on the lower side in the gravity direction than the partition plate 13 in the cool air passage 100.
  • FIG. 22 to 24 are schematic views of the air conditioner 1 according to the fifth embodiment.
  • FIG. 22 shows a state where the opening degree of the air mix door 17 is 0%.
  • FIG. 23 shows a state where the opening degree of the air mix door 17 is 50%.
  • FIG. 24 shows a state where the opening degree of the air mix door 17 is 100%.
  • FIG. 25 is a graph showing the relationship between the internal pressure of the ventilation path 10 measured at the positions P7 to P10 shown in FIGS. 22 to 24 and the opening degree of the air mix door 17 based on the simulation. 22 to 24, P7 is a position above the cold air passage 100, P8 and P9 are positions of the cold air passage 100, and P10 is a position below the cold air passage 100.
  • the relationship between the internal pressure of the cold air passage 100 measured at the positions P8 and P9 and the opening of the air mix door 17 is indicated by a solid line.
  • the relationship between the internal pressure of the space above or below the cold air passage 100 measured at the positions of P7 and P10 and the opening degree of the air mix door 17 is indicated by a broken line.
  • the changes in internal pressure according to the opening degree of the air mix door 17 are smaller in the positions of P8 and P9 than in the positions of P7 and P10. Further, the internal pressure at the positions P8 and P9 becomes the minimum value when the opening degree of the air mix door 17 is 100%. On the other hand, the internal pressure at the positions P7 and P10 is the lowest value when the opening degree of the air mix door 17 is 0%. At that time, the minimum value of the internal pressure at the positions P8 and P9 is higher than the minimum value of the internal pressure at the positions P7 and P10.
  • the positions of P8 and P9 have a smaller change in internal pressure depending on the opening of the air mix door 17 than the positions of P7 and P10. That is, the cold air passage 100 has a smaller change in internal pressure according to the opening degree of the air mix door 17 than the space above and below the cold air passage 100.
  • the volume of the collected air flowing through the collected air passage 41 corresponds to the internal pressure of the ventilation path 10. Therefore, compared to the case where the recovery wind outlet 40 is provided at the positions of P7 and P10, the case where the recovery wind outlet 40 is provided at the position corresponding to the positions of P8 and P9 opens the air mix door 17. The change in the volume of the collected wind according to the degree becomes small.
  • the effect of the opening degree of the air mix door 17 is reduced by providing the recovery wind take-off port 40 upstream of the air mix door 17 in the cold air passage 100, and the air is accommodated from the recovery wind take-off port 40 through the recovery wind passage 41. It is possible to supply the recovered air with a stable air volume to the section 25.
  • the fifth embodiment can achieve the same operational effects as the first to fourth embodiments.
  • the recovery air passage 41 is inserted into the air conditioning case 2 from the bottom wall 201 of the air conditioning case 2. Also in the sixth embodiment, the recovery wind outlet 40 of the recovery air passage 41 is provided within the range of the alternate long and short dash line indicated by reference numeral 100a. That is, the recovery air outlet 40 of the recovery air passage 41 is not limited to the side wall 200 of the ventilation path 10, and may be provided upstream of the air mix door 17 in the cold air passage 100. In detail, it is preferable that the recovery wind outlet 40 is provided on the lower side in the gravity direction than the partition plate 13 in the cool air passage 100.
  • the configuration of the sixth embodiment is effective when there is a mounting space under the air conditioning case 2. The sixth embodiment can also provide the same operational effects as the first to fifth embodiments.
  • the recovery air passage 41 is inserted from the side wall 200 of the air conditioning case 2 into the air conditioning case 2 in the seventh embodiment. Also in the seventh embodiment, the recovery wind outlet 40 of the recovery air passage 41 is provided within the range of the alternate long and short dash line indicated by reference numeral 100a. That is, the recovery air outlet 40 is provided upstream of the air mix door 17 in the cold air passage 100 through which the cool air flows from the evaporator 4 toward the heater core 5.
  • the configuration of the seventh embodiment is effective when the lateral width of the heater core 5 is smaller than the lateral width of the air conditioning case 2.
  • the seventh embodiment can also provide the same operational effects as the first to sixth embodiments.
  • the cooling device may use, for example, an air-air heat exchanger that cools air using low-temperature air such as outside air, or a Peltier module.
  • the recovery air passage 41 is configured to be inserted into the inside of the air conditioning case 2 from the bottom wall 201 or the side wall 200 of the air conditioning case 2.
  • the recovery air passage 41 may be configured to be inserted into the air conditioning case 2 from the upper wall 202 of the air conditioning case 2 or the like.
  • the recovery air outlet 40 has a position including the heater core projection range HS, Alternatively, the cool air passage 100 is provided upstream of the air mix door 17.
  • the air conditioning case forms a ventilation path through which air flows.
  • the cooling device cools the air flowing through the ventilation path.
  • the heating device is disposed on the downstream side of the cooling device and heats the air flowing through the ventilation path.
  • the air mix door is provided between the cooling device and the heating device, and adjusts the ratio of the air volume that bypasses the heating device after passing through the cooling device and the air volume that passes through the heating device.
  • the storage unit stores a hygroscopic material capable of adsorbing and desorbing moisture contained in the air.
  • the recovery air passage communicates the recovery air outlet and the accommodating portion provided between the cooling device and the heating device in the side wall of the ventilation path.
  • the recovery air outlet is provided at a position including a height range in which the heating device is projected perpendicularly to the cooling device on the side wall of the ventilation path.
  • the recovery wind outlet includes a first recovery wind outlet provided on one side wall of the ventilation path and a second recovery wind outlet provided on the other side wall of the ventilation path.
  • the temperature and the air volume of the conditioned air blown from the blowing opening provided on the right side in the vehicle width direction and the conditioned air blown from the blowing opening provided on the left side in the vehicle width direction of the air conditioning case. Can keep the balance.
  • the air conditioner further includes a partition plate and an inside / outside air switching unit.
  • a partition plate partitions the ventilation path in an air-conditioning case into the upper ventilation path of the gravity direction upper side, and the lower ventilation path of the gravity direction lower side.
  • the inside / outside air switching unit can implement an inside / outside air two-layer mode in which outside air is introduced into the upper ventilation path and inside air is introduced into the lower ventilation path.
  • the recovery air outlet is provided on the side wall of the lower ventilation path.
  • the humidity of the inside air circulation is high due to the sweating of the passengers. Therefore, it is possible to supply air with high absolute humidity and high relative humidity from the recovery wind outlet to the receiving section through the recovery wind passage by providing the recovery wind outlet on the side wall of the lower ventilation passage where the inside air circulation is performed. is there.
  • the air conditioner further includes a warm air passage, an exhaust passage, and a humidified air passage.
  • the warm air passage communicates the downstream side of the heating device and the housing portion, and introduces the air heated by the heating device into the housing portion.
  • the exhaust passage exhausts air from the accommodating portion.
  • the humidified air passage blows out the air humidified in the housing portion toward the vehicle interior.
  • the air in the accommodating part, after the moisture is adsorbed to the moisture absorbent from the collected wind introduced from the collected wind passage, the air can be discharged through the exhaust passage. Further, moisture can be desorbed from the hygroscopic material with respect to the air introduced from the warm air passage into the housing portion. The humidified air is blown out from the housing portion toward the vehicle interior through the humidified air passage.
  • an air-conditioning case can be equipped with the function of the non-water-supply humidifier which can be operated by non-water-supply.
  • the air conditioning case and the accommodating portion are integrally configured.
  • the air conditioning case forms a ventilation path through which air flows.
  • the cooling device cools the air flowing through the ventilation path.
  • the heating device is disposed on the downstream side of the cooling device and heats the air flowing through the ventilation path.
  • the air mix door is provided between the cooling device and the heating device, and adjusts the ratio between the amount of air that does not pass through the heating device after passing through the cooling device and the amount of air that passes through the heating device.
  • the storage unit stores a hygroscopic material capable of adsorbing and desorbing moisture contained in the air.
  • the recovery air passage communicates a storage air outlet with a recovery air outlet provided on the upstream side of the air mix door in the cool air passage through which the cool air flows from the cooling device toward the heating device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

本開示は、加湿器付の空調装置において、吸湿材に安定した風量の回収風を供給することの可能な空調装置を提供することを目的とする。 空調装置は、空調ケース(2)、冷却機器(4)、加熱機器(5)、エアミックスドア(17)、収容部(25)および回収風通路(41)を備える。空調ケース(2)は、空気が流れる通風路(10)を形成する。冷却機器(4)は、通風路(10)を流れる空気を冷却する。加熱機器(5)は、通風路(10)を流れる空気を加熱する。エアミックスドア(17)は、冷却機器(4)と加熱機器(5)との間に設けられる。収容部(25)は、空気に含まれる水分を吸着および脱離可能な吸湿材(6)を収容する。回収風通路(41)は、通風路(10)の側壁(200)のうち冷却機器(4)と加熱機器(5)との間に設けられた回収風取出口(40)と収容部(25)とを連通する。ここで、回収風取出口(40)は、通風路(10)の側壁のうち、冷却機器(4)に対して垂直に加熱機器(5)を投影した高さ範囲(HS)を含む位置に設けられている。

Description

空調装置 関連出願への相互参照
 本出願は、2017年3月27日に出願された日本特許出願番号2017-61580号と、2017年12月22日に出願された日本特許出願番号2017-246836号とに基づくもので、ここにその記載内容が参照により組み入れられる。
 本開示は、車両用の空調装置に関するものである。
 従来、車室内の空気調和を行う空調装置に対し、無給水で作動可能な無給水式の加湿器を設置した加湿器付空調装置が知られている。
 特許文献1に記載の加湿器付空調装置は、空調装置の外殻を構成する空調ケースの下側に、無給水式の加湿器を配置している。この加湿器の内側には、吸湿材と送風機が設けられている。加湿器付空調装置は、加湿器に設けられた送風機の駆動により、空調装置のエバポレータで冷却されて相対湿度の高くなった空気(以下、「回収風」という)を加湿器の内側に導入し、その空気に含まれる水分を吸湿材に吸着させる。次に、加湿器に設けられた送風機の駆動により、空調装置のヒータコアで加熱されて相対湿度の低くなった空気を加湿器の内側に導入し、その空気に吸湿材の水分を脱離させる。加湿器付空調装置は、このようにして加湿された空気を、加湿器に接続されたダクトを通じて乗員の顔に向けて吹き出すことが可能なものである。
特開2015-217917号公報
 上述した特許文献1に記載された加湿器付空調装置は、通風路の底壁のうちエバポレータとヒータコアとの間に設けられた回収風取出口から回収風を加湿器に導入している。しかしながら、回収風取出口が設けられた通風路の底壁付近の空間は、エアミックスドアの開度に応じて内圧が大きく変化する。そのため、この加湿器付空調装置は、エアミックスドアの開度が変化すると、安定した風量の回収風を加湿器に導入することが困難になるといった問題がある。
 また、この加湿器付空調装置は、加湿器の内側に設けた送風機の駆動制御により、通風路から加湿器に導入する回収風の風量を調整することが可能である。しかしながら、この加湿器付空調装置は、加湿器の内側に送風機を設けることで、製造上のコストが増加すると共に、加湿器の体格が大型化するといった問題がある。
 本開示は、加湿器付の空調装置において、吸湿材に安定した風量の回収風を供給することの可能な空調装置を提供することを目的とする。
 本開示の1つの観点によれば、車室内の空気調和を行う空調装置であって、
 空気が流れる通風路を形成する空調ケースと、
 通風路を流れる空気を冷却する冷却機器と、
 冷却機器の下流側に配置され、通風路を流れる空気を加熱する加熱機器と、
 冷却機器と加熱機器との間に設けられ、冷却機器を通過した後に加熱機器を迂回する風量と加熱機器を通過する風量との割合を調整するエアミックスドアと、
 空気に含まれる水分を吸着および脱離可能な吸湿材を収容する収容部と、
 通風路の側壁のうち冷却機器と加熱機器との間に設けられた回収風取出口と収容部とを連通する回収風通路と、を備え、
 回収風取出口は、通風路の側壁のうち、冷却機器に対して垂直に加熱機器を投影した高さ範囲(以下、「加熱機器投影範囲」という)を含む位置に設けられている。
 発明者は、シミュレーションにより、通風路のうち加熱機器投影範囲の空間は、その空間より上方の空間および下方の空間に比べて、エアミックスドアの開度に応じた内圧の変化が小さいことに気が付いた。そのため、通風路の側壁のうち加熱機器投影範囲を含む位置に回収風取出口を設けることで、エアミックスドアの開度の影響を低減し、回収風取出口から回収風通路を通じて収容部に安定した風量の回収風を供給することが可能である。したがって、この空調装置は、吸湿材に水分を安定して保持させることが可能となり、加湿器から乗員に対して加湿風を安定して吹き出すことができる。
 また、シミュレーションによると、エアミックスドアの動作により冷却機器を通過した風が加熱機器を迂回する場合は、冷却機器を通過した風が加熱機器を通過する場合に比べて、加熱機器投影範囲の空間の内圧が低くなる。しかし、エアミックスドアの動作により冷却機器を通過した風が加熱機器を迂回する場合でも、加熱機器投影範囲の空間の内圧は、その空間より上方の空間および下側の空間の内圧よりも高い。そのため、通風路の側壁のうちヒータコア投影範囲を含む位置に回収風取出口を設けることで、最低の回収風風量を比較的大きい風量で確保することが可能である。したがって、回収風取出口および回収風通路の流路断面積を小さくし、空調装置の体格を小型化することができる。
 また、別の観点によれば、車室内の空気調和を行う空調装置であって、
 空気が流れる通風路を形成する空調ケースと、
 通風路を流れる空気を冷却する冷却機器と、
 冷却機器の下流側に配置され、通風路を流れる空気を加熱する加熱機器と、
 冷却機器と加熱機器との間に設けられ、冷却機器を通過した後に加熱機器を通過しない風量と加熱機器を通過する風量との割合を調整するエアミックスドアと、
 空気に含まれる水分を吸着および脱離可能な吸湿材を収容する収容部と、
 冷却機器から加熱機器に向けて冷風が流れる冷風通路のうちエアミックスドアより上流側に設けられた回収風取出口と、収容部とを連通する回収風通路とを備える。
 発明者は、シミュレーションにより、冷却機器から加熱機器に向けて冷風が流れる冷風通路は、その冷風通路より上方または下方の空間に比べて、エアミックスドアの開度に応じた内圧の変化が小さいことに気が付いた。そのため、その冷風通路に回収風取出口を設けることで、エアミックスドアの開度の影響を低減し、回収風取出口から回収風通路を通じて収容部に安定した風量の回収風を供給することが可能である。したがって、この空調装置は、吸湿材に水分を安定して保持させることが可能となり、加湿器から乗員に対して加湿風を安定して吹き出すことができる。
 また、シミュレーションによると、エアミックスドアの開度を0~100%の範囲全体で見たとき、冷却機器から加熱機器に向けて冷風が流れる冷風通路における内圧の最低値は、その冷風通路より上方または下方の空間における内圧の最低値よりも高い値となる。そのため、冷却機器から加熱機器に向けて冷風が流れる冷風通路に回収風取出口を設けることで、最低の回収風風量を比較的大きい風量で確保することが可能である。したがって、回収風取出口および回収風通路の流路断面積を小さくし、空調装置の体格を小型化することができる。
第1実施形態の空調装置の正面図である。 図1のII―II線断面における空調装置の温度調整ユニットと加湿器の側面図である。 図1のIII―III線断面における空調装置の温度調整ユニットと加湿器の断面図である。 図3のIV―IV線断面における空調装置の温度調整ユニットと加湿器の断面図である。 エアミックスドアの動作を説明する説明図である。 エアミックスドアの動作を説明する説明図である。 エアミックスドアの動作を説明する説明図である。 エアミックスドアの開度と通風路の内圧との関係を示すグラフである。 エアミックスドアの開度と回収風の風量との関係を示すグラフである。 第2実施形態の空調装置が備える温度調整ユニットと加湿器の断面図である。 第3実施形態の空調装置が備える温度調整ユニットと加湿器の断面図である。 図11のXII部分の拡大図である。 空調装置の収容部に設けられた円錐ドアの斜視図である。 空調装置の収容部に設けられた円錐ドアの正面図である。 図14のXV―XV線の断面図である。 第4実施形態の空調装置が備える温度調整ユニットと加湿器の断面図である。 エアミックスドアの動作を説明する説明図である。 エアミックスドアの動作を説明する説明図である。 エアミックスドアの動作を説明する説明図である。 エアミックスドアの開度と通風路の内圧との関係を示すグラフである。 第5実施形態の空調装置が備える温度調整ユニットと加湿器の断面図である。 エアミックスドアの動作を説明する説明図である。 エアミックスドアの動作を説明する説明図である。 エアミックスドアの動作を説明する説明図である。 エアミックスドアの開度と通風路の内圧との関係を示すグラフである。 第6実施形態の空調装置が備える温度調整ユニットと加湿器の断面図である。 第7実施形態の空調装置が備える温度調整ユニットと加湿器の断面図である。
 以下、本開示の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、同一符号を付して説明を行う。
 (第1実施形態)
 第1実施形態について図面を参照しつつ説明する。本実施形態の空調装置は、車両のインストルメントパネルの内側に搭載される。この空調装置は、車室内または車室外から取り入れた空気の温度および湿度を調整し、その空気を車室内に設けられた複数の吹出口から車室内に吹き出すことにより車室内の空気調和を行うものである。また、この空調装置は、給水を必要とすることなく、車室内に設けられた所定の吹出口から乗員の顔などに向けて加湿風を吹き出すことも可能である。
 図1~図4に示すように、空調装置1は、空調ケース2、送風機3、冷却機器としてのエバポレータ4、加熱機器としてのヒータコア5および吸湿材6などを備えている。
 空調ケース2は、空調装置1の外殻を構成している。空調ケース2は、ある程度の弾性を有し、強度的にも優れた樹脂(例えばポリプロピレン)により成形されている。空調ケース2の内側には、空気が流れる通風路10が形成されている。
 空調ケース2の内側には、通風路10を、重力方向上側の上通風路11と、重力方向下側の下通風路12に仕切る仕切板13が設けられている。
 空調ケース2は、通風路10の空気流れ方向の最上流側に、車室内空気(すなわち内気)を通風路10に導入するための内気導入口14と、車室外空気(すなわち外気)を通風路10に導入するための外気導入口15を有している。内気導入口14と外気導入口15は、空調ケース2とは別部材として構成された図示していないダクトに接続される。それらのダクトを介して、内気導入口14または外気導入口15から、上通風路11と下通風路12に空気が導入される。
 内気導入口14と外気導入口15の近傍には、内外気切替部としての内外気切替ドア16が設けられている。内外気切替ドア16は、内気導入口14と外気導入口15とを開閉するものである。なお、内外気切替ドア16は、内気導入口14を開閉するためのドアと、外気導入口15を開閉するためのドアを別々に設けてもよい。
 本実施形態の空調装置1は、内外気切替ドア16を所望の位置に回転させることにより、上通風路11と下通風路12に対して外気または内気を導入するための空調モードを切り替えることが可能である。この空調モードとして、外気モード、内気モード、および内外気2層モードが設定可能である。
 外気モードでは、内外気切替ドア16により、外気導入口15を開放し、内気導入口14を閉塞する。このとき、外気導入口15と上通風路11と下通風路12とが連通する。これにより、上通風路11と下通風路12に外気が導入される。
 内気モードでは、内外気切替ドア16により、外気導入口15を閉塞し、内気導入口14を開放する。このとき、内気導入口14と上通風路11と下通風路12とが連通する。これにより、上通風路11と下通風路12に内気が導入される。
 内外気2層モードでは、内外気切替ドア16により、外気導入口15と内気導入口14の双方を開放する。このとき、外気導入口15と上通風路11とが連通し、内気導入口14と下通風路12とが連通する。これにより、上通風路11に外気が導入され、下通風路12に内気が導入される。なお、図1では、内外気2層モードが選択されたときの内外気切替ドア16の位置を示している。
 空調ケース2の内側の通風路10には、送風機3が設けられている。送風機3は、第1遠心ファン31、第2遠心ファン32、および図示していない電動モータなどを有している。電動モータの駆動により、第1遠心ファン31と第2遠心ファン32が回転し、内気導入口14または外気導入口15から上通風路11と下通風路12に空気が導入される。第1遠心ファン31によって送風される空気は上通風路11を流れ、第2遠心ファン32によって送風される空気は下通風路12を流れる。
 通風路10を流れる空気は、空調モードに応じて、空気流れ方向の最下流側に設けられたデフロスタ吹出開口部19、フェイス吹出開口部20、フット吹出開口部21、排気通路43または加湿風通路44のいずれかから吹き出される。なお、送風機3が有するファンは、遠心ファンに限らず、例えば、軸流ファンまたはクロスフローファンとしてもよい。
 エバポレータ4は、通風路10を流れる空気を冷却する熱交換器である。エバポレータ4は、図示していない圧縮機、凝縮器および膨張弁などと共に蒸気圧縮式の冷凍サイクルを構成している。エバポレータ4は、その冷凍サイクルにおいて、膨張弁の下流側、且つ、圧縮機の上流側に配置されている。エバポレータ4が有する図示していないチューブの中を、膨張弁によって減圧されて気液二層状態となった冷媒が流れる。エバポレータ4のチューブの内側を流れる冷媒と、通風路10を流れる空気との熱交換により、通風路10を流れる空気が冷却される。
 ヒータコア5は、エバポレータ4に対し、空気流れ方向の下流側に設けられている。ヒータコア5は、通風路10を流れる空気を加熱する熱交換器である。ヒータコア5が有する図示していないチューブの内側を温水(例えばエンジン冷却水)が流れる。ヒータコア5のチューブの内側を流れる温水と、通風路10を流れる空気との熱交換により、通風路10を流れる空気が加熱される。なお、ヒータコア5と共にPCTヒータなどを併設してもよい。
 エバポレータ4とヒータコア5との間の通風路10には、2枚のエアミックスドア17が設けられている。エアミックスドア17はスライド式のフィルムドアであり、ギア18の回転により駆動される。エアミックスドア17は、エバポレータ4を通過した後にヒータコア5を迂回する風量と、エバポレータ4を通過した後にヒータコア5を通過する風量との割合を調整する。
 空調ケース2は、通風路10の空気流れ方向の最下流側に、通風路10から車室内に空調風を送風するための複数の吹出開口部を有している。複数の吹出開口部は、デフロスタ吹出開口部19、フェイス吹出開口部20およびフット吹出開口部21などにより構成されている。
 空調装置1が車両に搭載された状態において、デフロスタ吹出開口部19とフェイス吹出開口部20は、空調ケース2のうち、重力方向上側の部位に設けられている。フェイス吹出開口部20は、前座席に着座した乗員の上半身に向けて空調風を吹き出すものである。フェイス吹出開口部20の近傍には、フェイスドア22が設けられている。フェイスドア22は、フェイス吹出開口部20を開閉する。フェイス吹出開口部20には、図示していないフェイスダクトが接続される。フェイスダクトは、フェイス吹出開口部20と、車室内に設けられた図示していないフェイス吹出口とを接続するダクトである。フェイスドア22がフェイス吹出開口部20を開くと、通風路10を流れる空調風は、フェイス吹出開口部20からフェイスダクトを通り、フェイス吹出口から前座席に着座した乗員の上半身に向けて吹き出される。
 デフロスタ吹出開口部19は、車両のフロントウィンドガラスに向けて空調風を吹き出すものである。デフロスタ吹出開口部19の近傍には、デフロスタドア23が設けられている。デフロスタドア23は、デフロスタ吹出開口部19を開閉する。デフロスタドア23がデフロスタ吹出開口部19を開くと、通風路10を流れる空調風は、デフロスタ吹出開口部19から図示していないデフロスタダクトを通り、車両のフロントウィンドガラスに向けて吹き出される。
 フット吹出開口部21は、空調装置1が車両に搭載された状態において、車幅方向の左右となる部位にそれぞれ設けられている。フット吹出開口部21は、車両の右前座席および左前座席に着座した乗員の下半身側に向けて空調風を吹き出すものである。通風路10とフット吹出開口部21とが連通する箇所には、フットドア24が設けられている。フットドア24は、通風路10とフット吹出開口部21とを連通または遮断する。フットドア24が通風路10とフット吹出開口部21とを連通すると、通風路10を流れる空調風は、フット吹出開口部21から乗員の下半身側に向けて吹き出される。
 さらに、本実施形態の空調装置1は、吸湿材6を収容可能な収容部25を備えている。本実施形態では、空調ケース2と収容部25とは別部材として構成されている。なお、後述する第3実施形態のように、空調ケース2と収容部25とは一体に構成してもよい。
 収容部25の内側に形成される収容空間26に、吸湿材6が収容されている。吸湿材6は、空気の湿度に応じて空気中の水分を回収したり、空気中に水分を脱離したりする特性を有する吸湿物質が波板状の部材に担持されたものをロール状または直方体形状にしたものである。また、吸湿材6は、円柱状または直方体形状に形成されたハニカム状の構造体に、上述した吸湿物質が担持されたものであってもよい。上述した吸湿物質として、例えば、有機系材料の高分子吸着材、または、無機系材料のゼオライト、シリカゲルなどを採用することができる。
 図3および図4に示すように、吸湿材6は、空気流入面61と空気流出面62とを有している。吸湿材6の空気流入面61から流入した空気は、吸湿材6の内側に形成される構造体の隙間を流れ、空気流出面62から流出する。なお、以下の説明では、収容部25の内側の収容空間26のうち、吸湿材6の空気流入面61が配置される側の空間を流入空間261と呼び、吸湿材6の空気流出面62が配置される側の空間を流出空間262と呼ぶこととする。収容空間26を流入空間261から流出空間262に流れる空気の湿度が高い場合、吸湿材6は、空気中に含まれる水分を回収する。収容空間26を流入空間261から流出空間262に流れる空気の湿度が低い場合、吸湿材6は、空気中に水分を脱離する。
 収容部25には、回収風通路41、暖風通路42、排気通路43および加湿風通路44が接続されている。
 回収風通路41は、通風路10の側壁200に設けられた回収風取出口40と収容部25の流入空間261とを連通している。回収風取出口40は、エバポレータ4により冷却されて相対湿度が高くなった空気を回収風通路41に導入するために、通風路10の側壁200に設けられた開口部である。回収風通路41は、エバポレータ4により冷却された空気を回収風取出口40から取り出し、収容部25の流入空間261に導入するための通路である。
 回収風取出口40は、通風路10の側壁200のうち、エバポレータ4とヒータコア5との間に設けられている。また、回収風取出口40は、エバポレータ4に対して垂直にヒータコア5を投影した高さ範囲(以下、「ヒータコア投影範囲HS」という)を含む位置に設けられている。なお、回収風取出口40は、その少なくとも一部がヒータコア投影範囲HSを含む位置に設けられていればよい。また、ヒータコア投影範囲HSを含む位置とは、エバポレータ4の真横だけでなく、通風路10の側壁200のうち、エバポレータ4とヒータコア5との間の位置も含んでいる。なお、通風路10の側壁200とは、空調装置1を車両に搭載した状態で、重力方向に対して交差する方向の壁であり、車幅方向の壁だけでなく、車両前後方向の壁も含んでいる。
 通風路10のうちヒータコア投影範囲HSの空間は、その空間より上方の空間および下方の空間に比べて、エアミックスドア17の開度に応じた内圧の変化が小さい。そのため、通風路10の側壁200のうちヒータコア投影範囲HSを含む位置に回収風取出口40を設けることで、エアミックスドア17の開度の影響を低減し、回収風取出口40から回収風通路41を通じて収容部25に安定した風量の回収風を供給可能である。これについては、発明者が行ったシミュレーションに基づき、後に詳細に説明する。
 また、回収風取出口40は、下通風路12の側壁200に設けられている。下通風路12は、内外気2層モードまたは内気モードが行われるとき、内気が循環する。内気循環の空気は、乗員の発汗などにより、絶対湿度が高くなっている。そのため、内気循環が行われる下通風路12の側壁200に回収風取出口40を設けることで、絶対湿度および相対湿度の高い空気を、回収風取出口40から回収風通路41を通じて収容部25に供給することが可能である。
 さらに、図4に示すように、回収風取出口40は、通風路10の一方の側壁200と通風路10の他方の側壁200に設けられている。通風路10の一方の側壁200に設けられた回収風取出口40を第1回収風取出口401と呼び、通風路10の他方の側壁200に設けられた回収風取出口40を第2回収風取出口402と呼ぶこととする。また、第1回収風取出口401と収容部25とを連通する回収風通路41を第1回収風通路411と呼び、第2回収風取出口402と収容部25とを連通する回収風通路41を第2回収風通路412と呼ぶこととする。このように、本実施形態の回収風通路41は、空調ケース2の一方の側壁200の外側に設けられた第1回収風通路411と、空調ケース2の他方の側壁200の外側に設けられた第2回収風通路412を有している。これにより、空調ケース2のうち車幅方向右側に設けられた各吹出開口部から吹き出される空調風と、車幅方向左側に設けられた各吹出開口部から吹き出される空調風との温度および風量のバランスが保たれる。
 暖風通路42は、一端が通風路10の中でヒータコア5の下流側に開口し、他端が収容部25に接続されている。暖風通路42は、ヒータコア5により加熱されて相対湿度が低くなった空気を収容部25の流入空間261に導入するための通路である。
 排気通路43は、一端が収容部25に接続され、他端が収容部25の外側に開口している。排気通路43は、収容部25の流出空間262から空気を排出するための通路である。
 加湿風通路44は、一端が収容部25に接続され、他端が車室内に設けられた図示していないフェイス吹出口に接続されている。なお、加湿風通路44の他端は、フェイス吹出口とは別に車室内に設けられた図示していない加湿風吹出口に接続されていてもよい。加湿風通路44は、収容空間26で加湿された空気を車室内に向けて吹き出すための通路である。
 収容部25の流入空間261には、回収風通路41と収容空間26との連通および遮断を行うための回収風ドア51と、暖風通路42と収容空間26との連通および遮断を行うための暖風ドア52が設けられている。また、収容部25の流出空間262には、排気通路43と収容空間26との連通および遮断を行うための排気ドア53と、加湿風通路44と収容空間26との連通および遮断を行うための加湿風ドア54が設けられている。
 図3に示すように、回収風ドア51と排気ドア53が開状態で、暖風ドア52と加湿風ドア54が閉状態のとき、回収風通路41と収容空間26とが連通し、排気通路43と収容空間26とが連通する。また、暖風通路42と収容空間26とが遮断され、加湿風通路44と収容空間26とが遮断される。
 この状態で、回収風通路41から収容空間26に導入された空気は、吸湿材6の空気流入面61から吸湿材6の中を流れる。これにより、回収風通路41から収容空間26に導入される空気に含まれる水分が、吸湿材6に吸着される。そして、吸湿材6を通過して湿度が低くなった空気は、排気通路43から空調ケース2の外側に排出される。
 一方、暖風ドア52と加湿風ドア54が開状態で、回収風ドア51と排気ドア53が閉状態のとき、暖風通路42と収容空間26とが連通し、加湿風通路44と収容空間26とが連通する。また、回収風通路41と収容空間26とが遮断され、排気通路43と収容空間26とが遮断される。
 この状態で、暖風通路42から収容空間26に導入された空気は、吸湿材6の空気流入面61から吸湿材6の中を流れる。これにより、暖風通路42から収容空間26に導入される空気に対し、吸湿材6に含まれていた水分が放出される。そして、吸湿材6を通過して湿度が高くなった空気は、加湿風通路44を通り、フェイス吹出口または加湿風吹出口から車室内に吹き出される。これにより、本実施形態の空調装置1は、無給水で車室内の加湿を行うことが可能である。
 次に、回収風通路41の回収風取出口40を、下通風路12の側壁200のうちエバポレータ4とヒータコア5との間で、ヒータコア投影範囲HSを含む位置に設けた意義について説明する。
 図8は、シミュレーションに基づき、図5~図7に示すP1~P4の位置で測定した通風路10の内圧と、エアミックスドア17の開度との関係を表したグラフである。図5~図7に示すP2およびP3の位置は、通風路10のうちヒータコア投影範囲HSを含む位置である。図5~図7に示すP1およびP4の位置は、通風路10のうちヒータコア投影範囲HSを含まない位置である。
 図8のグラフでは、P1およびP4の位置で測定した通風路10の内圧とエアミックスドア17の開度との関係を、破線で示している。P2およびP3の位置で測定した通風路10の内圧とエアミックスドア17の開度との関係を、実線で示している。
 図8のグラフから、P1~P4のいずれの位置においても、エアミックスドア17の開度が小さいほど、内圧が低くなることが見て取れる。しかし、P2およびP3の位置は、P1およびP4の位置に比べて、エアミックスドア17の開度に応じた内圧の変化が小さい。また、エアミックスドア17の開度が0%で内圧が最も低い場合でも、P2およびP3の位置の内圧は、P1およびP4の位置の内圧よりも高い。
 上記の理由について説明する。図5は、エアミックスドア17の開度が0%の状態を示している。この状態で、エアミックスドア17は、ヒータコア5の気流流入面の略全面を覆い、ヒータコア5より上側と下側の通路を開放している。そのため、エバポレータ4を通過した空気の殆ど全てがヒータコア5を迂回して流れる。このとき、P2およびP3の位置は、下流側のヒータコア5をエアミックスドア17が閉塞していることにより、P1およびP4の位置に比べて内圧が高くなる。
 図6は、エアミックスドア17の開度が50%の状態を示している。この状態で、エアミックスドア17は、ヒータコア5の気流流入面の略半分を開放し、残りの略半分を覆っている。そのため、エバポレータ4を通過した空気は、ヒータコア5を通過する空気と、ヒータコア5を迂回する空気に分かれて流れる。このとき、P2およびP3の位置は、下流側にあるヒータコア5の通気抵抗により、P1およびP4の位置に比べて内圧が高くなる。
 図7は、エアミックスドア17の開度が100%の状態を示している。この状態で、エアミックスドア17は、ヒータコア5の気流流入面の略全面を開放し、ヒータコア5より上側と下側の通路を閉塞している。そのため、エバポレータ4を通過した空気の殆ど全てがヒータコア5を通過して流れる。このとき、P2およびP3の位置の下流側では、エアミックスドア17がヒータコア5を開放している。一方、P1およびP4の下流側では、エアミックスドア17が通路を閉塞している。そのため、P1およびP4の位置は、下流側でエアミックスドア17が通路を閉塞していることにより、P2およびP3の位置に比べて、内圧が高くなる。したがって、図5~図8を参照して説明したように、P2およびP3の位置は、P1およびP4の位置に比べて、エアミックスドア17の開度に応じた内圧の変化が小さいものとなる。
 図9は、P1~P4それぞれの位置に対応した通風路10の側壁200に回収風取出口40を設けた場合、回収風通路41を流れる回収風の風量とエアミックスドア17の開度との関係を表したグラフである。図9のグラフでは、P1またはP4の位置に対応した通風路10の側壁200に回収風取出口40を設けた場合において、回収風通路41を流れる回収風の風量とエアミックスドア17の開度との関係を破線で示している。また、図9のグラフでは、P2またはP3の位置に対応した通風路10の側壁200に回収風取出口40を設けた場合において、回収風通路41を流れる回収風の風量とエアミックスドア17の開度との関係を実線で示している。
 図9に示したように、回収風通路41を流れる回収風の風量は、図8で示した通風路10の内圧に対応したものとなっている。即ち、P1、P4の位置に対応した通風路10の側壁200に回収風取出口40を設けた場合より、P2、P3の位置に対応した通風路10の側壁200に回収風取出口40を設けた場合の方が、エアミックスドア17の開度に応じた回収風の風量の変化が小さい。したがって、通風路10の側壁200のうちヒータコア投影範囲HSを含む位置に回収風取出口40を設けることで、エアミックスドア17の開度の影響を低減し、回収風取出口40から回収風通路41を通じて収容部25に安定した風量の回収風を供給可能である。
 また、図8および図9に示したように、エアミックスドア17の開度が0%のときは、P1~P4のいずれの位置に回収風取出口40を設けた場合でも、内圧が低く、回収風の風量が最も低くなる。しかし、その場合でも、P2およびP3の位置に回収風取出口40を設けた場合の回収風の風量は、P1およびP4の位置に回収風取出口40を設けた場合の回収風の風量よりも大きいものとなっている。したがって、通風路10の側壁200のうちヒータコア投影範囲HSを含む位置に回収風取出口40を設けることで、最低の回収風風量を比較的大きい風量で確保することが可能である。
 なお、図8および図9に矢印で示した作動域は、加湿器が乗員に使用されることが一般的に想定される領域を示したものである。加湿器は、晩秋~冬~春先にかけてよく使用されると考えられる。その場合、エアミックスドア17は、図8および図9に示した作動域の範囲で作動することが想定される。
 以上説明した本実施形態の空調装置1は、次の作用効果を奏する。
 (1)本実施形態では、回収風通路41の回収風取出口40は、下通風路12の側壁200のうち、エバポレータ4とヒータコア5との間で、ヒータコア投影範囲HSを含む位置に設けられている。
 これによれば、通風路10のうちヒータコア投影範囲HSの空間は、その空間より上方の空間および下方の空間に比べて、エアミックスドア17の開度に応じた内圧の変化が小さい。そのため、エアミックスドア17の開度の影響を低減し、回収風取出口40から回収風通路41を通じて収容部25に安定した風量の回収風を供給することが可能である。したがって、この空調装置1は、吸湿材6に水分を安定して保持させることが可能となり、加湿器から乗員に対して加湿風を安定して吹き出すことができる。
 また、エアミックスドア17の開度が0%の場合でも、ヒータコア投影範囲HSの空間の内圧は、その空間より上方の空間および下側の空間の内圧よりも高い。そのため、通風路10の側壁200のうちヒータコア投影範囲HSを含む位置に回収風取出口40を設けることで、最低の回収風風量を比較的大きい風量で確保することが可能である。したがって、回収風取出口40および回収風通路41の流路断面積を小さくし、空調装置1の体格を小型化することができる。
 (2)本実施形態では、回収風取出口40は、空調ケース2の一方の側壁200に設けられた第1回収風取出口401と、空調ケース2の他方の側壁200に設けられた第2回収風取出口402とを有している。
 これによれば、空調ケース2のうち車幅方向右側に設けられた各吹出開口部から吹き出される空調風と、車幅方向左側に設けられた各吹出開口部から吹き出される空調風との温度および風量のバランスを保つことができる。
 (3)本実施形態では、空調ケース2内の通風路10は、仕切板13によって、重力方向上側の上通風路11と、重力方向下側の下通風路12に分けられている。ここで、回収風取出口40は、下通風路12側の側壁200に設けられている。
 下通風路12は、内外気2層モードまたは内気モードが行われるとき、内気が循環する。内気循環の空気は、乗員の発汗などにより、絶対湿度が高くなっている。そのため、内気循環が行われる下通風路12の側壁200に回収風取出口40を設けることで、絶対湿度および相対湿度の高い空気を、回収風取出口40から回収風通路41を通じて収容部25に供給することが可能である。
 (4)本実施形態では、空調装置1は、暖風通路42、排気通路43および加湿風通路44をさらに備える。
 これによれば、収容部25では、回収風通路41から導入される回収風から吸湿材6に水分を吸着させた後、その空気を排気通路43を通じて排出することが可能である。また、暖風通路42から収容部25に導入される空気に対し、吸湿材6から水分を脱離させることが可能である。その加湿された空気は、収容部25から加湿風通路44を通じて車室内に向けて吹き出される。これにより、空調ケース2は、無給水で作動可能な無給水加湿器の機能を備えることが可能である。
 (第2実施形態)
 第2実施形態について説明する。第2実施形態は、第1実施形態に対してヒータコア5の位置を変更したものであり、その他については第1実施形態と同様であるため、第1実施形態と異なる部分についてのみ説明する。
 図10に示すように、第2実施形態では、ヒータコア5が空調ケース2の底壁201に接するか、または、底壁201近くに設けられている。なお、第2実施形態では、仕切板13が設けられておらず、通風路10は上通風路11と下通風路12に仕切られていない。すなわち、空調装置1は、内外気2層モードの設定を行わないものである。また、エバポレータ4とヒータコア5との間の通風路10には、1枚のエアミックスドア17が設けられている。
 第2実施形態でも、回収風通路41の回収風取出口40は、通風路10の側壁200のうち、エバポレータ4とヒータコア5との間で、ヒータコア投影範囲HSを含む位置に設けられている。通風路10のうちヒータコア投影範囲HSの空間は、その空間より上方の空間に比べて、エアミックスドア17の開度に応じた内圧の変化が小さい。そのため、通風路10の側壁200のうちヒータコア投影範囲HSを含む位置に回収風取出口40を設けることで、エアミックスドア17の開度の影響を低減し、回収風取出口40から回収風通路41を通じて収容部25に安定した風量の回収風を供給可能である。
 また、エアミックスドア17の開度が0%の場合でも、ヒータコア投影範囲HSの空間の内圧は、その空間より上方の空間の内圧よりも高い。そのため、通風路10の側壁200のうちヒータコア投影範囲HSを含む位置に回収風取出口40を設けることで、最低の回収風風量を比較的大きい風量で確保することが可能である。したがって、回収風取出口40および回収風通路41の流路断面積を小さくし、空調装置1の体格を小型化することができる。したがって、第2実施形態も、第1実施形態と同様の作用効果を奏することができる。
 (第3実施形態)
 第3実施形態について説明する。第3実施形態は、第1実施形態に対して収容部25の構成を変更したものであり、その他については第1実施形態と同様であるため、第1実施形態と異なる部分についてのみ説明する。
 図11および図12に示すように、収容部25は、空調ケース2と一体に構成されている。収容部25は、筒状に形成された筒部27、その筒部27の軸方向の一方に設けられた第1円錐部28、および、筒部27の軸方向の他方に設けられた第2円錐部29などにより構成されている。収容部25は、空調装置1が車両に搭載された状態で、第1円錐部28の頂点281が第2円錐部29の頂点291より低い位置となるように設けられている。また、収容部25は、第1円錐部28の頂点281とエバポレータ4との距離L1が第2円錐部29の頂点291とエバポレータ4との距離L2より近くなるように、エバポレータ4に対して傾斜して設けられている。
 図11および図12に示すように、本実施形態では、回収風通路41と暖風通路42は、第1円錐部28に接続されている。排気通路43と加湿風通路44は、第2円錐部29に接続されている。図12に示すように、第1円錐部28には、回収風通路41の開口部410と、暖風通路42の開口部420とが設けられている。第2円錐部29には、排気通路43の開口部430と、加湿風通路44の開口部440とが設けられている。
 収容部25の第1円錐部28の内側には第1円錐ドア55が設けられている。収容部25の第2円錐部29の内側には、第2円錐ドア56が設けられている。図13~図15に示すように、第1円錐ドア55は、円錐の傘状に形成されており、周方向の一部に開口550を有している。第1円錐ドア55は、第1円錐部28の軸周りに回転可能に設けられている。図12に示すように、第1円錐部28に設けられた回収風通路41の開口部410と、第1円錐ドア55の有する開口550とが重なるとき、回収風通路41と収容空間26とが連通し、暖風通路42と収容空間26とが遮断される。これに対し、第1円錐部28に設けられた暖風通路42の開口部420と、第1円錐ドア55の有する開口550とが重なるとき、暖風通路42と収容空間26とが連通し、回収風通路41と収容空間26とが遮断される。
 第2円錐ドア56も、第1円錐ドア55と同様、円錐の傘状に形成されており、周方向の一部に開口560を有している。第2円錐ドア56は、第2円錐部29の軸周りに回転可能に設けられている。第2円錐部29に設けられた加湿風通路44の開口部440と、第2円錐ドア56の有する開口560とが重なるとき、収容空間26と加湿風通路44とが連通し、収容空間26と排気通路43とが遮断される。これに対し、第2円錐部29に設けられた排気通路43の開口部430と、第2円錐ドア56の有する開口560とが重なるとき、収容空間26と排気通路43とが連通し、収容空間26と加湿風通路44とが遮断される。
 吸湿材6の空気流入面61は、回収風通路41から収容空間26に導入される風の方向に対して傾斜しており、且つ、暖風通路42から収容空間26に導入される風の方向に対して傾斜した状態で、収容空間26に収容されている。
 なお、第1円錐ドア55と第2円錐ドア56とは、図示していない連結部材により接続され、同期して回転する。そのため、第1円錐ドア55と第2円錐ドア56の回転により、回収風通路41と収容空間26とが連通し、且つ、排気通路43と収容空間26とが連通する。このとき、暖風通路42と収容空間26とが遮断され、加湿風通路44と収容空間26とが遮断される。この状態で、回収風通路41から収容空間26に導入された空気は、吸湿材6の空気流入面61に沿って広がり、吸湿材6の中に広範囲に流れる。これにより、回収風通路41から収容空間26に導入される空気に含まれる水分が、吸湿材6の全体に亘り吸着される。そして、吸湿材6を通過して湿度が低くなった空気は、排気通路43から空調ケース2の外側に排出される。
 一方、第1円錐ドア55と第2円錐ドア56の回転により、暖風通路42と収容空間26とが連通するとき、加湿風通路44と収容空間26とが連通する。このとき、回収風通路41と収容空間26とが遮断され、排気通路43と収容空間26とが遮断される。この状態で、暖風通路42から収容空間26に導入された空気は、吸湿材6の空気流入面61に沿って広がり、吸湿材6の中に広範囲に流れる。これにより、暖風通路42から収容空間26に導入される空気に対し、吸湿材6に含まれていた水分が放出される。そして、吸湿材6を通過して湿度が高くなった空気は、加湿風通路44を通り、フェイス吹出口または加湿風吹出口から車室内に吹き出される。これにより、本実施形態の空調装置1は、無給水で車室内の加湿を行うことが可能である。
 以上説明した第3実施形態も、第1および第2実施形態と同様の作用効果を奏することが可能である。さらに、第3実施形態では、空調ケース2と収容部25とが、一体に構成されている。そのため、空調装置1の体格を小型化することができる。
 (第4実施形態)
 第4実施形態について説明する。第4実施形態は、第2実施形態に対してヒータコア5の位置および角度を変更したものである。
 図16に示すように、第4実施形態では、ヒータコア5が、エバポレータ4に対して傾いた状態で設けられている。具体的には、ヒータコア5は、上側の端部が下側の端部よりもエバポレータ4に近い位置となるように設置されている。また、ヒータコア5は、空調ケース2の底壁201に接するか、または、底壁201の近くに設けられている。
 第4実施形態では、第2実施形態と同様に、空調ケース2内に仕切板13が設けられておらず、通風路10は上通風路と下通風路に仕切られていない。すなわち、第4実施形態の空調装置1は、内外気2層モードの設定を行わないものである。
 通風路10には、エアミックスドア17の下流側において、冷風を案内するための案内壁70が設けられている。案内壁70は、エアミックスドア17の下流側において、通風路10の略中央の位置からヒータコア5の上側の端部に亘り設けられている。そのため、エバポレータ4を通過した冷風は、案内壁70と空調ケース2の底壁201との間の通路を流れ、ヒータコア5に導かれる。第4実施形態では、仮にエアミックスドア17を無くした場合に、エバポレータ4からヒータコア5に向けて冷風が流れる通路を冷風通路100と呼ぶ。図16では、冷風通路100のうち、エアミックスドア17より上流の冷風通路100の範囲を、符号100aで示した一点鎖線の範囲で示している。エアミックスドア17より上流の冷風通路100の上縁(すなわち、一点鎖線の上縁)は、案内壁70のエバポレータ4側の端部に対応した位置となっている。
 第4実施形態では、回収風通路41の回収風取出口40は、符号100aで示した一点鎖線の範囲内に設けられている。すなわち、回収風取出口40は、エバポレータ4からヒータコア5に向けて冷風が流れる冷風通路100のうち、エアミックスドア17より上流側に設けられている。
 次に、回収風通路41の回収風取出口40を、冷風通路100に設けた意義について説明する。図17~図19は、第4実施形態の空調装置1の模式図である。図17は、エアミックスドア17の開度が0%の状態を示している。図18は、エアミックスドア17の開度が50%の状態を示している。図19は、エアミックスドア17の開度が100%の状態を示している。
 図20は、シミュレーションに基づき、図17~図19に示すP5、P6の位置で測定した通風路10の内圧と、エアミックスドア17の開度との関係を表したグラフである。なお、図17~図19のP5は冷風通路100より上方の位置であり、P6は冷風通路100の位置である。
 図20のグラフでは、P5の位置で測定した冷風通路100より上方の空間の内圧とエアミックスドア17の開度との関係を破線で示し、P6の位置で測定した冷風通路100の内圧とエアミックスドア17の開度との関係を実線で示している。
 図20のグラフから、P6の位置は、P5の位置に比べて、エアミックスドア17の開度に応じた内圧の変化が小さいことが見て取れる。また、P6の位置における内圧は、エアミックスドア17の開度が100%の場合に最低値となる。一方、P5の位置における内圧は、エアミックスドア17の開度が0%の場合に最低値となる。その際、P6の位置における内圧の最低値は、P5の位置における内圧の最低値よりも高い値となっている。
 上記の理由について説明する。図17に示すように、エアミックスドア17の開度が0%の場合、エバポレータ4を通過した空気はヒータコア5を通過することなく下流側の吹出口へ流れる。このとき、エアミックスドア17が冷風通路100をヒータコア5の上流側で閉塞していることにより、P6の位置の内圧は、P5の位置の内圧に比べて高くなる。
 図18に示すように、エアミックスドア17の開度が50%の場合、エバポレータ4を通過した空気は、ヒータコア5を通過する空気と、ヒータコア5を通過しない空気に分かれて下流側の吹出口へ流れる。このとき、ヒータコア5の通気抵抗により、P6の位置の内圧は、P5の位置の内圧に比べて高くなる。
 図19に示すように、エアミックスドア17の開度が100%の場合、エバポレータ4を通過した空気の殆ど全てがヒータコア5を通過して下流側の吹出口へ流れる。このとき、エアミックスドア17が冷風通路100より上方の空間を閉塞していることにより、P5の位置の内圧は、P6の位置の内圧に比べて高くなる。
 図17~図20を参照して説明したように、P6の位置は、P5の位置に比べて、エアミックスドア17の開度に応じた内圧の変化が小さいものとなる。すなわち、冷風通路100は、その冷風通路100より上方の空間に比べて、エアミックスドア17の開度に応じた内圧の変化が小さい。ここで、回収風通路41を流れる回収風の風量は、通風路10の内圧に対応したものとなる。そのため、P5の位置に回収風取出口40を設けた場合に比べて、P6の位置に対応した位置に回収風取出口40を設けた場合の方が、エアミックスドア17の開度に応じた回収風の風量の変化が小さくなる。したがって、冷風通路100のうちエアミックスドア17より上流側に回収風取出口40を設けることで、エアミックスドア17の開度の影響を低減し、回収風取出口40から回収風通路41を通じて収容部25に安定した風量の回収風を供給することが可能である。
 また、エアミックスドア17の開度を0~100%の範囲全体で見たとき、冷風通路100における内圧の最低値は、その冷風通路100より上方の空間における内圧の最低値よりも高い値となる。そのため、その冷風通路100に回収風取出口40を設けることで、最低の回収風風量を比較的大きい風量で確保することが可能である。したがって、第4実施形態も、第1~第3実施形態と同様の作用効果を奏することができる。
 (第5実施形態)
 第5実施形態について説明する。第5実施形態は、第1実施形態に対してヒータコア5の位置および角度を変更したものである。
 図21に示すように、第5実施形態でも、ヒータコア5は、エバポレータ4に対して傾いた状態で設けられている。具体的には、ヒータコア5は、上側の端部が下側の端部よりもエバポレータ4に近い位置となるように設置されている。また、ヒータコア5は、空調ケース2の通風路10の中で底壁201と上壁202との中間位置に設けられている。
 第5実施形態では、第1実施形態と同様に、通風路10は、仕切板13により上通風路11と下通風路12に仕切られている。すなわち、空調装置1は、外気モード、内気モードに加え、内外気2層モードの設定が可能なものである。
 通風路10には、エアミックスドア17の上流側において、エバポレータ4の下流側の所定位置からヒータコア5の上側の端部に対応する位置に亘り、冷風を案内するための上案内壁71が設けられている。また、通風路10には、エアミックスドア17の上流側において、エバポレータ4の下流側の所定位置からヒータコア5の下側の端部に対応する位置に亘り、冷風を案内するための下案内壁72が設けられている。エバポレータ4とヒータコア5との間には、その上案内壁71と下案内壁72との間に、エバポレータ4からヒータコア5に向けて冷風が流れる冷風通路100が形成される。この冷風通路100により、エバポレータ4を通過した風のうち所定の風量をヒータコア5に流すことが可能である。図21では、冷風通路100のうち、エアミックスドア17より上流の冷風通路100の範囲を、符号100aで示した一点鎖線で示している。
 第5実施形態でも、回収風通路41の回収風取出口40は、符号100aで示した一点鎖線の範囲内に設けられている。すなわち、回収風取出口40は、エバポレータ4からヒータコア5に向けて冷風が流れる冷風通路100のうち、エアミックスドア17より上流側に設けられている。なお、詳細には、回収風取出口40は、冷風通路100のうち、仕切板13より重力方向下側に設けられることが好ましい。
 次に、回収風通路41の回収風取出口40を、冷風通路100に設けた意義について説明する。図22~図24は、第5実施形態の空調装置1の模式図である。図22は、エアミックスドア17の開度が0%の状態を示している。図23は、エアミックスドア17の開度が50%の状態を示している。図24は、エアミックスドア17の開度が100%の状態を示している。
 図25は、シミュレーションに基づき、図22~図24に示すP7~P10の位置で測定した通風路10の内圧と、エアミックスドア17の開度との関係を表したグラフである。なお、図22~図24のP7は冷風通路100より上方の位置であり、P8、P9は冷風通路100の位置であり、P10は冷風通路100より下方の位置である。
 図25のグラフでは、P8、P9の位置で測定した冷風通路100の内圧とエアミックスドア17の開度との関係を実線で示している。また、P7、P10の位置で測定した冷風通路100より上方または下方の空間の内圧とエアミックスドア17の開度との関係を破線で示している。
 図25のグラフから、P8、P9の位置は、P7、P10の位置に比べて、エアミックスドア17の開度に応じた内圧の変化が小さいことが見て取れる。また、P8、P9の位置における内圧は、エアミックスドア17の開度が100%の場合に最低値となる。一方、P7、P10の位置における内圧は、エアミックスドア17の開度が0%の場合に最低値となる。その際、P8、P9の位置における内圧の最低値は、P7、P10の位置における内圧の最低値よりも高い値となっている。
 上記の理由について説明する。図22に示すように、エアミックスドア17の開度が0%の場合、冷風通路100の空気は、エアミックスドア17によって止められる。一方、冷風通路100より上方および下方の空間の空気は、ヒータコア5を通過することなく流れる。このとき、エアミックスドア17が冷風通路100を閉塞していることにより、P8、P9の位置の内圧は、P7、P10の位置の内圧に比べて高くなる。
 図23に示すように、エアミックスドア17の開度が50%の場合、冷風通路100を流れる空気は、ヒータコア5を通過して流れる。一方、冷風通路100より上方および下方の空間の空気は、ヒータコア5を通過することなく流れる。このとき、ヒータコア5の通気抵抗により、P8、P9の位置の内圧は、P7、P10の位置の内圧に比べて高くなる。
 図24に示すように、エアミックスドア17の開度が100%の場合、冷風通路100を流れる空気は、ヒータコア5を通過して流れる。一方、冷風通路100より上方および下方の空間の空気は、エアミックスドア17によって止められる。このとき、エアミックスドア17が冷風通路100より上方および下方の空間を閉塞していることにより、P7、P10の位置の内圧は、P8、P9の位置の内圧に比べて高くなる。
 図22~図25を参照して説明したように、P8、P9の位置は、P7、P10の位置に比べて、エアミックスドア17の開度に応じた内圧の変化が小さいものとなる。すなわち、冷風通路100は、その冷風通路100より上方および下方の空間に比べて、エアミックスドア17の開度に応じた内圧の変化が小さい。ここで、回収風通路41を流れる回収風の風量は、通風路10の内圧に対応したものとなる。そのため、P7、P10の位置に回収風取出口40を設けた場合に比べて、P8、P9の位置に対応した位置に回収風取出口40を設けた場合の方が、エアミックスドア17の開度に応じた回収風の風量の変化が小さくなる。したがって、冷風通路100のうちエアミックスドア17より上流側に回収風取出口40を設けることで、エアミックスドア17の開度の影響を低減し、回収風取出口40から回収風通路41を通じて収容部25に安定した風量の回収風を供給することが可能である。
 また、エアミックスドア17の開度を0~100%の範囲全体で見たとき、冷風通路100における内圧の最低値は、その冷風通路100より上方および下方の空間における内圧の最低値よりも高い値となる。そのため、その冷風通路100に回収風取出口40を設けることで、最低の回収風風量を比較的大きい風量で確保することが可能である。したがって、第5実施形態も、第1~第4実施形態と同様の作用効果を奏することができる。
 (第6実施形態)
 第6実施形態について説明する。第6実施形態は、第1~第5実施形態に対して回収風通路41の構成の一部を変更したものである。
 図26に示すように、第6実施形態では、回収風通路41は、空調ケース2の底壁201から空調ケース2の内側に差し込まれている。第6実施形態でも、回収風通路41の回収風取出口40は、符号100aで示した一点鎖線の範囲内に設けられている。すなわち、回収風通路41の回収風取出口40は、通風路10の側壁200に限らず、冷風通路100のうちエアミックスドア17より上流側に設けられていればよい。なお、詳細には、回収風取出口40は、冷風通路100のうち、仕切板13より重力方向下側に設けられることが好ましい。この第6実施形態の構成は、空調ケース2の下に搭載スペースがある場合に有効である。第6実施形態も、第1~第5実施形態と同様の作用効果を奏することができる。
 (第7実施形態)
 第7実施形態について説明する。第7実施形態も、第1~第6実施形態に対して回収風通路41の構成の一部を変更したものである。
 図27に示すように、第7実施形態では、回収風通路41は、空調ケース2の側壁200から空調ケース2の内側に差し込まれている。第7実施形態でも、回収風通路41の回収風取出口40は、符号100aで示した一点鎖線の範囲内に設けられている。すなわち、回収風取出口40は、エバポレータ4からヒータコア5に向けて冷風が流れる冷風通路100のうち、エアミックスドア17より上流側に設けられている。第7実施形態の構成は、空調ケース2の横幅よりヒータコア5の横幅が小さい場合に有効である。第7実施形態も、第1~第6実施形態と同様の作用効果を奏することができる。
 (他の実施形態)
 本開示は上記した実施形態に限定されるものではなく、適宜変更が可能である。また、上記各実施形態は、互いに無関係なものではなく、組み合わせが明らかに不可な場合を除き、適宜組み合わせが可能である。また、上記各実施形態において、実施形態を構成する要素は、特に必須であると明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。また、上記各実施形態において、実施形態の構成要素の個数、数値、量、範囲等の数値が言及されている場合、特に必須であると明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではない。また、上記各実施形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に特定の形状、位置関係等に限定される場合等を除き、その形状、位置関係等に限定されるものではない。
 (1)上記実施形態では、空調ケース2の通風路10を流れる空気を冷却する冷却機器として、エバポレータ4を用いる例について説明した。これに対し、他の実施形態では、冷却機器は、例えば、外気等の低温の空気を利用して空気を冷却する気-気熱交換器、または、ペルチェモジュールなどを用いてもよい。
 (2)上記実施形態では、空調ケース2の通風路10を流れる空気を加熱する加熱機器として、ヒータコア5を用いる例について説明した。これに対し、他の実施形態では、加熱機器は、例えば、電気ヒータ、または、ペルチェモジュールなどを用いてもよい。
 (3)上述した第6、第7実施形態では、回収風通路41は、空調ケース2の底壁201または側壁200から空調ケース2の内側に差し込む構成とした。これに対し、他の実施形態では、回収風通路41は、例えば、空調ケース2の上壁202などから空調ケース2の内側に差し込む構成としてもよい。
 (4)空調ケース2の底壁201、側壁200又は上壁202等から空調ケース2内に回収風通路41を差し込む構成とした場合、回収風取出口40は、ヒータコア投影範囲HSを含む位置、又は冷風通路100のうちエアミックスドア17より上流側に設けられる。
 (まとめ)
 上述の実施形態の一部または全部で示された第1の観点によれば、車室内の空気調和を行う空調装置は、空調ケース、冷却機器、加熱機器、エアミックスドア、収容部および回収風通路を備える。空調ケースは、空気が流れる通風路を形成する。冷却機器は、通風路を流れる空気を冷却する。加熱機器は、冷却機器の下流側に配置され、通風路を流れる空気を加熱する。エアミックスドアは、冷却機器と加熱機器との間に設けられ、冷却機器を通過した後に加熱機器を迂回する風量と加熱機器を通過する風量との割合を調整する。収容部は、空気に含まれる水分を吸着および脱離可能な吸湿材を収容する。回収風通路は、通風路の側壁のうち冷却機器と加熱機器との間に設けられた回収風取出口と収容部とを連通する。ここで、回収風取出口は、通風路の側壁のうち、冷却機器に対して垂直に加熱機器を投影した高さ範囲を含む位置に設けられている。
 第2の観点によれば、回収風取出口は、通風路の一方の側壁に設けられた第1回収風取出口と、通風路の他方の側壁に設けられた第2回収風取出口とを有する。
 これによれば、空調ケースのうち車幅方向右側に設けられた吹出開口部から吹き出される空調風と、車幅方向左側に設けられた吹出開口部から吹き出される空調風との温度および風量のバランスを保つことができる。
 第3の観点によれば、空調装置は、仕切板および内外気切替部をさらに備える。仕切板は、空調ケース内の通風路を重力方向上側の上通風路と、重力方向下側の下通風路に仕切るものである。内外気切替部は、上通風路に外気を導入し下通風路に内気を導入する内外気2層モードを実施可能である。ここで、回収風取出口は、下通風路の側壁に設けられている。
 これによれば、内気循環の空気は、乗員の発汗などにより、絶対湿度が高くなっている。そのため、内気循環が行われる下通風路の側壁に回収風取出口を設けることで、絶対湿度および相対湿度の高い空気を、回収風取出口から回収風通路を通じて収容部に供給することが可能である。
 第4の観点によれば、空調装置は、暖風通路、排気通路および加湿風通路をさらに備える。暖風通路は、加熱機器の下流側と収容部とを連通し、加熱機器により加熱された空気を収容部に導入する。排気通路は、収容部から空気を排出する。加湿風通路は、収容部で加湿された空気を車室内に向けて吹き出す。
 これによれば、収容部では、回収風通路から導入される回収風から吸湿材に水分を吸着させた後、その空気を排気通路を通じて排出することが可能である。また、暖風通路から収容部に導入される空気に対し、吸湿材から水分を脱離させることが可能である。その加湿された空気は、収容部から加湿風通路を通じて車室内に向けて吹き出される。これにより、空調ケースは、無給水で作動可能な無給水加湿器の機能を備えることが可能である。
 第5の観点によれば、空調ケースと収容部とは、一体に構成されている。
 これにより、空調装置の体格を小型化することができる。
 第6の観点によれば、車室内の空気調和を行う空調装置は、空調ケース、冷却機器、加熱機器、エアミックスドア、収容部および回収風通路を備える。空調ケースは、空気が流れる通風路を形成する。冷却機器は、通風路を流れる空気を冷却する。加熱機器は、冷却機器の下流側に配置され、通風路を流れる空気を加熱する。エアミックスドアは、冷却機器と加熱機器との間に設けられ、冷却機器を通過した後に加熱機器を通過しない風量と加熱機器を通過する風量との割合を調整する。収容部は、空気に含まれる水分を吸着および脱離可能な吸湿材を収容する。回収風通路は、冷却機器から加熱機器に向けて冷風が流れる冷風通路のうちエアミックスドアより上流側に設けられた回収風取出口と、収容部とを連通する。

Claims (6)

  1.  車室内の空気調和を行う空調装置であって、
     空気が流れる通風路(10)を形成する空調ケース(2)と、
     前記通風路を流れる空気を冷却する冷却機器(4)と、
     前記冷却機器の下流側に配置され、前記通風路を流れる空気を加熱する加熱機器(5)と、
     前記冷却機器と前記加熱機器との間に設けられ、前記冷却機器を通過した後に前記加熱機器を迂回する風量と前記加熱機器を通過する風量との割合を調整するエアミックスドア(17)と、
     空気に含まれる水分を吸着および脱離可能な吸湿材(6)を収容する収容部(25)と、
     前記通風路の側壁(200)のうち前記冷却機器と前記加熱機器との間に設けられた回収風取出口(40)と前記収容部とを連通する回収風通路(41)と、を備え、
     前記回収風取出口は、前記通風路の側壁のうち、前記冷却機器に対して垂直に前記加熱機器を投影した高さ範囲(HS)を含む位置に設けられている、空調装置。
  2.  前記回収風取出口は、
     前記通風路の一方の前記側壁に設けられた第1回収風取出口(401)と、
     前記通風路の他方の前記側壁に設けられた第2回収風取出口(402)と、を有する請求項1に記載の空調装置。
  3.  前記空調ケース内の前記通風路を重力方向上側の上通風路(11)と、重力方向下側の下通風路(12)に仕切る仕切板(13)と、
     前記上通風路に外気を導入し前記下通風路に内気を導入する内外気2層モードを実施可能な内外気切替部(16)と、をさらに備え、
     前記回収風取出口は、前記下通風路の前記側壁に設けられている請求項1または2に記載の空調装置。
  4.  前記加熱機器の下流側と前記収容部とを連通し、前記加熱機器により加熱された空気を前記収容部に導入する暖風通路(42)と、
     前記収容部から空気を排出する排気通路(43)と、
     前記収容部で加湿された空気を車室内に向けて吹き出す加湿風通路(44)と、をさらに備える請求項1ないし3のいずれか1つに記載の空調装置。
  5.  前記空調ケースと前記収容部とは、一体に構成されている請求項1ないし4のいずれか1つに記載の空調装置。
  6.  車室内の空気調和を行う空調装置であって、
     空気が流れる通風路(10)を形成する空調ケース(2)と、
     前記通風路を流れる空気を冷却する冷却機器(4)と、
     前記冷却機器の下流側に配置され、前記通風路を流れる空気を加熱する加熱機器(5)と、
     前記冷却機器と前記加熱機器との間に設けられ、前記冷却機器を通過した後に前記加熱機器を通過しない風量と前記加熱機器を通過する風量との割合を調整するエアミックスドア(17)と、
     空気に含まれる水分を吸着および脱離可能な吸湿材(6)を収容する収容部(25)と、
     前記冷却機器から前記加熱機器に向けて冷風が流れる冷風通路(100)のうち前記エアミックスドアより上流側に設けられた回収風取出口(40)と前記収容部とを連通する回収風通路(41)と、を備える空調装置。
PCT/JP2018/006458 2017-03-27 2018-02-22 空調装置 WO2018180062A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-061580 2017-03-27
JP2017061580 2017-03-27
JP2017-246836 2017-12-22
JP2017246836A JP6696498B2 (ja) 2017-03-27 2017-12-22 空調装置

Publications (1)

Publication Number Publication Date
WO2018180062A1 true WO2018180062A1 (ja) 2018-10-04

Family

ID=63676993

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/006458 WO2018180062A1 (ja) 2017-03-27 2018-02-22 空調装置

Country Status (1)

Country Link
WO (1) WO2018180062A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5625012A (en) * 1979-08-02 1981-03-10 Nippon Denso Co Ltd Air conditioning device for automobile
JPS5631812A (en) * 1979-08-20 1981-03-31 Diesel Kiki Co Ltd Automobile air conditioner
JP2005231597A (ja) * 2004-02-23 2005-09-02 Mitsubishi Heavy Ind Ltd 車両用空気調和装置及び車両用空気調和装置の制御方法
JP2014237352A (ja) * 2013-06-06 2014-12-18 株式会社デンソー 車両用空調装置
WO2016147821A1 (ja) * 2015-03-19 2016-09-22 株式会社デンソー 加湿装置、車両用空調装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5625012A (en) * 1979-08-02 1981-03-10 Nippon Denso Co Ltd Air conditioning device for automobile
JPS5631812A (en) * 1979-08-20 1981-03-31 Diesel Kiki Co Ltd Automobile air conditioner
JP2005231597A (ja) * 2004-02-23 2005-09-02 Mitsubishi Heavy Ind Ltd 車両用空気調和装置及び車両用空気調和装置の制御方法
JP2014237352A (ja) * 2013-06-06 2014-12-18 株式会社デンソー 車両用空調装置
WO2016147821A1 (ja) * 2015-03-19 2016-09-22 株式会社デンソー 加湿装置、車両用空調装置

Similar Documents

Publication Publication Date Title
CN101898497B (zh) 一体的前后hvac系统
CN104129253B (zh) 具有多个吸附器的气候控制系统及控制方法
JP6327399B2 (ja) 加湿装置、車両用空調装置
JP6217522B2 (ja) 加湿装置
US20180099542A1 (en) Cooling device, and air-conditioner for vehicle
KR101558001B1 (ko) 차량용 공조시스템
JP6558494B2 (ja) 車両用空調装置
JP2014237352A (ja) 車両用空調装置
JP5353665B2 (ja) 車両用空調装置
JP2008155853A (ja) 車両用空調装置
WO2018180062A1 (ja) 空調装置
JP6696498B2 (ja) 空調装置
US10220684B2 (en) Humidification device and air conditioner for vehicle
JP6717288B2 (ja) 加湿器、空調装置
JP6699611B2 (ja) 空調ケースおよび空調装置
KR101622633B1 (ko) 차량용 공조장치
KR101520323B1 (ko) 차량용 공조장치
WO2018180064A1 (ja) 加湿器、空調装置
US10220680B2 (en) Humidification device and air conditioner for vehicle
JPH106746A (ja) 車両用空調装置
JP2019116233A (ja) 空調装置
JP2019137244A (ja) 車両用空調装置
WO2019138719A1 (ja) 車両用空調ユニット
JP2019051868A (ja) 加湿装置
JP2006213091A (ja) 車両用空調装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18778347

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18778347

Country of ref document: EP

Kind code of ref document: A1