JP2019004073A - 光電変換装置およびスキャナ - Google Patents

光電変換装置およびスキャナ Download PDF

Info

Publication number
JP2019004073A
JP2019004073A JP2017118839A JP2017118839A JP2019004073A JP 2019004073 A JP2019004073 A JP 2019004073A JP 2017118839 A JP2017118839 A JP 2017118839A JP 2017118839 A JP2017118839 A JP 2017118839A JP 2019004073 A JP2019004073 A JP 2019004073A
Authority
JP
Japan
Prior art keywords
photoelectric conversion
insulating member
conversion device
region
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017118839A
Other languages
English (en)
Other versions
JP7084700B2 (ja
Inventor
隆典 鈴木
Takanori Suzuki
隆典 鈴木
渡邉 高典
Takanori Watanabe
高典 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2017118839A priority Critical patent/JP7084700B2/ja
Priority to US15/996,967 priority patent/US10297633B2/en
Publication of JP2019004073A publication Critical patent/JP2019004073A/ja
Application granted granted Critical
Publication of JP7084700B2 publication Critical patent/JP7084700B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14678Contact-type imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1463Pixel isolation structures
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K39/00Integrated devices, or assemblies of multiple devices, comprising at least one organic radiation-sensitive element covered by group H10K30/00

Abstract

【課題】多様な波長域の光を検出するための光電変換装置においてリップルを低減する。【解決手段】光電変換装置は、複数の画素が配列された半導体基板と、前記半導体基板を覆う透光性の絶縁部材と、を備え、前記半導体基板の前記絶縁部材と接する面には、複数の凹部が設けられ、前記複数の凹部のそれぞれは側面および底面を有し、前記絶縁部材は、各凹部の前記底面と接する第1下面と、隣り合う2つの凹部の間の面と接する第2下面と、を有し、前記絶縁部材の上面は、各画素の上方において、複数の第1上面および複数の第2上面を有し、前記第1下面からその直上の前記第1上面までの距離、前記第1下面からその直上の前記第2上面までの距離、前記第2下面からその直上の前記第1上面までの距離、及び、前記第2下面からその直上の前記第2上面までの距離、のうちの少なくとも3つは互いに異なる。【選択図】図1

Description

本発明は、光電変換装置およびスキャナに関する。
記録媒体上の画像を読み取るためのスキャナは、例えば、読取面を通過する記録媒体に対して光を照射する光源(例えばLED)と、該照射された記録媒体からの光を検出するための光電変換装置(例えばラインセンサ)と、を備える。光電変換装置は、光電変換素子(例えばフォトダイオード)や読出回路が設けられた半導体基板、その上に配された絶縁部材(例えば層間絶縁膜)等を備える。カラー対応のスキャナの場合、例えば、赤色LED、緑色LEDおよび青色LEDが上記光源として用いられ、これら各色のLEDを交互に駆動しながら記録媒体からの各色の光を光電変換装置により検出することで、記録媒体上の画像を読み取る。
特開2011−124522号公報 特開昭64−72557号公報
光電変換装置のなかには、反射光の干渉によって生じうるリップルを低減するため、光電変換部の受光面(即ち絶縁部材の下面)が凹凸状に形成されたものもある(特許文献1及び特許文献2)。
ところで、上記反射光の干渉は該反射光の波長によって態様が異なるため、前述のカラー対応のスキャナに用いられる光電変換装置等、多様な波長域の光の検出が求められる構造においては、リップルの低減の対象となる光の波長域も広い。そのため、光電変換装置の構造面での改善の余地があった。
本発明の目的は、多様な波長域の光を検出するための光電変換装置においてリップルを低減するのに有利な技術を提供することにある。
本発明の一つの側面は光電変換装置にかかり、前記光電変換装置は、複数の画素が配列された半導体基板と、前記半導体基板を覆う透光性の絶縁部材と、を備え、前記半導体基板の前記絶縁部材と接する面には、複数の凹部が設けられ、前記複数の凹部のそれぞれは側面および底面を有し、前記絶縁部材は、各凹部の前記底面と接する第1下面と、隣り合う2つの凹部の間の面と接する第2下面と、を有し、前記絶縁部材の上面は、各画素の上方において、複数の第1上面および複数の第2上面を有し、前記第1下面からその直上の前記第1上面までの距離、前記第1下面からその直上の前記第2上面までの距離、前記第2下面からその直上の前記第1上面までの距離、及び、前記第2下面からその直上の前記第2上面までの距離、のうちの少なくとも3つは互いに異なることを特徴とする。
本発明によれば、多様な波長域の光を検出するための光電変換装置においてリップルを低減することができる。
光電変換装置の構造を説明するための図である。 光電変換装置の構造を説明するための図である。 光電変換装置の構造を説明するための図である。 光電変換装置の構造を説明するための図である。 光電変換装置の構造を説明するための図である。 光電変換装置の構造を説明するための図である。 光電変換装置の構造を説明するための図である。 リップルの低減の効果を説明するための図である。 比較例としての光電変換装置の構造を説明するための図である。
以下、添付図面を参照しながら本発明の実施形態について説明する。なお、各図は、実施形態の構造ないし構成を示す模式図であり、図示された各部材の寸法は必ずしも現実のものを反映するものではない。また、各図において、同一の部材または同一の要素には同一の参照番号を付しており、以下、重複する内容については説明を省略する。
(第1実施形態)
図1(a)は、第1実施形態に係る光電変換装置APの上面レイアウトの一部を示す。図1(b)は、光電変換装置APの線d1−d1での断面構造を示す。図1(c)は、光電変換装置APの線d2−d2での断面構造を示す。図1(d)は、光電変換装置APの線d3−d3での断面構造を示す。なお、構造の理解を容易にするため、図中には、互いに直交するX軸、Y軸およびZ軸を示す(他の図においても同様とする。)。X方向及びY方向は水平方向に対応し、Z方向は垂直方向(即ち、装置APの断面における上下方向)に対応する。
光電変換装置APは、複数の画素PXが配列された半導体基板1と、半導体基板1を覆う透光性の絶縁部材2とを備える。ここでは説明の容易化のため単一の画素PXに着目しながら光電変換装置APの構造を説明する。即ち、図1(a)に例示された画素PXは、実際には、平面視においてライン状またはアレイ状に(1以上の列を形成するように)、複数、配列される。1つの画素の寸法(或いは、複数の画素PXの配列間隔)は、X方向及びY方向のそれぞれについて例えば10μm〜30μm程度とする。
なお、本明細書において、平面視とは、Z方向で見た場合の態様(例えば図1(a)の視点での態様)をいい、即ち、半導体基板1の底面等の基準面に対して垂直な方向で見た場合の態様をいう。
半導体基板1には、本実施形態ではシリコン基板が用いられるが、他の実施形態としてガリウム砒素等の他の半導体で構成された基板が用いられてもよい。図1(b)〜(d)から分かるように、半導体基板1は、複数の半導体領域11〜15を含んでおり、これらは画素PXを区画しながら各画素PXに光電変換素子(例えばフォトダイオード)を形成するように設けられる。
例えば、半導体領域11は、比較的低濃度のN型領域である(N型不純物の正味の濃度が比較的低い領域である。)。半導体領域12は比較的高濃度のN型領域であり、少なくとも領域11よりも高濃度の領域である。半導体領域13は比較的高濃度のN型領域であり、少なくとも領域11よりも高濃度の領域である。また、半導体領域14は比較的低濃度のN型領域であり、少なくとも領域12及び13よりも低濃度の領域である。また、半導体領域15は、比較的高濃度のP型領域である(P型不純物の正味の濃度が比較的高い領域であり、一般に、領域15のP型濃度の絶対値は領域14のN型濃度の絶対値よりも大きい。)。
本実施形態では、N型領域14は、P型領域15を取り囲むようにP型領域15より深く設けられており、これにより、N型領域14及びP型領域15はPN接合を形成し、フォトダイオードを形成している。このフォトダイオードは、高濃度N型領域12により基板1の深い領域11から電気的に分離され、また、高濃度N型領域13により隣接画素の他のフォトダイオードから電気的に分離される。また、光電変換装置APは、フォトダイオードで発生した電荷を読み出すための配線部9を更に備えており、領域15は配線部9に接続され、これにより、電荷量に応じた信号(画素信号)が不図示の読出回路に出力される。本実施形態では、信号電荷として正孔を用いるものとする。
なお、領域11〜15のP型(第1導電型)/N型(第2導電型)は必要に応じて変更されてもよい。例えば、領域11はP型であってもよい。また、本実施形態では、信号電荷として正孔を用いるが、信号電荷として電子を用いる場合には領域14をP型とし且つ領域15をN型とすればよい。
絶縁部材2は、半導体基板1に対して光の入射側に配され、本実施形態では複数の絶縁層が積層されて成る。絶縁部材2は、半導体基板1上に設けられた複数のフィールド酸化層21と、第1絶縁層22と、第2絶縁層23と、第3絶縁層24とを含む。
各酸化層21は、Y方向に沿ったライン状に設けられた絶縁層である。各酸化層21は、半導体基板1に対してフィールド酸化を行うことで形成され、本実施形態では、素子分離用のLOCOS(Local Oxidation оf Silicon)と共に、即ちLOCOSと同一工程で、形成される。酸化層21は、酸化シリコンで構成され、その屈折率は1.46程度である。なお、本明細書において、各層ないし各部材の屈折率は波長550nmでの屈折率をいう。
図1(a)から分かるように、本実施形態では、平面視において、P型領域15は、N型領域14の矩形状の外縁の内側かつ該外縁の端近傍(辺の近傍)に設けられており、各酸化層21は、P型領域15と重ならないように設けられる。
絶縁層22は、半導体基板1上に複数の酸化層21を覆うように設けられる。本実施形態では、絶縁層22は、例えば常圧CVD(化学気相成長)や準常圧CVDで形成されたBPSG(Boro−phospho silicate glass)であり、その屈折率は1.46程度である。
絶縁層23は、絶縁層22上に設けられる。本実施形態では、絶縁層23は、例えばプラズマCVDで形成された酸化シリコンであり、その屈折率は1.46程度である。
絶縁層24は、絶縁層23上に設けられる。本実施形態では、絶縁層24は、例えばプラズマCVDで形成された酸化シリコン及び/又は酸窒化シリコンであり、その屈折率は1.6程度である。詳細については後述とするが、絶縁層24の上面には凹凸形状が設けられている。このような形状は、フォトリソグラフィ技術を用いたエッチングにより形成可能である。
本実施形態では、絶縁部材2は複数の絶縁層が積層されて成り、それらは例えば屈折率が1.4以上の範囲内の材料で構成されるが、他の実施形態として、絶縁部材2は単一の層で構成されてもよい。なお、本実施形態では、絶縁部材2の上面、即ち、絶縁部材2において最上の層である絶縁層24の上面は、空気(屈折率1程度)に露出されているものとする。
ここで、絶縁部材2の下面および上面のそれぞれには、凹凸形状が形成されている。このことを、以下、図2を参照しながら説明する。
図2は、図1(c)における絶縁部材2の上面の段差(「段差S」とする。)およびその直下の構造を含む領域の拡大図を示す。ここでは、装置APの断面における絶縁部材2の輪郭を実線で示し、絶縁部材2を構成する各層21〜24の境界面を一点鎖線で示す。
絶縁部材2の下面は、半導体基板1と絶縁部材2との間の境界面(或いは、画素PXの受光面)を形成している。また、絶縁部材2の下面は、平坦な(X−Y面と平行な)平坦下面を含む。この平坦下面は、本実施形態では、互いに平行で且つ凹凸形状を形成する複数の第1下面(凹面、凹部の底面)211および複数の第2下面(凸面、隣り合う2つの凹部の間の面)212を含む。下面211の個々と下面212の個々とは互いに高さが異なる。本実施形態では、図1(a)、1(b)及び1(c)からも分かるように、下面211及び212はX方向に所定の間隔(第1の間隔)で交互に配置される。
詳細については後述とするが、絶縁部材2の下面は、互いに隣り合う下面211と下面212とを接続する傾斜面213を更に含む。なお、ここでいう傾斜とは、X−Y面と交差するように傾いていることをいい、図中では、傾斜面213を一直線で示したが、実際には緩やかな曲線を描く。
絶縁部材2の上面は、本実施形態では、絶縁部材2の空気に対する露出面(或いは、画素PXへの光の入射面)を形成している。絶縁部材2の上面は、平坦な(X−Y面と平行な)平坦上面を含む。この平坦上面は、本実施形態では、各画素の上方において、互いに平行で且つ凹凸形状を形成する複数の第1上面(凹面)241および複数の第2上面(凸面)242を含む。上面241の個々と上面242の個々とは互いに高さが異なる。本実施形態では、図1(a)及び1(d)からも分かるように、上面241及び242はY方向に比較的大きい間隔(上記第1の間隔よりも大きい第2の間隔)で交互に配置される。
図中に示されるように、下面211及び212間の高低差(Z方向での長さ。以下同様。)をD1とし、また、上面241及び242間、即ち段差Sの高低差をD2とする。また、下面211からその直上の上面241までの距離(Z方向での長さ。以下同様。)をT1とする。また、下面212からその直上の上面241までの距離をT2(=T1−D1)とする。また、下面211からその直上の上面242までの距離をT3(=T1+D2)とする。また、下面212からその直上の上面242までの距離をT4(=T3−D1)とする。本実施形態では、D1≠D2とし、距離T1〜T4はいずれも互いに異なる。
ここで、発明の理解の容易化のため、第1比較例として、図9(a)を参照しながら、光電変換装置AP’について述べる。第1比較例の装置AP’は、高低差D1及びD2を有しない、という点で本実施形態の装置APと異なっている。即ち、第1比較例の装置AP’では、絶縁部材2の上面および下面の何れも、画素PXの全域にわたって段差のない平坦面となっている。
ここで、画素PXに上方側から入射した光(入射光)L0は、絶縁部材2の下面および上面においてそれぞれ反射され、反射光L1及びL2が生じる可能性がある。或る波長の光に着目すると、反射光L1及びL2の間に光路差に伴う180°程度の位相差が生じる条件では、反射光L1及びL2は低減ないし抑制される。即ち、上記位相差が180°程度の場合、入射光L0の光量に対する反射光L1及びL2の光量の割合(本明細書において「光反射率」と定義される。)が低減され、言い換えると、入射光L0のうち反射されずに画素PXで検出される光量の割合(本明細書において「光透過率」と定義される。)が高くなる。一方、上記位相差が180°程度とならない条件では、光反射率が大きくなり、光透過率は低くなる。
なお、絶縁部材2は複数の層21〜24で構成されるが、これらの層間の境界面で生じうる反射は、この反射での光量が上記反射光L1及びL2に比べて十分に小さいため、本明細書では考慮しないものとする。
上記位相差が180°となるか否かは、光の波長に依存する。例えば、或る波長においては、上記位相差が180°となるため、光透過率が高くなるのに対して、他の波長においては、上記位相差が180°とならないため、光透過率が低くなる場合がある。即ち、画素PXの受光効率は光の波長によって変動し得、例えば、波長を大きく(或いは小さく)していくと、画素PXの受光効率は大きくなったり、小さくなったりする。この現象は「リップル」とも称され、詳細については図8(図中のSPL#1)を参照しながら後述する。
また、上記位相差が180°となるか否かは、絶縁部材2の膜厚T(或いは光学膜厚)にも依存する。例えば、或る膜厚Tにおいては光透過率が高くなるのに対して、他の膜厚T’においては光透過率が低くなる。そのため、例えば装置AP’間/画素間の製造ばらつき等、巨視的な製造ばらつきにより画素間で膜厚Tが異なった場合、入射光L0の光量が均一であっても、画素間で光透過率が異なって画素信号の信号値(画素値)が異なってしまう場合がある。
本実施形態に係る光電変換装置APは、上述のことを考慮して構成されたものであり、多様な波長域の光を検出可能で且つ上記リップルを効果的に低減することを可能にする。
再び図1〜2を参照すると、本実施形態によれば、絶縁部材2は互いに高さの異なる下面211及び212を有する。或る波長の光において、下面211での反射光と、下面212での反射光との間に180°程度の位相差が生じる条件にすることで、該波長における光透過率の大/小(光反射率の大/小)を逆の関係にすることができる。よって、画素PX内に互いに異なる高さの下面211及び212を設けることで、或る波長の光において、それぞれの反射光の強弱が相殺される形となり、それにより、リップルを低減することができる。また、絶縁部材2は互いに高さの異なる上面241及び242を有する。上面241での反射光と、上面242での反射光との間に180°程度の位相差が生じる条件にすることで、同様にして、リップルを低減することができる。
ここで、
n1 :層21〜23の屈折率(本実施形態では、n1≒1.46)、
n2 :層24の屈折率(本実施形態では、n2≒1.6)、
λ :反射光の低減対象とする波長、
ODD:任意の奇数(1、3、5、・・・等)、
とする。このとき、高低差D1及びD2は、理想的には、
D1=λ/(4×n1)×kODD
D2=λ/(4×n2)×kODD
で設定されるとよい。
製造ばらつき等に伴う高低差D1及びD2の誤差を考慮すると、
D1=λ/(4×n1)×kODD±λ/8、
D2=λ/(4×n2)×kODD±λ/8、
であればよい。より好適には、
D1=λ/(4×n1)×kODD±λ/(8×n1)、
D2=λ/(4×n2)×kODD±λ/(8×n1)、
であればよい。
このようにして高低差D1及びD2を設定することで、所望の波長について逆位相の反射光を重ね合わせて、上述のリップルを低減することができる。
例えば、高低差D1については、可視光領域(波長360nm〜830nm程度)のいずれかの波長についてのリップル低減を目的として、D1=60nm〜150nm程度と設定することが可能である。また、例えば、高低差D2については、λ=630nm程度(赤色光)についてのリップル低減を目的として、D2=300nm程度(kODD=3の場合)と設定することが可能である。
なお、上述の例では、高低差D2についてD2=300nm程度(kODD=3の場合)とすることを述べたが、奇数kODDの値は、例えば製造面から決定されればよい。例えば、高低差D2を小さく設定すると、高低差D2を形成するための処理(エッチング等)の時間の調節が困難になり、製造ばらつき等の原因となりうる。これに対し、高低差D2を大きく設定すると、高低差D2を形成するための処理の時間が長くなってしまい、製造コストの増大等の原因となりうる。よって、本実施形態では、kODD=3とし、D2=300nm程度(250nm以上かつ350nm以下)と設定した。
本実施形態では、絶縁部材2は、下面側において、下面211及び212の他、それらを接続する傾斜面213を有し、それにより、絶縁部材2の下面には高低差D1以下となる領域が存在する。そのため、絶縁部材2の下面では、高低差D1に対応する波長(630nm)よりも短い波長域についてもリップルを低減させることができる。下面211、下面212および傾斜面213は、平面視において、それらの割合が互いに略等しくなるように設けられてもよい。
例えば、平面視における下面211の幅(X方向での幅。以下同様。)をW1とし、下面212の幅をW2とし、傾斜面213の幅をW3としたときに、
W1×0.8≦W2≦W1×1.2、かつ、
W1×0.8≦W3≦W1×1.2、
が成立してもよい。代替的または付随的に、W1/(W1+W2+W3)は、1/3から2/3の範囲内であるとよい。
ところで、一般に、長波長の光(例えば赤色光)の方が、短波長の光(例えば青色光)に比べて視覚への影響が大きいことから(視覚的に目立つことから)、リップルは特に長波長域において低減されることが好ましい。そのため、本実施形態では、絶縁部材2の上面側の高低差D2を、長波長域(ここでは630nm)でのリップルが低減されるように設定した。
以上のことから、本実施形態では、D1=150nm程度(誤差±50nmの範囲内、より好ましくは±10%の範囲内)と設定し、D2=300nm程度(誤差±50nmの範囲内)とした。これにより、長波長域でのリップルが効果的に低減される。
図8を参照しながら、光電変換装置1によるリップルの低減効果を説明する。図8は、画素信号の信号値(画素値)についての入射光の波長の依存性(以下、単に「画素特性」と表現する。)を示す。図中において、横軸は、入射光の波長を示し、また、縦軸は、赤色光の波長における画素値で規格化された画素値を示す。
図中には、3種類のサンプルについて画素特性が示される。ここで示されるサンプルは、
SPL#1 高低差D1及びD2の何れも設けられていない構造(第1比較例)、
SPL#2 高低差D1のみが設けられた構造(第2比較例)、
SPL#3 高低差D1及びD2の双方が設けられた構造(本実施形態)、
である。SPL#1は、図9(a)に示された前述の第1比較例に係る装置AP’の構造に対応する。本実施形態の構造(図1〜2参照)との関係で言い換えると、第1比較例では、少なくとも各画素PXについて、絶縁部材2の下面および上面はいずれも実質的に段差のない平坦面となっている(凹凸形状が実質的にない。)。また、SPL#2は、図9(b)に示された第2比較例に係る装置AP”の構造に対応する。本実施形態の構造との関係で言い換えると、第2比較例では、少なくとも各画素PXについて、絶縁部材2の下面側には下面211及び212並びに傾斜面213が設けられ、絶縁部材2の上面は実質的に段差のない平坦面となっている(凹凸形状が実質的にない。)。なお、ここでいう平坦面について、前述の反射光の位相差が実質的に生じない程度の段差(本実施形態では例えば20nm以下)については無視するものとする。
図中において、第1比較例(SPL#1)の画素特性は一点鎖線で示され、第2比較例(SPL#2)の画素特性は二点鎖線で示され、また、本実施形態(SPL#3)の画素特性は実線で示される。画素特性は、或る波長域において振幅するような波形を示している場合、その波長域においてリップルが発生していることを示す。よって、第1比較例(SPL#1)では、図中のほぼ全波長域にわたって(少なくとも波長400nm〜700nmにおいて)リップルが大きいことが分かる。
一方、第2比較例(SPL#2)では、波長400nm〜700nmにおいて、第1比較例(SPL#1)に対してリップルが低減されていることが分かる。第2比較例(SPL#2)では、絶縁部材2は、平坦な下面211及び212、並びに、それらを接続する傾斜面213を有し、即ち、絶縁部材2の下面には高低差D1以下となる領域が存在する。そのため、前述のとおり、絶縁部材2の下面側では、高低差D1に対応する波長(ここでは630nm)及びそれより短い波長域についてもリップルが低減されうる。よって、第2比較例(SPL#2)によれば、リップルは、比較的広い波長域について、ある程度まで低減される。
これに対し、本実施形態(SPL#3)によれば、第2比較例(SPL#2)に対してリップルが更に低減され、特に赤色光の波長域(図中のλ近傍)においてリップルが効果的に低減されていることが分かる。前述のとおり、一般に、長波長の光(例えば赤色光)の方が視覚への影響が大きい。そのため、本実施形態では、絶縁部材2の下面側の高低差D1の他、図1〜2を参照しながら述べたように、絶縁部材2の上面側に、長波長域でのリップルを低減可能とする高低差D2を設けた。これにより、図8からも分かるように、波長域λでは、リップルは5分の1程度まで低減される。
このことは、次のように説明することができる。先ず、第2比較例(SPL#2)に着目すると、第1比較例(SPL#1)の構造に対して絶縁部材2の下面側に高低差D1を設けることで、第1比較例(SPL#1)に対して、1種類の光の波長についてリップルを低減可能となる。ここでは、D1=150nm程度とすることで、リップルの低減対象を波長630nmとした。また、第2比較例(SPL#2)では、前述のとおり、絶縁部材2の下面に更に傾斜面213を設けることで、リップルの低減対象の波長域を広げている。ここで、傾斜面213の割合を大きくすると、比較的広い波長域についてリップルを低減可能となるが、その一方、本来のリップルの低減対象である波長630nmにおいて、その効果が損なわれてしまう。よって、第2比較例(SPL#2)では所望のリップルの低減効果が十分に得られない場合がある。
これに対して、本実施形態(SPL#3)では、更に絶縁部材2の上面側に高低差D2を設けることで、リップルの低減対象となる光の波長を更に増やすことが可能となり、第2比較例(SPL#2)に比べて、より効果的にリップルを低減可能となる。ここでは、高低差D2を設けることによるリップルの低減対象の波長を、D2=300nm程度とすることで、波長630nmとした。このことは、上記画素特性(図8)からも分かるように、波長域λ(波長630nm近傍)において第2比較例(SPL#2)と本実施形態(SPL#3)とのリップルの低減効果の差として表れている。
前述のとおり、赤色光(波長630nm)等の長波長の光は視覚への影響の大きい。そのため、本実施形態(SPL#3)では、リップルの低減対象として長波長域を選択し、即ち、長波長域でのリップルが低減されるように高低差D1及びD2の双方を設定した。しかしながら、高低差D1及びD2は、異なる2種類の波長域でのリップルが低減されるように、それぞれ設定されてもよい。
本実施形態では、絶縁部材2の下面側及び上面側にそれぞれ高低差D1及びD2を設けることで、絶縁部材2の平坦下面および平坦上面の間の距離は距離T1〜T4の4種類となる。このような構造によれば、リップルの低減対象となる光の波長の種類を増やすことができ、光電変換装置APは、製造ばらつきに起因するリップルの影響を受けることなく多様な波長域の光を安定的に検出可能となる。
この観点で、本実施形態では、距離T1〜T4はいずれも互いに異なるものとしたが、これらの少なくとも3つが互いに異なればよい(例えば、D1=D2の場合、T1=T4となり、距離T1〜T4のうち3つが互いに異なることになる。)。即ち、絶縁部材2は、これら平坦下面および平坦上面の間の距離が互いに異なる位置が3以上になるように構成されればよい。他の観点では、絶縁部材2は、単一画素PX内において光反射率のばらつき或いは光透過率のばらつきを平滑化する機能し、そして、膜厚(Z方向の厚さ)が互いに異なる部分を各画素PXの上方において少なくとも3つ有するように構成されるとよい。
再び図1(a)を参照すると、平面視において、P型領域15は、N型領域14の矩形状の外縁内の上辺(+Y方向側の辺)側近傍に設けられる。そのため、光電変換によって発生する電荷のうち、本実施形態において信号電荷となる正孔は、主に+Y方向に導かれることで領域15に集められる。よって、ライン状の各酸化層21はY方向に沿って設けられ、即ち、絶縁部材2の下面側の凹凸形状を形成する下面211及び212はX方向に交互に配置され、これにより電荷収集効率を向上させることができる。一方、絶縁部材2の上面側の凹凸形状を形成する上面241及び242は、Y方向(即ち上記211及び212とは異なる方向)に交互に配置される。よって、本実施形態によれば、多様な入射角の入射光についてリップルを低減することができる。
ここで、平面視において、上面241及び242間の段差Sは、領域15と重ならないように設けられるとよい。領域14及び15で形成されるフォトダイオードの特性、即ち画素PXの電気特性は、領域14及び15のPN接合部の影響を受けやすい。そのため、このPN接合部の直上には段差Sが設けられないことが好ましい。よって、平面視において段差Sを領域15と重ならないようにすることで、例えば画素の電気特性を安定化させることができる。
以上、本実施形態によれば、絶縁部材2の下面側および上面側に高低差D1及びD2をそれぞれ設けることにより、リップルの低減対象となる光の波長の種類を増やし、多様な波長域の光を安定的に検出可能な光電変換装置APを実現可能となる。
本実施形態では、絶縁部材2の下面側の凹凸形状、即ち下面211及び212(並びに付随的に傾斜面213)を、LOCOSと共に酸化層21を形成することで設ける態様を例示したが、これに限られるものではない。例えば、絶縁部材2の下面側の凹凸形状は、STI(Shallow Trench Isolation)により設けられてもよい。この場合、STIの側面が傾斜するようにしてもよい。
また、本実施形態では、絶縁部材2の下面211及び212をX方向に交互に配置し、上面241及び242をY方向に交互に配置する態様を例示したが、これらの配置方向は、X方向及びY方向の双方と交差する平面方向、例えば画素区画の対角方向にしてもよい。
また、本実施形態では、絶縁部材2の上面側の凹凸形状について、上面241及び242間の段差Sが略垂直となっている態様を例示したが、これに限られるものではない。例えば、他の実施形態として、上面241及び242は傾斜面により接続されてもよい。
(第2実施形態)
図3(a)は、第2実施形態の光電変換装置APの上面レイアウトであり、図3(b)は、光電変換装置APの線d4−d4での断面図である。本実施形態は、絶縁部材2の上面側の凹凸形状を形成する上面241及び242がX方向に交互に配置される、という点で前述の第1実施形態と異なる。本実施形態によっても第1実施形態同様の効果が得られる。
図3(a)から分かるように、また、第1実施形態でも述べたとおり、ライン状の各酸化層21はY方向に沿って設けられ、即ち、絶縁部材2の下面側の凹凸形状を形成する下面211及び212(図2参照。以下の他の実施形態においても同様。)はX方向に交互に配置される。本実施形態では、絶縁部材2の上面側の凹凸形状を形成する上面241及び242は、下面211及び212同様、X方向に交互に配置される。例えば、光電変換装置APの用途等から入射光の入射角が+Y方向/−Y方向に傾くことが予測される場合には(例えば、装置APがラインセンサに用いられる場合には)、本実施形態によれば、リップルを効果的に低減させることができる。
なお、本実施形態では、上面241及び242は、平面視において、段差Sが領域15と重なるように設けられるが、段差Sが領域15と重ならないように設けられてもよい。このことは以下の他の実施形態においても同様である。
(第3実施形態)
図4(a)は、第3実施形態の光電変換装置APの上面レイアウトであり、図4(b)は、光電変換装置APの線d5−d5での断面図である。本実施形態は、光電変換装置APが透光性の低屈折部材3を更に備える、という点で前述の第1実施形態と異なる。低屈折部材3は、絶縁部材2の上に、上面241及び242を覆うように配された第2の絶縁部材であり、本実施形態では、低屈折部材3の上面は平坦化されている。低屈折部材3は、屈折率が比較的低い材料で構成され、本実施形態では、例えば多孔質/非多孔質シリコンオキシカーバイドで構成され、その屈折率は1.3程度またはそれより小さい。
低屈折部材3の屈折率は、絶縁部材2を構成する各層21〜24のいずれの屈折率よりも小さい。本実施形態では、絶縁部材2の各層21〜24は、Z方向で隣り合う2層間で下層の屈折率が上層の屈折率と等しく、又は、それより小さくなるように配されている。この場合、低屈折部材3の屈折率は、最下層である酸化層21の屈折率(1.46程度)よりも小さい。このような構成においては、入射光は、絶縁部材2の層24と低屈折部材3との間の境界面と、絶縁部材2の下面とでの反射が主となる可能性があるため、第1実施形態同様、リップルの低減を考慮する必要がある。
よって、本実施形態においても、絶縁部材2の下面側および上面側に高低差D1及びD2をそれぞれ設けることにより、リップルの低減対象となる光の波長の種類を増やすことができ、結果として、第1実施形態同様の効果を得ることができる。また、低屈折部材3の上面が平坦化されているため、例えば、その上に光学系(レンズ)等の他の部材を更に配置することができ、構造面においても有利である。或いは、装置APの製造の観点では、例えば、洗浄処理等を行った際に薬液が段差Sに残ってしまうような事態を防ぐことができ、製造面においても有利である。
本実施形態では、低屈折部材3として屈折率1.3程度のものを用いる態様を例示したが、低屈折部材3の屈折率は、絶縁部材2の構成(具体的には、各層21〜24に用いられた材料)に基づいて設定可能である。例えば、
n21:酸化層21の屈折率、
n22:絶縁層22の屈折率、
n23:絶縁層23の屈折率、
n24:絶縁層24の屈折率、
n0 :空気の屈折率、
n3 :低屈折部材3の屈折率、
とした場合、
|n3−n24|>|n21−n22|、
|n3−n24|>|n22−n23|、
|n3−n24|>|n23−n24|、及び、
|n3−n24|≧|n3−n0|、
を何れも満たすように、低屈折部材3の材料を選択すればよい。
(第4実施形態)
図5(a)は、第4実施形態の光電変換装置APの上面レイアウトであり、図5(b)は、光電変換装置APの線d6−d6での断面図である。本実施形態は、絶縁部材2の上面が凹凸形状ではなく階段状に成形されている、という点で前述の第1実施形態と異なる。このような構造によっても、絶縁部材2を、その平坦下面および平坦上面の間の距離が互いに異なる位置が3以上になるように構成することができ、第1実施形態同様の効果を得ることができる。
本実施形態では、絶縁部材2の平坦上面は、X方向に並んだ4つの上面241〜244を含み、これらのうち最も低い面は上面241である。面242は、面241より高く位置しており、上面241及び242間の段差S1の高低差をD21とする。面243は、面242より高く位置しており、上面242及び243間の段差S2の高低差をD22とする。また、面244は、上面241〜244のうち最も高い面であり、上面243及び244間の段差S3の高低差をD23とする。
上記高低差D21〜D23の一部/全部は、互いに等しくてもよいし、或いは、互いに異なっていてもよい。しかし、好適には上記高低差D21〜D23の少なくとも一部は互いに異なるとよい。例えば、D21=D23且つD22≠D21(D22≠D23)の場合は特に好適であり、高低差D21及びD23によるリップルの低減対象となる光の波長と、高低差D22によるリップルの低減対象となる光の波長とは、互いに異なる。即ち、高低差D21、D22及びD23によるリップルの低減対象の狙いの光の波長を、λ1、λ2、λ3及びλ4とすると、
λ1=4×n2×D21/kODD
λ2=4×n2×D23/kODD(=λ1)、
λ3=4×n2×(D21+D22)/kODD(≠λ1)、
λ4=4×n2×(D22+D23)/kODD(=λ3)、
となる。
図5(a)及び図5(b)を参照しながら、上面241〜244の平面視での面積が互いに等しい場合を考える。例えば、上面241の反射光には上面242の反射光が対応し、高低差D21によって波長λ1のリップルが効果的に低減される。また、例えば、上面243の反射光には上面244の反射光が対応し、高低差D23(=D21)によって波長λ1のリップルが効果的に低減される。即ち、画素領域における或る面積の領域と、同面積の他の領域とは、反射光が逆位相の関係となり、波長λ1のリップルを効果的に低減可能となる。また、上面241の反射光には上面243の反射光が対応し、上面242の反射光には上面244の反射光が対応し、高低差(D21+D22=D22+D23)によって波長λ3のリップルが効果的に低減される。即ち、波長λ1同様、波長λ3についても、画素領域における或る面積の領域と、同面積の他の領域とは、反射光が逆位相の関係となり、波長λ3のリップルを効果的に低減可能となる。よって、λ1及びλ3の2種類の波長について、互いにリップル低減効果に影響を与えることなく、それぞれ、効果的にリップル低減が可能となる。
以上、本実施形態によっても、リップルの低減対象となる光の波長の種類を更に増やすことが可能となり、光電変換装置APは、製造ばらつきに起因するリップルの影響を受けることなく多様な波長域の光を安定的に検出可能となる。
なお、上面241〜244は、本実施形態では、X方向に階段状にそれぞれ段差S1〜S3を形成するように設けられた態様を例示したが、他の実施形態として、これらは、Y方向に、又は、X方向及びY方向の双方に設けられてもよい。また、絶縁部材2の上面の段差S1等の数は、本例に限られるものではなく、更に多くの段差が設けられてもよい。
(第5実施形態)
図6(a)は、第5実施形態の光電変換装置APの上面レイアウトであり、図6(b)は、光電変換装置APの線d7−d7での断面図である。本実施形態は、主に、前述の第1実施形態に対してライン状の酸化層21の数を減らした、という点で第1実施形態と異なる。これにより、本実施形態において信号電荷となる正孔は、P型領域15に集まりやすくなるため、電荷収集効率を向上させることができる。
また、本実施形態では、酸化層21の数を減らしたことで、平面視において、各上面242が下面211及び212の双方と重なる一方で、各上面241は下面211及び212のいずれとも重なっていない。即ち、本実施形態では、絶縁部材2の平坦下面および平坦上面の間の距離は距離T2〜T4の3種類である。しかしながら、前述のとおり(第1実施形態参照)、絶縁部材2は、その平坦下面および平坦上面の間の距離が互いに異なる位置が3以上になるように構成されればよい。本実施形態によっても、リップルの低減対象となる光の波長の種類を増やすことができ、結果として、第1実施形態同様の効果を得ることができる。
なお、本実施形態では、平面視において、上面242の個々が、下面211及び212の双方と重なる態様を例示したが、他の実施形態として、上面241の個々が、下面211及び212の双方と重なってもよい。
(第6実施形態)
図7(a)は、第6実施形態の光電変換装置APの上面レイアウトであり、図7(b)及び7(c)は、それぞれ、光電変換装置APの線d8−d8及び線d9−d9での断面図である。本実施形態は、絶縁部材2の上面を全域にわたって平坦にし、且つ、下面に2種類の凹凸形状を設けた、という点で前述の第1実施形態と異なる。
具体的には、本実施形態では、図7(a)及び7(c)から分かるように、半導体基板1は、凹凸形状を形成する複数の上面(凹面)141及び複数の上面(凸面)142を有し、上面141及び142は、互いに高さが異なっており、Y方向に交互に配置されている。そして、図7(a)から分かるように、各面141及び142には、複数の酸化層21がX方向に所定の間隔で配置される。
なお、各酸化層21は、Y方向に延びたライン状であるが、面141及び142間には段差S’が存在するため、Y方向で隣り合う2つの段差S’の間に形成されることで第1実施形態に比べてY方向の長さが短くなっている。段差S’の高低差は、本実施形態では前述の高低差D2と同じとするが、絶縁層21〜22の屈折率に合わせて変更されてもよい。
このような構造は、半導体基板1の上面に対してフォトリソグラフィ技術を用いてエッチングを行うことで凹面141及び凸面142を形成し、その後、各面141及び142上に、フィールド酸化により酸化層21を形成することで、得られる。なお、面141及び142により形成される凹凸形状は、複数の画素PXの全域にわたって設けられてもよいが、少なくとも各画素PX内のN型領域14に設けられればよい。
上述の構造は、絶縁部材2の観点で次のように換言することができる。即ち、絶縁部材2の下面には、複数の凹面141および複数の凸面142がY方向に比較的大きい間隔で並ぶように凹凸形状が形成される。そして、各面141及び142には、複数の凹面211および複数の凸面212がX方向に比較的小さい間隔で並ぶように凹凸形状が形成される。
このような構造によれば、図7(b)に示されるように、絶縁部材2の平坦下面および平坦上面の間の距離は、距離T1〜T4の4種類となる。よって、本実施形態によっても、絶縁部材2は、その平坦下面および平坦上面の間の距離が互いに異なる位置が3以上になるように構成される。このような構造によっても、リップルの低減対象となる光の波長の種類を増やすことができ、結果として、第1実施形態同様の効果を得ることができる。
(その他)
各実施形態に係る光電変換装置APは、スキャナ(画像読取装置)に適用可能である。スキャナの概念には、画像の読取りを主たる機能とするものの他、この機能を補助的に備えるもの、例えばマルチファンクションプリンタ等も含まれるものとする。例えば、スキャナは、光電変換装置APと、この光電変換装置APからの信号を処理するプロセッサと、LEDアレイ等の光源と、を具備する。光源により照射された読取対象物からの光は、例えばロッドレンズ等の光学系を介して光電変換装置APに入射し、光電変換装置APは、この入射光に応じた信号をプロセッサに出力する。プロセッサは、各光電変換装置APから出力された信号を処理して画像データを生成する。画像データは、スキャナ内の記憶媒体(例えば、ハードディスク、フラッシュEEPROM等)に格納され、或いは、スキャナと通信可能なサーバに格納されうる。スキャナは、複数の光電変換装置APを具備していてもよく、これらは、所定方向に配列されることでラインセンサを形成していてもよい。
以上、いくつかの好適な態様を例示したが、本発明はこれらの例に限られるものではなく、本発明の趣旨を逸脱しない範囲で、その一部が変更されてもよい。例えば、或る実施形態の内容に、他の実施形態の内容の一部が組み合わされてもよいし、これと共に/これに代替して、必要に応じて公知の要素が追加され又は削除されてもよい。また、本明細書に記載された個々の用語は、本発明を説明する目的で用いられたものに過ぎず、本発明は、その用語の厳密な意味に限定されるものでないことは言うまでもなく、その均等物をも含みうる。
AP:光電変換装置、PX:画素、1:半導体基板、2:絶縁部材。

Claims (14)

  1. 複数の画素が配列された半導体基板と、
    前記半導体基板を覆う透光性の絶縁部材と、を備え、
    前記半導体基板の前記絶縁部材と接する面には、複数の凹部が設けられ、
    前記複数の凹部のそれぞれは側面および底面を有し、
    前記絶縁部材は、各凹部の前記底面と接する第1下面と、隣り合う2つの凹部の間の面と接する第2下面と、を有し、
    前記絶縁部材の上面は、各画素の上方において、複数の第1上面および複数の第2上面を有し、
    前記第1下面からその直上の前記第1上面までの距離、
    前記第1下面からその直上の前記第2上面までの距離、
    前記第2下面からその直上の前記第1上面までの距離、及び、
    前記第2下面からその直上の前記第2上面までの距離、
    のうちの少なくとも3つは互いに異なる
    ことを特徴とするに記載の光電変換装置。
  2. 平面視において、
    前記第1上面の個々は、前記第1下面および前記第2下面の双方と重なり、
    及び/又は、
    前記第2上面の個々は、前記第1下面および前記第2下面の双方と重なる
    ことを特徴とする請求項1に記載の光電変換装置。
  3. 平面視において、
    前記第1下面と前記第2下面とは、第1の間隔で交互に配置されており、
    前記第1上面と前記第2上面とは、前記第1の間隔より大きい第2の間隔で交互に配置されている
    ことを特徴とする請求項1または請求項2に記載の光電変換装置。
  4. 平面視において、
    前記第1下面と前記第2下面とは、第1方向に交互に配置されており、
    前記第1上面と前記第2上面とは、前記第1方向と交差する第2方向に交互に配置されている
    ことを特徴とする請求項3に記載の光電変換装置。
  5. 平面視において、
    前記第1下面と前記第2下面とは、第1方向に交互に配置されており、
    前記第1上面と前記第2上面とは、前記第1方向に交互に配置されている
    ことを特徴とする請求項3に記載の光電変換装置。
  6. 前記半導体基板はシリコン基板であり、
    前記絶縁部材は、複数の絶縁層が積層されて成り、
    前記複数の絶縁層は、いずれも、屈折率が1.4以上の材料で構成されている
    ことを特徴とする請求項1から請求項5のいずれか1項に記載の光電変換装置。
  7. 前記絶縁部材は、複数の絶縁層が積層されて成り、
    前記第1上面と前記第2上面との段差をD2とし、前記複数の絶縁層の最上のものの屈折率をn2とし、波長630nmをλとし、任意の奇数をkODDとしたときに、
    D2=λ/(4×n2)×kODD±λ/8
    を満たす
    ことを特徴とする請求項1から請求項6のいずれか1項に記載の光電変換装置。
  8. 前記第1上面と前記第2上面との段差をD2とし、前記絶縁部材の屈折率をn2とし、波長630nmをλとし、任意の奇数をkODDとしたときに、
    D2=λ/(4×n2)×kODD±λ/8
    を満たす
    ことを特徴とする請求項1から請求項6のいずれか1項に記載の光電変換装置。
  9. 前記絶縁部材の前記上面は空気に露出された
    ことを特徴とする請求項1から請求項8のいずれか1項に記載の光電変換装置。
  10. 前記絶縁部材は、第1の絶縁部材であり、
    前記光電変換装置は、前記第1の絶縁部材の上に前記複数の第1上面および前記複数の第2上面を覆うように配された第2の絶縁部材を更に備え、
    前記第2の絶縁部材の屈折率は、前記第1の絶縁部材の屈折率よりも小さい
    ことを特徴とする請求項1から請求項8のいずれか1項に記載の光電変換装置。
  11. 各凹部の前記側面は傾斜面であり、
    平面視における前記第1下面の幅をW1とし、前記第2下面の幅をW2とし、前記傾斜面の幅をW3とした場合に、
    W1×0.8≦W2≦W1×1.2、かつ、
    W1×0.8≦W3≦W1×1.2、
    を満たす
    ことを特徴とする請求項1から請求項10のいずれか1項に記載の光電変換装置。
  12. 前記半導体基板は、各画素において、第1導電型の第1領域と、前記第1領域を取り囲むように前記第1領域より深く設けられた第2導電型の第2領域と、を含み、
    前記第1領域は、光電変換により発生した電荷に基づく信号を出力するための配線部に接続されており、
    平面視において、前記第1上面と前記第2上面とは、それらの段差が前記第1領域と重ならないように設けられている
    ことを特徴とする請求項1から請求項11のいずれか1項に記載の光電変換装置。
  13. 請求項1から請求項12のいずれか1項に記載の光電変換装置と、前記光電変換装置からの信号を処理するプロセッサと、を具備する
    ことを特徴とするスキャナ。
  14. 前記光電変換装置は、所定方向に複数配列されており、
    前記プロセッサは、前記複数の光電変換装置のそれぞれからの信号を処理して画像データを生成する
    ことを特徴とする請求項13に記載のスキャナ。
JP2017118839A 2017-06-16 2017-06-16 光電変換装置およびスキャナ Active JP7084700B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017118839A JP7084700B2 (ja) 2017-06-16 2017-06-16 光電変換装置およびスキャナ
US15/996,967 US10297633B2 (en) 2017-06-16 2018-06-04 Photoelectric conversion device and scanner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017118839A JP7084700B2 (ja) 2017-06-16 2017-06-16 光電変換装置およびスキャナ

Publications (2)

Publication Number Publication Date
JP2019004073A true JP2019004073A (ja) 2019-01-10
JP7084700B2 JP7084700B2 (ja) 2022-06-15

Family

ID=64656651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017118839A Active JP7084700B2 (ja) 2017-06-16 2017-06-16 光電変換装置およびスキャナ

Country Status (2)

Country Link
US (1) US10297633B2 (ja)
JP (1) JP7084700B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11425365B2 (en) 2018-12-14 2022-08-23 Canon Kabushiki Kaisha Photoelectric conversion device, method of manufacturing photoelectric conversion device, and method of manufacturing semiconductor device

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6472557A (en) * 1987-09-11 1989-03-17 Seiko Instr & Electronics Image sensor
JPH06125068A (ja) * 1992-10-14 1994-05-06 Mitsubishi Electric Corp 固体撮像素子
JPH07202157A (ja) * 1993-12-28 1995-08-04 Mitsubishi Electric Corp 固体撮像素子
JPH08213581A (ja) * 1995-11-10 1996-08-20 Matsushita Electron Corp 集積化受光素子及びその製造方法
JP2003332559A (ja) * 2002-05-09 2003-11-21 Texas Instr Japan Ltd 固体撮像装置およびその製造方法
JP2005072097A (ja) * 2003-08-20 2005-03-17 Sony Corp 光電変換装置及びその駆動方法、並びにその製造方法、固体撮像装置及びその駆動方法、並びにその製造方法
JP2011124522A (ja) * 2009-12-14 2011-06-23 Canon Inc 光電変換装置
JP2011155165A (ja) * 2010-01-28 2011-08-11 Toshiba Corp 固体撮像素子
JP2012204686A (ja) * 2011-03-25 2012-10-22 Toshiba Corp 固体撮像装置及びその製造方法
JP2012248679A (ja) * 2011-05-27 2012-12-13 Canon Inc 固体撮像装置、それを用いた撮像システム及び固体撮像装置の製造方法
JP2016033977A (ja) * 2014-07-31 2016-03-10 キヤノン株式会社 光電変換装置、及び撮像システム
JP2016046508A (ja) * 2014-08-22 2016-04-04 采▲ぎょく▼科技股▲ふん▼有限公司VisEra Technologies Company Limited ダミーパターンを有する撮像装置
JP2016178148A (ja) * 2015-03-19 2016-10-06 三菱電機株式会社 光電変換素子およびその製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006073736A (ja) 2004-09-01 2006-03-16 Canon Inc 光電変換装置、固体撮像装置及び固体撮像システム
JP4916101B2 (ja) 2004-09-01 2012-04-11 キヤノン株式会社 光電変換装置、固体撮像装置及び固体撮像システム
JP2006073885A (ja) 2004-09-03 2006-03-16 Canon Inc 固体撮像装置、その製造方法、およびデジタルカメラ
JP5132102B2 (ja) 2006-08-01 2013-01-30 キヤノン株式会社 光電変換装置および光電変換装置を用いた撮像システム
JP5110820B2 (ja) 2006-08-02 2012-12-26 キヤノン株式会社 光電変換装置、光電変換装置の製造方法及び撮像システム
JP4350768B2 (ja) 2007-04-16 2009-10-21 キヤノン株式会社 光電変換装置及び撮像装置
JP5335271B2 (ja) 2008-04-09 2013-11-06 キヤノン株式会社 光電変換装置及びそれを用いた撮像システム
JP2010206181A (ja) 2009-02-06 2010-09-16 Canon Inc 光電変換装置及び撮像システム
JP2010206178A (ja) 2009-02-06 2010-09-16 Canon Inc 光電変換装置、及び光電変換装置の製造方法
JP5818455B2 (ja) 2011-02-17 2015-11-18 キヤノン株式会社 固体撮像装置およびその製造方法
JP2016051896A (ja) 2014-08-29 2016-04-11 キヤノン株式会社 固体撮像装置及びその製造方法ならびにカメラ
JP2016082306A (ja) 2014-10-10 2016-05-16 キヤノン株式会社 撮像装置、撮像システム及び撮像装置の駆動方法
JP6800610B2 (ja) * 2016-05-24 2020-12-16 キヤノン株式会社 光電変換装置及び画像読み取り装置

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6472557A (en) * 1987-09-11 1989-03-17 Seiko Instr & Electronics Image sensor
JPH06125068A (ja) * 1992-10-14 1994-05-06 Mitsubishi Electric Corp 固体撮像素子
JPH07202157A (ja) * 1993-12-28 1995-08-04 Mitsubishi Electric Corp 固体撮像素子
JPH08213581A (ja) * 1995-11-10 1996-08-20 Matsushita Electron Corp 集積化受光素子及びその製造方法
JP2003332559A (ja) * 2002-05-09 2003-11-21 Texas Instr Japan Ltd 固体撮像装置およびその製造方法
JP2005072097A (ja) * 2003-08-20 2005-03-17 Sony Corp 光電変換装置及びその駆動方法、並びにその製造方法、固体撮像装置及びその駆動方法、並びにその製造方法
JP2011124522A (ja) * 2009-12-14 2011-06-23 Canon Inc 光電変換装置
JP2011155165A (ja) * 2010-01-28 2011-08-11 Toshiba Corp 固体撮像素子
JP2012204686A (ja) * 2011-03-25 2012-10-22 Toshiba Corp 固体撮像装置及びその製造方法
JP2012248679A (ja) * 2011-05-27 2012-12-13 Canon Inc 固体撮像装置、それを用いた撮像システム及び固体撮像装置の製造方法
JP2016033977A (ja) * 2014-07-31 2016-03-10 キヤノン株式会社 光電変換装置、及び撮像システム
JP2016046508A (ja) * 2014-08-22 2016-04-04 采▲ぎょく▼科技股▲ふん▼有限公司VisEra Technologies Company Limited ダミーパターンを有する撮像装置
JP2016178148A (ja) * 2015-03-19 2016-10-06 三菱電機株式会社 光電変換素子およびその製造方法

Also Published As

Publication number Publication date
US10297633B2 (en) 2019-05-21
JP7084700B2 (ja) 2022-06-15
US20180366509A1 (en) 2018-12-20

Similar Documents

Publication Publication Date Title
US20220077214A1 (en) Cmos image sensor structure
US10014338B2 (en) Image sensor
CN103811508B (zh) 固态图像传感器、制造固态图像传感器的方法及相机
US10614281B2 (en) Optical fingerprint imaging system and array sensor
US11031424B2 (en) Image sensor with selective light-shielding for reference pixels
US20140339615A1 (en) Bsi cmos image sensor
JP5956866B2 (ja) 固体撮像装置
US9263487B2 (en) Photoelectric conversion apparatus
US20160071896A1 (en) Solid-state image sensing device and camera
JP5710510B2 (ja) 固体撮像装置
US10797090B2 (en) Image sensor with near-infrared and visible light phase detection pixels
KR20130016075A (ko) 고체 촬상 장치 및 그 제조 방법
JP2014053429A (ja) 固体撮像装置、固体撮像装置を備えた電子機器、表示装置
CN112543290A (zh) 图像传感器和包括该图像传感器的成像装置
US20140055655A1 (en) Solid-state imaging element, solid-state imaging device and method of manufacturing the same
JP2015179731A (ja) 固体撮像装置
JP2019004073A (ja) 光電変換装置およびスキャナ
KR20210112055A (ko) 픽셀 및 이를 포함하는 이미지 센서
JP2017079243A (ja) 固体撮像装置及びカメラ
US20180166594A1 (en) Lens structure and method for fabricating the same
JP2018129359A5 (ja)
US20220085084A1 (en) Pixel with an improved quantum efficiency
WO2024057735A1 (ja) 光検出装置及び電子機器
JP2012204686A (ja) 固体撮像装置及びその製造方法
JP2006210397A (ja) 固体撮像素子

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200513

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20210103

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210602

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20211112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220214

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20220214

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20220224

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20220228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220506

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220603

R151 Written notification of patent or utility model registration

Ref document number: 7084700

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151