JP2018083175A - 超純水製造方法及び超純水製造システム - Google Patents

超純水製造方法及び超純水製造システム Download PDF

Info

Publication number
JP2018083175A
JP2018083175A JP2016229194A JP2016229194A JP2018083175A JP 2018083175 A JP2018083175 A JP 2018083175A JP 2016229194 A JP2016229194 A JP 2016229194A JP 2016229194 A JP2016229194 A JP 2016229194A JP 2018083175 A JP2018083175 A JP 2018083175A
Authority
JP
Japan
Prior art keywords
reverse osmosis
osmosis membrane
chlorine
membrane device
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016229194A
Other languages
English (en)
Other versions
JP6778591B2 (ja
Inventor
徹 天谷
Toru Amaya
徹 天谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nomura Micro Science Co Ltd
Original Assignee
Nomura Micro Science Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nomura Micro Science Co Ltd filed Critical Nomura Micro Science Co Ltd
Priority to JP2016229194A priority Critical patent/JP6778591B2/ja
Priority to CN201780072434.4A priority patent/CN110291045A/zh
Priority to PCT/JP2017/040274 priority patent/WO2018096929A1/ja
Priority to KR1020197014169A priority patent/KR102432353B1/ko
Publication of JP2018083175A publication Critical patent/JP2018083175A/ja
Priority to US16/418,253 priority patent/US20190270653A1/en
Application granted granted Critical
Publication of JP6778591B2 publication Critical patent/JP6778591B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration
    • B01D61/026Reverse osmosis; Hyperfiltration comprising multiple reverse osmosis steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/04Feed pretreatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/08Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/42Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
    • B01D61/44Ion-selective electrodialysis
    • B01D61/46Apparatus therefor
    • B01D61/463Apparatus therefor comprising the membrane sequence AC or CA, where C is a cation exchange membrane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/42Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
    • B01D61/44Ion-selective electrodialysis
    • B01D61/46Apparatus therefor
    • B01D61/48Apparatus therefor having one or more compartments filled with ion-exchange material, e.g. electrodeionisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/58Multistep processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/08Prevention of membrane fouling or of concentration polarisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/469Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/04Specific process operations in the feed stream; Feed pretreatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/06Specific process operations in the permeate stream
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/25Recirculation, recycling or bypass, e.g. recirculation of concentrate into the feed
    • B01D2311/252Recirculation of concentrate
    • B01D2311/2523Recirculation of concentrate to feed side
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/25Recirculation, recycling or bypass, e.g. recirculation of concentrate into the feed
    • B01D2311/253Bypassing of feed
    • B01D2311/2531Bypassing of feed to permeate side
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/26Further operations combined with membrane separation processes
    • B01D2311/2626Absorption or adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/26Further operations combined with membrane separation processes
    • B01D2311/2684Electrochemical processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/30Chemical resistance
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/469Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis
    • C02F1/4693Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis electrodialysis
    • C02F1/4695Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis electrodialysis electrodeionisation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/76Treatment of water, waste water, or sewage by oxidation with halogens or compounds of halogens
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/12Halogens or halogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/02Non-contaminated water, e.g. for industrial water supply
    • C02F2103/04Non-contaminated water, e.g. for industrial water supply for obtaining ultra-pure water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/34Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32
    • C02F2103/346Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32 from semiconductor processing, e.g. waste water from polishing of wafers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/002Construction details of the apparatus
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/29Chlorine compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/04Flow arrangements
    • C02F2301/046Recirculation with an external loop
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/08Multistage treatments, e.g. repetition of the same process step under different conditions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Urology & Nephrology (AREA)
  • Analytical Chemistry (AREA)
  • Molecular Biology (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Water Treatment By Sorption (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

【課題】超純水製造システムの2段逆浸透膜装置における逆浸透膜の酸化剤による劣化を抑制し、また、バイオファウリングの発生を抑制することのできる超純水製造方法及び超純水製造システムの提供。【解決手段】2段逆浸透膜装置21,22を備える超純水製造システム1において、2段逆浸透膜装置21,22の前段の逆浸透膜装置21が耐塩素性逆浸透膜装置であり、2段逆浸透膜装置の後段の逆浸透膜装置22が非耐塩素性逆浸透膜装置であり、耐塩素性逆浸透膜装置21の被処理水中の遊離塩素濃度(Cl換算)と遊離臭素濃度(Br換算)が合計で、0.01〜0.1mg/L未満である超純水製造システム。【選択図】図1

Description

本発明は、超純水製造方法及び超純水製造システムに関する。
従来、半導体製造工程で使用される超純水は、超純水製造システムによって製造されている。超純水製造システムは、例えば、原水中の懸濁物質などを除去する前処理部、前処理部で処理された前処理水中の全有機炭素(TOC)成分やイオン成分を、直列2段に接続された逆浸透膜装置を用いて除去する一次純水製造部、及び一次純水製造部で得られた一次純水中の極微量の不純物を精密除去する二次純水製造部から構成されている。超純水製造システムにおいて、原水としては、市水、井水、地下水、工業用水や、ユースポイント(POU)で回収されて処理された使用済みの超純水(回収水)などが用いられる(例えば、特許文献1、2参照。)。
一次純水製造部の逆浸透膜装置に用いられる逆浸透膜としては、不純物の除去率が高いことから、ポリアミド系の複合膜が用いられることが多い。ところが、市水、井水、地下水、工業用水などは、次亜塩素酸や次亜臭素酸などの酸化剤により殺菌されているため、水中には0.1mg/Lを超える遊離塩素(又は遊離臭素、以下同様。)が残留していることがある。この残留塩素は、ポリアミド系の複合膜の劣化を促進する。一般的なポリアミド系の逆浸透膜では、許容残留遊離塩素濃度は、例えば、0.1mg/Lとされている場合がある。しかし、長期間通水する場合、上記残留遊離塩素濃度では逆浸透膜の著しい劣化が生じるため、実際には、ポリアミド系の逆浸透膜装置には、残留遊離塩素濃度をほぼ含まない被処理水を供給する必要がある。そのため、市水などが原水として用いられる場合、原水は、一次純水製造部の最前段に設けられた活性炭装置で処理されて原水中の塩素が吸着除去されるか、亜硫酸水素ナトリウムやピロ亜硫酸ナトリウムなどの還元剤が添加されて中和され、その後、一次純水製造部の被処理水とされるのが一般的である。
一方、耐塩素性の逆浸透膜として、三酢酸セルロース系の逆浸透膜が、海水淡水化の技術に用いられている。この、耐塩素性の膜は塩素による劣化が生じにくいが、例えば、25℃以上の海水を用いる場合に、塩素による劣化が生じやすくなるとして被処理水中の残留遊離塩素濃度を少なくする方法も提案されている(例えば、特許文献3参照。)。
超純水製造システムの逆浸透膜装置に、このような耐塩素性膜を用いることで、塩素による劣化の問題の解決が期待されるが、三酢酸セルロース系の逆浸透膜では、逆浸透膜の重要な機能である不純物の除去率が低く、一次純水製造部における逆浸透膜装置として用いるには適当ではない。
特開2004−33976号公報 国際公開2009/016982号 特開平7−171565号公報
ところで、逆浸透膜装置においては、膜面にスケールが生成すると、処理水の水質が劣化する。そのため、逆浸透膜装置においては、膜面でのスケール生成を抑制する目的で被処理水にスケール防止剤が添加されることがある。しかし、逆浸透膜装置の被処理水にスケール防止剤が添加されると、バイオファウリングが起きやすくなるという問題がある。バイオファウリングは、水中の細菌や微生物などが膜面に付着して水流の透過阻害を起こす現象であるが、活性炭装置で処理されて酸化剤の除去された被処理水は、細菌や微生物が生育しやすくなる。そのため、スケール防止剤が添加されて流路内に滞留あるいは流路内を通流する過程で、細菌や微生物が増殖しバイオファウリングが起きるものと考えられる。
本発明は、上記課題を解決すべくなされたものであって、超純水製造システムの2段逆浸透膜装置における前段逆浸透膜装置に用いる逆浸透膜として耐塩素性の素材を用いるとともに、2段逆浸透膜装置の被処理水中の、例えば残留遊離塩素濃度を所定の範囲に調整することで、2段逆浸透膜装置の遊離塩素等の酸化剤による劣化を抑制するとともに、バイオファウリングの発生を抑制することのできる超純水製造方法及び超純水製造システムを提供することを目的とする。
本発明の超純水製造方法は、2段逆浸透膜装置を備える超純水製造システムにおいて、前記2段逆浸透膜装置の前段の逆浸透膜装置が耐塩素性逆浸透膜装置であり、前記2段逆浸透膜装置の後段の逆浸透膜装置が非耐塩素性逆浸透膜装置であり、前記耐塩素性逆浸透膜装置の被処理水中の遊離塩素濃度(Cl換算)と遊離臭素濃度(Br換算)が合計で、0.01mg/L以上0.1mg/L未満であることを特徴とする。
本発明の超純水製造方法において、前記超純水製造システムは、活性炭装置を備え、前記活性炭装置の処理水を前記2段逆浸透膜装置の被処理水とし、前記活性炭装置における流速を調整して、前記遊離塩素及び遊離臭素の合計濃度の被処理水を生成することが好ましい。
本発明の超純水製造方法において、前記活性炭装置における流速は、空間速度で20h−1以上50h−1以下であることが好ましい。
本発明の超純水製造方法は、前記2段逆浸透膜装置の透過水を電気脱イオン装置で処理する工程を有することが好ましい。
本発明の超純水製造方法において、前記耐塩素性逆浸透膜装置の透過水中の遊離塩素及び遊離臭素の合計濃度が0.005mg/L以上0.05mg/L以下であることが好ましい。
本発明の超純水製造システムは、2段逆浸透膜装置を備える超純水製造システムであって、前記2段逆浸透膜装置の前段の逆浸透膜装置が耐塩素性逆浸透膜装置であり、前記2段逆浸透膜装置の後段の逆浸透膜装置が非耐塩素性逆浸透膜装置であり、前記耐塩素性逆浸透膜装置の被処理水中の遊離塩素濃度(Cl換算)と遊離臭素濃度(Br換算)が合計で0.01mg/L以上0.1mg/L未満であることを特徴とする。
本発明の超純水製造システムは、前記2段逆浸透膜装置の前段に活性炭装置を備え、前記2段逆浸透膜装置の後段に電気脱イオン装置を備えることが好ましい。
本発明の超純水製造方法及び超純水製造システムによれば、2段逆浸透膜装置の酸化剤による劣化を抑制するとともに、バイオファウリングの発生を抑制することができる。
実施形態の超純水製造システムを概略的に示す図である。 実施例で用いた超純水製造システムを概略的に示す図である。
以下、図面を参照して、実施形態を詳細に説明する。図1は、本発明の実施形態の超純水製造システムを概略的に示す図である。図1に示す超純水製造システム1は、原水タンク(TK)10の下流に、一次純水製造部20を備えている。一次純水製造部20は、被処理水を通流させる被処理水流路20aを有している。被処理水流路20aの経路には、2段逆浸透膜装置が配置されている。2段逆浸透膜装置は、耐塩素性逆浸透膜装置(RO1)21と、非耐塩素性逆浸透膜装置(RO2)22とからなる。被処理水流路20aの経路には、さらに、耐塩素性逆浸透膜装置21の前段に配置されて、耐塩素性逆浸透膜装置21の被処理水の供給圧を調節する第1のポンプP1と、非耐塩素性逆浸透膜装置22の前段に配置されて、非耐塩素性逆浸透膜装置22の被処理水の供給圧を調節する第2のポンプP2とが備えられている。
耐塩素性逆浸透膜装置21の濃縮水の出水口は、第1の濃縮水配管21aによって、第1のポンプP1の上流側で、被処理水流路20aに接続されている。非耐塩素性逆浸透膜装置22の濃縮水の出水口は、第2の濃縮水配管22aによって、耐塩素性逆浸透膜装置21と第2のポンプP2の間で、被処理水流路20aに接続されている。
また、一次純水製造部20において、被処理水流路20aの経路には、耐塩素性逆浸透膜装置21の前段に活性炭装置(AC)23が設置され、非耐塩素性逆浸透膜装置22の後段に電気脱イオン装置(EDI)24が設置されている。
一次純水製造部20の下流側には、さらに、二次純水製造部30が接続され、二次純水製造部30は、生成された超純水がその使用場所に供給されるように、ユースポイント(POU)40に接続されている。
超純水製造システム1において、原水としては、主に、市水、井水、地下水、工業用水が用いられる。これらの水中の遊離塩素濃度は、例えば、0.1mg/L〜0.4mg/Lであり、殺菌を目的として、酸化剤が添加されて、遊離塩素濃度(Cl換算)と遊離臭素濃度(Br換算)の合計が例えば200mg/L以下、より具体的には、5mg/L〜200mg/L程度にされて一次純水製造部20に供給されるのが一般的である。また、原水として、上記市水、井水、地下水、工業用水に回収水を混合した水を用いてもよい。
なお、本明細書において、遊離塩素濃度は次亜塩素酸イオン(ClO)などの態様で被処理水中に溶解された次亜塩素酸由来の塩素(Cl)の総量を塩素換算(as Cl)で表した濃度である。遊離臭素濃度は次亜臭素酸イオン(BrO)などの態様で被処理水中に溶解された次亜臭素酸由来の塩素(Br)の総量を塩素換算(as Br)で表した濃度である。以下、「遊離塩素濃度(Cl換算)と遊離臭素濃度(Br換算)の合計」を「遊離酸化剤濃度」といい、被処理水が、遊離塩素を含む場合を例に説明するが、遊離臭素を含む場合も同様である。
超純水製造システム1において、耐塩素性逆浸透膜装置21の被処理水の遊離酸化剤濃度は、0.01mg/L以上0.1mg/L未満である。耐塩素性逆浸透膜装置21の被処理水の遊離酸化剤濃度は0.01mg/L未満であると、耐塩素性逆浸透膜装置21の下流側の被処理水流路20a内で細菌や微生物が発生しやすい。そのため、長期使用により、耐塩素性逆浸透膜装置21内でバイオファウリングが発生し、耐塩素性逆浸透膜装置21の透過水流量が低下する。耐塩素性逆浸透膜装置21の被処理水の遊離酸化剤濃度は0.1mg/L以上では、塩素による膜の劣化が促進されて、耐塩素性逆浸透膜装置21の透過水流量が増加し、不純物の除去率が低下する。そのため、耐塩素性逆浸透膜装置21の被処理水の遊離酸化剤濃度が上記範囲外では、長期にわたって良好な不純物の除去率を維持することが困難である。耐塩素性逆浸透膜装置21の被処理水の遊離酸化剤濃度は、好ましくは、0.02mg/L〜0.04mg/Lである。
長期にわたって優れた不純物の除去率を得る点から、耐塩素性逆浸透膜装置21の被処理水のpHは5〜8であることが好ましく、電気伝導度は3μS/cm〜1mS/cmであることが好ましい。
活性炭装置23は、原水中の塩素を吸着除去することで、耐塩素性逆浸透膜装置21の被処理水の遊離酸化剤濃度を上記範囲に調整する。例えば、活性炭装置23の前段にポンプを設け、ポンプの吐出圧を調整して、活性炭装置23における原水の流速を制御することで、耐塩素性逆浸透膜装置21の被処理水の遊離酸化剤濃度を調整することができる。活性炭装置23における原水の流速が早いほど、活性炭装置23における塩素の除去率が小さくなるので、耐塩素性逆浸透膜装置21の被処理水の遊離酸化剤濃度を高くすることができる。一方で、活性炭装置23における原水の流速が遅いほど、活性炭装置23における塩素の除去率が大きくなるので、耐塩素性逆浸透膜装置21の被処理水の遊離酸化剤濃度を低くすることができる。
活性炭装置23における流速は、原水中の遊離酸化剤濃度にもよるが、空間速度(SV)が20hr−1〜50hr−1であることが好ましい。活性炭装置23における空間速度が50hr−1以上では、耐塩素性逆浸透膜装置21の被処理水の遊離酸化剤濃度が最適値を超えることがあり、20hr−1未満では水中の遊離酸化剤濃度が低くなりすぎて、被処理水流路20a内などで細菌や微生物が増殖しやすくなることがある。なお、活性炭装置23における流速は、被処理水中の遊離酸化剤濃度によって、上記好ましい範囲で変動することがある。そのため、予備実験等によって最適な流速を求めておき、当該流速に設定することが好ましい。
また、例えば、被処理水流路20aの活性炭装置23の前後を、活性炭装置23をバイパスして接続するバイパス管を設け、バイパス管に通流させる原水の流量を調整することで、耐塩素性逆浸透膜装置21の被処理水の遊離酸化剤濃度を調整してもよい。この場合、活性炭装置23で処理されて水中の塩素が除去された原水と、バイパス管を経た未処理の原水が混合されて、耐塩素性逆浸透膜装置21の被処理水の遊離酸化剤濃度が調整される。バイパス管に開度可変バルブなどを介装して、当該開度可変バルブの開度を調節することで、バイパス管に通流させる原水の流量を調整することが可能である。
また、上記の方法以外にも、被処理水流路20aの活性炭装置23と耐塩素性逆浸透膜装置21の間で、活性炭装置23の処理水に、あらかじめ遊離酸化剤濃度の測定された原水や回収水を供給することで、耐塩素性逆浸透膜装置21の被処理水の遊離酸化剤濃度を調整する方法でもよい。
活性炭装置23は必須ではなく、必要に応じて備えられる。一次純水製造部20が活性炭装置23を備えない場合には、耐塩素性逆浸透膜装置21の直前で、被処理水流路20a内に、塩素を還元する還元剤を供給して、耐塩素性逆浸透膜装置21の被処理水の遊離塩素濃度が調整することができる。還元剤としては、亜硫酸水素ナトリウムやピロ亜硫酸ナトリウムなどの従来公知の還元剤を用いることができる。
また、原水の遊離塩素濃度が低すぎる場合には、耐塩素性逆浸透膜装置21の直前で、被処理水流路20a内に、酸化剤を供給して、耐塩素性逆浸透膜装置21の被処理水の遊離塩素濃度が調整することができる。酸化剤としては、原水の殺菌に用いられるのと同様の、次亜塩素酸や次亜臭素酸などを使用することができ、コストの点から、次亜塩素酸が好ましい。
耐塩素性逆浸透膜装置21の被処理水の遊離酸化剤濃度の調整方法としては、上記したもののうち、活性炭装置23を用いる方法が好ましい。近年、安全性の向上や製造コスト削減、装置の小型化などの目的で、超純水の製造に際して可能な限り薬品使用を排除する要望が高まっている。活性炭装置23を用いることで、上記還元剤の添加が省略できるため、このような要望に対して極めて好適である。活性炭装置23を用いる方法のなかでは、活性炭装置23における流速を調整する方法であると、ポンプの吐出圧の制御が公知の方法で容易に行えるため、製造効率の向上や装置の小型化を実現することができ、製造効率の向上につながる。
耐塩素性逆浸透膜装置21の被処理水の遊離酸化剤濃度の調整に際しては、例えば、遊離塩素濃度を調整する場合、被処理水流路20aの、活性炭装置23の直前に遊離塩素濃度計を接続して、活性炭装置23に供給される原水中の遊離塩素濃度を測定し、当該遊離塩素濃度計の測定値に基づいて、活性炭装置23における原水の流速を調整してもよい。遊離塩素濃度計として、自動で遊離塩素濃度を測定して測定値を出力する自動遊離塩素濃度計を用い、さらに、制御装置を設ければ、上記遊離塩素濃度の測定値に基づいて、制御装置によってポンプの吐出圧を自動制御することができる。これにより、耐塩素性逆浸透膜装置21の被処理水の遊離塩素濃度を、上記の所定範囲に自動制御することができる。なお、制御装置は、超純水製造システム1全体の動作を統括的に制御することもできる。遊離塩素濃度は、ワコー純薬製の活性塩素−DPDテストや笠原理化工業(株)製の塩素濃度計RC−V1等の市販の遊離塩素濃度計を用いて測定できる。
また、活性炭装置23の処理水に、スケール防止剤が添加されて耐塩素性逆浸透膜装置21に供給されてもよい。これにより、耐塩素性逆浸透膜装置21の膜面におけるスケール生成を抑制して長期にわたって良好な不純物除去率を維持することができる。スケール防止剤としては、例えば、逆浸透膜面に、炭酸カルシウム、硫酸カルシウム、亜硫酸カルシウム、リン酸カルシウム、ケイ酸カルシウム等のカルシウム系スケール、ケイ酸マグネシウム、水酸化マグネシウム等のマグネシウム系スケール、リン酸亜鉛、水酸化亜鉛、塩基性炭酸亜鉛等の亜鉛系スケールの生成を抑制するものを使用することができる。
このようなスケール防止剤としては、例えば、カルシウム系スケールに対するスケール防止剤としては、ヘキサメタリン酸ナトリウムやトリポリリン酸ナトリウムなどの無機ポリリン酸類、アミノメチルホスホン酸やヒドロキシエチリデンジホスホン酸、ホスホノブタントリカルボン酸などのホスホン酸類、マレイン酸やアクリル酸、イタコン酸などのカルボキシル基含有素材を重合させた、ポリカルボン酸類のナトリウム塩やカリウム塩等、カルボキシル基含有素材に必要に応じてスルホン酸基を有するビニルモノマーやアクリルアミド等のノニオン性ビニルモノマーを組み合わせたコポリマーのナトリウム塩、カリウム塩等などを有効成分とするものが挙げられる。
スケール防止剤を添加する方法としては、例えば、被処理水流路20aにスケール防止剤を注入する装置を用いる方法がある。このようなスケール防止剤注入装置としては、例えば、薬剤を自動計量して供給する定量ポンプや、薬剤を収容するタンク等から高圧水の力によって薬剤を吸い出して配管内に供給するエジェクター等が挙げられる。また、被処理水流路20aに介装あるいは接続されたタンクと、当該タンクに、定量ポンプ等のスケール防止剤を添加する手段を備え、当該タンク内で被処理水にスケール防止剤を混合し、その後、被処理水流路20aを介して、被処理水を耐塩素性逆浸透膜装置21に供給する装置であってもよい。
本実施形態の超純水製造システム1では、耐塩素性逆浸透膜装置21の被処理水の遊離酸化剤濃度が上記最適範囲に調整されるため、活性炭装置23の処理水にスケール防止剤が添加された場合にも、耐塩素性逆浸透膜装置21における細菌や微生物の増殖が著しく抑制されるため、2段逆浸透膜装置において長期間良好な不純物除去率を維持することができる。
耐塩素性逆浸透膜装置21は、耐塩素性を有するポリアミド系の逆浸透膜である。耐塩素性逆浸透膜装置21は、不純物の除去率が高い点で、耐塩素性を有するポリアミド系の複合膜であることが好ましく、耐塩素性を有する架橋全芳香族ポリアミド系の複合膜であることが特に好ましい。耐塩素性を有する架橋全芳香族ポリアミド系の複合膜は、例えば、多官能芳香族アミンと多官能酸ハロゲン化物との界面重縮合により形成された分離層を有する膜などを使用することができる。
耐塩素性逆浸透膜装置21の膜形状は、シート平膜、スパイラル膜、管状膜、中空糸膜等であり、スパイラル膜であることが好ましい。耐塩素性逆浸透膜装置21の市販品としては、RE8040CE(商品名、東レ社製)などを使用することができる。
なお、耐塩素性逆浸透膜装置21は、上記以外の膜であっても、耐塩素性を有し、例えば後述するような十分な不純物(ホウ素やNaClなど)の除去率を有する膜であればよい。耐塩素性は、膜を次亜塩素酸水に浸漬して確認することができる。例えば、逆浸透膜を、10mg/Lの次亜塩素酸水に150時間浸漬して、浸漬後のNaClの除去率の低下率が初期のNaClの除去率を100%として2%以下、好ましくは1%以下のもの、もしくは、浸漬後のホウ素除去率の低下率が初期のホウ素除去率を100%として、10%以下、好ましくは5%以下のものを、耐塩素性があるということができる。
耐塩素性逆浸透膜装置21における水回収率は、50%〜95%であることが好ましく60%〜90%であることがより好ましく、65%〜85%であることがさらに好ましい。水回収率が上記した好ましい範囲であると、耐塩素性逆浸透膜装置21の劣化を抑制しながら優れた不純物の除去率が得やすい。
耐塩素性逆浸透膜装置21への被処理水の供給圧力は、0.8MPa〜2.0MPaであることが好ましい。被処理水の供給圧力は、小さすぎると、耐塩素性逆浸透膜装置21において上記所定の遊離酸化剤濃度の被処理水を処理した透過水中に遊離塩素が過剰に残留するおそれがあり、大きすぎると、耐塩素性逆浸透膜装置21の劣化につながりやすいためである。
高純度の超純水を製造する点から、耐塩素性逆浸透膜装置21における、ホウ素(B)の除去率は、50%〜85%であることが好ましく、NaClの除去率は、95%以上であることが好ましく、99.5%以上であることがより好ましい。ホウ素の除去率は、25℃、pH=7、ホウ素濃度20μg/Lの水溶液を、水回収率15%、膜の許容最大運転圧力で逆浸透膜に通水した際のホウ素の除去率として計測される。また、NaClの除去率は、25℃、pH=7、NaCl濃度0.2質量%の水溶液を、上記同様、水回収率15%、給水圧力1.5MPaで逆浸透膜に通水した際のNaCl除去率として計測される。
耐塩素性逆浸透膜装置21の透過水の遊離酸化剤濃度は、0.005mg/L〜0.05mg/Lであることが好ましく、0.01mg/L〜0.02mg/Lであることがより好ましい。耐塩素性逆浸透膜装置21の透過水の遊離酸化剤濃度は、0.05mg/L以下であれば、下流側の非耐塩素性逆浸透膜装置22の劣化がより抑制される。非耐塩素性逆浸透膜装置22の劣化が進むと、Na、Ca等のアルカリ金属イオン、アルカリ土類金属イオン、SO 2−、Cl等の陰イオンの除去率が低下しなくても、ホウ素やシリカ等の除去率が早期に低下してしまい、末端の超純水のホウ素濃度が上昇してしまうか、後段の装置のホウ素の負荷が増加してしまう。
耐塩素性逆浸透膜装置21の濃縮水は、第1の濃縮水配管21aを介して第1のポンプP1の上流側に還流され、耐塩素性逆浸透膜装置21で再度処理してもよい。複数の逆浸透膜モジュールを用によって耐塩素性逆浸透膜装置21の濃縮水を他の逆浸透膜装置で処理するようにアレイを組んで耐塩素性逆浸透膜装置21の濃縮水を当該アレイに通水しても良い。これにより、2段逆浸膜装置における水回収率がより向上される。
このようにして耐塩素性逆浸透膜装置21で処理された透過水は、非耐塩素性逆浸透膜装置22に供給される。
非耐塩素性逆浸透膜装置22に備えられる逆浸透膜は、耐塩素性を有していない非耐塩素性の逆浸透膜である。非耐塩素性の逆浸透膜は、不純物の除去率が高いため、これにより、高純度の超純水を製造することができる。非耐塩素性の逆浸透膜は、例えば、ポリアミド系、ポリビニルアルコール系、ポリスルホン系の膜であり、ポリアミド系の複合膜が好ましく、架橋全芳香族ポリアミド系の複合膜であることがより好ましい。膜形状は、シート平膜、スパイラル膜、管状膜、中空糸膜等であり、スパイラル膜であることが好ましい。非耐塩素性逆浸透膜装置22の市販品としては、TMG20、TM720、TM800K、TM820(商品名、いずれも東レ社製)、BW30、SW30(商品名、ダウ社製)等を使用することができる。
非耐塩素性逆浸透膜装置22における水回収率は、50%〜95%であることが好ましく、60%〜90%であることがより好ましく、65%〜85%であることがさらに好ましい。水回収率が上記した好ましい範囲であると、非耐塩素性逆浸透膜装置22の劣化を抑制しながら優れた不純物の除去率が得やすい。
非耐塩素性逆浸透膜装置22における被処理水の供給圧力は、0.8MPa〜2.0MPaであることが好ましい。非耐塩素性逆浸透膜装置22における被処理水の供給圧力は、小さすぎると、透過水中に不純物が過剰に残留することがあり、大きすぎると、非耐塩素性逆浸透膜装置22の劣化につながりやすいためである。
高純度の超純水を製造する点から、非耐塩素性逆浸透膜装置22における、ホウ素(B)の除去率は、50%〜90%であることが好ましく、NaClの除去率は、95%以上であることが好ましく、99.5%以上であることがより好ましい。ホウ素の除去率及びNaClの除去率は、それぞれ、上記耐塩素性逆浸透膜21と同様の方法で計測される。
電気脱イオン装置24は、非耐塩素性逆浸透膜装置22で処理された透過水中のイオン成分を除去する。電気脱イオン装置24は、例えば、陽極と陰極の間に交互に配置された陰イオン交換膜と陽イオン交換膜とを有している。また、電気脱イオン装置24は、陰イオン交換膜と陽イオン交換膜によって仕切られた脱塩室と、除去されたイオン成分を含む濃縮水が流入する濃縮室とを交互に有している。電気脱イオン装置24は、脱塩室内に充填された陰イオン交換樹脂と陽イオン交換樹脂との混合体と、直流電圧を印加するための電極を有している。
電気脱イオン装置24において、例えば、被処理水は脱塩室及び濃縮室に並行して供給され、脱塩室の陰イオン交換樹脂と陽イオン交換樹脂の混合体が被処理水中のイオン成分を吸着する。吸着されたイオン成分は直流電流の作用により濃縮室に移行されて、濃縮室の濃縮水は系外に排出される。
電気脱イオン装置24は、イオン交換樹脂を再生するための、酸やアルカリのような薬品を一切使用せずに連続的にイオン成分の除去を行うことができる。そのため、超純水製造における安全性の向上や製造コスト削減、装置の小型化などを実現することができ、製造効率の向上につながる。電気脱イオン装置24は複数台を直列に接続した多段形式の電気脱イオン装置であってもよい。
電気脱イオン装置24は、必須ではなく、必要に応じて備えられる。一次純水製造部20は、電気脱イオン装置24に代えて、非再生型混床式イオン交換樹脂装置(Polisher)を備えていてもよい。非再生型混床式イオン交換樹脂装置は、陽イオン交換樹脂と陰イオン交換樹脂が混合されて容器内に充てんされており、非耐塩素性逆浸透膜装置22の透過水中のイオン成分を除去することができる。非再生型混床式イオン交換樹脂装置は、内部のイオン交換樹脂の再生を行わず、イオン成分の除去性能が低下したときに交換されるため、酸やアルカリのような薬品を使用しない。そのため、非再生型混床式イオン交換樹脂装置によれば、薬品使用を削減できるため、超純水製造における安全性の向上や製造コスト削減、装置の小型化などを実現することができ、製造効率の向上につながる。
また、一次純水製造部20は、電気脱イオン装置24に代えて、薬品使用を伴う装置である、再生型の混床式イオン交換樹脂装置を用いてもよい。
このようにして、一次純水製造部20は、前処理水中のイオン成分及び非イオン成分を除去して一次純水を製造する。一次純水は、例えば、TOC濃度が10μgC/L以下、比抵抗率が17MΩ・cm以上である。
二次純水製造部30は、一次純水中の微量不純物を除去する装置であり、紫外線酸化装置、膜脱気装置、非再生型混床式イオン交換装置、限外ろ過装置等を組み合わせて構成される。これにより得られる超純水は、例えば、TOC濃度が5μgC/L以下、比抵抗率が17.5MΩ・cm以上、ホウ素濃度が1ng/L以下まで低減される。
以上で説明した実施形態の超純水製造システム1及び超純水製造方法によれば、逆浸透膜装置におけるバイオファウリングの発生を抑制するとともに、酸化剤による逆浸透膜の劣化を抑制して、長期にわたって優れた不純物の除去率を得ることができる。
次に、実施例について説明する。本発明は以下の実施例に限定されない。
図2は、実施例で用いた超純水製造システム2を概略的に示す図である。図2に示す装置2において、図1に示す超純水製造システム1と共通する構成には同一の符号を付して重複する説明を省略する。図2に示す超純水製造システム2は、原水を処理する活性炭装置23と、耐塩素性逆浸透膜装置21と、非耐塩素性逆浸透膜装置22とを備えている。耐塩素性逆浸透膜装置21の前段には第1のポンプP1が備えられ、非耐塩素性逆浸透膜装置22の前段には第2のポンプP2が備えられている。また、被処理水流路20aに活性炭装置23をバイパスするバイパス管23aを設けた。バイパス管23aには、開度可変バルブV1を介装した。
実施例で用いた装置の仕様及び通水条件は次のとおりである。
活性炭装置23:三菱化学カルゴン(株)社製、ダイヤホープM006LFA
耐塩素性逆浸透膜装置21:東レ株式会社製、RE8040−CE、1本を使用。水回収率75%、耐塩素性逆浸透膜装置21の透過水圧力により第1のポンプP1をフィードバック制御して運転圧力1.2MPaの略一定にて運転した。
非耐塩素性逆浸透膜装置22:東レ株式会社製、TM720、1本を使用。水回収率75%。非耐塩素性逆浸透膜装置22の透過水圧力により第2のポンプP2をフィードバック制御して運転圧力1.2MPaの略一定にて運転した。
耐塩素性逆浸透膜装置21の濃縮水は、第1のポンプP1の上流側で被処理水流路20aに還流させた。非耐塩素性逆浸透膜装置22の濃縮水は耐塩素性逆浸透膜装置21と第2のポンプP2の間で被処理水流路20aに還流させた。第1の濃縮水配管21a、第2の濃縮水配管22aにはそれぞれ開度可変バルブV21a、V22aを介装させた。また、第1の濃縮水配管21aには開度可変バルブV21bを介して第1の濃縮水排出管21bを接続した。第2の濃縮水配管22aには開度可変バルブV22bを介して第2の濃縮水排出管22bを接続した。開度可変バルブV21a、V22a、V21b、V22bにより、第1の濃縮水配管21a及び、第2の濃縮水配管22aから被処理水流路20aに還流させる濃縮水量を調節した。耐塩素性逆浸透膜装置21の濃縮水及び非耐塩素性逆浸透膜装置22の濃縮水の一部は、それぞれ、第1の濃縮水排出管21b、第2の濃縮水排出管22bを経て系外に排出させた。
原水は、厚木市水(pH=8.1、ナトリウム(Na)濃度13mg/L、ホウ素(B)濃度20μg/L、導電率185μS/cm)を用いた。活性炭装置23で処理されて水中の次亜塩素酸が分解された原水と、バイパス管23aを経た未処理の原水を混合した。バイパス管23aの開度可変バルブV1の開度を調整して、表1に示す各例の遊離塩素濃度とした被処理水を、耐塩素性逆浸透膜装置21に供給した。耐塩素性逆浸透膜装置21の被処理水の遊離塩素濃度は、被処理水流路20aの耐塩素性逆浸透膜装置21の直前で、被処理水をサンプリングして、笠原理化工業(株)社製の塩素濃度計RC−V1で測定した。被処理水のpHは、8.0であった。
通水初期の耐塩素性逆浸透膜装置21及び非耐塩素性逆浸透膜装置22の透過水中のNa濃度、B濃度を測定し、耐塩素性逆浸透膜装置21及び非耐塩素性逆浸透膜装置22のNa除去率及びB除去率をそれぞれ算出した。また、通水初期の耐塩素性逆浸透膜装置21及び非耐塩素性逆浸透膜装置22の透過水流量を測定した。Na濃度はICP発光分光法、B濃度は、LC/MS/MS(液体クロマトグラフィー質量分析法)によって測定した。
その後、原水の耐塩素性逆浸透膜装置21への供給開始から10000時間後に、通水初期と同様、耐塩素性逆浸透膜装置21及び非耐塩素性逆浸透膜装置22の透過水中のNa濃度、B濃度を測定し、Na除去率及びB除去率をそれぞれ算出した。また、耐塩素性逆浸透膜装置21及び非耐塩素性逆浸透膜装置22の透過水流量を測定した。結果を表1に示す。なお、表1において、原水の耐塩素性逆浸透膜装置21への供給開始から10000時間後の、耐塩素性逆浸透膜装置21及び非耐塩素性逆浸透膜装置22の透過水流量は、それぞれの通水初期の透過水流量を1として算出した値である。
Figure 2018083175
表1より、耐塩素性逆浸透膜装置21の被処理水の遊離塩素濃度を0.01mg/L以上0.1mg/L未満とした例2〜5では、10000時間通水後、耐塩素性逆浸透膜装置21と非耐塩素性逆浸透膜装置22の両者においてNa除去率、B除去率、透過水流量のいずれも初期と変わりがなかったことが分かる。
これに対し、耐塩素性逆浸透膜装置21の被処理水の遊離塩素濃度が0.01mg/L未満の例1では、耐塩素性逆浸透膜装置21において、透過水流量の減少、Na除去率の若干の減少及びB除去率の減少が見られた。これらは、膜表面への菌の付着が原因と推測される。また、耐塩素性逆浸透膜装置21の被処理水の遊離塩素濃度0.1mg/L以上の例6では、耐塩素性逆浸透膜装置21において、透過水流量の増加、Na除去率の若干の減少、B除去率の減少が見られた。これらは、塩素による膜の劣化が原因と推測される。
以上より、本発明の超純水製造システム、超純水製造方法によれば、逆浸透膜装置における細菌や微生物の発生を抑制するとともに、遊離塩素等の酸化剤による逆浸透膜の劣化を抑制して、長期にわたって優れた不純物(特にホウ素)の除去率を得ることができることが分かる。
1,2…超純水製造システム、10…原水タンク、20…一次純水製造部、20a…被処理水流路、21…耐塩素性逆浸透膜装置(RO1)、21a…第1の濃縮水配管、21b…第1の濃縮水排出管、22…非耐塩素性逆浸透膜装置(RO2)、22a…第2の濃縮水配管、22b…第2の濃縮水排出管、23…活性炭装置(AC)、23a…バイパス管、24…電気脱イオン装置(EDI)、30…二次純水製造部、40…ユースポイント(POU)、P1…第1のポンプ,P2…第2のポンプ、V1,V21a,V21a,V22b…開度可変バルブ。

Claims (7)

  1. 2段逆浸透膜装置を備える超純水製造システムにおいて、
    前記2段逆浸透膜装置の前段の逆浸透膜装置が耐塩素性逆浸透膜装置であり、
    前記2段逆浸透膜装置の後段の逆浸透膜装置が非耐塩素性逆浸透膜装置であり、
    前記耐塩素性逆浸透膜装置の被処理水中の遊離塩素濃度(Cl換算)と遊離臭素濃度(Br換算)が合計で、0.01mg/L以上0.1mg/L未満であることを特徴とする超純水製造方法。
  2. 前記超純水製造システムは、活性炭装置を備え、
    前記活性炭装置の処理水を前記2段逆浸透膜装置の被処理水とし、
    前記活性炭装置における流速を調整して、前記遊離塩素及び遊離臭素の合計濃度の被処理水を生成することを特徴とする請求項1記載の超純水製造方法。
  3. 前記活性炭装置における流速は、空間速度で20h−1以上50h−1以下であることを特徴とする請求項2記載の超純水製造方法。
  4. 前記2段逆浸透膜装置の透過水を電気脱イオン装置で処理する工程を有することを特徴とする請求項1乃至3のいずれか1項記載の超純水製造方法。
  5. 前記耐塩素性逆浸透膜装置の透過水中の遊離塩素及び遊離臭素の合計濃度が0.005mg/L以上0.05mg/L以下であることを特徴とする請求項1乃至4のいずれか1項記載の超純水製造方法。
  6. 2段逆浸透膜装置を備える超純水製造システムであって、
    前記2段逆浸透膜装置の前段の逆浸透膜装置が耐塩素性逆浸透膜装置であり、
    前記2段逆浸透膜装置の後段の逆浸透膜装置が非耐塩素性逆浸透膜装置であり、
    前記耐塩素性逆浸透膜装置の被処理水中の遊離塩素濃度(Cl換算)と遊離臭素濃度(Br換算)が合計で0.01mg/L以上0.1mg/L未満であることを特徴とする超純水製造システム。
  7. 前記2段逆浸透膜装置の前段に活性炭装置を備え、
    前記2段逆浸透膜装置の後段に電気脱イオン装置を備えることを特徴とする請求項6記載の超純水製造システム。
JP2016229194A 2016-11-25 2016-11-25 超純水製造方法及び超純水製造システム Active JP6778591B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2016229194A JP6778591B2 (ja) 2016-11-25 2016-11-25 超純水製造方法及び超純水製造システム
CN201780072434.4A CN110291045A (zh) 2016-11-25 2017-11-08 超纯水制造方法及超纯水制造系统
PCT/JP2017/040274 WO2018096929A1 (ja) 2016-11-25 2017-11-08 超純水製造方法及び超純水製造システム
KR1020197014169A KR102432353B1 (ko) 2016-11-25 2017-11-08 초순수 제조 방법 및 초순수 제조 시스템
US16/418,253 US20190270653A1 (en) 2016-11-25 2019-05-21 Ultrapure water production method and ultrapure water production system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016229194A JP6778591B2 (ja) 2016-11-25 2016-11-25 超純水製造方法及び超純水製造システム

Publications (2)

Publication Number Publication Date
JP2018083175A true JP2018083175A (ja) 2018-05-31
JP6778591B2 JP6778591B2 (ja) 2020-11-04

Family

ID=62194985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016229194A Active JP6778591B2 (ja) 2016-11-25 2016-11-25 超純水製造方法及び超純水製造システム

Country Status (5)

Country Link
US (1) US20190270653A1 (ja)
JP (1) JP6778591B2 (ja)
KR (1) KR102432353B1 (ja)
CN (1) CN110291045A (ja)
WO (1) WO2018096929A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110550787A (zh) * 2019-08-20 2019-12-10 生态环境部华南环境科学研究所 一种奶牛养殖废水肥料化利用除盐处理设备及方法
JP2020142178A (ja) * 2019-03-05 2020-09-10 栗田工業株式会社 超純水製造装置及び超純水製造装置の運転方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109020002A (zh) * 2018-09-19 2018-12-18 上海缘脉环境科技有限公司 基于电去离子技术的新型煤化工除盐水处理工艺及其专用装置
JP7129965B2 (ja) * 2019-12-25 2022-09-02 野村マイクロ・サイエンス株式会社 純水製造方法、純水製造システム、超純水製造方法及び超純水製造システム
IT202200016350A1 (it) * 2022-08-02 2024-02-02 Sultan S R L Soc Benefit Sistema e metodo per la declorazione dell’acqua a bordo di una nave.

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006255650A (ja) * 2005-03-18 2006-09-28 Kurita Water Ind Ltd 純水製造装置
JP2008055317A (ja) * 2006-08-31 2008-03-13 Toyobo Co Ltd 逆浸透膜による海水淡水化設備および淡水化方法
WO2010061666A1 (ja) * 2008-11-27 2010-06-03 三菱重工業株式会社 多段海水淡水化装置及び多段海水淡水化装置の運転制御方法
JP2016120457A (ja) * 2014-12-25 2016-07-07 オルガノ株式会社 ろ過処理システムおよびろ過処理方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07171565A (ja) 1993-12-20 1995-07-11 Toyobo Co Ltd 海水淡水化の前処理方法
JP3969221B2 (ja) 2002-07-05 2007-09-05 栗田工業株式会社 脱イオン水の製造方法及び装置
JP4304573B2 (ja) * 2002-10-10 2009-07-29 東洋紡績株式会社 逆浸透膜による高濃度溶液の処理方法
CN101437761B (zh) * 2006-05-09 2011-08-24 东丽株式会社 淡水制造方法
JP2009028695A (ja) 2007-07-30 2009-02-12 Kurita Water Ind Ltd 純水製造装置及び純水製造方法
CN102471101A (zh) 2009-08-21 2012-05-23 东丽株式会社 造水方法
CN102781850B (zh) * 2010-03-05 2014-12-24 栗田工业株式会社 水处理方法及超纯水的制造方法
KR101653230B1 (ko) * 2010-03-31 2016-09-01 쿠리타 고교 가부시키가이샤 결합 염소제, 그 제조 및 사용 방법
DE102012208778A1 (de) * 2012-05-24 2013-11-28 Bwt Aqua Ag Verfahren und Anlage zur Aufbereitung von Wasser
JP5967337B1 (ja) * 2015-03-31 2016-08-10 栗田工業株式会社 逆浸透膜処理システムの運転方法及び逆浸透膜処理システム
JP2016203065A (ja) * 2015-04-17 2016-12-08 株式会社日立製作所 逆浸透を用いる脱塩システムおよびその運転方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006255650A (ja) * 2005-03-18 2006-09-28 Kurita Water Ind Ltd 純水製造装置
JP2008055317A (ja) * 2006-08-31 2008-03-13 Toyobo Co Ltd 逆浸透膜による海水淡水化設備および淡水化方法
WO2010061666A1 (ja) * 2008-11-27 2010-06-03 三菱重工業株式会社 多段海水淡水化装置及び多段海水淡水化装置の運転制御方法
JP2016120457A (ja) * 2014-12-25 2016-07-07 オルガノ株式会社 ろ過処理システムおよびろ過処理方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020142178A (ja) * 2019-03-05 2020-09-10 栗田工業株式会社 超純水製造装置及び超純水製造装置の運転方法
CN110550787A (zh) * 2019-08-20 2019-12-10 生态环境部华南环境科学研究所 一种奶牛养殖废水肥料化利用除盐处理设备及方法
CN110550787B (zh) * 2019-08-20 2021-12-07 生态环境部华南环境科学研究所 一种奶牛养殖废水肥料化利用除盐处理设备及方法

Also Published As

Publication number Publication date
WO2018096929A1 (ja) 2018-05-31
JP6778591B2 (ja) 2020-11-04
KR102432353B1 (ko) 2022-08-11
US20190270653A1 (en) 2019-09-05
KR20190099391A (ko) 2019-08-27
CN110291045A (zh) 2019-09-27

Similar Documents

Publication Publication Date Title
WO2018096929A1 (ja) 超純水製造方法及び超純水製造システム
JP3164558U (ja) 脱塩のための装置
JP5099045B2 (ja) 逆浸透膜分離方法
US20160159671A1 (en) Method and apparatus for treating water containing boron
CN112805247A (zh) 水处理装置、水处理方法、正渗透膜处理方法、正渗透膜处理系统及水处理系统
JP2010201312A (ja) 膜分離方法
WO2020184045A1 (ja) ホウ素除去装置及びホウ素除去方法、並びに、純水製造装置及び純水の製造方法
JP2008259961A (ja) 電気脱イオン装置及びその運転方法
JP5757110B2 (ja) 水処理方法及び水処理システム
JP2017140550A (ja) 純水製造装置、純水製造方法及び超純水製造装置
JP3137831B2 (ja) 膜処理装置
JP2007307561A (ja) 高純度水の製造装置および方法
JP5238778B2 (ja) 淡水化システム
WO2020184044A1 (ja) 純水製造装置および純水の製造方法
JP2017217596A (ja) 酸性イオン交換体の再生廃液からの酸性溶液の回収装置及びこれを用いた回収方法
JP2016190214A (ja) 造水方法
JP2012192364A (ja) 水処理方法及び水処理システム
JP4505965B2 (ja) 純水の製造方法
CN112424128B (zh) 纯水制造系统及纯水制造方法
JP2021181069A (ja) ホウ素除去装置及びホウ素除去方法、並びに、純水製造装置及び純水の製造方法
JPH09323029A (ja) 水の脱塩方法及びそのための装置
JP4915843B2 (ja) 電気軟化装置、軟化装置及び軟水製造方法
JPH0957067A (ja) 逆浸透膜分離方法およびその装置
JP6285645B2 (ja) 排水処理方法及び排水処理装置
JP2012196630A (ja) 酸性液の処理装置及び処理方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200929

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201012

R150 Certificate of patent or registration of utility model

Ref document number: 6778591

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250