JP2019035686A - 磁気センサ - Google Patents

磁気センサ Download PDF

Info

Publication number
JP2019035686A
JP2019035686A JP2017157745A JP2017157745A JP2019035686A JP 2019035686 A JP2019035686 A JP 2019035686A JP 2017157745 A JP2017157745 A JP 2017157745A JP 2017157745 A JP2017157745 A JP 2017157745A JP 2019035686 A JP2019035686 A JP 2019035686A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic field
straight line
yoke
virtual
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017157745A
Other languages
English (en)
Other versions
JP6699635B2 (ja
Inventor
圭祐 内田
Keisuke Uchida
圭祐 内田
健三 牧野
Kenzo Makino
健三 牧野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2017157745A priority Critical patent/JP6699635B2/ja
Priority to US16/028,632 priority patent/US10830838B2/en
Priority to DE102018119214.2A priority patent/DE102018119214A1/de
Priority to CN201810940674.8A priority patent/CN109407017B/zh
Publication of JP2019035686A publication Critical patent/JP2019035686A/ja
Application granted granted Critical
Publication of JP6699635B2 publication Critical patent/JP6699635B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/04Measuring direction or magnitude of magnetic fields or magnetic flux using the flux-gate principle
    • G01R33/05Measuring direction or magnitude of magnetic fields or magnetic flux using the flux-gate principle in thin-film element
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Magnetic Variables (AREA)
  • Hall/Mr Elements (AREA)

Abstract

【課題】磁気検出素子が感度を有する方向以外の方向の磁界を検出することができる磁気センサにおいて、ノイズ磁界が磁気検出素子に印加されることを抑制する。【解決手段】磁気センサは、磁界変換部10と磁界検出部と磁性膜15を備えている。磁界変換部10は、Z方向に平行な方向の入力磁界成分を含む入力磁界を受けて、X方向に平行な方向の出力磁界成分を含む出力磁界を発生するヨーク11を含んでいる。磁界検出部は、出力磁界を受けて、出力磁界成分に対応する検出値を生成する磁気検出素子220を含んでいる。磁性膜15は、出力磁界成分以外の、磁気検出素子220が感度を有する方向の磁界であるノイズ磁界による磁束の一部を吸収する。【選択図】図7

Description

本発明は、磁気検出素子を用いて、磁気検出素子が感度を有する方向以外の方向の磁界を検出できるようにした磁気センサに関する。
近年、携帯電話機等の移動体通信機器には、地磁気センサが組み込まれる場合がある。このような用途の地磁気センサには、小型で且つ外部磁界の三次元的な方向を検出できることが求められる。このような地磁気センサは、例えば磁気センサを用いて実現される。磁気センサとしては、基板上に設けられた複数の磁気検出素子を用いたものが知られている。磁気検出素子としては、例えば磁気抵抗効果素子が用いられる。
基板上に設けられる磁気検出素子は、基板の面に平行な方向の磁界を検出するように構成される場合が多い。磁気センサを用いて地磁気センサを実現する場合には、基板の面に垂直な方向の磁界を検出できる磁気センサが必要になる。
特許文献1には、基板の面に平行な方向の磁界を検出する磁気抵抗効果素子を用いて、基板の面に垂直な方向の磁界を検出できるようにした磁気センサが記載されている。この磁気センサは、基板の面に垂直な方向の垂直磁界成分を、基板の面に平行な方向の水平磁界成分に変換して、この水平磁界成分を磁気抵抗効果素子に与える軟磁性体を備えている。
特開2015−203647号公報
特許文献1に記載された磁気センサのように、磁気抵抗効果素子等の磁気検出素子と、垂直磁界成分を水平磁界成分に変換する軟磁性体とを備えた磁気センサでは、垂直磁界成分が軟磁性体によって変換されて得られる水平磁界成分以外に、基板の面に平行な方向の磁界が印加されると、磁気検出素子は、この磁界も検出してしまう。従って、この磁気センサでは、上記水平磁界成分以外の、基板の面に平行な方向の磁界は、ノイズ磁界として作用し、磁気検出素子の検出値は、ノイズ磁界に起因したノイズ成分を含んでしまうという問題点があった。
本発明はかかる問題点に鑑みてなされたもので、その目的は、所定の方向の入力磁界成分を磁気検出素子が感度を有する方向の出力磁界成分に変換して磁気検出素子に印加するようにした磁気センサであって、出力磁界成分以外の、磁気検出素子が感度を有する方向の磁界であるノイズ磁界が磁気検出素子に印加されることを抑制できるようにした磁気センサを提供することにある。
本発明の第1および第2の観点の磁気センサは、磁界変換部と、磁界検出部と、軟磁性体よりなる磁性膜とを備えている。磁界変換部は、軟磁性体よりなる少なくとも1つのヨークを含んでいる。少なくとも1つのヨークは、第1の仮想の直線に平行な方向の入力磁界成分を含む入力磁界を受けて、出力磁界を発生する。出力磁界は、第1の仮想の直線と交差する第2の仮想の直線に平行な方向の出力磁界成分であって入力磁界成分に応じて変化する出力磁界成分を含んでいる。磁界検出部は、少なくとも1つの磁気検出素子を含んでいる。少なくとも1つの磁気検出素子は、出力磁界を受けて、出力磁界成分に対応する検出値を生成する。少なくとも1つのヨークは、第1の仮想の直線に平行な方向の両端に位置する第1端と第2端を有している。第1端は第2端よりも少なくとも1つの磁気検出素子により近い。少なくとも1つの磁気検出素子は、第1の仮想の直線に平行な方向の両端に位置する第3端と第4端を有している。第4端は第3端よりも少なくとも1つのヨークにより近い。
本発明の第1の観点の磁気センサでは、第1端を含み第1の仮想の直線と交差し第2の仮想の直線に平行な第1の仮想の平面と、第4端を含み第1の仮想の平面に平行な第2の仮想の平面とを想定したとき、磁性膜は、第1の仮想の平面から第2の仮想の平面までの空間的な範囲内に位置している。少なくとも1つのヨークは、第2の仮想の直線に平行な方向の寸法である幅を有している。磁性膜は、第1の仮想の直線に平行な方向の寸法である厚みと、第2の仮想の直線に平行な方向の寸法である幅とを有している。磁性膜の厚みは、少なくとも1つのヨークの幅よりも小さい。磁性膜の幅は、少なくとも1つのヨークの幅よりも大きい。
本発明の第1の観点の磁気センサにおいて、磁性膜は、少なくとも1つのヨークの第1端に接していてもよい。あるいは、本発明の第1の観点の磁気センサは、更に、非磁性材料よりなり少なくとも1つのヨークを磁性膜から隔てる非磁性膜を備えていてもよい。
本発明の第2の観点の磁気センサでは、第1端を含み第1の仮想の直線と交差し第2の仮想の直線に平行な第1の仮想の平面と、第4端を含み前記第1の仮想の平面に平行な第2の仮想の平面と、第3端を含み第1の仮想の平面に平行な第3の仮想の平面とを想定したとき、磁性膜は、第3の仮想の平面に対して第1の仮想の平面とは反対側に位置している。少なくとも1つのヨークは、第2の仮想の直線に平行な方向の寸法である幅を有している。磁性膜は、第1の仮想の直線に平行な方向の寸法である厚みと、第2の仮想の直線に平行な方向の寸法である幅とを有している。磁性膜の厚みは、少なくとも1つのヨークの幅よりも小さい。磁性膜の幅は、少なくとも1つのヨークの幅よりも大きい。
本発明の第2の観点の磁気センサにおいて、磁性膜と第3の仮想の平面との間の距離は、第1の仮想の平面と第2の仮想の平面との間の距離以下であってもよい。
本発明の第1および第2の観点の磁気センサにおいて、第2の仮想の直線および第1の仮想の平面は、第1の仮想の直線に直交していてもよい。また、磁性膜の厚みは、少なくとも1つのヨークの幅の1/2以下であってもよい。
本発明の第1および第2の観点の磁気センサによれば、磁性膜によってノイズ磁界による磁束の一部を吸収でき、これにより、ノイズ磁界が磁気検出素子に印加されることを抑制することができるという効果を奏する。
本発明の第1の実施の形態に係る磁気センサの構成を模式的に示す説明図である。 本発明の第1の実施の形態に係る磁気センサの一部を示す分解斜視図である。 本発明の第1の実施の形態における磁界変換部および磁性膜を示す斜視図である。 本発明の第1の実施の形態に係る磁気センサの一部の、Y方向に垂直な断面を示す断面図である。 図4における一部を拡大して示す断面図である。 本発明の第1の実施の形態に係る磁気センサの一部の、X方向に垂直な断面を示す断面図である。 本発明の第1の実施の形態におけるヨーク、磁性膜および磁気検出素子の位置関係と形状を説明するための説明図である。 本発明の第1の実施の形態における磁界検出部の回路構成を示す回路図である。 本発明の第1の実施の形態における磁気抵抗効果素子を示す斜視図である。 本発明の第1の実施の形態に係る磁気センサを含む磁気センサユニットを示す斜視図である。 第1のシミュレーションの結果を示す特性図である。 第2のシミュレーションの結果を示す特性図である。 第3のシミュレーションによって得られた変換効率の一例を示す特性図である。 第3のシミュレーションによって得られた、磁性膜の厚みと最大変換効率との関係を示す特性図である。 本発明の第2の実施の形態に係る磁気センサの一部の、Y方向に垂直な断面を示す断面図である。 本発明の第3の実施の形態に係る磁気センサの一部の、Y方向に垂直な断面を示す断面図である。 本発明の第3の実施の形態におけるヨーク、磁性膜および磁気検出素子の位置関係を説明するための説明図である。 本発明の第4の実施の形態に係る磁気センサの構成を模式的に示す説明図である。 本発明の第4の実施の形態に係る磁気センサの一部の、Y方向に垂直な断面を示す断面図である。
[第1の実施の形態]
以下、本発明の実施の形態について図面を参照して詳細に説明する。始めに、図10を参照して、本発明の第1の実施の形態に係る磁気センサを含む磁気センサユニットの構成について説明する。図10は、磁気センサユニット100を示す斜視図である。磁気センサユニット100は、上面101aを有する基板101と、本実施の形態に係る磁気センサ1と、この磁気センサ1とは別の2つの磁気センサ2,3とを備えている。磁気センサ1〜3は、基板101の上面101a上において一列に並ぶように配置されている。
ここで、図10に示したように、X方向、Y方向、Z方向を定義する。X方向、Y方向、Z方向は、互いに直交する。本実施の形態では、磁気センサ3から磁気センサ1に向かう方向をX方向とし、基板101の上面101aに垂直な一方向をZ方向とする。また、X方向とは反対の方向を−X方向とし、Y方向とは反対の方向を−Y方向とし、Z方向とは反対の方向を−Z方向とする。また、以下、基準の位置に対してZ方向の先にある位置を「上方」と言い、基準の位置に対して「上方」とは反対側にある位置を「下方」と言う。
本実施の形態に係る磁気センサ1は、Z方向に平行な方向の磁界を検出するように構成されている。磁気センサ2は、Y方向に平行な方向の磁界を検出するように構成されている。磁気センサ3は、X方向に平行な方向の磁界を検出するように構成されている。
磁気センサユニット100は、更に、X方向に並ぶように基板101の上面101a上に配置された複数の電極パッド102を備えている。複数の電極パッド102は、磁気センサ1〜3に電気的に接続されている。
次に、図1ないし図4を参照して、本実施の形態に係る磁気センサ1の構成について詳しく説明する。図1は、磁気センサ1の構成を模式的に示す説明図である。図2は、磁気センサ1の一部を示す分解斜視図である。図3は、磁界変換部および磁性膜を示す斜視図である。図4は、磁気センサ1の一部の、Y方向に垂直な断面を示す断面図である。
ここで、第1の仮想の直線Lz、第2の仮想の直線Lxおよび第3の仮想の直線Lyを以下のように定義する。図2および図4に示したように、第1の仮想の直線Lzは、Z方向に平行な直線である。第2の仮想の直線Lxは、第1の仮想の直線Lzに交差する直線である。図2および図4に示したように、本実施の形態では、第2の仮想の直線Lxは、第1の仮想の直線Lzに直交し、X方向に平行な直線である。図2に示したように、第3の仮想の直線Lyは、Y方向に平行な直線である。
第1の仮想の直線Lzに平行な方向は、Z方向と−Z方向とを含む。第2の仮想の直線Lxに平行な方向は、X方向と−X方向とを含む。第3の仮想の直線Lyに平行な方向は、Y方向と−Y方向とを含む。
図1および図2に示したように、磁気センサ1は、磁界変換部10と、磁界検出部20とを備えている。磁界変換部10は、軟磁性体よりなる少なくとも1つのヨークを含んでいる。少なくとも1つのヨークは、第1の仮想の直線Lzに平行な方向の入力磁界成分を含む入力磁界を受けて、出力磁界を発生する。磁界検出部20は、出力磁界を受けて、入力磁界成分に対応する出力信号を生成する。出力磁界は、第2の仮想の直線Lxに平行な方向の出力磁界成分であって入力磁界成分に応じて変化する出力磁界成分を含んでいる。
図3に示したように、本実施の形態では、磁界変換部10は、少なくとも1つのヨークとして、X方向に並ぶように配置された複数のヨーク11を含んでいる。複数のヨーク11の各々は、Y方向に長い直方体形状を有している。複数のヨーク11の各々の形状は同じである。
図1に示したように、磁界検出部20は、それぞれ入力磁界成分に応じて変化する抵抗値を有する第1の抵抗部21、第2の抵抗部22、第3の抵抗部23および第4の抵抗部24を含んでいる。第1ないし第4の抵抗部21〜24の各々は、少なくとも1つの磁気検出素子を含んでいる。なお、第1ないし第4の抵抗部21〜24は磁界検出部20の一部であることから、磁界検出部20が少なくとも1つの磁気検出素子を含んでいるとも言える。少なくとも1つの磁気検出素子は、出力磁界を受けて、出力磁界成分に対応する検出値を生成する。
図2は、第1および第3の抵抗部21,23の一部を示している。図2に示したように、本実施の形態では、第1および第3の抵抗部21,23の各々は、少なくとも1つの磁気検出素子として、複数の磁気検出素子220を含んでいる。図示しないが、第2および第4の抵抗部22,24の各々も、少なくとも1つの磁気検出素子として、複数の磁気検出素子220を含んでいる。
本実施の形態では、第1ないし第4の抵抗部21〜24の各々は、複数の磁気検出素子列を含んでいる。複数の磁気検出素子列の各々は、Y方向に並ぶ複数の磁気検出素子220を含んでいる。以下、第1の抵抗部21の複数の磁気検出素子列を符号121で表し、第2の抵抗部22の複数の磁気検出素子列を符号122で表し、第3の抵抗部23の複数の磁気検出素子列を符号123で表し、第4の抵抗部24の複数の磁気検出素子列を符号124で表す。図1では、磁気検出素子列121〜124の各々を、Y方向に2つに分割して描いている。
図1に示したように、本実施の形態では、複数の磁気検出素子列121と複数の磁気検出素子列123は、X方向に沿って、磁気検出素子列121、磁気検出素子列123の順で、交互に並んでいる。また、複数の磁気検出素子列122と複数の磁気検出素子列124は、X方向に沿って、磁気検出素子列122、磁気検出素子列124の順で、交互に並んでいる。磁気検出素子列121〜124内の複数の磁気検出素子220の配置については、後で説明する。
磁気センサ1は、更に、複数の磁気検出素子220を保持する基板と、複数の磁気検出素子220を電気的に接続する配線部30とを備えている。図4に示したように、本実施の形態では、図10に示した基板101が、磁気センサ1の上記基板を兼ねている。なお、図1では、配線部30を簡略化して描いている。また、図4では、配線部30を省略している。
図2に示したように、配線部30は、複数の下部電極31と、複数の上部電極32とを含んでいる。図示しないが、複数の下部電極31は、基板101の上面101a上に配置されている。複数の磁気検出素子220は、複数の下部電極31の上に配置されている。複数の上部電極32は、複数の磁気検出素子220の上に配置されている。複数のヨーク11は、複数の上部電極32の上方に配置されている。なお、図2では、ヨーク11および上部電極32を、磁気検出素子220および下部電極31からZ方向に離して描いている。図2において、符号32aを付した破線は、上部電極32の下面の位置を示している。
図1ないし図4に示したように、磁気センサ1は、更に、軟磁性体よりなる磁性膜15と、非磁性絶縁材料よりなる非磁性膜41,42とを備えている。非磁性膜41は、基板101の上面101a上において第1ないし第4の抵抗部21〜24および配線部30の周囲に配置されている。非磁性膜42は、第1ないし第4の抵抗部21〜24、配線部30および非磁性膜41を覆うように配置されている。磁性膜15は、非磁性膜42の上に配置されている。複数のヨーク11は、磁性膜15の上に配置されている。
ここで、図8を参照して、磁界検出部20の回路構成について説明する。図8は、磁界検出部20の回路構成を示す回路図である。磁界検出部20は、更に、電源ポートVと、グランドポートGと、第1の出力ポートE1と、第2の出力ポートE2とを含んでいる。第1の抵抗部21は、電源ポートVと第1の出力ポートE1との間に設けられている。第2の抵抗部22は、第1の出力ポートE1とグランドポートGとの間に設けられている。第3の抵抗部23は、電源ポートVと第2の出力ポートE2との間に設けられている。第4の抵抗部24は、第2の出力ポートE2とグランドポートGとの間に設けられている。
磁界検出部20は、電源ポートVとグランドポートGとの間に通電されるように構成されている。磁界検出部20内の第1の抵抗部21と第2の抵抗部22は、直列に接続され且つ通電されるように構成されている。磁界検出部20内の第3の抵抗部23と第4の抵抗部24も、直列に接続され且つ通電されるように構成されている。電源ポートVとグランドポートGは、図10に示した複数の電極パッド102のうち、その間に所定の大きさの電源電圧が印加される2つの電極パッド102に電気的に接続されている。なお、第1および第2の出力ポートE1,E2は、複数の電極パッド102のうち、他の2つの電極パッド102に電気的に接続されている。後で説明するように、磁界検出部20は、第1の出力ポートE1と第2の出力ポートE2との間の電位差に依存する信号を出力信号として生成する。
次に、図1および図2を参照して、複数の磁気検出素子220と下部電極31および上部電極32との接続関係について説明する。本実施の形態では、磁気検出素子220は、磁気抵抗効果素子である。以下、磁気検出素子220を磁気抵抗効果素子220とも記す。ここでは、第1の抵抗部21の磁気検出素子列121を例にとって説明する。
図2に示したように、複数の下部電極31の各々は、Y方向に細長い形状を有している。Y方向に隣接する2つの下部電極31の間には、間隙が形成されている。下部電極31の上面上において、Y方向の両端の近傍に、それぞれX方向に隣接する一対の磁気抵抗効果素子220が配置されている。以下、この一対の磁気抵抗効果素子220を、素子対と言う。本実施の形態では、磁気検出素子列121は、Y方向に並んだ複数の素子対を含んでいる。複数の磁気抵抗効果素子220の各々は、第3の仮想の直線Lyに平行な方向に長い形状を有している。
複数の上部電極32の各々は、1つの素子対を構成する2つの磁気抵抗効果素子220を電気的に接続する。これにより、1つの素子対を構成する2つの磁気抵抗効果素子220が、並列に接続される。また、複数の上部電極32の各々は、Y方向に隣接する2つの下部電極31上に配置されて隣接する2つの素子対を電気的に接続する。これにより、複数の素子対が直列に接続される。
図1に示したように、配線部30は、更に、複数の接続電極33を含んでいる。複数の接続電極33は、複数の磁気検出素子列121が直列に接続されるように複数の下部電極31を電気的に接続する。
第2の抵抗部22の磁気検出素子列122、第3の抵抗部23の磁気検出素子列123、および第4の抵抗部24の磁気検出素子列124における、磁気抵抗効果素子220、下部電極31、上部電極32および接続電極33の接続関係は、図2を参照して説明した第1の抵抗部21の磁気検出素子列121における接続関係と同じである。
次に、図2および図9を参照して、磁気抵抗効果素子220の構成の一例について説明する。図9は、磁気抵抗効果素子220を示す斜視図である。この例では、磁気抵抗効果素子220は、磁化方向が固定された磁化固定層222と、出力磁界成分の方向および強度に応じて磁化の方向が変化する磁性層である自由層224と、磁化固定層222と自由層224の間に配置された非磁性層223と、反強磁性層221とを含んでいる。反強磁性層221、磁化固定層222、非磁性層223および自由層224は、下部電極31側からこの順に積層されている。反強磁性層221は、反強磁性材料よりなり、磁化固定層222との間で交換結合を生じさせて、磁化固定層222の磁化の方向を固定する。
磁気抵抗効果素子220は、TMR(トンネル磁気抵抗効果)素子でもよいし、GMR(巨大磁気抵抗効果)素子でもよい。TMR素子では、非磁性層223はトンネルバリア層である。GMR素子では、非磁性層223は非磁性導電層である。
磁気抵抗効果素子220の抵抗値は、自由層224の磁化の方向が磁化固定層222の磁化の方向に対してなす角度に応じて変化し、この角度が0°のときに抵抗値は最小値になり、角度が180°のときに抵抗値は最大値になる。
第1の抵抗部21内の複数の磁気抵抗効果素子220の磁化固定層222の磁化の方向は、−X方向である。図2において、符号51を付した矢印は、上記の磁化の方向を表している。
第3の抵抗部23内の複数の磁気抵抗効果素子220の磁化固定層222の磁化の方向は、−X方向である。図2において、符号52を付した矢印は、上記の磁化の方向を表している。
図示しないが、第2の抵抗部22内の複数の磁気抵抗効果素子220の磁化固定層222の磁化の方向と、第4の抵抗部24内の複数の磁気抵抗効果素子220の磁化固定層222の磁化の方向は、X方向である。
本実施の形態では、前述のように、複数の磁気抵抗効果素子220の各々は、第3の仮想の直線Lyに平行な方向に長い形状を有している。これにより、複数の磁気抵抗効果素子220の各々の自由層224は、磁化容易軸方向が第3の仮想の直線Lyに平行な方向となる形状異方性を有している。そのため、出力磁界成分が存在しない状態では、自由層224の磁化の方向は、第3の仮想の直線Lyに平行な方向になっている。出力磁界成分が存在する場合には、出力磁界成分の方向および強度に応じて、自由層224の磁化の方向が変化する。従って、自由層224の磁化の方向が磁化固定層222の磁化の方向に対してなす角度は、複数の磁気抵抗効果素子220の各々が受けた出力磁界成分の方向および強度によって変化する。そのため、複数の磁気抵抗効果素子220の各々の抵抗値は、出力磁界成分に対応したものとなる。
本実施の形態では、第2の抵抗部22内の複数の磁気抵抗効果素子220が受ける出力磁界成分の方向は、第1の抵抗部21内の複数の磁気抵抗効果素子220が受ける出力磁界成分の方向と同じである。一方、第3の抵抗部23内の複数の磁気抵抗効果素子220が受ける出力磁界成分の方向と、第4の抵抗部24内の複数の磁気抵抗効果素子220が受ける出力磁界成分の方向は、第1の抵抗部21内の複数の磁気抵抗効果素子220が受ける出力磁界成分の方向とは反対である。
ここで、磁気抵抗効果素子220の抵抗値を記号Rで表すと、1つの素子対を構成する2つの磁気抵抗効果素子220の合成抵抗値は、R/2である。また、第1ないし第4の抵抗部21〜24の各々における素子対の数をnとすると、第1ないし第4の抵抗部21〜24の各々の抵抗値は、nR/2である。抵抗値Rは、磁気検出素子220の検出値に対応する。
なお、磁気抵抗効果素子220の構成は、図2および図9を参照して説明した例に限られない。例えば、磁気抵抗効果素子220は、反強磁性層221を含まない構成であってもよい。この構成は、例えば、反強磁性層221および磁化固定層222の代わりに、2つの強磁性層とこの2つの強磁性層の間に配置された非磁性金属層と含む人工反強磁性構造の磁化固定層を含む構成であってもよい。また、磁気検出素子220は、ホール素子、磁気インピーダンス素子等、磁気抵抗効果素子以外の磁界を検出する素子であってもよい。
次に、複数のヨーク11と磁気検出素子列121〜124の位置関係について説明する。図1に示したように、全てのヨーク11のうちの2つ以上のヨーク11の各々は、1つの磁気検出素子列121と、この磁気検出素子列121のX方向側に隣接する1つの磁気検出素子列123の間を通過する1つのYZ平面と交差するように配置されている。全てのヨーク11のうちの残りの2つ以上のヨーク11の各々は、1つの磁気検出素子列122と、この磁気検出素子列122のX方向側に隣接する1つの磁気検出素子列124の間を通過する1つのYZ平面と交差するように配置されている。
以下、図4および図5を参照して、1つのヨーク11と1つの磁気検出素子列121と1つの磁気検出素子列123の位置関係(以下、第1の位置関係と言う。)について説明する。図5は、図4における一部を拡大して示す断面図である。
図4に示したように、ヨーク11は、磁気検出素子列121,123の上方に位置する。また、ヨーク11は、第1の仮想の直線Lzに平行な方向の両端に位置する第1端11aと第2端11bを有している。本実施の形態では、第1端11aは、ヨーク11の−Z方向の端に位置する第1の仮想の直線Lzに垂直な面であり、第2端11bは、ヨーク11のZ方向の端に位置する第1の仮想の直線Lzに垂直な面である。図4および図5に示したように、第1端11aは、第1端11aの−X方向の端に位置する第1の端縁11a1と、第1端11aのX方向の端に位置する第2の端縁11a2とを有している。
図4および図5に示したように、磁気検出素子列121は、第1の端縁11a1の近傍に配置されている。磁気検出素子列123は、第2の端縁11a2の近傍に配置されている。
図5に示したように、本実施の形態では、素子対を構成する2つの磁気検出素子220のうち、一方は、上方から見てヨーク11に重なるように配置され、他方は、上方から見てヨーク11に重ならないように配置されている。なお、図1では、便宜上、ヨーク11と磁気検出素子列121,123が、互いに重ならないように描いている。
1つのヨーク11と1つの磁気検出素子列122と1つの磁気検出素子列124の位置関係(以下、第2の位置関係という。)は、第1の位置関係と同様である。第1の位置関係の説明中の磁気検出素子列121,123を、磁気検出素子列122,124に置き換えれば、第2の位置関係の説明になる。図4に示したように、磁気検出素子列122は、第1の端縁11a1の近傍に配置されている。磁気検出素子列124は、第2の端縁11a2の近傍に配置されている。
なお、第1および第2の位置関係は、上記の例に限られない。例えば、磁気検出素子列121〜124は、上方から見て、全体がヨーク11に重なるように配置されていてもよいし、全体がヨーク11に重ならないように配置されていてもよい。
次に、図3、図6および図7を参照して、ヨーク11、磁性膜15および磁気検出素子220の位置関係と、磁性膜15の形状について説明する。図6は、磁気センサ1の一部の、X方向に垂直な断面を示す断面図である。図7は、ヨーク11、磁性膜15および磁気検出素子の位置関係と形状を説明するための説明図である。ここでは、1つの磁気検出素子220と、この磁気検出素子220に最も近いヨーク11を例にとって説明する。
図6および図7に示したように、磁気検出素子220は、第1の仮想の直線Lzに平行な方向の両端に位置する第3端220aと第4端220bを有している。本実施の形態では、第3端220aは、磁気検出素子220の−Z方向の端に位置し、第4端220bは、磁気検出素子220のZ方向の端に位置する。第4端220bは、第3端220aよりもヨーク11により近い。
前述のように、ヨーク11は、第1端11aと第2端11bを有している。第1端11aは、第2端11bよりも磁気検出素子220により近い。
ここで、図7に示したように、第1端11aを含み第1の仮想の直線Lzと交差し第2の仮想の直線Lxに平行な第1の仮想の平面P1と、第4端220bを含み第1の仮想の平面P1に平行な第2の仮想の平面P2とを想定する。本実施の形態では、第1および第2の仮想の平面P1,P2は、第1の仮想の直線Lzに直交している。磁性膜15は、第1の仮想の平面P1から第2の仮想の平面P2までの空間的な範囲内に位置している。本実施の形態では、磁性膜15は、ヨーク11の第1端11aに接している。
また、図7に示したように、ヨーク11は、第2の仮想の直線Lxに平行な方向の寸法である幅W1を有している。磁性膜15は、第1の仮想の直線Lzに平行な方向の寸法である厚みTを有している。厚みTは、幅W1よりも小さく、幅W1の1/2以下であることが好ましい。幅W1は、例えば2.6μmである。厚みTの具体的な値については、後で説明する。
また、図3に示したように、磁性膜15は、第2の仮想の直線Lxに平行な方向の寸法である幅W2を有している。磁性膜15の幅W2は、ヨークの幅W1よりも大きい。
図3に示したように、本実施の形態では、磁界変換部10は、複数のヨーク11を含んでいる。全てのヨーク11の各々の第1端11aは、第1の仮想の平面P1に含まれる。磁性膜15は、全てのヨーク11の各々の第1端11aに接している。磁性膜15の幅W2は、−X方向の端に位置するヨーク11の第1の端縁11a1とX方向の端に位置するヨーク11の第2の端縁11a2との間の距離よりも大きい。この距離は、例えば160μmである。幅W2は、例えば165μmである。
また、図3に示したように、ヨーク11は、第3の仮想の直線Lyに平行な方向の寸法D1を有し、磁性膜15は、第3の仮想の直線Lyに平行な方向の寸法D2を有している。寸法D2は、寸法D1以上である。寸法D1は、例えば78μmである。寸法D2は、例えば100μmである。
なお、本実施の形態では、全ての磁気検出素子220の各々の第4端220bは、第2の仮想の平面P2に含まれる。
次に、第1ないし第4の抵抗部21〜24の抵抗値と磁界検出部20によって生成される出力信号について説明する。本実施の形態では、出力磁界成分が存在しない状態では、磁気抵抗効果素子220の自由層224の磁化の方向は、第3の仮想の直線Lyに平行な方向になっている。入力磁界成分の方向がZ方向の場合、第1および第2の抵抗部21,22内の磁気抵抗効果素子220が受ける出力磁界成分の方向はX方向になり、第3および第4の抵抗部23,24内の磁気抵抗効果素子220が受ける出力磁界成分の方向は−X方向になる。この場合、第1および第2の抵抗部21,22内の磁気抵抗効果素子220の自由層224の磁化の方向は、第3の仮想の直線Lyに平行な方向からX方向に向かって傾き、第3および第4の抵抗部23,24内の磁気抵抗効果素子220の自由層224の磁化の方向は、第3の仮想の直線Lyに平行な方向から−X方向に向かって傾く。その結果、出力磁界成分が存在しない状態と比べて、第1および第4の抵抗部21,24内の磁気抵抗効果素子220の抵抗値は増加し、第1および第4の抵抗部21,24の抵抗値も増加する。また、出力磁界成分が存在しない状態と比べて、第2および第3の抵抗部22,23内の磁気抵抗効果素子220の抵抗値は減少し、第2および第3の抵抗部22,23の抵抗値も減少する。
入力磁界成分の方向が−Z方向の場合は、出力磁界成分の方向と、第1ないし第4の抵抗部21〜24の抵抗値の変化は、上述の入力磁界成分の方向がZ方向の場合とは逆になる。
磁気抵抗効果素子220の抵抗値の変化量は、磁気抵抗効果素子220が受ける出力磁界成分の強度に依存する。出力磁界成分の強度が大きくなると、磁気抵抗効果素子220の抵抗値は、その増加量またはその減少量がそれぞれ大きくなる方向に変化する。出力磁界成分の強度が小さくなると、磁気抵抗効果素子220の抵抗値は、その増加量またはその減少量がそれぞれ小さくなる方向に変化する。出力磁界成分の強度は、入力磁界成分の強度に依存する。
このように、入力磁界成分の方向と強度が変化すると、第1ないし第4の抵抗部21〜24のそれぞれの抵抗値は、第1および第4の抵抗部21,24の抵抗値が増加すると共に第2および第3の抵抗部22,23の抵抗値が減少するか、第1および第4の抵抗部21,24の抵抗値が減少すると共に第2および第3の抵抗部22,23の抵抗値が増加するように変化する。これにより、図1および図8に示した第1の出力ポートE1と第2の出力ポートE2との間の電位差が変化する。磁界検出部20は、第1の出力ポートE1と第2の出力ポートE2との間の電位差に依存する信号を出力信号として生成する。
次に、本実施の形態に係る磁気センサ1の製造方法について簡単に説明する。本実施の形態に係る磁気センサ1の製造方法は、磁界検出部20および配線部30を形成する工程と、この工程の後で非磁性膜41,42を順に形成する工程と、非磁性膜42の上に磁性膜15を形成する工程と、磁性膜15の上に磁界変換部10を形成する工程とを含んでいる。
磁界検出部20を形成する工程は、第1ないし第4の抵抗部21〜24を形成する工程を含んでいる。第1ないし第4の抵抗部21〜24を形成する工程は、複数の磁気検出素子220を形成する工程を含んでいる。
磁界変換部10を形成する工程は、複数のヨーク11を形成する工程を含んでいる。複数のヨーク11を形成する工程は、例えばフレームめっき法によって複数のヨーク11を形成する。この工程において、磁性膜15は、シードおよび電極として用いられる。
一般的に、フレームめっき法によってヨークを形成する場合には、シードおよび電極として用いられる電極膜を形成し、次にヨークを形成し、次に、電極膜のうち、ヨークによって覆われていない不要部分をエッチングによって除去する。この場合、電極膜の不要部分を確実に除去しようとすると、オーバーエッチングによって磁気検出素子がダメージを受けるおそれがある。一方、不要部分の除去が不十分であると、不要部分の残り具合に応じてヨークの特性が変動するおそれがある。
これに対し、本実施の形態に係る磁気センサ1の製造方法では、磁性膜15をエッチングしないため、上述のような問題は生じない。
次に、本実施の形態に係る磁気センサ1の作用および効果について説明する。本実施の形態に係る磁気センサ1は、第1の仮想の直線Lzに平行な方向の入力磁界成分に応じて変化する出力磁界成分を検出するように構成されている。出力磁界成分以外の、磁気検出素子220が感度を有する方向の磁界、例えば、出力磁界成分以外の第2の仮想の直線Lxに平行な方向の磁界や、第3の仮想の直線Lyに平行な方向の磁界は、磁気センサ1に対して、ノイズ磁界として作用する。本実施の形態によれば、磁性膜15によって、上記のノイズ磁界による磁束の一部を吸収することができ、これにより、ノイズ磁界が磁気検出素子220に印加されることを抑制することができる。以下、ノイズ磁界による磁束をノイズ磁束と言う。
ここで、磁性膜15の形状に関する要件について説明する。磁性膜15の厚みTは、ヨーク11の幅W1よりも小さい。以下、この要件を第1の要件と言う。また、磁性膜15の幅W2は、ヨーク11の幅W1よりも大きい。以下、この要件を第2の要件と言う。
本実施の形態では、出力磁界は、ヨーク11の第1端11aから発生される。以下、出力磁界に対応する磁束を、出力磁束と言う。出力磁束の一部は磁性膜15に吸収される。出力磁束の他の一部は、磁性膜15を通過して磁気検出素子220に達する。
磁性膜15の厚みTが大きすぎると、出力磁束のうちの磁性膜15に吸収される磁束の割合が大きくなりすぎ、磁気検出素子220に達する磁束が少なくなる。その結果、入力磁界成分の強度に対する、磁気検出素子220に印加される出力磁界成分の強度の比率が大きく低下する。本実施の形態では、これを防止する観点から、第1の要件を定めている。
また、本実施の形態では、ヨーク11も、ある程度、ノイズ磁束を吸収する機能を有する。もし、磁性膜15の幅W2がヨーク11の幅W1以下であると、ヨーク11および磁性膜15によるノイズ磁束の吸収能力は、ヨーク11単独のノイズ磁束の吸収能力と大差がない。これに対し、本実施の形態のように、磁性膜15の幅W2をヨーク11の幅W1よりも大きくすると、ノイズ磁束のうちの、ヨーク11を通過しない部分を磁性膜15によって吸収することができる。これにより、磁性膜15の存在意義が生じる。そのため、本実施の形態では、第2の要件が必要である。
次に、第1および第2のシミュレーションの結果を参照して、本実施の形態の効果について説明する。始めに、第1および第2のシミュレーションで用いた実施例モデルと比較モデルとについて説明する。実施例モデルは、本実施の形態に係る磁気センサ1に対応するモデルである。比較モデルは、比較例の磁気センサのモデルである。比較例の磁気センサの構成は、磁性膜15が設けられていない点を除いて、本実施の形態に係る磁気センサ1と同じである。
実施例モデルと比較モデルの各々において、複数のヨーク11の数は6つである。ここで、第1の仮想の平面P1上に、原点を設定する。6つのヨーク11は、原点の−X方向側とX方向側に3つずつ対称に配置されている。また、6つのヨーク11は、6つのヨーク11のそれぞれの第1端11aのY方向の中心を通る仮想の直線が、原点を通過するように配置されている。
6つのヨーク11の各々の幅W1(図7参照)は2.6μmであり、6つのヨーク11の各々の寸法D1(図3参照)は78μmである。また、−X方向の端に位置するヨーク11の第1の端縁11a1とX方向の端に位置するヨーク11の第2の端縁11a2との間の距離は、65μmである。6つのヨーク11の各々の第1の仮想の直線Lzに平行な方向の寸法については、後で説明する。
実施例モデルでは、磁性膜15の幅W2(図3参照)は75μmであり、磁性膜15の寸法D2(図3参照)は100μmである。磁性膜15の厚みTについては、後で説明する。
次に、第1のシミュレーションの結果について説明する。第1のシミュレーションでは、第2の仮想の直線Lxに平行な方向のノイズ磁界の影響について調べた。ここで、第1の仮想の平面P1の下方に位置し、第2の仮想の直線Lxに平行な第4の仮想の直線を想定する。第4の仮想の直線は、複数の磁気検出素子220が配置される位置を想定したものであり、複数の磁気検出素子220と交差する。第4の仮想の直線を第1の仮想の平面P1に投影した直線は、原点を通過する。
第1のシミュレーションでは、比較モデルと実施例モデルとに対して、ノイズ磁界としてX方向の外部磁界を印加し、第4の仮想の直線上の各々の位置における磁束密度を求めた。そして、外部磁界の強度から得られる磁束密度に対する、第4の仮想の直線上の各々の位置における磁束密度の比率である透過率を求めた。
第1のシミュレーションでは、磁束密度の大きさが10mTとなる強度の外部磁界を印加した。また、6つのヨーク11の各々の第1の仮想の直線Lzに平行な方向の寸法を2.5μmとし、磁性膜15の厚みTを1.0μmとした。比較モデルでは、第1の仮想の平面P1と第4の仮想の直線との間の距離を1.25μmとした。実施例モデルでは、第1の仮想の平面P1と第4の仮想の直線との間の距離を、厚みTに0.25μmを加えた値、すなわち1.25μmとした。
図11に、第1のシミュレーションの結果を示す。図11において、横軸は第4の仮想の直線上の位置を示し、縦軸は透過率を示している。第4の仮想の直線上の位置は、原点よりも−X方向の先にある位置を負の値で表し、原点よりもX方向の先にある位置を正の値で表している。−32.5μmの位置は、−X方向の端に位置するヨーク11の第1の端縁11a1に対応する第4の仮想の直線上の位置であり、32.5μmの位置は、X方向の端に位置するヨーク11の第2の端縁11a2に対応する第4の仮想の直線上の位置である。また、図11において、符号61は、比較モデルの特性を示し、符号62は、実施例モデルの特性を示す。図11に示したように、実施例モデルでは、磁気検出素子220が配置される位置における透過率が、比較モデルよりも小さい。すなわち、実施例モデルでは、磁気検出素子220が配置される位置における磁束密度が、比較モデルよりも小さい。これは、磁性膜15が、外部磁界による磁束の一部を吸収したことによるものと考えられる。
次に、第2のシミュレーションの結果について説明する。第2のシミュレーションでは、第3の仮想の直線Lyに平行な方向のノイズ磁界の影響について調べた。ここで、第1の仮想の平面P1の下方に位置し、第3の仮想の直線Lyに平行な第5の仮想の直線を想定する。第5の仮想の直線は、複数の磁気検出素子220が配置される位置を想定したものであり、複数の磁気検出素子220と交差する。第5の仮想の直線は、上方から見たときに、6つのヨーク11のうちのいずれかの第1端11aと重なる位置に配置されている。
第2のシミュレーションでは、比較モデルと実施例モデルに対して、ノイズ磁界としてY方向の外部磁界を印加し、第5の仮想の直線上の各々の位置における磁束密度を求めた。そして、外部磁界の強度から得られる磁束密度に対する、第5の仮想の直線上の各々の位置における磁束密度の比率である透過率を求めた。
第2のシミュレーションでは、磁束密度の大きさが10mTとなる強度の外部磁界を印加した。また、6つのヨーク11の各々の第1の仮想の直線Lzに平行な方向の寸法を5μmとし、磁性膜15の厚みTを1.0μmとした。比較モデルでは、第1の仮想の平面P1と第5の仮想の直線との間の距離を1.25μmとした。実施例モデルでは、第1の仮想の平面P1と第5の仮想の直線との間の距離を、厚みTに0.25μmを加えた値、すなわち1.25μmとした。
図12に、第2のシミュレーションの結果を示す。図12において、横軸は第5の仮想の直線上の位置を示し、縦軸は透過率を示している。第5の仮想の直線上の位置は、原点よりも−Y方向の先にある位置を負の値で表し、原点よりもY方向の先にある位置を正の値で表している。−39μmの位置は、ヨーク11の第1端11aの−Y方向の端部に対応する第5の仮想の直線上の位置であり、39μmの位置は、ヨーク11の第1端11aのY方向の端部に対応する第5の仮想の直線上の位置である。また、図12において、符号63は、比較モデルの特性を示し、符号64は、実施例モデルの特性を示す。図12に示したように、実施例モデルでは、ヨーク11の第1端11aに対応する第5の仮想の直線上のうち、およそ−39μmから−20μmまでの範囲およびおよそ20μmから39μmまでの範囲における透過率が、比較モデルよりも小さい。すなわち、実施例モデルでは、上記の2つの範囲における磁束密度が、比較モデルよりも小さい。これは、磁性膜15が、外部磁界による磁束の一部を吸収したことによるものと考えられる。
第1および第2のシミュレーションの結果から理解されるように、本実施の形態によれば、磁性膜15によって、ノイズ磁束の一部を吸収することができ、これにより、ノイズ磁界が磁気検出素子220に印加されることを抑制することができる。
次に、第3のシミュレーションの結果について説明する。第3のシミュレーションでは、第1および第2のシミュレーションで用いた実施例モデルを用いて、磁性膜15の厚みT(図7参照)の好ましい範囲について調べた。
第3のシミュレーションでは、実施例モデルに対して、入力磁界成分としてZ方向の外部磁界を印加し、前記第4の仮想の直線上の各々の位置における出力磁界成分を求めた。そして、第4の仮想の直線上の各々の位置において、外部磁界の強度から得られる磁束密度に対する、出力磁界成分の強度から得られる磁束密度の比率である変換効率を求めた。
第3のシミュレーションでは、磁束密度の大きさが30mTとなる強度の外部磁界を印加した。また、6つのヨーク11の各々の第1の仮想の直線Lzに平行な方向の寸法を5μmとした。磁性膜15の厚みTは、0.1〜1.3μmの範囲内で変化させた。第1の仮想の平面P1と第4の仮想の直線との間の距離は、厚みTに0.25μmを加えた値とした。
図13は、第3のシミュレーションによって得られた変換効率の一例を示す特性図である。図13において、横軸は第4の仮想の直線上の位置を示し、縦軸は透過率を示している。第4の仮想の直線上の位置の表し方は、図11と同じである。−20μmの位置は、原点よりも−X方向の先に配置された1つのヨーク11の、第1の端縁11a1(図7参照)に対応する第4の仮想の直線上の位置であり、−17.4μmの位置は、上記1つのヨーク11の、第2の端縁11a2(図7参照)に対応する第4の仮想の直線上の位置である。図13に示した例では、変換効率は、第1の端縁11a1に対応する第4の仮想の直線上の位置において最大になる。以下、変換効率の最大値を、最大変換効率と言う。
図14は、第3のシミュレーションによって得られた、磁性膜の厚みTと最大変換効率との関係を示す特性図である。図14において、横軸は厚みTを示し、縦軸は最大変換効率を示す。最大変換効率は、2.5%以上であることが好ましく、5%以上であることがより好ましい。図14に示した厚みTの範囲では、最大変換効率は、いずれも2.5%以上である。また、図14において、破線は、厚みTが0.5μmの位置を示している。厚みTが0.5μm以下の場合に、最大変換効率は、5%以上になる。従って、厚みTは、0.1〜1.3μmの範囲内であることが好ましく、0.1〜0.5μmの範囲内であることがより好ましい。0.1μmという値は、磁性膜15の形成可能な厚みTの下限に相当する。
また、第3のシミュレーションでは、ヨーク11の幅W1は、2.6μmである。従って、厚みTは、幅W1の1/2以下であることが好ましいと言える。
次に、図10に示した磁気センサユニット100の磁気センサ2,3の構成について簡単に説明する。磁気センサ2,3の構成は、基本的には、本実施の形態に係る磁気センサ1の構成と同じである。ただし、磁気センサ2,3では、磁界変換部10が設けられていない。磁気センサ2は、Y方向の磁界を検出するように構成されている。具体的には、例えば、磁気センサ2では、第1および第4の抵抗部21,24に含まれる磁気抵抗効果素子220の磁化固定層222の磁化の方向を、Y方向とし、磁気センサ2の第2および第3の抵抗部22,23に含まれる磁気抵抗効果素子220の磁化固定層222の磁化の方向を、−Y方向とする。
また、磁気センサ3は、X方向の磁界を検出するように構成されている。具体的には、例えば、磁気センサ3では、第1および第4の抵抗部21,24に含まれる磁気抵抗効果素子220の磁化固定層222の磁化の方向を、X方向とし、磁気センサ3の第2および第3の抵抗部22,23に含まれる磁気抵抗効果素子220の磁化固定層222の磁化の方向を、−X方向とする。
[第2の実施の形態]
次に、本発明の第2の実施の形態について説明する。始めに、図15を参照して、本実施の形態に係る磁気センサの構成について説明する。図15は、本実施の形態に係る磁気センサの一部の、Y方向に垂直な断面を示す断面図である。本実施の形態に係る磁気センサ1は、以下の点で第1の実施の形態と異なっている。本実施の形態では、磁性膜15は、ヨーク11の第1端11aに接していない。
また、本実施の形態に係る磁気センサ1は、非磁性材料よりなり、少なくとも1つのヨークを磁性膜15から隔てる非磁性膜43を備えている。本実施の形態では、非磁性膜43は、磁性膜15の上に配置されている。複数のヨーク11は、非磁性膜43の上に配置されている。非磁性膜43の材料は、非磁性絶縁材料であってもよいし、Ta、Ti、W等の非磁性金属材料であってもよい。
次に、本実施の形態に係る磁気センサ1の製造方法について簡単に説明する。本実施の形態に係る磁気センサ1の製造方法は、磁性膜15を形成する工程と磁界変換部10を形成する工程との間において、非磁性膜43を形成する工程を含んでいる。本実施の形態では、磁性膜15を形成する工程までは、第1の実施の形態と同様である。本実施の形態では、次に、磁性膜15の上に、非磁性膜43を形成する。次に、非磁性膜43の上に、磁性材料よりなる図示しない電極膜を形成する。次に、図示しない電極膜をシードおよび電極として用いて、例えばフレームめっき法によって、複数のヨーク本体を形成する。次に、電極膜のうち、複数のヨーク本体によって覆われていない不要部分を、エッチングによって除去する。これにより、複数のヨーク11が完成する。複数のヨーク11は、複数のヨーク本体と、エッチング後の電極膜によって構成される。
本実施の形態では、複数のヨーク11と磁性膜15との間には、非磁性膜43が存在している。これにより、本実施の形態によれば、電極膜をエッチングする際に、磁性膜15の上面がダメージを受けることを防止することができる。
なお、非磁性膜43が非磁性金属材料によって形成されている場合には、上記の図示しない電極膜を形成せずに、非磁性膜43をシードおよび電極として用いて、複数のヨーク11を形成してもよい。
本実施の形態におけるその他の構成、作用および効果は、第1の実施の形態と同様である。
[第3の実施の形態]
次に、本発明の第3の実施の形態について説明する。始めに、図16を参照して、本実施の形態に係る磁気センサの構成について説明する。図16は、本実施の形態に係る磁気センサの一部の、Y方向に垂直な断面を示す断面図である。本実施の形態に係る磁気センサ1は、以下の点で第1の実施の形態と異なっている。本実施の形態では、第1ないし第4の抵抗部21〜24および配線部30と基板101との間に、磁性膜15が配置されている。
また、本実施の形態に係る磁気センサ1は、非磁性絶縁材料よりなる非磁性膜44を備えている。磁性膜15は、基板101の上面101a上に配置されている。非磁性膜44は、磁性膜15を覆うように配置されている。第1ないし第4の抵抗部21〜24、配線部30および非磁性膜41は、非磁性膜44の上に配置されている。複数のヨーク11は、非磁性膜42の上に配置されている。
次に、図17を参照して、本実施の形態におけるヨーク11、磁性膜15および磁気検出素子220の位置関係について説明する。図17は、ヨーク11、磁性膜15および磁気検出素子220の位置関係を説明するための説明図である。図17に示したように、磁気検出素子220の第3端220aを含み、第1の仮想の平面P1に平行な第3の仮想の平面P3を想定する。本実施の形態では、第3の仮想の平面P3は、第1の仮想の直線Lzに直交している。磁性膜15は、第3の仮想の平面P3に対して第1の仮想の平面P1とは反対側に位置している。
ここで、図17に示したように、磁性膜15と第3の仮想の平面P3との間の距離を記号G1で表し、第1の仮想の平面P1と第2の仮想の平面P2との間の距離を記号G2で表す。距離G1は、距離G2以下であることが好ましい。この要件を満たすことにより、磁性膜15は、磁気検出素子220との間の距離が、ヨーク15と磁気検出素子220との間の距離と等しくなるように配置されるか、ヨーク15よりも磁気検出素子220により近い位置に配置される。これにより、磁性膜15によって、より効果的に、ノイズ磁束の一部を吸収することができる。
次に、本実施の形態に係る磁気センサ1の製造方法について簡単に説明する。本実施の形態では、磁性膜15を形成する工程は、磁界検出部20および配線部30を形成する工程の前に行われる。本実施の形態では、まず、基板101の上に、磁性膜15を形成する。次に、磁性膜15の上に、非磁性膜44を形成する。次に、非磁性膜44の上に、第1ないし第4の抵抗部21〜24、配線部30および非磁性膜41,42を形成する。次に、非磁性膜42の上に、複数のヨーク11を形成する。これにより、磁気センサ1が完成する。
本実施の形態におけるその他の構成、作用および効果は、第1の実施の形態と同様である。
[第4の実施の形態]
次に、本発明の第4の実施の形態について説明する。始めに、図18および図19を参照して、本実施の形態に係る磁気センサの構成について説明する。図18は、本実施の形態に係る磁気センサの構成を模式的に示す説明図である。図19は、本実施の形態に係る磁気センサの一部の、Y方向に垂直な断面を示す断面図である。
本実施の形態に係る磁気センサ1は、以下の点で第1の実施の形態と異なっている。本実施の形態では、複数のヨーク11と、第2の抵抗部22の複数の磁気検出素子列122と、第4の抵抗部24の複数の磁気検出素子列124の位置関係が、第1の実施の形態と異なっている。本実施の形態では、複数の磁気検出素子列122と複数の磁気検出素子列124は、X方向に沿って、磁気検出素子列124および磁気検出素子列122の順で、交互に並んでいる。図18に示したように、全てのヨーク11のうちの2つ以上のヨーク11の各々は、1つの磁気検出素子列124と、この磁気検出素子列124のX方向側に隣接する1つの磁気検出素子列122の間を通過する1つのYZ平面と交差するように配置されている。なお、全てのヨーク11のうちの残りの2つ以上のヨーク11の各々は、1つの磁気検出素子列121と、この磁気検出素子列121のX方向側に隣接する1つの磁気検出素子列123の間を通過する1つのYZ平面と交差するように配置されている。
第1の実施の形態で説明したように、ヨーク11の第1端11aは、第1の端縁11a1と第2の端縁11a2とを有している。図19に示したように、本実施の形態では、磁気検出素子列122は、第2の端縁11a2の近傍に配置されている。磁気検出素子列124は、第1の端縁11a1の近傍に配置されている。
本実施の形態では、第4の抵抗部24内の複数の磁気抵抗効果素子220が受ける出力磁界成分の方向は、第1の抵抗部21内の複数の磁気抵抗効果素子220が受ける出力磁界成分の方向と同じである。一方、第2の抵抗部22内の複数の磁気抵抗効果素子220が受ける出力磁界成分の方向と、第3の抵抗部23内の複数の磁気抵抗効果素子220が受ける出力磁界成分の方向は、第1の抵抗部21内の複数の磁気抵抗効果素子220が受ける出力磁界成分の方向とは反対である。
また、本実施の形態では、第2の抵抗部22内の複数の磁気抵抗効果素子220の磁化固定層222の磁化の方向と、第4の抵抗部24内の複数の磁気抵抗効果素子220の磁化固定層222の磁化の方向は、第1の抵抗部21内の複数の磁気抵抗効果素子220の磁化固定層222の磁化の方向と同じ方向、すなわち−X方向である。
次に、第1ないし第4の抵抗部21〜24の抵抗値について説明する。第1の実施の形態で説明したように、出力磁界成分が存在しない状態では、磁気抵抗効果素子220の自由層224の磁化の方向は、第3の仮想の直線Lyに平行な方向になっている。本実施の形態では、入力磁界成分の方向がZ方向の場合、第1および第4の抵抗部21,24内の磁気抵抗効果素子220が受ける出力磁界成分の方向はX方向になり、第2および第3の抵抗部22,23内の磁気抵抗効果素子220が受ける出力磁界成分の方向は−X方向になる。この場合、第1および第4の抵抗部21,24内の磁気抵抗効果素子220の自由層224の磁化の方向は、第3の仮想の直線Lyに平行な方向からX方向に向かって傾く。その結果、出力磁界成分が存在しない状態と比べて、磁気抵抗効果素子220の抵抗値は増加し、第1および第4の抵抗部21,24の抵抗値も増加する。第2および第3の抵抗部22,23内の磁気抵抗効果素子220の自由層224の磁化の方向は、第3の仮想の直線Lyに平行な方向から−X方向に向かって傾く。その結果、出力磁界成分が存在しない状態と比べて、磁気抵抗効果素子220の抵抗値は減少し、第2および第3の抵抗部22,23の抵抗値も減少する。
入力磁界成分の方向が−Z方向の場合は、出力磁界成分の方向と、第1ないし第4の抵抗部21〜24の抵抗値の変化は、上述の入力磁界成分の方向がZ方向の場合とは逆になる。
なお、本実施の形態におけるヨーク11、磁性膜15および磁気検出素子220の位置関係は、第1ないし第3のいずれかの実施の形態と同じであってもよい。本実施の形態におけるその他の構成、作用および効果は、第1ないし第3のいずれかの実施の形態と同様である。
なお、本発明は、上記各実施の形態に限定されず、種々の変更が可能である。例えば、請求の範囲の要件を満たす限り、ヨーク11、磁性膜15および磁気検出素子220の数、形状および配置は、各実施の形態に示した例に限られず、任意である。例えば、磁気検出素子220の平面形状は、円形であってもよい。この場合、磁界検出部20は、磁気検出素子220に対して、第3の仮想の直線Lyに平行な方向のバイアス磁界を印加する複数の磁石を含んでいてもよい。
また、磁界変換部10は、複数の上部電極32の上方に配置された複数のヨーク11に加えて、複数の下部電極31の下方に配置された複数のヨークを含んでいてもよい。下部電極31の下方に配置された複数のヨークは、変換効率を大きくするように、上部電極32の上方に配置された複数のヨーク11に対して、第2の仮想の直線Lxに平行な方向にずれるように配置される。
1…磁気センサ、10…磁界変換部、11…ヨーク、15…磁性膜、20…磁界検出部、21…第1の抵抗部、22…第2の抵抗部、23…第3の抵抗部、24…第4の抵抗部、30…配線部、31…下部電極、32…上部電極、41,42,43,44…非磁性膜、100…磁気センサユニット、101…基板、102…電極パッド、121,122,123,124…磁気検出素子列、220…磁気検出素子。
図13は、第3のシミュレーションによって得られた変換効率の一例を示す特性図である。図13において、横軸は第4の仮想の直線上の位置を示し、縦軸は変換効率を示している。第4の仮想の直線上の位置の表し方は、図11と同じである。−20μmの位置は、原点よりも−X方向の先に配置された1つのヨーク11の、第1の端縁11a1(図7参照)に対応する第4の仮想の直線上の位置であり、−17.4μmの位置は、上記1つのヨーク11の、第2の端縁11a2(図7参照)に対応する第4の仮想の直線上の位置である。図13に示した例では、変換効率は、第1の端縁11a1に対応する第4の仮想の直線上の位置において最大になる。以下、変換効率の最大値を、最大変換効率と言う。
ここで、図17に示したように、磁性膜15と第3の仮想の平面P3との間の距離を記号G1で表し、第1の仮想の平面P1と第2の仮想の平面P2との間の距離を記号G2で表す。距離G1は、距離G2以下であることが好ましい。この要件を満たすことにより、磁性膜15は、磁気検出素子220との間の距離が、ヨーク11と磁気検出素子220との間の距離と等しくなるように配置されるか、ヨーク11よりも磁気検出素子220により近い位置に配置される。これにより、磁性膜15によって、より効果的に、ノイズ磁束の一部を吸収することができる。

Claims (9)

  1. 磁界変換部と、磁界検出部と、軟磁性体よりなる磁性膜とを備え、
    前記磁界変換部は、軟磁性体よりなる少なくとも1つのヨークを含み、
    前記少なくとも1つのヨークは、第1の仮想の直線に平行な方向の入力磁界成分を含む入力磁界を受けて、出力磁界を発生し、
    前記出力磁界は、前記第1の仮想の直線と交差する第2の仮想の直線に平行な方向の出力磁界成分であって前記入力磁界成分に応じて変化する出力磁界成分を含み、
    前記磁界検出部は、少なくとも1つの磁気検出素子を含み、
    前記少なくとも1つの磁気検出素子は、前記出力磁界を受けて、前記出力磁界成分に対応する検出値を生成し、
    前記少なくとも1つのヨークは、前記第1の仮想の直線に平行な方向の両端に位置する第1端と第2端を有し、
    前記第1端は前記第2端よりも前記少なくとも1つの磁気検出素子により近く、
    前記少なくとも1つの磁気検出素子は、前記第1の仮想の直線に平行な方向の両端に位置する第3端と第4端を有し、
    前記第4端は前記第3端よりも前記少なくとも1つのヨークにより近く、
    前記第1端を含み前記第1の仮想の直線と交差し第2の仮想の直線に平行な第1の仮想の平面と、前記第4端を含み前記第1の仮想の平面に平行な第2の仮想の平面とを想定したとき、前記磁性膜は、前記第1の仮想の平面から前記第2の仮想の平面までの空間的な範囲内に位置し、
    前記少なくとも1つのヨークは、前記第2の仮想の直線に平行な方向の寸法である幅を有し、
    前記磁性膜は、前記第1の仮想の直線に平行な方向の寸法である厚みと、前記第2の仮想の直線に平行な方向の寸法である幅とを有し、
    前記磁性膜の厚みは、前記少なくとも1つのヨークの幅よりも小さく、
    前記磁性膜の幅は、前記少なくとも1つのヨークの幅よりも大きいことを特徴とする磁気センサ。
  2. 前記磁性膜は、前記少なくとも1つのヨークの前記第1端に接していることを特徴とする請求項1記載の磁気センサ。
  3. 更に、非磁性材料よりなり前記少なくとも1つのヨークを前記磁性膜から隔てる非磁性膜を備えたことを特徴とする請求項1記載の磁気センサ。
  4. 前記第2の仮想の直線および前記第1の仮想の平面は、前記第1の仮想の直線に直交していることを特徴とする請求項1ないし3のいずれかに記載の磁気センサ。
  5. 前記磁性膜の厚みは、前記少なくとも1つのヨークの幅の1/2以下であることを特徴とする請求項1ないし4のいずれかに記載の磁気センサ。
  6. 磁界変換部と、磁界検出部と、軟磁性体よりなる磁性膜とを備え、
    前記磁界変換部は、軟磁性体よりなる少なくとも1つのヨークを含み、
    前記少なくとも1つのヨークは、第1の仮想の直線に平行な方向の入力磁界成分を含む入力磁界を受けて、出力磁界を発生し、
    前記出力磁界は、前記第1の仮想の直線と交差する第2の仮想の直線に平行な方向の出力磁界成分であって前記入力磁界成分に応じて変化する出力磁界成分を含み、
    前記磁界検出部は、少なくとも1つの磁気検出素子を含み、
    前記少なくとも1つの磁気検出素子は、前記出力磁界を受けて、前記出力磁界成分に対応する検出値を生成し、
    前記少なくとも1つのヨークは、前記第1の仮想の直線に平行な方向の両端に位置する第1端と第2端を有し、
    前記第1端は前記第2端よりも前記少なくとも1つの磁気検出素子により近く、
    前記少なくとも1つの磁気検出素子は、前記第1の仮想の直線に平行な方向の両端に位置する第3端と第4端を有し、
    前記第4端は前記第3端よりも前記少なくとも1つのヨークにより近く、
    前記第1端を含み前記第1の仮想の直線と交差し第2の仮想の直線に平行な第1の仮想の平面と、前記第4端を含み前記第1の仮想の平面に平行な第2の仮想の平面と、前記第3端を含み前記第1の仮想の平面に平行な第3の仮想の平面とを想定したとき、前記磁性膜は、前記第3の仮想の平面に対して前記第1の仮想の平面とは反対側に位置し、
    前記少なくとも1つのヨークは、前記第2の仮想の直線に平行な方向の寸法である幅を有し、
    前記磁性膜は、前記第1の仮想の直線に平行な方向の寸法である厚みと、前記第2の仮想の直線に平行な方向の寸法である幅とを有し、
    前記磁性膜の厚みは、前記少なくとも1つのヨークの幅よりも小さく、
    前記磁性膜の幅は、前記少なくとも1つのヨークの幅よりも大きいことを特徴とする磁気センサ。
  7. 前記磁性膜と前記第3の仮想の平面との間の距離は、前記第1の仮想の平面と前記第2の仮想の平面との間の距離以下であることを特徴とする請求項6記載の磁気センサ。
  8. 前記第2の仮想の直線および前記第1の仮想の平面は、前記第1の仮想の直線に直交していることを特徴とする請求項6または7記載の磁気センサ。
  9. 前記磁性膜の厚みは、前記少なくとも1つのヨークの幅の1/2以下であることを特徴とする請求項6ないし8のいずれかに記載の磁気センサ。
JP2017157745A 2017-08-18 2017-08-18 磁気センサ Active JP6699635B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017157745A JP6699635B2 (ja) 2017-08-18 2017-08-18 磁気センサ
US16/028,632 US10830838B2 (en) 2017-08-18 2018-07-06 Magnetic sensor
DE102018119214.2A DE102018119214A1 (de) 2017-08-18 2018-08-07 Magnetsensor
CN201810940674.8A CN109407017B (zh) 2017-08-18 2018-08-17 磁传感器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017157745A JP6699635B2 (ja) 2017-08-18 2017-08-18 磁気センサ

Publications (2)

Publication Number Publication Date
JP2019035686A true JP2019035686A (ja) 2019-03-07
JP6699635B2 JP6699635B2 (ja) 2020-05-27

Family

ID=65235239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017157745A Active JP6699635B2 (ja) 2017-08-18 2017-08-18 磁気センサ

Country Status (4)

Country Link
US (1) US10830838B2 (ja)
JP (1) JP6699635B2 (ja)
CN (1) CN109407017B (ja)
DE (1) DE102018119214A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021056169A (ja) * 2019-10-01 2021-04-08 Tdk株式会社 磁気センサ装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110544356A (zh) * 2019-09-20 2019-12-06 深圳亿东科技股份有限公司 一种防盗标签
JP7173104B2 (ja) * 2020-07-21 2022-11-16 Tdk株式会社 磁気センサ

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004533120A (ja) * 2001-06-01 2004-10-28 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 第2の磁気素子に対して第1の磁気素子の磁化軸を配向する方法、センサを実現するための半製品、および、磁界を測定するためのセンサ
JP2009175120A (ja) * 2007-12-28 2009-08-06 Alps Electric Co Ltd 磁気センサ及び磁気センサモジュール
WO2011068146A1 (ja) * 2009-12-02 2011-06-09 アルプス電気株式会社 磁気センサ
JP2013190345A (ja) * 2012-03-14 2013-09-26 Alps Electric Co Ltd 磁気センサ
US20130299930A1 (en) * 2010-12-23 2013-11-14 Stmicroelectronics S.R.L. Integrated magnetoresistive sensor, in particular three-axis magnetoresistive sensor and manufacturing method thereof
JP2017511489A (ja) * 2014-03-28 2017-04-20 江▲蘇▼多▲維▼科技有限公司Multidimension Technology Co., Ltd. モノシリック3次元磁界センサ及びその製造方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4487472B2 (ja) * 2002-07-05 2010-06-23 株式会社日立製作所 磁気抵抗効果素子、及びこれを備える磁気ヘッド、磁気記録装置、磁気メモリ
JP2005044847A (ja) * 2003-07-23 2005-02-17 Tdk Corp 磁気抵抗効果素子、磁気記憶セルおよび磁気メモリデバイスならびにそれらの製造方法
JP4868431B2 (ja) * 2003-10-10 2012-02-01 Tdk株式会社 磁気記憶セルおよび磁気メモリデバイス
JP4520353B2 (ja) * 2005-04-15 2010-08-04 大同特殊鋼株式会社 薄膜磁気センサ
CN101421635B (zh) * 2006-04-13 2012-05-30 旭化成电子材料元件株式会社 磁传感器及其制造方法
KR101124025B1 (ko) * 2007-03-23 2012-03-27 아사히 가세이 일렉트로닉스 가부시끼가이샤 자기 센서 및 그 감도 측정 방법
EP2878966B1 (en) * 2013-03-26 2017-07-26 Asahi Kasei Microdevices Corporation Magnetic sensor and magnetic detecting method
JP6121311B2 (ja) * 2013-11-14 2017-04-26 アルプス電気株式会社 磁気検知装置
JP6305181B2 (ja) 2014-04-15 2018-04-04 アルプス電気株式会社 磁気センサ
CN106461742B (zh) * 2014-06-18 2019-05-28 三菱电机株式会社 磁传感器装置及其制造方法
CN204044343U (zh) * 2014-08-22 2014-12-24 旭化成微电子株式会社 磁传感器
JP6202282B2 (ja) * 2015-02-17 2017-09-27 Tdk株式会社 磁気センサ
JP6597369B2 (ja) * 2015-03-12 2019-10-30 Tdk株式会社 磁気センサ
JP2016176911A (ja) * 2015-03-23 2016-10-06 Tdk株式会社 磁気センサ
JP6747836B2 (ja) * 2016-03-23 2020-08-26 アルプスアルパイン株式会社 磁気センサおよびその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004533120A (ja) * 2001-06-01 2004-10-28 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 第2の磁気素子に対して第1の磁気素子の磁化軸を配向する方法、センサを実現するための半製品、および、磁界を測定するためのセンサ
JP2009175120A (ja) * 2007-12-28 2009-08-06 Alps Electric Co Ltd 磁気センサ及び磁気センサモジュール
WO2011068146A1 (ja) * 2009-12-02 2011-06-09 アルプス電気株式会社 磁気センサ
US20130299930A1 (en) * 2010-12-23 2013-11-14 Stmicroelectronics S.R.L. Integrated magnetoresistive sensor, in particular three-axis magnetoresistive sensor and manufacturing method thereof
JP2013190345A (ja) * 2012-03-14 2013-09-26 Alps Electric Co Ltd 磁気センサ
JP2017511489A (ja) * 2014-03-28 2017-04-20 江▲蘇▼多▲維▼科技有限公司Multidimension Technology Co., Ltd. モノシリック3次元磁界センサ及びその製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021056169A (ja) * 2019-10-01 2021-04-08 Tdk株式会社 磁気センサ装置
JP7172939B2 (ja) 2019-10-01 2022-11-16 Tdk株式会社 磁気センサ装置
US11747410B2 (en) 2019-10-01 2023-09-05 Tdk Corporation Magnetic sensor device with a magnetic field converter, a magnetic detector, and a magnetic shield

Also Published As

Publication number Publication date
JP6699635B2 (ja) 2020-05-27
DE102018119214A1 (de) 2019-02-21
CN109407017B (zh) 2021-01-15
CN109407017A (zh) 2019-03-01
US10830838B2 (en) 2020-11-10
US20190056459A1 (en) 2019-02-21

Similar Documents

Publication Publication Date Title
JP6474833B2 (ja) モノリシック三軸リニア磁気センサ及びその製造方法
JP5297442B2 (ja) 磁気センサ
JP5297539B2 (ja) 磁気センサ
JP6305181B2 (ja) 磁気センサ
JP5174911B2 (ja) 磁気センサ及び磁気センサモジュール
JP5843079B2 (ja) 磁気センサおよび磁気センサシステム
CN108627782B (zh) 磁传感器
JP5464237B2 (ja) 磁気センサ
US10444303B2 (en) Magnetic sensor
JP2016176911A (ja) 磁気センサ
JP2009175120A (ja) 磁気センサ及び磁気センサモジュール
JP2013172040A (ja) 磁気センサとその製造方法
JP2009300150A (ja) 磁気センサ及び磁気センサモジュール
JP6699635B2 (ja) 磁気センサ
JP5149964B2 (ja) 磁気センサ及び磁気センサモジュール
JP5066581B2 (ja) 磁気センサ及び磁気センサモジュール
JP2009162540A (ja) 磁気センサ及びその製造方法
US11009569B2 (en) Magnetic field sensing device
JP4940565B2 (ja) 磁気センサの製造方法
CN109959883B (zh) 磁传感器
JP6725300B2 (ja) 磁気センサおよびその製造方法
JP6699638B2 (ja) 磁気センサ
CN117991157A (zh) 磁传感器及磁传感器制备方法
JP2014142297A (ja) 近接センサおよび遊技機

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180706

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181114

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20190325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200331

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200413

R150 Certificate of patent or registration of utility model

Ref document number: 6699635

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150