JP2018141110A - 多孔質ポリイミドフィルム、ポリイミド前駆体溶液、および多孔質ポリイミドフィルムの製造方法 - Google Patents

多孔質ポリイミドフィルム、ポリイミド前駆体溶液、および多孔質ポリイミドフィルムの製造方法 Download PDF

Info

Publication number
JP2018141110A
JP2018141110A JP2017037308A JP2017037308A JP2018141110A JP 2018141110 A JP2018141110 A JP 2018141110A JP 2017037308 A JP2017037308 A JP 2017037308A JP 2017037308 A JP2017037308 A JP 2017037308A JP 2018141110 A JP2018141110 A JP 2018141110A
Authority
JP
Japan
Prior art keywords
polyimide precursor
resin particles
precursor solution
polyimide
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017037308A
Other languages
English (en)
Other versions
JP6885107B2 (ja
Inventor
今井 孝史
Takashi Imai
孝史 今井
佐々木 知也
Tomoya Sasaki
知也 佐々木
佳奈 宮崎
Kana Miyazaki
佳奈 宮崎
額田 克己
Katsumi Nukada
克己 額田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP2017037308A priority Critical patent/JP6885107B2/ja
Publication of JP2018141110A publication Critical patent/JP2018141110A/ja
Application granted granted Critical
Publication of JP6885107B2 publication Critical patent/JP6885107B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Fuel Cell (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Cell Separators (AREA)

Abstract

【課題】リチウムイオン電池のセパレータとして適用したときの繰り返し充放電による電池容量の低下が抑制される多孔質ポリイミドフィルムを提供すること。【解決手段】Liを除くアルカリ金属、アルカリ土類金属、およびケイ素からなる金属群の合計含有量が、多孔質ポリイミドフィルムに対して、100ppm以下である多孔質ポリイミドフィルム。【選択図】なし

Description

本発明は、多孔質ポリイミドフィルム、ポリイミド前駆体溶液、および多孔質ポリイミドフィルムの製造方法に関する。
ポリイミド樹脂は、機械的強度、化学的安定性、耐熱性に優れた特性を有する材料であり、これらの特性を有する多孔質のポリイミドフィルムが注目されている。
例えば、特許文献1には、単分散球状無機粒子の最密充填堆積体を焼成して無機粒子の焼結体を形成し、この焼結体の無機粒子間隙にポリアミック酸を充填した後、焼成して形成されたポリイミド樹脂とし、その後、無機粒子は溶解するが樹脂は溶解しない溶液に浸漬して、無機粒子を溶解除去するリチウム二次電池用セパレータの製造方法が記載されている。
特許文献2には、ポリイミドからなる孔を有する有機多孔体と、孔内にカチオン成分とアニオン成分とを含有する電解質材料を保持したイオン伝導体が記載されている。
特許文献3には、ポリアミド酸若しくはポリイミド、シリカ粒子及び溶媒を混合してワニスを製造する、又はシリカ粒子が分散した溶剤中でポリアミド酸若しくはポリイミドを重合してワニスを製造するワニス製造工程、ワニス製造工程で製造されたワニスを基板に製膜後、イミド化を完結させて、ポリイミド−シリカ複合膜を製造する複合膜製造工程、及び、複合膜製造工程で製造されたポリイミド−シリカ複合膜のシリカを除去するシリカ除去工程を有する多孔質ポリイミド膜の製造方法が記載されている。
特許文献4には、シリカ粒子を充填後、焼結して、多孔質シリカ製鋳型を得る多孔質シリカ製鋳型の製造工程、多孔質シリカ製鋳型の製造工程で得られた多孔質シリカ製鋳型の空隙にポリイミドを充填するポリイミド充填工程およびポリイミドが充填された多孔質シリカ製鋳型からシリカを除去して、多孔質ポリイミドを得るシリカ除去工程を有する多孔質ポリイミドの製造方法が記載されている。
特許文献5には、分散媒に、球状粒子を分散させて調製した球状粒子分散スラリを乾燥させて、球状粒子分散膜を得た後、この膜を熱処理して、球状粒子−樹脂膜を形成し、球状粒子−樹脂膜を、フッ酸を除く無機酸、有機酸、水、又はアルカリ溶液と接触させて球状粒子を溶解除去するか、又は球状粒子−樹脂膜を加熱して球状粒子を除去し、空孔を形成させて、二次電池用セパレータを製造する方法が記載されている。
特許文献6には、正極と、負極と、平均細孔径が5μm以下であり、ポリイミドあるいはポリイミド前駆体の溶液塗布後、相分離によって多孔質膜化した多孔質ポリイミド膜を含むセパレータ層と、を有する非水電解液二次電池が記載されている。
特許5331627号公報 特開2008−034212号公報 特開2012−107144号公報 特開2011−111470号公報 国際公開2014/196656号 特開平10−302749号公報
樹脂粒子とポリイミド前駆体とを含むポリイミド前駆体溶液を用いて得た多孔質ポリイミドフィルムを、例えば、リチウムイオン電池のセパレータとして適用した場合、繰り返し充放電したときの電池容量の低下が大きいことが分かってきた。
本発明の課題は、樹脂粒子とポリイミド前駆体とを含むポリイミド前駆体溶液を用いて得た多孔質ポリイミドフィルムにおいて、Liを除くアルカリ金属、アルカリ土類金属、およびケイ素からなる金属群の合計含有量が多孔質ポリイミドフィルムの固形分に対し、100ppmを超える場合に比べ、リチウムイオン電池のセパレータとして適用したときの繰り返し充放電による電池容量の低下が抑制される多孔質ポリイミドフィルムを提供することである。
上記目的を達成するため、以下の発明が提供される。
請求項1に係る発明は、
Liを除くアルカリ金属、アルカリ土類金属、およびケイ素からなる金属群の合計含有量が、多孔質ポリイミドフィルムに対して、100ppm以下である多孔質ポリイミドフィルム。
請求項2に係る発明は、
前記金属群の合計含有量が50ppm以下である請求項1に記載の多孔質ポリイミドフィルム。
請求項3に係る発明は、
前記金属群の合計含有量が20ppm以下である請求項2に記載の多孔質ポリイミドフィルム。
請求項4に係る発明は、
空孔の最大径が0.1μm以上0.5μm以下である請求項1〜請求項3のいずれか1項に記載の多孔質ポリイミドフィルム。
請求項5に係る発明は、
水を含む水性溶剤、前記水性溶剤に溶解しない樹脂粒子、有機アミン化合物、およびポリイミド前駆体を含有し、Liを除くアルカリ金属、アルカリ土類金属、およびケイ素からなる金属群の合計含有量が、ポリイミド前駆体溶液に対して、200ppm以下であるポリイミド前駆体溶液。
請求項6に係る発明は、
前記樹脂粒子の平均粒径が、0.1μm以上0.5μm以下である請求項5に記載のポリイミド前駆体溶液。
請求項7に係る発明は、
前記樹脂粒子の平均粒径が、0.25μm以上0.5μm以下である請求項6に記載のポリイミド前駆体溶液。
請求項8に係る発明は、
前記樹脂粒子の含有量が、ポリイミド前駆体固形分100質量部に対し、20質量部以上600質量部以下である請求項5〜請求項7のいずれか1項に記載のポリイミド前駆体溶液。
請求項9に係る発明は、
前記樹脂粒子の含有量が、ポリイミド前駆体固形分100質量部に対し、30質量部以上100質量部以下である請求項8に記載のポリイミド前駆体溶液。
請求項10に係る発明は、
前記樹脂粒子が、ソープフリー乳化重合粒子である請求項5〜請求項9のいずれか1項に記載のポリイミド前駆体溶液。
請求項11に係る発明は、
前記樹脂粒子が、洗浄樹脂粒子である請求項5〜請求項9のいずれか1項に記載のポリイミド前駆体溶液。
請求項12に係る発明は、
前記水性溶剤は、水性溶剤全量に対する前記水の含有量が50質量%以上100質量%以下である請求項5〜請求項11のいずれか1項に記載のポリイミド前駆体溶液。
請求項13に係る発明は、
前記水性溶剤は、水性溶剤全量に対する前記水の含有量が80質量%以上100質量%以下である請求項12に記載のポリイミド前駆体溶液。
請求項14に係る発明は、
前記有機アミン化合物が、3級アミン化合物である請求項5〜請求項13のいずれか1項に記載のポリイミド前駆体溶液。
請求項15に係る発明は、
前記有機アミン化合物が、2−ジメチルアミノエタノール、2−ジエチルアミノエタノール、2−ジメチルアミノプロパノール、ピリジン、トリエチルアミン、ピコリン、N−メチルモルホリン、N−エチルモルホリン、1,2−ジメチルイミダゾール、2−エチル−4−メチルイミダゾール、N−メチルピペリジン、及びN−エチルピペリジンからなる群から選択される少なくとも1種である請求項14に記載のポリイミド前駆体溶液。
請求項16に係る発明は、
前記有機アミン化合物が、モルホリン骨格を有するアミン化合物である請求項15に記載のポリイミド前駆体溶液。
請求項17に係る発明は、
請求項5〜請求項16のいずれか1項に記載のポリイミド前駆体溶液を塗布して塗膜を形成した後、前記塗膜を乾燥して、前記ポリイミド前駆体及び前記樹脂粒子を含む被膜を形成する第1の工程と、
前記被膜を加熱して、前記ポリイミド前駆体をイミド化してポリイミドフィルムを形成する第2の工程であって、前記樹脂粒子を除去する処理を含む第2の工程と、
を有する多孔質ポリイミドフィルムの製造方法。
請求項1、2、3に係る発明によれば、樹脂粒子とポリイミド前駆体を含むポリイミド前駆体溶液を用いて得た多孔質ポリイミドフィルムにおいて、Liを除くアルカリ金属、アルカリ土類金属、およびケイ素からなる金属群の合計含有量が多孔質ポリイミドフィルムの固形分に対し、100ppmを超える場合に比べ、リチウムイオン電池のセパレータとして適用したときの繰り返し充放電による電池容量の低下が抑制される多孔質ポリイミドフィルムが提供される。
請求項4に係る発明によれば、Liを除くアルカリ金属、アルカリ土類金属、およびケイ素からなる金属群の合計含有量が多孔質ポリイミドフィルムの固形分に対し、100ppmを超える場合に比べ、空孔の最大径が0.1μm以上0.5μm以下であっても、リチウムイオン電池のセパレータとして適用したときの繰り返し充放電による電池容量の低下が抑制される多孔質ポリイミドフィルムが提供される。
請求項5に係る発明によれば、水を含む水性溶剤、水性溶剤に溶解しない樹脂粒子、有機アミン化合物、およびポリイミド前駆体を含有するポリイミド前駆体溶液において、Liを除くアルカリ金属、アルカリ土類金属、およびケイ素からなる金属群の合計含有量が、ポリイミド前駆体溶液に対して、200ppmを超える場合に比べ、リチウムイオン電池のセパレータとして適用したときの繰り返し充放電による電池容量の低下が抑制される多孔質ポリイミドフィルムが得られるポリイミド前駆体溶液が提供される。
請求項6、7に係る発明によれば、Liを除くアルカリ金属、アルカリ土類金属、およびケイ素からなる金属群の合計含有量が、ポリイミド前駆体溶液に対して、200ppmを超える場合に比べ、樹脂粒子の平均粒径が0.1μm以上0.5μm以下、さらに、0.25μm以上0.5μm以下の範囲であっても、リチウムイオン電池のセパレータとして適用したときの繰り返し充放電による電池容量の低下が抑制される多孔質ポリイミドフィルムが得られるポリイミド前駆体溶液が提供される。
請求項8、9に係る発明によれば、Liを除くアルカリ金属、アルカリ土類金属、およびケイ素からなる金属群の合計含有量が、ポリイミド前駆体溶液に対して、200ppmを超える場合に比べ、樹脂粒子の含有量が、ポリイミド前駆体固形分100質量部に対し、20質量部以上600質量部以下、さらに、30質量部以上100質量部以下の範囲であっても、リチウムイオン電池のセパレータとして適用したときの繰り返し充放電による電池容量の低下が抑制される多孔質ポリイミドフィルムが得られるポリイミド前駆体溶液が提供される。
請求項10、11に係る発明によれば、Liを除くアルカリ金属、アルカリ土類金属、およびケイ素からなる金属群の合計含有量が、ポリイミド前駆体溶液に対して、200ppmを超える場合に比べ、樹脂粒子がソープフリー乳化重合樹脂、又は洗浄樹脂粒子であり、リチウムイオン電池のセパレータとして適用したときの繰り返し充放電による電池容量の低下が抑制される多孔質ポリイミドフィルムが得られるポリイミド前駆体溶液が提供される。
請求項12、13に係る発明によれば、Liを除くアルカリ金属、アルカリ土類金属、およびケイ素からなる金属群の合計含有量が、ポリイミド前駆体溶液に対して、200ppmを超える場合に比べ、水性溶媒剤全量に対する水の含有量が50質量%以上100質量%以下、さらに、80質量%以上100質量%以下の範囲であっても、リチウムイオン電池のセパレータとして適用したときの繰り返し充放電による電池容量の低下が抑制される多孔質ポリイミドフィルムが得られるポリイミド前駆体溶液が提供される。
請求項14、15、16に係る発明によれば、Liを除くアルカリ金属、アルカリ土類金属、およびケイ素からなる金属群の合計含有量が、ポリイミド前駆体溶液に対して、200ppmを超える場合に比べ、有機アミン化合物が、3級アミン化合物であっても、リチウムイオン電池のセパレータとして適用したときの繰り返し充放電による電池容量の低下が抑制される多孔質ポリイミドフィルムが得られるポリイミド前駆体溶液が提供される。
請求項17に係る発明によれば、水を含む水性溶剤、水性溶剤に溶解しない樹脂粒子、有機アミン化合物、およびポリイミド前駆体を含有するポリイミド前駆体溶液を塗布して塗膜を形成した後、前記塗膜を乾燥して、前記ポリイミド前駆体及び前記樹脂粒子を含む被膜を形成する第1の工程と、前記被膜を加熱して、前記ポリイミド前駆体をイミド化してポリイミドフィルムを形成する第2の工程であって、前記樹脂粒子を除去する処理を含む第2の工程と、を有する多孔質ポリイミドフィルムの製造方法において、ポリイミド前駆体溶液が、Liを除くアルカリ金属、アルカリ土類金属、およびケイ素からなる金属群の合計含有量が、ポリイミド前駆体溶液に対して、200ppmを超える場合に比べ、リチウムイオン電池のセパレータとして適用したときの繰り返し充放電による電池容量の低下が抑制される多孔質ポリイミドフィルムの製造方法が提供される。
本実施形態の多孔質ポリイミドフィルムの形態を示す模式図である。
以下、本発明の一例である実施形態について説明する。
本実施形態に係るポリイミドフィルムは、Liを除くアルカリ金属、アルカリ土類金属、およびケイ素からなる金属群(以下、「特定金属群」と称する場合がある。)の合計含有量が、多孔質ポリイミドフィルムに対して、100ppm以下である。なお、本明細書中において、ppmは質量基準である。
多孔質ポリイミドフィルムは、例えば、樹脂粒子とポリイミド前駆体を含むポリイミド前駆体溶液を用いて形成される。この場合に、多孔質ポリイミドフィルム中には、特定金属群が残留していることがある。そして、多孔質ポリイミドフィルムを、リチウムイオン電池のセパレータに適用した場合に、繰り返し充放電したときの電池容量(以下、「サイクル特性」と称する場合がある。)が低下することが分かってきた。
多孔質ポリイミドフィルム中に含有する、特定金属群の合計含有量が100ppmを超えている場合、多孔質ポリイミドフィルム中に含まれている金属量が多すぎるために、イオン流の乱れ等が生じると考えられ、サイクル特性が低下すると考えられる。
これに対し、本実施形態に係る多孔質ポリイミドフィルムは、特定金属群の合計含有量が100ppm以下であり、多孔質ポリイミドフィルム中を透過するイオン流の乱れを生じると考えられる金属種の含有量が少ないため、サイクル特性の低下が抑制されると推測される。
以上から、本実施形態に係る多孔質ポリイミドフィルムは、上記構成により、リチウムイオン電池のセパレータとして適用したときの繰り返し充放電による電池容量の低下が抑制されると推測される。
ここで、従来の多孔質ポリイミドフィルムにおいて、特定金属群の合計含有量が100ppmを超える場合の理由としては、例えば、次のように考えられる。
例えば、従来の多孔質ポリイミドフィルムが、樹脂粒子とポリイミド前駆体とを含むポリイミド前駆体溶液を用いて多孔質ポリイミドを形成した場合、この樹脂粒子は、例えば、乳化重合等の方法によって造粒される。樹脂粒子を乳化重合によって造粒した場合、乳化重合に用いる界面活性剤として、特定金属群の金属が含まれていることがある。そして、この金属が含まれている界面活性剤を用いて得られた樹脂粒子を、ポリイミド前駆体溶液に分散させると、ポリイミド前駆体溶液中には、樹脂粒子に含まれている金属に由来する金属を含んでいる。このポリイミド前駆体溶液を用いて、多孔質ポリイミドフィルムの形成に適用すると、皮膜のイミド化の過程、又は樹脂粒子を除去する過程等において、ポリイミド前駆体溶液に含まれている金属が、多孔質ポリイミドフィルムに残留する。その結果、特定金属群の合計含有量として、多孔質ポリイミドフィルムに対して100ppmを超えて残留すると考えられる。
これに対して、本実施形態に係る多孔質ポリイミドフィルムの製造方法では、水を含む水性溶剤(以下、単に「水性溶剤」と称する場合がある。)、水を含む水性溶剤に溶解しない樹脂粒子(以下、単に「樹脂粒子」と称する場合がある)、有機アミン化合物、およびポリイミド前駆体を含有し、特定金属群の合計含有量が、ポリイミド前駆体溶液に対して、200ppm以下であるポリイミド前駆体溶液を用いる。その結果、本実施形態に係る多孔質ポリイミドフィルムによって得られた多孔質ポリイミドフィルムは、多孔質ポリイミドフィルムに対する特定金属群の合計含有量が100ppm以下になると考えられる。
〔多孔質ポリイミドフィルム〕
本実施形態に係る多孔質ポリイミドフィルムは、特定金属群の合計含有量が、多孔質ポリイミドフィルムに対して、100ppm以下である。好ましくは50ppm以下であり、より好ましくは20ppm以下である。多孔質ポリイミドフィルムに対する特定金属群の合計含有量は、少ないほうがよく、下限値は特に限定されないが、0ppmであることが好ましい。なお、0ppmとは、検出限界以下を示す。
なお、多孔質ポリイミドフィルムに含有する特定金属群の合計含有量は、測定対象となる多孔質ポリイミドフィルムを原子吸光分析装置により測定する。
多孔質ポリイミドフィルムに含有する特定金属群の合計含有量を調整する方法は特に限定されないが、例えば、後述のポリイミド前駆体溶液に用いる樹脂粒子に含まれる特定金属群の合計含有量を低減させることで調整する方法が挙げられる。
−多孔質ポリイミドフィルムの特性−
多孔質ポリイミドフィルムは、球状に近い形状の空孔が連結したものを有する。本明細書中において、空孔の形状が「球状に近い」とは、球状、及びほぼ球状の両者の形状を包含するものである。具体的には、長径と短径の比(長径/短径)が1以上2以下である空孔の割合が50%以上存在することを意味する。この空孔の存在割合が多いほど、球状の空孔の割合が増加する。長径と短径の比(長径/短径)が1以上2以下である空孔は、50%以上100%以下であることが好ましく、55%以上100%以下であることがさらに好ましい。また、長径と短径の比が1に近づくほど真球状に近くなる。球状に近い形状の空孔が連結したものであるため、連結部分は壁をなしている部分からの外挿で形状を推定する。
また、多孔質ポリイミドフィルムを、例えば、リチウムイオン電池の電池セパレータに適用した場合に、イオン流の乱れの発生が抑制されるため、リチウムデンドライトの形成が抑制されやすくなる。また、フィルターとして用いた場合、ろ過の精度(例えば、ろ液中に含まれる物質の大きさの均一性)が高まる。
多孔質ポリイミドフィルムは、特に限定されないが、空孔率が30%以上であることがよい。また、空孔率が40%以上であることが好ましく、50%以上であることがより好ましい。空孔率の上限は、特に限定されないが、90%以下の範囲であることがよい。
また、空孔は、空孔どうしが互いに連結されて連なった形状であることが好ましい(図1参照)。空孔どうしが互いに連結されている部分の空孔径は、例えば、空孔径の最大径の1/100以上1/2以下であることがよく、1/50以上1/3以下であることが好ましく、1/20以上1/4以下であることがより好ましい。具体的には、空孔どうしが互いに連結されて連なっている部分の空孔径の平均値は、5nm以上1500nm以下であることがよい。
空孔径の最大値(空孔の最大径)としては、特に限定されないが、0.1μm以上0.5μm以下の範囲であることがよく、0.25μm以上0.5μm以下の範囲が好ましく、0.25μm以上0.4μm以下の範囲であることがより好ましい。
多孔質ポリイミドフィルムは、空孔の最大径と最小径の比率(空孔径の最大値と最小値の比率)が1以上2以下である。好ましくは1以上1.9以下、より好ましくは1以上1.8以下である。この範囲の中でも、1に近いほうがさらに好ましい。この範囲にあることで、空孔径のバラつきが抑制される。また、本実施形態の多孔質ポリイミドフィルムを、例えば、リチウムイオン電池の電池セパレータに適用した場合に、イオン流の乱れの発生が抑制されるため、リチウムデンドライトの形成が抑制されやすくなる。
なお、「空孔の最大径と最小径の比率」とは、空孔の最大径を最小径で除した値(つまり、空孔径の最大値/最小値)で表される比率である。
空孔径の最大値、最小値、平均値、空孔どうしが互いに連結されている部分の空孔径の平均値、及び、空孔の長径と短径は、走査型電子顕微鏡(SEM)にて観察及び計測される値である。具体的には、まず、多孔質ポリイミドフィルムを切り出し、測定用試料を準備する。そして、この測定用試料をキーエンス(KEYENCE)社製のVE SEMにより、標準装備されている画像処理ソフトにて観察及び計測を実施する。観察及び計測は、測定用試料断面のうち、空孔部分のそれぞれについて100個行い、それぞれの平均値と最小径、最大径、算術平均径を求める。空孔の形状が円形でない場合には、最も長い部分を径とする。また、上記の空孔部分のそれぞれについて、長径及び短径をキーエンス(KEYENCE)社製のVE SEMにより、標準装備されている画像処理ソフトにて観察及び計測を行い、長径/短径の比を算出する。
多孔質ポリイミドフィルムの膜厚は、特に限定されるものでないが、15μm以上500μm以下であることがよい。
(多孔質フィルムの用途)
本実施形態に係る多孔質フィルムが適用される用途としては、例えば、リチウム電池の電池セパレータが挙げられる。また、リチウム電池の電池セパレータ以外にも、例えば、リチウム電池以外の電池セパレータ;電解コンデンサー用のセパレータ;燃料電池等の電解質膜;電池電極材;気体又は液体の分離膜;低誘電率材料;各種フィルター;等が挙げられる。
なお、本実施形態に係る多孔質フィルムを、例えば、リチウム電池の電池セパレータに適用した場合には、多孔質ポリイミドフィルムに対する特定金属群の合計含有量が少ないため、リチウムイオンのイオン流分布のバラつきが抑制される等の作用により、リチウムデンドライトの生成が抑制されると考えられる。さらに、本実施形態の多孔質フィルムに含まれる多孔質ポリイミドフィルムの空孔の形状、空孔径、存在分布のバラつきが抑制されているためと推測される。
また、例えば、電池電極材に適用した場合には、電解液に接触する機会が増加するため、電池の容量が増えると考えられる。これは、多孔質ポリイミドフィルムに含有させた電極用のカーボンブラック等の材料が、多孔質ポリイミドフィルムの空孔径の表面や、フィルムの表面に露出する量が増加するためと推測される。
さらに、例えば、多孔質ポリイミドフィルムの空孔内に、例えば、いわゆるイオン性液体をゲル化したイオン性ゲルを充填して電解質膜として適用することも可能である。本実施形態の多孔質フィルムの製造方法により、工程が簡略化されるため、より低コストの電解質膜が得られると考えられる。
〔多孔質ポリイミドフィルムの製造方法〕
多孔質ポリイミドフィルムに含有するポリイミドは、具体的には、テトラカルボン酸二無水物とジアミン化合物とを重合してポリイミド前駆体を生成し、ポリイミド前駆体の溶液を得て、イミド化反応させて得られる。より具体的には、ポリイミドは、水を含む水性溶剤に、ポリイミド前駆体と有機アミン化合物とが溶解しているポリイミド前駆体溶液を用いてイミド化反応させて得られる。例えば、水性溶剤中で、有機アミン化合物の存在下、テトラカルボン酸二無水物とジアミン化合物とを重合して樹脂(ポリイミド前駆体)を生成してポリイミド前駆体溶液を得る方法が挙げられる。
なお、有機アミン化合物の存在下、テトラカルボン酸二無水物とジアミン化合物とを重合して樹脂(ポリイミド前駆体)を生成してポリイミド前駆体溶液を得ることを挙げたが、この例に限定されるものではない。例えば、有機アミン化合物が溶解していないポリイミド前駆体溶液を用いる方法が挙げられる。具体的には、水溶性エーテル系溶剤、水溶性ケトン系溶剤、水溶性アルコール系溶剤及び水から選ばれる水性混合溶剤(例えば、水溶性エーテル系溶剤と水、又は水溶性ケトン系溶剤と水等の混合溶剤、水溶性アルコール系溶剤との組合せ等)中でテトラカルボン酸二無水物とジアミン化合物とを重合してポリイミド前駆体を生成してポリイミド前駆体溶液を得る方法も挙げられる。
以下、本実施形態に係る多孔質ポリイミドフィルムの好適な製造方法の一例について説明する。
本実施形態に係る多孔質ポリイミドフィルムの製造方法は、下記に挙げる第1の工程及び第2の工程を有する。
第1の工程は、水性溶剤、樹脂粒子、有機アミン化合物、およびポリイミド前駆体を含有し、Liを除くアルカリ金属、アルカリ土類金属、およびケイ素からなる金属群の合計含有量が、ポリイミド前駆体溶液に対して、200ppm以下(好ましくは150ppm以下)であるポリイミド前駆体溶液を塗布して塗膜を形成した後、前記塗膜を乾燥して、前記ポリイミド前駆体及び前記樹脂粒子を含む被膜を形成する工程である。
ポリイミド前駆体溶液に対する特定金属群の合計含有量は、少ないほうがよく、下限値は特に限定されないが、0ppmであることが好ましい。なお、0ppmとは、検出限界以下を示す。
ここで、ポリイミド前駆体溶液に含有する、ポリイミド前駆体溶液に対する特定金属群の合計含有量は、測定対象となるポリイミド前駆体溶液を原子吸光分析装置により測定する。具体的には、水分を蒸発させた状態のポリイミド前駆体溶液として、原子吸光分析装置によって測定する。
第2の工程は、被膜を加熱して、ポリイミド前駆体をイミド化してポリイミドフィルムを形成する第2の工程であって、樹脂粒子を除去する処理を含む工程である。
なお、樹脂粒子を除去する処理が、樹脂粒子を溶解する有機溶剤により樹脂粒子を除去する場合、樹脂が架橋しているために除去性が低いときであっても、加熱により除去することができる。
ポリイミド前駆体溶液に対する特定金属群の合計含有量を調整する方法は特に限定されないが、例えば、後述のポリイミド前駆体に用いる樹脂粒子に含まれる特定金属群の合計含有量を低減させることで調整する方法が挙げられる。
−第1の工程−
第1の工程は、まず、水性溶剤、樹脂粒子、有機アミン化合物、およびポリイミド前駆体を含有するポリイミド前駆体溶液(以下、「樹脂粒子分散ポリイミド前駆体溶液」と称することがある。)を作製する。
ポリイミド前駆体溶液は、まず、樹脂粒子と、水性溶剤にポリイミド前駆体が溶解しているポリイミド前駆体溶液とを準備する。ポリイミド前駆体が溶解しているポリイミド前駆体溶液としては、ポリイミド前駆体及び有機アミン化合物が溶解しているポリイミド前駆体溶液である。
そして、樹脂粒子と、ポリイミド前駆体及び有機アミン化合物が溶解しているポリイミド前駆体溶液とを混合して、樹脂粒子分散ポリイミド前駆体溶液とする。
次に、得られた樹脂粒子分散ポリイミド前駆体溶液を、基板上に塗布して塗膜を形成する。この塗膜には、ポリイミド前駆体溶液と、樹脂粒子と、を含んでいる。そして、この塗膜中の樹脂粒子は、凝集が抑制された状態で分布している。その後、基板上に形成された塗膜を乾燥して、ポリイミド前駆体及び前記樹脂粒子を含む被膜を形成する。
ポリイミド前駆体及び樹脂粒子を含む被膜が形成される基板としては、特に制限されない。例えば、ポリスチレン、ポリエチレンテレフタレート等の樹脂製基板;ガラス製基板;セラミック製基板;鉄、ステンレス鋼(SUS)等の金属基板;これらの材料が組み合わされた複合材料基板等が挙げられる。また、基板には、必要に応じて、例えば、シリコーン系やフッ素系の剥離剤等による剥離処理を行って剥離層を設けてもよい。また、基材の表面を樹脂粒子の粒子径程度の大きさに粗面化し、基材接触面での樹脂粒子の露出を促進することも効果的である。
基板上に、樹脂粒子分散ポリイミド前駆体溶液を塗布する方法としては、特に限定されない。例えば、スプレー塗布法、回転塗布法、ロール塗布法、バー塗布法、スリットダイ塗布法、インクジェット塗布法等の各種の方法が挙げられる。
なお、樹脂粒子分散ポリイミド前駆体溶液を基板上に形成する場合には、樹脂粒子が塗膜の表面から露出する量の樹脂粒子を加え、形成することがよい。
そして、以上の方法により得られたポリイミド前駆体溶液と樹脂粒子とを含む塗膜を形成した後、乾燥して、ポリイミド前駆体及び樹脂粒子を含む被膜が形成される。具体的には、ポリイミド前駆体溶液と樹脂粒子とを含む塗膜を、例えば、加熱乾燥、自然乾燥、真空乾燥等の方法により乾燥させて、被膜を形成する。より具体的には、被膜に残留する溶剤が、被膜の固形分に対して50%以下(好ましくは30%以下)となるように、塗膜を乾燥させて、被膜を形成する。この被膜は、ポリイミド前駆体が、水に溶解できる状態である。
また、塗膜を得た後、乾燥して被膜を形成する過程で、樹脂粒子を露出させる処理を行って、樹脂粒子を露出させた状態にしてもよい。この樹脂粒子を露出させる処理を行うことによって、多孔質ポリイミドフィルムの開孔率が高められる。
樹脂粒子を露出させる処理としては、具体的には、例えば、次に示す方法が挙げられる。
ポリイミド前駆体溶液及び樹脂粒子を含む塗膜を得た後、塗膜を乾燥して、ポリイミド前駆体及び樹脂粒子を含む被膜を形成する過程では、前述のように、被膜は、ポリイミド前駆体が、水に溶解できる状態である。被膜がこの状態のときに、例えば、拭き取る処理、又は水に浸漬する処理等により、樹脂粒子を露出させることができる。具体的には、例えば、水拭きにより樹脂粒子層を露出させる処理を行うことで、樹脂粒子層上に存在していたポリイミド前駆体溶液が除去される。そして、樹脂粒子層の上部の領域(つまり、樹脂粒子層の基板から離れた側の領域)に存在する樹脂粒子が、被膜の表面から露出される。
なお、樹脂粒子分散ポリイミド前駆体溶液を用いて基板上に被膜を形成する場合において、樹脂粒子が埋没した被膜を形成した場合にも、被膜に埋没している樹脂粒子を露出させる処理として、前述の樹脂粒子を露出させる処理と同様の処理を採用し得る。
樹脂粒子分散ポリイミド前駆体溶液を作製する方法は、前述の作製方法に限られない。工程簡略化の観点で、ポリイミド前駆体溶液に溶解しない樹脂粒子が予め水性溶剤に分散されている水性溶剤分散液中で、ポリイミド前駆体を合成するのも好ましい。例えば、具体的には、次の方法が挙げられる。
水を含む水性溶剤中で、樹脂粒子を造粒した樹脂粒子分散液とする。そして、この樹脂粒子分散液中で、有機アミン化合物の存在下、テトラカルボン酸二無水物とジアミン化合物とを重合して樹脂(ポリイミド前駆体)を生成してポリイミド前駆体溶液とする。
樹脂粒子分散ポリイミド前駆体溶液の作製方法としては、さらに、例えば、ポリイミド前駆体溶液と乾燥状態の樹脂粒子とを混合する方法、ポリイミド前駆体溶液と、樹脂粒子が予め水性溶剤に分散されている分散液とを混合する方法等が挙げられる。
なお、樹脂粒子が予め水性溶剤に分散されている分散液としては、予め樹脂粒子を水性溶剤に分散させた樹脂粒子の分散液を作製してもよい。樹脂粒子が予め水性溶剤に分散されている市販品の分散液を用意してもよい。市販品の分散液を用いる場合、多孔質ポリイミドフィルムに含有する金属群の合計含有量が、多孔質ポリイミドフィルムに対して100ppm以下となる分散液がよい。なお、予め分散させた樹脂粒子の分散液を作製する場合、特定金属群の金属を含まない界面活性剤をあらかじめ加え、樹脂粒子の分散性を高めてもよい。
そして、上記のようにして得られた樹脂粒子分散ポリイミド前駆体溶液を、前述の方法によって基板上に塗布して塗膜を形成する。その後、この塗膜を乾燥して、被膜が基板上に形成される。
−第2の工程−
第2の工程は、第1の工程で得られたポリイミド前駆体及び樹脂粒子を含む被膜を加熱して、ポリイミド前駆体をイミド化してポリイミドフィルムを形成する工程である。そして、第2の工程には、樹脂粒子を除去する処理を含んでいる。樹脂粒子を除去する処理を経て、多孔質ポリイミドフィルムが得られる。
第2の工程において、ポリイミドフィルムを形成する工程は、具体的に、第1の工程で得られたポリイミド前駆体及び樹脂粒子を含む被膜を加熱して、イミド化を進行させ、さらに加熱して、ポリイミドフィルムが形成される。なお、イミド化が進行し、イミド化率が高くなるにしたがい、有機溶剤に溶解し難くなる。
そして、第2の工程において、樹脂粒子を除去する処理を行う。樹脂粒子の除去は、被膜を加熱して、ポリイミド前駆体をイミド化する過程において除去してもよく、イミド化が完了した後(イミド化後)のポリイミドフィルムから除去してもよい。
なお、本実施形態において、ポリイミド前駆体をイミド化する過程とは、第1の工程で得られたポリイミド前駆体及び樹脂粒子を含む被膜を加熱して、イミド化を進行させ、イミド化が完了した後のポリイミドフィルムとなるよりも前の状態となる過程を示す。
具体的には、第1の工程で得られた樹脂粒子が露出した塗膜を加熱し、ポリイミド前駆体をイミド化する過程の被膜(以下、この状態の被膜を「ポリイミド膜」と称することがある)から、樹脂粒子を除去する。又はイミド化が完了した後のポリイミドフィルムから、樹脂粒子を除去してもよい。そして、樹脂粒子が除去された多孔質ポリイミドフィルムが得られる(図1参照)。
なお、図1に示す符号のうち、3は基板、4は剥離層、7は空孔、62は多孔質ポリイミドフィルムを表す。
なお、樹脂粒子を除去する過程で、樹脂粒子の樹脂成分が、ポリイミド樹脂以外の樹脂として、多孔質ポリイミドフィルムに含有され場合がある。図示はしないが、多孔質ポリイミドフィルムには、ポリイミド樹脂以外の樹脂を含有してもよい。
樹脂粒子を除去する処理は、樹脂粒子の除去性等の点で、ポリイミド前駆体をイミド化する過程において、ポリイミド膜中のポリイミド前駆体のイミド化率が10%以上であるときに行うことが好ましい。イミド化率が10%以上になると、有機溶剤に溶解し難い状態となりやすく、形態を維持しやすい。
樹脂粒子を除去する処理としては、多孔質ポリイミドフィルムが得られるのであれば、特に限定されない。例えば、樹脂粒子を加熱により分解除去する方法、樹脂粒子を溶解する有機溶剤により除去する方法、樹脂粒子をレーザ等による分解により除去する方法等が挙げられる。
この樹脂粒子の除去は、例えば、イミド化の工程も兼ねて熱による分解除去のみで行ってもよいが、加熱による分解除去と樹脂粒子を溶解する有機溶剤による除去とを併用してもよい。残留応力をより緩和しやすくなり、多孔質ポリイミドフィルムの亀裂の発生を抑制する点から、樹脂粒子を溶解する有機溶剤により除去する処理を含む方法が好ましい。なお、この作用は、有機溶剤により除去する処理では、有機溶剤に溶解した樹脂成分がポリイミド樹脂中に移行し易くなるためと推測される。
例えば、加熱により除去する方法では、樹脂粒子の種類によっては、加熱による分解ガスが発生する場合がある。そして、この分解ガスに起因して、多孔質ポリイミドフィルムには、破断や亀裂等が発生する場合があり得る。そのため、亀裂の発生を抑制する点で、樹脂粒子を溶解する有機溶剤により除去する方法を採用するほうが好ましい。
なお、樹脂粒子を溶解する有機溶剤により除去した後に、さらに加熱を行い、除去率を上げることも効果的である。
また、樹脂粒子を溶解する有機溶剤により除去する方法によって樹脂粒子を除去する場合、樹脂粒子を除去する過程で、有機溶剤に溶解した樹脂粒子の樹脂成分が、ポリイミド膜中に浸入する場合がある。そのため、この方法を採用することで、得られた多孔質ポリイミドフィルム中には、ポリイミド樹脂以外の樹脂を積極的に含有させ得る。ポリイミド樹脂以外の樹脂を含有させる点でも、樹脂粒子を溶解する有機溶剤により除去する方法を採用するほうが好ましい。さらに、この方法による樹脂粒子の除去は、ポリイミド樹脂以外の樹脂を含有させる点で、ポリイミド前駆体をイミド化する過程の被膜(ポリイミド膜)に対して行うことが好ましい。ポリイミド膜の状態で、樹脂粒子を溶解する溶剤により、樹脂粒子を溶解することで、よりポリイミド膜中に浸入しやすくなる場合がある。
樹脂粒子を溶解する有機溶剤により除去する方法としては、例えば、樹脂粒子が溶解する有機溶剤と接触(例えば、溶剤中に浸漬、又は溶剤蒸気と接触)させ、樹脂粒子を溶解して除去する方法が挙げられる。この状態のときに、溶剤中に浸漬すると、樹脂粒子の溶解効率が高まる点で好ましい。
樹脂粒子を除去するための樹脂粒子を溶解する有機溶剤としては、ポリイミド膜、及びイミド化が完了したポリイミドフィルムを溶解せず、樹脂粒子が可溶な有機溶剤であれば、特に限定されるものではない。例えば、テトラヒドロフラン、1,4−ジオキサン等のエーテル類;ベンゼン、トルエン等の芳香族類;アセトンなどのケトン類;酢酸エチルなどのエステル類;が挙げられる。
これらの中でも、テトラヒドロフラン、1,4−ジオキサン等のエーテル類;ベンゼン、トルエン等の芳香族類が好ましく、テトラヒドロフラン、トルエンを用いることがさらに好ましい。
樹脂粒子を溶解する際に水性溶剤が残留している場合には、水性溶剤が非架橋樹脂粒子を溶解する溶剤中に溶解し、ポリイミド前駆体が析出し、いわゆる湿式相転換法と類似の状態となり、空孔径の制御が困難となる場合があるため、残留している水性溶剤量は、ポリイミド前駆体質量に対して20質量%以下、好ましくは10質量%以下に低減した後に有機溶剤で非架橋樹脂粒子を溶解除去することが好ましい。
第2の工程において、第1の工程で得た被膜を加熱して、イミド化を進行させてポリイミドフィルムを得るための加熱方法としては、特に限定されない。例えば、2段階以上の多段階で加熱する方法が挙げられる。例えば、2段階で加熱する場合、具体的には、例えば、以下に示す加熱条件が挙げられる。
第1段階の加熱条件としては、樹脂粒子の形状が保持される温度であることが望ましい。具体的には、例えば、50℃以上150℃以下の範囲がよく、60℃以上140℃以下の範囲が好ましい。また、加熱時間としては、10分間以上60分間以下の範囲がよい。加熱温度が高いほど加熱時間は短くてよい。
第2段階の加熱条件としては、例えば、150℃以上400℃以下(好ましくは200℃以上390℃以下)で、20分間以上120分間以下の条件で加熱することが挙げられる。この範囲の加熱条件とすることで、イミド化反応がさらに進行し、ポリイミドフィルムが形成され得る。加熱反応の際、加熱の最終温度に達する前に、温度を段階的、又は一定速度で徐々に上昇させて加熱することがよい。
なお、加熱条件は上記の2段階の加熱方法に限らず、例えば、1段階で加熱する方法を採用してもよい。1段階で加熱する方法の場合、例えば、上記の第2段階で示した加熱条件のみによってイミド化を完了させてもよい。
なお、第1の工程で、樹脂粒子を露出させる処理を施さない場合、開孔率を高める点で、第2の工程において、樹脂粒子を露出させる処理を行って樹脂粒子を露出させた状態としてもよい。第2の工程において、樹脂粒子を露出させる処理は、ポリイミド前駆体のイミド化を行う過程、又はイミド化後、且つ、樹脂粒子を除去する処理よりも前で行うことが好ましい。
樹脂粒子を露出させる処理は、例えば、ポリイミド膜が次に示す状態であるときに施すことが挙げられる。
ポリイミド膜中のポリイミド前駆体のイミド化率が10%未満であるとき(すなわち、ポリイミド膜が水に溶解できる状態)に樹脂粒子を露出させる処理を行う場合、上記のポリイミド膜中に埋没している樹脂粒子を露出させる処理としては、拭き取る処理、水に浸漬する処理等が挙げられる。
また、ポリイミド膜中のポリイミド前駆体のイミド化率が10%以上であるとき(すなわち、有機溶剤に溶解し難い状態)、及びイミド化が完了したポリイミドフィルムとなった状態であるときに樹脂粒子を露出させる処理を行う場合には、紙やすり等の工具類で機械的に切削して樹脂粒子を露出させる方法、ポリイミド樹脂を溶解するアルカリ溶液などでエッチングする方法、レーザ等で分解して樹脂粒子を露出させる方法が挙げられる。
例えば、機械的に切削する場合には、ポリイミド膜に埋没している樹脂粒子層の上部の領域(つまり、樹脂粒子層の基板から離れた側の領域)に存在する樹脂粒子の一部分が、樹脂粒子の上部に存在しているポリイミド膜とともに切削され、切削された樹脂粒子がポリイミド膜の表面から露出される。
その後、樹脂粒子が露出されたポリイミド膜から、既述の樹脂粒子の除去処理により樹脂粒子を除去する。そして、樹脂粒子が除去された多孔質ポリイミドフィルムが得られる。
なお、樹脂粒子分散ポリイミド前駆体溶液を用いて基板上に被膜を形成する場合、樹脂粒子分散ポリイミド前駆体溶液を基板上に塗布し、樹脂粒子が埋没した塗膜を形成する。この塗膜を乾燥して被膜を形成する過程で、樹脂粒子を露出させる処理を行わずに、ポリイミド前駆体及び樹脂粒子を含む被膜を形成すると、樹脂粒子が埋没した被膜が形成される場合がある。例えば、樹脂粒子が埋没した被膜を加熱すると、イミド化する過程の被膜(ポリイミド膜)は、樹脂粒子層が埋没されている状態となる。開孔率を高めるために、第2の工程において行う、樹脂粒子を露出させる処理としては、既述の樹脂粒子を露出させる処理と同様の処理を採用し得る。そして、樹脂粒子の上部に存在しているポリイミド膜とともに切削され、樹脂粒子がポリイミド膜の表面から露出される。
その後、樹脂粒子が露出されたポリイミド膜から、既述の樹脂粒子の除去処理により樹脂粒子を除去する。そして、樹脂粒子が除去された多孔質ポリイミドフィルムが得られる。
なお、第2の工程において、第1の工程で使用した上記の被膜を形成するための基板は、乾燥した被膜となったときに剥離してもよく、ポリイミド膜中のポリイミド前駆体が、有機溶剤に溶解し難い状態となったときに剥離してもよく、イミド化が完了したフィルムになった状態のときに剥離してもよい。
以上の工程を経て、ポリイミド樹脂とポリイミド樹脂以外の樹脂とを含有する多孔質ポリイミドフィルムが得られる。そして、多孔質ポリイミドフィルムは、使用目的によって後加工してもよい。
ここで、ポリイミド前駆体のイミド化率について説明する。
一部がイミド化したポリイミド前駆体は、例えば、下記一般式(I−1)、下記一般式(I−2)、及び下記一般式(I−3)で表される繰り返し単位を有する構造の前駆体が挙げられる。
一般式(I−1)、一般式(I−2)、及び一般式(I−3)中、Aは4価の有機基を示し、Bは2価の有機基を示す。lは1以上の整数を示し、m及びnは、各々独立に0又は1以上の整数を示す。
なお、A及びBは、後述の一般式(I)中のA及びBと同義である。
ポリイミド前駆体のイミド化率は、ポリイミド前駆体の結合部(テトラカルボン酸二無水物とジアミン化合物との反応部)において、イミド閉環している結合部数(2n+m)の全結合部数(2l+2m+2n)に対する割合を表す。つまり、ポリイミド前駆体のイミド化率は、「(2n+m)/(2l+2m+2n)」で示される。
なお、ポリイミド前駆体のイミド化率(「(2n+m)/(2l+2m+2n)」の値)は、次の方法により測定される。
−ポリイミド前駆体のイミド化率の測定−
・ポリイミド前駆体試料の作製
(i)測定対象となるポリイミド前駆体溶液を、シリコーンウェハー上に、膜厚1μm以上10μm以下の範囲で塗布して、塗膜試料を作製する。
(ii)塗膜試料をテトラヒドロフラン(THF)中に20分間浸漬させて、塗膜試料中の溶剤をテトラヒドロフラン(THF)に置換する。浸漬させる溶剤は、THFに限定されることなく、ポリイミド前駆体を溶解せず、ポリイミド前駆体溶液に含まれている溶剤成分と混和し得る溶剤より選択できる。具体的には、メタノール、エタノールなどのアルコール溶剤、ジオキサンなどのエーテル化合物が使用できる。
(iii)塗膜試料を、THF中より取り出し、塗膜試料表面に付着しているTHFにNガスを吹き付け、取り除く。10mmHg以下の減圧下、5℃以上25℃以下の範囲にて12時間以上処理して塗膜試料を乾燥させ、ポリイミド前駆体試料を作製する。
・100%イミド化標準試料の作製
(iv)上記(i)と同様に、測定対象となるポリイミド前駆体溶液をシリコーンウェハー上に塗布して、塗膜試料を作製する。
(v)塗膜試料を380℃にて60分間加熱してイミド化反応を行い、100%イミド化標準試料を作製する。
・測定と解析
(vi)フーリエ変換赤外分光光度計(堀場製作所製、FT−730)を用いて、100%イミド化標準試料、ポリイミド前駆体試料の赤外吸光スペクトルを測定する。100%イミド化標準試料の1500cm−1付近の芳香環由来吸光ピーク(Ab’(1500cm−1))に対する、1780cm−1付近のイミド結合由来の吸光ピーク(Ab’(1780cm−1))の比I’(100)を求める。
(vii)同様にして、ポリイミド前駆体試料について測定を行い、1500cm−1付近の芳香環由来吸光ピーク(Ab(1500cm−1))に対する、1780cm−1付近のイミド結合由来の吸光ピーク(Ab(1780cm−1))の比I(x)を求める。
そして、測定した各吸光ピークI’(100)、I(x)を使用し、下記式に基づき、ポリイミド前駆体のイミド化率を算出する。
・式: ポリイミド前駆体のイミド化率=I(x)/I’(100)
・式: I’(100)=(Ab’(1780cm−1))/(Ab’(1500cm−1))
・式: I(x)=(Ab(1780cm−1))/(Ab(1500cm−1))
なお、このポリイミド前駆体のイミド化率の測定は、芳香族系ポリイミド前駆体のイミド化率の測定に適用される。脂肪族ポリイミド前駆体のイミド化率を測定する場合、芳香環の吸収ピークに代えて、イミド化反応前後で変化のない構造由来のピークを内部標準ピークとして使用する。
次に本実施形態に係るポリイミド前駆体溶液の各成分について説明する。
〔ポリイミド前駆体溶液〕
ポリイミド前駆体溶液は、水性溶剤、樹脂粒子、有機アミン化合物、およびポリイミド前駆体を含有する。
−ポリイミド前駆体−
ポリイミド前駆体は、一般式(I)で表される繰り返し単位を有する樹脂(ポリイミド前駆体)である。
(一般式(I)中、Aは4価の有機基を示し、Bは2価の有機基を示す。)
ここで、一般式(I)中、Aが表す4価の有機基としては、原料となるテトラカルボン酸二無水物より4つのカルボキシル基を除いたその残基である。
一方、Bが表す2価の有機基としては、原料となるジアミン化合物から2つのアミノ基を除いたその残基である。
つまり、一般式(I)で表される繰り返し単位を有するポリイミド前駆体は、テトラカルボン酸二無水物とジアミン化合物との重合体である。
テトラカルボン酸二無水物としては、芳香族系、脂肪族系いずれの化合物も挙げられるが、芳香族系の化合物であることがよい。つまり、一般式(I)中、Aが表す4価の有機基は、芳香族系有機基であることがよい。
芳香族系テトラカルボン酸二無水物としては、例えば、ピロメリット酸二無水物、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’−ビフェニルスルホンテトラカルボン酸二無水物、1,4,5,8−ナフタレンテトラカルボン酸二無水物、2,3,6,7−ナフタレンテトラカルボン酸二無水物、3,3’,4,4’−ビフェニルエーテルテトラカルボン酸二無水物、3,3’,4,4’−ジメチルジフェニルシランテトラカルボン酸二無水物、3,3’,4,4’−テトラフェニルシランテトラカルボン酸二無水物、1,2,3,4−フランテトラカルボン酸二無水物、4,4’−ビス(3,4−ジカルボキシフェノキシ)ジフェニルスルフィド二無水物、4,4’−ビス(3,4−ジカルボキシフェノキシ)ジフェニルスルホン二無水物、4,4’−ビス(3,4−ジカルボキシフェノキシ)ジフェニルプロパン二無水物、3,3’,4,4’−パーフルオロイソプロピリデンジフタル酸二無水物、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物、2,3,3’,4’−ビフェニルテトラカルボン酸二無水物、ビス(フタル酸)フェニルホスフィンオキサイド二無水物、p−フェニレン−ビス(トリフェニルフタル酸)二無水物、m−フェニレン−ビス(トリフェニルフタル酸)二無水物、ビス(トリフェニルフタル酸)−4,4’−ジフェニルエーテル二無水物、ビス(トリフェニルフタル酸)−4,4’−ジフェニルメタン二無水物等を挙げられる。
脂肪族テトラカルボン酸二無水物としては、例えば、ブタンテトラカルボン酸二無水物、1,2,3,4−シクロブタンテトラカルボン酸二無水物、1,3−ジメチル−1,2,3,4−シクロブタンテトラカルボン酸二無水物、1,2,3,4−シクロペンタンテトラカルボン酸二無水物、2,3,5−トリカルボキシシクロペンチル酢酸二無水物、3,5,6−トリカルボキシノルボナン−2−酢酸二無水物、2,3,4,5−テトラヒドロフランテトラカルボン酸二無水物、5−(2,5−ジオキソテトラヒドロフリル)−3−メチル−3−シクロヘキセン−1,2−ジカルボン酸二無水物、ビシクロ[2,2,2]−オクト−7−エン−2,3,5,6−テトラカルボン酸二無水物等の脂肪族又は脂環式テトラカルボン酸二無水物;1,3,3a,4,5,9b−ヘキサヒドロ−2,5−ジオキソ−3−フラニル)−ナフト[1,2−c]フラン−1,3−ジオン、1,3,3a,4,5,9b−ヘキサヒドロ−5−メチル−5−(テトラヒドロ−2,5−ジオキソ−3−フラニル)−ナフト[1,2−c]フラン−1,3−ジオン、1,3,3a,4,5,9b−ヘキサヒドロ−8−メチル−5−(テトラヒドロ−2,5−ジオキソ−3−フラニル)−ナフト[1,2−c]フラン−1,3−ジオン等の芳香環を有する脂肪族テトラカルボン酸二無水物等が挙げられる。
これらの中でも、テトラカルボン酸二無水物としては、芳香族系テトラカルボン酸二無水物がよく、具体的には、例えば、ピロメリット酸二無水物、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物、2,3,3’,4’−ビフェニルテトラカルボン酸二無水物、3,3’,4,4’−ビフェニルエーテルテトラカルボン酸二無水物、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物がよく、更に、ピロメリット酸二無水物、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物がよく、特に、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物がよい。
なお、テトラカルボン酸二無水物は、1種単独で用いてもよいし、2種以上組み合わせて併用してもよい。
また、2種以上を組み合わせて併用する場合、芳香族テトラカルボン酸二無水物、又は脂肪族テトラカルボン酸を各々併用しても、芳香族テトラカルボン酸二無水物と脂肪族テトラカルボン酸二無水物とを組み合わせてもよい。
一方、ジアミン化合物は、分子構造中に2つのアミノ基を有するジアミン化合物である。ジアミン化合物としては、芳香族系、脂肪族系いずれの化合物も挙げられるが、芳香族系の化合物であることがよい。つまり、一般式(I)中、Bが表す2価の有機基は、芳香族系有機基であることがよい。
ジアミン化合物としては、例えば、p−フェニレンジアミン、m−フェニレンジアミン、4,4’−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルエタン、4,4’−ジアミノジフェニルエーテル、4,4’−ジアミノジフェニルスルフィド、4,4’−ジアミノジフェニルスルホン、1,5−ジアミノナフタレン、3,3−ジメチル−4,4’−ジアミノビフェニル、5−アミノ−1−(4’−アミノフェニル)−1,3,3−トリメチルインダン、6−アミノ−1−(4’−アミノフェニル)−1,3,3−トリメチルインダン、4,4’−ジアミノベンズアニリド、3,5−ジアミノ−3’−トリフルオロメチルベンズアニリド、3,5−ジアミノ−4’−トリフルオロメチルベンズアニリド、3,4’−ジアミノジフェニルエーテル、2,7−ジアミノフルオレン、2,2−ビス(4−アミノフェニル)ヘキサフルオロプロパン、4,4’−メチレン−ビス(2−クロロアニリン)、2,2’,5,5’−テトラクロロ−4,4’−ジアミノビフェニル、2,2’−ジクロロ−4,4’−ジアミノ−5,5’−ジメトキシビフェニル、3,3’−ジメトキシ−4,4’−ジアミノビフェニル、4,4’−ジアミノ−2,2’−ビス(トリフルオロメチル)ビフェニル、2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン、2,2−ビス[4−(4−アミノフェノキシ)フェニル]ヘキサフルオロプロパン、1,4−ビス(4−アミノフェノキシ)ベンゼン、4,4’−ビス(4−アミノフェノキシ)−ビフェニル、1,3’−ビス(4−アミノフェノキシ)ベンゼン、9,9−ビス(4−アミノフェニル)フルオレン、4,4’−(p−フェニレンイソプロピリデン)ビスアニリン、4,4’−(m−フェニレンイソプロピリデン)ビスアニリン、2,2’−ビス[4−(4−アミノ−2−トリフルオロメチルフェノキシ)フェニル]ヘキサフルオロプロパン、4,4’−ビス[4−(4−アミノ−2−トリフルオロメチル)フェノキシ]−オクタフルオロビフェニル等の芳香族ジアミン;ジアミノテトラフェニルチオフェン等の芳香環に結合された2個のアミノ基と当該アミノ基の窒素原子以外のヘテロ原子を有する芳香族ジアミン;1,1−メタキシリレンジアミン、1,3−プロパンジアミン、テトラメチレンジアミン、ペンタメチレンジアミン、オクタメチレンジアミン、ノナメチレンジアミン、4,4−ジアミノヘプタメチレンジアミン、1,4−ジアミノシクロヘキサン、イソフォロンジアミン、テトラヒドロジシクロペンタジエニレンジアミン、ヘキサヒドロ−4,7−メタノインダニレンジメチレンジアミン、トリシクロ[6,2,1,02.7]−ウンデシレンジメチルジアミン、4,4’−メチレンビス(シクロヘキシルアミン)等の脂肪族ジアミン及び脂環式ジアミン等が挙げられる。
これらの中でも、ジアミン化合物としては、芳香族系ジアミン化合物がよく、具体的には、例えば、p−フェニレンジアミン、m−フェニレンジアミン、4,4’−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルエーテル、3,4’−ジアミノジフェニルエーテル、4,4’−ジアミノジフェニルスルフィド、4,4’−ジアミノジフェニルスルホンがよく、特に、4,4’−ジアミノジフェニルエーテル、p−フェニレンジアミンがよい。
なお、ジアミン化合物は、1種単独で用いてもよいし、2種以上組み合わせて併用してもよい。また、2種以上を組み合わせて併用する場合、芳香族ジアミン化合物、又は脂肪族ジアミン化合物を各々併用しても、芳香族ジアミン化合物と脂肪族ジアミン化合物とを組み合わせてもよい。
ポリイミド前駆体の数平均分子量は、1000以上150000以下であることがよく、より好ましくは5000以上130000以下、更に好ましくは10000以上100000以下である。
ポリイミド前駆体の数平均分子量を上記範囲とすると、ポリイミド前駆体の溶剤に対する溶解性の低下が抑制され、製膜性が確保され易くなる。
ポリイミド前駆体の数平均分子量は、下記測定条件のゲル・パーミエーション・クロマトグラフィー(GPC)法で測定される。
・カラム:東ソーTSKgelα−M(7.8mm I.D×30cm)
・溶離液:DMF(ジメチルホルムアミド)/30mMLiBr/60mMリン酸
・流速:0.6mL/min
・注入量:60μL
・検出器:RI(示差屈折率検出器)
ポリイミド前駆体の含有量(濃度)は、全ポリイミド前駆体溶液に対して、0.1質量%以上40質量%以下であることがよく、好ましくは0.5質量%以上25質量%以下、より好ましくは1質量%以上20質量%以下である。
〔有機アミン化合物〕
有機アミン化合物は、ポリイミド前駆体(そのカルボキシル基)をアミン塩化して、その水性溶剤に対する溶解性を高めると共に、イミド化促進剤としても機能する化合物である。具体的には、有機アミン化合物は、分子量170以下のアミン化合物であることがよい。有機アミン化合物は、ポリイミド前駆体の原料となるジアミン化合物を除く化合物であることがよい。
なお、有機アミン化合物は、水溶性の化合物であることがよい。水溶性とは、25℃において、対象物質が水に対して1質量%以上溶解することを意味する。
有機アミン化合物としては、1級アミン化合物、2級アミン化合物、3級アミン化合物が挙げられる。
これらの中でも、有機アミン化合物としては、2級アミン化合物、及び3級アミン化合物から選択される少なくとも一種(特に、3級アミン化合物)がよい。有機アミン化合物として、3級アミン化合物又は2級アミン化合物を適用すると(特に、3級アミン化合物)、ポリイミド前駆体の溶剤に対する溶解性が高まり易くなり、製膜性が向上し易くなり、また、ポリイミド前駆体溶液の保存安定性が向上し易くなる。
また、有機アミン化合物としては、1価のアミン化合物以外にも、2価以上の多価アミン化合物も挙げられる。2価以上の多価アミン化合物を適用すると、ポリイミド前駆体の分子間に疑似架橋構造を形成し易くなり、また、ポリイミド前駆体溶液の保存安定性が向上し易くなる。
1級アミン化合物としては、例えば、メチルアミン、エチルアミン、n−プロピルアミン、イソプロピルアミン、2−エタノールアミン、2−アミノ−2−メチル−1−プロパノール、などが挙げられる。
2級アミン化合物としては、例えば、ジメチルアミン、2−(メチルアミノ)エタノール、2−(エチルアミノ)エタノール、モルホリンなどが挙げられる。
3級アミン化合物としては、例えば、2−ジメチルアミノエタノール、2−ジエチルアミノエタノール、2−ジメチルアミノプロパノール、ピリジン、トリエチルアミン、ピコリン、N−メチルモルホリン、N−エチルモルホリン、1,2−ジメチルイミダゾール、2−エチル−4−メチルイミダゾール、N−メチルピペリジン、N−エチルピペリジンなどが挙げられる。
ポリイミド前駆体溶液のポットライフ、フィルム膜厚均一性の観点で、3級アミン化合物が好ましい。この点で、2−ジメチルアミノエタノール、2−ジエチルアミノエタノール、2−ジメチルアミノプロパノール、ピリジン、トリエチルアミン、ピコリン、N−メチルモルホリン、N−エチルモルホリン、1,2−ジメチルイミダゾール、2−エチル−4−メチルイミダゾール、N−メチルピペリジン、N−エチルピペリジンからなる群から選択される少なくとも1種であることがより好ましい。
ここで、有機アミン化合物としては、製膜性の点から、窒素を含有する複素環構造を有する脂肪族環状構造または芳香族環状構造のアミン化合物(以下、「含窒素複素環アミン化合物」と称する)も好ましい。含窒素複素環アミン化合物としては、3級アミン化合物であることがより好ましい。
含窒素複素環アミン化合物としては、例えば、イソキノリン類(イソキノリン骨格を有するアミン化合物)、ピリジン類(ピリジン骨格を有するアミン化合物)、ピリミジン類(ピリミジン骨格を有するアミン化合物)、ピラジン類(ピラジン骨格を有するアミン化合物)、ピペラジン類(ピペラジン骨格を有するアミン化合物)、トリアジン類(トリアジン骨格を有するアミン化合物)、イミダゾール類(イミダゾール骨格を有するアミン化合物)、モルホリン類(モルホリン骨格を有するアミン化合物)、ポリアニリン、ポリピリジン、ポリアミンなどが挙げられる。
含窒素複素環アミン化合物としては、製膜性の点から、モルホリン類、ピリジン類、ピペリジン類、およびイミダゾール類よりなる群から選択される少なくとも一種であることが好ましく、モルホリン類(モルホリン骨格を有するアミン化合物)であることがより好ましい。これらの中でも、N−メチルモルホリン、N−メチルピペリジン、ピリジン、1,2−ジメチルイミダゾール、2−エチル−4−メチルイミダゾール、およびピコリンよりなる群から選択される少なくとも一種であることがより好ましく、N−メチルモルホリンであることがより好ましい。
これらの中でも、有機アミン化合物としては、沸点が60℃以上(好ましくは60℃以上200℃以下、より好ましくは70℃以上150℃以下)の化合物であることがよい。有機アミン化合物の沸点を60℃以上とすると、保管するときに、ポリイミド前駆体溶液から有機アミン化合物が揮発するのを抑制し、ポリイミド前駆体の溶剤に対する溶解性の低下が抑制され易くなる。
有機アミン化合物は、ポリイミド前駆体溶液中のポリイミド前駆体のカルボキシル基(−COOH)に対して、50モル%以上500モル%以下で含有することがよく、好ましくは80モル%以上250モル%以下、より好ましくは90モル%以上200モル%以下で含有することである。
有機アミン化合物の含有量を上記範囲とすると、ポリイミド前駆体の溶剤に対する溶解性が高まり易くなり、製膜性が向上し易くなる。また、ポリイミド前駆体溶液の保存安定性も向上し易くなる。
上記の有機アミン化合物は、1種単独で用いてもよいし、2種以上併用してもよい。
〔水を含む水性溶剤〕
水を含む水性溶剤は、具体的には、全水性溶剤に対して水を50質量%以上含有する溶剤であることがよい。水としては、例えば、蒸留水、イオン交換水、限外濾過水、純水等が挙げられる。
水の含有量は、全水性溶剤に対して、50質量%以上100質量%以下が好ましく、70質量%以上100質量%以下がより好ましく、80質量%以上100質量%以下が更に好ましい。
なお、水性溶剤が水以外の溶剤を含む場合、水以外の溶剤としては、例えば、水溶性有機溶剤が挙げられる。水以外の溶剤としては、ポリイミド成形体の透明性、機械的強度等の点から、水溶性の有機溶剤が好ましい。ここで、水溶性とは、25℃において、対象物質が水に対して1質量%以上溶解することを意味する。
上記水溶性の有機溶剤は、1種単独で用いてもよいが、2種以上併用してもよい。
水溶性エーテル系溶剤は、一分子中にエーテル結合を持つ水溶性の溶剤である。水溶性エーテル系溶剤としては、例えば、テトラヒドロフラン(THF)、ジオキサン、トリオキサン、1,2−ジメトキシエタン、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル等が挙げられる。これらの中でも、水溶性エーテル系溶剤としては、テトラヒドロフラン、ジオキサンが好ましい。
水溶性ケトン系溶剤は、一分子中にケトン基を持つ水溶性の溶剤である。水溶性ケトン系溶剤としては、例えば、アセトン、メチルエチルケトン、シクロヘキサノン等が挙げられる。これらの中でも、水溶性ケトン系溶剤としては、アセトンが好ましい。
水溶性アルコール系溶剤は、一分子中にアルコール性水酸基を持つ水溶性の溶剤である。水溶性アルコール系溶剤は、例えば、メタノール、エタノール、1−プロパノール、2−プロパノール、tert−ブチルアルコール、エチレングリコール、エチレングリコールのモノアルキルエーテル、プロピレングリコール、プロピレングリコールのモノアルキルエーテル、ジエチレングリコール、ジエチレングリコールのモノアルキルエーテル、1,2−プロパンジオール、1,3−プロパンジオール、1,3−ブタンジオール、1,4−ブタンジオール、2,3−ブタンジオール、1,5−ペンタンジオール、2−ブテン−1,4−ジオール、2−メチル−2,4−ペンタンジオール、グリセリン、2−エチル−2−ヒドロキシメチル−1,3−プロパンジオール、1,2,6−ヘキサントリオール等が挙げられる。これらの中でも、水溶性アルコール系溶剤としては、メタノール、エタノール、2−プロパノール、エチレングリコール、エチレングリコールのモノアルキルエーテル、プロピレングリコール、プロピレングリコールのモノアルキルエーテル、ジエチレングリコール、ジエチレングリコールのモノアルキルエーテルが好ましい。
非プロトン性極性溶剤は、具体的には、例えば、N−メチル−2−ピロリドン(NMP)、N,N−ジメチルホルムアミド(DMF)、N,N−ジメチルアセトアミド(DMAc)、N,N−ジエチルアセトアミド(DEAc)、ジメチルスルホキシド(DMSO)、ヘキサメチレンホスホルアミド(HMPA)、N−メチルカプロラクタム、N−アセチル−2−ピロリドン、N,N−ジメチルイミダゾリジノン(DMI)、1,3−ジメチル−イミダゾリドン等が挙げられる。
なお、水性溶剤として水以外の溶剤を含有する場合、併用される溶剤は、沸点が270℃以下であることがよく、好ましくは60℃以上250℃以下、より好ましくは80℃以上230℃以下である。併用される溶剤の沸点を上記範囲とすると、水以外の溶剤がポリイミド成形体に残留し難くなり、また、機械的強度の高いポリイミド成形体が得られ易くなる。
ここで、ポリイミド前駆体が溶剤に溶解する範囲は、水の含有量、有機アミン化合物の種類及び量によって制御される。水の含有量が低い範囲では、有機アミン化合物の含有量が少ない領域でポリイミド前駆体は溶解し易くなる。逆に、水の含有量が高い範囲では、有機アミン化合物の含有量が多い領域でポリイミド前駆体は溶解し易くなる。また、有機アミン化合物が水酸基を有するなど親水性が高い場合は、水の含有量が高い領域でポリイミド前駆体は溶解し易くなる。
また、非プロトン性極性溶剤等(例えば、N−メチルピロリドン(NMP)等)の有機溶剤で合成したポリイミド前駆体を水や、アルコール等の貧溶剤に添加、析出させ、分離したものを、ポリイミド前駆体としてもよい。
〔樹脂粒子〕
樹脂粒子は、水を含む水性溶剤に溶解しないものである。また、樹脂粒子は、ポリイミド前駆体溶液に溶解しないものである。
樹脂粒子としては、特に限定されるものではないが、ポリイミド以外の樹脂からなる樹脂粒子である。例えば、ポリエステル樹脂、ウレタン樹脂等の重合性単量体を重縮合して得られた樹脂粒子、ビニル樹脂、オレフィン樹脂等の重合性単量体をラジカル重合して得られた樹脂粒子が挙げられる。ラジカル重合して得られた樹脂粒子としては、(メタ)アクリル樹脂、(メタ)アクリル酸エステル樹脂、スチレン・(メタ)アクリル樹脂、ポリスチレン樹脂、ポリエチレン樹脂の樹脂粒子等が挙げられる。
樹脂粒子としては、前述の第2工程で行う樹脂粒子の除去の点から、ポリイミド樹脂を溶解しない溶剤に可溶な樹脂粒子であることが好ましい。
また、これらの中でも、樹脂粒子としては、粒子形状の制御、除去性の観点から、ラジカル重合性のモノマーを用いた樹脂が好ましく、(メタ)アクリル樹脂、(メタ)アクリル酸エステル樹脂、スチレン・(メタ)アクリル樹脂、及びポリスチレン樹脂からなる群から選択される少なくとも一つであることが好ましい。
ここで、本明細書中において、「溶解しない」とは、25℃において、対象となる物質が、対象となる液体に対して溶解しないことに加え、3質量%以下の範囲内で溶解することも含む。
例えば、「水を含む水性溶剤に溶解しない」とは、対象となる樹脂粒子が、25℃において、水を含む水性溶剤に実質的に溶解しない樹脂粒子であることを意味し、樹脂粒子が水を含む水性溶剤に対して溶解しないことに加え、3質量%以下の範囲内で溶解することも含む。また、「ポリイミド前駆体溶液に溶解しない」とは、25℃において、対象となる樹脂粒子が、ポリイミド前駆体溶液に実質的に溶解しない樹脂粒子であることを意味し、樹脂粒子がポリイミド前駆体溶液に対して溶解しないことに加え、3質量%以下の範囲内で溶解することも含む。
「有機溶剤に可溶」とは、25℃において、対象となる樹脂粒子が対象となる有機溶剤に対して質量基準で10%以上溶解することを意味する。
なお、本明細書中において、「(メタ)アクリル」とは、「アクリル」および「メタクリル」のいずれをも含むことを意味するものである。
樹脂粒子は、多孔質ポリイミドフィルムに含有する多孔質ポリイミドフィルムに対する特定金属群の合計含有量、及びポリイミド前駆体溶液に含有するポリイミド前駆体溶液に対する特定金属群の合計含有量を既述の範囲に制御する点で、樹脂粒子中に含まれる特定金属群の合計含有量は、例えば、200ppm以下(好ましくは150ppm以下)に減少させることがよい。樹脂粒子中に含まれる特定金属群の合計含有量は、少ないほうがよく、下限値は特に限定されないが、0ppmであることがよい。なお、0ppmとは、検出限界以下を示す。また、樹脂粒子中に含まれる特定金属群の合計含有量は、原子吸光法によって測定される。
樹脂粒子中に含まれる特定金属群の合計含有量を上記範囲に調整する方法としては、特に限定されない。樹脂粒子が、例えば、ビニル樹脂粒子である場合には、その合成方法は、特に限定されず、公知の重合法(乳化重合、ソープフリー乳化重合、懸濁重合、ミニエマルション重合、マイクロエマルション重合等のラジカル重合法)が適用され得る。
中でも、例えば、樹脂粒子中に含まれる特定金属群の合計含有量を上記範囲に調整する点で、特定金属群を含有しない界面活性剤を使用して乳化重合する方法、界面活性剤を使用しないソープフリー乳化重合による方法、乳化重合法で得られた樹脂粒子を洗浄する方法によって樹脂粒子を得ることが好ましい。
つまり、樹脂粒子は、特定金属群を含有しない界面活性剤乳化重合粒子、ソープフリー乳化重合粒子、洗浄樹脂粒子のうちの少なくとも一つであることが好ましい。これらの樹脂粒子は1種単独、又は2種以上を併用してもよい。
なお、本明細書中において、洗浄樹脂粒子とは、樹脂粒子を洗浄して、樹脂粒子中に含まれる特定金属群の合計含有量を上記範囲に調整した樹脂粒子のことを表す。
例えば、ビニル樹脂粒子の製造に乳化重合法を適用する場合、過硫酸カリウム、過硫酸アンモニウム等の水溶性重合開始剤を溶解させた水中に、スチレン類、(メタ)アクリル酸類等の単量体を加え、界面活性剤を使用しないで重合(ソープフリー乳化重合)することで、樹脂粒子中に含まれる特定金属群の合計含有量が上記範囲であるビニル樹脂粒子が得られる。
また、過硫酸カリウム、過硫酸アンモニウム等の水溶性重合開始剤を溶解させた水中に、スチレン類、(メタ)アクリル酸類等の単量体を加え、さらに、必要に応じて、特定金属群を含まない界面活性剤を添加し、攪拌を行いながら加熱することにより重合を行うことで、樹脂粒子中に含まれる特定金属群の合計含有量が上記範囲であるビニル樹脂粒子が得られる。
また、得られたビニル樹脂粒子を洗浄することで、樹脂粒子中に含まれる特定金属群の合計含有量が上記範囲であるビニル樹脂粒子が得られる。特に、界面活性剤として、特定金属群の金属を含む界面活性剤(例えば、ラウリル硫酸ナトリウム、ドデシル硫酸ナトリウム等の陰イオン界面活性剤など)を用いた場合は、得られたビニル樹脂粒子を洗浄すると、特定金属群の合計含有量が上記範囲であるビニル樹脂粒子が得られる。
乳化重合法によるビニル樹脂粒子の製造において、界面活性剤を使用する場合、界面活性剤は特に限定されるものではないが、得られた樹脂粒子を洗浄する工程を省略できる点で、特定金属群の金属を含まない界面活性剤を用いることがよい。
特定金属群の金属を含まない界面活性剤としては、例えば、スルホン酸塩型等のアンモニウム塩のアニオン界面活性剤;エーテル型、エステル型、エステル・エーテル型等の非イオン界面活性剤;4級アンモニウム塩型等のカチオン界面活性剤;ベタイン型等の両性界面活性剤;などが挙げられる。
ビニル樹脂の単量体としては、例えば、スチレン、アルキル置換スチレン(例えば、α−メチルスチレン、2−メチルスチレン、3−メチルスチレン、4−メチルスチレン、2−エチルスチレン、3−エチルスチレン、4−エチルスチレン等)、ハロゲン置換スチレン(例えば2−クロロスチレン、3−クロロスチレン、4−クロロスチレン等)、ビニルナフタレン等のスチレン骨格を有するスチレン類;(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n−プロピル、(メタ)アクリル酸n−ブチル、(メタ)アクリル酸ラウリル、(メタ)アクリル酸2−エチルヘキシル等のビニル基を有するエステル類;アクリロニトリル、メタクリロニトリル等のビニルニトリル類;ビニルメチルエーテル、ビニルイソブチルエーテル等のビニルエーテル類;ビニルメチルケトン、ビニルエチルケトン、ビニルイソプロペニルケトン等のビニルケトン類;(メタ)アクリル酸、マレイン酸、ケイ皮酸、フマル酸、ビニルスルホン酸等の酸類;エチレンイミン、ビニルピリジン、ビニルアミン等の塩基類;等の単量体を重合体させたビニル樹脂単位が挙げられる。
その他の単量体として、酢酸ビニルなどの単官能単量体、エチレングリコールジメタクリレート、ノナンジアクリレート、デカンジオールジアクリレートなどの二官能単量体、トリメチロールプロパントリアクリレート、トリメチロールプロパントリメタクリレート等の多官能単量体を併用してもよい。
また、ビニル樹脂は、これらの単量体を単独で用いた樹脂でもよいし、2種以上の単量体を用いた共重合体である樹脂であってもよい。
ビニル樹脂粒子を構成する樹脂に使用される単量体がスチレンを含有する場合、全単量体成分に占めるスチレンの割合は20質量%以上100質量%以下が好ましく、40質量%以上100質量%以下が更に好ましい。
樹脂粒子の平均粒径としては、特に限定されない。例えば、0.1μm以上0.5μm以下であることがよく、0.25μm以上0.5μm以下であることが好ましく、0.25μm以上0.4μm以下であることがより好ましい。樹脂粒子の平均粒径が、この範囲であると、樹脂粒子の生産性が向上し、凝集性が抑制されやすくなる。
なお、樹脂粒子の平均粒径は、レーザ回折式粒度分布測定装置(例えば、コールターカウンターLS13(ベックマン・コールター社製)の測定によって得られた粒度分布を用い、分割された粒度範囲(チャンネル)に対し、体積について小粒径側から累積分布を引き、全粒子に対して累積50%となる粒径を体積平均粒径D50vとして測定される。
ポリイミド樹脂を溶解しない溶剤に可溶なポリイミド樹脂以外の樹脂の樹脂粒子としては、例えば、非架橋構造である架橋されていない(非架橋)樹脂粒子が好ましいが、前述の溶解性を有する範囲で架橋されていてもよい。樹脂粒子としては、具体的には、例えば、ポリメタクリル酸メチル(MB−シリーズ、積水化成品工業社製)、(メタ)アクリル酸エステル・スチレン共重合体(FS−シリーズ:日本ペイント社製)、ポリスチレン等が挙げられる。これらの樹脂粒子を用いる場合、洗浄して用いてもよい。
また、必要に応じて、ポリビニルブチラール樹脂等のアセタール樹脂;ナイロン等のポリアミド樹脂;アクリル樹脂;ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂等のビニル樹脂;ポリウレタン樹脂;ポリビニルピロリドン、ポリエチレングリコール、ポリビニルアルコール、等で水溶性のものなどを加えてもよい。
樹脂粒子分散ポリイミド前駆体溶液において、樹脂粒子の含有量としては、ポリイミド前駆体溶液中のポリイミド前駆体固形分100質量部に対して、20質量%以上600質量%以下(好ましくは25質量%以上300質量%以下、より好ましくは30質量%以上100質量%以下)の範囲であることがよい。
〔その他の添加剤〕
本実施形態に係る多孔質フィルムの製造方法において、ポリイミド前駆体溶液には、イミド化反応促進のための触媒や、製膜品質向上のためのレベリング材などを含んでもよい。
イミド化反応促進のための触媒には、酸無水物など脱水剤、フェノール誘導体、スルホン酸誘導体、安息香酸誘導体などの酸触媒などを使用してもよい。
また、ポリイミド前駆体溶液には、多孔質ポリイミドフィルムの使用目的に応じて、例えば、導電性付与のために添加される導電材料(導電性(例えば、体積抵抗率10Ω・cm未満)もしくは半導電性(例えば、体積抵抗率10Ω・cm以上1013Ω・cm以下))を含有していてもよい。
導電剤としては、例えば、カーボンブラック(例えばpH5.0以下の酸性カーボンブラック);金属(例えばアルミニウムやニッケル等);金属酸化物(例えば酸化イットリウム、酸化錫等);イオン導電性物質(例えばチタン酸カリウム、LiCl等);等が挙げられる。これら導電材料は、1種単独で用いてもよいし、2種以上併用してもよい。
また、ポリイミド前駆体溶液には、多孔質ポリイミドフィルムの使用目的に応じて、機械強度向上のため添加される無機粒子を含有していてもよい。無機粒子としては、シリカ粉、アルミナ粉、硫酸バリウム粉、酸化チタン粉、マイカ、タルクなどの粒子状材料が挙げられる。また、リチウムイオン電池の電極として用いられるLiCoO、LiMnOなどを含んでもよい。
−ポリイミド前駆体溶液の製造方法−
ポリイミド前駆体溶液の製造方法としては、特に限定されるものではないが、例えば、以下に示す製造方法が挙げられる。
一例としては、水性溶剤中で、有機アミン化合物の存在下、テトラカルボン酸二無水物とジアミン化合物とを重合して樹脂(ポリイミド前駆体)を生成してポリイミド前駆体溶液を得る方法が挙げられる。
この方法によれば、水性溶剤を適用するため、生産性も高く、ポリイミド前駆体溶液が1段階で製造される点で工程の簡略化の点で有利である。
他の例としては、非プロトン性極性溶剤等(例えば、N−メチルピロリドン(NMP)等)の有機溶剤中で、テトラカルボン酸二無水物とジアミン化合物とを重合して樹脂(ポリイミド前駆体)を生成した後、水や、アルコール等の水性溶剤に投入して樹脂(ポリイミド前駆体)を析出させる。その後、水性溶剤に、ポリイミド前駆体と有機アミン化合物とを溶解させポリイミド前駆体溶液を得る方法が挙げられる。
以下に実施例について説明するが、本発明はこれらの実施例に何ら限定されるものではない。なお、以下の説明において、特に断りのない限り、「部」及び「%」はすべて質量基準である。
<樹脂粒子の作製方法>
−樹脂粒子(1−1)−
800mlの脱イオン水と400mlのメタクリル酸メチルモノマーをフラスコに入れ、窒素雰囲気下で、300rpmで攪拌しながら70℃に昇温した。反応開始剤2,2’−アゾビス(2−メチルプロピオンアミジン)ジヒドロクリド0.8gを10mlの脱イオン水に溶解し、フラスコに加えた。70℃で6時間反応させて、ソープフリー乳化重合粒子であるポリメチルメタクリレート樹脂粒子を得た。
−樹脂粒子(1−2)−
800mlの脱イオン水をフラスコに入れ、窒素雰囲気下で、300rpmで攪拌しながら70℃に昇温した。100mlのスチレンモノマーを加えた後、温度が安定したら、過硫酸カリウム0.35gを50mlの脱イオン水に溶かし、70℃に加熱してフラスコに加え、30時間反応させてソープフリー乳化重合粒子であるスチレン樹脂粒子を得た。
−樹脂粒子(1−3)−
メタクリル酸メチルモノマー225gと非イオン界面活性剤としてラムテルPD−420(花王(株)製)5.4g、開始剤として過硫酸カリウム0.36g、イオン交換水112gを、600rpmで30分間攪拌し、プレエマルジョンを作製した。
イオン交換水160gに、過硫酸カリウム0.09g、非イオン界面活性剤としてラムテルPD−420(花王社製)を、1.35g、さらにプレエマルジョン17gを加え、窒素置換、80℃に昇温。初期重合を30min行った。これに、プレエマルジョンを3時間かけて滴下重合し、さらに1時間熟成させて、非イオン界面活性剤乳化重合粒子であるポリメチルメタクリレート樹脂粒子を得た。
−樹脂粒子(1−4)−
非イオン界面活性剤のラムテルPD−420を、カチオン界面活性剤コータミン24P(花王(株)製)に代えた以外は、樹脂粒子(1−3)と同様にして、カチオン界面活性剤乳化重合粒子であるポリメチルメタクリレート樹脂粒子を得た。
−樹脂粒子(1−5)−
非イオン界面活性剤のラムテルPD−420を、両性界面活性剤アンヒトール20AB(花王(株)製)に代えた以外は、樹脂粒子(1−3)と同様にして、両性界面活性剤乳化重合粒子であるポリメチルメタクリレート樹脂粒子を得た。
−樹脂粒子(1−6)−
非イオン界面活性剤のラムテルPD−420を、金属元素を有しないアニオン界面活性剤ラムテルPD−104(花王(株)製)に代えた以外は、樹脂粒子(1−3)と同様にして、金属元素を有しないアニオン界面活性乳化重合粒子であるポリメチルメタクリレート樹脂粒子を得た。
−樹脂粒子(1−7)−
非イオン界面活性剤のラムテルPD−420を、金属元素を有するアニオン界面活性剤であるラウリル硫酸ナトリウムに代えた以外は、樹脂粒子(1−3)と同様にして、金属元素を有するアニオン界面活性乳化重合粒子であるポリメチルメタクリレート樹脂粒子を得た。
−樹脂粒子(1−8)−
樹脂粒子(1−7)を、スプレードライで乾燥してポリメチルメタクリレート粉体を得た。なお、金属イオンであるナトリウムイオン及びカリウムイオンが原子吸光法で検出された。
−樹脂粒子(1−9)−
樹脂粒子(1−7)を、水洗後、スプレードライで乾燥して、洗浄樹脂粒子であるポリメチルメタクリレート粉体を得た。なお、金属イオンであるナトリウムイオン及びカリウムイオンが原子吸光法で検出された。
−樹脂粒子(1−10)−
市販の平均粒径0.1μmのスチレン・アクリル共重合体の水分散液(FS−102E:日本ペイント社製、固形分濃度21質量%)を準備した。なお、金属イオンであるナトリウムイオンが原子吸光法で検出された。
<実施例1〜8、比較例1,2>
(ポリイミド前駆体の作製)
−ポリイミド前駆体(2−1)−
樹脂粒子(1−1)の分散液150部に、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物10部と、p−フェニレンジアミン3.5部と、脱イオン水85部とを添加し、50℃に昇温し攪拌した。ついで、N−メチルモルホリンを1時間かけて滴下し、24時間攪拌して溶解、反応を行い、樹脂粒子分散ポリイミド前駆体溶液(2−1)を得た。
−ポリイミド前駆体(2−2)−
樹脂粒子(1−2)の分散液の固形分濃度を、樹脂粒子(1−1)の分散液の固形分濃度と同じになるように調整した。そして、樹脂粒子(1−1)の分散液を、固形分濃度調整した樹脂粒子(1−2)の分散液に代えた以外は、ポリイミド前駆体(2−1)と同様にして、樹脂粒子分散ポリイミド前駆体溶液(2−2)を得た。
−樹脂粒子分散ポリイミド前駆体(2−3)〜(2−7)−
樹脂粒子(1−3)〜(1−7)の分散液の固形分濃度を、樹脂粒子(1−1)の分散液の固形分濃度と同じになるように調整した。そして、樹脂粒子(1−1)の分散液を、固形分濃度調整した樹脂粒子(1−3)〜(1−7)の分散液に、それぞれ代えた以外は、ポリイミド前駆体(2−1)と同様にして、樹脂粒子分散ポリイミド前駆体溶液(2−3)〜(2−7)を得た。
−樹脂粒子分散ポリイミド前駆体(2−8)−
攪拌棒、温度計、滴下ロートを取り付けたフラスコに、脱イオン水を270部充填した。ここに、p−フェニレンジアミン3.5部と、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物10部とを添加し、50℃に昇温して攪拌した。ついで、N−メチルモルホリン:9.5部を1時間かけて滴下し、24時間攪拌して溶解、反応を行いポリイミド前駆体を得た。これに、樹脂粒子(1−8)で得た粉体粒子を21部添加し、ディゾルバで3時間攪拌混合して、樹脂粒子分散ポリイミド前駆体溶液(2−8)を得た。
−樹脂粒子分散ポリイミド前駆体(2−9)、(2−10)−
樹脂粒子(1−8)で得た粉体粒子に代えて、樹脂粒子(1−9)で得た洗浄樹脂粒子とした以外は、樹脂粒子分散ポリイミド前駆体溶液(2−8)と同様にして、樹脂粒子分散ポリイミド前駆体溶液(2−9)を得た。
また、樹脂粒子(1−8)で得た粉体粒子に代えて、樹脂粒子(1−10)とした以外は、樹脂粒子分散ポリイミド前駆体溶液(2−8)と同様にして、樹脂粒子分散ポリイミド前駆体溶液(2−10)を得た。
(多孔質ポリイミド膜の作製)
−樹脂粒子分散ポリイミド前駆体(3−1)〜(3−10)−
ガラス板に、樹脂粒子分散ポリイミド前駆体溶液(2−1)〜(2−10)を、それぞれ100μm厚みとなるように塗布して乾燥した。その後、320℃で1時間焼成し、粒子除去を行って多孔質ポリイミド膜(3−1)〜(3−10)を作製した。
<評価>
(金属量)
各例で得られた樹脂粒子分散ポリイミド前駆体溶液のポリイミド前駆体溶液に対する特定金属群の合計含有量、および多孔質ポリイミドフィルムに対する特定金属群の合計含有量を原子吸光法で測定した。
(サイクル電気特性)
各例で得られた多孔質ポリイミドフィルムを用いて、リチウムイオン電池を作製し、500回繰り返し充放電(25℃における1C充電と1C放電)したときの電池容量の低減率を調べた。低減率が小さいほどサイクル特性が良好である。低減率20%未満となったものを「良好」、低減率20%以上となったものを「不良」とした。
表1中、(金属種)のうち、Kはカリウム、Naはナトリウムを示す。
上記結果から、本実施例では、比較例に比べ、サイクル特性の評価結果が良好であることがわかる。

Claims (17)

  1. Liを除くアルカリ金属、アルカリ土類金属、およびケイ素からなる金属群の合計含有量が、多孔質ポリイミドフィルムに対して、100ppm以下である多孔質ポリイミドフィルム。
  2. 前記金属群の合計含有量が50ppm以下である請求項1に記載の多孔質ポリイミドフィルム。
  3. 前記金属群の合計含有量が20ppm以下である請求項2に記載の多孔質ポリイミドフィルム。
  4. 空孔の最大径が0.1μm以上0.5μm以下である請求項1〜請求項3のいずれか1項に記載の多孔質ポリイミドフィルム。
  5. 水を含む水性溶剤、前記水性溶剤に溶解しない樹脂粒子、有機アミン化合物、およびポリイミド前駆体を含有し、Liを除くアルカリ金属、アルカリ土類金属、およびケイ素からなる金属群の合計含有量が、ポリイミド前駆体溶液に対して、200ppm以下であるポリイミド前駆体溶液。
  6. 前記樹脂粒子の平均粒径が、0.1μm以上0.5μm以下である請求項5に記載のポリイミド前駆体溶液。
  7. 前記樹脂粒子の平均粒径が、0.25μm以上0.5μm以下である請求項6に記載のポリイミド前駆体溶液。
  8. 前記樹脂粒子の含有量が、ポリイミド前駆体固形分100質量部に対し、20質量部以上600質量部以下である請求項5〜請求項7のいずれか1項に記載のポリイミド前駆体溶液。
  9. 前記樹脂粒子の含有量が、ポリイミド前駆体固形分100質量部に対し、30質量部以上100質量部以下である請求項8に記載のポリイミド前駆体溶液。
  10. 前記樹脂粒子が、ソープフリー乳化重合粒子である請求項5〜請求項9のいずれか1項に記載のポリイミド前駆体溶液。
  11. 前記樹脂粒子が、洗浄樹脂粒子である請求項5〜請求項9のいずれか1項に記載のポリイミド前駆体溶液。
  12. 前記水性溶剤は、水性溶剤全量に対する前記水の含有量が50質量%以上100質量%以下である請求項5〜請求項11のいずれか1項に記載のポリイミド前駆体溶液。
  13. 前記水性溶剤は、水性溶剤全量に対する前記水の含有量が80質量%以上100質量%以下である請求項12に記載のポリイミド前駆体溶液。
  14. 前記有機アミン化合物が、3級アミン化合物である請求項5〜請求項13のいずれか1項に記載のポリイミド前駆体溶液。
  15. 前記有機アミン化合物が、2−ジメチルアミノエタノール、2−ジエチルアミノエタノール、2−ジメチルアミノプロパノール、ピリジン、トリエチルアミン、ピコリン、N−メチルモルホリン、N−エチルモルホリン、1,2−ジメチルイミダゾール、2−エチル−4−メチルイミダゾール、N−メチルピペリジン、及びN−エチルピペリジンからなる群から選択される少なくとも1種である請求項14に記載のポリイミド前駆体溶液。
  16. 前記有機アミン化合物が、モルホリン骨格を有するアミン化合物である請求項15に記載のポリイミド前駆体溶液。
  17. 請求項5〜請求項16のいずれか1項に記載のポリイミド前駆体溶液を塗布して塗膜を形成した後、前記塗膜を乾燥して、前記ポリイミド前駆体及び前記樹脂粒子を含む被膜を形成する第1の工程と、
    前記被膜を加熱して、前記ポリイミド前駆体をイミド化してポリイミドフィルムを形成する第2の工程であって、前記樹脂粒子を除去する処理を含む第2の工程と、
    を有する多孔質ポリイミドフィルムの製造方法。
JP2017037308A 2017-02-28 2017-02-28 多孔質ポリイミドフィルム、ポリイミド前駆体溶液、および多孔質ポリイミドフィルムの製造方法 Active JP6885107B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017037308A JP6885107B2 (ja) 2017-02-28 2017-02-28 多孔質ポリイミドフィルム、ポリイミド前駆体溶液、および多孔質ポリイミドフィルムの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017037308A JP6885107B2 (ja) 2017-02-28 2017-02-28 多孔質ポリイミドフィルム、ポリイミド前駆体溶液、および多孔質ポリイミドフィルムの製造方法

Publications (2)

Publication Number Publication Date
JP2018141110A true JP2018141110A (ja) 2018-09-13
JP6885107B2 JP6885107B2 (ja) 2021-06-09

Family

ID=63526474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017037308A Active JP6885107B2 (ja) 2017-02-28 2017-02-28 多孔質ポリイミドフィルム、ポリイミド前駆体溶液、および多孔質ポリイミドフィルムの製造方法

Country Status (1)

Country Link
JP (1) JP6885107B2 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020136187A (ja) * 2019-02-22 2020-08-31 富士ゼロックス株式会社 全固体電池
JP2020132696A (ja) * 2019-02-14 2020-08-31 富士ゼロックス株式会社 多孔質ポリイミド膜、リチウムイオン二次電池用セパレータ、リチウムイオン二次電池、及び全固体電池
CN112552682A (zh) * 2019-09-09 2021-03-26 富士施乐株式会社 聚酰亚胺前体溶液、聚酰亚胺膜的制造方法及锂离子二次电池用隔膜的制造方法
CN112608473A (zh) * 2019-09-18 2021-04-06 富士施乐株式会社 聚酰亚胺前体溶液、聚酰亚胺膜的制造方法及锂离子二次电池用隔膜的制造方法
CN118367302A (zh) * 2024-06-18 2024-07-19 湖南博盛新能源技术有限公司 一种阻燃型锂电池隔膜及其制备方法
WO2024181265A1 (ja) * 2023-02-27 2024-09-06 綜研化学株式会社 ポリイミド多孔質膜造孔用の樹脂粒子及びその製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009231281A (ja) * 2008-02-28 2009-10-08 Teijin Ltd 非水電解質電池セパレータ及び非水電解質二次電池
CN101704931A (zh) * 2009-11-24 2010-05-12 江苏大学 一种基于多孔材料的阳离子聚苯乙烯模板的制备方法
JP2012049018A (ja) * 2010-08-27 2012-03-08 Teijin Ltd 非水電解質電池セパレータ
JP2014133873A (ja) * 2012-12-11 2014-07-24 Asahi Kasei Chemicals Corp ポリエチレンパウダー、成形体、及びリチウムイオン二次電池用セパレーター
JP2016183333A (ja) * 2015-03-26 2016-10-20 富士ゼロックス株式会社 樹脂粒子分散ポリイミド前駆体溶液の製造方法、樹脂粒子分散ポリイミド前駆体溶液、樹脂粒子含有ポリイミドフィルム、多孔質ポリイミドフィルムの製造方法、及び多孔質ポリイミドフィルム
JP2016183332A (ja) * 2015-03-26 2016-10-20 富士ゼロックス株式会社 多孔質ポリイミドフィルムの製造方法、及び多孔質ポリイミドフィルム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009231281A (ja) * 2008-02-28 2009-10-08 Teijin Ltd 非水電解質電池セパレータ及び非水電解質二次電池
CN101704931A (zh) * 2009-11-24 2010-05-12 江苏大学 一种基于多孔材料的阳离子聚苯乙烯模板的制备方法
JP2012049018A (ja) * 2010-08-27 2012-03-08 Teijin Ltd 非水電解質電池セパレータ
JP2014133873A (ja) * 2012-12-11 2014-07-24 Asahi Kasei Chemicals Corp ポリエチレンパウダー、成形体、及びリチウムイオン二次電池用セパレーター
JP2016183333A (ja) * 2015-03-26 2016-10-20 富士ゼロックス株式会社 樹脂粒子分散ポリイミド前駆体溶液の製造方法、樹脂粒子分散ポリイミド前駆体溶液、樹脂粒子含有ポリイミドフィルム、多孔質ポリイミドフィルムの製造方法、及び多孔質ポリイミドフィルム
JP2016183332A (ja) * 2015-03-26 2016-10-20 富士ゼロックス株式会社 多孔質ポリイミドフィルムの製造方法、及び多孔質ポリイミドフィルム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
今野 幹男: "ソープフリー乳化重合による単分散ポリマー粒子の合成 [ONLINE]", 日本ゴム協会誌, vol. 79巻 2号, JPN7021000206, 31 December 2006 (2006-12-31), JP, pages 61 - 66, ISSN: 0004432031 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020132696A (ja) * 2019-02-14 2020-08-31 富士ゼロックス株式会社 多孔質ポリイミド膜、リチウムイオン二次電池用セパレータ、リチウムイオン二次電池、及び全固体電池
JP7314524B2 (ja) 2019-02-14 2023-07-26 富士フイルムビジネスイノベーション株式会社 多孔質ポリイミド膜、リチウムイオン二次電池用セパレータ、リチウムイオン二次電池、及び全固体電池
JP2020136187A (ja) * 2019-02-22 2020-08-31 富士ゼロックス株式会社 全固体電池
JP7358745B2 (ja) 2019-02-22 2023-10-11 富士フイルムビジネスイノベーション株式会社 全固体電池
CN112552682A (zh) * 2019-09-09 2021-03-26 富士施乐株式会社 聚酰亚胺前体溶液、聚酰亚胺膜的制造方法及锂离子二次电池用隔膜的制造方法
CN112608473A (zh) * 2019-09-18 2021-04-06 富士施乐株式会社 聚酰亚胺前体溶液、聚酰亚胺膜的制造方法及锂离子二次电池用隔膜的制造方法
WO2024181265A1 (ja) * 2023-02-27 2024-09-06 綜研化学株式会社 ポリイミド多孔質膜造孔用の樹脂粒子及びその製造方法
CN118367302A (zh) * 2024-06-18 2024-07-19 湖南博盛新能源技术有限公司 一种阻燃型锂电池隔膜及其制备方法

Also Published As

Publication number Publication date
JP6885107B2 (ja) 2021-06-09

Similar Documents

Publication Publication Date Title
JP6881644B2 (ja) 樹脂粒子分散ポリイミド前駆体溶液の製造方法、樹脂粒子分散ポリイミド前駆体溶液、樹脂粒子含有ポリイミドフィルム、多孔質ポリイミドフィルムの製造方法、及び多孔質ポリイミドフィルム
JP6897150B2 (ja) ポリイミド前駆体溶液の製造方法、ポリイミド前駆体溶液、及び多孔質ポリイミドフィルムの製造方法
US10195794B2 (en) Method for producing porous polyimide film, and porous polyimide film
JP6701833B2 (ja) 多孔質ポリイミドフィルムの製造方法、及び多孔質ポリイミドフィルム
JP6885107B2 (ja) 多孔質ポリイミドフィルム、ポリイミド前駆体溶液、および多孔質ポリイミドフィルムの製造方法
JP6421671B2 (ja) 多孔質ポリイミドフィルム
JP2019127535A (ja) ポリイミド前駆体溶液、成形体、及び、成形体の製造方法
JP7069745B2 (ja) ポリイミド前駆体溶液、多孔質ポリイミドフィルムの製造方法、及び、多孔質ポリイミドフィルム
JP6747091B2 (ja) 多孔質フィルム、及びその製造方法
JP6876912B2 (ja) ポリイミド前駆体溶液、及び多孔質ポリイミドフィルムの製造方法
JP2019014850A (ja) 粒子分散ポリイミド前駆体溶液、多孔質ポリイミドフィルムの製造方法、および多孔質ポリイミドフィルム
JP2019010740A (ja) ポリイミド積層膜、及びポリイミド積層膜の製造方法
JP7358745B2 (ja) 全固体電池
JP6904109B2 (ja) ポリイミド前駆体溶液、及び多孔質ポリイミドフィルムの製造方法
JP7419815B2 (ja) 多孔質ポリイミドフィルム、二次電池用セパレータ、及び二次電池
JP7532756B2 (ja) ポリイミド前駆体溶液、ポリイミド膜の製造方法、及びリチウムイオン二次電池用セパレータの製造方法
JP7314524B2 (ja) 多孔質ポリイミド膜、リチウムイオン二次電池用セパレータ、リチウムイオン二次電池、及び全固体電池
CN112552682A (zh) 聚酰亚胺前体溶液、聚酰亚胺膜的制造方法及锂离子二次电池用隔膜的制造方法
JP7286980B2 (ja) 多孔質ポリイミド膜、リチウムイオン二次電池用セパレータ、リチウムイオン二次電池、及び全固体電池
JP7367424B2 (ja) ポリイミド前駆体溶液、ポリイミド膜の製造方法、及びリチウムイオン二次電池用セパレータの製造方法
CN114249904A (zh) 聚酰亚胺前体溶液和多孔质聚酰亚胺膜的制造方法
JP2023038715A (ja) ポリイミド前駆体溶液、多孔質ポリイミドフィルム、二次電池用セパレータ、及び二次電池
CN115109272A (zh) 聚酰亚胺前体溶液及其制造方法、聚酰亚胺膜的制造方法及多孔质聚酰亚胺膜的制造方法
JP2019131709A (ja) 多孔質ポリイミド成形体及び多孔質ポリイミド成形体の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210413

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210426

R150 Certificate of patent or registration of utility model

Ref document number: 6885107

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150