JP2017517145A - こけら葺き状太陽電池モジュール - Google Patents

こけら葺き状太陽電池モジュール Download PDF

Info

Publication number
JP2017517145A
JP2017517145A JP2016567741A JP2016567741A JP2017517145A JP 2017517145 A JP2017517145 A JP 2017517145A JP 2016567741 A JP2016567741 A JP 2016567741A JP 2016567741 A JP2016567741 A JP 2016567741A JP 2017517145 A JP2017517145 A JP 2017517145A
Authority
JP
Japan
Prior art keywords
solar
solar cell
rectangular
solar cells
supercell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016567741A
Other languages
English (en)
Other versions
JP2017517145A5 (ja
JP6554703B2 (ja
Inventor
モラド、ラトソン
アルモジー、ギラド
スエズ、イタイ
フッメル、ジーン
ベケット、ナサン
リン、ヤフ
ガンノン、ジョン
ジェー. スターキー、ミカエル
ジェー. スターキー、ミカエル
スチュアート、ロバート
ランス、タミー
メイダン、ダン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SunPower Corp
Original Assignee
SunPower Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=57321491&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2017517145(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from US14/530,405 external-priority patent/US9780253B2/en
Priority claimed from US29/509,586 external-priority patent/USD750556S1/en
Priority claimed from US29/509,588 external-priority patent/USD767484S1/en
Priority claimed from US14/674,983 external-priority patent/US9947820B2/en
Priority claimed from PCT/US2015/032472 external-priority patent/WO2015183827A2/en
Application filed by SunPower Corp filed Critical SunPower Corp
Publication of JP2017517145A publication Critical patent/JP2017517145A/ja
Publication of JP2017517145A5 publication Critical patent/JP2017517145A5/ja
Publication of JP6554703B2 publication Critical patent/JP6554703B2/ja
Application granted granted Critical
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02002Arrangements for conducting electric current to or from the device in operations
    • H01L31/02005Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier
    • H01L31/02008Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/044PV modules or arrays of single PV cells including bypass diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • H01L31/0508Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module the interconnection means having a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0745Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells
    • H01L31/0747Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells comprising a heterojunction of crystalline and amorphous materials, e.g. heterojunction with intrinsic thin layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1876Particular processes or apparatus for batch treatment of the devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • H02S40/34Electrical components comprising specially adapted electrical connection means to be structurally associated with the PV module, e.g. junction boxes
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • H02S40/36Electrical components characterised by special electrical interconnection means between two or more PV modules, e.g. electrical module-to-module connection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

太陽電池モジュールの高効率構成は、こけら葺き状に互いに伝導接合してスーパーセルを形成する太陽電池を含む。同構成は、ソーラーモジュールの面積を効率的に用い、直列抵抗を下げ、モジュール効率を高めるよう配置され得る。太陽電池上の前面金属被覆パターンは、スーパーセル内の太陽電池の重なり合う構成により容易とされる、単一工程の孔版印刷を可能とするよう構成され得る。太陽光発電システムは、互いに、およびインバータに並列に電気接続する2またはそれより多くのそのような高電圧太陽電池モジュールを含み得る。太陽電池劈開ツールおよび太陽電池劈開方法は、太陽電池ウェハの底面と湾曲支持面との間で真空を引いて、湾曲支持面に寄せて太陽電池ウェハを曲げ、それにより、事前に用意された1または複数のスクライブラインに沿って太陽電池ウェハを劈開して、複数の太陽電池を提供する。これらの劈開ツールおよび劈開方法の利点は、それらが、太陽電池ウェハの上面と物理的な接触を要する必要がないということである。例えば、キャリア再結合を促す劈開縁がなく、太陽電池の縁でのキャリア再結合損失が減る太陽電池が製造される。太陽電池は、幅狭の長方形幾何学を有し得、こけら葺き状(重なり合う)配置で有利に採用されてスーパーセルを形成し得る。

Description

[関連出願の相互参照]
本国際特許出願は、米国特許出願第14/530,405号(発明の名称が「Shingled Solar Cell Module」、出願日が2014年10月31日)、米国特許出願第14/532,293号(発明の名称が「Shingled Solar Cell Module」、出願日が2014年11月4日)、米国特許出願第14/536,486号(発明の名称が「Shingled Solar Cell Module」、出願日が2014年11月7日)、米国特許出願第14/539,546号(発明の名称が「Shingled Solar Cell Module」、出願日が2014年11月12日)、米国特許出願第14/543,580号(発明の名称が「Shingled Solar Cell Module」、出願日が2014年11月17日)、米国特許出願第14/548,081号(発明の名称が「Shingled Solar Cell Module」、出願日が2014年11月19日)、米国特許出願第14/550,676号(発明の名称が「Shingled Solar Cell Module」、出願日が2014年11月21日)、米国特許出願第14/552,761号(発明の名称が「Shingled Solar Cell Module」、出願日が2014年11月25日)、米国特許出願第14/560,577号(発明の名称が「Shingled Solar Cell Module」、出願日が2014年12月4日)、米国特許出願第14/566,278号(発明の名称が「Shingled Solar Cell Module」、出願日が2014年12月10日)、米国特許出願第14/565,820号(発明の名称が「Shingled Solar Cell Module」、出願日が2014年12月10日)、米国特許出願第14/572,206号(発明の名称が「Shingled Solar Cell Module」、出願日が2014年12月16日)、米国特許出願第14/577,593号(発明の名称が「Shingled Solar Cell Module」、出願日が2014年12月19日)、米国特許出願第14/586,025号(発明の名称が「Shingled Solar Cell Module」、出願日が2014年12月30日)、米国特許出願第14/585,917号(発明の名称が「Shingled Solar Cell Module」、出願日が2014年12月30日)、米国特許出願第14/594,439号(発明の名称が「Shingled Solar Cell Module」、出願日が2015年1月12日)、米国特許出願第14/605,695号(発明の名称が「Shingled Solar Cell Module」、出願日が2015年1月26日)、米国仮特許出願第62/003,223号(発明の名称が「Shingled Solar Cell Module」、出願日が2014年5月27日)、米国仮特許出願第62/036,215号(発明の名称が「Shingled Solar Cell Module」、出願日が2014年8月12日)、米国仮特許出願第62/042,615号(発明の名称が「Shingled Solar Cell Module」、出願日が2014年8月27日)、米国仮特許出願第62/048,858号(発明の名称が「Shingled Solar Cell Module」、出願日が2014年9月11日)、米国仮特許出願第62/064,260号(発明の名称が「Shingled Solar Cell Module」、出願日が2014年10月15日)、米国仮特許出願第62/064,834号(発明の名称が「Shingled Solar Cell Module」、出願日が2014年10月16日)、米国特許出願第14/674,983号(発明の名称が「Shingled Solar Cell Panel Employing Hidden Taps」、出願日が2015年3月31日)、米国仮特許出願第62/081,200号(発明の名称が「Solar Cell Panel Employing Hidden Taps」、出願日が2014年11月18日)、米国仮特許出願第62/113,250号(発明の名称が「Shingled Solar Cell Panel Employing Hidden Taps」、出願日が2015年2月6日)、米国仮特許出願第62/082,904号(発明の名称が「High Voltage Solar Panel」、出願日が2014年11月21日)、米国仮特許出願第62/103,816号(発明の名称が「High Voltage Solar Panel」、出願日が2015年1月15日)、米国仮特許出願第62/111,757号(発明の名称が「High Voltage Solar Panel」、出願日が2015年2月4日)、米国仮特許出願第62/134,176号(発明の名称が「Solar Cell Cleaving Tools and Methods」、出願日が2015年3月17日)、米国仮特許出願第62/150,426号(発明の名称が「Shingled Solar Cell Panel Comprising Stencil−Printed Cell Metallization」、出願日が2015年4月21日)、米国仮特許出願第62/035,624号(発明の名称が「Solar Cells with Reduced Edge Carrier Recombination」、出願日が2014年8月11日)、米国意匠出願第29/506,415号(出願日が2014年10月15日)、米国意匠出願第29/506,755号(出願日が2014年10月20日)、米国意匠出願第29/508,323号(出願日が2014年11月5日)、米国意匠出願第29/509,586号(出願日が2014年11月19日)、および米国意匠出願第29/509,588号(出願日が2014年11月19日)の優先権を主張する。上記のリスト内の特許出願のうちそれぞれが、その全体が参照により本明細書にあらゆる目的のために組み込まれる。
本願発明は、概して、太陽電池がこけら葺き状に配置された太陽電池モジュールに関する。
増加し続ける世界規模のエネルギー需要を満たすべく、代替的なエネルギー源が必要とされている。太陽エネルギー源は、多くの地理的領域で、部分的に、太陽(例えば、光)電池で生成された電力の提供により、そのような需要を満たすのに十分である。
太陽電池モジュール内での太陽電池の高効率な配置、およびそのようなソーラーモジュールを作る方法を本明細書で開示する。
一態様において、ソーラーモジュールは、N(≧25)個の、約10ボルトより高い降伏電圧を平均で有する長方形または略長方形太陽電池の直列接続ストリングを含む。上記複数の太陽電池は、1または複数のスーパーセルとなるようグループ化されており、各スーパーセルが、隣接し合う太陽電池の長辺が重なり合い電気および熱伝導性接着剤により互いに伝導接合した状態で並んで配置された太陽電池のうち2またはそれより多くを有する。太陽電池の上記ストリング内のいずれの単一の太陽電池も、またはN個より少ない太陽電池のグループも個別に、バイパスダイオードと並列に電気接続しない。ソーラーモジュールの安全かつ信頼性のある動作が、隣接し合う太陽電池の接合する重なり合う部分を通じてのスーパーセルに沿った、逆バイアスがかかった太陽電池でのホットスポットの形成を防ぐ、または減らす効果的な熱伝導により容易とされる。スーパーセルは、例えば、ガラス製の前面シートと後面シートとの間に挟まれた熱可塑性オレフィンポリマー内に封入され得、これにより、さらに、熱的ダメージに関するモジュールの堅牢性が高められる。いくつかの変形例において、N≧30、≧50、または≧100である。
他の態様において、スーパーセルは、対向して位置付けられた平行な第1長辺および第2長辺と2つの対向して位置付けられた短辺とにより画定される形状を有する長方形または略長方形の前面(太陽側)および後面をそれぞれが有する複数のシリコン太陽電池を含む。各太陽電池は、上記第1長辺に隣接して位置付けられた少なくとも1つの前面コンタクトパッドを含む電気伝導性前面金属被覆パターンと、上記第2長辺に隣接して位置付けられた少なくとも1つの後面コンタクトパッドを含む電気伝導性後面金属被覆パターンとを含む。上記複数のシリコン太陽電池は、隣接し合うシリコン太陽電池の第1長辺および第2長辺が重なり合った状態で、かつ、隣接し合うシリコン太陽電池上の前面および後面のコンタクトパッドが、重なり合い伝導性粘着接合剤により互いに伝導接合して、上記隣接し合うシリコン太陽電池を直列に電気接続した状態で並んで配置される。各シリコン太陽電池の上記前面金属被覆パターンは、上記スーパーセルの製造の間の上記伝導性粘着接合剤の硬化の前に、上記伝導性粘着接合剤を上記少なくとも1つの前面コンタクトパッドへ実質的に封じ込めるよう構成されたバリアを含む。
他の態様において、スーパーセルは、対向して位置付けられた平行な第1長辺および第2長辺と2つの対向して位置付けられた短辺とにより画定される形状を有する長方形または略長方形の前面(太陽側)および後面をそれぞれが含む複数のシリコン太陽電池を含む。各太陽電池は、上記第1長辺に隣接して位置付けられた少なくとも1つの前面コンタクトパッドを含む電気伝導性前面金属被覆パターンと、上記第2長辺に隣接して位置付けられた少なくとも1つの後面コンタクトパッドを含む電気伝導性後面金属被覆パターンとを含む。上記複数のシリコン太陽電池は、隣接し合うシリコン太陽電池の第1長辺および第2長辺が重なり合った状態で、かつ、隣接し合うシリコン太陽電池上の前面および後面のコンタクトパッドが、重なり合い伝導性粘着接合剤により互いに伝導接合して、上記隣接し合うシリコン太陽電池を直列に電気接続した状態で並んで配置される。各シリコン太陽電池の上記後面金属被覆パターンは、上記スーパーセルの製造の間の上記伝導性粘着接合剤の硬化の前に、上記伝導性粘着接合剤を上記少なくとも1つの後面コンタクトパッドへ実質的に封じ込めるよう構成されたバリアを含む。
他の態様において、太陽電池ストリングを作る方法は、1または複数の擬似正方形シリコンウェハのうち各擬似正方形シリコンウェハの長い縁と平行な複数の線に沿って上記1または複数の擬似正方形シリコンウェハをダイシングして、長軸に沿って実質的に同じ長さをそれぞれが有する複数の長方形シリコン太陽電池を形成する工程を含む。方法は、隣接し合う太陽電池の長辺が重なり合い互いに伝導接合して、上記隣接し合う太陽電池を直列に電気接続した状態で上記複数の長方形シリコン太陽電池を並べて配置する工程も含む。上記複数の長方形シリコン太陽電池は、上記擬似正方形ウェハの複数の角に、または複数の角の一部に対応する2つの面取りされた角を含む少なくとも1つの長方形太陽電池と、面取りされた角をそれぞれが有さない1または複数の長方形シリコン太陽電池とを含む。上記擬似正方形ウェハのダイシングが沿って行われる複数の平行線間の間隔は、上記面取りされた角を含む長方形シリコン太陽電池の上記長軸と垂直な幅を、上記面取りされた角を有さない複数の長方形シリコン太陽電池の長軸と垂直な幅より大きくすることにより、上記面取りされた角を補うよう選択され、これにより、上記太陽電池ストリング内の上記複数の長方形シリコン太陽電池のうちそれぞれが、上記太陽電池ストリングの動作において光に曝される面積が実質的に同じである前面を有する。
他の態様において、スーパーセルは、隣接し合う太陽電池の端部が重なり合い互いに伝導接合して、上記隣接し合う太陽電池を直列に電気接続した状態で並んで配置された複数のシリコン太陽電池を含む。上記複数のシリコン太陽電池のうち少なくとも1つは、ダイシング元の擬似正方形シリコンウェハの複数の角、または複数の角の一部に対応する面取りされた角を有し、上記複数のシリコン太陽電池のうち少なくとも1つは、面取りされた角を有さず、上記複数のシリコン太陽電池のうちそれぞれが、上記太陽電池ストリングの動作の間に光に曝される面積が実質的に同じである前面を有する。
他の態様において、2またはそれより多くのスーパーセルを作る方法は、1または複数の擬似正方形シリコンウェハのうち各擬似正方形シリコンウェハの長い縁と平行な複数の線に沿って上記1または複数の擬似正方形シリコンウェハをダイシングして、上記1または複数の擬似正方形シリコンウェハの複数の角、または複数の角の一部に対応する面取りされた角を含む第1の複数の長方形シリコン太陽電池と、上記1または複数の擬似正方形シリコンウェハの全幅に亘って広がる第1の長さをそれぞれが有し、面取りされた角を有さない第2の複数の長方形シリコン太陽電池とを形成する工程を含む。方法は、上記第1の複数の長方形シリコン太陽電池のうちそれぞれから上記面取りされた角を取り除いて、上記第1の長さより短い第2の長さをそれぞれが有し、面取りされた角を有さない第3の複数の長方形シリコン太陽電池を形成する工程も含む。方法は、
隣接し合う長方形シリコン太陽電池の長辺が重なり合い互いに伝導接合して、上記第2の複数の長方形シリコン太陽電池を直列に電気接続した状態で上記第2の複数の長方形シリコン太陽電池を並べて配置して、幅が上記第1の長さと等しい太陽電池ストリングを形成する工程と、
隣接し合う長方形シリコン太陽電池の長辺が重なり合い互いに伝導接合して、上記第3の複数の長方形シリコン太陽電池を直列に電気接続した状態で上記第3の複数の長方形シリコン太陽電池を並べて配置して、幅が上記第2の長さと等しい太陽電池ストリングを形成する工程と
をさらに含む。
他の態様において、
2またはそれより多くのスーパーセルを作る方法であって、
1または複数の擬似正方形シリコンウェハのうち各擬似正方形シリコンウェハの長い縁と平行な複数の線に沿って上記1または複数の擬似正方形シリコンウェハをダイシングして、上記1または複数の擬似正方形シリコンウェハの複数の角、または複数の角の一部に対応する面取りされた角を含む第1の複数の長方形シリコン太陽電池と、面取りされた角を有さない第2の複数の長方形シリコン太陽電池とを形成する工程と、
隣接し合う長方形シリコン太陽電池の長辺が重なり合い互いに伝導接合して、上記第1の複数の長方形シリコン太陽電池を直列に電気接続した状態で上記第1の複数の長方形シリコン太陽電池を並べて配置する工程と、
隣接し合う長方形シリコン太陽電池の長辺が重なり合い互いに伝導接合して、上記第2の複数の長方形シリコン太陽電池を直列に電気接続した状態で上記第2の複数の長方形シリコン太陽電池を並べて配置する工程と
を含む。
他の態様において、スーパーセルは、
隣接し合うシリコン太陽電池の端部が重なり合い互いに伝導接合して、上記隣接し合うシリコン太陽電池を直列に電気接続した状態で第1方向に並んで配置された複数のシリコン太陽電池と、
細長のフレキシブル電気相互接続部と
を備え、
上記細長のフレキシブル電気相互接続部の長軸は、上記第1方向と垂直な第2方向と平行に方向付けられ、
上記細長のフレキシブル電気相互接続部は、
上記第2方向に沿って配置された複数の不連続な位置において上記複数のシリコン太陽電池のうち端のシリコン太陽電池の前面または後面に伝導接合し、
上記第2方向に上記端の太陽電池の少なくとも全幅に亘って延び、
上記端のシリコン太陽電池の上記前面または裏面と垂直な方向に測定される導体厚さが、約100ミクロン未満であり、またはそれと等しく、
上記第2方向への電流の流れに対して約0.012オームより低い、またはそれと等しい抵抗を提供し、
約−40℃から約85℃の温度範囲で、上記端のシリコン太陽電池と上記相互接続部との間で、上記第2方向への差異のある膨張に適応するフレキシブル性を提供するよう構成されている。
上記フレキシブル電気相互接続部は、例えば、上記端のシリコン太陽電池の上記前面および裏面と垂直な方向に測定される導体厚さが、約30ミクロン未満であって、またはそれと等しい厚さであり得る。上記フレキシブル電気相互接続部は、上記第2方向に上記スーパーセルを越えて延在して、少なくとも、ソーラーモジュール内で上記スーパーセルと平行、かつ隣接して位置付けられた第2スーパーセルへの電気相互接続を提供し得る。加えて、または代替的に、上記フレキシブル電気相互接続部は、上記第1方向に上記スーパーセルを越えて延在して、ソーラーモジュール内で上記スーパーセルと平行、かつ並んで位置付けられた第2スーパーセルへの電気相互接続を提供し得る。
他の態様において、ソーラーモジュールは、上記ソーラーモジュールの幅に亘って広がる2またはそれより多くの平行行に配置されて、上記ソーラーモジュールの前面を形成する複数のスーパーセルを含む。各スーパーセルが、隣接し合うシリコン太陽電池の端部が重なり合い互いに伝導接合して、上記隣接し合うシリコン太陽電池を直列に電気接続した状態で並んで配置された複数のシリコン太陽電池を含む。少なくとも、第1行内の上記ソーラーモジュールの縁に隣接する第1スーパーセルの端は、
複数の不連続な位置において電気伝導性粘着接合剤により上記第1スーパーセルの前面に接合し、
上記ソーラーモジュールの上記縁と平行に延び、
少なくとも一部が上記第1スーパーセルの上記端周りで折れ、上記ソーラーモジュールの前からの視界から隠れた、
フレキシブル電気相互接続部を介し、
第2行内の上記ソーラーモジュールの同じ上記縁に隣接する、第2スーパーセルの端に電気接続する。
他の態様において、スーパーセルを作る方法は、
1または複数のシリコン太陽電池のうち各シリコン太陽電池上に1または複数のスクライブラインをレーザースクライブして、上記1または複数のシリコン太陽電池上に複数の長方形領域を画定する工程と、
各長方形領域の長辺に隣接する1または複数の位置において、スクライブされた上記1または複数のシリコン太陽電池に電気伝導性粘着接合剤を適用する工程と、
上記1または複数のスクライブラインに沿って上記1または複数のシリコン太陽電池を分離させて、長辺に隣接した前面に配された上記電気伝導性粘着接合剤の一部をそれぞれが含む複数の長方形シリコン太陽電池を提供する工程と、
隣接し合う長方形シリコン太陽電池の長辺が、上記電気伝導性粘着接合剤の一部が間に配されてこけら葺き状に重なり合った状態で上記複数の長方形シリコン太陽電池を並べて配置する工程と、
上記電気伝導性接合剤を硬化させて、それにより、隣接し合い重なり合う長方形シリコン太陽電池を互いに接合し、それらを直列に電気接続する工程と
を含む。
他の態様において、スーパーセルを作る方法は、
1または複数のシリコン太陽電池のうち各シリコン太陽電池上に1または複数のスクライブラインをレーザースクライブして、上記1または複数のシリコン太陽電池上に複数の長方形領域を画定する工程と、
上記1または複数のシリコン太陽電池の頂面の一部に電気伝導性粘着接合剤を適用する工程と、
上記1または複数のシリコン太陽電池の上記底面と湾曲支持面との間で真空を引いて、上記湾曲支持面に寄せて上記1または複数のシリコン太陽電池を曲げ、それにより、上記1または複数のスクライブラインに沿って上記1または複数のシリコン太陽電池を劈開して、長辺に隣接する前面に配された上記電気伝導性粘着接合剤の一部をそれぞれが含む複数の長方形シリコン太陽電池を提供する工程と、
隣接し合う長方形シリコン太陽電池の長辺が、上記電気伝導性粘着接合剤の一部が間に配されてこけら葺き状に重なり合った状態で上記複数の長方形シリコン太陽電池を並べて配置する工程と、
上記電気伝導性接合剤を硬化させ、それにより、隣接し合い重なり合う長方形シリコン太陽電池を互いに接合し、それらを直列に電気接続する工程と
を含む。
他の態様において、ソーラーモジュールを作る方法は、隣接し合う長方形シリコン太陽電池の長辺上の複数の端部がこけら葺き状に重なり合った状態で並んで配置された複数の長方形シリコン太陽電池をそれぞれが有する複数のスーパーセルを組み立てる工程を含む。方法はまた、上記複数のスーパーセルを加熱および加圧することにより、隣接し合う長方形シリコン太陽電池の重なり合う上記端部間に配された電気伝導性接合剤を硬化させ、それにより、隣接し合い重なり合う長方形シリコン太陽電池を互いに接合し、それらを直列に電気接続する、工程を含む。方法はまた、
封入材を含む層スタック内で、所望されるソーラーモジュール構成で上記複数のスーパーセルを配置し相互接続する工程と、
上記層スタックを加熱および加圧して、積層構造を形成する工程と
を含む。
方法のいくつかの変形例は、上記層スタックを加熱および加圧して、上記積層構造を形成する工程の前に、上記複数のスーパーセルを加熱および加圧することにより、上記電気伝導性接合剤を硬化または部分硬化させる工程であって、それにより、上記積層構造の形成の前に、中間製品として硬化または部分硬化させられたスーパーセルを形成する、工程を含む。いくつかの変形例において、スーパーセルの組み立ての間にそれぞれの追加の長方形シリコン太陽電池が上記スーパーセルに追加される際に、新たに追加される上記太陽電池と、その隣接し重なっている太陽電池との間の上記電気伝導性粘着接合剤は、任意の他の長方形シリコン太陽電池が上記スーパーセルに追加される前に硬化または部分硬化させられる。代替的に、いくつかの変形例は、スーパーセル内の上記電気伝導性接合剤の全てを同じ工程で硬化または部分硬化させる工程を含む。
スーパーセルが、部分硬化させられた中間製品として形成される場合、方法は、上記層スタックを加熱および加圧しつつ、上記電気伝導性接合剤の硬化を完了させて、上記積層構造を形成する工程を含み得る。
方法のいくつかの変形例は、上記積層構造の形成の前に、中間製品として硬化または部分硬化させられたスーパーセルを形成することなく、上記層スタックを加熱および加圧しつつ上記電気伝導性接合剤を硬化させて、積層構造を形成する工程を含む。
方法は、より面積の小さい複数の長方形となるように1または複数の標準サイズのシリコン太陽電池をダイシングして、上記複数の長方形シリコン太陽電池を提供する工程を含み得る。上記電気伝導性粘着接合剤は、上記1または複数のシリコン太陽電池をダイシングする工程の前に上記1または複数のシリコン太陽電池に適用されて、事前に適用された電気伝導性粘着接合剤を有する複数の長方形シリコン太陽電池を提供し得る。代替的に、上記電気伝導性粘着接合剤は、上記1または複数のシリコン太陽電池をダイシングして、上記長方形シリコン太陽電池を提供した後に、上記長方形シリコン太陽電池に適用され得る。
一態様において、ソーラーモジュールは、2またはそれより多くの平行行に配置された複数のスーパーセルを含む。各スーパーセルが、隣接し合うシリコン太陽電池の長辺が重なり合い互いに直接伝導接合して、上記隣接し合うシリコン太陽電池を直列に電気接続した状態で並んで配置された複数の長方形または略長方形シリコン太陽電池を含む。ソーラーパネルはまた、
上記複数のスーパーセルのうち第1スーパーセルに沿った中間位置に位置する第1太陽電池の後面に位置する第1隠れタップコンタクトパッドと、
上記第1隠れタップコンタクトパッドに伝導接合する第1電気相互接続部と
を含む。上記第1電気相互接続部は、上記相互接続部と、それの接合先の上記シリコン太陽電池との間の差異のある熱膨張に適応する応力緩和特徴を含む。本明細書で相互接続部に関して用いられる「応力緩和特徴」という用語は、例えば、キンク、ループ、またはスロットなどの幾何学的特徴、その相互接続部の厚さ(例えば、非常に薄い)、および/または、その相互接続部の延性を指し得る。例えば、応力緩和特徴は、その相互接続部が、非常に薄い銅リボンから形成されているということであり得る。
ソーラーモジュールは、
隣接するスーパーセル行内の上記複数のスーパーセルのうち第2スーパーセルに沿った中間位置において上記第1太陽電池に隣接して位置する第2太陽電池の後面に位置する第2隠れタップコンタクトパッドを含み得、
上記第1隠れタップコンタクトパッドは、上記第1電気相互接続部を通じて上記第2隠れタップコンタクトパッドに電気接続し得る。そのような場合、上記第1電気相互接続部は、上記第1スーパーセルと上記第2スーパーセルとの間の間隙を跨いで延在し、上記第2隠れタップコンタクトパッドに伝導接合し得る。代替的に、第1隠れタップコンタクトパッドと第2隠れタップコンタクトパッドとの間の電気接続は、第2隠れタップコンタクトパッドに伝導接合し、第1電気相互接続部に電気接続(例えば伝導接合)された他の電気相互接続部を含み得る。いずれかの相互接続スキームが、オプションで、追加の複数のスーパーセル行に亘って延在し得る。例えば、いずれかの相互接続スキームが、オプションで、モジュールの全幅に亘って延在して、隠れタップコンタクトパッドを介し、各行の太陽電池を相互接続し得る。
ソーラーモジュールは、
上記複数のスーパーセルのうち第1スーパーセルに沿った他の中間位置に位置する第2太陽電池の後面に位置する第2隠れタップコンタクトパッドと、
上記第2隠れタップコンタクトパッドに伝導接合する第2電気相互接続部と、
上記第1隠れタップコンタクトパッドと上記第2隠れタップコンタクトパッドとの間に位置する上記太陽電池と並列に上記第1電気相互接続部および上記第2電気相互接続部により電気接続するバイパスダイオードと
を含み得る。
上記の変形例のうちいずれかにおいて、上記第1隠れタップコンタクトパッドは、上記第1太陽電池の長軸と平行に延びる行内の上記第1太陽電池の上記後面に配置された複数の隠れタップコンタクトパッドのうち1つであり得、
上記第1電気相互接続部は、上記複数の隠れ接触部のうちそれぞれに伝導接合し、上記長軸に沿った上記第1太陽電池の上記長さに亘って実質的に広がる。加えて、または代替的に、第1隠れコンタクトパッドは、第1太陽電池の長軸と垂直に延びる行内の第1太陽電池の後面に配置された複数の隠れタップコンタクトパッドのうち1つであり得る。後者の場合、隠れタップコンタクトパッドの行は、例えば、第1太陽電池の短い縁に隣接して位置し得る。第1隠れコンタクトパッドは、第1太陽電池の後面の2次元アレイに配置された複数の隠れタップコンタクトパッドのうち1つであり得る。
代替的に、上記の変形例のうちいずれかにおいて、上記第1隠れタップコンタクトパッドは、上記第1太陽電池の上記後面の短辺に隣接して位置し得、
上記第1電気相互接続部は、上記太陽電池の上記長軸に沿って上記隠れタップコンタクトパッドから実質的に内側に延在せず、
上記第1太陽電池上の後面金属被覆パターンが、約5オーム/スクエアより低い、またはそれと等しい、または、約2.5オーム/スクエアより低い、またはそれと等しいシート抵抗を好ましくは有する上記相互接続部への伝導路を提供する。そのような場合において、上記第1相互接続部は、例えば、上記応力緩和特徴の対向し合う側に位置付けられた2つのタブを含み得、
上記2つのタブのうち一方は、上記第1隠れタップコンタクトパッドに伝導接合し得る。それら2つのタブは、異なる長さのものであり得る。
上記の変形例のうちいずれかにおいて、上記第1電気相互接続部は、上記第1隠れタップコンタクトパッドとの所望される位置合わせを特定する、または、上記第1スーパーセルの縁との所望される位置合わせを特定する、または上記第1隠れタップコンタクトパッドとの所望される位置合わせと上記第1スーパーセルの縁との所望される位置合わせとを特定する位置合わせ特徴を含み得る。
他の態様において、ソーラーモジュールは、ガラス製の前面シートと、後面シートと、上記ガラス製の前面シートと上記後面シートとの間の2またはそれより多くの平行行に配置された複数のスーパーセルとを含む。各スーパーセルが、隣接し合うシリコン太陽電池の長辺が重なり合いフレキシブルに互いに直接伝導接合して、上記隣接し合うシリコン太陽電池を直列に電気接続した状態で並んで配置された複数の長方形または略長方形シリコン太陽電池を有する。第1フレキシブル電気相互接続部が、上記複数のスーパーセルのうち第1スーパーセルに強固に伝導接合する。重なり合う太陽電池間の複数の上記フレキシブル伝導接合は、上記ソーラーモジュールにダメージを与えることなく約−40℃から約100℃の温度範囲で、上記複数の行と平行な方向への上記複数のスーパーセルと上記ガラス製の前面シートとの間の熱膨張の不一致に適応する機械的コンプライアンスを、上記複数のスーパーセルに提供する。上記第1スーパーセルと上記第1フレキシブル電気相互接続部との間の強固な伝導接合は、ソーラーモジュールにダメージを与えることなく約−40℃から約180℃の温度範囲で、第1フレキシブル電気相互接続部に、上記複数の行と垂直な方向への、第1スーパーセルと第1フレキシブル電気相互接続部との間の熱膨張の不一致に適応させる。
スーパーセル内の重なり合い隣接し合う太陽電池間の複数の上記伝導接合は、上記スーパーセルと上記フレキシブル電気相互接続部との間の複数の上記伝導接合とは異なる伝導性接着剤を利用し得る。スーパーセル内の少なくとも1つの太陽電池の一辺の上記伝導接合は、その他辺の上記伝導接合とは異なる伝導性接着剤を利用し得る。例えば、スーパーセルとフレキシブル電気相互接続部との間の強固な接合を形成する伝導性接着剤は、はんだであり得る。いくつかの変形例において、スーパーセル内の重なり合う太陽電池間の複数の伝導接合は、非はんだ伝導性接着剤で形成され、スーパーセルと、フレキシブル電気相互接続部との間の伝導接合は、はんだで形成される。
丁度説明したように2つの異なる伝導性接着剤を利用するいくつかの変形例において、両方の伝導性接着剤が、同じ処理工程で(例えば、同じ温度で、同じ圧力で、および/または同じ時間間隔内で)硬化させられ得る。
重なり合い隣接し合う太陽電池間の複数の上記伝導接合は、例えば、各電池と上記ガラス製の前面シートとの間の約15ミクロンより大きい、またはそれと等しい差異のある運動に適応し得る。
重なり合い隣接し合う太陽電池間の複数の上記伝導接合は、例えば、上記隣接し合う太陽電池と垂直な方向への厚さが約50ミクロンより小さい、またはそれと等しい厚さであり、上記複数の太陽電池と垂直な方向への熱伝導性が約1.5W/(メートル−K)より高い、またはそれと等しい熱伝導性であり得る。
上記第1フレキシブル電気相互接続部は、例えば、上記第1フレキシブル相互接続部の、約40ミクロンより大きい、またはそれと等しい熱膨張または収縮に耐え得る。
上記スーパーセルに伝導接合する、上記第1フレキシブル電気相互接続部の部分は、銅から形成されたリボン状であり、例えば、接合先の上記太陽電池の表面と垂直な方向への厚さが約30ミクロンより小さい、若しくはそれと等しい、または約50ミクロンより小さい、若しくはそれと等しくてよい。上記第1フレキシブル電気相互接続部は、上記太陽電池に伝導接合する、上記第1フレキシブル電気相互接続部の部分より高い伝導性を提供する、上記太陽電池に接合しない一体の伝導性銅部分を有し得る。第1フレキシブル電気相互接続部は、接合先の上記太陽電池の表面と垂直な方向への厚さが約30ミクロンより小さい、若しくはそれと等しい、または約50ミクロンより小さい、若しくはそれと等しい厚さであり、太陽電池の表面の面における、上記相互接続部を通る電流の流れと垂直な方向への幅が約10mmより大きい、またはそれと等しい幅であり得る。上記第1フレキシブル電気相互接続部は、上記第1電気相互接続部より高い伝導性を提供する、上記太陽電池に近接した導体に伝導接合し得る。
他の態様において、ソーラーモジュールは、2またはそれより多くの平行行に配置された複数のスーパーセルを含む。各スーパーセルが、隣接し合うシリコン太陽電池の長辺が重なり合い互いに直接伝導接合して、上記隣接し合うシリコン太陽電池を直列に電気接続した状態で並んで配置された複数の長方形または略長方形シリコン太陽電池を含む。通常動作で実質的な電流を伝導しない隠れタップコンタクトパッドが、スーパーセルの上記2またはそれより多くの平行行のうち第1行内の上記複数のスーパーセルのうち第1スーパーセルに沿った中間位置に位置する第1太陽電池の後面に位置している。上記隠れタップコンタクトパッドは、スーパーセルの上記2またはそれより多くの平行行のうち第2行内の少なくとも第2太陽電池に並列に電気接続する。
ソーラーモジュールは、上記隠れタップコンタクトパッドに接合し、上記隠れタップコンタクトパッドを上記第2太陽電池に電気相互接続する電気相互接続部を含み得る。いくつかの変形例において、電気相互接続部は、上記第1太陽電池の長さに亘って実質的に広がらず、
上記第1太陽電池上の後面金属被覆パターンが、約5オーム/スクエアより低い、またはそれと等しいシート抵抗を有する、上記隠れタップコンタクトパッドへの伝導路を提供する。
上記複数のスーパーセルは、上記複数の行と垂直な上記ソーラーモジュールの幅に亘って広がる3またはそれより多くの平行行に配置され得、
上記隠れタップコンタクトパッドは、スーパーセルの上記3またはそれより多くの平行行のうち各行内の少なくとも1つの太陽電池上の隠れコンタクトパッドに電気接続して、スーパーセルの上記3またはそれより多くの平行行の全てを並列に電気接続する。そのような変形例において、ソーラーモジュールは、隠れタップコンタクトパッドのうち少なくとも1つへの、または、隠れタップコンタクトパッド間の相互接続部への、バイパスダイオードまたは他の電子デバイスに接続する少なくとも1つのバス接続を含み得る。
ソーラーモジュールは、隠れタップコンタクトパッドに伝導接合して、それを第2太陽電池に電気接続するフレキシブル電気相互接続部を含み得る。上記隠れタップコンタクトパッドに伝導接合する、上記フレキシブル電気相互接続部の部分は、例えば、銅から形成されたリボン状であり、接合先の上記太陽電池の表面と垂直な方向への厚さが約50ミクロンより小さい、またはそれと等しくてよい。上記隠れタップコンタクトパッドと上記フレキシブル電気相互接続部との間の上記伝導接合は、上記ソーラーモジュールにダメージを与えることなく約−40℃から約180℃の温度範囲で、上記フレキシブル電気相互接続部に、上記第1太陽電池と上記フレキシブル相互接続部との間の熱膨張の不一致を耐えさせ、熱膨張から結果として生じる上記第1太陽電池と上記第2太陽電池との間の相対運動に適応させ得る。
いくつかの変形例において、上記ソーラーモジュールの動作において、上記第1隠れコンタクトパッドは、上記複数の太陽電池のうち任意の1つで生成される電流より大きい電流を伝導し得る。
典型的には、上記第1太陽電池の、上記第1隠れタップコンタクトパッド上に横たわる前面は、コンタクトパッドまたは任意の他の相互接続特徴により占有されていない。典型的には、上記第1太陽電池の、上記第1スーパーセル内の隣接する太陽電池の一部が重なっていない前面のどのエリアも、コンタクトパッドまたは任意の他の相互接続特徴により占有されていない。
いくつかの変形例において、各スーパーセル内で、上記複数の電池の殆どは、隠れタップコンタクトパッドを有さない。そのような変形例において、隠れタップコンタクトパッドを有する上記複数の電池は、隠れタップコンタクトパッドを有さない上記複数の電池より大きな集光面積を有し得る。
他の態様において、ソーラーモジュールは、ガラス製の前面シートと、後面シートと、上記ガラス製の前面シートと上記後面シートとの間の2またはそれより多くの平行行に配置された複数のスーパーセルとを含む。各スーパーセルが、隣接し合うシリコン太陽電池の長辺が重なり合いフレキシブルに互いに直接伝導接合して、上記隣接し合うシリコン太陽電池を直列に電気接続した状態で並んで配置された複数の長方形または略長方形シリコン太陽電池を有する。第1フレキシブル電気相互接続部が、上記複数のスーパーセルのうち第1スーパーセルに強固に伝導接合する。重なり合う太陽電池間のフレキシブルな上記伝導接合は、第1伝導性接着剤から形成され、約800メガパスカルより低い、またはそれと等しい剛性率を有する。上記第1スーパーセルと上記第1フレキシブル電気相互接続部との間の強固な上記伝導接合は、第2伝導性接着剤から形成され、約2000メガパスカルより高い、またはそれと等しい剛性率を有する。
上記第1伝導性接着剤は、例えば、約0℃より低い、またはそれと等しいガラス転移温度を有し得る。
いくつかの変形例において、上記第1伝導性接着剤と上記第2伝導性接着剤とは異なり、両方の伝導性接着剤が、同じ処理工程で硬化させられ得る。
いくつかの変形例において、重なり合い隣接し合う太陽電池間の複数の上記伝導接合は、上記太陽電池と垂直な方向への厚さが約50ミクロンより薄く、またはそれと等しく、上記太陽電池と垂直な方向への熱伝導性が約1.5W/(メートル−K)より高い、またはそれと等しい。
一態様において、ソーラーモジュールは、2またはそれより多くの平行行に複数のスーパーセルとして配置された、N個(約150より大きい、またはそれと等しい数の)長方形または略長方形シリコン太陽電池を含む。各スーパーセルが、隣接し合うシリコン太陽電池の長辺が重なり合い互いに伝導接合して、上記隣接し合うシリコン太陽電池を直列に電気接続した状態で並んで配置された複数のシリコン太陽電池を含む。スーパーセルは、電気接続して、約90ボルトより高い、またはそれと等しい高い直流電圧を提供する。
一変形例において、ソーラーモジュールは、上記複数のスーパーセルを直列に電気接続して、上記高い直流電圧を提供するよう配置された1または複数のフレキシブル電気相互接続部を含む。ソーラーモジュールは、上記高い直流電圧を交流電圧に変換するインバータを含むモジュールレベルのパワーエレクトロニクスを含み得る。上記モジュールレベルのパワーエレクトロニクスは、上記高い直流電圧を感知し得、上記モジュールを最適な電流−電圧電力点で動作させ得る。
他の変形例において、ソーラーモジュールは、
複数の個々の、隣接し合う直列接続するスーパーセル行ペアに電気接続し、それら複数のスーパーセル行ペアのうち1または複数を直列に電気接続して、上記高い直流電圧を提供するモジュールレベルのパワーエレクトロニクスと、
上記高い直流電圧を交流電圧に変換するインバータと
を含む。オプションで、上記モジュールレベルのパワーエレクトロニクスは、各個々のスーパーセル行ペアにかかる電圧を感知し得、最適な電流−電圧電力点で各個々のスーパーセル行ペアを動作させ得る。オプションで、個々のスーパーセル行ペアにかかる電圧が閾値を下回った場合、上記モジュールレベルのパワーエレクトロニクスは、上記高い直流電圧を提供している回路から上記行ペアをスイッチアウトし得る。
他の変形例において、ソーラーモジュールは、各個々のスーパーセル行に電気接続し、複数の上記スーパーセル行のうち2またはそれより多くを直列に電気接続して、上記高い直流電圧を提供するモジュールレベルのパワーエレクトロニクスと、
上記高い直流電圧を交流電圧に変換するインバータと
を含む。オプションで、上記モジュールレベルのパワーエレクトロニクスは、各個々のスーパーセル行にかかる電圧を感知し得、最適な電流−電圧電力点で各個々のスーパーセル行を動作させ得る。オプションで、個々のスーパーセル行にかかる電圧が閾値を下回った場合、上記モジュールレベルのパワーエレクトロニクスは、上記高い直流電圧を提供している回路から上記スーパーセル行をスイッチアウトし得る。
他の変形例において、ソーラーモジュールは、各個々のスーパーセルに電気接続し、複数のスーパーセルのうち2またはそれより多くを直列に電気接続して、上記高い直流電圧を提供するモジュールレベルのパワーエレクトロニクスと、
上記高い直流電圧を交流電圧に変換するインバータと
を含む。オプションで、上記モジュールレベルのパワーエレクトロニクスは、各個々のスーパーセルにかかる電圧を感知し得、最適な電流−電圧電力点で各個々のスーパーセルを動作させ得る。オプションで、個々のスーパーセルにかかる電圧が閾値を下回った場合、上記モジュールレベルのパワーエレクトロニクスは、上記高い直流電圧を提供している回路から上記スーパーセルをスイッチアウトし得る。
他の変形例において、モジュール内の各スーパーセルが、複数の隠れタップにより複数のセグメントとなるよう電気的にセグメント化されている。上記ソーラーモジュールは、上記複数の隠れタップを通じて各スーパーセルの各セグメントに電気接続し、2またはそれより多くのセグメントを直列に電気接続して、上記高い直流電圧を提供するモジュールレベルのパワーエレクトロニクスを含み、
上記高い直流電圧を交流電圧に変換するインバータを含む。オプションで、上記モジュールレベルのパワーエレクトロニクスは、各スーパーセルの各個々のセグメントにかかる電圧を感知し得、最適な電流−電圧電力点で各個々のセグメントを動作させ得る。オプションで、個々のセグメントにかかる電圧が閾値を下回った場合、上記モジュールレベルのパワーエレクトロニクスは、上記高い直流電圧を提供している回路から上記セグメントをスイッチアウトし得る。
上記の変形例のうちいずれかにおいて、最適な電流−電圧電力点は、最大電流−電圧電力点であり得る。
上記の変形例のうちいずれかにおいて、上記モジュールレベルのパワーエレクトロニクスは、直流−直流ブースト構成要素を有さなくてよい。
上記の変形例のうちいずれかにおいて、Nは、約200より大きい、若しくはそれと等しい、約250より大きい、若しくはそれと等しい、約300より大きい、若しくはそれと等しい、約350より大きい、若しくはそれと等しい、約400より大きい、若しくはそれと等しい、約450より大きい、若しくはそれと等しい、約500より大きい、若しくはそれと等しい、約550より大きい、若しくはそれと等しい、約600より大きい、若しくはそれと等しい、約650より大きい、若しくはそれと等しい、または、約700より大きい、若しくはそれと等しい値であり得る。
上記の変形例のうちいずれかにおいて、高い直流電圧は、約120ボルトより高い、若しくはそれと等しい、約180ボルトより高い、若しくはそれと等しい、約240ボルトより高い、若しくはそれと等しい、約300ボルトより高い、若しくはそれと等しい、約360ボルトより高い、若しくはそれと等しい、約420ボルトより高い、若しくはそれと等しい、約480ボルトより高い、若しくはそれと等しい、約540ボルトより高い、若しくはそれと等しい、または、約600ボルトより高い、若しくはそれと等しい電圧であり得る。
他の態様において、太陽光発電システムは、並列に電気接続する2またはそれより多くのソーラーモジュールと、インバータとを備える。各ソーラーモジュールは、2またはそれより多くの平行行に複数のスーパーセルとして配置された、N個(約150より大きい、またはそれと等しい数の)長方形または略長方形シリコン太陽電池を含む。各モジュール内の各スーパーセルが、隣接し合うシリコン太陽電池の長辺が重なり合い互いに伝導接合して、上記隣接し合うシリコン太陽電池を直列に電気接続した状態で並んで配置された当該モジュール内の複数のシリコン太陽電池のうち2またはそれより多くのシリコン太陽電池を含む。各モジュール内で、スーパーセルは、電気接続して、約90ボルトより高い、またはそれと等しい高電圧直流モジュール出力を提供する。インバータは、2またはそれより多くのソーラーモジュールに電気接続して、それらの高電圧直流出力を交流に変換する。
各ソーラーモジュールは、上記ソーラーモジュール内の上記複数のスーパーセルを直列に電気接続するよう配置されて、上記ソーラーモジュールの高電圧直流出力を提供する1または複数のフレキシブル電気相互接続部を含み得る。
太陽光発電システムは、並列に電気接続する2またはそれより多くのソーラーモジュールのうち第1ソーラーモジュールと直列に電気接続する第3ソーラーモジュールを少なくとも含み得る。そのような場合に、第3ソーラーモジュールは、2またはそれより多くの平行行に複数のスーパーセルとして配置された、N'個(約150より大きい、またはそれと等しい数の)長方形または略長方形シリコン太陽電池を含み得る。第3ソーラーモジュール内の各スーパーセルが、隣接し合うシリコン太陽電池の長辺が重なり合い互いに伝導接合して、上記隣接し合うシリコン太陽電池を直列に電気接続した状態で並んで配置された当該モジュール内の複数のシリコン太陽電池のうち2またはそれより多くのシリコン太陽電池を含む。第3ソーラーモジュール内で、スーパーセルは、電気接続して、約90ボルトより高い、またはそれと等しい高電圧直流モジュール出力を提供する。
丁度説明したように、2またはそれより多くのソーラーモジュールのうち第1ソーラーモジュールと直列に電気接続する第3ソーラーモジュールを備える変形例は、並列に電気接続する2またはそれより多くのソーラーモジュールのうち第2ソーラーモジュールと直列に電気接続する第4ソーラーモジュールも少なくとも含み得る。第4ソーラーモジュールは、2またはそれより多くの平行行に複数のスーパーセルとして配置された、N''個(約150より大きい、またはそれと等しい数の)長方形または略長方形シリコン太陽電池を含み得る。第4ソーラーモジュール内の各スーパーセルが、隣接し合うシリコン太陽電池の長辺が重なり合い互いに伝導接合して、上記隣接し合うシリコン太陽電池を直列に電気接続した状態で並んで配置された当該モジュール内の複数のシリコン太陽電池のうち2またはそれより多くのシリコン太陽電池を含む。第4ソーラーモジュール内で、スーパーセルは、電気接続して、約90ボルトより高い、またはそれと等しい高電圧直流モジュール出力を提供する。
太陽光発電システムは、上記2またはそれより多くのソーラーモジュールのうち任意の1つに起こっている短絡が、上記2またはそれより多くのソーラーモジュールのうち他のソーラーモジュールで生成された電力を放散させるのを防ぐよう配置された複数のヒューズおよび/またはブロッキングダイオードを含み得る。
太陽光発電システムは、上記2またはそれより多くのソーラーモジュールの並列な電気接続先の、および上記インバータの電気接続先の正極バスおよび負極バスを含み得る。代替的に、太陽光発電システムは、上記2またはそれより多くのソーラーモジュールの別個の導体による電気接続先のコンバイナボックスを含み得る。コンバイナボックスは、ソーラーモジュールを並列に電気接続し、オプションで、上記2またはそれより多くのソーラーモジュールのうち任意の1つに起こっている短絡が、他のソーラーモジュールで生成された電力を放散させるのを防ぐよう配置された複数のヒューズおよび/またはブロッキングダイオードを含み得る。
上記インバータは、ソーラーモジュールに逆バイアスをかけることを避けるよう設定された最小値より高い直流電圧で上記2またはそれより多くのソーラーモジュールを動作させるよう構成され得る。
インバータは、ソーラーモジュールのうち1または複数で起こっている逆バイアス状態を認識し、逆バイアス状態を避ける電圧でソーラーモジュールを動作させるよう構成され得る。
太陽光発電システムは、屋根上に位置付けられ得る。
上記の変形例のうちいずれかにおいて、N、N'、およびN''は、約200より大きい、若しくはそれと等しい、約250より大きい、若しくはそれと等しい、約300より大きい、若しくはそれと等しい、約350より大きい、若しくはそれと等しい、約400より大きい、若しくはそれと等しい、約450より大きい、若しくはそれと等しい、約500より大きい、若しくはそれと等しい、約550より大きい、若しくはそれと等しい、約600より大きい、若しくはそれと等しい、約650より大きい、若しくはそれと等しい、または、約700より大きい、若しくはそれと等しい値であり得る。N、N'、およびN''は、同じ、または異なる値を有し得る。
上記の変形例のうちいずれかにおいて、ソーラーモジュールにより提供される上記高い直流電圧は、約120ボルトより高い、若しくはそれと等しい、約180ボルトより高い、若しくはそれと等しい、約240ボルトより高い、若しくはそれと等しい、約300ボルトより高い、若しくはそれと等しい、約360ボルトより高い、若しくはそれと等しい、約420ボルトより高い、若しくはそれと等しい、約480ボルトより高い、若しくはそれと等しい、約540ボルトより高い、若しくはそれと等しい、または、約600ボルトより高い、若しくはそれと等しい電圧であり得る。
他の態様において、太陽光発電システムは、2またはそれより多くの平行行に複数のスーパーセルとして配置された、N個(約150より大きい、またはそれと等しい数の)長方形または略長方形シリコン太陽電池を含む第1ソーラーモジュールを含む。各スーパーセルが、隣接し合うシリコン太陽電池の長辺が重なり合い互いに伝導接合して、上記隣接し合うシリコン太陽電池を直列に電気接続した状態で並んで配置された複数のシリコン太陽電池を含む。システムは、インバータも備える。インバータは、例えば、第1ソーラーモジュールと統合されたマイクロインバータであり得る。第1ソーラーモジュール内の上記複数のスーパーセルは、電気接続して、約90ボルトより高い、またはそれと等しい高い直流電圧を、その直流を交流に変換する上記インバータに提供する。
第1ソーラーモジュールは、上記ソーラーモジュール内の上記複数のスーパーセルを直列に電気接続するよう配置されて、上記ソーラーモジュールの高電圧直流出力を提供する1または複数のフレキシブル電気相互接続部を含み得る。
太陽光発電システムは、第1ソーラーモジュールと直列に電気接続する第2ソーラーモジュールを少なくとも含み得る。第2ソーラーモジュールは、2またはそれより多くの平行行に複数のスーパーセルとして配置された、N'個(約150より大きい、またはそれと等しい数の)長方形または略長方形シリコン太陽電池を含み得る。第2ソーラーモジュール内の各スーパーセルが、隣接し合うシリコン太陽電池の長辺が重なり合い互いに伝導接合して、上記隣接し合うシリコン太陽電池を直列に電気接続した状態で並んで配置された当該モジュール内の複数のシリコン太陽電池のうち2またはそれより多くのシリコン太陽電池を含む。第2ソーラーモジュール内で、スーパーセルは、電気接続して、約90ボルトより高い、またはそれと等しい高電圧直流モジュール出力を提供する。
インバータ(例えば、マイクロインバータ)は、直流−直流ブースト構成要素を有さなくてよい。
上記の変形例のうちいずれかにおいて、NおよびN'は、約200より大きい、若しくはそれと等しい、約250より大きい、若しくはそれと等しい、約300より大きい、若しくはそれと等しい、約350より大きい、若しくはそれと等しい、約400より大きい、若しくはそれと等しい、約450より大きい、若しくはそれと等しい、約500より大きい、若しくはそれと等しい、約550より大きい、若しくはそれと等しい、約600より大きい、若しくはそれと等しい、約650より大きい、若しくはそれと等しい、または、約700より大きい、若しくはそれと等しい値であり得る。N、N'は、同じ、または異なる値を有し得る。
上記の変形例のうちいずれかにおいて、ソーラーモジュールにより提供される上記高い直流電圧は、約120ボルトより高い、若しくはそれと等しい、約180ボルトより高い、若しくはそれと等しい、約240ボルトより高い、若しくはそれと等しい、約300ボルトより高い、若しくはそれと等しい、約360ボルトより高い、若しくはそれと等しい、約420ボルトより高い、若しくはそれと等しい、約480ボルトより高い、若しくはそれと等しい、約540ボルトより高い、若しくはそれと等しい、または、約600ボルトより高い、若しくはそれと等しい電圧であり得る。
他の態様において、ソーラーモジュールは、2またはそれより多くの平行行に複数の直列接続するスーパーセルとして配置された、N個(約250より大きい、またはそれと等しい数の)長方形または略長方形シリコン太陽電池を含む。各スーパーセルが、複数のシリコン太陽電池を含み、複数のシリコン太陽電池は、隣接し合うシリコン太陽電池の長辺が重なり合い電気および熱伝導性接着剤により互いに直接伝導接合して、スーパーセル内のシリコン太陽電池を直列に電気接続した状態で並んで配置されている。ソーラーモジュールは、25個の太陽電池当たり1つ未満のバイパスダイオードを備える。上記電気および熱伝導性接着剤は、上記複数の太陽電池と垂直な方向への厚さが約50ミクロンより小さい、またはそれと等しく、上記複数の太陽電池と垂直な方向への熱伝導性が約1.5W/(メートル−K)より高い、またはそれと等しい、隣接し合う太陽電池間の複数の接合を形成する。
上記複数のスーパーセルは、前面シートと後面シートとの間の熱可塑性オレフィン層内に封入され得る。スーパーセルと、それらの封入材は、ガラス製の前面シートと後面シートとの間に挟まれ得る。
ソーラーモジュールは、例えば、30個の太陽電池当たり1つ未満のバイパスダイオード、または50個の太陽電池当たり1つ未満のバイパスダイオード、または100個の太陽電池当たり1つ未満のバイパスダイオードを備え得る。ソーラーモジュールは、例えば、バイパスダイオードを備えない、または、単一のバイパスダイオードのみ、または3つ以下のバイパスダイオード、または6つ以下のバイパスダイオード、または10個以下のバイパスダイオードを備え得る。
重なり合う太陽電池間の伝導性の複数の伝導接合はオプションで、上記ソーラーモジュールにダメージを与えることなく約−40℃から約100℃の温度範囲で、上記複数の行と平行な方向への上記複数のスーパーセルと上記ガラス製の前面シートとの間の熱膨張の不一致に適応する機械的コンプライアンスを、上記複数のスーパーセルに提供し得る。
上記の変形例のうちいずれかにおいて、Nは、約300より大きい、若しくはそれと等しい、約350より大きい、若しくはそれと等しい、約400より大きい、若しくはそれと等しい、約450より大きい、若しくはそれと等しい、約500より大きい、若しくはそれと等しい、約550より大きい、若しくはそれと等しい、約600より大きい、若しくはそれと等しい、約650より大きい、若しくはそれと等しい、または、約700より大きい、若しくはそれと等しい値であり得る。
上記の変形例のうちいずれかにおいて、上記複数のスーパーセルは、電気接続して、約120ボルトより高い、若しくはそれと等しい、約180ボルトより高い、若しくはそれと等しい、約240ボルトより高い、若しくはそれと等しい、約300ボルトより高い、若しくはそれと等しい、約360ボルトより高い、若しくはそれと等しい、約420ボルトより高い、若しくはそれと等しい、約480ボルトより高い、若しくはそれと等しい、約540ボルトより高い、若しくはそれと等しい、または、約600ボルトより高い、若しくはそれと等しい高い直流電圧を提供し得る。
太陽エネルギーシステムは、
上記の変形例のうちいずれかのソーラーモジュールと、
上記ソーラーモジュールに電気接続し、上記ソーラーモジュールからのDC出力を変換して、AC出力を提供するよう構成されたインバータ(例えば、マイクロインバータ)と
を含み得る。インバータは、DC−DCブースト構成要素を有さなくてよい。上記インバータは、太陽電池に逆バイアスをかけることを避けるよう設定された最小値より高い直流電圧で上記ソーラーモジュールを動作させるよう構成され得る。最小電圧値は、温度依存であり得る。上記インバータは、逆バイアス状態を認識し、上記逆バイアス状態を避ける電圧で上記ソーラーモジュールを動作させるよう構成され得る。例えば、上記インバータは、上記ソーラーモジュールの電圧−電流出力曲線の極大領域において上記ソーラーモジュールを動作させて、上記逆バイアス状態を避けるよう構成され得る。
本明細書は、太陽電池劈開ツールと、太陽電池劈開方法とを開示する。
一態様において、太陽電池を製造する方法は、
湾曲面に沿って太陽電池ウェハを進行させる工程と、
上記湾曲面と上記太陽電池ウェハの底面の間で真空を引いて、上記湾曲面に寄せて上記太陽電池ウェハを曲げ、それにより、事前に用意された1または複数のスクライブラインに沿って上記太陽電池ウェハを劈開して、複数の太陽電池を上記太陽電池ウェハから分離させる工程と
を含む。太陽電池ウェハは、例えば湾曲面に沿って連続的に進行させられ得る。代替的に、太陽電池は、不連続な動きで湾曲面に沿って進行させられ得る。
上記湾曲面は、例えば、上記真空を上記太陽電池ウェハの上記底面に対して引く真空マニホールドの上面の湾曲部分であり得る。上記真空マニホールドにより上記太陽電池ウェハの上記底面に対して引かれる上記真空は、上記太陽電池ウェハの移動方向に沿って変化し得、例えば、上記太陽電池ウェハが順次劈開される、上記真空マニホールドの領域において最も強くてよい。
方法は、上記真空マニホールドの湾曲した上記上面に沿って、穿孔付ベルトにより上記太陽電池ウェハを搬送する工程であって、上記真空は、上記穿孔付ベルトの複数の穿孔を通じて上記太陽電池ウェハの上記底面に対して引かれる工程を含み得る。上記複数の穿孔はオプションで、上記太陽電池ウェハの移動方向に沿った上記太陽電池ウェハの前縁および後縁が、上記穿孔付ベルトの少なくとも1つの穿孔上に横たわり、したがって、真空により湾曲面の方へ引っ張られるようにベルトに配置され得るが、このことは必須ではない。
方法は、上記真空マニホールドの上記上面の平坦領域に沿って上記太陽電池ウェハを進行させて、第1曲率を有する、上記真空マニホールドの上記上面の遷移湾曲領域に到達させ、その後、上記太陽電池ウェハが順次劈開される、上記真空マニホールドの上記上面の劈開領域内に上記太陽電池ウェハを進行させる工程であって、上記真空マニホールドの上記劈開領域は、上記第1曲率より高い第2曲率を有する、工程を備え得る。方法は、上記第2曲率より高い第3曲率を有する上記真空マニホールドの劈開後領域内へ劈開済の上記複数の太陽電池を進行させる工程をさらに備え得る。
上記の変形例のうちいずれかにおいて、方法は、各スクライブラインの一端で、その後、各スクライブラインの反対側の端で、より強い上記太陽電池ウェハと上記湾曲面との間の真空を引いて、各スクライブラインに沿った単一の劈開裂け目の核生成および伝播を促す、各スクライブラインに沿った非対称な応力分布を提供する工程を備え得る。代替的に、または加えて、上記の変形例のうちいずれかにおいて、方法は、各スクライブラインに関して、一端が、他端の前に、真空マニホールドの湾曲した劈開領域に到達するよう、太陽電池ウェハ上のスクライブラインを、真空マニホールドに対して角度を付けて方向付ける工程を含み得る。
上記の変形例のうちいずれかにおいて、方法は、劈開済の太陽電池の縁が触れ合う前に、劈開済の太陽電池を湾曲面から取り除く工程を含み得る。例えば、方法は、マニホールドに沿った電池の移動速度より速い速度で、マニホールドの湾曲面に正接する、またはおよそ正接する方向で電池を取り除く工程を含み得る。このことは、例えば、正接するよう配置された移動ベルトにより、または任意の他の適したメカニズムにより達成され得る。
上記の変形例のうちいずれかにおいて、方法は、太陽電池ウェハ上にスクライブラインをスクライブする工程と、スクライブラインに沿って太陽電池ウェハを劈開する前に、太陽電池ウェハの頂面または底面の一部に電気伝導性粘着接合剤を適用する工程とを含み得る。結果として得られる劈開済の太陽電池のうちそれぞれが、その後、その頂面または底面の劈開縁に沿って配された電気伝導性粘着接合剤の一部を含み得る。スクライブラインは、任意の適したスクライブ方法を用い電気伝導性粘着接合剤が適用される前、またはその後に形成され得る。スクライブラインは、例えば、レーザースクライブにより形成され得る。
上記の変形例のうちいずれかにおいて、太陽電池ウェハは、正方形または擬似正方形シリコン太陽電池ウェハであり得る。
他の態様において、太陽電池ストリングを作る方法は、電気伝導性粘着接合剤が間に配された隣接する長方形太陽電池の長辺がこけら葺き状に重なり合った状態で複数の長方形太陽電池を並べて配置する工程と、電気伝導性接合剤を硬化させて、それにより、隣接し合い重なり合う長方形太陽電池を互いに接合し、それらを直列に電気接続する工程とを備える。太陽電池は、例えば、上記で説明した太陽電池を製造するための方法の変形例のうちいずれかにより製造され得る。
一態様において、太陽電池ストリングを作る方法は、1または複数の正方形太陽電池のうち各正方形太陽電池上に裏面金属被覆パターンを形成する工程と、
単一の孔版印刷工程で、単一のステンシルを用いて、上記1または複数の正方形太陽電池のうち各正方形太陽電池上に完全な前面金属被覆パターンを孔版印刷する工程と
を含む。これらの工程は、いずれかの順序、または適している場合には同時に実行され得る。「完全な前面金属被覆パターン」とは、孔版印刷工程の後、前面金属被覆の形成を完了するのに追加の金属被覆材料が正方形太陽電池の前面に堆積させられる必要がないことを意味する。方法はまた、
2またはそれより多くの長方形太陽電池となるように各正方形太陽電池を分離させて、完全な前面金属被覆パターンと裏面金属被覆パターンとをそれぞれが含む複数の長方形太陽電池を、上記1または複数の正方形太陽電池から形成する工程と、
隣接し合う長方形太陽電池の長辺がこけら葺き状に重なり合った状態で上記複数の長方形太陽電池を並べて配置する工程と、
隣接し合い重なり合う長方形太陽電池の各ペアに含まれる上記長方形太陽電池を間に配された電気伝導性接合剤で互いに伝導接合する工程であって、上記ペアに含まれる上記長方形太陽電池のうち一方の長方形太陽電池の上記前面金属被覆パターンを、上記ペアに含まれる上記長方形太陽電池のうち他方の長方形太陽電池の上記裏面金属被覆パターンに電気接続し、それにより、上記複数の長方形太陽電池を直列に電気接続する、工程と
を含む。
ステンシルは、上記1または複数の正方形太陽電池上の上記前面金属被覆パターンの1または複数の特徴を画定する、上記ステンシルの全ての部分が、孔版印刷の間、上記ステンシルの面内に横たわるよう上記ステンシルの他の部分への物理的接続により留められるよう構成され得る。
各長方形太陽電池上の上記前面金属被覆パターンは、例えば、上記長方形太陽電池の長辺と垂直な方向に方向付けられた複数のフィンガーを含み得、上記前面金属被覆パターン内の上記複数のフィンガーはどれも、上記前面金属被覆パターンにより互いに物理的に接続しない。
本明細書は、例えば、キャリア再結合を促す劈開縁がなく、太陽電池の縁でのキャリア再結合損失が減る太陽電池と、そのような太陽電池を製造するための方法と、スーパーセルの形成における、こけら葺き状(重なり合う)配置でのそのような太陽電池の使用とを開示する。
一態様において、
複数の太陽電池を製造する方法は、
結晶シリコンウェハの前面に1または複数の前面アモルファスシリコン層を堆積させる工程と、
上記結晶シリコンウェハの上記前面の反対側にある上記結晶シリコンウェハの裏面に1または複数の裏面アモルファスシリコン層を堆積させる工程と、
上記1または複数の前面アモルファスシリコン層をパターニングして、上記1または複数の前面アモルファスシリコン層に1または複数の前面トレンチを形成する工程と、
上記1または複数の前面アモルファスシリコン層上および上記1または複数の前面トレンチ内に前面パッシベート層を堆積させる工程と、
上記1または複数の裏面アモルファスシリコン層をパターニングして、上記1または複数の裏面アモルファスシリコン層内に1または複数の裏面トレンチを形成する工程と、
上記1または複数の裏面アモルファスシリコン層上および上記1または複数の裏面トレンチ内に裏面パッシベート層を堆積させる工程と
を含む。1または複数の裏面トレンチのうちそれぞれが、前面トレンチのうち対応する1つと並んで形成される。方法は、1または複数の劈開面において上記結晶シリコンウェハを劈開する工程であって、各劈開面は、対応し合う前面トレンチおよび裏面トレンチの異なるペア上で中心、または実質的に中心に位置する、工程をさらに含む。結果として得られる太陽電池の動作において、前面アモルファスシリコン層は、光により照射されることになる。
いくつかの変形例において、前面トレンチのみが形成され、裏面トレンチは形成されない。他の変形例において、裏面トレンチのみが形成され、前面トレンチは形成されない。
方法は、上記1または複数の前面トレンチを形成して、上記前面アモルファスシリコン層を貫通させて、上記結晶シリコンウェハの上記前面に到達させる工程、および/または、上記1または複数の裏面トレンチを形成して、上記1または複数の裏面アモルファスシリコン層を貫通させて、上記結晶シリコンウェハの上記裏面に到達させる工程を含み得る。
方法は、上記前面パッシベート層および/または上記裏面パッシベート層を透明な伝導性酸化物から形成する工程を含み得る。
(例えば、およそ100ミクロンの長さの)劈開点を開始するのに、パルスレーザまたはダイアモンドチップが用いられ得る。圧縮する、および伸長させる高い熱応力を引き起こし、結晶シリコンウェハ内での完全な劈開の伝播を誘導して、1または複数の劈開面において結晶シリコンウェハを分離させるようCWレーザーおよび冷却ノズルが順次用いられ得る。代替的に、結晶シリコンウェハは、1または複数の劈開面において機械的に劈開され得る。任意の適した劈開方法が用いられ得る。
1または複数の前面アモルファス結晶シリコン層は、結晶シリコンウェハとn−p接合を形成し得、この場合、結晶シリコンウェハを、その裏面側から劈開することが好ましいかもしれない。代替的に、1または複数の裏面アモルファス結晶シリコン層は、結晶シリコンウェハとn−p接合を形成し得、この場合、結晶シリコンウェハを、その前面側から劈開することが好ましいかもしれない。
他の態様において、複数の太陽電池を製造する方法は、
結晶シリコンウェハの第1表面に1または複数のトレンチを形成する工程と、
上記結晶シリコンウェハの上記第1表面に1または複数のアモルファスシリコン層を堆積させる工程と、
上記結晶シリコンウェハの上記第1表面の上記1または複数のトレンチ内および上記1または複数のアモルファスシリコン層上にパッシベート層を堆積させる工程と、
上記結晶シリコンウェハの上記第1表面の反対側にある上記結晶シリコンウェハの第2表面に1または複数のアモルファスシリコン層を堆積させる工程と、
1または複数の劈開面において上記結晶シリコンウェハを劈開する工程であって、各劈開面は、上記1または複数のトレンチのうち異なる1つのトレンチ上で中心、または実質的に中心に位置する、工程と
を含む。
方法は、上記パッシベート層を透明な伝導性酸化物から形成する工程を含み得る。
上記結晶シリコンウェハに熱応力を引き起こして、上記1または複数の劈開面において上記結晶シリコンウェハを劈開するのに、レーザーが用いられ得る。代替的に、結晶シリコンウェハは、1または複数の劈開面において機械的に劈開され得る。任意の適した劈開方法が用いられ得る。
上記1または複数の前面アモルファス結晶シリコン層は、上記結晶シリコンウェハとn−p接合を形成し得る。代替的に、上記1または複数の裏面アモルファス結晶シリコン層は、上記結晶シリコンウェハとn−p接合を形成し得る。
他の態様において、ソーラーパネルは、隣接し合う太陽電池の端部がこけら葺き状に重なり合い互いに伝導接合して、上記隣接し合う太陽電池を直列に電気接続した状態で並んで配置された複数の太陽電池をそれぞれが有する複数のスーパーセルを備える。各太陽電池は、
結晶シリコン基板と、
上記結晶シリコン基板の第1表面に配されてn−p接合を形成する1または複数の第1表面アモルファスシリコン層と、
上記結晶シリコン基板の上記第1表面の反対側にある上記結晶シリコン基板の第2表面に配された1または複数の第2表面アモルファスシリコン層と、
上記1または複数の第1表面アモルファスシリコン層の縁における、上記1または複数の第2表面アモルファスシリコン層の縁における、または、上記1または複数の第1表面アモルファスシリコン層の縁および上記1または複数の第2表面アモルファスシリコン層の縁におけるキャリア再結合を防ぐ複数のパッシベート層と
を含む。上記複数のパッシベート層は透明な伝導性酸化物を含み得る。
太陽電池は、例えば、上記で要約された、またはそうでなければ本明細書で開示する方法のうちいずれかにより形成され得る。
本願発明のこれらの、および他の実施形態、特徴、および利点は、最初に簡単に説明する添付の図面と関連して、以下の本願発明のより詳細な説明を参照した場合に、当業者に、より明らかとなる。
隣接し合う太陽電池の端が重なり合うこけら葺き状スーパーセルを形成した状態の、こけら葺き状に配置された直列接続する太陽電池のストリングの断面図を示す。
こけら葺き状スーパーセルを形成するのに用いられ得る例示的な長方形太陽電池の前(太陽側)面および前面金属被覆パターンの図を示す。
こけら葺き状スーパーセルを形成するのに用いられ得る丸みのある角を含む2つの例示的な長方形太陽電池の前(太陽側)面および前面金属被覆パターンの図を示す。 こけら葺き状スーパーセルを形成するのに用いられ得る丸みのある角を含む2つの例示的な長方形太陽電池の前(太陽側)面および前面金属被覆パターンの図を示す。
図2Aに示される太陽電池の裏面および例示的な裏面金属被覆パターンの図を示す。 図2Aに示される太陽電池の裏面および例示的な裏面金属被覆パターンの図を示す。
図2Bおよび2Cにそれぞれ示される太陽電池の裏面および例示的な裏面金属被覆パターンの図を示す。 図2Bおよび2Cにそれぞれ示される太陽電池の裏面および例示的な裏面金属被覆パターンの図を示す。
こけら葺き状スーパーセルを形成するのに用いられ得る他の例示的な長方形太陽電池の前(太陽側)面および前面金属被覆パターンの図を示す。前面金属被覆パターンは、不連続なコンタクトパッドを含んでおり、不連続なコンタクトパッドのうちそれぞれが、そのコンタクトパッド上に堆積させられた未硬化の伝導性粘着接合剤がコンタクトパッドから離れて流れるのを防ぐよう構成されたバリアにより囲まれている。
図2Hの太陽電池の断面図を示し、コンタクトパッドと、そのコンタクトパッドを囲むバリアの一部とを含む図2Jおよび2Kの拡大図に示される前面金属被覆パターンの詳細を特定している。
図2Iの詳細の拡大図を示す。
未硬化の伝導性粘着接合剤が、バリアにより不連続なコンタクトパッドの位置に実質的に封じ込められた状態にある、図2Iの詳細の拡大図を示す。
図2Hの太陽電池に関して、裏面および例示的な裏面金属被覆パターンの図を示す。裏面金属被覆パターンは、不連続なコンタクトパッドを含んでおり、不連続なコンタクトパッドのうちそれぞれが、そのコンタクトパッド上に堆積させられた未硬化の伝導性粘着接合剤がコンタクトパッドから離れて流れるのを防ぐよう構成されたバリアにより囲まれている。
図2Lの太陽電池の断面図を示し、コンタクトパッドと、そのコンタクトパッドを囲むバリアの一部とを含む図2Nの拡大図に示される裏面金属被覆パターンの詳細を特定している。
図2Mの詳細の拡大図を示す。
未硬化の伝導性粘着接合剤がコンタクトパッドから離れて流れるのを防ぐよう構成されたバリアを含む金属被覆パターンの他の変形例を示す。バリアは、コンタクトパッドの一辺に当接し、そのコンタクトパッドより高い。
バリアがコンタクトパッドの少なくとも2つの側に当接した状態の、図2Oの金属被覆パターンの他の変形例を示す。
他の例示的な長方形太陽電池に関して、裏面および例示的な裏面金属被覆パターンの図を示す。裏面金属被覆パターンは、太陽電池の縁に沿った太陽電池の実質的に長辺の長さに亘って延びる連続的なコンタクトパッドを含む。コンタクトパッドは、そのコンタクトパッド上に堆積させられた未硬化の伝導性粘着接合剤がコンタクトパッドから離れて流れるのを防ぐよう構成されたバリアにより囲まれている。
こけら葺き状スーパーセルを形成するのに用いられ得る他の例示的な長方形太陽電池の前(太陽側)面および前面金属被覆パターンの図を示す。前面金属被覆パターンは、太陽電池の縁に沿った行に配置された不連続なコンタクトパッドと、コンタクトパッドの行と平行に、その行より内側に延びる長く薄い導体とを含む。長く薄い導体は、それのコンタクトパッド上に堆積させられた未硬化の伝導性粘着接合剤が、コンタクトパッドから離れて、太陽電池の作用面積上に流れるのを防ぐよう構成されたバリアを形成する。
こけら葺き状スーパーセルを形成するのに用いられ得る2つの異なる長さの長方形太陽電池となるよう標準的なサイズおよび形状の擬似正方形シリコン太陽電池を分離させ(例えば、切断し、または折り)得る例示的な方法を図示する図を示す。
長方形太陽電池となるよう擬似正方形シリコン太陽電池を分離させ得る他の例示的な方法を図示する図を示す。図3Bは、ウェハの前面と、例示的な前面金属被覆パターンとを示す。図3Cは、ウェハの裏面と、例示的な裏面金属被覆パターンとを示す。 長方形太陽電池となるよう擬似正方形シリコン太陽電池を分離させ得る他の例示的な方法を図示する図を示す。図3Bは、ウェハの前面と、例示的な前面金属被覆パターンとを示す。図3Cは、ウェハの裏面と、例示的な裏面金属被覆パターンとを示す。
長方形太陽電池となるよう正方形シリコン太陽電池を分離させ得る例示的な方法を図示する図を示す。図3Dは、ウェハの前面と、例示的な前面金属被覆パターンとを示す。図3Eは、ウェハの裏面と、例示的な裏面金属被覆パターンとを示す。 長方形太陽電池となるよう正方形シリコン太陽電池を分離させ得る例示的な方法を図示する図を示す。図3Dは、ウェハの前面と、例示的な前面金属被覆パターンとを示す。図3Eは、ウェハの裏面と、例示的な裏面金属被覆パターンとを示す。
図1に示すようにこけら葺き状に配置された、例えば図2Aに示されるような複数の長方形太陽電池を含む例示的な長方形スーパーセルの前面の断片図を示す。
図1に示されるようなこけら葺き状に配置された、例えば図2Bに示すような複数の面取りされた角を含む複数の「シェブロン」長方形太陽電池を含む例示的な長方形スーパーセルの前面図および裏面図をそれぞれ示す。 図1に示されるようなこけら葺き状に配置された、例えば図2Bに示すような複数の面取りされた角を含む複数の「シェブロン」長方形太陽電池を含む例示的な長方形スーパーセルの前面図および裏面図をそれぞれ示す。
例示的な長方形ソーラーモジュールの図を示す。同長方形ソーラーモジュールは、同モジュールの短辺の長さのおよそ半分の長さの長辺をそれぞれが有する複数の長方形のこけら葺き状スーパーセルを含む。スーパーセルの複数のペアが、端と端とを繋いで配置されて、スーパーセルの長辺が同モジュールの短辺と平行な状態で複数の行を形成する。
他の例示的な長方形ソーラーモジュールの図を示す。同長方形ソーラーモジュールは、同モジュールの短辺の長さとおよそ同じ長さの長辺をそれぞれが有する複数の長方形のこけら葺き状スーパーセルを含む。それらスーパーセルは、長辺が同モジュールの短辺と平行な状態で配置されている。
他の例示的な長方形ソーラーモジュールの図を示す。同長方形ソーラーモジュールは、同モジュールの長辺の長さとおよそ同じ長さの長辺をそれぞれが有する複数の長方形のこけら葺き状スーパーセルを含む。それらスーパーセルは、長辺が同モジュールの辺と平行な状態で配置されている。
例示的な長方形ソーラーモジュールの図を示す。同長方形ソーラーモジュールは、同モジュールの長辺の長さのおよそ半分の長さの長辺をそれぞれが有する複数の長方形のこけら葺き状スーパーセルを含む。スーパーセルの複数のペアが、端と端とを繋いで配置されて、スーパーセルの長辺が同モジュールの長辺と平行な状態で複数の行を形成する。
構成が図5Cの構成と同様の他の例示的な長方形ソーラーモジュールの図を示す。その構成において、スーパーセルを形成する太陽電池の全てが、太陽電池の分離元の擬似正方形ウェハの角に対応する面取りされた角を含むシェブロン太陽電池である。
構成が図5Cの構成と同様の他の例示的な長方形ソーラーモジュールの図を示す。その構成において、スーパーセルを形成する太陽電池は、分離元の擬似正方形ウェハの形状を再現するよう配置されたシェブロン太陽電池および長方形太陽電池のミックスされたものを含む。
構成が図5Eの構成と同様の他の例示的な長方形ソーラーモジュールの図を示す。異なるのは、スーパーセル内の隣接し合うシェブロン太陽電池が、それらの重なり合う縁が同じ長さとなるよう互いの鏡像として配置されている点である。
各行内のスーパーセルを互いに直列にし、それら行を互いに並列にするようフレキシブル電気相互接続部により相互接続する3つのスーパーセル行の例示的な配置を示す。これらは、例えば、図5Dのソーラーモジュール内の3行であり得る。
スーパーセルを直列または並列に相互接続するのに用いられ得る例示的なフレキシブル相互接続部を示す。それら例のうちいくつかは、それらの長軸に沿って、それらの短軸に沿って、またはそれらの長軸および短軸に沿ってそれらのフレキシブル性(機械的コンプライアンス)を高めるパターニングを呈している。図7Aは、本明細書で説明するようなスーパーセルへの隠れタップにおいて、または前面または裏面スーパーセル末端接触部への相互接続部として用いられ得る例示的な応力緩和の長い相互接続構成を示す。 面外応力緩和特徴の例を図示する。図7B−1および7B−2は、面外応力緩和特徴を含む、スーパーセルへの隠れタップにおいて、または前面または裏面スーパーセル末端接触部への相互接続部として用いられ得る例示的な長い相互接続構成を示す。 面外応力緩和特徴の例を図示する。図7B−1および7B−2は、面外応力緩和特徴を含む、スーパーセルへの隠れタップにおいて、または前面または裏面スーパーセル末端接触部への相互接続部として用いられ得る例示的な長い相互接続構成を示す。
図5Dからの詳細Aを示す。図5Dの例示的なソーラーモジュールの断面図であり、複数のスーパーセル行の裏面末端接触部に接合するフレキシブル電気相互接続部の断面の詳細を示す。
図5Dからの詳細Cを示す。図5Dの例示的なソーラーモジュールの断面図であり、複数のスーパーセル行の前(太陽側)面末端接触部に接合するフレキシブル電気相互接続部の断面の詳細を示す。
図5Dからの詳細Bを示す。図5Dの例示的なソーラーモジュールの断面図であり、行内の2つのスーパーセルを直列に相互接続するよう配置されたフレキシブル相互接続部の断面の詳細を示す。
ソーラーモジュールの縁に隣接する、スーパーセル行の端にあるスーパーセルの前末端接触部に接合する電気相互接続部の複数の追加の例を示す。それら例示的な相互接続部は、モジュールの前面のフットプリントが小さくなるよう構成される。 ソーラーモジュールの縁に隣接する、スーパーセル行の端にあるスーパーセルの前末端接触部に接合する電気相互接続部の複数の追加の例を示す。それら例示的な相互接続部は、モジュールの前面のフットプリントが小さくなるよう構成される。 ソーラーモジュールの縁に隣接する、スーパーセル行の端にあるスーパーセルの前末端接触部に接合する電気相互接続部の複数の追加の例を示す。それら例示的な相互接続部は、モジュールの前面のフットプリントが小さくなるよう構成される。 ソーラーモジュールの縁に隣接する、スーパーセル行の端にあるスーパーセルの前末端接触部に接合する電気相互接続部の複数の追加の例を示す。それら例示的な相互接続部は、モジュールの前面のフットプリントが小さくなるよう構成される。
他の例示的な長方形ソーラーモジュールの図を示す。同長方形ソーラーモジュールは、およそ同モジュールの長辺の長さとおよそ同じ長さの長辺をそれぞれが有する6つの長方形のこけら葺き状スーパーセルを含む。それらスーパーセルは、互いに並列に、および、ソーラーモジュールの裏面の接続箱に配されたバイパスダイオードと並列に電気接続する6行に配置されている。スーパーセルとバイパスダイオードとの間の電気接続は、モジュールの積層構造に埋め込まれたリボンを通じて確立される。
他の例示的な長方形ソーラーモジュールの図を示す。同長方形ソーラーモジュールは、およそ同モジュールの長辺の長さとおよそ同じ長さの長辺をそれぞれが有する6つの長方形のこけら葺き状スーパーセルを含む。それらスーパーセルは、互いに並列に、および、ソーラーモジュールの裏面上、かつソーラーモジュールの縁近くの接続箱内に配されたバイパスダイオードと並列に電気接続する6行に配置されている。第2接続箱が、同裏面でソーラーモジュールの反対側の縁近くに位置する。スーパーセルとバイパスダイオードとの間の電気接続は、接続箱間の外部ケーブルを通じて確立される。
例示的なガラス−ガラス長方形ソーラーモジュールの図を示す。同長方形ソーラーモジュールは、およそ同モジュールの長辺の長さとおよそ同じ長さの長辺をそれぞれが有する6つの長方形のこけら葺き状スーパーセルを含む。スーパーセルは、互いに並列に電気接続する6行に配置されている。2つの接続箱がモジュールの対向し合う縁上に取り付けられ、モジュールの作用面積を最大化する。
図9Cに図示されているソーラーモジュールの側面図を示す。
他の例示的なソーラーモジュールを示す。同ソーラーモジュールは、およそ同モジュールの長辺の長さとおよそ同じ長さの長辺をそれぞれが有する6つの長方形のこけら葺き状スーパーセルを含む。それらスーパーセルは、行の3つのペアが、ソーラーモジュール上の電力管理デバイスに個別に接続した状態で6行に配置されている。
他の例示的なソーラーモジュールを示す。同ソーラーモジュールは、およそ同モジュールの長辺の長さとおよそ同じ長さの長辺をそれぞれが有する6つの長方形のこけら葺き状スーパーセルを含む。それらスーパーセルは、各行が、ソーラーモジュール上の電力管理デバイスに個別に接続した状態で6行に配置されている。
こけら葺き状スーパーセルを用いるモジュールレベルの電力管理の構造の他の実施形態を示す。 こけら葺き状スーパーセルを用いるモジュールレベルの電力管理の構造の他の実施形態を示す。
図5Bに図示されているようなソーラーモジュールの例示的な概略電気回路図を示す。
図10Aの概略回路図を有する図5Bに図示されているようなソーラーモジュールのための様々な電気相互接続の例示的な物理的レイアウトを示す。 図10Aの概略回路図を有する図5Bに図示されているようなソーラーモジュールのための様々な電気相互接続の例示的な物理的レイアウトを示す。
図5Aに図示されているようなソーラーモジュールの例示的な概略電気回路図を示す。
図11Aの概略電気回路図を有する図5Aに図示されているようなソーラーモジュールのための様々な電気相互接続の例示的な物理的レイアウトを示す。 図11Aの概略電気回路図を有する図5Aに図示されているようなソーラーモジュールのための様々な電気相互接続の例示的な物理的レイアウトを示す。
図11Aの概略電気回路図を有する図5Aに図示されているようなソーラーモジュールのための様々な電気相互接続の他の例示的な物理的レイアウトを示す。 図11Aの概略電気回路図を有する図5Aに図示されているようなソーラーモジュールのための様々な電気相互接続の他の例示的な物理的レイアウトを示す。
図5Aに図示されているようなソーラーモジュールの他の例示的な概略回路図を示す。
図12Aの概略回路図を有する図5Aに図示されているようなソーラーモジュールのための様々な電気相互接続の例示的な物理的レイアウトを示す。 図12Aの概略回路図を有する図5Aに図示されているようなソーラーモジュールのための様々な電気相互接続の例示的な物理的レイアウトを示す。
図12Aの概略回路図を有する図5Aに図示されているようなソーラーモジュールのための様々な電気相互接続の他の例示的な物理的レイアウトを示す。 図12Aの概略回路図を有する図5Aに図示されているようなソーラーモジュールのための様々な電気相互接続の他の例示的な物理的レイアウトを示す。 図12Aの概略回路図を有する図5Aに図示されているようなソーラーモジュールのための様々な電気相互接続の他の例示的な物理的レイアウトを示す。
図5Aに図示されているようなソーラーモジュールの他の例示的な概略回路図を示す。
図5Bに図示されているようなソーラーモジュールの他の例示的な概略回路図を示す。
図13Aの概略回路図を有する図5Aに図示されているようなソーラーモジュールのための様々な電気相互接続の例示的な物理的レイアウトを示す。わずかに変更され、図13C−1および13C−2の物理的レイアウトは、図13Bの概略回路図を有する図5Bに図示されているようなソーラーモジュールに適している。 図13Aの概略回路図を有する図5Aに図示されているようなソーラーモジュールのための様々な電気相互接続の例示的な物理的レイアウトを示す。わずかに変更され、図13C−1および13C−2の物理的レイアウトは、図13Bの概略回路図を有する図5Bに図示されているようなソーラーモジュールに適している。
他の例示的な長方形ソーラーモジュールの図を示す。同長方形ソーラーモジュールは、同モジュールの短辺の長さのおよそ半分の長さの長辺をそれぞれが有する複数の長方形のこけら葺き状スーパーセルを含む。スーパーセルの複数のペアが、端と端とを繋いで配置されて、スーパーセルの長辺が同モジュールの短辺と平行な状態で複数の行を形成する。
図14Aに図示されているようなソーラーモジュールの例示的な概略回路図を示す。
図14Bの概略回路図を有する図14Aに図示されているようなソーラーモジュールのための様々な電気相互接続の例示的な物理的レイアウトを示す。 図14Bの概略回路図を有する図14Aに図示されているようなソーラーモジュールのための様々な電気相互接続の例示的な物理的レイアウトを示す。
図10Aの概略回路図を有する図5Bに図示されているようなソーラーモジュールのための様々な電気相互接続の他の例示的な物理的レイアウトを示す。
2つのソーラーモジュールを直列に相互接続するスマートスイッチの例示的な配置を示す。
スーパーセルによりソーラーモジュールを作る例示的な方法のフローチャートを示す。
スーパーセルによりソーラーモジュールを作る他の例示的な方法のフローチャートを示す。
スーパーセルを、熱および圧力により硬化し得る例示的な配置を示す。 スーパーセルを、熱および圧力により硬化し得る例示的な配置を示す。 スーパーセルを、熱および圧力により硬化し得る例示的な配置を示す。 スーパーセルを、熱および圧力により硬化し得る例示的な配置を示す。
スクライブされた太陽電池を劈開するのに用いられ得る例示的な装置を概略的に図示する。同装置は、伝導性粘着接合剤が適用されたスクライブされたスーパーセルを劈開するのに用いられる場合に特に有利であり得る。 スクライブされた太陽電池を劈開するのに用いられ得る例示的な装置を概略的に図示する。同装置は、伝導性粘着接合剤が適用されたスクライブされたスーパーセルを劈開するのに用いられる場合に特に有利であり得る。 スクライブされた太陽電池を劈開するのに用いられ得る例示的な装置を概略的に図示する。同装置は、伝導性粘着接合剤が適用されたスクライブされたスーパーセルを劈開するのに用いられる場合に特に有利であり得る。
複数の平行なスーパーセル行を含むソーラーモジュール内で、スーパーセルと、モジュールの前から視認出来る後面シートの一部との間の視覚的コントラストを低下させるのに用いられ得る、濃色の線により「シマウマのような縞のある」例示的な白色の後面シートを示す。
ホットスポット状態にある、伝統的なリボン接続を利用する従来のモジュールの平面図を示す。 同じくホットスポット状態にある、実施形態に係る熱拡散を利用するモジュールの平面図を示す。
面取りされた電池を有するスーパーセルのストリングのレイアウトの例を示す。 面取りされた電池を有するスーパーセルのストリングのレイアウトの例を示す。
こけら葺き状構成で組み立てられた複数のモジュールを含むアレイの単純化された断面図を示す。 こけら葺き状構成で組み立てられた複数のモジュールを含むアレイの単純化された断面図を示す。
ソーラーモジュールの裏側にある接続箱への、こけら葺き状スーパーセルの前(太陽側)面末端電気接触部の例示的な電気相互接続を図示する、モジュールの裏(影)面の図を示す。
スーパーセルの前(太陽側)面末端電気接触部が互いに、および、ソーラーモジュールの裏側にある接続箱に接続した状態の、2またはそれより多くの並列なこけら葺き状スーパーセルの例示的な電気相互接続を図示する、モジュールの裏(影)面の図を示す。
スーパーセルの前(太陽側)面末端電気接触部が互いに、および、ソーラーモジュールの裏側にある接続箱に接続した状態の、2またはそれより多くの並列なこけら葺き状スーパーセルの他の例示的な電気相互接続を図示する、モジュールの裏(影)面の図を示す。
隣接し合うスーパーセルの重なり合う端間に挟まれて、それらスーパーセルを直列に電気接続し、接続箱への電気接続を提供するフレキシブル相互接続部の使用を図示する、2つのスーパーセルの断片的な断面図および透視図を示す。 図29の対象エリアの拡大図を示す。
電気相互接続部が前面および裏面末端接触部に接合した状態の例示的なスーパーセルを示す。 並列に相互接続する、図30Aのスーパーセルのうち2つを示す。
本明細書で説明するようなスーパーセルへの隠れタップを形成するのに採用され得る例示的な後面金属被覆パターンの図を示す。 本明細書で説明するようなスーパーセルへの隠れタップを形成するのに採用され得る例示的な後面金属被覆パターンの図を示す。 本明細書で説明するようなスーパーセルへの隠れタップを形成するのに採用され得る例示的な後面金属被覆パターンの図を示す。
スーパーセルのおよそ全幅に亘って延びる相互接続部を有する隠れタップの使用の例を示す。 スーパーセルのおよそ全幅に亘って延びる相互接続部を有する隠れタップの使用の例を示す。
スーパーセル裏面(図34A)末端接触部および前面(図34B−34C)末端接触部に接合する相互接続部の例を示す。 スーパーセル裏面(図34A)末端接触部および前面(図34B−34C)末端接触部に接合する相互接続部の例を示す。 スーパーセル裏面(図34A)末端接触部および前面(図34B−34C)末端接触部に接合する相互接続部の例を示す。
隣接し合うスーパーセル間の間隙に広がるが、長方形太陽電池の長軸に沿って実質的に内側に延在しない短い相互接続部を有する隠れタップの使用の例を示す。 隣接し合うスーパーセル間の間隙に広がるが、長方形太陽電池の長軸に沿って実質的に内側に延在しない短い相互接続部を有する隠れタップの使用の例を示す。
面内応力緩和特徴を含む短い隠れタップ相互接続部の例示的な構成を示す。 面内応力緩和特徴を含む短い隠れタップ相互接続部の例示的な構成を示す。 面内応力緩和特徴を含む短い隠れタップ相互接続部の例示的な構成を示す。 面内応力緩和特徴を含む短い隠れタップ相互接続部の例示的な構成を示す。 面内応力緩和特徴を含む短い隠れタップ相互接続部の例示的な構成を示す。 面内応力緩和特徴を含む短い隠れタップ相互接続部の例示的な構成を示す。 面内応力緩和特徴を含む短い隠れタップ相互接続部の例示的な構成を示す。 面内応力緩和特徴を含む短い隠れタップ相互接続部の例示的な構成を示す。 面内応力緩和特徴を含む短い隠れタップ相互接続部の例示的な構成を示す。 面内応力緩和特徴を含む短い隠れタップ相互接続部の例示的な構成を示す。 面内応力緩和特徴を含む短い隠れタップ相互接続部の例示的な構成を示す。 面内応力緩和特徴を含む短い隠れタップ相互接続部の例示的な構成を示す。 面内応力緩和特徴を含む短い隠れタップ相互接続部の例示的な構成を示す。
面外応力緩和特徴を含む短い隠れタップ相互接続部の例示的な構成を示す。 面外応力緩和特徴を含む短い隠れタップ相互接続部の例示的な構成を示す。 面外応力緩和特徴を含む短い隠れタップ相互接続部の例示的な構成を示す。 面外応力緩和特徴を含む短い隠れタップ相互接続部の例示的な構成を示す。
位置合わせ特徴を含む短い隠れタップ相互接続部の例示的な構成を示す。 位置合わせ特徴を含む短い隠れタップ相互接続部の例示的な構成を示す。 非対称なタブの長さを含む短い隠れタップ相互接続部の例示的な構成を示す。 非対称なタブの長さを含む短い隠れタップ相互接続部の例示的な構成を示す。
隠れタップを採用する例示的なソーラーモジュールのレイアウトを示す。 隠れタップを採用する例示的なソーラーモジュールのレイアウトを示す。 隠れタップを採用する例示的なソーラーモジュールのレイアウトを示す。 隠れタップを採用する例示的なソーラーモジュールのレイアウトを示す。 隠れタップを採用する例示的なソーラーモジュールのレイアウトを示す。 隠れタップを採用する例示的なソーラーモジュールのレイアウトを示す。
図40および42A−44Bのソーラーモジュールのレイアウトの例示的な電気回路図を示す。
バイパスダイオードを有する例示的なソーラーモジュール内の伝導状態における電流の流れを示す。
それぞれ、複数のスーパーセル行と平行な方向への、およびソーラーモジュール内の複数のスーパーセル行と垂直な方向への熱サイクリングから結果として生じるソーラーモジュール構成要素間の相対運動を示す。 それぞれ、複数のスーパーセル行と平行な方向への、およびソーラーモジュール内の複数のスーパーセル行と垂直な方向への熱サイクリングから結果として生じるソーラーモジュール構成要素間の相対運動を示す。
隠れタップを採用する他の例示的なソーラーモジュールレイアウト、および対応する電気回路図をそれぞれ示す。 隠れタップを採用する他の例示的なソーラーモジュールレイアウト、および対応する電気回路図をそれぞれ示す。
埋め込み型のバイパスダイオードと組み合わせて隠れタップを採用する追加の太陽電池モジュールレイアウトを示す。 埋め込み型のバイパスダイオードと組み合わせて隠れタップを採用する追加の太陽電池モジュールレイアウトを示す。
マイクロインバータに従来のDC電圧を提供するソーラーモジュール、およびマイクロインバータに高DC電圧を提供する本明細書で説明するような高電圧ソーラーモジュールのブロック図をそれぞれ示す。 マイクロインバータに従来のDC電圧を提供するソーラーモジュール、およびマイクロインバータに高DC電圧を提供する本明細書で説明するような高電圧ソーラーモジュールのブロック図をそれぞれ示す。
バイパスダイオードを組み込んだ例示的な高電圧ソーラーモジュールの例示的な物理的レイアウトおよび電気回路図を示す。 バイパスダイオードを組み込んだ例示的な高電圧ソーラーモジュールの例示的な物理的レイアウトおよび電気回路図を示す。
こけら葺き状スーパーセルを含む高電圧ソーラーモジュールのモジュールレベルの電力管理の例示的な構造を示す。 こけら葺き状スーパーセルを含む高電圧ソーラーモジュールのモジュールレベルの電力管理の例示的な構造を示す。 こけら葺き状スーパーセルを含む高電圧ソーラーモジュールのモジュールレベルの電力管理の例示的な構造を示す。 こけら葺き状スーパーセルを含む高電圧ソーラーモジュールのモジュールレベルの電力管理の例示的な構造を示す。 こけら葺き状スーパーセルを含む高電圧ソーラーモジュールのモジュールレベルの電力管理の例示的な構造を示す。 こけら葺き状スーパーセルを含む高電圧ソーラーモジュールのモジュールレベルの電力管理の例示的な構造を示す。 こけら葺き状スーパーセルを含む高電圧ソーラーモジュールのモジュールレベルの電力管理の例示的な構造を示す。 こけら葺き状スーパーセルを含む高電圧ソーラーモジュールのモジュールレベルの電力管理の例示的な構造を示す。 こけら葺き状スーパーセルを含む高電圧ソーラーモジュールのモジュールレベルの電力管理の例示的な構造を示す。 こけら葺き状スーパーセルを含む高電圧ソーラーモジュールのモジュールレベルの電力管理の例示的な構造を示す。
隣接し合う行の端がオフセットされ、フレキシブル電気相互接続部により直列に相互接続した状態の、6つの平行行内の6つのスーパーセルの例示的な配置を示す。
互いに並列に、およびストリングインバータに電気接続する複数の高DC電圧こけら葺き状太陽電池モジュールを含む光起電力システムを概略的に図示する。 屋根上で配置された図57Aの光起電力システムを示す。
短絡を有する高DC電圧こけら葺き状太陽電池モジュールが、その並列な電気接続先の他の高DC電圧こけら葺き状太陽電池モジュールで生成されたかなりの量の電力を放散させるのを防ぐのに用いられ得る、電流制限ヒューズおよびブロッキングダイオードの配置を示す。 短絡を有する高DC電圧こけら葺き状太陽電池モジュールが、その並列な電気接続先の他の高DC電圧こけら葺き状太陽電池モジュールで生成されたかなりの量の電力を放散させるのを防ぐのに用いられ得る、電流制限ヒューズおよびブロッキングダイオードの配置を示す。 短絡を有する高DC電圧こけら葺き状太陽電池モジュールが、その並列な電気接続先の他の高DC電圧こけら葺き状太陽電池モジュールで生成されたかなりの量の電力を放散させるのを防ぐのに用いられ得る、電流制限ヒューズおよびブロッキングダイオードの配置を示す。 短絡を有する高DC電圧こけら葺き状太陽電池モジュールが、その並列な電気接続先の他の高DC電圧こけら葺き状太陽電池モジュールで生成されたかなりの量の電力を放散させるのを防ぐのに用いられ得る、電流制限ヒューズおよびブロッキングダイオードの配置を示す。
2またはそれより多くの高DC電圧こけら葺き状太陽電池モジュールが、電流制限ヒューズとブロッキングダイオードとを含み得るコンバイナボックス内で並列に電気接続する例示的な配置を示す。 2またはそれより多くの高DC電圧こけら葺き状太陽電池モジュールが、電流制限ヒューズとブロッキングダイオードとを含み得るコンバイナボックス内で並列に電気接続する例示的な配置を示す。
並列に電気接続する複数の高DC電圧こけら葺き状太陽電池モジュールの電流対電圧プロットおよび電力対電圧プロットをそれぞれ示す。図60Aのプロットは、モジュールがどれも、逆バイアスがかかった太陽電池を含まない例示的な場合についてのものである。図60Bのプロットは、モジュールのうちいくつかが、1または複数の逆バイアスがかかった太陽電池を含む例示的な場合についてのものである。 並列に電気接続する複数の高DC電圧こけら葺き状太陽電池モジュールの電流対電圧プロットおよび電力対電圧プロットをそれぞれ示す。図60Aのプロットは、モジュールがどれも、逆バイアスがかかった太陽電池を含まない例示的な場合についてのものである。図60Bのプロットは、モジュールのうちいくつかが、1または複数の逆バイアスがかかった太陽電池を含む例示的な場合についてのものである。
スーパーセル当たり約1つのバイパスダイオードを利用するソーラーモジュールの例を図示する。 入れ子構成のバイパスダイオードを利用するソーラーモジュールの例を図示する。 フレキシブル電気相互接続部を用いて2つの近隣のスーパーセル間で接続するバイパスダイオードの例示的な構成を図示する。
他の例示的な劈開ツールの側面図および平面図をそれぞれ概略的に図示する。 他の例示的な劈開ツールの側面図および平面図をそれぞれ概略的に図示する。
ウェハを劈開する場合にスクライブラインに沿った裂け目の核生成および伝播を制御する例示的な非対称な真空配置の使用を概略的に図示する。 図63Aの配置より、提供する劈開の制御の程度がより低くなる例示的な対称な真空配置の使用を概略的に図示する。
図62A−62Bの劈開ツールにおいて用いられ得る例示的な真空マニホールドの一部の平面図を概略的に図示する。
穿孔付ベルトが上に横たわる、図64の例示的な真空マニホールドの平面図および透視図の概略的な図示をそれぞれ提供する。 穿孔付ベルトが上に横たわる、図64の例示的な真空マニホールドの平面図および透視図の概略的な図示をそれぞれ提供する。
図62A−62Bの劈開ツールにおいて用いられ得る例示的な真空マニホールドの側面図を概略的に図示する。
穿孔付ベルトおよび真空マニホールドの例示的な配置の上に横たわる劈開済の太陽電池を概略的に図示する。
例示的な劈開プロセスにおける、劈開済の太陽電池と、その太陽電池の劈開元である標準サイズウェハの未劈開部分の相対的な位置および向きを概略的に図示する。
劈開済の太陽電池を劈開ツールから連続的に取り除き得る装置および方法を概略的に図示する。 劈開済の太陽電池を劈開ツールから連続的に取り除き得る装置および方法を概略的に図示する。 劈開済の太陽電池を劈開ツールから連続的に取り除き得る装置および方法を概略的に図示する。 劈開済の太陽電池を劈開ツールから連続的に取り除き得る装置および方法を概略的に図示する。 劈開済の太陽電池を劈開ツールから連続的に取り除き得る装置および方法を概略的に図示する。 劈開済の太陽電池を劈開ツールから連続的に取り除き得る装置および方法を概略的に図示する。 劈開済の太陽電池を劈開ツールから連続的に取り除き得る装置および方法を概略的に図示する。
図62A−62Bの例示的な劈開ツールの他の変形例の、互いに直行し合う方向から見た図を提供する。 図62A−62Bの例示的な劈開ツールの他の変形例の、互いに直行し合う方向から見た図を提供する。 図62A−62Bの例示的な劈開ツールの他の変形例の、互いに直行し合う方向から見た図を提供する。
劈開プロセスの2つの異なる工程における図70A−70Cの例示的な劈開ツールの透視図を提供する。 劈開プロセスの2つの異なる工程における図70A−70Cの例示的な劈開ツールの透視図を提供する。
図70A−70Cの例示的な劈開ツールの穿孔付ベルトおよび真空マニホールドの詳細を図示する。 図70A−70Cの例示的な劈開ツールの穿孔付ベルトおよび真空マニホールドの詳細を図示する。 図70A−70Cの例示的な劈開ツールの穿孔付ベルトおよび真空マニホールドの詳細を図示する。 図70A−70Cの例示的な劈開ツールの穿孔付ベルトおよび真空マニホールドの詳細を図示する。 図70A−70Cの例示的な劈開ツールの穿孔付ベルトおよび真空マニホールドの詳細を図示する。 図70A−70Cの例示的な劈開ツールの穿孔付ベルトおよび真空マニホールドの詳細を図示する。
図10A−10Cの例示的な劈開ツール内の穿孔付真空ベルトのために用いられ得るいくつかの例示的な孔パターンの詳細を図示する。 図10A−10Cの例示的な劈開ツール内の穿孔付真空ベルトのために用いられ得るいくつかの例示的な孔パターンの詳細を図示する。 図10A−10Cの例示的な劈開ツール内の穿孔付真空ベルトのために用いられ得るいくつかの例示的な孔パターンの詳細を図示する。 図10A−10Cの例示的な劈開ツール内の穿孔付真空ベルトのために用いられ得るいくつかの例示的な孔パターンの詳細を図示する。 図10A−10Cの例示的な劈開ツール内の穿孔付真空ベルトのために用いられ得るいくつかの例示的な孔パターンの詳細を図示する。 図10A−10Cの例示的な劈開ツール内の穿孔付真空ベルトのために用いられ得るいくつかの例示的な孔パターンの詳細を図示する。 図10A−10Cの例示的な劈開ツール内の穿孔付真空ベルトのために用いられ得るいくつかの例示的な孔パターンの詳細を図示する。
長方形太陽電池上の例示的な前面金属被覆パターンを示す。
長方形太陽電池上の例示的な裏面金属被覆パターンを示す。 長方形太陽電池上の例示的な裏面金属被覆パターンを示す。
ダイシングされて、図76に示す前面金属被覆パターンをそれぞれが有する複数の長方形太陽電池を形成し得る正方形太陽電池上の例示的な前面金属被覆パターンを示す。
ダイシングされて、図77Aに示す裏面金属被覆パターンをそれぞれが有する複数の長方形太陽電池を形成し得る正方形太陽電池上の例示的な裏面金属被覆パターンを示す。
従来の劈開方法を用いて、幅狭のストリップ太陽電池となるよう従来サイズのHIT太陽電池がダイシングされて、結果として、キャリア再結合を促す劈開縁となることを示す概略図である。
キャリア再結合を促す劈開縁を有さない幅狭の太陽電池ストリップとなるよう従来サイズのHIT太陽電池をダイシングする例示的な方法の工程を概略的に図示する。 キャリア再結合を促す劈開縁を有さない幅狭の太陽電池ストリップとなるよう従来サイズのHIT太陽電池をダイシングする例示的な方法の工程を概略的に図示する。 キャリア再結合を促す劈開縁を有さない幅狭の太陽電池ストリップとなるよう従来サイズのHIT太陽電池をダイシングする例示的な方法の工程を概略的に図示する。 キャリア再結合を促す劈開縁を有さない幅狭の太陽電池ストリップとなるよう従来サイズのHIT太陽電池をダイシングする例示的な方法の工程を概略的に図示する。 キャリア再結合を促す劈開縁を有さない幅狭の太陽電池ストリップとなるよう従来サイズのHIT太陽電池をダイシングする例示的な方法の工程を概略的に図示する。 キャリア再結合を促す劈開縁を有さない幅狭の太陽電池ストリップとなるよう従来サイズのHIT太陽電池をダイシングする例示的な方法の工程を概略的に図示する。 キャリア再結合を促す劈開縁を有さない幅狭の太陽電池ストリップとなるよう従来サイズのHIT太陽電池をダイシングする例示的な方法の工程を概略的に図示する。 キャリア再結合を促す劈開縁を有さない幅狭の太陽電池ストリップとなるよう従来サイズのHIT太陽電池をダイシングする例示的な方法の工程を概略的に図示する。 キャリア再結合を促す劈開縁を有さない幅狭の太陽電池ストリップとなるよう従来サイズのHIT太陽電池をダイシングする例示的な方法の工程を概略的に図示する。 キャリア再結合を促す劈開縁を有さない幅狭の太陽電池ストリップとなるよう従来サイズのHIT太陽電池をダイシングする例示的な方法の工程を概略的に図示する。
キャリア再結合を促す劈開縁を有さない幅狭の太陽電池ストリップとなるよう従来サイズのHIT太陽電池をダイシングする他の例示的な方法の工程を概略的に図示する。 キャリア再結合を促す劈開縁を有さない幅狭の太陽電池ストリップとなるよう従来サイズのHIT太陽電池をダイシングする他の例示的な方法の工程を概略的に図示する。 キャリア再結合を促す劈開縁を有さない幅狭の太陽電池ストリップとなるよう従来サイズのHIT太陽電池をダイシングする他の例示的な方法の工程を概略的に図示する。 キャリア再結合を促す劈開縁を有さない幅狭の太陽電池ストリップとなるよう従来サイズのHIT太陽電池をダイシングする他の例示的な方法の工程を概略的に図示する。 キャリア再結合を促す劈開縁を有さない幅狭の太陽電池ストリップとなるよう従来サイズのHIT太陽電池をダイシングする他の例示的な方法の工程を概略的に図示する。 キャリア再結合を促す劈開縁を有さない幅狭の太陽電池ストリップとなるよう従来サイズのHIT太陽電池をダイシングする他の例示的な方法の工程を概略的に図示する。 キャリア再結合を促す劈開縁を有さない幅狭の太陽電池ストリップとなるよう従来サイズのHIT太陽電池をダイシングする他の例示的な方法の工程を概略的に図示する。 キャリア再結合を促す劈開縁を有さない幅狭の太陽電池ストリップとなるよう従来サイズのHIT太陽電池をダイシングする他の例示的な方法の工程を概略的に図示する。 キャリア再結合を促す劈開縁を有さない幅狭の太陽電池ストリップとなるよう従来サイズのHIT太陽電池をダイシングする他の例示的な方法の工程を概略的に図示する。 キャリア再結合を促す劈開縁を有さない幅狭の太陽電池ストリップとなるよう従来サイズのHIT太陽電池をダイシングする他の例示的な方法の工程を概略的に図示する。
以下の発明を実施するための形態は、同一の参照番号が、異なる図面を通して同様の要素を指す、図面を参照して読まれるべきである。必ずしも縮尺通りではないそれら図面は、選ばれた実施形態を描写しており、本願発明の範囲を限定することは意図されていない。発明を実施するための形態は、発明の原理を、限定によってではなく例として示している。本説明により明らかに、当業者は、本願発明を作り、用いることが可能となり、本説明は、本願発明を実施する最良の態様と現時点で考えられるものを含む、本願発明のいくつかの実施形態、適応例、変形例、代替例、および使用を説明する。
本明細書および添付の請求項で用いられるように、単数形の「a」、「an」、および「the」は、文脈が明らかに異なることを示さない限り、複数形の指示物を含む。また、「平行」という用語は、「平行であること、または実質的に平行であること」を意味しており、本明細書で説明する任意の平行な配置が正確に平行であることを要求するのではなく、平行である幾何学からの多少の逸脱を包含することが意図されている。「垂直」という用語は、「垂直であること、または実質的に垂直であること」を意味すること、および、本明細書で説明する任意の垂直な配置が正確に垂直であることを要求するのではなく、垂直である幾何学からの多少の逸脱を包含することが意図されている。「正方形」という用語は、「正方形または略正方形であること」を意味すること、および、正方形形状からの多少の逸脱、例えば、面取りされた(例えば、丸みのある、または他の場合においては端を切られた)角を含む略正方形である形状を包含することが意図されている。「長方形」という用語は、「長方形または略長方形であること」を意味すること、および、長方形形状からの多少の逸脱、例えば、面取りされた(例えば、丸みのある、または他の場合においては端を切られた)角を含む略長方形である形状を包含することが意図されている。
本明細書は、太陽電池モジュール内のシリコン太陽電池の高効率なこけら葺き状配置、および、そのような配置で用いられ得る、太陽電池のための前面および裏面金属被覆パターンおよび相互接続部を開示する。本明細書は、そのようなソーラーモジュールを製造するための方法も開示する。太陽電池モジュールは、「1つの太陽」(非集中的な)照射の下で有利に採用され得、それらが、従来のシリコン太陽電池モジュールの代わりに用いられることを可能とする物理的寸法および電気的特性を有し得る。
図1は、隣接し合う太陽電池の端が重なり合い電気接続してスーパーセル100を形成した状態の、こけら葺き状に配置された直列接続する太陽電池10のストリングの断面図を示す。各太陽電池10は、半導体ダイオード構造、および同半導体ダイオード構造への複数の電気接触部を含む。これにより、太陽電池10が光により照射された場合に太陽電池10内で生成される電流は、外部負荷に提供され得る。
本明細書で説明する例において、各太陽電池10は、n−p接合の対向し合う側に電気接触をもたらす前(太陽側)面および裏(影側)面の金属被覆パターンを有する結晶シリコン太陽電池であり、前面金属被覆パターンは、n型導電性の半導体層上に配され、裏面金属被覆パターンは、p型導電性の半導体層上に配される。しかし、本明細書で説明するソーラーモジュール内の太陽電池10の代わりに、またはそれに加えて、任意の他の適した材料系、ダイオード構造、物理的寸法、または電気接触配置を採用する任意の他の適した太陽電池が用いられ得る。例えば、前(太陽側)面金属被覆パターンは、p型導電性の半導体層上に配され得、裏(影側)面金属被覆パターンは、n型導電性の半導体層上に配され得る。
図1を改めて参照すると、スーパーセル100において、隣接し合う太陽電池10は、それらが重なり合う領域で、一方の太陽電池の前面金属被覆パターンを、隣接する太陽電池の裏面金属被覆パターンに電気接続する電気伝導性接合剤により互いに伝導接合する。適した電気伝導性接合剤は、例えば、電気伝導性接着剤、電気伝導性粘着フィルムおよび粘着テープ、並びに従来のはんだを含み得る。好ましくは、電気伝導性接合剤は、その電気伝導性接合剤の熱膨張係数(CTE)と、太陽電池のCTE(例えば、シリコンのCTE)との間の不一致から生じる応力に適応する機械的コンプライアンスを、隣接し合う太陽電池間の接合に提供する。そのような機械的コンプライアンスを提供すべく、いくつかの変形例において、電気伝導性接合剤は、約0℃より低い、またはそれと等しいガラス転移温度を有するものが選択される。CTEの不一致から生じる、太陽電池の重なり合う縁と平行な方向への応力をさらに低下させ、およびその応力に適応するべく、電気伝導性接合剤はオプションで、太陽電池の実質的に縁の長さに亘って延在する実線状にではなく、太陽電池の重なり合う領域に沿った複数の不連続な位置にのみ適用され得る。
電気伝導性接合剤により形成される、隣接し合い重なり合う太陽電池間の導電接合の、太陽電池の前面および裏面と垂直な方向に測定する厚さは、例えば、約0.1mm未満であり得る。そのような薄い接合は、電池間の相互接続における抵抗損失を減らし、また、動作の間に現れるかもしれない、スーパーセル内の任意のホットスポットからの、スーパーセルに沿った熱の流れを促す。太陽電池間の接合の熱伝導性は、例えば、≧約1.5ワット/(メートルK)であり得る。
図2Aは、スーパーセル100で用いられ得る例示的な長方形太陽電池10の前面を示す。太陽電池10には他の形状も適宜用いられ得る。図示されている例において、太陽電池10の前面金属被覆パターンは、太陽電池10の長辺のうち一方の縁に隣接して位置付けられ、実質的に長辺の長さに亘って長辺と平行に延びるバスバー15と、バスバーと垂直な方向に取り付けられ、太陽電池10の実質的に短辺の長さに亘って互いに、および、それら短辺と平行に延びる複数のフィンガー20とを含む。
図2Aの例において、太陽電池10は、長さが約156mmであり、幅が約26mmであり、したがって、アスペクト比(短辺の長さ/長辺の長さ)が、約1:6である。6つのそのような太陽電池が、標準的な156mm×156mm寸法のシリコンウェハ上に用意され、その後、分離されて(ダイシングされて)、図示されているような複数の太陽電池を提供し得る。他の変形例において、寸法が約19.5mm×156mmであり、したがって、アスペクト比が約1:8である8つの太陽電池10が標準的なシリコンウェハから用意され得る。より一般的に、太陽電池10は、アスペクト比が、例えば、約1:2から約1:20であり得、標準サイズのウェハから、または任意の他の適した寸法のウェハから用意され得る。
図3Aは、標準的なサイズおよび形状の擬似正方形シリコン太陽電池ウェハ45を、切断、破壊、またはそうでなければ分割して、丁度説明したような複数の長方形太陽電池を形成し得る例示的な方法を示す。本例において、いくつかの、全幅の長方形太陽電池10Lが、ウェハの中央部分から切断され、加えて、いくつかの、より短い長方形太陽電池10Sが、ウェハの端部から切断され、ウェハの面取りされた、または丸みのある角は破棄される。太陽電池10Lは、1つの幅のこけら葺き状スーパーセルを形成するのに用いられ得、太陽電池10Sは、より幅狭のこけら葺き状スーパーセルを形成するのに用いられ得る。
代替的に、面取りされた(例えば、丸みのある)角は、ウェハの端部から切断された太陽電池上に残され得る。図2Bおよび2Cは、図2Aのものと実質的に同様ではあるが、太陽電池の切断元のウェハから残された面取りされた角を含む例示的な「シェブロン」長方形太陽電池10の前面を示す。図2Bにおいて、バスバー15は、2つの長辺のうち短い方に隣接して位置付けられ、実質的に同辺の長さに亘って同辺と平行に延び、さらに、両端において、少なくとも部分的に、太陽電池の面取りされた角周りに延在する。図2Cにおいて、バスバー15は、2つの長辺のうち長い方に隣接して位置付けられ、実質的に同辺の長さに亘って同辺と平行に延びる。図3Bおよび3Cは、図3Cに示す破線に沿ってダイシングされて、図2Aに示すものと同様の前面金属被覆パターンを有する複数の太陽電池10と、図2Bに示すものと同様の前面金属被覆パターンを有する2つの面取りされた太陽電池10とを提供し得る擬似正方形ウェハ45の前面図および裏面図を示す。
図2Bに示す例示的な前面金属被覆パターンにおいて、電池の面取りされた角周りに延在する、バスバー15の2つの端部はそれぞれ、電池の長辺に隣接して位置している、バスバーの部分からの距離が長くなるにつれ徐々に小さくなる(徐々に狭くなる)幅を有し得る。同様に、図3Bに示す例示的な前面金属被覆パターンにおいて、不連続なコンタクトパッド15を相互接続する薄い導体の2つの端部は、太陽電池の面取りされた角周りに延在し、不連続なコンタクトパッドが沿って配置されている、太陽電池の長辺からの距離が長くなるにつれ徐々に小さくなる。そのように幅が徐々に小さくなることはオプションではあるが、抵抗損失を実質的に増加させることなく、有利に、金属の使用を減らし得、太陽電池の作用領域が影になることを減らし得る。
図3Dおよび3Eは、図3Eに示す破線に沿ってダイシングされて、図2Aに示すものと同様の前面金属被覆パターンを有する複数の太陽電池10を提供し得る完全な正方形ウェハ47の前面図および裏面図を示す。
面取りされた長方形太陽電池は、面取りされた太陽電池のみを含むスーパーセルを形成するのに用いられ得る。追加的に、または代替的に、1または複数のそのような面取りされた長方形太陽電池は、スーパーセルを形成するのに、1または複数の面取りされていない長方形太陽電池(例えば図2A)と組み合わせて用いられ得る。例えば、スーパーセルの端の太陽電池は、面取りされた太陽電池であり得、中間の太陽電池は、面取りされていない太陽電池であり得る。スーパーセル内で、または、より一般的にソーラーモジュール内で、面取りされた太陽電池が、面取りされていない太陽電池と組み合わせて用いられた場合、結果として得られる面取りされた太陽電池および面取りされていない太陽電池の、太陽電池の動作の間に光に曝される前面の面積が同じとなるような太陽電池の寸法を用いることが望ましいかもしれない。このように太陽電池の面積を一致させることにより、面取りされた太陽電池と面取りされていない太陽電池とで生成される電流が一致し、このことは、面取りされた太陽電池および面取りされていない太陽電池の両方を含む直列接続ストリングの性能を向上させる。同じ擬似正方形ウェハから切断される面取りされた太陽電池の面積と面取りされていない太陽電池の面積とは、例えば、ウェハのダイシングが沿って行われる線の位置を調整して、面取りされた太陽電池の、太陽電池の長軸と垂直な方向への幅を、面取りされていない太陽電池よりわずかに広くして、面取りされた太陽電池上のなくなってしまった角を補うことにより一致させられ得る。
ソーラーモジュールは、面取りされていない長方形太陽電池から排他的に形成されたスーパーセルのみを含み得、または、面取りされた長方形太陽電池から形成されたスーパーセルのみを含み得、または、面取りされた太陽電池および面取りされていない太陽電池を含むスーパーセルのみを含み得、または、スーパーセルのこれらの3つの変形例の任意の組み合わせを含み得る。
いくつかの事例において、標準サイズの正方形または擬似正方形太陽電池ウェハ(例えば、ウェハ45またはウェハ47)の、ウェハの縁近くの一部が、それらの縁から離れて位置する、ウェハの一部より低い効率で光を電気に変換し得る。結果として得られる長方形太陽電池の効率を向上させるべく、いくつかの変形例において、ウェハの1または複数の縁がトリミングされて、ウェハがダイシングされる前に低効率部分を取り除く。ウェハの縁からトリミングされる部分は、幅が、例えば、約1mmから約5mmであり得る。さらに、図3Bおよび3Dに示すように、ウェハからダイシングされることになる2つの端の太陽電池10は、それらの前面バスバー(または不連続なコンタクトパッド)15が、それらの外側縁に沿った、したがって、ウェハの縁のうち2つに沿った状態で方向付けられ得る。本明細書に開示されているスーパーセル内で、バスバー(または不連続なコンタクトパッド)15には、典型的には、隣接する太陽電池が重なるので、ウェハのそれら2つの縁に沿った低い光変換効率は典型的には、太陽電池の性能に影響しない。結果として、いくつかの変形例において、長方形太陽電池の短辺と平行に方向付けられた正方形または擬似正方形ウェハの縁は、丁度説明したようにトリミングされるが、長方形太陽電池の長辺と平行に方向付けられたウェハの縁は、トリミングされない。他の変形例において、正方形ウェハ(例えば、図3Dのウェハ47)の1、2、3、または4つの縁が、丁度説明したようにトリミングされる。他の変形例において、擬似正方形ウェハの長い縁のうち1、2、3、または4つが、丁度説明したようにトリミングされる。
図示されているような、長く狭いアスペクト比を有し、かつ、標準的な156mm×156mmの太陽電池の面積より狭い面積を有する太陽電池が、本明細書で開示する太陽電池モジュール内のIR抵抗電力損失を減らすのに有利に採用され得る。特に、標準サイズのシリコン太陽電池と比較して小さくなった太陽電池10の面積は、太陽電池で生成される電流を減少させ、その太陽電池内の、およびそのような太陽電池の直列接続ストリング内の抵抗電力損失を直接的に減らす。加えて、電流が太陽電池の短辺と平行にスーパーセル100を通るようにスーパーセルにそのような長方形太陽電池を配置することにより、電流が、前面金属被覆パターンのフィンガー20に到達するべく半導体材料を通って流れなければならない距離を短くし、必要とされるフィンガーの長さを短くし得、このことも、抵抗電力損失を減らし得る。
上述したように、重なり合う太陽電池10を重なり合う領域において互いに接合して、それら重なり合う太陽電池を直列に電気接続することは、従来のようにタブが付けられた、太陽電池の直列接続ストリングと比較して隣接し合う太陽電池間の電気接続の長さを短くする。このことも、抵抗電力損失を減らす。
図2Aを改めて参照すると、図示されている例において、太陽電池10上の前面金属被覆パターンは、バスバー15と平行に延び、バスバーと離れているオプションのバイパス導体40を含む。(そのようなバイパス導体は、図2B−2C、3Bおよび3Dに示す金属被覆パターンでもオプションで用いられ得、連続的なバスバーではなく不連続なコンタクトパッド15と組み合わせて図2Qにも示されている。)バイパス導体40は、フィンガー20を相互接続して、バスバー15とバイパス導体40との間に形成され得る裂け目を電気的にバイパスする。バスバー15に近い位置でフィンガー20を切断し得るそのような裂け目は、他の場合においては、バスバー15から、太陽電池10の領域を分離させ得る。バイパス導体は、そのような切断されたフィンガーとバスバーとの間の代替的な電気経路を提供する。図示されている例は、バスバー15と平行に位置付けられ、バスバーのおよそ全長に亘って延在し、あらゆるフィンガー20を相互接続するバイパス導体40を示している。この配置は好ましいかもしれないが、必須ではない。存在する場合、バイパス導体は、バスバーと平行に延びる必要はなく、バスバーの全長に亘って延在する必要はない。さらに、バイパス導体は、少なくとも2つのフィンガーを相互接続するが、全てのフィンガーを相互接続する必要はない。例えば、2またはそれより多くの短いバイパス導体が、より長いバイパス導体の代わりに用いられ得る。バイパス導体の任意の適した配置が用いられ得る。そのようなバイパス導体の使用は、発明の名称が「Solar Cell With Metallization Compensating For Or Preventing Cracking」であり、2012年2月13日に出願された米国特許出願第13/371,790号に、より詳細に説明されている。同特許出願はその全体が、参照により本明細書に組み込まれる。
図2Aの例示的な前面金属被覆パターンは、バスバー15とは反対側の、フィンガー20の遠い側の端においてフィンガー20を相互接続する、オプションの端導体42も含む。(そのような端導体は、図2B−2C、3Bおよび3Dおよび2Qに示す金属被覆パターンでもオプションで用いられ得る。)導体42の幅は、例えば、フィンガー20の幅とおよそ同じであり得る。導体42は、フィンガー20を相互接続して、バイパス導体40と導体42との間に形成され得る裂け目を電気的にバイパスし、それにより、他の場合においては、そのような裂け目により電気的に分離されるかもしれない太陽電池10の領域のためにバスバー15への電流経路を提供する。
図示されている例のうちいくつかは、均一な幅で、太陽電池10の実質的に長辺の長さに亘って延在する前バスバー15を示すが、このことは必須ではない。例えば、上記にて言及されているように、前バスバー15は、例えば図2H、2Qおよび3Bに示すように、例えば太陽電池10の辺に沿って互いに並んで配置され得る2またはそれより多くの前面不連続なコンタクトパッド15と置き換えられ得る。そのような不連続なコンタクトパッドは、オプションで、例えば丁度触れた図面に示すように、それらの間に延びるより薄い導体により相互接続し得る。そのような変形例において、太陽電池の長辺と垂直な方向に測定する、コンタクトパッドの幅は、例えば、コンタクトパッドを相互接続する薄い導体の幅の約2から約20倍であり得る。前面金属被覆パターン内の各フィンガーのために別個の(例えば小さい)コンタクトパッドがあり得、または、各コンタクトパッドが、2またはそれより多くのフィンガーに接続し得る。前面コンタクトパッド15は、例えば、正方形であり得、または、太陽電池の縁と平行に細長い長方形状を有し得る。前面コンタクトパッド15は、太陽電池の長辺と垂直な方向への幅が、例えば、約1mmから約1.5mmであり得、太陽電池の長辺と平行な方向への長さが、例えば、約1mmから約10mmであり得る。太陽電池の長辺と平行な方向に測定する、コンタクトパッド15間の間隔は、例えば、約3mmから約30mmであり得る。
代替的に、太陽電池10は、前バスバー15および不連続な前コンタクトパッド15の両方を有さず、前面金属被覆パターンにおいてフィンガー20のみを含み得る。そのような変形例において、他の場合においては前バスバー15またはコンタクトパッド15により実施されるであろう集電機能は代わりに、上記で説明した重なり合う構成において2つの太陽電池10を互いに接合するのに用いられる伝導性材料により実施、または部分的に実施され得る。
バスバー15およびコンタクトパッド15の両方を有さない太陽電池は、バイパス導体40を含んでも、またはバイパス導体40を含まなくてもよい。バスバー15およびコンタクトパッド15が存在しない場合、バイパス導体40が、同バイパス導体と、重なっている太陽電池に伝導接合する、前面金属被覆パターンの部分との間に形成される裂け目をバイパスするよう配置され得る。
バスバーまたは不連続なコンタクトパッド15と、フィンガー20と、バイパス導体40(存在する場合)と、端導体42(存在する場合)とを含む前面金属被覆パターンは、例えば、そのような目的のために従来用いられている銀製のペーストから形成され、例えば、従来のスクリーン印刷方法により堆積させられ得る。代替的に、前面金属被覆パターンは、電気めっきされた銅から形成され得る。任意の他の適した材料およびプロセスも用いられ得る。前面金属被覆パターンが銀から形成される変形例において、電池の縁に沿って、連続的なバスバー15ではなく、不連続な前面コンタクトパッド15を使用することにより、太陽電池上での銀の量が減り、このことは、コストを有利に低下させ得る。前面金属被覆パターンが銅から、または銀より安価な他の導体から形成される変形例において、連続的なバス15が、コスト面での不利益なしに採用され得る。
図2Dから2G、3Cおよび3Eは、太陽電池のための例示的な裏面金属被覆パターンを示す。これらの例において、裏面金属被覆パターンは、太陽電池の裏面の長い縁のうち1つに沿って配置された不連続な裏面コンタクトパッド25と、太陽電池の残りの裏面の実質的に全てを覆う金属接触部30とを含む。こけら葺き状スーパーセル内で、コンタクトパッド25は、例えば、隣接し重なっている太陽電池の上面の縁に沿って配置されたバスバーに、または不連続なコンタクトパッドに接合して、2つの太陽電池を直列に電気接続する。例えば、各不連続な裏面コンタクトパッド25は、重なっている太陽電池の前面の対応する不連続な前面コンタクトパッド15と位置合わせされ、不連続なコンタクトパッドにのみ適用される電気伝導性接合剤により接合し得る。不連続なコンタクトパッド25は、例えば、正方形であり得(図2D)、または、太陽電池の縁と平行に細長い長方形状を有し得る(図2E−2G、3C、3E)。コンタクトパッド25は、太陽電池の長辺と垂直な方向への幅が、例えば、約1mmから約5mmであり得、太陽電池の長辺と平行な方向への長さが、例えば、約1mmから約10mmであり得る。太陽電池の長辺と平行な方向に測定する、コンタクトパッド25間の間隔は、例えば、約3mmから約30mmであり得る。
接触部30は、例えば、アルミニウムおよび/または電気めっきされた銅から形成され得る。アルミニウム製の後接触部30の形成により、典型的には、太陽電池内の後面再結合を減らし、それにより、太陽電池効率を向上させる後面フィールドがもたらされる。接触部30が、アルミニウムではなく銅から形成された場合、接触部30は、他のパッシベートスキーム(例えば、酸化アルミニウム)と組み合わせて用いられて、同様に、後面再結合を減らし得る。不連続なコンタクトパッド25は、例えば、銀製のペーストから形成され得る。電池の縁に沿って、連続的な銀製のコンタクトパッドではなく不連続な銀製のコンタクトパッド25を使用することにより、裏面金属被覆パターン内の銀の量が減り、このことは、コストを有利に低下させ得る。
さらに、後面再結合を減らすのに、太陽電池が、アルミニウム製の接触部の形成によりもたらされる後面フィールドを頼りにした場合、連続的な銀製の接触部ではなく不連続な銀製の接触部を使用することにより、太陽電池効率が向上し得る。これは、銀製の裏面接触部が後面フィールドをもたらさず、したがって、キャリア再結合を促し、銀製の接触部上方で太陽電池内でデッド(作用しない)ボリュームを生じさせがちになるからである。従来のようにリボンタブ付けされた太陽電池ストリングは、それらのデッドボリュームは、典型的には、太陽電池の前面のリボンおよび/またはバスバーにより影となり、したがって、何らかの追加の効率損失にはならなかった。しかし、本明細書で開示する太陽電池およびスーパーセル内で、裏面の銀製のコンタクトパッド25上方の、太陽電池のボリュームは、典型的には、何らかの前面金属被覆により影にならず、銀製の裏面金属被覆の使用から結果として生じる何らかのデッドボリュームが、電池の効率を低下させる。したがって、太陽電池の裏面の縁に沿って、連続的な銀製のコンタクトパッドではなく不連続な銀製のコンタクトパッド25を使用することにより、何らかの対応するデッドゾーンのボリュームが減り、太陽電池の効率が高まる。
後面再結合を減らすのに後面フィールドを頼りにしない変形例において、裏面金属被覆パターンは、例えば図2Qに示すように、不連続なコンタクトパッド25ではなく太陽電池の長さに亘って延在する連続的なバスバー25を採用し得る。そのようなバスバー25は、例えば、スズまたは銀から形成され得る。
裏面金属被覆パターンの他の変形例は、不連続なスズ製のコンタクトパッド25を採用し得る。裏面金属被覆パターンの変形例は、図2A−2Cの前面金属被覆パターンに示すものと同様のフィンガー接触部を採用し得、コンタクトパッドおよびバスバーを有さなくてよい。
図面に示す特定の例示的な太陽電池は、前面および裏面金属被覆パターンの特定の組み合わせを有するものとして説明しているが、より一般的に、前面および裏面金属被覆パターンの任意の適した組み合わせが用いられ得る。例えば、1つの適した組み合わせは、不連続なコンタクトパッド15と、フィンガー20と、オプションであるバイパス導体40と、を含む銀製の前面金属被覆パターン、および、アルミニウム製の接触部30と不連続な銀製のコンタクトパッド25とを含む裏面金属被覆パターンを採用し得る。他の適した組み合わせは、連続的なバスバー15と、フィンガー20と、オプションであるバイパス導体40とを含む銅製の前面金属被覆パターン、および、連続的なバスバー25と銅製の接触部30とを含む裏面金属被覆パターンを採用し得る。
(以下により詳細に説明する)スーパーセル製造プロセスにおいて、スーパーセル内で隣接し合い重なり合う太陽電池を接合するのに用いられる電気伝導性接合剤は、太陽電池の前面または裏面の縁にある(不連続な、または連続的な)コンタクトパッド上にのみ分配されて、太陽電池の周囲部分上には分配されなくてよい。このことは材料の使用を減らし、上記で説明したように、電気伝導性接合剤と太陽電池との間のCTEの不一致から生じる応力を低下させ得、またはその応力に適応し得る。しかし、堆積の間または後に、および、硬化の前に、電気伝導性接合剤の一部は、コンタクトパッドを越えて、太陽電池の周囲部分上に広がりがちになり得る。例えば、電気伝導性接合剤の結合樹脂部分がコンタクトパッドから離れて、毛管力により、太陽電池表面の粗い、または小さな穴が多くある複数の隣接部分上に引き寄せられるかもしれない。加えて、堆積プロセスの間、伝導性接合剤の一部が、コンタクトパッドを外れてしまうかもしれず、代わりに、太陽電池表面の複数の隣接部分上に堆積させられ、場合によってはそこから広がってしまうかもしれない。この、伝導性接合剤の広がり、および/または不正確な堆積は、重なり合う太陽電池間の接合を弱めるかもしれず、伝導性接合剤が上に広がった、または誤って堆積させられた太陽電池の一部にダメージを与えるかもしれない。電気伝導性接合剤のそのような広がりは、例えば、各コンタクトパッド近く、またはその周りにダムまたはバリアを形成して、電気伝導性接合剤を実質的にあるべき位置に保つ金属被覆パターンにより低減または防止され得る。
図2H−2Kに示すように、例えば、前面金属被覆パターンは、各バリア17が対応する不連続なコンタクトパッド15を囲い、そのコンタクトパッドとそのバリアとの間に堀を形成するダムとして作用する状態でコンタクトパッド15と、フィンガー20と、バリア17とを含み得る。太陽電池上に分配されたときにコンタクトパッドから離れて流れる、または、コンタクトパッドから外れてしまう、未硬化の伝導性粘着接合剤18の部分19は、バリア17により堀に封じ込められ得る。このことは、伝導性粘着接合剤がさらに、コンタクトパッドから電池の周囲部分上に広がるのを防止する。バリア17は、例えば、フィンガー20およびコンタクトパッド15と同じ材料(例えば、銀)から形成され得、例えば、高さが、約10ミクロンから約40ミクロンであり得、例えば、幅が約30ミクロンから約100ミクロンであり得る。バリア17とコンタクトパッド15との間に形成される堀は、幅が、例えば、約100ミクロンから約2mmであり得る。図示されている例は、各前コンタクトパッド15周りに単一のバリア17のみを含んでいるが、他の変形例において、2またはそれより多くのそのようなバリアが、例えば、各コンタクトパッド周りに同心円状に位置付けられ得る。前面コンタクトパッドおよびその1または複数の囲みバリアは、例えば、「ブルズアイ」ターゲットと同様の形状を形成し得る。図2Hに示すように、例えば、バリア17は、フィンガー20と、およびコンタクトパッド15を相互接続する薄い導体と相互接続し得る。
同様に、図2L−2Nに示すように、例えば、裏面金属被覆パターンは、(例えば、銀製の)不連続な裏コンタクトパッド25と、太陽電池の残りの裏面の実質的に全てを覆う(例えば、アルミニウム製の)接触部30と、それぞれが、対応する裏コンタクトパッド25を囲み、そのコンタクトパッドと自身との間に堀を形成するダムとして作用する(例えば、銀製の)バリア27とを含み得る。図示されているように、接触部30の一部が堀を埋め得る。太陽電池上に分配されたときにコンタクトパッド25から離れて流れる、または、コンタクトパッドから外れてしまう、未硬化の伝導性粘着接合剤の一部は、バリア27により堀に封じ込められ得る。このことは、伝導性粘着接合剤がさらに、コンタクトパッドから電池の周囲部分上に広がるのを防止する。バリア27は、例えば、高さが、約10ミクロンから約40ミクロンであり得、例えば、幅が約50ミクロンから約500ミクロンであり得る。バリア27とコンタクトパッド25との間に形成される堀は、幅が、例えば、約100ミクロンから約2mmであり得る。図示されている例は、各裏面コンタクトパッド25周りに単一のバリア27のみを含んでいるが、他の変形例において、2またはそれより多くのそのようなバリアが、例えば、各コンタクトパッド周りに同心円状に位置付けられ得る。裏面コンタクトパッドおよびその1または複数の囲みバリアは、例えば、「ブルズアイ」ターゲットと同様の形状を形成し得る。
太陽電池の実質的に縁の長さに亘って延びる連続的なバスバーまたはコンタクトパッドも、伝導性粘着接合剤の広がりを防ぐバリアにより囲まれ得る。例えば、図2Qは、裏面バスバー25を囲むそのようなバリア27を示す。前面バスバー(例えば、図2Aのバスバー15)は、同様にバリアにより囲まれ得る。同様に、複数の前面または裏面コンタクトパッドの行は、個別に別個のバリアにより囲まれるのではなく、そのようなバリアによりグループとして囲まれ得る。
丁度説明したように、バスバーまたは1または複数のコンタクトパッドを囲むのではなく、前面金属被覆パターンまたは裏面金属被覆パターン特徴が、バスバーまたはコンタクトパッドがバリアと太陽電池の重なった縁との間に位置付けられた状態で太陽電池の縁と平行な方向への実質的に太陽電池の長さに亘って延びるバリアを形成し得る。そのようなバリアは、(上記で説明した)バイパス導体として2つの役割を果たし得る。例えば、図2Rにおいて、バイパス導体40は、コンタクトパッド15上の未硬化の伝導性粘着接合剤が、太陽電池の前面の作用面積上に広がるのを防ぐのに役立つバリアを提供する。同様の配置が、裏面金属被覆パターンのために用いられ得る。
伝導性粘着接合剤の広がりに対するバリアは、コンタクトパッドまたはバスバーから離れて、丁度説明したように堀を形成し得るが、このことは必須ではない。そのようなバリアは代わりに、例えば図2Oまたは2Pに示すように、コンタクトパッドまたはバスバーに当接し得る。そのような変形例において、バリアは好ましくは、コンタクトパッドまたはバスバーより高くて、未硬化の伝導性粘着接合剤をコンタクトパッドまたはバスバー上に保つ。図2Oおよび2Pは、前面金属被覆パターンの一部を示しているが、同様の配置が裏面金属被覆パターンのために用いられ得る。
伝導性粘着接合剤の広がりに対するバリア、および/または、そのようなバリアと、コンタクトパッドまたはバスバーとの間の堀、および、そのような堀内に広がった何らかの伝導性粘着接合剤がオプションで、スーパーセル内の隣接する太陽電池が重なった、太陽電池表面の領域内に横たわり得、したがって、視界から隠れ、太陽放射への露出から遮られ得る。
代替的に、または、丁度説明したようなバリアの使用に加えて、電気伝導性接合剤は、マスクを用い、または任意の他の適した方法(例えば、スクリーン印刷)により堆積させられて、正確な堆積を可能とし、したがって、コンタクトパッドを越えて広がる、または堆積の間にコンタクトパッドから外れる可能性がより低くなる、より少ない量の電気伝導性接合剤を必要とし得る。
より一般的に、太陽電池10は、任意の適した前面および裏面金属被覆パターンを採用し得る。
図4Aは、図1に示すようにこけら葺き状に配置された、図2Aに示すような太陽電池10を含む例示的な長方形スーパーセル100の前面の一部を示す。こけら葺き状幾何学の結果として、太陽電池10のペア間には物理的な間隙はない。加えて、スーパーセル100の一端にある太陽電池10のバスバー15は視認出来るが、他の太陽電池のバスバー(または前面コンタクトパッド)は、隣接し合う太陽電池の重なり合う部分の下方に隠れる。結果として、スーパーセル100は、ソーラーモジュール内でそれ自体が占有する面積を効率的に用いる。特に、その面積のうち、従来のようにタブ付けされた太陽電池配置、および、太陽電池の照射表面の多数の視認出来るバスバーを含む太陽電池配置の場合と比較してより大きな部分が、電気を生成するのに利用出来る。図4B−4Cは、複数の主に面取りされたシェブロン長方形シリコン太陽電池を含むが、その他の点では図4Aのものと同様である他の例示的なスーパーセル100の前面図および裏面図をそれぞれ示している。
図4Aに図示されている例において、バイパス導体40は、隣接する電池の重なり合う部分に隠れる。代替的に、バイパス導体40を含む太陽電池は、バイパス導体を覆うことなく、図4Aに示すようなものと同様に重なり合い得る。
スーパーセル100の一端にある露出した前面バスバー15と、スーパーセル100の他端にある太陽電池の裏面金属被覆は、所望されるように他のスーパーセルおよび/または他の電気構成要素へスーパーセル100を電気接続するのに用いられ得る、負極および正極の(末端)端接触部をスーパーセルに提供する。
スーパーセル100内の隣接し合う太陽電池は、任意の適した量、例えば、約1ミリメートル(mm)から約5mm分、重なり合い得る。
図5A−5Gに示すように、例えば、丁度説明したようなこけら葺き状スーパーセルは、ソーラーモジュールのエリアを効率的に埋め得る。そのようなソーラーモジュールは、例えば、正方形または長方形であり得る。図5A−5Gに図示されているような長方形ソーラーモジュールは、長さが例えば約1メートルである短辺と、長さが例えば約1.5から約2.0メートルである長辺とを有し得る。ソーラーモジュールには任意の他の適した形状および寸法も用いられ得る。ソーラーモジュール内のスーパーセルの任意の適した配置が、用いられ得る。
正方形または長方形ソーラーモジュール内で、スーパーセルは、典型的には、ソーラーモジュールの短辺または長辺と平行な行に配置される。各行は、端と端とを繋いで配置された1つ、2つ、またはより多くのスーパーセルを含み得る。そのようなソーラーモジュールの一部を形成するスーパーセル100は、任意の適した数の太陽電池10を含み得、および任意の適した長さのものであり得る。いくつかの変形例において、スーパーセル100はそれぞれ長さが、それら自体が一部を成す長方形ソーラーモジュールの短辺の長さにおよそ等しい。他の変形例において、スーパーセル100はそれぞれ長さが、それら自体が一部を成す長方形ソーラーモジュールの短辺の半分の長さにおよそ等しい。他の変形例において、スーパーセル100はそれぞれ長さが、それら自体が一部を成す長方形ソーラーモジュールの長辺の長さにおよそ等しい。他の変形例において、スーパーセル100はそれぞれ長さが、それら自体が一部を成す長方形ソーラーモジュールの長辺の半分の長さにおよそ等しい。これらの長さのスーパーセルを作るのに必要な太陽電池の数は、勿論、ソーラーモジュールの寸法、太陽電池の寸法、および隣接し合う太陽電池が重なり合う量に依存する。スーパーセルには任意の他の適した長さも用いられ得る。
スーパーセル100の長さが、長方形ソーラーモジュールの短辺の長さにおよそ等しい変形例において、スーパーセルは、例えば、約19.5ミリメートル(mm)×約156mmの寸法を有する56個の長方形太陽電池を、隣接し合う太陽電池が約3mm分、重なり合った状態で含み得る。8つのそのような長方形太陽電池が、従来の正方形または擬似正方形の156mmのウェハから分離させられ得る。代替的に、そのようなスーパーセルは、例えば、約26mm×約156mmの寸法を有する38個の長方形太陽電池を、隣接し合う太陽電池が約2mm分、重なり合った状態で含み得る。6つのそのような長方形太陽電池が、従来の正方形または擬似正方形の156mmのウェハから分離させられ得る。スーパーセル100の長さが、長方形ソーラーモジュールの短辺の半分の長さにおよそ等しい変形例において、スーパーセルは、例えば、約19.5ミリメートル(mm)×約156mmの寸法を有する28個の長方形太陽電池を、隣接し合う太陽電池が約3mm分、重なり合った状態で含み得る。代替的に、そのようなスーパーセルは、例えば、約26mm×約156mmの寸法を有する19個の長方形太陽電池を、隣接し合う太陽電池が約2mm分、重なり合った状態で含み得る。
スーパーセル100の長さが、長方形ソーラーモジュールの長辺の長さにおよそ等しい変形例において、スーパーセルは、例えば、約26ミリメートル(mm)×約156mmの寸法を有する72個の長方形太陽電池を、隣接し合う太陽電池が約2mm分、重なり合った状態で含み得る。スーパーセル100の長さが、長方形ソーラーモジュールの長辺の半分の長さにおよそ等しい変形例において、スーパーセルは、例えば、約26mm×約156mmの寸法を有する36個の長方形太陽電池を、隣接し合う太陽電池が約2mm分、重なり合った状態で含み得る。
図5Aは、ソーラーモジュールの短辺の半分の長さにおよそ等しい長さをそれぞれが有する20個の長方形スーパーセル100を含む例示的な長方形ソーラーモジュール200を示す。それらスーパーセルは、ペアを組んで端と端とを繋いで配置されて、10のスーパーセル行を、それら行と、スーパーセルの長辺とが、ソーラーモジュールの短辺と平行に方向付けられた状態で形成している。他の変形例において、各スーパーセル行は、3またはそれより多くのスーパーセルを含み得る。また、同様に構成されたソーラーモジュールが、本例において示されているより多い、またはより少ないスーパーセル行を含み得る。(例えば、図14Aは、それぞれ2つのスーパーセルの12の行に配置された24個の長方形スーパーセルを含むソーラーモジュールを示す。)
各行のスーパーセル100が、それら各行内のスーパーセルのうち少なくとも1つがその行内の他のスーパーセルに隣接するスーパーセルの端上の前面端接触部を有するよう配置される変形例において、図5Aに示す間隙210が、ソーラーモジュールの中心線に沿った、スーパーセルの前面端接触部(例えば、露出したバスバーまたは不連続な接触部15)との電気接触を容易にする。例えば、行内の2つのスーパーセルが、一方のスーパーセルがソーラーモジュールの中心線に沿った前面末端接触部を有し、他方のスーパーセルがソーラーモジュールの中心線に沿った裏面末端接触部を有した状態で配置され得る。そのような配置において、行内の2つのスーパーセルは、ソーラーモジュールの中心線に沿って配置された、一方のスーパーセルの前面末端接触部に、および他方のスーパーセルの裏面末端接触部に接合する相互接続部により直列に電気接続し得る。(例えば、以下に説明する図8Cを参照。)各スーパーセル行が3またはそれより多くのスーパーセルを含む変形例において、スーパーセル間の追加の間隙が存在し得、同様に、ソーラーモジュールの辺から離れて位置する前面端接触部との電気接触を容易にし得る。
図5Bは、ソーラーモジュールの短辺の長さにおよそ等しい長さをそれぞれが有する10個の長方形スーパーセル100を含む例示的な長方形ソーラーモジュール300を示す。それらスーパーセルは、10の平行行として、長辺が同モジュールの短辺と平行に方向付けられた状態で配置されている。同様に構成されたソーラーモジュールが、本例において示されているより多い、またはより少ない、そのような辺の長さのスーパーセルの行を含み得る。
図5Bは、ソーラーモジュール200内の複数のスーパーセル行内の隣接し合うスーパーセル間に間隙がなかった場合に図5Aのソーラーモジュール200がどのように見えるかも示す。図5Aの間隙210は、例えば、各行内の両方のスーパーセルが、モジュールの中心線に沿って後面端接触部を有するようにスーパーセルを配置することにより取り除くことが出来る。この場合、モジュールの中心に沿ってスーパーセルの前面に接近する必要がないので、それらスーパーセルは、それらの間に追加の間隙が殆ど、または全くない状態で互いにほぼ当接して配置され得る。代替的に、行内の2つのスーパーセル100は、一方が、モジュールの辺に沿って前面端接触部を有し、モジュールの中心線に沿って裏面端接触部を有し、他方が、モジュールの中心線に沿って前面端接触部を有し、モジュールの反対側の辺に沿って裏面端接触部を有し、スーパーセルの隣接し合う端が重なり合った状態で配置され得る。ソーラーモジュールの前面のどの部分も影にすることのない状態でフレキシブル相互接続部がスーパーセルの重なり合う端間に挟まれて、スーパーセルのうち一方の前面端接触部と、他方のスーパーセルの裏面端接触部とに電気接続を提供し得る。3またはそれより多くのスーパーセルを含む行に関しては、これらの2つの手法が組み合わせで用いられ得る。
図5A−5Bに示すスーパーセルおよび複数のスーパーセル行は、例えば、図10A−15に関して以下にさらに説明するように、直列および並列の電気接続の任意の適した組み合わせにより相互接続し得る。スーパーセル間の相互接続は、例えば、図5C−5G、およびそれに続く図面に関して以下に説明するのと同様に、フレキシブル相互接続部を用いて確立され得る。本明細書で説明する例の多くにより示されているように、本明細書で説明するソーラーモジュール内のスーパーセルは、直列および並列の接続の組み合わせにより相互接続して、従来のソーラーモジュールのものと実質的に同じである出力電圧をモジュールに提供し得る。そのような場合に、ソーラーモジュールからの出力電流も、従来のソーラーモジュールのものと実質的に同じであり得る。代替的に、以下にさらに説明するように、ソーラーモジュール内のスーパーセルは相互接続して、同ソーラーモジュールから、従来のソーラーモジュールにより提供されるより実質的により高い出力電圧を提供し得る。
図5Cは、ソーラーモジュールの長辺の長さにおよそ等しい長さをそれぞれが有する6つの長方形スーパーセル100を含む例示的な長方形ソーラーモジュール350を示す。それらスーパーセルは、6つの平行行として、長辺が同モジュールの長辺と平行に方向付けられた状態で配置されている。同様に構成されたソーラーモジュールが、本例において示されているより多い、またはより少ない、そのような辺の長さのスーパーセルの行を含み得る。本例において(および、以下の例のうちいくつかにおいて)各スーパーセルが、156mmの正方形または擬似正方形ウェハの幅のおよそ1/6に等しい幅をそれぞれが有する72個の長方形太陽電池を含む。任意の他の適した寸法の任意の他の適した数の長方形太陽電池も用いられ得る。本例において、スーパーセルの前面末端接触部は、フレキシブル相互接続部400がモジュールの一方の短辺の縁に隣接して位置付けられ、同縁と平行に延びた状態で互いに電気接続する。スーパーセルの裏面末端接触部は、同様に、同ソーラーモジュールの後方で、他方の短辺の縁に隣接して位置付けられ、同縁と平行に延びるフレキシブル相互接続部により、互いに接続する。裏面の相互接続部は、図5Cにおいて視界から隠れる。この配置は、6つのモジュールの長さのスーパーセルを並列に電気接続する。この、および他のソーラーモジュール構成におけるフレキシブル相互接続部、およびそれらの配置の詳細は、図6−8Gに関して以下により詳細に説明する。
図5Dは、ソーラーモジュールの長辺の半分の長さにおよそ等しい長さをそれぞれが有する12個の長方形スーパーセル100を含む例示的な長方形ソーラーモジュール360を示す。それらスーパーセルは、ペアを組んで端と端とを繋いで配置されて、6つのスーパーセル行を、それら行と、スーパーセルの長辺とが、ソーラーモジュールの長辺と平行に方向付けられた状態で形成している。他の変形例において、各スーパーセル行は、3またはそれより多くのスーパーセルを含み得る。また、同様に構成されたソーラーモジュールが、本例において示されているより多い、またはより少ないスーパーセル行を含み得る。本例において(および、以下の例のうちいくつかにおいて)各スーパーセルが、156mmの正方形または擬似正方形ウェハの幅のおよそ1/6に等しい幅をそれぞれが有する36個の長方形太陽電池を含む。任意の他の適した寸法の任意の他の適した数の長方形太陽電池も用いられ得る。間隙410は、ソーラーモジュールの中心線に沿った、スーパーセル100の前面端接触部への電気接触を確立することを容易にする。本例において、モジュールの一方の短辺の縁に隣接して位置付けられ、同縁と平行に延びるフレキシブル相互接続部400は、スーパーセルのうち6つの前面末端接触部を電気相互接続する。同様に、モジュールの後方で、モジュールの他方の短辺の縁に隣接して位置付けられ、同縁と平行に延びるフレキシブル相互接続部は、他の6つのスーパーセルの裏面末端接触部を電気接続する。間隙410に沿って位置付けられている(この図面に示されていない)フレキシブル相互接続部は、行内のスーパーセルの各ペアを直列に相互接続し、オプションで、横方向に延在して、隣接し合う行を並列に相互接続する。この配置は、6つのスーパーセル行を並列に電気接続する。オプションで、第1グループのスーパーセル内で、各行内の第1スーパーセルは、他の行のうち各行内の第1スーパーセルと並列に電気接続し、第2グループのスーパーセル内で、第2スーパーセルは、他の行のうち各行内の第2スーパーセルと並列に電気接続し、スーパーセルの2つのグループは直列に電気接続する。後者の配置により、スーパーセルの2つのグループのそれぞれが、個別に、バイパスダイオードと並列にされることが可能となる。
図5Dの詳細Aは、モジュールの一方の短辺の縁に沿った、スーパーセルの裏面末端接触部の相互接続の、図8Aに示す断面図の位置を特定している。詳細Bは、同様に、モジュールの他方の短辺の縁に沿った、スーパーセルの前面末端接触部の相互接続の、図8Bに示す断面図の位置を特定している。詳細Cは、間隙410に沿った行内の、スーパーセルの直列相互接続の、図8Cに示す断面図の位置を特定している。
図5Eは、図5Cのものと同様に構成された例示的な長方形ソーラーモジュール370の図を示す。異なるのは、本例において、スーパーセルを形成する太陽電池の全てが、太陽電池の分離元の擬似正方形ウェハの角に対応する面取りされた角を含むシェブロン太陽電池である点である。
図5Fは、図5Cのものと同様に構成された他の例示的な長方形ソーラーモジュール380を示す。異なるのは、本例において、スーパーセルを形成する太陽電池は、分離元の擬似正方形ウェハの形状を再現するよう配置されたシェブロン太陽電池および長方形太陽電池のミックスされたものを含む点である。図5Fの例において、シェブロン太陽電池と長方形太陽電池とが、モジュールの動作の間に太陽放射に曝される作用面積が同じであり、したがって、電流が一致するよう、シェブロン太陽電池は、長方形太陽電池より、それらの長軸と垂直な方向に広くて、シェブロン電池上のなくなった角を補い得る。
図5Gは、図5Eのもの(すなわち、シェブロン太陽電池のみを含む)と同様に構成された他の例示的な長方形ソーラーモジュールを示す。異なるのは、図5Gのソーラーモジュール内で、スーパーセル内の隣接し合うシェブロン太陽電池が、それらの重なり合う縁が同じ長さとなるよう互いの鏡像として配置されている点である。このことは、それぞれの重なる連結部の長さを最大化させ、それにより、スーパーセルを通る熱の流れを促す。
長方形ソーラーモジュールの他の構成は、長方形の(面取りされていない)太陽電池のみから形成される、1または複数のスーパーセル行と、面取りされた太陽電池のみから形成される、1または複数のスーパーセル行とを含み得る。例えば、長方形ソーラーモジュールが、面取りされた太陽電池のみから形成されたスーパーセル行とそれぞれが置き換えられた2つの外側のスーパーセル行を有する以外は図5Cのものと同様に構成され得る。それら行内の面取りされた太陽電池は、例えば、図5Gに示すように鏡像のペアとして配置され得る。
図5C−5Gに示す例示的なソーラーモジュール内で、スーパーセルを形成する長方形太陽電池は、従来サイズの太陽電池の作用面積の約1/6の作用面積を有するので、各スーパーセル行に沿った電流は、同じ面積の従来のソーラーモジュール内の電流の約1/6である。しかし、これらの例において、6つのスーパーセル行は並列に電気接続するので、例示的なソーラーモジュールは、同じ面積の従来のソーラーモジュールにより生成される総電流に等しい総電流を生成し得る。このことは、従来のソーラーモジュールを図5C−5Gの例示的なソーラーモジュール(および、以下に説明する他の例)と置き換えることを容易にする。
図6は、図5C−5Gより詳細に、各行内のスーパーセルを互いに直列にし、それら行を互いに並列にするようフレキシブル電気相互接続部により相互接続する3つのスーパーセル行の例示的な配置を示す。これらは、例えば、図5Dのソーラーモジュール内の3行であり得る。図6の例において、各スーパーセル100は、それの前面末端接触部に伝導接合するフレキシブル相互接続部400と、その裏面末端接触部に伝導接合する他のフレキシブル相互接続部とを有する。各行内の2つのスーパーセルは、一方のスーパーセルの前面末端接触部と、他方のスーパーセルの裏面末端接触部とに伝導接合する共有されるフレキシブル相互接続部により直列に電気接続する。各フレキシブル相互接続部は、その接合先のスーパーセルの端に隣接して位置付けられ、同端と平行に延び、スーパーセルを越えて横方向に延在して、隣接する行内のスーパーセル上のフレキシブル相互接続部に伝導接合し、隣接し合う行を並列に電気接続し得る。図6の点線は、スーパーセルの、上に横たわっている一部により視界から隠れるフレキシブル相互接続部の一部、または、フレキシブル相互接続部の上に横たわっている一部により視界から隠れるスーパーセルの一部を描写している。
フレキシブル相互接続部400は、例えば、重なり合う太陽電池の接合における使用に関して上記で説明したような機械的コンプライアンスを有する電気伝導性接合剤により、スーパーセルに伝導接合し得る。オプションで、電気伝導性接合剤は、スーパーセルの実質的に縁の長さに亘って延在する実線状にではなく、スーパーセルの縁に沿った不連続な位置にのみ位置して、電気伝導性接合剤または相互接続部の熱膨張係数と、スーパーセルの熱膨張係数との間の不一致から生じる、スーパーセルの縁と平行な方向への応力を低下させ得る、または同応力に適応し得る。
フレキシブル相互接続部400は、例えば薄い銅板から形成され得、または薄い銅板を含み得る。フレキシブル相互接続部400は、オプションで、パターニングされて、または他の場合においては、スーパーセルの縁と垂直な方向および平行な方向の両方の機械的コンプライアンス(フレキシブル性)が高まるよう構成されて、相互接続部のCTEと、スーパーセルのCTEとの間の不一致から生じる、スーパーセルの縁と垂直な方向および平行な方向への応力を低下させ得る、または同応力に適応し得る。そのようなパターニングは、例えば、スリット、スロット、または孔を含み得る。相互接続部400の複数の伝導性部分は、厚さが、例えば、約100ミクロン未満、約50ミクロン未満、約30ミクロン未満、または約25ミクロン未満であって、相互接続部のフレキシブル性を高め得る。フレキシブル相互接続部の機械的コンプライアンスと、その、スーパーセルへの接合は、相互接続するスーパーセルが、こけら葺き状太陽電池モジュールを製造する方法に関して以下により詳細に説明する積層プロセスの間に、CTEの不一致から生じる応力に耐え、約−40℃と約85℃との間の温度サイクリングテストの間のCTEの不一致から生じる応力に耐えることが出来るよう十分でなければならない。
好ましくは、フレキシブル相互接続部400は、それらの接合先のスーパーセルの端と平行な方向への電流の流れに対する抵抗が、約0.015オームより低い、またはそれと等しい、約0.012オームより低い、またはそれと等しい、または、約0.01オームより低い、またはそれと等しい。
図7Aは、フレキシブル相互接続部400に適しているかもしれない、参照番号400A−400Tにより特定されるいくつかの例示的な構成を示す。
図8A−8Cの断面図に示すように、例えば、本明細書で説明するソーラーモジュールは、典型的には、スーパーセルと1または複数の封入材材料4101とが、透明な前面シート420と後面シート430との間に挟まれた状態の積層構造を含む。透明な前面シートは、例えば、ガラスであり得る。オプションで、後面シートも透明であり得、このことは、ソーラーモジュールの二面動作を可能し得る。後面シートは、例えば、ポリマーシートであり得る。代替的に、ソーラーモジュールは、前面シートおよび後面シートの両方がガラスであるガラス−ガラスモジュールであり得る。
図8Aの断面図(図5Dからの詳細A)は、ソーラーモジュールの縁近くでスーパーセルの裏面末端接触部に伝導接合し、ソーラーモジュールの前からの視界から隠れて、スーパーセル下方で内側に延在するフレキシブル相互接続部400の例を示す。封入材の追加のストリップが、図示されているように、相互接続部400と、スーパーセルの裏面との間に配され得る。
図8Bの断面図(図5Bからの詳細B)は、スーパーセルの前面末端接触部に伝導接合するフレキシブル相互接続部400の例を示す。
図8Cの断面図(図5Bからの詳細C)は、一方のスーパーセルの前面末端接触部と、他方のスーパーセルの裏面末端接触部とに伝導接合して、2つのスーパーセルを直列に電気接続する共有されるフレキシブル相互接続部400の例を示す。
スーパーセルの前面末端接触部に電気接続するフレキシブル相互接続部は、例えば、ソーラーモジュールの縁に隣接して位置し得る、ソーラーモジュールの前面の狭い幅のみを占有するよう構成または配置され得る。そのような相互接続部により占有されるモジュールの前面の領域は、スーパーセルの縁と垂直な方向への幅が、例えば、≦約10mm、≦約5mm、または≦約3mmと狭くてよい。図8Bに示す配置において、例えば、フレキシブル相互接続部400は、そのような距離以下分、スーパーセルの端を越えて延在するよう構成され得る。図8D−8Gは、スーパーセルの前面末端接触部に電気接続するフレキシブル相互接続部が、モジュールの前面の狭い幅のみを占有し得る配置の追加の例を示す。そのような配置は、モジュールの前面面積の電気生成のための効率的な使用を容易にする。
図8Dは、スーパーセルの末端前面接触部に伝導接合し、スーパーセルの縁周りでスーパーセルの裏まで折れたフレキシブル相互接続部400を示す。フレキシブル相互接続部400上に事前にコーティングされ得る絶縁膜435は、フレキシブル相互接続部400と、スーパーセルの裏面との間に配され得る。
図8Eは、スーパーセルの末端前面接触部に、また、スーパーセルの裏面の後方に延在する薄い幅広のリボン445に伝導接合する薄い幅狭のリボン440を含むフレキシブル相互接続部400を示す。リボン445上に事前コーティングされ得る絶縁膜435は、リボン445と、スーパーセルの裏面との間に配され得る。
図8Fは、スーパーセルの末端前面接触部に接合し、かつ、巻かれて、ソーラーモジュール前面の狭い幅のみを占有するフラットなコイルとなるようプレス加工されるフレキシブル相互接続部400を示す。
図8Gは、スーパーセルの末端前面接触部に伝導接合する薄いリボンセクションを含むフレキシブル相互接続部400、および、スーパーセルに隣接して位置する厚い断面部分を示す。
図8A−8Gにおいて、フレキシブル相互接続部400は、例えば、図6に示すように、スーパーセルの縁の全長に沿って(例えば、図面のページ内に向かって)延在し得る。
オプションで、他の場合においてはモジュールの前から視認出来るフレキシブル相互接続部400の一部は、濃色のフィルム、またはコーティングで覆われて、または他の場合においては、着色されて、通常の色覚を有する人により知覚される、相互接続部とスーパーセルとの間の視認出来るコントラストを低下させ得る。例えば、図8Cにおいて、オプションの黒色フィルムまたはコーティング425が、他の場合においてはモジュールの前から視認出来るであろう、相互接続部400の一部を覆う。他の複数の図面に示す、他の場合においては視認出来る、相互接続部400の一部は、同様に覆われ得る、または着色され得る。
従来のソーラーモジュールは、典型的には、各バイパスダイオードが、18から24個のシリコン太陽電池の直列接続するグループと並列に接続した状態で3またはそれより多くのバイパスダイオードを含む。このことは、逆バイアスがかかった太陽電池において熱として放散させられ得る電力の量を制限するよう行われる。太陽電池は、例えば、ストリングで生成された電流を通過させる能力を低下させる欠陥、汚れた前面、または不均一な照射が原因となって逆バイアスがかかってしまうかもしれない。逆バイアスがかかった太陽電池で生成される熱は、太陽電池にかかる電圧、および太陽電池を通る電流に依存する。逆バイアスがかかった太陽電池にかかる電圧が太陽電池の降伏電圧を越えた場合、電池内で放散する熱は、降伏電圧に、ストリングで生成された電流全体を乗算したものに等しくなるであろう。シリコン太陽電池は、典型的には、16から30ボルトの降伏電圧を有する。各シリコン太陽電池は、動作において約0.64ボルトの電圧を生成するので、24より多くの太陽電池のストリングは、逆バイアスがかかった太陽電池に、降伏電圧を上回る電圧を生成し得る。
太陽電池が互いに離れており、リボンにより相互接続する従来のソーラーモジュール内で、高温の太陽電池から離して熱を移すのは容易ではない。結果として、降伏電圧がかかった太陽電池において放散させられる電力は、かなりの熱的ダメージ、ことによると発火を引き起こす、ホットスポットを太陽電池内で生じさせ得る。したがって、従来のソーラーモジュール内で、ストリング内のどの太陽電池にも、降伏電圧を越えて逆バイアスが確実にかかり得ないよう、18から24個の直列接続する太陽電池のグループ毎に、バイパスダイオードが必要である。
本出願人は、隣接し合い重なり合うシリコン太陽電池間の薄い電気および熱伝導性接合を通じてシリコンスーパーセルに沿って熱が容易に移されることを発見した。さらに、本明細書で説明するスーパーセルは、典型的には、従来の太陽電池の作用面積より狭い作用面積(例えば、1/6)をそれぞれが有する長方形太陽電池をこけら葺き状にすることにより形成されるので、本明細書で説明するソーラーモジュール内のスーパーセルを通る電流は、典型的には、従来の太陽電池のストリングを通る電流未満である。さらに、本明細書で典型的に採用される太陽電池の長方形のアスペクト比は、隣接し合う太陽電池間の熱的接触の領域を拡大させる。結果として、降伏電圧で逆バイアスがかかった太陽電池において放散させられる熱の量が少なくなり、危険なホットスポットを生じさせることなく、スーパーセルおよびソーラーモジュールを通って熱が容易に広がる。したがって出願人は、本明細書で説明するようなスーパーセルから形成されるソーラーモジュールが、従来必要と考えられているよりはるかに少ないバイパスダイオードを採用し得ると分かった。
例えば、本明細書で説明するようなソーラーモジュールのいくつかの変形例において、N>25個の太陽電池、N≧約30個の太陽電池、N≧約50個の太陽電池、N≧約70個の太陽電池、または、N≧約100個の太陽電池を含むスーパーセルが、スーパーセル内において単一の太陽電池、またはN個より少ない太陽電池のグループがバイパスダイオードと並列に個別に電気接続することなく、採用され得る。オプションで、これらの長さのスーパーセル全体が、単一のバイパスダイオードと並列に電気接続し得る。オプションで、これらの長さのスーパーセルが、バイパスダイオードなしで採用され得る。
いくつかの追加の、およびオプションの設計特徴により、本明細書で説明するようなスーパーセルを採用するソーラーモジュールを、逆バイアスがかかった太陽電池において放散させられる熱に対してさらに高い耐性を有するものとし得る。図8A−8Cを改めて参照すると、封入材4101は、熱可塑性オレフィン(TPO)ポリマーであり得、またはそれを含み得る。TPO封入材は、標準的なエチレン酢酸ビニル(EVA)封入材より光熱に対する安定性が高い。EVAは、温度および紫外線で褐色になり、電流を制限する電池により生じるホットスポットに関する課題に繋がる。これらの課題は、TPO封入材により軽減される、または避けられる。さらに、ソーラーモジュールは、透明な前面シート420および後面シート430の両方がガラスであるガラス−ガラス構造を有し得る。そのようなガラス−ガラスにより、ソーラーモジュールは、従来のポリマー後面シートが耐えられるより高い温度で安全に動作することが可能となる。さらにまた、接続箱が、ソーラーモジュールの後方ではなく、ソーラーモジュールの1または複数の縁上に取り付され得る。ここで接続箱は、その上方にあるモジュール太陽電池に対して、追加の熱隔離層を追加するであろう。
図9Aは、ソーラーモジュールの長辺の長さに亘って延在する6行に配置された6つの長方形のこけら葺き状スーパーセルを含む例示的な長方形ソーラーモジュールを示す。6つのスーパーセルは、互いに、およびソーラーモジュールの裏面の接続箱490に配されたバイパスダイオードと並列に電気接続する。スーパーセルとバイパスダイオードとの間の電気接続は、モジュールの積層構造に埋め込まれたリボン450を通じて確立される。
図9Bは、ソーラーモジュールの長辺の長さに亘って延在する6行に配置された6つの長方形のこけら葺き状スーパーセルを含む他の例示的な長方形ソーラーモジュールを示す。スーパーセルは、互いに並列に電気接続する。別個の正端子接続箱490Pと負端子接続箱490Nとが、ソーラーモジュールの対向し合う端において、ソーラーモジュールの裏面に配されている。スーパーセルは、それら接続箱間に延びる外部ケーブル455により、それら接続箱のうち一方に位置するバイパスダイオードと並列に電気接続する。
図9C−9Dは、ガラス製の前面シートおよび後面シートを含む積層構造において、ソーラーモジュールの長辺の長さに亘って延在する6行に配置された6つの長方形のこけら葺き状スーパーセルを含む例示的なガラス−ガラス長方形ソーラーモジュールを示す。スーパーセルは、互いに並列に電気接続する。別個の正端子接続箱490Pと負端子接続箱490Nとが、ソーラーモジュールの対向し合う縁に取り付けられている。
こけら葺き状スーパーセルは、モジュールレベルの電力管理デバイス(例えば、DC/ACマイクロインバータ、DC/DCモジュール電力オプティマイザー、電圧インテリジェンスおよびスマートスイッチ、および関連デバイス)に関して、モジュールのレイアウトのためのユニークな機会を生み出す。モジュールレベルの電力管理システムの主な特徴は、電力最適化である。本明細書で説明および採用されているようなスーパーセルは、伝統的なパネルより高い電圧を生成し得る。加えて、スーパーセルモジュールのレイアウトはさらに、モジュールを分割し得る。より高い電圧および更なる分割の両方が、電力最適化のための潜在的な利点を生み出す。
図9Eは、こけら葺き状スーパーセルを用いるモジュールレベルの電力管理の1つの例示的な構造を示す。本図において、例示的な長方形ソーラーモジュールは、ソーラーモジュールの長辺の長さに亘って延在する6行に配置された6つの長方形のこけら葺き状スーパーセルを含む。スーパーセルの3つのペアは個別に、電力管理システム460に接続し、このことにより、モジュールのより個別化された電力最適化が可能となる。
図9Fは、こけら葺き状スーパーセルを用いるモジュールレベルの電力管理の他の例示的な構造を示す。本図において、例示的な長方形ソーラーモジュールは、ソーラーモジュールの長辺の長さに亘って延在する6行に配置された6つの長方形のこけら葺き状スーパーセルを含む。6つのスーパーセルは個別に、電力管理システム460に接続し、このことにより、モジュールのさらにより個別化された電力最適化が可能となる。
図9Gは、こけら葺き状スーパーセルを用いるモジュールレベルの電力管理の他の例示的な構造を示す。本図において、例示的な長方形ソーラーモジュールは、6またはそれより多くの行に配置された、6またはそれより多くの長方形のこけら葺き状スーパーセル998を含む。ここで、3またはそれより多くのスーパーセルペアが、バイパスダイオードまたは電力管理システム460に個別に接続して、モジュールのさらにより個別化された電力最適化を可能とする。
図9Hは、こけら葺き状スーパーセルを用いるモジュールレベルの電力管理の他の例示的な構造を示す。本図において、例示的な長方形ソーラーモジュールは、6またはそれより多くの行に配置された6またはそれより多くの長方形のこけら葺き状スーパーセル998を含む。ここで、2つのスーパーセル毎に直列に接続し、全てのペアが、並列に接続する。バイパスダイオードまたは電力管理システム460は、全てのペアと並列に接続しており、このことにより、モジュールの電力最適化が可能となる。
いくつかの変形例において、モジュールレベルの電力管理により、ホットスポットのリスクを依然としてなくしつつ、ソーラーモジュール上の全てのバイパスダイオードを取り除くことが可能となる。このことは、モジュールレベルでの電圧インテリジェンスを統合することにより達成される。ソーラーモジュール内の太陽電池回路(例えば、1または複数のスーパーセル)の電圧出力をモニタリングすることにより、その回路が逆バイアスがかかった何らかの太陽電池を含むかを「スマートスイッチ」電力管理デバイスが判断出来る。逆バイアスがかかった太陽電池が検出された場合、電力管理デバイスは、例えば、リレースイッチまたは他の構成要素を用いて、対応する回路を電気システムから切断することが出来る。例えば、モニタリングされる太陽電池回路の電圧が所定の閾値(VLimit)を下回った場合、電力管理デバイスは、モジュール、または複数のモジュールのストリングを確実に接続させたまま、その回路をシャットオフする(回路を開く)であろう。
回路の電圧が、同じソーラーアレイ内の他の回路よりある割合または大きさ(例えば、20%または10V)より大きく低下する特定の実施形態において、その回路はシャットオフされるであろう。電子機器は、この変化を、モジュール間通信に基づき検出するであろう。
そのような電圧インテリジェンスの実施例は、既存のモジュールレベルの電力管理ソリューション(例えば、Enphase Energy Inc.、Solaredge Technologies,Inc.、Tigo Energy,Inc.からの)に、またはあつらえの回路設計を通じて組み込まれ得る。
Limit閾値電圧をどのように計算し得るかの一例は、
CellVoc@Low Irr & High Temp×Nnumber of cells in series-VrbReverse breakdown voltage≦VLimit
である。ここで、
●CellVoc@Low Irr & High Temp=低照射および高温で動作している電池の開回路電圧(最も低い予期される動作Voc)。
●Nnumber of cells in series=モニタリングされる各スーパーセル内で直列に接続する電池の数。
●VrbReverse breakdown voltage=電池を通して電流を通過させるのに必要とされる逆極性電圧。
スマートスイッチを用いる、モジュールレベルの電力管理に対するこの手法は、安全性、またはモジュールの信頼性に影響することなく、例えば100より多くのシリコン太陽電池が、単一のモジュール内で直列に接続することを可能とし得る。加えて、そのようなスマートスイッチは、セントラルインバータに向かうストリング電圧を制限するのに用いられ得る。したがって、より長いモジュールストリングが、過電圧についての安全性または許容に関する懸念なしで設置され得る。ストリングの電圧が制限に反して高まった場合、最も弱いモジュールはバイパス(スイッチオフ)され得る。
以下に説明する図10A、11A、12A、13A、13Bおよび14Bは、こけら葺き状スーパーセルを採用するソーラーモジュールに関する追加の例示的な概略電気回路図を提供する。図10B−1、10B−2、11B−1、11B−2、11C−1、11C−2、12B−1、12B−2、12C−1、12C−2、12C−3、13C−1、13C−2、14C−1および14C−2は、それらの概略回路図に対応する例示的な物理的レイアウトを提供する。物理的レイアウトの説明においては、各スーパーセルの前面端接触部が負極性を有し、各スーパーセルの裏面端接触部が正極性を有すると想定している。代わりに、正極性を有する前面端接触部と負極性を有する裏面端接触部とを有するスーパーセルをモジュールが採用する場合、以下の物理的レイアウトに関する説明は、正極と負極とを入れ替えること、およびバイパスダイオードの向きを逆にすることにより変更され得る。これらの図面の説明において言及されている様々なバスのうちいくつかは、例えば、上記で説明した相互接続部400で形成され得る。これらの図面で説明する他のバスは、例えば、ソーラーモジュールの積層構造に埋め込まれたリボンで、または外部ケーブルで実装され得る。
図10Aは、ソーラーモジュールの短辺の長さにおよそ等しい長さをそれぞれが有する10個の長方形スーパーセル100を含む、図5Bに図示されているようなソーラーモジュールの例示的な概略電気回路図を示す。それらスーパーセルは、長辺がモジュールの短辺と平行に方向付けられた状態でソーラーモジュールに配置されている。それらスーパーセルの全てが、バイパスダイオード480と並列に電気接続する。
図10B−1および10B−2は、図10Aのソーラーモジュールの例示的な物理的レイアウトを示す。バス485Nは、スーパーセル100の負極(前面)端接触部を、モジュールの裏面に位置する接続箱490内でバイパスダイオード480の正端子に接続する。バス485Pは、スーパーセル100の正極(裏面)端接触部を、バイパスダイオード480の負端子に接続する。バス485Pは、全体がスーパーセルの後方に横たわり得る。バス485Nおよび/またはその、スーパーセルへの相互接続は、モジュールの前面の一部を占有する。
図11Aは、ソーラーモジュールの短辺の半分の長さにおよそ等しい長さをそれぞれが有する20個の長方形スーパーセル100を含む、図5Aに図示されているようなソーラーモジュールの例示的な概略電気回路図を示し、スーパーセルは、ペアを組んで端と端とを繋いで配置されて、10のスーパーセル行を形成している。各行の第1スーパーセルは、他の行の第1スーパーセルと並列に、および、バイパスダイオード500と並列に接続する。各行の第2スーパーセルは、他の行の第2スーパーセルと並列に、バイパスダイオード510と並列に接続する。複数のスーパーセルの2つのグループは、2つのバイパスダイオードと同じように直列に接続する。
図11B−1および11B−2は、図11Aのソーラーモジュールの例示的な物理的レイアウトを示す。このレイアウトにおいて、各行の第1スーパーセルは、前面(負極)端接触部が、モジュールの第1辺に沿っており、裏面(正極)端接触部が、モジュールの中心線に沿っており、各行の第2スーパーセルは、前面(負極)端接触部が、モジュールの中心線に沿っており、裏面(正極)端接触部が、第1辺と反対側のモジュールの第2辺に沿っている。バス515Nは、各行の第1スーパーセルの前面(負極)端接触部を、バイパスダイオード500の正端子に接続する。バス515Pは、各行の第2スーパーセルの裏面(正極)端接触部を、バイパスダイオード510の負端子に接続する。バス520は、各行の第1スーパーセルの裏面(正極)端接触部および各行の第2スーパーセルの前面(負極)端接触部を、バイパスダイオード500の負端子およびバイパスダイオード510の正端子に接続する。
バス515Pは、全体がスーパーセルの後方に横たわり得る。バス515Nおよび/またはその、スーパーセルへの相互接続は、モジュールの前面の一部を占有する。バス520は、モジュールの前面の一部を占有し、図5Aに示すような間隙210が必要となり得る。代替的に、バス520は、全体が、スーパーセルの後方に横たわっており、隠れ相互接続部がスーパーセルの重なり合う端間に挟まれた状態でスーパーセルに電気接続し得る。そのような場合、間隙210は殆ど、または全く必要とされない。
図11C−1、11C−2および11C−3は、図11Aのソーラーモジュールの他の例示的な物理的レイアウトを示す。このレイアウトにおいて、各行の第1スーパーセルは、前面(負極)端接触部がモジュールの第1辺に沿っており、裏面(正極)端接触部がモジュールの中心線に沿っており、各行の第2スーパーセルは、裏面(正極)端接触部がモジュールの中心線に沿っており、前面(負極)端接触部が、第1辺と反対側のモジュールの第2辺に沿っている。バス525Nは、各行の第1スーパーセルの前面(負極)端接触部を、バイパスダイオード500の正端子に接続する。バス530Nは、各行の第2電池の前面(負極)端接触部を、バイパスダイオード500の負端子およびバイパスダイオード510の正端子に接続する。バス535Pは、各行の第1電池の裏面(正極)端接触部を、バイパスダイオード500の負端子およびバイパスダイオード510の正端子に接続する。バス540Pは、各行の第2電池の裏面(正極)端接触部を、バイパスダイオード510の負端子に接続する。
バス535Pおよびバス540Pは、全体が、スーパーセルの後方に横たわり得る。バス525Nおよびバス530N、および/またはそれらの、スーパーセルへの相互接続は、モジュールの前面の一部を占有する。
図12Aは、ソーラーモジュールの短辺の半分の長さにおよそ等しい長さをそれぞれが有する20個の長方形スーパーセル100を含む、図5Aに図示されているようなソーラーモジュールの他の例示的な概略回路図を示し、スーパーセルは、ペアを組んで端と端とを繋いで配置されて、10のスーパーセル行を形成している。図12Aに示す回路において、スーパーセルは、4つのグループに配置されている。第1グループにおいて、最上部の5行の第1スーパーセルは、互いに、およびバイパスダイオード545と並列に接続する。第2グループにおいて、最上部の5行の第2スーパーセルは、互いに、およびバイパスダイオード505と並列に接続する。第3グループにおいて、最下部の5行の第1スーパーセルは、互いに、およびバイパスダイオード560と並列に接続する。第4グループにおいて、最下部の5行の第2スーパーセルは、互いに、およびバイパスダイオード555と並列に接続する。スーパーセルのそれら4つのグループは、互いに直列に接続する。第4バイパスダイオードも直列である。
図12B−1および12B−2は、図12Aのソーラーモジュールの例示的な物理的レイアウトを示す。このレイアウトにおいて、第1グループのスーパーセルは、前面(負極)端接触部がモジュールの第1辺に沿っており、裏面(正極)端接触部がモジュールの中心線に沿っており、第2グループのスーパーセルは、前面(負極)端接触部がモジュールが中心線に沿っており、裏面(正極)端接触部が第1辺と反対側のモジュールの第2辺に沿っており、第3グループのスーパーセルは、裏面(正極)端接触部がモジュールの第1辺に沿っており、前面(負極)端接触部がモジュールの中心線に沿っており、第4グループのスーパーセルは、裏面(正極)端接触部がモジュールの中心線に沿っており、前面(負極)端接触部が、モジュールの第2辺に沿っている。
バス565Nは、第1グループのスーパーセルに含まれるスーパーセルの前面(負極)端接触部を互いに、およびバイパスダイオード545の正端子に接続する。バス570は、第1グループのスーパーセルに含まれるスーパーセルの裏面(正極)端接触部および第2グループのスーパーセルに含まれるスーパーセルの前面(負極)端接触部を互いに、バイパスダイオード545の負端子に、およびバイパスダイオード550の正端子に接続する。バス575は、第2グループのスーパーセルに含まれるスーパーセルの裏面(正極)端接触部および第4グループのスーパーセルに含まれるスーパーセルの前面(負極)端接触部を互いに、バイパスダイオード550の負端子に、およびバイパスダイオード555の正端子に接続する。バス580は、第4グループのスーパーセルに含まれるスーパーセルの裏面(正極)端接触部および第3グループのスーパーセルに含まれるスーパーセルの前面(負極)端接触部を互いに、バイパスダイオード555の負端子に、およびバイパスダイオード560の正端子に接続する。バス585Pは、第3グループのスーパーセルに含まれるスーパーセルの裏面(正極)端接触部を互いに、およびバイパスダイオード560の負端子に接続する。
バス585Pと、第2グループのスーパーセルのスーパーセルに接続する、バス575の部分とは、全体が、スーパーセルの後方に横たわり得る。バス575およびバス565Nの残りの部分、および/またはそれらの、スーパーセルへの相互接続は、モジュールの前面の一部を占有する。
バス570とバス580とは、モジュールの前面の一部を占有し、図5Aに示すよう間隙210が必要となり得る。代替的に、それらは、全体が、スーパーセルの後方に横たわっており、隠れ相互接続部が、スーパーセルの重なり合う端間に挟まれた状態でスーパーセルに電気接続し得る。そのような場合、間隙210は殆ど、または全く必要とされない。
図12C−1、12C−2および12C−3は、図12Aのソーラーモジュールの代替的な物理的レイアウトを示す。このレイアウトは、図12B−1および12B−2に示す単一接続箱490の代わりに2つの接続箱490Aおよび490Bを用いるが、他の面では、図12B−1および12B−2のものと同等である。
図13Aは、ソーラーモジュールの短辺の半分の長さにおよそ等しい長さをそれぞれが有する20個の長方形スーパーセル100を含む、図5Aに図示されているようなソーラーモジュールの他の例示的な概略回路図を示し、スーパーセルは、ペアを組んで端と端とを繋いで配置されて、10のスーパーセル行を形成している。図13Aに示す回路において、スーパーセルは4つのグループに配置されている。第1グループにおいて、最上部の5行の第1スーパーセルは、互いに並列に接続する。第2グループにおいて、最上部の5行の第2スーパーセルは、互いに並列に接続する。第3グループにおいて、最下部の5行の第1スーパーセルは、互いに並列に接続する。第4グループにおいて、最下部の5行の第2スーパーセルは、互いに並列に接続する。第1グループと第2グループとは、互いに直列に接続しおり、したがって、バイパスダイオード590と並列に接続する。第3グループと第4グループとは、互いに直列に接続しおり、したがって、他のバイパスダイオード595と並列に接続する。第1グループと第2グループとは、第3グループと第4グループと直列に接続しており、2つのバイパスダイオードも直列である。
図13C−1および13C−2は、図13Aのソーラーモジュールの例示的な物理的レイアウトを示す。このレイアウトにおいて、第1グループのスーパーセルは、前面(負極)端接触部がモジュールの第1辺に沿っており、裏面(正極)端接触部がモジュールの中心線に沿っており、第2グループのスーパーセルは、前面(負極)端接触部がモジュールの中心線に沿っており、裏面(正極)端接触部が、第1辺とは反対側のモジュールの第2辺に沿っており、第3グループのスーパーセルは、裏面(正極)端接触部が、モジュールの第1辺に沿っており、前面(負極)端接触部がモジュールの中心線に沿っており、第4グループのスーパーセルは、裏面(正極)端接触部がモジュールの中心線に沿っており、前面(負極)端接触部がモジュールの第2辺に沿っている。
バス600は、第1グループのスーパーセルの前面(負極)端接触部を互いに、第3グループのスーパーセルの裏面(正極)端接触部に、バイパスダイオード590の正端子に、およびバイパスダイオード595の負端子に接続する。バス605は、第1グループのスーパーセルの裏面(正極)端接触部を互いに、および第2グループのスーパーセルの前面(負極)端接触部に接続する。バス610Pは、第2グループのスーパーセルの裏面(正極)端接触部を互いに、およびバイパスダイオード590の負端子に接続する。バス615Nは、第4グループのスーパーセルの前面(負極)端接触部を互いに、およびバイパスダイオード595の正端子に接続する。バス620は、第3グループのスーパーセルの前面(負極)端接触部を互いに、および第4グループのスーパーセルの裏面(正極)端接触部に接続する。
バス610Pと、第3グループのスーパーセルに含まれるスーパーセルに接続する、バス600の部分とは、全体が、スーパーセルの後方に横たわり得る。バス600およびバス615Nの残りの部分、および/またはそれらの、スーパーセルへの相互接続は、モジュールの前面の一部を占有する。
バス605とバス620とは、モジュールの前面の一部を占有し、図5Aに示すような間隙210が必要となる。代替的に、それらは、全体が、スーパーセルの後方に横たわっており、隠れ相互接続部が、スーパーセルの重なり合う端間に挟まれた状態でスーパーセルに電気接続し得る。そのような場合、間隙210は殆ど、または全く必要とされない。
図13Bは、図5Bに図示されているようなソーラーモジュールの例示的な概略電気回路図を示し、ソーラーモジュールは、ソーラーモジュールの短辺の長さにおよそ等しい長さをそれぞれが有する10個の長方形スーパーセル100を含む。それらスーパーセルは、長辺がモジュールの短辺と平行に方向付けられた状態でソーラーモジュールに配置されている。図13Bに示す回路において、スーパーセルは2つのグループに配置されている。第1グループにおいて、最上部の5つのスーパーセルは、互いに、およびバイパスダイオード590と並列に接続しており、第2グループにおいて、最下部の5つのスーパーセルは、互いに、およびバイパスダイオード595と並列に接続する。それら2つのグループは互いに直列に接続する。バイパスダイオードも直列に接続する。
図13Bの概略回路は、図13Aの2つのスーパーセルの各行が単一のスーパーセルで置き換えられている点で図13Aのものとは異なる。結果として、図13Bのソーラーモジュールの物理的レイアウトは、バス605とバス620とが省略された図13C−1、13C−2および13C−3に示すようなものであり得る。
図14Aは、ソーラーモジュールの短辺の半分の長さにおよそ等しい長さをそれぞれが有する24個の長方形スーパーセル100を含む例示的な長方形ソーラーモジュール700を示す。スーパーセルは、ペアを組んで端と端とを繋いで配置されて、12のスーパーセル行を、それら行と、スーパーセルの長辺とが、ソーラーモジュールの短辺と平行に方向付けられた状態で形成している。
図14Bは、図14Aに図示されているようなソーラーモジュールの例示的な概略回路図を示す。図14Bに示す回路において、スーパーセルは3つのグループに配置されている。第1グループにおいて、最上部の8行の第1スーパーセルは、互いに、およびバイパスダイオード705と並列に接続しており、第2グループにおいて、最下部の4行のスーパーセルは、互いに、およびバイパスダイオード710と並列に接続しており、第3グループにおいて、最上部の8行の第2スーパーセルは、互いに、およびバイパスダイオード715と並列に接続する。3つのグループのスーパーセルは直列に接続する。3つのバイパスダイオードも直列である。
図14C−1および14C−2は、図14Bのソーラーモジュールの例示的な物理的レイアウトを示す。このレイアウトにおいて、第1グループのスーパーセルは、前面(負極)端接触部がモジュールの第1辺に沿っており、裏面(正極)端接触部がモジュールの中心線に沿っている。第2グループのスーパーセル内で、最下部の4行のうちそれぞれに含まれる第1スーパーセルは、裏面(正極)端接触部がモジュールの第1辺に沿っており、前面(負極)端接触部がモジュールの中心線に沿っており、最下部の4行のうちそれぞれに含まれる第2スーパーセルは、前面(負極)端接触部がモジュールの中心線に沿っており、裏面(正極)端接触部が、第1辺とは反対側のモジュールの第2辺に沿っている。第3太陽電池グループは、裏面(正極)端接触部がモジュールの中心線に沿っており、裏面(負極)端接触部がモジュールの第2辺に沿っている。
バス720Nは、第1グループのスーパーセルの前面(負極)端接触部を互いに、およびバイパスダイオード705の正端子に接続する。バス725は、第1グループのスーパーセルの裏面(正極)端接触部を、第2グループのスーパーセルの前面(負極)端接触部に、バイパスダイオード705の負端子に、およびバイパスダイオード710の正端子に接続する。バス730Pは、第3グループのスーパーセルの裏面(正極)端接触部を互いに、およびバイパスダイオード715の負端子に接続する。バス735は、第3グループのスーパーセルの前面(負極)端接触部を互いに、第2グループのスーパーセルの裏面(正極)端接触部に、バイパスダイオード710の負端子に、およびバイパスダイオード715の正端子に接続する。
第1グループのスーパーセルに含まれるスーパーセルに接続する、バス725の部分と、バス730Pと、第2グループのスーパーセルに含まれるスーパーセルに接続する、バス735の部分とは、全体が、スーパーセルの後方に横たわり得る。バス720Nと、バス725およびバス735の残りの部分と、および/または、それらの、スーパーセルへの相互接続とは、モジュールの前面の一部を占有する。
上記で説明した例のうちいくつかは、ソーラーモジュールの裏面の1または複数の接続箱内にバイパスダイオードを収容する。しかし、このことは必須ではない。例えば、バイパスダイオードのうちいくつか、または全てが、ソーラーモジュールの周囲で、またはスーパーセル間の間隙でスーパーセルと面内に位置付けられ得、またはスーパーセルの後方に位置付けられ得る。そのような場合に、バイパスダイオードは、例えば、スーパーセルが封入されている積層構造に配され得る。したがって、バイパスダイオードの位置は、分散させられ、接続箱から取り除かれ、正極モジュール端子および負極モジュール端子の両方を含む中央の接続箱の、例えば、ソーラーモジュールの外縁近くのソーラーモジュールの裏面に位置し得る2つの別個の単一端子接続箱との置き換えを容易にし得る。この手法は一般的に、ソーラーモジュール内のリボン導体における、およびソーラーモジュール間のケーブル配線における電流経路の長さを短くし、これらの両方が、材料コストを低下させ、(抵抗電力損失を減らすことにより)モジュールの電力を高め得る。
図15を参照すると、例えば、図10Aの概略回路図を有する図5Bに図示されているようなソーラーモジュールの様々な電気相互接続の物理的レイアウトは、スーパーセル積層構造内に位置するバイパスダイオード480と、2つの単一端子接続箱490Pおよび490Nとを採用し得る。図15は、図10B−1および10B−2との比較により最もよく理解されるかもしれない。上記で説明した他のモジュールのレイアウトは、同様に変更され得る。
丁度説明したような積層内バイパスダイオードの使用は、上記で説明したような、電流の減少した(面積が狭くなった)長方形太陽電池の使用により容易となり得る。なぜならば、電流の減少した太陽電池により、順バイアスがかかったバイパスダイオードにおいて放散させられる電力は、従来サイズの太陽電池の場合に放散させられるであろう電力より低くなり得るからである。したがって、本明細書で説明するソーラーモジュール内のバイパスダイオードは、熱吸収が従来より少なくてよく、結果として、モジュールの裏面の接続箱から出して積層内に移動させられ得る。
単一のソーラーモジュールが、2またはそれより多くの電気構成に対応する、例えば、上記で説明した電気構成のうち2またはそれより多くに対応する、相互接続部、他の導体、および/または、バイパスダイオードを含み得る。そのような場合において、ソーラーモジュールの動作のための特定の構成が、例えば、スイッチ、および/またはジャンパーの使用と併せて2またはそれより多くの代替例から選択され得る。異なる構成間で、直列および/または並列のスーパーセルの数は異なり、ソーラーモジュールから出力される電圧および電流の異なる組み合わせを提供し得る。したがって、そのようなソーラーモジュールは、2またはそれより多くの異なる電圧と電流との組み合わせから選択するよう、例えば、高電圧および小電流の構成と、低電圧および高電流の構成との間で選択をするよう工場または現場で構成可能であり得る。
図16は、2つのソーラーモジュール間の、上記で説明したようなスマートスイッチモジュールレベルの電力管理デバイス750の例示的な配置を示す。
ここで図17を参照すると、本明細書で開示されるようなソーラーモジュールを作るための例示的な方法800は、以下の工程を含む。工程810において、従来サイズの太陽電池(例えば、156ミリメートル×156ミリメートルまたは125ミリメートル×125ミリメートル)が、切断および/または劈開されて、幅狭の複数の長方形太陽電池「ストリップ」が形成される。(例えば、図3A−3E、および上記の関連する説明も参照)。結果として得られる太陽電池ストリップはオプションで、テストされ、電流−電圧性能に従って選別され得る。電流−電圧性能が一致している、またはおよそ一致している電池は、有利に、同じスーパーセル内で、または直列接続するスーパーセルの同じ行内で用いられ得る。例えば、スーパーセル内で、またはスーパーセル行内で直列に接続する電池は、同じ照射の下で、一致している、またはおよそ一致している電流を生成するのが有利であるかもしれない。
工程815において、伝導性粘着接合剤が、スーパーセル内の隣接し合う太陽電池の重なり合う部分間に配された状態でストリップ太陽電池からスーパーセルが組み立てられる。伝導性粘着接合剤は、例えば、インクジェット印刷またはスクリーン印刷により適用され得る。
工程820において、加熱または加圧が行われて、スーパーセル内の太陽電池間の伝導性粘着接合剤を硬化または部分硬化させる。一変形例において、それぞれの追加の太陽電池がスーパーセルに追加される際に、新たに追加された太陽電池と(既にスーパーセルの一部である)その隣接し重なっている太陽電池との間の伝導性粘着接合剤が、次の太陽電池がスーパーセルに追加される前に、硬化または部分硬化させられる。他の変形例において、2つより多くの太陽電池、または、スーパーセル内の全ての太陽電池が、伝導性粘着接合剤が硬化または部分硬化させられる前に所望の重なり合わせる様式で位置付けられ得る。この工程から結果として得られるスーパーセルはオプションで、テストされ、電流−電圧性能に従って選別され得る。一致している、またはおよそ一致している電流−電圧性能を有するスーパーセルは、有利に、同じスーパーセル行内で、または同じソーラーモジュール内で用いられ得る。例えば、並列に電気接続するスーパーセルまたは複数のスーパーセル行が、同じ照射の下で一致している、またはおよそ一致している電圧を生成するのが有利であるかもしれない。
工程825において、硬化または部分硬化させられたスーパーセルは、封入材材料、透明な前(太陽側)シート、および(オプションで、透明な)後面シートを含む層状構造内で所望されるモジュール構成で配置され相互接続する。層状構造は、例えば、ガラス基板上の封入材の第1層、封入材の第1層上で太陽側が下で配置された相互接続するスーパーセル、スーパーセルの層上の封入材の第2層、および封入材の第2層上の後面シートを含み得る。任意の他の適した配置も用いられ得る。
積層工程830において、加熱および加圧が層状構造に対して行われて、硬化させられた積層構造を形成する。
図17の方法の一変形例において、複数の太陽電池ストリップとなるよう従来サイズの太陽電池が分離させられて、その後に、伝導性粘着接合剤が各個々の太陽電池ストリップに適用される。代替的な変形例において、伝導性粘着接合剤は、複数の太陽電池ストリップとなるように太陽電池が分離させられる前に、従来サイズの太陽電池に適用される。
硬化工程820において、伝導性粘着接合剤は完全に硬化させられ得、または部分硬化のみさせられ得る。後者の場合、伝導性粘着接合剤は、最初に、スーパーセルの取り扱いおよび相互接続を容易にするよう十分に工程820において部分硬化させられ、続く積層工程830の間に完全に硬化させられ得る。
いくつかの変形例において、方法800において中間製品として組み立てられたスーパーセル100は、隣接し合う太陽電池の長辺が上記で説明したように重なり合い伝導接合し、複数の相互接続部が、スーパーセルの対向し合う端で末端接触部に接合した状態で配置された複数の長方形太陽電池10を含む。
図30Aは、電気相互接続部が前面および裏面末端接触部に接合した状態の例示的なスーパーセルを示す。電気相互接続部は、スーパーセルの末端縁と平行に延び、スーパーセルを越えて横方向に延在して、隣接するスーパーセルとの電気相互接続を容易にする。
図30Bは、並列に相互接続する、図30Aのスーパーセルのうち2つを示す。他の場合においてはモジュールの前から視認出来る、相互接続部の一部は、覆われて、または着色されて(例えば、濃色が着けられて)通常の色覚を有する人により知覚される、相互接続部とスーパーセルとの間の視認出来るコントラストを低下させ得る。図30Aに図示されている例において、相互接続部850は、スーパーセルの一端(図面の右側)において、第1極性(例えば、+または−)の前側末端接触部に伝導接合し、他の相互接続部850は、スーパーセルの他端(図面の左側)において、逆極性の後側末端接触部に伝導接合する。上記で説明した他の相互接続部と同様に、相互接続部850は、例えば、同じ伝導性粘着接合剤を太陽電池間で用いてスーパーセルに伝導接合し得るが、このことは必須ではない。図示されている例において、各相互接続部850の一部は、スーパーセルの長軸と垂直な(および、太陽電池10の長軸と平行な)方向にスーパーセル100の縁を越えて延在する。図30Bに示すように、このことにより2またはそれより多くのスーパーセル100が、一方のスーパーセルの相互接続部850が、隣接するスーパーセル上の対応する相互接続部850に重なり伝導接合して、2つのスーパーセルを並列に電気相互接続した状態で並んで位置付けられることが可能となる。丁度説明したような直列に相互接続するいくつかのそのような相互接続部850が、モジュールのためのバスを形成し得る。この配置は、例えば、個々のスーパーセルが、モジュールの全幅または全長に亘って延在する場合(例えば、図5B)に適しているかもしれない。加えて、相互接続部850は、スーパーセル行内の2つの隣接し合うスーパーセルの末端接触部を直列に電気接続するのにも用いられ得る。行内のそのような相互接続するスーパーセルのペアまたはより長いストリングは、図30Bに示すようなものと同様に、1つの行の相互接続部850と隣接する行の相互接続部850に重ならせ伝導接合することにより、隣接する行の同様に相互接続するスーパーセルと並列に電気接続し得る。
相互接続部850は、例えば、伝導性のシートからダイカットされ得、オプションで、パターニングされて、その、スーパーセルの縁と垂直な方向および平行な方向の両方への機械的コンプライアンスを高めて、相互接続部のCTEと、スーパーセルのCTEとの間の不一致から生じる、スーパーセルの縁と垂直な方向および平行な方向への応力を低下させ得る、またはその応力に適応し得る。そのようなパターニングは、例えば、スリット、スロット、または孔(示されていない)を含み得る。相互接続部850の機械的コンプライアンス、および、その、スーパーセルへの接合または複数の接合は、スーパーセルへの接続が、以下により詳細に説明する積層プロセスの間、CTEの不一致から生じる応力に耐えられるよう十分であるべきである。相互接続部850は、例えば、重なり合う太陽電池の接合での使用に関して上記で説明したような機械的コンプライアンスを有する電気伝導性接合剤により、スーパーセルに接合し得る。オプションで、電気伝導性接合剤は、スーパーセルの実質的に縁の長さに亘って延在する実線状にではなく、スーパーセルの縁に沿った不連続な位置にのみ位置して、電気伝導性接合剤または相互接続部の熱膨張係数と、スーパーセルの熱膨張係数との間の不一致から生じる、スーパーセルの縁と平行な方向への応力を低下させ得る、または同応力に適応し得る。
相互接続部850は、例えば、薄い銅板から切断され得、スーパーセル100が、標準的なシリコン太陽電池より面積が狭い太陽電池から形成され、したがって、従来より小さい電流で動作する場合に、従来の伝導性相互接続部より薄くてよい。例えば、相互接続部850は、厚さが約50ミクロンから約300ミクロンの銅板から形成され得る。相互接続部850は、上記で説明した相互接続部と同様に、それらの接合先のスーパーセルの縁周りに、およびその後方に折れることが出来るよう十分に薄く、高いフレキシブル性を有し得る。
図19A−19Dは、スーパーセル内の隣接し合う太陽電池間の伝導性粘着接合剤を硬化または部分硬化させるよう方法800の間に加熱および加圧を行い得るいくつかの例示的な配置を示す。任意の他の適した配置も採用され得る。
図19Aにおいて、1度につき1つの連結部(重なり合う領域)で、伝導性粘着接合剤12を硬化または部分硬化させるよう加熱および局所的な加圧が行われる。スーパーセルは、表面1000により支持され得、加圧は、例えば、バー、ピン、または他の機械的な接触により上方から連結部に対して機械的に行なわれ得る。加熱は、例えば、高温の空気(または他の高温の気体)により、赤外線電球により、または、連結部に局所的な加圧を行う機械的な接触部を加熱することにより、連結部に対して行なわれ得る。
図19Bにおいて、図19Aの配置が、スーパーセル内の複数の連結部に対して加熱および局所的な加圧を同時に行うバッチプロセスに拡張されている。
図19Cにおいて、未硬化のスーパーセルがリリースライナー1015と再利用可能な熱可塑性シート1020との間に挟まれ、表面1000により支持されたキャリアプレート1010上に位置付けられている。シート1020の熱可塑性材料は、スーパーセルが硬化させられる温度で溶融するよう選択される。リリースライナー1015は、例えば、ファイバーガラスおよびPTFEから形成され得、硬化プロセスの後、スーパーセルにくっつかない。好ましくは、リリースライナー1015は、太陽電池の熱膨張係数(例えば、シリコンのCTE)に一致する、または実質的に一致するCTEを有する材料から形成される。なぜならば、リリースライナーのCTEが太陽電池のCTEとあまりにも異なる場合、太陽電池とリリースライナーとが、硬化プロセスの間に異なる量の分、長くなり、このことは、スーパーセルを連結部において長さ方向に関して離れるように引っ張りがちになるであろうからである。真空ブラダー1005が、この配置上に横たわっている。未硬化のスーパーセルは、例えば、表面1000およびキャリアプレート1010を通して下方から加熱され、真空が、ブラダー1005と支持表面1000との間で引かれる。結果として、ブラダー1005は、溶融した熱可塑性シート1020を通して静圧をスーパーセルに対して加える。
図19Dにおいて、未硬化のスーパーセルは、スーパーセルを加熱するオーブン1035を通って穿孔付移動ベルト1025により運ばれる。ベルトの穿孔を通じて引かれる真空は、太陽電池10をベルトに向けて引っ張り、それにより、それらの間の連結部に対して加圧を行う。それらの連結部における伝導性粘着接合剤は、スーパーセルがオーブンを通過する際に硬化させられる。好ましくは、穿孔付ベルト1025、太陽電池のCTE(例えば、シリコンのCTE)に一致する、または実質的に一致するCTEを有する材料から形成される。なぜならば、ベルト1025のCTEが太陽電池のCTEとあまりにも異なる場合、太陽電池とベルトとが、オーブン1035内で異なる量の分、長くなり、このことは、スーパーセルを連結部において長さ方向に関して離れるように引っ張りがちになるであろうからである。
図17の方法800は、個別の、スーパーセルの硬化工程と積層工程とを含み、中間的なスーパーセル製品を生じさせる。対照的に、図18に示す方法900において、スーパーセルの硬化工程と積層工程とが組み合わされている。工程910において、従来サイズの太陽電池(例えば、156ミリメートル×156ミリメートルまたは125ミリメートル×125ミリメートル)が切断および/または劈開されて、幅狭の複数の長方形太陽電池ストリップが形成される。結果として得られる太陽電池ストリップはオプションで、テストされ選別され得る。
工程915において、それら太陽電池ストリップは、封入材材料、透明な前(太陽側)シート、および後面シートを含む層状構造の所望されるモジュール構成で配置され相互接続する。太陽電池ストリップは、未硬化の伝導性粘着接合剤が、スーパーセル内の隣接し合う太陽電池の重なり合う部分の間に配された状態でスーパーセルとして配置される。(伝導性粘着接合剤は、例えば、インクジェット印刷またはスクリーン印刷により適用され得る。)相互接続部が、所望される構成で未硬化のスーパーセルを電気相互接続するよう配置される。層状構造は、例えば、ガラス基板上の封入材の第1層、封入材の第1層上で太陽側が下で配置された相互接続するスーパーセル、スーパーセルの層上の封入材の第2層、および封入材の第2層上の後面シートを含み得る。任意の他の適した配置も用いられ得る。
積層工程920において、加熱および加圧が層状構造に対して行われて、スーパーセル内の伝導性粘着接合剤を硬化させ、硬化させられた積層構造を形成する。スーパーセルに相互接続部を接合するのに用いられる伝導性粘着接合剤も、この工程で硬化させられ得る。
方法900の一変形例において、複数の太陽電池ストリップとなるよう従来サイズの太陽電池が分離させられて、その後に、伝導性粘着接合剤が各個々の太陽電池ストリップに適用される。代替的な変形例において、伝導性粘着接合剤は、複数の太陽電池ストリップとなるよう太陽電池が分離させられる前に、従来サイズの太陽電池に適用される。例えば、複数の従来サイズの太陽電池が、大きなテンプレート上に載置され、その後、伝導性粘着接合剤がそれら太陽電池上に分配され、その後、太陽電池は、同時に、大きな固定具により複数の太陽電池ストリップとなるよう分離させられ得る。結果として得られる太陽電池ストリップは、その後、グループとして搬送させられ、上記で説明したような所望されるモジュール構成に配置され得る。
上述したように、方法800および方法900のいくつかの変形例において、伝導性粘着接合剤は、複数の太陽電池ストリップとなるよう太陽電池が分離させられる前に、従来サイズの太陽電池に適用される。従来サイズの太陽電池が分離させられて複数の太陽電池ストリップを形成するとき、伝導性粘着接合剤は未硬化状態である(すなわち、まだ「乾いていない」)。これらの変形例のうちいくつかにおいて、伝導性粘着接合剤が、従来サイズの太陽電池に(例えば、インクジェットまたはスクリーン印刷により)適用され、その後、レーザーを用いて、太陽電池上に線をスクライブし、太陽電池が劈開させられて太陽電池ストリップを形成することになる位置を画定し、その後、太陽電池が、スクライブラインに沿って劈開させられる。これらの変形例において、レーザーパワー、および/またはスクライブライン間の距離、および粘着接合剤は、レーザーからの熱で、伝導性粘着接合剤を偶発的に硬化または部分硬化させるのを避けるよう選択され得る。他の変形例において、レーザーを用いて、従来サイズの太陽電池上に線をスクライブし、太陽電池が劈開させられて太陽電池ストリップを形成することになる位置を画定し、その後、伝導性粘着接合剤が太陽電池に(例えば、インクジェットまたはスクリーン印刷により)適用され、その後、太陽電池が、スクライブラインに沿って劈開させられる。後者の変形例において、伝導性粘着接合剤を適用する工程を、スクライブされた太陽電池をこの工程の間に偶発的に劈開または破壊することなく達成することが好ましいかもしれない。
図20A−20Cを改めて参照すると、図20Aは、伝導性粘着接合剤が適用された、スクライブされた太陽電池を劈開させるのに用いられ得る例示的な装置1050の側面図を概略的に図示する。(スクライブ、および伝導性粘着接合剤の適用は、いずれの順序で起こっていてよい。)本装置において、伝導性粘着接合剤が適用された、スクライブされた従来サイズの太陽電池45は、真空マニホールド1070の湾曲部分上方を、穿孔付移動ベルト1060により運ばれる。太陽電池45が、真空マニホールドの湾曲部分上方を通過する際、ベルトの穿孔を通じて引かれる真空が、真空マニホールドに寄せて太陽電池45の底面を引っ張り、それにより、太陽電池を曲げる。真空マニホールドの湾曲部分の曲率半径Rは、このように太陽電池45を曲げることにより、スクライブラインに沿って太陽電池を劈開するよう選択され得る。有利に、太陽電池45は、伝導性粘着接合剤が適用された太陽電池45の頂面に接触することなく、本方法により劈開させられ得る。
スクライブラインの一端(すなわち、太陽電池45の1つの縁)において劈開が開始するのが好ましい場合、このことは、各スクライブラインに関して、一端が、他端の前に真空マニホールドの湾曲部分に到達するよう、例えば、スクライブラインが、真空マニホールドに対して角度θを付けて方向付けられるよう配置することにより、図20Aの装置1050で達成され得る。図20Bに示すように、例えば、太陽電池は、それらのスクライブラインがベルトの移動方向、および、ベルトの移動方向と垂直な方向に方向付けられたマニホールドに対して角度を付けた状態で方向付けられ得る。他の例として、図20Cは、スクライブラインがベルトの移動方向と垂直な状態で方向付けられた電池と、角度を付けて方向付けられたマニホールドとを示す。
伝導性粘着接合剤が適用されたスクライブされた太陽電池を劈開させて、事前に適用された伝導性粘着接合剤を有するストリップ太陽電池を形成するのに、任意の他の適した装置も用いられ得る。そのような装置は、例えば、伝導性粘着接合剤が適用された太陽電池の頂面に対して加圧を行うのにローラーを用い得る。そのような場合、伝導性粘着接合剤が適用されていない領域のみにおいて、ローラーが、太陽電池の頂面に触れるのが好ましい。
いくつかの変形例において、ソーラーモジュールは、最初は太陽電池に吸収されず、それら太陽電池を通過する太陽放射の一部が、後面シートにより反射されて、太陽電池内に戻されて電気を生成し得るよう、白色の、または他の場合においては反射性の後面シート上の複数の行に配置されたスーパーセルを含む。反射性の後面シートは、複数のスーパーセル行間の間隙を通じて視認出来得、このことの結果として、ソーラーモジュールは、その前面に亘って延びる複数の平行な明るい(例えば、白色の)線の複数の行を有するように見え得る。図5Bを参照すると、例えば、複数のスーパーセル100の行の間で延びる複数の平行な濃色の線は、スーパーセル100が、白色の後面シート上に配置された場合、白色の線に見えるかもしれない。これは、ソーラーモジュールのいくつかの用途、例えば、屋根上での用途に関しては美的に不快であるかもしれない。
図21を参照すると、ソーラーモジュールの美的外観を向上させるべく、いくつかの変形例は、後面シート上に配置されることになるスーパーセルの複数の行間の間隙に対応する位置に位置する複数の濃色のストライプ1105を含む白色の後面シート1100を採用する。それらストライプ1105は、組み立てられたモジュールにおいて、複数のスーパーセル行間の間隙を通じて後面シートの白色の部分が視認出来ないよう十分に幅が広い。このことは、通常の色覚を有する人により知覚される、スーパーセルと後面シートとの間の視覚的コントラストを低下させる。結果として得られるモジュールは、白色の後面シートを含むが、例えば、図5A−5Bに図示されているモジュールの外観と同様の外観の前面を有し得る。濃色のストライプ1105は、例えば、複数の長さの濃色のテープで、または任意の他の適した様式で生成され得る。
前に言及したように、ソーラーモジュール内の個々電池が影になることにより、影になっていない電池の電力が、影になった電池で放散してしまう「ホットスポット」を生じさせ得る。この放散させられた電力は、モジュールを劣化させ得る局所的な温度スパイクを生成する。
これらのホットスポットの潜在的な深刻さを最小化すべく、従来、バイパスダイオードが、モジュールの一部として挿入されている。バイパスダイオード間の電池の最大数は、モジュールの最高温度を制限し、モジュールに対する不可逆的なダメージを防ぐよう設定される。シリコン電池に関する標準的なレイアウトは、20または24個の電池毎に1つのバイパスダイオードを利用し得、この数は、シリコン電池の典型的な降伏電圧により決定する。特定の実施形態において、降伏電圧は、約10−50Vの間の範囲にあり得る。特定の実施形態において、降伏電圧は、約10V、約15V、約20V、約25V、約30V、または約35Vであり得る。
実施形態によると、複数の切断された太陽電池から成るストリップを、薄い熱伝導性接着剤を用いてこけら葺き状にすることにより、太陽電池間の熱的接触が向上させられる。この高められた熱的接触により、伝統的な相互接続技術より高い度合いの熱拡散が可能となる。こけら葺き状にすることに基づく、そのような熱的な熱拡散設計により、従来の設計にとって制約であった、1つのバイパスダイオード当たり24個の(またはそれより少ない数の)太陽電池より長い太陽電池のストリングが用いられることが可能となる。実施形態に従ってこけら葺き状にすることにより容易とされる熱拡散によって、そのように、短い間隔でバイパスダイオードを設けることに関する要求が緩和され、1または複数の利点がもたらされ得る。例えば、このことにより、多数のバイパスダイオードを設ける必要性によって妨げられることなく、様々な太陽電池ストリング長さのモジュールのレイアウトの作成が可能となる。
実施形態によると、熱拡散は、隣接する電池との、物理的および熱的な接合を維持することにより達成される。このことにより、接合された連結部を通じた十分な熱の放散が可能となる。
特定の実施形態において、この連結部は、約200マイクロメートルまたはそれより薄い厚さで維持され、セグメント化されたパターンで太陽電池の長さに亘って延びる。実施形態に応じて、その連結部は厚さが、約200マイクロメートルまたはそれより薄く、約150マイクロメートルまたはそれより薄く、約125マイクロメートルまたはそれより薄く、約100マイクロメートルまたはそれより薄く、約90マイクロメートルまたはそれより薄く、約80マイクロメートルまたはそれより薄く、約70マイクロメートルまたはそれより薄く、約50マイクロメートルまたはそれより薄く、または約25マイクロメートルまたはそれより薄くてよい。
接合し合う電池間の熱拡散を促すために厚さが薄いままで、信頼性のある連結部が確実に維持されるよう、正確な接着剤の硬化処理が重要であるかもしれない。
より長く延びるストリング(例えば、24個より多くの電池)が可能であることにより、太陽電池およびモジュールの設計にフレキシブル性が与えられる。例えば、特定の実施形態においては、こけら葺き状に組み立てられる、切断された複数の太陽電池のストリングが利用され得る。そのような構成は、1つのモジュール当たり従来のモジュールより実質的に多くの電池を利用し得る。
熱拡散性がない場合には、24個の電池毎に1つのバイパスダイオードが必要であろう。1/6に太陽電池が切断される場合に、1つのモジュール当たりのバイパスダイオードは、従来のモジュール(3つの切断されていない電池から成る)の6倍であり、合計で18個のダイオードになるであろう。したがって、熱拡散により、バイパスダイオードの数のかなりの減少が可能となる。
さらに、バイパス電気経路を完成させるのに、バイパスダイオード毎にバイパス回路が必要である。各ダイオードは、2つの相互接続点と、そのような相互接続点にそれらを接続するよう導体のルーティングとを要する。このことにより複雑な回路が形成され、ソーラーモジュールを組み立てることに関連する、標準的なレイアウトのコストより大きい、かなりの費用に繋がる。
対照的に、熱拡散技術は、1つのモジュール当たり、1つのみのバイパスダイオードを要し、または、バイパスダイオードを全く要さないことさえある。そのような構成は、モジュール組み立てプロセスを能率化し、単純な自動化ツールがレイアウト製造工程を実行することを可能とする。
したがって、24個の電池毎にバイパス保護する必要性を避けることは、電池モジュールの製造をより容易にする。モジュールの中間の複雑なタップアウト、および、バイパス回路のための長い並列接続が避けられる。この熱拡散は、モジュールの幅および/または長さに亘って延びる、複数の電池の長いこけら葺き状ストリップを作成することにより実装される。
熱的熱拡散を提供することに加えて、実施形態に従ってこけら葺き状にすることは、太陽電池内で放散させられる電流の大きさを小さくすることにより、向上させられたホットスポット性能も可能とする。具体的には、ホットスポット状態の間、太陽電池内で放散させられる電流の量は、電池の面積に依存する。
こけら葺き状にすることにより、電池をより狭い面積に切断し得るので、ホットスポット状態の1つの電池を通過する電流の量は、切断される寸法の関数である。ホットスポット状態の間、電流は、通常、電池レベルの欠陥のある接面または結晶粒界である抵抗が最も低い経路を通過する。この電流を減らすことは利点であり、ホットスポット状態における信頼性に関するリスクの失敗を最小化する。
図22Aは、ホットスポット状態にある、伝統的なリボン接続部2201を利用する従来のモジュール2200の平面図を示す。ここで、1つの電池2204上の影2202の結果として、熱が、その単一の電池に集中することになる。
対照的に、図22Bは、同じくホットスポット状態にある、熱拡散を利用するモジュールの平面図を示す。ここで、電池2252上の影2250は、その電池内で熱を生成する。しかし、この熱は、モジュール2256内の他の電気的および熱的に接合する電池2254に拡散させられる。
なお、さらに、放散させられる電流の減少の利点は、多結晶太陽電池で数倍になる。そのような多結晶電池は、高いレベルの欠陥のある接面に起因して、ホットスポット状態において不十分な働きしかしないことが知られている。
上記で示されているように、特定の実施形態は、面取りされ切断された電池をこけら葺き状にすることを採用し得る。そのような場合、各電池と隣接する電池との間の接合線に沿った、よく似た熱拡散の利点がある。
このことは、それぞれの重なった連結部の接合長さを最大化する。接合された連結部は、電池間の熱拡散のための主要な接面であるので、この長さを最大化することにより、最適な熱拡散が確実に得られることになり得る。
図23Aは、面取りされた電池2302を含むスーパーセルストリングレイアウト2300の一例を示す。この構成において、面取りされた電池は、同じ方向に方向付けられており、したがって、全ての接合された連結部の伝導路は同じである(125mm)。
1つの電池2304上の影2306の結果として、その電池には逆バイアスがかかる。熱は、隣接する電池に拡散する。面取りされた電池の非接合端2304aは、隣の電池までの伝導の長さがより長くなることに起因して、最も熱くなる。
図23Bは、面取りされた電池2352を含むスーパーセルストリングレイアウト2350の他の例を示す。この構成において、面取りされた電池は、異なる方向に方向付けられており、面取りされた電池の長い縁のうちいくつかは、互いに面している。このことの結果として、接合された連結部の伝導路の長さは2つ、125mmおよび156mmとなる。
電池2354が影2356となる場合、図23Bの構成は、より長い接合長さに沿った、向上した熱拡散を呈する。したがって、図23Bは、面取りされた電池が互いに面した状態の、スーパーセル内の熱拡散を示す。
上記の説明は、共通の基板上でこけら葺き状に(切断された太陽電池であり得る)複数の太陽電池を組み立てることに焦点を当ててきた。このことの結果として、単一の電気相互接続部−接続箱(またはjボックス)を有するモジュールが形成されることになる。
しかし、有用となる十分な量の太陽エネルギーを集めるために、設備は典型的には、それら自体が一緒に組み立てられることになるそのようなモジュールを多数含む。実施形態によると、複数の太陽電池モジュールも、こけら葺き状に組み立てられて、アレイの面積効率を高め得る。
特定の実施形態において、モジュールが、太陽エネルギーの方向に面した上側伝導性リボンと、太陽エネルギーの方向から離れる方向に面した下側伝導性リボンとを含み得る。
下側リボンは、電池の下に埋設される。したがって、それは入射光をブロックせず、モジュールの面積効率に不利に影響しない。対照的に、上側リボンは露出させられ、入射光をブロックし、効率に不利に影響し得る。
実施形態によると、モジュール自体がこけら葺き状にされ、これにより、上側リボンが近隣のモジュールにより覆われ得る。図24は、隣接するモジュール2402の端部2401が、検討対象の(instant)モジュール2406の上側リボン2404に重なるように機能する、そのような配置2400の単純化された断面図を示す。各モジュールはそれ自体が、複数のこけら葺き状太陽電池2407を含む。
検討対象のモジュール2406の下側リボン2408は埋設されている。それは、隣の隣接するこけら葺き状モジュールに重なるために、検討対象のこけら葺き状モジュールの高くなった辺上に位置する。
このこけら葺き状モジュール構成は、モジュールアレイの最終的な露出面積に不利に影響を与えることなく、他の要素のための、モジュール上の追加の面積も提供し得る。重なり合う領域に位置付けられ得るモジュール要素の例は、接続箱(jボックス)2410および/またはバスリボンを含み得るがこれらに限定されない。
図25は、こけら葺き状モジュール構成2500の他の実施形態を示す。ここで、それぞれの隣接し合うこけら葺き状モジュール2506および2508のjボックス2502、2504は、それらの間で電気接続を達成するために嵌合配置2510されている。このことは、配線を取り除くことにより、こけら葺き状モジュールのアレイの構成を単純化する。
特定の実施形態において、jボックスは、追加の構造的なスタンドオフにより強化され得、および/または、スタンドオフと組み合わせられ得る。そのような構成は、接続箱の寸法が傾きを決定する、統合された、傾いたモジュール屋根マウントラックの解決法を生み出し得る。そのような実施例は、こけら葺き状モジュールのアレイが、平坦な屋根に取り付られる場合に特に有用であり得る。
モジュールが、ガラス基板およびガラスカバー(ガラス−ガラスモジュール)を含む場合、モジュールは、全体的なモジュール長さ(したがって、こけら葺き状にすることから結果として生じる露出される長さL)を短縮化することにより、追加のフレーム部材なしで用いられ得る。そのような短縮化により、傾いたアレイのモジュールは、歪みによって折れることなく、予期される物理的荷重(例えば、5400Paの積雪荷重の限界)に耐えることが可能となるであろう。
強調するが、こけら葺き状に組み立てられた複数の個々の太陽電池を含むスーパーセル構造を使用することにより、物理的荷重および他の要求により必要とされる特定の長さに適合するようモジュールの長さの変更に容易に適応することが可能となる。
図26は、ソーラーモジュールの裏側の接続箱への、こけら葺き状スーパーセルの前(太陽側)面末端電気接触部の例示的な電気相互接続を図示する、モジュールの裏(影)面の図を示す。こけら葺き状スーパーセルの前面末端接触部は、モジュールの縁に隣接して位置し得る。
図26は、スーパーセル100の前面端接触部に電気接触するフレキシブル相互接続部400の使用を示す。図示されている例において、フレキシブル相互接続部400は、スーパーセル100の端と平行、かつ隣接して延びるリボン部分9400Aと、リボン部分と垂直な方向に延在して、伝導接合先のスーパーセル内の端の太陽電池の前面金属被覆パターン(示されていない)に接触するフィンガー9400Bとを含む。相互接続部9400に伝導接合するリボン導体9410は、スーパーセル100の後方を通過して、相互接続部9400を、スーパーセルが一部を形成するソーラーモジュールの裏面の電気構成要素(例えば、接続箱内のモジュール端子および/またはバイパスダイオード)に電気接続する。絶縁膜9420が、導体9410と、スーパーセル100の縁および裏面との間に配されて、リボン導体9410をスーパーセル100から電気的に絶縁し得る。
相互接続部400はオプションで、リボン部分9400Aが、スーパーセルの後方に、または部分的に後方に横たわるよう、スーパーセルの縁周りに折れ得る。そのような場合、電気絶縁層が典型的には、相互接続部400と、スーパーセル100の縁および裏面との間に提供される。
相互接続部400は、例えば、伝導性のシートからダイカットされ得、オプションで、パターニングされて、その、スーパーセルの縁と垂直な方向および平行な方向の両方への機械的コンプライアンスを高めて、相互接続部のCTEと、スーパーセルのCTEとの間の不一致から生じる、スーパーセルの縁と垂直な方向および平行な方向への応力を低下させ得る、またはその応力に適応し得る。そのようなパターニングは、例えば、スリット、スロット、または孔(示されていない)を含み得る。相互接続部400の機械的コンプライアンス、および、その、スーパーセルへの接合は、スーパーセルへの接続が、以下により詳細に説明する積層プロセスの間、CTEの不一致から生じる応力に耐えられるよう十分であるべきである。相互接続部400は、例えば、重なり合う太陽電池の接合での使用に関して上記で説明したような機械的コンプライアンスを有する電気伝導性接合剤により、スーパーセルに接合し得る。オプションで、電気伝導性接合剤は、スーパーセルの実質的に縁の長さに亘って延在する実線状にではなく、(例えば、端の太陽電池上の不連続なコンタクトパッドの位置に対応する)スーパーセルの縁に沿った不連続な位置にのみ位置して、電気伝導性接合剤または相互接続部の熱膨張係数と、スーパーセルの熱膨張係数との間の不一致から生じる、スーパーセルの縁と平行な方向への応力を低下させ得る、または同応力に適応し得る。
相互接続部400は、例えば、薄い銅板から切断され得、スーパーセル100が、標準的なシリコン太陽電池より面積が狭い太陽電池から形成され、したがって、従来より小さい電流で動作する場合に、従来の伝導性相互接続部より薄くてよい。例えば、相互接続部400は、厚さが約50ミクロンから約300ミクロンの銅板から形成され得る。相互接続部400は、上記で説明したようにパターニングされることがなかったとしても、相互接続部のCTEと、スーパーセルのCTEとの間の不一致から生じる、スーパーセルの縁と垂直な方向および平行な方向への応力に適応出来るよう十分に薄くてよい。リボン導体9410は、例えば、銅から形成され得る。
図27は、スーパーセルの前(太陽側)面末端電気接触部が互いに、および、ソーラーモジュールの裏側にある接続箱に接続した状態の、2またはそれより多くの並列なこけら葺き状スーパーセルの例示的な電気相互接続を図示する、モジュールの裏(影)面の図を示す。こけら葺き状スーパーセルの前面末端接触部は、モジュールの縁に隣接して位置し得る。
図27は、2つの隣接し合うスーパーセル100の前面末端接触部に電気接触する、丁度説明したような2つのフレキシブル相互接続部400の使用を示す。スーパーセル100の端と平行、かつ隣接して延びるバス9430が、2つのフレキシブル相互接続部に伝導接合して、スーパーセルを並列に電気接続する。このスキームは、所望に応じて、追加のスーパーセル100を並列に相互接続するよう拡張され得る。バス9430は、例えば銅製のリボンから形成され得る。
図26に関して上記で説明したようなものと同様に、相互接続部400とバス9430とはオプションで、リボン部分9400Aとバス9430とが、スーパーセルの後方に、または部分的にその後方に横たわるように、スーパーセルの縁周りに折れ得る。そのような場合、電気絶縁層が典型的には、相互接続部400と、スーパーセル100の縁および裏面との間、および、バス9430と、スーパーセル100の縁および裏面との間に提供される。
図28は、スーパーセルの前(太陽側)面末端電気接触部が互いに、および、ソーラーモジュールの裏側にある接続箱に接続した状態の、2またはそれより多くの並列なこけら葺き状スーパーセルの他の例示的な電気相互接続を図示する、モジュールの裏(影)面の図を示す。こけら葺き状スーパーセルの前面末端接触部は、モジュールの縁に隣接して位置し得る。
図28は、スーパーセル100の前面端接触部に電気接触する他の例示的なフレキシブル相互接続部9440の使用を示す。本例において、フレキシブル相互接続部9440は、スーパーセル100の端と平行、かつ隣接して延びるリボン部分9440Aと、リボン部分と垂直な方向に延在して、伝導接合先のスーパーセル内の端の太陽電池の前面金属被覆パターン(示されていない)に接触するフィンガー9440Bと、リボン部分と垂直な方向に、およびスーパーセルの後方で延在するフィンガー9440Cとを含む。フィンガー9440Cは、バス9450に伝導接合する。バス9450は、スーパーセル100の裏面に沿って、スーパーセル100の端と平行、かつ隣接して延び、延在して、それの同様な電気接続先であり得る、隣接し合うスーパーセルに重なり、それにより、スーパーセルを並列に接続し得る。バス9450に伝導接合するリボン導体9410は、スーパーセルを、ソーラーモジュールの裏面の電気構成要素(例えば、接続箱内のモジュール端子および/またはバイパスダイオード)に電気相互接続する。電気絶縁膜9420が、フィンガー9440Cと、スーパーセル100の縁および裏面との間、バス9450と、スーパーセル100の裏面との間、およびリボン導体9410と、スーパーセル100の裏面との間に提供され得る。
相互接続部9440は、例えば、伝導性のシートからダイカットされ得、オプションで、パターニングされて、その、スーパーセルの縁と垂直な方向および平行な方向の両方への機械的コンプライアンスを高めて、相互接続部のCTEと、スーパーセルのCTEとの間の不一致から生じる、スーパーセルの縁と垂直な方向および平行な方向への応力を低下させ得る、またはその応力に適応し得る。そのようなパターニングは、例えば、スリット、スロット、または孔(示されていない)を含み得る。相互接続部9440の機械的コンプライアンス、および、その、スーパーセルへの接合は、スーパーセルへの接続が、以下により詳細に説明する積層プロセスの間、CTEの不一致から生じる応力に耐えられるよう十分であるべきである。相互接続部9440は、例えば、重なり合う太陽電池の接合での使用に関して上記で説明したような機械的コンプライアンスを有する電気伝導性接合剤により、スーパーセルに接合し得る。オプションで、電気伝導性接合剤は、スーパーセルの実質的に縁の長さに亘って延在する実線状にではなく、(例えば、端の太陽電池上の不連続なコンタクトパッドの位置に対応する)スーパーセルの縁に沿った不連続な位置にのみ位置して、電気伝導性接合剤または相互接続部の熱膨張係数と、スーパーセルの熱膨張係数との間の不一致から生じる、スーパーセルの縁と平行な方向への応力を低下させ得る、または同応力に適応し得る。
相互接続部9440は、例えば、薄い銅板から切断され得、スーパーセル100が、標準的なシリコン太陽電池より面積が狭い太陽電池から形成され、したがって、従来より小さい電流で動作する場合に、従来の伝導性相互接続部より薄くてよい。例えば、相互接続部9440は、厚さが約50ミクロンから約300ミクロンの銅板から形成され得る。相互接続部9440は、上記で説明したようにパターニングされることがなかったとしても、相互接続部のCTEと、スーパーセルのCTEとの間の不一致から生じる、スーパーセルの縁と垂直な方向および平行な方向への応力に適応出来るよう十分に薄くてよい。バス9450は、例えば、銅製のリボンから形成され得る。
フィンガー9440Cは、フィンガー9440Bがスーパーセル100の前面に接合した後に、バス9450に接合し得る。そのような場合、フィンガー9440Cは、バス9450に接合する場合に、スーパーセル100の裏面から離れる方向に、例えばスーパーセル100と垂直な方向に曲げられ得る。その後、フィンガー9440Cは、曲げられて、図28に示すように、スーパーセル100の裏面に沿って延び得る。
図29は、隣接し合うスーパーセルの重なり合う端間に挟まれて、それらスーパーセルを直列に電気接続し、接続箱への電気接続を提供するフレキシブル相互接続部の使用を図示する、2つのスーパーセルの断片的な断面図および透視図を示す。図29Aは、図29の対象エリアの拡大図を示す。
図29および図29Aは、2つのスーパーセル100の重なり合う端間に部分的に挟まれ、それら端を電気相互接続して、それらスーパーセルのうち一方の前面端接触部に、および、他方のスーパーセルの裏面端接触部に電気接続を提供し、それにより、それらスーパーセルを直列に相互接続する例示的なフレキシブル相互接続部2960の使用を示す。図示されている例において、相互接続部2960は、2つの重なり合う太陽電池のうち上側のものにより、ソーラーモジュールの前からの視界から隠れる。他の変形例において、2つのスーパーセルの隣接し合う端は重なり合わず、2つのスーパーセルのうち一方の前面端接触部に接続する、相互接続部2960の部分は、ソーラーモジュールの前面から視認出来得る。オプションで、そのような変形例において、他の場合においてはモジュールの前から視認出来る、相互接続部の部分は、覆われて、または着色されて(例えば、濃色が着けられて)通常の色覚を有する人により知覚される、相互接続部とスーパーセルとの間の視認出来るコントラストを低下させ得る。相互接続部2960は、2つのスーパーセルの側縁を越えて、スーパーセルの隣接する縁と平行に延在して、隣接し合う行の同様に配置されたスーパーセルのペアと並列に、スーパーセルのペアを電気接続し得る。
リボン導体2970が、示されているように相互接続部2960に伝導接合して、2つのスーパーセルの隣接し合う端を、ソーラーモジュールの裏面の電気構成要素(例えば、接続箱内のモジュール端子および/またはバイパスダイオード)に電気接続し得る。(図示されていない)他の変形例において、リボン導体2970が、相互接続部2960に伝導接合する代わりに、それらの重なり合う端から離れる方向に、重なり合うスーパーセルのうち一方の裏面接触部に電気接続し得る。その構成も、1または複数のバイパスダイオード、またはソーラーモジュールの裏面の他の電気構成要素への隠れタップを提供し得る。
相互接続部2960はオプションで、例えば、伝導性のシートからダイカットされ得、オプションで、パターニングされて、その、スーパーセルの縁と垂直な方向および平行な方向の両方への機械的コンプライアンスを高めて、相互接続部のCTEと、スーパーセルのCTEとの間の不一致から生じる、スーパーセルの縁と垂直な方向および平行な方向への応力を低下させ得る、またはその応力に適応し得る。そのようなパターニングは、例えば、スリット、(示されているような)スロット、または孔を含み得る。フレキシブル相互接続部の機械的コンプライアンス、および、その、スーパーセルへの接合または複数の接合は、相互接続するスーパーセルが、以下により詳細に説明る積層プロセスの間、CTEの不一致から生じる応力に耐えられるよう十分であるべきである。フレキシブル相互接続部は、例えば、重なり合う太陽電池の接合での使用に関して上記で説明したような機械的コンプライアンスを有する電気伝導性接合剤により、スーパーセルに接合し得る。オプションで、電気伝導性接合剤は、スーパーセルの実質的に縁の長さに亘って延在する実線状にではなく、スーパーセルの縁に沿った不連続な位置にのみ位置して、電気伝導性接合剤または相互接続部の熱膨張係数と、スーパーセルの熱膨張係数との間の不一致から生じる、スーパーセルの縁と平行な方向への応力を低下させ得る、または同応力に適応し得る。相互接続部2960は、例えば、薄い銅板から切断され得る。
実施形態は、以下の米国特許公報文書に説明される1または複数の特徴を含み得る。米国特許公報第2014/0124013号、および米国特許公報第2014/0124014号。これらの両方が、それらの全体が参照によりあらゆる目的のために本明細書に組み込まれる。
本明細書は、こけら葺き状に配置され、直列に電気接続して、スーパーセルがソーラーモジュール内で複数の物理的に平行な行に配置された状態でスーパーセルを形成するシリコン太陽電池を含む高効率なソーラーモジュールを開示する。スーパーセルは、例えば、ソーラーモジュールの全長または全幅に本質的に亘って広がる長さを有し得、または、2またはそれより多くのスーパーセルが、行内で端と端とを繋いで配置され得る。この配置は、太陽電池−太陽電池間の電気相互接続を隠し、したがって、隣接し合う直列接続の太陽電池間にコントラストが殆ど、または全くない状態で視覚的に魅力的なソーラーモジュールを形成するのに用いられ得る。
スーパーセルは、いくつかの実施形態において少なくとも19個の太陽電池、および特定の実施形態において、例えば、100より大きい、またはそれと等しい数のシリコン太陽電池を含む任意の数の太陽電池を含み得る。スーパーセルに沿った中間位置にある電気接触は、物理的に連続的なスーパーセルを維持しつつ、2またはそれより多くの直列接続するセグメントとなるようスーパーセルを電気的にセグメント化するのが望ましいかもしれない。本明細書は、そのような電気接続が、スーパーセル内の1または複数のシリコン太陽電池の後面コンタクトパッドと確立されて、ソーラーモジュールの前からの視界から隠れる、したがって、本明細書において「隠れタップ」と呼ばれる電気タップ接続点を提供する配置を開示する。隠れタップは、太陽電池の背面と伝導性相互接続部との間の電気接続である。
本明細書は、前面スーパーセル末端コンタクトパッド、裏面スーパーセル末端コンタクトパッド、または隠れタップコンタクトパッドを、他の太陽電池に、またはソーラーモジュール内の他の電気構成要素に電気相互接続するフレキシブル相互接続部の使用も開示する。
加えて、本明細書は、スーパーセル内で隣接し合う太陽電池を互いに直接的に接合して、スーパーセルと、ソーラーモジュールのガラス製の前面シートとの間の熱膨張の不一致に適応する機械的コンプライアンスを有する導電接合を提供する電気伝導性接着剤の使用を、フレキシブル相互接続部に、フレキシブル相互接続部とスーパーセルとの間の熱膨張の不一致に適応させる機械的に硬い接合によりフレキシブル相互接続部をスーパーセルに接合する電気伝導性接着剤の使用と組み合わせて、開示する。このことにより、他の場合においてはソーラーモジュールの熱サイクリングの結果として起こり得るソーラーモジュールに対するダメージが避けられ得る。
以下にさらに説明するように、隠れタップコンタクトパッドへの電気接続は、スーパーセルのセグメントを、隣接し合う行内の1または複数のスーパーセルの対応するセグメントと並列に電気接続するのに、および/または、電力最適化(例えば、バイパスダイオード、AC/DCマイクロインバータ、DC/DCコンバーター)および信頼性に関する応用を含むがこれに限定されない様々な応用のために、ソーラーモジュール回路への電気接続部を提供するのに用いられ得る。
丁度説明したような隠れタップの使用はさらに、隠れ電池−電池間接続と組み合わせて、実質的に全て黒色の外観をソーラーモジュールに提供することによりソーラーモジュールの美的外観を向上させ得、太陽電池の作用面積によりモジュールの表面積のより大きな部分が埋められることを可能とすることにより、ソーラーモジュールの効率も高め得る。
ここで、本明細書で説明するソーラーモジュールのより詳細な理解のために図面を見てみると、図1は、隣接し合う太陽電池の端が重なり合い電気接続して、スーパーセル100を形成している状態の、こけら葺き状に配置された直列接続する太陽電池10のストリングの断面図を示す。各太陽電池10は、半導体ダイオード構造、および同半導体ダイオード構造への複数の電気接触部を含む。これにより、太陽電池10が光により照射された場合に太陽電池10内に生成される電流は、外部負荷に提供され得る。
本明細書で説明する例において、各太陽電池10は、n−p接合の対向し合う側に電気接触をもたらす前(太陽側)面および裏(影側)面の金属被覆パターンを有する長方形の結晶シリコン太陽電池であり、前面金属被覆パターンは、n型導電性の半導体層上に配され、裏面金属被覆パターンは、p型導電性の半導体層上に配される。しかし、他の材料系、ダイオード構造、物理的寸法、または電気接触配置が、適している場合、用いられ得る。例えば、前(太陽側)面金属被覆パターンは、p型導電性の半導体層上に配され得、裏(影側)面金属被覆パターンは、n型導電性の半導体層上に配され得る。
図1を改めて参照すると、スーパーセル100において、隣接し合う太陽電池10は、それらが重なり合う領域で、一方の太陽電池の前面金属被覆パターンを、隣接する太陽電池の裏面金属被覆パターンに電気接続する電気伝導性接合剤により互いに直接伝導接合する。適した電気伝導性接合剤は、例えば、電気伝導性接着剤、電気伝導性粘着フィルムおよび粘着テープ、並びに従来のはんだを含み得る。
図31AAおよび31Aは、2つのスーパーセル100の重なり合う端間に部分的に挟まれ、それら端を電気相互接続して、それらスーパーセルのうち一方の前面端接触部に、および、他方のスーパーセルの裏面端接触部に電気接続を提供し、それにより、それらスーパーセルを直列に相互接続する例示的なフレキシブル相互接続部3160の使用を示す。図示されている例において、相互接続部3160は、2つの重なり合う太陽電池の上側のものにより、ソーラーモジュールの前からの視界から隠れる。他の変形例において、2つのスーパーセルの隣接し合う端は重なり合わず、2つのスーパーセルのうち一方の前面端接触部に接続する、相互接続部3160の部分は、ソーラーモジュールの前面から視認出来得る。オプションで、そのような変形例において、他の場合においてはモジュールの前から視認出来る、相互接続部の部分は、覆われて、または着色されて(例えば、濃色が着けられて)通常の色覚を有する人により知覚される、相互接続部とスーパーセルとの間の視認出来るコントラストを低下させ得る。相互接続部3160は、2つのスーパーセルの側縁を越えて、スーパーセルの隣接する縁と平行に延在して、隣接し合う行の同様に配置されたスーパーセルのペアと並列に、スーパーセルのペアを電気接続し得る。
リボン導体3170が、示されているように相互接続部3160に伝導接合して、2つのスーパーセルの隣接し合う端を、ソーラーモジュールの裏面の電気構成要素(例えば、接続箱内のモジュール端子および/またはバイパスダイオード)に電気接続し得る。(図示されていない)他の変形例において、リボン導体3170が、相互接続部3160に伝導接合する代わりに、それらの重なり合う端から離れる方向に、重なり合うスーパーセルのうち一方の裏面接触部に電気接続し得る。その構成も、1または複数のバイパスダイオード、またはソーラーモジュールの裏面の他の電気構成要素への隠れタップを提供し得る。
図2A−2Rは、ソーラーモジュールの長辺の長さにおよそ等しい長さをそれぞれが有する6つの長方形スーパーセル100を含む例示的な長方形ソーラーモジュール200を示す。それらスーパーセルは、6つの平行行として、長辺が同モジュールの長辺と平行に方向付けられた状態で配置されている。同様に構成されたソーラーモジュールが、本例において示されているより多い、またはより少ない、そのような辺の長さのスーパーセルの行を含み得る。他の変形例において、スーパーセルはそれぞれ、長方形ソーラーモジュールの短辺の長さにおよそ等しい長さを有し、それらの長辺がモジュールの短辺と平行に方向付けられた状態で平行行に配置され得る。さらに他の配置において、各行は、電気的に直列に相互接続する2またはそれより多くのスーパーセルを含み得る。モジュールは、長さが例えば約1メートルである短辺と、長さが例えば約1.5から約2.0メートルである長辺とを有し得る。ソーラーモジュールには任意の他の適した形状(例えば、正方形)および寸法も用いられ得る。
本例における各スーパーセルが、156mmの正方形または擬似正方形ウェハの幅のおよそ1/6に等しい幅をそれぞれが有する72個の長方形太陽電池を含む。任意の他の適した寸法の任意の他の適した数の長方形太陽電池も用いられ得る。
図示されているような、長く狭いアスペクト比を有し、かつ、標準的な156mm×156mmの太陽電池の面積より狭い面積を有する太陽電池が、本明細書で開示する太陽電池モジュール内のIR抵抗電力損失を減らすのに有利に採用され得る。特に、標準サイズのシリコン太陽電池と比較して小さい太陽電池10の面積は、太陽電池で生成される電流を減少させ、その太陽電池内の、およびそのような太陽電池の直列接続ストリング内の抵抗電力損失を直接的に減らす。
スーパーセルの後面への隠れタップは、例えば、太陽電池の後面金属被覆パターンの縁部分のみに位置している1または複数の隠れタップコンタクトパッドに伝導接合する電気相互接続部を用いて確立され得る。代替的に、隠れタップは、太陽電池の実質的に(スーパーセルの長軸と垂直な)全長に亘って延びる相互接続部を用いて確立され得、後面金属被覆パターンにおいて太陽電池の長さに沿って分散させられた複数の隠れタップコンタクトパッドに伝導接合する。
図31Aは、縁接続する隠れタップとの使用に適した、例示的な太陽電池後面金属被覆パターン3300を示す。金属被覆パターンは、連続的なアルミニウム製の電気接触部3310、太陽電池の後面の長辺の縁と平行、かつ隣接して配置された複数の銀製のコンタクトパッド3315、太陽電池の後面の短辺のうち1つの隣接する縁と平行にそれぞれが配置された銀製の隠れタップコンタクトパッド3320を含む。太陽電池がスーパーセルに配置された場合に、コンタクトパッド3315には、隣接する長方形太陽電池の前面が重なり、直接的に接合する。相互接続部は、隠れタップコンタクトパッド3320のうち一方または他方に伝導接合せれて、スーパーセルへの隠れタップを提供し得る。(所望される場合、2つのそのような相互接続部が、2つの隠れタップを提供するよう採用され得る。)
図31Aに示す配置において、隠れタップへの電流の流れは、太陽電池の長辺と略平行な後面電池金属被覆を通って、相互接続集合点(接触部3320)へ到達する。この経路に沿った電流の流れを促すべく、後面金属被覆シートの抵抗は、好ましくは、約5オーム/スクエアより低い、またはそれと等しく、または約2.5オーム/スクエアより低い、またはそれと等しい。
図31Bは、太陽電池の後面の長さに沿ったバス状の相互接続部を採用する隠れタップとの使用に適した、他の例示的な太陽電池後面金属被覆パターン3301を示す。金属被覆パターンは、連続的なアルミニウム製の電気接触部3310、太陽電池の後面の長辺の縁と平行、かつ隣接して配置された複数の銀製のコンタクトパッド3315、および、太陽電池の長辺と平行な行に配置され、太陽電池の後面でおよそ中心に置かれた複数の銀製の隠れタップコンタクトパッド3325を含む。太陽電池の実質的に全長に亘って延びる相互接続部は、隠れタップコンタクトパッド3325に伝導接合して、スーパーセルへの隠れタップを提供し得る。隠れタップへの電流の流れは主に、バス状の相互接続部を通り、後面金属被覆パターンの伝導性の、隠れタップにとっての重要性をより低くする。
太陽電池の後面の隠れタップ相互接続部の接合先の隠れタップコンタクトパッドの位置および数は、太陽電池の後面金属被覆、隠れタップコンタクトパッド、および相互接続部を通る電流経路の長さに、影響を与える。結果として、隠れタップコンタクトパッドの配置は、隠れタップ相互接続部への、およびそこを通る電流経路での集電に対する抵抗を最小化するよう選択され得る。図31A−31B(および、以下に説明する図31C)に示す構成に加えて、適した隠れタップコンタクトパッド配置は、例えば、2次元アレイ、および太陽電池の長軸と垂直に延びる行を含み得る。後者の場合、隠れタップコンタクトパッドの行は、例えば、第1太陽電池の短い縁に隣接して位置し得る。
図31Cは、太陽電池の後面の長さに沿った縁接続する隠れタップ、またはバス状の相互接続部を採用する隠れタップのうちいずれかでの使用に適した、他の例示的な太陽電池後面金属被覆パターン3303を示す。金属被覆パターンは、太陽電池の後面の長辺の縁と平行、かつ隣接して配置された連続的な銅製のコンタクトパッド3315、コンタクトパッド3315に接続し、コンタクトパッド3315から垂直に延在する複数の銅製のフィンガー3317、および、太陽電池の長辺と平行に延び、太陽電池の後面のおよそ中心に位置する連続的な銅製のバス隠れタップコンタクトパッド3325を含む。縁接続する相互接続部が、銅製のバス3325の端部に接合して、スーパーセルへの隠れタップを提供し得る。(所望される場合、2つのそのような相互接続部が、銅製のバス3325の両端で採用されて、2つの隠れタップを提供し得る。)代替的に、太陽電池の実質的に全長に亘って延びる相互接続部が、銅製のバス3325に伝導接合して、スーパーセルへの隠れタップを提供し得る。
隠れタップを形成するのに採用される相互接続部は、はんだ付け、溶接、伝導性接着剤、または任意の他の適した様式で、後面金属被覆パターン内の隠れタップコンタクトパッドに接合し得る。図31A−31Bに図示されているような銀製のパッドを採用する金属被覆パターンに関して、相互接続部は、例えば、スズでコーティングされた銅から形成され得る。他の手法は、例えば、電気またはレーザー溶接、はんだ付け、または伝導性接着剤により形成され得る、アルミニウム−アルミニウム間接合を形成するアルミニウム製の導体により、直接的にアルミニウム製の後面接触部3310への隠れタップを確立することである。特定の実施形態において、接触部は、スズを含み得る。丁度説明したような場合において、太陽電池の後面金属被覆は、銀製のコンタクトパッド3320(図31A)または3325(図31B)を有さないかもしれないが、縁接続する、またはバス状のアルミニウム製の相互接続部が、それらコンタクトパッドに対応する位置において、アルミニウム(またはスズ)製の接触部3310に接合し得る。
隠れタップ相互接続部(または、前面または裏面スーパーセル末端接触部への相互接続部)と、シリコン太陽電池との間の差異のある熱膨張、および結果として生じる、太陽電池と相互接続部とに対する応力は、ソーラーモジュールの性能を低下させ得る裂け目、および他の不具合の形態に繋がり得る。結果として、隠れタップおよび他の相互接続部は、実質的な応力が現れることなく、そのような差異のある膨張に適応するよう構成されるのが望ましい。相互接続部は、例えば、延性の高い材料(例えば、柔らかい銅、非常に薄い銅板)から形成されることにより、熱膨張係数が低い材料(例えば、Kovar、Invar、または他の、熱膨張が低い鉄−ニッケル合金)から、または、シリコンの熱膨張係数とおよそ一致する熱膨張係数を有する材料から形成されることにより、相互接続部と、シリコン太陽電池との間の差異のある熱膨張に適応するスリット、スロット、孔、またはトラス構造などの面内幾何学拡大特徴を組み込むことにより、および/または、そのような差異のある熱膨張に適応するキンク、ジョグ、または窪みなどの面外幾何学特徴を採用することにより、応力および熱膨張の緩和を提供し得る。隠れタップコンタクトパッドに接合する(または、以下に説明するようなスーパーセルの前面または裏面末端コンタクトパッドに接合する)、相互接続部の一部は、厚さが、例えば、約100ミクロン未満、約50ミクロン未満、約30ミクロン未満、または約25ミクロン未満であって、相互接続部のフレキシブル性を高め得る。
図7A、7B−1および7B−2を改めて参照すると、これらの図面は、応力緩和幾何学特徴を採用し、隠れタップの相互接続部としての使用のために、または、前面または裏面スーパーセル末端接触部への電気接続に適しているかもしれない、参照番号400A−400Uにより特定されるいくつかの例示的な相互接続構成を示す。これらの相互接続部の長さは典型的には、それらの接合先の長方形太陽電池の長辺の長さにおよそ等しいが、任意の他の適した長さであり得る。図7Aに示す例示的な相互接続部400A−400Tは、様々な面内応力緩和特徴を採用する。図7B−1の面内(x−y)図に、および図7B−2の面外(x−z)図に示す例示的な相互接続部400Uは、薄い金属リボンにおける面外応力緩和特徴として屈曲部3705を採用する。屈曲部3705は、リボン金属の見かけの引張剛性を低下させる。屈曲部により、リボン材料は、リボンに張力がかかった場合に長くなるのみである代わりに、局所的に曲がることが可能となる。薄いリボンに関して、このことは、実質的に、例えば、90%またはそれより大きく、見かけの引張剛性を低下させ得る。見かけの引張剛性の正確な低下量は、屈曲部の数、屈曲部の幾何学、リボンの厚さを含むいくつかの要素に依存する。また相互接続部は、面内および面外応力緩和特徴を組み合わせて採用し得る。
以下にさらに説明する図37A−1から38B−2は、面内および/または面外応力緩和幾何学特徴を採用し、隠れタップのための縁接続する相互接続部としての使用に適しているかもしれないいくつかの例示的な相互接続構成を示す。
各隠れタップを接続するのに必要な延びている導体の数を減らす、または最小化するべく、隠れタップ相互接続バスが利用され得る。この手法では、隣接するスーパーセルの隠れタップコンタクトパッドを互いに、隠れタップ相互接続部を用いることにより接続する。(電気接続は、典型的には、正極−正極、または負極−負極、すなわち、各端において同じ極性である。)
例えば、図32は、第1スーパーセル100内の太陽電池10の実質的に全幅に亘って延び、図31Bに示すよう配置された隠れタップコンタクトパッド3325に伝導接合する第1隠れタップ相互接続部3400と、隣接する行内のスーパーセル100内の対応する太陽電池の全幅に亘って延び、図31Bに示すように配置される隠れタップコンタクトパッド3325に同様に伝導接合する第2隠れタップ相互接続部3400とを示す。それら2つの相互接続部3400は、互いに並んで、およびオプションで互いに当接し、または重なり合って配置され、互いに伝導接合して、または他の場合においては、電気接続して、2つの隣接し合うスーパーセルを相互接続するバスを形成し得る。このスキームは、所望に応じて、スーパーセルの追加の行(例えば、全ての行)に亘って拡張されて、いくつかの隣接し合うスーパーセルの複数のセグメントを含むソーラーモジュールの並列セグメントを形成し得る。図33は、図32のスーパーセルの一部の透視図を示す。
図35は、隣接し合う行内のスーパーセルが、それらスーパーセル間の間隙に広がり、一方のスーパーセル上の隠れタップコンタクトパッド3320に、および、他方のスーパーセル上の他の隠れタップコンタクトパッド3320に伝導接合する短い相互接続部3400により相互接続する例を示す。ここでコンタクトパッドは、図32に示すよう配置されている。図36は、短い相互接続部が、隣接し合う行の2つのスーパーセル間の間隙に広がり、一方のスーパーセル上の後面金属被覆の中央の銅製のバス部分の端に、および、他方のスーパーセルの後面金属被覆の中央の銅製のバス部分の隣接する端に伝導接合する、同様の配置を示す。ここで、銅製の後面金属被覆は、図31Cに示すように構成されている。これらの両方の例において、相互接続スキームは、所望に応じて、スーパーセルの追加の行(例えば、全ての行)に亘って拡張されて、いくつかの隣接し合うスーパーセルの複数のセグメントを含むソーラーモジュールの並列セグメントを形成し得る。
図37A−1から37F−3は、面内応力緩和特徴3405を含む例示的な短い隠れタップ相互接続部3400の面内(x−y)および面外(x−z)図を示す。(x−y面は、太陽電池の後面金属被覆パターンの面である。)図37A−1から37E−2の例において、各相互接続部3400は、1または複数の面内応力緩和特徴の対向し合う側に位置付けられたタブ3400Aおよび3400Bを含む。例示的な面内応力緩和特徴は、1、2、またはそれより多くの中空のダイヤモンド形状の配置、ジグザグ、および1、2、またはそれより多くのスロットの配置を含む。
本明細書で用いられる「面内応力緩和特徴」という用語は、相互接続部の、または相互接続部の一部の厚さまたは延性も指し得る。例えば、図37F−1から37F−3に示す相互接続部3400は、ある真っ直ぐで平坦な長さの、x−y面内の厚さTが、例えば、約100ミクロンより薄い、若しくはそれと等しい、約50ミクロンより薄い、若しくはそれと等しい、約30ミクロンより薄い、若しくはそれと等しい、または約25ミクロンより薄い、若しくはそれと等しい、薄い銅リボン、または銅ホイルから形成されて、相互接続部のフレキシブル性を高める。厚さTは、例えば、約50ミクロンであり得る。相互接続部の長さLは、例えば、約8センチメートル(cm)であり得、相互接続部の幅Wは、例えば、約0.5cmであり得る。図37F−3および37F−1は、それぞれ、x−y面おける相互接続部の前面および裏面図を示す。相互接続部の前面は、ソーラーモジュールの裏面に面する。相互接続部は、ソーラーモジュール内の2つの平行なスーパーセル行の間の間隙に亘って広がり得るので、相互接続部の一部は、ソーラーモジュールの前からその間隙を通じて視認出来得る。オプションで、相互接続部のその視認可能な部分は、黒くされて、例えば、黒色のポリマー層によりコーティングされて、その視認可能性が低下させられ得る。図示されている例において、約0.5cmの長さL2を有する相互接続部の前面の中央部分3400Cは、厚さが薄い黒色のポリマー層でコーティングされている。典型的には、L2は、スーパーセル行間の間隙の幅より大きい、またはそれと等しい。黒色のポリマー層は、厚さが、例えば、約20ミクロンであり得る。そのような薄い銅リボンの相互接続部はオプションで、上記で説明したように面内または面外応力緩和特徴も採用し得る。例えば、相互接続部は、図7B−1および7B−2に関連して上記で説明したような応力緩和面外屈曲部を含み得る。
図38A−1から38B−2は、面外応力緩和特徴3407を含む例示的な短い隠れタップ相互接続部3400の面内(x−y)および面外(x−z)図を示す。これらの例において、各相互接続部3400は、1または複数の面外応力緩和特徴の対向し合う側に位置付けられたタブ3400Aおよび3400Bを含む。例示的な面外応力緩和特徴は、1、2、またはそれより多くの屈曲部の配置、キンク、窪み、ジョグ、または隆起を含む。
図37A−1から37E−2、および38A−1から38B−2に図示されている応力緩和特徴のタイプおよび配置、および、図37F−1から37F−3に関連して上記で説明した相互接続リボンの厚さも、適宜、上記で説明したような長い隠れタップ相互接続部において、および、スーパーセルの裏面または前面末端接触部に接合する相互接続部において採用され得る。相互接続部は、面内および面外応力緩和特徴の両方を組み合わせて含み得る。面内および面外応力緩和特徴は、太陽電池の連結部に対する歪みおよび応力の影響を減らし、または最小化し、それにより、信頼性が高く、弾力性のある電気接続を形成するよう設計される。
図39A−1および39A−2は、電池コンタクトパッド位置合わせおよびスーパーセル縁位置合わせ特徴を含んで、自動化、製造の容易性、および載置の正確性を向上させる短い隠れタップ相互接続部の例示的な構成を示す。図39B−1および39B−2は、非対称なタブの長さを含む短い隠れタップ相互接続部の例示的な構成を示す。そのような非対称な相互接続部は、反対の向きで用いられて、スーパーセルの長軸と平行に延びる導体の重なり合いを避け得る。(以下の図42A−42Bの説明を参照。)
本明細書で説明するような隠れタップが、モジュールのレイアウトで必要とされる電気接続を形成して、所望されるモジュール電気回路を提供し得る。隠れタップ接続が、例えば、スーパーセルに沿った12、24、36、または48個の太陽電池の間隔で、または任意の他の適した間隔で確立され得る。隠れタップ間の間隔は、応用に応じて決定され得る。
各スーパーセルが、典型的には、スーパーセルの一端にある前面末端接触部と、スーパーセルの他端にある裏面末端接触部とを含む。スーパーセルがソーラーモジュールの長さまたは幅に亘って広がる変形例において、これらの末端接触部は、ソーラーモジュールの対向し合う縁に隣接して位置する。
フレキシブル相互接続部が、スーパーセルの前面または裏面末端接触部に伝導接合して、スーパーセルを、他の太陽電池に、または、モジュール内の他の電気構成要素に電気接続し得る。例えば、図34Aは、相互接続部3410が、スーパーセルの端にある裏面末端接触部に伝導接合した状態の例示的なソーラーモジュールの断面図を示す。裏面末端接触相互接続部3410は、例えば、それの接合先の太陽電池の表面と垂直な方向への厚さが、約100ミクロンより小さい、若しくはそれと等しい、約50ミクロンより小さい、若しくはそれと等しい、約30ミクロンより小さい、若しくはそれと等しい、約25ミクロンより小さい、若しくはそれと等しい、または薄い銅リボンまたはホイルであって、またはそれらを含んで、相互接続部のフレキシブル性を高め得る。相互接続部は、太陽電池の表面の面における、相互接続部を通る電流の流れと垂直な方向への幅が、例えば、約10mmより大きい、またはそれと等しくて、伝導性を向上させ得る。図示されているように、裏面末端接触相互接続部3410は、相互接続部のどの部分もスーパーセル行と平行な方向にスーパーセルを越えて延在しない状態で太陽電池の後方に横たわり得る。
同様の相互接続部が、前面末端接触部に接続するのに用いられ得る。代替的に、前面末端相互接続部により占有される、ソーラーモジュールの前面の面積を減らすべく、前面相互接続部は、スーパーセルに直接的に接合する薄いフレキシブルな部分と、より高い伝導性をもたらすより厚い部分とを含み得る。この配置は、所望される伝導性を達成するのに必要な相互接続部の幅を小さくする。相互接続部のより厚い部分は、例えば、相互接続部の一体的な部分であり得、または、相互接続部のより薄い部分に接合する別個の部品であり得る。例えば、図34B−34Cは、それぞれ、スーパーセルの端において前面末端接触部に伝導接合する例示的な相互接続部3410の断面図を示す。両方の例において、スーパーセルに直接的に接合する、相互接続部の薄いフレキシブルな部分3410Aは、それの接合先の太陽電池の表面と垂直な方向への厚さが、約100ミクロンより薄い、またはそれと等しい、約50ミクロンより薄い、またはそれと等しい、約30ミクロンより薄い、またはそれと等しい、または約25より薄い、またはそれと等しい薄い銅リボンまたはホイルを含む。相互接続部のより厚い銅製のリボン部分3410Bは、薄い部分3410Aに接合して、相互接続部の伝導性を向上させる。図34Bにおいて、薄い相互接続部分3410Aの裏面の電気伝導性テープ3410Cは、薄い相互接続部分を、スーパーセルに、および厚い相互接続部分3410Bに接合する。図34Cにおいて、薄い相互接続部分3410Aは、電気伝導性接着剤3410Dにより、厚い相互接続部分3410Bに接合し、電気伝導性接着剤3410Eによりスーパーセルに接合する。電気伝導性接着剤3410Dおよび3410Eは、同じであり得、または異なり得る。電気伝導性接着剤3410Eは、例えば、はんだであり得る。
本明細書で説明するソーラーモジュールは、スーパーセルと1または複数の封入材材料3610とが透明な前面シート3620と後面シート3630との間に挟まれた状態で図34Aに示すよう積層構造を含み得る。透明な前面シートは、例えば、ガラスであり得る。後面シートは、ガラス、または任意の他の適した材料でもあり得る。封入材の追加のストリップが、図示されているように裏面末端相互接続部3410とスーパーセルの裏面との間に配され得る。
上述したように、隠れタップは、「全て黒色の」モジュールに美しさをもたらす。これらの接続は、典型的には高反射性の導体で確立されるので、それらは、通常は、取り付けらた太陽電池に対して高いコントラストを有するであろう。しかし、太陽電池の後面に接続を形成することにより、また、ソーラーモジュール回路内の他の導体を太陽電池の後方にルーティングすることにより、様々な導体が、視界から隠れる。このことにより、「全て黒色の」外観を依然として維持しつつ、複数の接続点(隠れタップ)が可能となる。
隠れタップは、様々なモジュールのレイアウトを形成するのに用いられ得る。図40(物理的レイアウト)および図41(電気回路図)の例において、ソーラーモジュールは、モジュールの長さに亘ってそれぞれが延びる6つのスーパーセルを含む。隠れタップコンタクトパッドおよび短い相互接続部3400は、各スーパーセルを3分の1にセグメント化し、隣接し合うスーパーセルセグメントを並列に電気接続し、それにより、3つのグループの並列接続するスーパーセルのセグメントが形成される。各グループは、モジュールの積層構造内に組み込まれた(その中に埋め込まれた)バイパスダイオード1300A−1300Cのうち異なる1つと並列に接続する。バイパスダイオードは、例えば、直接的にスーパーセルの後方に、またはスーパーセル間に位置し得る。バイパスダイオードは、例えば、ソーラーモジュールの長辺と平行な、ソーラーモジュールの中心線におよそ沿って位置し得る。
図42A−42Bの例(図41の電気回路図にも対応する)において、ソーラーモジュールは、モジュールの長さに亘ってそれぞれが延びる6つのスーパーセルを含む。隠れタップコンタクトパッドおよび短い相互接続部3400は、各スーパーセルを3分の1にセグメント化し、隣接し合うスーパーセルセグメントを並列に電気接続し、それにより、3つのグループの並列接続するスーパーセルのセグメントが形成される。各グループは、スーパーセルの後方に位置し、隠れタップコンタクトパッドおよび短い相互接続部を、接続箱内のモジュールの背面に位置するバイパスダイオードに接続する、バス接続1500A−1500Cを通じてバイパスダイオード1300A−1300Cのうち異なる1つと並列に接続する。
図42Bは、短い隠れタップ相互接続部3400と導体1500Bおよび1500Cとの接続の詳細図を提供する。描写されているように、これらの導体は、互いに重なり合わない。図示されている例において、このことは、反対の向きに配置された非対称な相互接続部3400の使用により可能とされる。導体の重なり合いを避ける代替的な手法は、ある長さのタブを有する第1対称相互接続部3400と、異なる長さのタブを有する第2対称相互接続部3400とを採用することである。
図43の例(図41の電気回路図にも対応する)において、ソーラーモジュールは図42Aに示すようなものと同様に構成される。異なるのは、隠れタップ相互接続部3400が、ソーラーモジュールの実質的に全幅に亘って延びる連続的なバスを形成する点である。各バスは、各スーパーセルの後面金属被覆に伝導接合する単一の長い相互接続部3400であり得る。代替的に、バスは、単一のスーパーセルに亘ってそれぞれが広がる、互いに伝導接合する、または他の場合においては、図41に関連して上記で説明したように電気相互接続する、複数の個々の相互接続部を含み得る。図43は、ソーラーモジュールの一端に沿って連続的なバスを形成して、スーパーセルの前面末端接触部を電気接続するスーパーセル末端相互接続部3410、および、ソーラーモジュールの反対側の端に沿って連続的なバスを形成して、スーパーセルの裏面末端接触部を電気接続する追加のスーパーセル末端相互接続部3410も示す。
図44A−44Bの例示的なソーラーモジュールも、図41の電気回路図に対応する。本例は、図42Aにあるような短い隠れタップ相互接続部3400と、図43にあるような、スーパーセル前面および裏面末端接触部のために連続的なバスを形成する相互接続部3410とを採用する。
図47Aの例(物理的レイアウト)および図47B(電気回路図)において、ソーラーモジュールは、ソーラーモジュールの全長に亘ってそれぞれが延びる6つのスーパーセルを含む。隠れタップコンタクトパッドおよび短い相互接続部3400は、各スーパーセルを2/3の長さのセクションと、1/3の長さのセクションにセグメント化する。ソーラーモジュールの(図面の描写で)下方の縁にある相互接続部3410は、左手側の3行を互いに並列に、右手側の3行を互いに並列に、および、左手側の3行を右手側の3行と直列に相互接続する。この配置は、スーパーセルの長さの2/3の長さをそれぞれが有する3つのグループの並列接続するスーパーセルのセグメントを形成する。各グループは、バイパスダイオード2000A−2000Cのうち異なる1つと並列に接続する。この配置は、同じスーパーセルが代わりに、図41に示すよう電気接続する場合にそれらスーパーセルにより提供されるであろう電圧の約2倍および、提供されるであろう電流の約半分を提供する。
図34Aを参照して上述したように、スーパーセル裏面末端接触部に接合する相互接続部は、全体がスーパーセルの後方に横たわり、ソーラーモジュールの前(太陽)側からの視界から隠れ得る。スーパーセル前面末端接触部に接合する相互接続部3410は、ソーラーモジュールの裏面図において(例えば、図43にあるように)視認出来るかもしれない。なぜならば、それらは、スーパーセルの端を越えて延在するからである(例えば、図44Aにあるように)、または、それらは、スーパーセルの端周りに、および同端の下方に折れるからである。
隠れタップを使用することにより、1つのバイパスダイオード当たりグループ化される太陽電池の数を少なくことが容易になる。図48A−48B(それぞれ、物理的レイアウトを示す)の例において、ソーラーモジュールは、モジュールの長さに亘ってそれぞれが延びる6つのスーパーセルを含む。隠れタップコンタクトパッドおよび短い相互接続部3400は、各スーパーセルを5分の1にセグメント化し、隣接し合うスーパーセルセグメントを並列に電気接続し、それにより、並列接続するスーパーセルセグメントの5つのグループが形成される。各グループは、モジュールの積層構造内に組み込まれた(その中に埋め込まれた)バイパスダイオード2100A−2100Eのうち異なる1つと並列に接続する。バイパスダイオードは、例えば、直接的にスーパーセルの後方に、またはスーパーセル間に位置し得る。スーパーセル末端相互接続部3410は、ソーラーモジュールの一端に沿って連続的なバスを形成して、スーパーセルの前面末端接触部を電気接続し、追加のスーパーセル末端相互接続部3410は、ソーラーモジュールの反対側の端に沿って連続的なバスを形成して、スーパーセルの裏面末端接触部を電気接続する。図48Aの例において、単一の接続箱2110が、導体2115Aおよび2115Bにより、前面および裏面末端相互接続バスに電気接続する。しかし、接続箱にはダイオードがないので、代替的に(図48B)、長い帰路導体2215Aおよび2115Bが取り除かれ得、単一の接続箱2110は、例えば、モジュールの対向し合う縁に位置する2つの単極性(+または−)接続箱2110A−2110Bに置き換えられている。このことは、長い帰路導体での抵抗損失を取り除く。
本明細書で説明する例は、隠れタップを用いて、3つまたは5つの太陽電池グループとなるよう各スーパーセルを電気的にセグメント化するが、これらの例は例示であり限定ではないよう意図されている。より一般的に、図示されているより多い、またはより少ない太陽電池グループとなるよう、および/または、グループ当たり、図示されているより多い、またはより少ない太陽電池となるよう、隠れタップが、スーパーセルを電気的にセグメント化するのに用いられ得る。
本明細書で説明するソーラーモジュールの通常動作において、順バイアスがかかり伝導状態にあるバイパスダイオードがなければ、電流は、どの隠れタップコンタクトパッドにも殆ど、または全く流れない。代わりに、電流は、隣接し合い重なり合う太陽電池間で形成された電池間伝導接合を通じて、各スーパーセルの長さを通って流れる。対照的に、図45は、順バイアスがかかったバイパスダイオードを通ってソーラーモジュールの一部がバイパスされたときの電流の流れを示す。矢印により示されているように、本例において、最も左のスーパーセルの電流は、タップ接続する太陽電池に到達するまで、同スーパーセルに沿って流れ、その後、同太陽電池の後面金属被覆、隠れタップコンタクトパッド(示されていない)、隣接するスーパーセル内の第2太陽電池への相互接続部3400、第2太陽電池上での同相互接続部の接合先の他の隠れタップコンタクトパッド(示されていない)を通って、第2太陽電池の後面金属被覆を通って、追加の隠れタップコンタクトパッド、相互接続部、および太陽電池後面金属被覆を通って、バイパスダイオードへのバス接続1500に到達する。他のスーパーセルを通る電流の流れは同様である。図示から明らかであるように、そのような状況下で、隠れタップコンタクトパッドは、2またはそれより多くのスーパーセル行からの電流を伝導し、したがって、モジュール内の任意の単一の太陽電池で生成された電流より大きい電流を伝導し得る。
典型的には、隠れタップコンタクトパッドとは反対側の太陽電池の前面には、バスバー、コンタクトパッド、または他の遮光要素(前面金属被覆フィンガーまたは隣接する太陽電池の重なり合う部分以外)はない。結果として、隠れタップコンタクトパッドが、シリコン太陽電池上に銀から形成された場合、隠れタップコンタクトパッドの領域内の太陽電池の光変換効率は、その銀製のコンタクトパッドが、後面キャリア再結合を防ぐ後面フィールドの影響を低下させた場合、低下し得る。この効率の損失を避けるために、典型的には、スーパーセル内の太陽電池の殆どは、隠れタップコンタクトパッドを含まない。(例えば、いくつかの変形例において、バイパスダイオード回路のために隠れタップコンタクトパッドが必要となる太陽電池のみが、そのような隠れタップコンタクトパッドを含むであろう。さらに、隠れタップコンタクトパッドを含む太陽電池の電流生成を、隠れタップコンタクトパッドを有さない太陽電池の電流生成に一致させるべく、隠れタップコンタクトパッドを含む太陽電池は、隠れタップコンタクトパッドを有さない太陽電池より大きな集光面積を有し得る。
個々の隠れタップコンタクトパッドは、例えば、約2mmより小さい、またはそれと等しい×約5mmより小さい、またはそれと等しい長方形寸法を有し得る。
ソーラーモジュールは、動作の間、およびテストの間、それらが設置されている環境において、温度変化の結果として温度サイクリングを受ける。図46Aに示すように、そのような温度サイクリングの間、スーパーセル内のシリコン太陽電池と、モジュールの他の部分、例えば、モジュールのガラス製の前面シートとの間の熱膨張の不一致の結果として、スーパーセル行の長軸に沿った、スーパーセルとモジュールのそれら他の部分との間の相対運動が生じることになる。この不一致は、スーパーセルを引き延ばしがち、または圧縮しがちになり、太陽電池、または、スーパーセル内の太陽電池間の伝導接合にダメージを与え得る。同様に、図46Bに示すように、温度サイクリングの間、太陽電池に接合する相互接続部と、太陽電池との間の熱膨張の不一致の結果として、複数のスーパーセル行と垂直な方向への、同相互接続部と同太陽電池との間の相対運動が生じることになる。この不一致は太陽電池、相互接続部、およびそれらの間の伝導接合を引っ張り、ダメージを与え得る。このことは、隠れタップコンタクトパッドに接合する相互接続部に関して、およびスーパーセル前面または裏面末端接触部に接合する相互接続部に関して起こり得る。
同様に、例えば、輸送の間の、または天気から受ける(例えば、風および雪)、ソーラーモジュールの周期的な機械的な荷重は、スーパーセル内の電池間接合において、および、太陽電池と相互接続部との間の接合において局所的なせん断力を生じさせ得る。これらのせん断力も、ソーラーモジュールにダメージを与え得る。
スーパーセル行の長軸に沿った、スーパーセルと、ソーラーモジュールの他の部分との間の相対運動から生じる問題を防ぐべく、隣接し合い重なり合う太陽電池を互いに接合するのに用いられる伝導性接着剤は、ソーラーモジュールにダメージを与えることなく約−40℃から約100℃の温度範囲で、それら行と平行な方向への、スーパーセルと、モジュールのガラス製の前面シートとの間の熱膨張の不一致に適応する機械的コンプライアンスをスーパーセルに提供する、重なり合う太陽電池間のフレキシブルな伝導接合3515(図46A)を形成するよう選択され得る。伝導性接着剤は、標準的なテスト条件(すなわち、25℃)で、例えば、約100メガパスカル(MPa)より低い、若しくはそれと等しい、約200MPaより低い、若しくはそれと等しい、約300MPaより低い、若しくはそれと等しい、約400MPaより低い、若しくはそれと等しい、約500MPaより低い、若しくはそれと等しい、約600MPaより低い、若しくはそれと等しい、約700MPaより低い、若しくはそれと等しい、約800MPaより低い、若しくはそれと等しい、約900MPaより低い、若しくはそれと等しい、または約1000MPaより低い、若しくはそれと等しい剛性率を有する伝導接合を形成するよう選択され得る。重なり合い隣接し合う太陽電池間の複数のフレキシブルな伝導接合は、例えば、各電池とガラス製の前面シートとの間の約15ミクロンより大きい、またはそれと等しい差異のある運動に適応し得る。適した伝導性接着剤には、例えば、Engineered Conductive Materials LLCから利用出来るECM 1541−S3が含まれ得る。
ソーラーモジュール内の太陽電池に、影の結果として、または何らかの他の理由から逆バイアスがかかった場合にソーラーモジュールの動作の間に生じ得るホットスポットからソーラーモジュールに対するダメージのリスクを低下させる、スーパーセルに沿った熱の流れを促すべく、例えば、太陽電池と垂直な方向への厚さが約50ミクロンより小さい、またはそれと等しい、太陽電池と垂直な方向への熱伝導性が約1.5W/(メートル−K)より高い、またはそれと等しい、重なり合い隣接し合う太陽電池間の伝導接合が形成され得る。
相互接続部と、それの接合先の太陽電池との間の相対運動から生じる問題を防ぐべく、相互接続部を太陽電池に接合するのに用いられる伝導性接着剤は、ソーラーモジュールにダメージを与えることなく約−40℃から約180℃の温度範囲で、相互接続部に、太陽電池と相互接続部との間の熱膨張の不一致に適応させるのに十分に硬い、太陽電池と相互接続部との間の伝導接合を形成するよう選択され得る。この伝導性接着剤は、標準的なテスト条件(すなわち、25℃)において、例えば、約1800MPaより高い、若しくはそれと等しい、約1900MPaより高い、若しくはそれと等しい、約2000MPaより高い、若しくはそれと等しい、約2100MPaより高い、若しくはそれと等しい、約2200MPaより高い、若しくはそれと等しい、約2300MPaより高い、若しくはそれと等しい、約2400MPaより高い、若しくはそれと等しい、約2500MPaより高い、若しくはそれと等しい、約2600MPaより高い、若しくはそれと等しい、約2700MPaより高い、若しくはそれと等しい、約2800MPaより高い、若しくはそれと等しい、約2900MPaより高い、若しくはそれと等しい、約3000MPaより高い、若しくはそれと等しい、約3100MPaより高い、若しくはそれと等しい、約3200MPaより高い、若しくはそれと等しい、約3300MPaより高い、若しくはそれと等しい、約3400MPaより高い、若しくはそれと等しい、約3500MPaより高い、若しくはそれと等しい、約3600MPaより高い、若しくはそれと等しい、約3700MPaより高い、若しくはそれと等しい、約3800MPaより高い、若しくはそれと等しい、約3900MPaより高い、若しくはそれと等しい、または約4000MPaより高い、若しくはそれと等しい剛性率を有する伝導接合を形成するよう選択され得る。そのような変形例において、相互接続部は、例えば、約40ミクロンより大きい、またはそれと等しい、相互接続部の熱膨張または収縮に耐え得る。適した伝導性接着剤には、例えば、Hitachi CP−450、およびはんだが含まれ得る。
したがって、スーパーセル内の重なり合い隣接し合う太陽電池間の複数の伝導接合は、スーパーセルとフレキシブル電気相互接続部との間の複数の伝導接合とは異なる伝導性接着剤を利用し得る。例えば、スーパーセルとフレキシブル電気相互接続部との間の伝導接合は、はんだから形成され得、重なり合い隣接し合う太陽電池間の伝導接合は、非はんだ伝導性接着剤から形成され得る。いくつかの変形例において、両方の伝導性接着剤が、単一のプロセス工程で、例えば、約150℃から約180℃のプロセスウィンドウで硬化させられ得る。
上記の説明は、共通の基板上でこけら葺き状に(切断された太陽電池であり得る)複数の太陽電池を組み立てることに焦点を当ててきた。このことの結果として、モジュールが形成される。
しかし、有用となる十分な量の太陽エネルギーを集めるために、設備は典型的には、それら自体が一緒に組み立てられることになるそのようなモジュールを多数含む。実施形態によると、複数の太陽電池モジュールも、こけら葺き状に組み立てられて、アレイの面積効率を高め得る。
特定の実施形態において、モジュールが、太陽エネルギーの方向に面した上側伝導性リボンと、太陽エネルギーの方向から離れる方向に面した下側伝導性リボンとを含み得る。
下側リボンは、電池の下に埋設される。したがって、それは入射光をブロックせず、モジュールの面積効率に不利に影響しない。対照的に、上側リボンは露出させられ、入射光をブロックし、効率に不利に影響し得る。
実施形態によると、モジュール自体がこけら葺き状にされ、これにより、上側リボンが近隣のモジュールにより覆われ得る。このこけら葺き状モジュール構成は、モジュールアレイの最終的な露出面積に不利に影響を与えることなく、他の要素のための、モジュール上の追加の面積も提供し得る。重なり合う領域に位置付けられ得るモジュール要素の例は、接続箱(jボックス)および/またはバスリボンを含み得るがこれらに限定されない。
特定の実施形態において、それぞれの隣接し合うこけら葺き状モジュールのjボックスは、それらの間で電気接続を達成するために嵌合配置されている。このことは、配線を取り除くことにより、こけら葺き状モジュールのアレイの構成を単純化する。
特定の実施形態において、jボックスは、追加の構造的なスタンドオフにより強化され得、および/または、スタンドオフと組み合わせられ得る。そのような構成は、接続箱の寸法が傾きを決定する、統合された、傾いたモジュール屋根マウントラックの解決法を生み出し得る。そのような実施例は、こけら葺き状モジュールのアレイが、平坦な屋根に取り付られる場合に特に有用であり得る。
こけら葺き状スーパーセルは、モジュールレベルの電力管理デバイス(例えば、DC/ACマイクロインバータ、DC/DCモジュール電力オプティマイザー、電圧インテリジェンスおよびスマートスイッチ、および関連デバイス)に関して、モジュールのレイアウトのためのユニークな機会を生み出す。モジュールレベルの電力管理システムの主な特徴は、電力最適化である。本明細書で説明および採用されているようなスーパーセルは、伝統的なパネルより高い電圧を生成し得る。加えて、スーパーセルモジュールのレイアウトはさらに、モジュールを分割し得る。より高い電圧および更なる分割の両方が、電力最適化のための潜在的な利点を生み出す。
本明細書は、こけら葺き状に配置され、直列に電気接続して、スーパーセルがソーラーモジュール内で複数の物理的に平行な行に配置された状態でスーパーセルを形成する幅狭の長方形シリコン太陽電池を含む高効率なソーラーモジュール(すなわち、ソーラーパネル)を開示する。スーパーセルは、例えば、ソーラーモジュールの全長または全幅に本質的に亘って広がる長さを有し得、または、2またはそれより多くのスーパーセルが、行内で端と端とを繋いで配置され得る。各スーパーセルが、例えば、いくつかの変形例においては少なくとも19個の太陽電池であり、および特定の変形例においては100より多い、またはそれと等しい数のシリコン太陽電池であることを含む、任意の数の太陽電池を含み得る。各ソーラーモジュールは、従来のサイズおよび形状を有し、それでいて数百のシリコン太陽電池を含み、このことにより、単一のソーラーモジュール内のスーパーセルは、電気相互接続して、例えば、約90ボルト(V)から約450Vまたはそれより高い直流(DC)電圧を提供することが可能となり得る。
以下にさらに説明するように、この高DC電圧は、インバータ(例えば、ソーラーモジュール上に位置するマイクロインバータ)による直流から交流(AC)への変換を、インバータによるACへの変換の前にDC−DCブースト(DC電圧を上げること)の必要性をなくす、または減らすことにより、容易にする。また、以下にさらに説明するように、高DC電圧は、DC/AC変換が、互いに並列に電気接続する2またはそれより多くの高電圧のこけら葺き状太陽電池モジュールからの高電圧のDC出力を受けるセントラルインバータにより実行される配置の使用も容易にする。
ここで、本明細書で説明するソーラーモジュールのより詳細な理解のために図面を見てみると、図1は、隣接し合う太陽電池の端が重なり合い電気接続して、スーパーセル100を形成している状態の、こけら葺き状に配置された直列接続する太陽電池10のストリングの断面図を示す。各太陽電池10は、半導体ダイオード構造、および同半導体ダイオード構造への複数の電気接触部を含む。これにより、太陽電池10が光により照射された場合に太陽電池10内に生成される電流は、外部負荷に提供され得る。
本明細書で説明する例において、各太陽電池10は、n−p接合の対向し合う側に電気接触をもたらす前(太陽側)面および裏(影側)面の金属被覆パターンを有する長方形の結晶シリコン太陽電池であり、前面金属被覆パターンは、n型導電性の半導体層上に配され、裏面金属被覆パターンは、p型導電性の半導体層上に配される。しかし、他の材料系、ダイオード構造、物理的寸法、または電気接触配置が、適している場合、用いられ得る。例えば、前(太陽側)面金属被覆パターンは、p型導電性の半導体層上に配され得、裏(影側)面金属被覆パターンは、n型導電性の半導体層上に配され得る。
図1を改めて参照すると、スーパーセル100において、隣接し合う太陽電池10は、それらが重なり合う領域で、一方の太陽電池の前面金属被覆パターンを、隣接する太陽電池の裏面金属被覆パターンに電気接続する電気伝導性接合剤により互いに伝導接合する。適した電気伝導性接合剤は、例えば、電気伝導性接着剤、電気伝導性粘着フィルムおよび粘着テープ、並びに従来のはんだを含み得る。
図2A−2Rは、ソーラーモジュールの長辺の長さにおよそ等しい長さをそれぞれが有する6つの長方形スーパーセル100を含む例示的な長方形ソーラーモジュール200を示す。それらスーパーセルは、6つの平行行として、長辺が同モジュールの長辺と平行に方向付けられた状態で配置されている。同様に構成されたソーラーモジュールが、本例において示されているより多い、またはより少ない、そのような辺の長さのスーパーセルの行を含み得る。他の変形例において、スーパーセルはそれぞれ、長方形ソーラーモジュールの短辺の長さにおよそ等しい長さを有し、それらの長辺がモジュールの短辺と平行に方向付けられた状態で平行行に配置され得る。さらに他の配置において、各行は、電気的に直列に相互接続する2またはそれより多くのスーパーセルを含み得る。モジュールは、長さが例えば約1メートルである短辺と、長さが例えば約1.5から約2.0メートルである長辺とを有し得る。ソーラーモジュールには任意の他の適した形状(例えば、正方形)および寸法も用いられ得る。
いくつかの変形例において、重なり合う太陽電池間の複数の伝導接合は、ソーラーモジュールにダメージを与えることなく約−40℃から約100℃の温度範囲で、複数の行と平行な方向への複数のスーパーセルとソーラーモジュールのガラス製の前面シートとの間の熱膨張の不一致に適応する機械的コンプライアンスを、複数のスーパーセルに提供する。
図示されている例における各スーパーセルが、それぞれの幅が、従来サイズの156mmの正方形または擬似正方形シリコンウェハの幅の1/6に等しく、またはおよそ等しく、長さが、正方形または擬似正方形ウェハの幅に等しい、またはおよそ等しい72個の長方形太陽電池を含む。より一般的に、本明細書で説明するソーラーモジュールで採用される長方形シリコン太陽電池は、長さが、例えば、従来サイズの正方形または擬似正方形シリコンウェハの幅に等しい、またはおよそ等しく、幅が、例えば、従来サイズの正方形または擬似正方形ウェハの幅の1/Mに等しい、またはおよそ等しい幅であり得る。Mは、≦20である任意の整数である。Mは、例えば3、4、5、6または12であり得る。Mは、20より大きくてもよい。スーパーセルは、任意の適した数のそのような長方形太陽電池を含み得る。
ソーラーモジュール200内のスーパーセルは、電気相互接続部(オプションで、フレキシブル電気相互接続部)により、または以下に説明するようなモジュールレベルのパワーエレクトロニクスにより直列に相互接続して、従来サイズのソーラーモジュールから、従来より高い電圧を提供し得る。なぜならば、丁度説明したこけら葺き手法は、モジュール当たり、従来より多くの電池を組み込むからである。例えば、1/8に切断されたシリコン太陽電池から作られるスーパーセルを含む従来サイズのソーラーモジュールは、モジュール当たり600を超える太陽電池を含み得る。比較して、従来サイズの従来のように相互接続するシリコン太陽電池を含む従来サイズのソーラーモジュールは、典型的には、モジュール当たり約60個の太陽電池を含む。従来のシリコンソーラーモジュール内で、正方形または擬似正方形太陽電池は、典型的には、銅製のリボンにより相互接続して、互いに離されて、相互接続を収容する。そのような場合、幅狭の長方形となるよう従来サイズの正方形または擬似正方形ウェハを切断することにより、モジュール内の作用する太陽電池面積の総量が減るであろうし、したがって、必要とされる追加の電池間相互接続部が原因となり、モジュール電力を低下させるであろう。対照的に、本明細書で開示するソーラーモジュール内で、こけら葺き状配置により、作用する太陽電池面積の下に電池間電気相互接続が隠れる。結果として、本明細書で説明するソーラーモジュールは、モジュール電力と、同ソーラーモジュール内の太陽電池(および必要とされる電池間相互接続)の数との間のトレードオフが殆ど、または全くないので、モジュール出力電力を低下させることなく高い出力電圧を提供し得る。
全ての太陽電池が直列に接続する場合に、本明細書で説明するようなこけら葺き状太陽電池モジュールは、例えば、約90ボルトから約450ボルトの範囲、またはそれより高いDC電圧を提供し得る。上述したように、この高DC電圧は有利であり得る。
例えば、ソーラーモジュール上に、またはその近くに配されたマイクロインバータがモジュールレベルの電力最適化、およびDC−AC変換のために用いられ得る。ここで図49A−49Bを参照すると、従来、マイクロインバータ4310は、単一のソーラーモジュール4300から25Vから40VのDC入力を受け、230VのAC出力を出力して、接続するグリッドに一致させる。マイクロインバータは、典型的には、2つの主要な構成要素、DC/DCブースト、およびDC/AC反転(inversion)を含む。DC/DCブーストは、DC/AC変換に必要なDCバス電圧を高めるのに利用され、典型的には、最もコストが高く損失が多い(2%の効率損失)構成要素である。本明細書で説明するソーラーモジュールは高い電圧出力を提供するので、DC/DCブーストの必要性は、軽減され得る、またはなくなり得る(図49B)。このことは、ソーラーモジュール200のコストを軽減し、効率および信頼性を高め得る。
マイクロインバータではなく中央(「ストリング」)インバータを用いる従来の配置において、従来の低いDC出力のソーラーモジュールは、互いに、およびストリングインバータに直列に電気接続する。ソーラーモジュールのストリングにより生成される電圧は、それらモジュールが直列に接続するので、個々のモジュール電圧の合計に等しい。許容される電圧範囲が、ストリング内のモジュールの最大数および最小数を決定する。モジュールの最大数は、モジュール電圧および規定の電圧制限により設定される。例えば、Nmax×Voc<600V(米国での住宅基準)またはNmax×Voc<1,000V(商用基準)。直列のモジュールの最小数は、モジュール電圧、およびストリングインバータにより必要とされる最小動作電圧により設定される。Nmin×Vmp>VInvertermin。ストリングインバータ(例えば、Fronius、Powerone、またはSMA インバータ)により必要とされる最小動作電圧(VInvertermin)は、典型的には、約180Vと約250Vとの間である。典型的には、ストリングインバータの最適な動作電圧は、約400Vである。
本明細書で説明するような単一の高DC電圧のこけら葺き状太陽電池モジュールは、ストリングインバータにより必要とされる最小動作電圧より大きい電圧を、オプションで、ストリングインバータの最適な動作電圧で、またはそれに近い電圧で生成し得る。結果として、本明細書で説明する高DC電圧のこけら葺き状太陽電池モジュールは、互いに並列に、ストリングインバータに電気接続し得る。このことにより、システム設計および設置を複雑にし得る、直列接続のモジュールのストリングのストリング長さに関する要求を避けることが出来る。また、ソーラーモジュールの直列接続ストリングにおいて、最も小さい電流のモジュールが支配し、システムは、異なる複数の屋根勾配上のモジュールに関して、または木の影の結果として起こり得るように、ストリング内の異なる複数のモジュールが異なる照射を受けた場合、効率的に動作出来ない。各ソーラーモジュールを通る電流は、他のソーラーモジュールを通る電流とは独立しているので、本明細書で説明する並列高電圧モジュール構成により、これらの問題も避け得る。さらに、そのような配置は、モジュールレベルのパワーエレクトロニクスを要する必要がなく、したがって、ソーラーモジュールの信頼性を向上させ得、このことは、ソーラーモジュールが屋根上に配置される変形例において特に重要であり得る。
ここで図50A−50Bを参照すると、上記で説明したように、スーパーセルは、ソーラーモジュールのおよそ全長または全幅に亘って延び得る。スーパーセルの長さに沿った電気接続を可能とすべく、(前からの視界から)隠れた電気タップ接続点が、ソーラーモジュール構造内に統合され得る。このことは、電気導体を、スーパーセルの端または中間位置において、太陽電池の後面金属被覆に接続することにより達成され得る。そのような隠れタップにより、スーパーセルの電気的なセグメント化が可能となり、スーパーセル、またはスーパーセルのセグメントの、バイパスダイオード、モジュールレベルのパワーエレクトロニクス(例えば、マイクロインバータ、電力オプティマイザー、電圧インテリジェンスおよびスマートスイッチ、および関連デバイス)、または他の構成要素への相互接続が可能となる。隠れタップの使用については、米国仮出願第62/081,200号、米国仮出願第62/133,205号、および米国出願第14/674,983号にさらに説明されている。これらのそれぞれが、その全体が参照により本明細書に組み込まれる。
図50A(例示的な物理的レイアウト)および図50B(例示的な電気回路図)の例において、図示されているソーラーモジュール200は、それぞれ、直列に電気接続して高DC電圧を提供する6つのスーパーセル100を含む。各太陽電池グループが異なるバイパスダイオード4410と並列に電気接続した状態で、いくつかの太陽電池グループとなるよう各スーパーセルが、隠れタップ4400により電気的にセグメント化される。これらの例において、バイパスダイオードは、ソーラーモジュールの積層構造内に配され、すなわち、太陽電池は、前面透明シートとバッキングシートとの間の封入材内にある。代替的に、バイパスダイオードは、ソーラーモジュールの裏面または縁上に位置する接続箱内に配され、延びている導体により隠れタップに相互接続し得る。
図51A(物理的レイアウト)および図51B(対応する電気回路図)の例において、図示されているソーラーモジュール200も、直列に電気接続して高DC電圧を提供する6つのスーパーセル100を含む。本例において、ソーラーモジュールは、スーパーセルの各ペアが異なるバイパスダイオードと並列に電気接続した状態で直列接続するスーパーセルの3つのペアとなるよう電気的にセグメント化される。本例において、バイパスダイオードは、ソーラーモジュールの後面に位置する接続箱4500内に配される。バイパスダイオードは、代わりに、ソーラーモジュールの積層構造内に、または縁に取り付けられた接続箱内に位置し得る。
図50A−51Bの例におて、ソーラーモジュールの通常動作において、各太陽電池は順バイアスがかかり、したがって、全てのバイパスダイオードは、逆バイアスがかかり導通しない。しかし、グループ内の1または複数の太陽電池が十分に高い電圧で逆バイアスがかかっている場合、そのグループに対応するバイパスダイオードはON状態となり、モジュールを通る電流の流れは、逆バイアスがかかった太陽電池をバイパスするであろう。このことにより、影になった、または故障している太陽電池において危険なホットスポットが形成されるのが防がれる。
代替的に、バイパスダイオードの機能性は、モジュールレベルのパワーエレクトロニクス、例えば、ソーラーモジュール上またはその近くに配されたマイクロインバータ内で達成され得る。(モジュールレベルのパワーエレクトロニクス、およびそれらの使用も、本明細書において、モジュールレベルの電力管理デバイスまたはシステム、およびモジュールレベルの電力管理と呼ばれ得る。オプションでソーラーモジュールと統合されたそのようなモジュールレベルのパワーエレクトロニクスが、(例えば、スーパーセルグループ、スーパーセル、または、電気的にセグメント化されたスーパーセル内のスーパーセルセグメントを、その最大電力点で動作させることにより)スーパーセルグループからの、各スーパーセルからの、または各個々のスーパーセルセグメントからの電力を最適化し、それにより、モジュール内で個別の電力最適化を可能とし得る。パワーエレクトロニクスは、モジュール全体、特定のスーパーセルグループ、1または複数の特定の個々のスーパーセル、および/または、1または複数の特定のスーパーセルセグメントをバイパスするときを決定し得るので、モジュールレベルのパワーエレクトロニクスは、モジュール内の何らかのバイパスダイオードの必要性をなくし得る。
このことは、例えば、モジュールレベルでの電圧インテリジェンスを統合することにより達成され得る。ソーラーモジュール内の太陽電池回路(例えば、1または複数のスーパーセル、またはスーパーセルのセグメント)の電圧出力をモニタリングすることにより、その回路が逆バイアスがかかった何らかの太陽電池を含むかを「スマートスイッチ」電力管理デバイスが判断出来る。逆バイアスがかかった太陽電池が検出された場合、電力管理デバイスは、例えば、リレースイッチまたは他の構成要素を用いて、対応する回路を電気システムから切断することが出来る。例えば、モニタリングされる太陽電池回路の電圧が所定の閾値を下回った場合、電力管理デバイスは、その回路をシャットオフする(回路を開く)であろう。所定の閾値は、例えば、回路の通常動作と比較して特定の割合または大きさ(例えば、20%または10V)であり得る。そのような電圧インテリジェンスの実施例は、既存のモジュールレベルのパワーエレクトロニクス製品(例えば、Enphase Energy Inc.、Solaredge Technologies,Inc.、Tigo Energy,Inc.からの)に、またはあつらえの回路設計を通じて組み込まれ得る。
図52A(物理的レイアウト)および図52B(対応する電気回路図)は、こけら葺き状スーパーセルを含む高電圧ソーラーモジュールのモジュールレベルの電力管理の例示的な構造を示す。本例において、長方形ソーラーモジュール200は、ソーラーモジュールの長辺の長さに亘って延在する6行に配置された6つの長方形のこけら葺き状スーパーセル100を含む。6つのスーパーセルは、直列に電気接続して、高DC電圧を提供する。モジュールレベルのパワーエレクトロニクス4600は、モジュール全体の電圧感知、電力管理、および/またはDC/AC変換を実施し得る。
図53A(物理的レイアウト)および図53B(対応する電気回路図)は、こけら葺き状スーパーセルを含む高電圧ソーラーモジュールのモジュールレベルの電力管理の他の例示的な構造を示す。本例において、長方形ソーラーモジュール200は、ソーラーモジュールの長辺の長さに亘って延在する6行に配置された6つの長方形のこけら葺き状スーパーセル100を含む。6つのスーパーセルは、直列接続するスーパーセルの3つのペアとなるよう電気的にグループ化される。スーパーセルの各ペアは、個別に、スーパーセルの個々ペアに対して電圧感知および電力最適化を実施し、それらのうち2またはそれより多くを直列に接続して高DC電圧をもたらし得る、および/またはDC/AC変換を実施し得るモジュールレベルのパワーエレクトロニクス4600に接続する。
図54A(物理的レイアウト)および図54B(対応する電気回路図)は、こけら葺き状スーパーセルを含む高電圧ソーラーモジュールのモジュールレベルの電力管理の他の例示的な構造を示す。本例において、長方形ソーラーモジュール200は、ソーラーモジュールの長辺の長さに亘って延在する6行に配置された6つの長方形のこけら葺き状スーパーセル100を含む。各スーパーセルが、個別に、各スーパーセルに対して電圧感知および電力最適化を実施し、それらのうち2またはそれより多くを直列に接続して高DC電圧をもたらし得る、および/またはDC/AC変換を実施し得るモジュールレベルのパワーエレクトロニクス4600に接続する。
図55A(物理的レイアウト)および図55B(対応する電気回路図)は、こけら葺き状スーパーセルを含む高電圧ソーラーモジュールのモジュールレベルの電力管理の他の例示的な構造を示す。本例において、長方形ソーラーモジュール200は、ソーラーモジュールの長辺の長さに亘って延在する6行に配置された6つの長方形のこけら葺き状スーパーセル100を含む。2またはそれより多くの太陽電池グループとなるよう各スーパーセルが、隠れタップ4400により電気的にセグメント化される。結果として得られる各太陽電池グループは、個別に、各太陽電池グループに対して電圧感知および電力最適化を実施し、複数のそれらグループを直列に接続して高DC電圧をもたらし得る、および/またはDC/AC変換を実施し得るモジュールレベルのパワーエレクトロニクス4600に接続する。
いくつかの変形例において、本明細書で説明するような2またはそれより多くの高電圧DCのこけら葺き状太陽電池モジュールは、直列に電気接続して、インバータによりACに変換される高電圧DC出力をもたらす。インバータは、例えば、ソーラーモジュールのうち1つと統合されたマイクロインバータであり得る。そのような場合、マイクロインバータは、オプションで、上記で説明したような追加の感知および接続機能も実施するモジュールレベルの電力管理エレクトロニクスの構成要素であり得る。代替的に、インバータは、以下にさらに説明するような中央の「ストリング」インバータであり得る。
図56に示すように、ソーラーモジュール内で直列に複数のスーパーセルをストリング化する場合に、隣接し合うスーパーセル行は、それらの長軸に沿って、互いにずらされた様式でわずかにオフセットさせられ得る。このように互いにずらすことにより、モジュールの面積(空間/長さ)を節約し、製造を合理化しつつ、スーパーセル行の隣接し合う端を、一方のスーパーセルの頂部に、および他方のスーパーセルの底部に接合する相互接続部4700により直列に電気接続することが可能となる。隣接し合うスーパーセル行は、例えば、約5ミリメートル分、オフセットされ得る。
電気相互接続部4700と、シリコン太陽電池との間の差異のある熱膨張、および結果として生じる、太陽電池と相互接続部とに対する応力は、ソーラーモジュールの性能を低下させ得る裂け目、および他の不具合の形態に繋がり得る。結果として、相互接続部はフレキシブルであり、実質的な応力が現れることなく、そのような差異のある膨張に適応するよう構成されるのが望ましい。相互接続部は、例えば、延性の高い材料(例えば、柔らかい銅、非常に薄い銅板)から形成されることにより、熱膨張係数が低い材料(例えば、Kovar、Invar、または他の、熱膨張が低い鉄−ニッケル合金)から、または、シリコンの熱膨張係数とおよそ一致する熱膨張係数を有する材料から形成されることにより、相互接続部と、シリコン太陽電池との間の差異のある熱膨張に適応するスリット、スロット、孔、またはトラス構造などの面内幾何学拡大特徴を組み込むことにより、および/または、そのような差異のある熱膨張に適応するキンク、ジョグ、または窪みなどの面外幾何学特徴を採用することにより、応力および熱膨張の緩和を提供し得る。相互接続部の伝導性部分は、厚さが、例えば、約100ミクロン未満、約50ミクロン未満、約30ミクロン未満、または約25ミクロン未満であって、相互接続部のフレキシブル性を高め得る。(これらのソーラーモジュール内の電流が概して低いことにより、薄い相互接続部の電気抵抗から結果として生じる電力損失が過度になることなく、薄いフレキシブルかつ伝導性のリボンの使用が可能となる。)
いくつかの変形例において、スーパーセルとフレキシブル電気相互接続部との間の伝導接合は、ソーラーモジュールにダメージを与えることなく約−40℃から約180℃の温度範囲で、フレキシブル電気相互接続部に、スーパーセルとフレキシブル電気相互接続部との間の熱膨張の不一致に適応させる。
(上記で説明した)図7Aは、面内応力緩和幾何学特徴を採用する、参照番号400A−400Tにより特定されるいくつかの例示的な相互接続構成を示し、(同じく上記で説明した)図7B−1および7B−2は、面外応力緩和幾何学特徴を採用する、参照番号400Uおよび3705により特定される例示的な相互接続構成を示す。応力緩和特徴を採用するこれらの相互接続構成のうち任意の1つ、またはそれらの任意の組み合わせが、本明細書で説明するようなスーパーセルを直列に電気相互接続して、高DC電圧をもたらすのに適しているかもしれない。
図51A−55Bに関連する説明は、モジュールからAC出力を提供するモジュールレベルのパワーエレクトロニクスによる高いDCモジュール電圧のDC/AC変換を場合によっては用いる、モジュールレベルの電力管理に焦点を当ててきた。上述したように、本明細書で説明するようなこけら葺き状太陽電池モジュールからの高DC電圧のDC/AC変換は、代わりに、中央のストリングインバータにより実施され得る。例えば、図57Aは、高DC電圧負極バス4820と高DC電圧正極バス4810とを介して、ストリングインバータ4815へ互いに並列に電気接続する複数の高DC電圧こけら葺き状太陽電池モジュール200を含む光起電力システム4800を概略的に図示する。典型的には、各ソーラーモジュール200は、上記で説明したように、電気相互接続部と直列に電気接続して、高DC電圧を提供する複数のこけら葺き状スーパーセルを含む。ソーラーモジュール200は、オプションで、例えば、上記で説明したように配置されたバイパスダイオードを含み得る。図57Bは、屋根上での光起電力システム4800の例示的な配置を示す。
光起電力システム4800のいくつかの変形例において、高DC電圧こけら葺き状太陽電池モジュールの2またはそれより多くの短い直列接続ストリングは、ストリングインバータと並列に電気接続し得る。図57Aを改めて参照すると、例えば、各ソーラーモジュール200は、2またはそれより多くの高DC電圧こけら葺き状太陽電池モジュール200の直列接続ストリングと置き換えられ得る。このことは、例えば、規制基準に準拠しつつ、インバータに提供される電圧を最大化するよう行われるかもしれない。
従来のソーラーモジュールは、典型的には、約8アンペアIsc(短絡電流)、約50Voc(開回路電圧)、および約35Vmp(最大電力点電圧)を生成する。上記で説明したように、従来と比較してM倍の数の(従来の太陽電池の面積と比較して約1/Mの面積をそれぞれが有する)太陽電池を含む、本明細書で説明するような高DC電圧こけら葺き状太陽電池モジュールは、大まかに、従来のソーラーモジュールと比較してM倍高い電圧、および1/Mの電流を生成する。上述したように、Mは任意の適した整数であり得、典型的には≦20であるが、20より大きくてよい。Mは、例えば3、4、5、6または12であり得る。
M=6の場合、高DC電圧こけら葺き状太陽電池モジュールのVocは、例えば、約300Vであり得る。2つのそのようなモジュールを直列に接続することにより、約600VのDCをバスに提供するであろう。このことは、米国の住居基準により設定される最大値に準拠している。M=4の場合、高DC電圧こけら葺き状太陽電池モジュールのVocは、例えば、約200Vであり得る。3つのそのようなモジュールを直列に接続することにより、約600VのDCをバスに提供するであろう。M=12の場合、高DC電圧こけら葺き状太陽電池モジュールのVocは、例えば、約600Vであり得る。600V未満のバス電圧を有するシステムを構成することも出来る。そのような変形例において、高DC電圧こけら葺き状太陽電池モジュールは、例えば、コンバイナボックス内で、ペアを組んで、または3つで1つの組を組んで、または任意の他の適した組み合わせで接続して、最適な電圧をインバータに提供し得る。
上記で説明された高DC電圧こけら葺き状太陽電池モジュールの並列構成から生じる課題は、1つのソーラーモジュールに短絡が生じた場合、他のソーラーモジュールが潜在的に、それらの電力を短絡したモジュール上に捨て得(すなわち、短絡したモジュールを通るように電流を駆動し、その短絡したモジュールで電力を放散させ得)、危険が生じるということである。この問題は、例えば、他のモジュールが、短絡したモジュールを通るように電流を駆動するのを防ぐよう配置されたブロッキングダイオードの使用、電流制限ヒューズの使用、またはブロッキングダイオードと組み合わせての電流制限ヒューズの使用により避けることが出来る。図57Bは、高DC電圧こけら葺き状太陽電池モジュール200の正端子および負端子上での2つの電流制限ヒューズ4830の使用を概略的に示す。
ブロッキングダイオードおよび/またはヒューズの保護を目的とした配置は、インバータがトランスを含むか否かに依存し得る。トランスを含むインバータを用いるシステムは、典型的には、負極導体を接地する。トランスのないインバータを用いるシステムは、典型的には、負極導体を接地しない。トランスのないインバータに関して、ソーラーモジュールの正端子と並んだ電流制限ヒューズと、負端子と並んだ他の電流制限ヒューズを有することが好ましいかもしれない。
ブロッキングダイオードおよび/または電流制限ヒューズは、例えば、各モジュールが接続箱内にある、またはモジュール積層内にある状態で載置され得る。適した接続箱、ブロッキングダイオード(例えば、並んだブロッキングダイオード)、およびヒューズ(例えば、並んだヒューズ)には、Shoals Technology Groupから利用出来るものが含まれ得る。
図58Aは、ブロッキングダイオード4850がソーラーモジュールの正端子と並んでいる接続箱4840を含む例示的な高電圧DCこけら葺き状太陽電池モジュールを示す。接続箱は、電流制限ヒューズを含まない。この構成は、他の場所(例えば、コンバイナボックス内)で、ソーラーモジュールの正端子および/または負端子と並んで位置する1または複数の電流制限ヒューズと組み合わせて好ましく用いられ得る(例えば、以下の図58Dを参照)。図58Bは、ブロッキングダイオードがソーラーモジュールの正端子と並んでおり、電流制限ヒューズ4830が負端子と並んでいる接続箱4840を含む例示的な高電圧DCこけら葺き状太陽電池モジュールを示す。図58Cは、電流制限ヒューズ4830がソーラーモジュールの正端子と並んでおり、他の電流制限ヒューズ4830が負端子と並んでいる接続箱4840を含む例示的な高電圧DCこけら葺き状太陽電池モジュールを示す。図58Dは、図58Aにあるように構成された接続箱4840と、ソーラーモジュールの正端子および負端子と並んで、接続箱の外側に位置するヒューズとを含む例示的な高電圧DCこけら葺き状太陽電池モジュールを示す。
ここで図59A−59Bを参照すると、上記で説明した構成の代替例として、高DC電圧こけら葺き状太陽電池モジュールの全てのブロッキングダイオードおよび/または電流制限ヒューズは、コンバイナボックス4860内で共に載置され得る。これらの変形例において、1または複数の個々導体は、各モジュールからコンバイナボックスに別々に延びる。図59Aに示すように、1つのオプションにおいて。1つの極性(例えば、図示されているように負極)の単一の導体は、全てのモジュール間で共有される。他のオプションにおいて(図59B)、両方の極性が、各モジュールの個々の導体を有する。図59A−59Bは、コンバイナボックス4860内に位置するヒューズのみを示しているが、ヒューズおよび/またはブロッキングダイオードの任意の適した組み合わせが、コンバイナボックス内に位置し得る。加えて、例えば、モニタリング、最大電力点のトラッキング、および/または個々のモジュール、またはモジュールのグループの切断などの他の機能を実施するエレクトロニクスが、コンバイナボックス内で実装され得る。
ソーラーモジュールの逆バイアス動作は、ソーラーモジュール内の1または複数の太陽電池が影になっている、または他の場合においては小さい電流を生成しており、ソーラーモジュールが、小電流の太陽電池が対応出来るより大きい電流を、その小電流の太陽電池を通るよう駆動する電圧−電流点で動作させられている場合に起こり得る。逆バイアスがかかった太陽電池は、熱くなり、危険な状況を生じさせ得る。例えば、図58Aに示すような高DC電圧こけら葺き状太陽電池モジュールの並列配置により、インバータの適した動作電圧を設定することにより、それらモジュールを逆バイアス動作から保護することが可能となり得る。このことは、例えば図60A−60Bに図示されている。
図60Aは、約10個の高DC電圧こけら葺き状ソーラーモジュールの並列接続ストリングの、電流対電圧のプロット4870と、電力対電圧のプロット4880を示す。これらの曲線は、ソーラーモジュールがどれも逆バイアスがかかった太陽電池を含まないモデルに関して計算された。ソーラーモジュールは並列に電気接続するので、それらは全て同じ動作電圧を有し、それらの電流は加算される。典型的には、インバータが、回路に対する負荷を変化させて、電力−電圧曲線上を探り、その曲線上の最大極点を特定し、その後、その点でモジュール回路を動作させて、出力電力を最大化する。
対照的に、図60Bは、回路内のソーラーモジュールのうちいくつかが、1または複数の逆バイアスがかかった太陽電池を含む場合に関して、電流対電圧のプロット4890と、図60Aのモデルシステムの電力対電圧のプロット4900とを示す。逆バイアスがかかったモジュールは、例示的な電流−電圧曲線内で、約210ボルトまでの下がった電圧での約10ampの動作から、約200ボルト未満の電圧での約16ampの動作まで遷移する膝形状の形成により現れる。約210ボルト未満の電圧で、影になったモジュールは、逆バイアスがかかった太陽電池を含む。逆バイアスがかかったモジュールは、同じく電力−電圧曲線内で、2つの最大値、約200ボルトでの絶対最大値および約240ボルトでの極大の存在により現れる。インバータは、逆バイアスがかかったソーラーモジュールのそのような兆候を認識し、どのモジュールにも逆バイアスがかからない絶対最大値または極大の電力点の電圧でソーラーモジュールを動作させるよう構成され得る。図60Bの例において、インバータは、極大電力点でモジュールを動作させて、どのモジュールにも逆バイアスが確実にかからないようにし得る。加えて、または代替的に、それ未満ではいずれかのモジュールに逆バイアスがかかる可能性が低くなるような最小動作電圧がインバータのために選択され得る。その最小動作電圧は、環境温度、動作電流および、計算または測定されたソーラーモジュール温度、および、例えば光輝などの、外部のソースから受信した他の情報などの他のパラメータに基づき調整され得る。
いくつかの実施形態において、高DC電圧ソーラーモジュールはそれら自体が、隣接し合うソーラーモジュールが、部分的に重なり合わせる様式で、オプションで、それらの重なり合う領域で電気相互接続して配置された状態でこけら葺き状にされ得る。そのようなこけら葺き状構成は、オプションで、高DC電圧をストリングインバータに提供する、並列に電気接続する高電圧ソーラーモジュールに関して、または、ソーラーモジュールの高DC電圧をACモジュール出力に変換するマイクロインバータをそれぞれが含む高電圧ソーラーモジュールに関して用いられ得る。高電圧ソーラーモジュールのペアは、例えば、丁度説明したようにこけら葺き状にされ、直列に電気接続して、所望されるDC電圧を提供し得る。
従来のストリングインバータは多くの場合、1)それらが、直列接続のモジュールの異なるストリング長さに対応可能でなければならず、2)ストリング内のいくつかのモジュールは、全体的に、または部分的に影になっているかもしれず、3)環境温度および放射の変化が、モジュール電圧を変化させるので、かなり広い範囲の潜在的入力電圧(または「動的範囲」を有する必要がある。本明細書で説明するような並列構造を採用するシステムにおいて、並列接続のソーラーモジュールのストリングの長さは、電圧に影響を与えない。さらに、いくつかのモジュールが、部分的に影になっており、いくつかが影になっていない場合、(例えば、上記で説明したように)影になっていないモジュールの電圧でシステムを動作させるよう決定することが出来る。したがって、並列構造システム内のインバータの入力電圧範囲は、要素#3の「温度および放射の変化」の「動的範囲」のみに適応すればよいかもしれない。これはより小さい、例えば、インバータに必要とされる従来の動的範囲の約30%であるので、本明細書で説明するような並列構造システムと共に採用されるインバータは、より狭い範囲、例えば、標準状態で約250ボルトと、高温および低放射で約175ボルトとの間、または、例えば、標準状態で約450ボルトと、高温および低放射で約350ボルト(この場合、450ボルトMPPT(最大電力点トラッキング)動作は、最も低い温度の動作における600ボルト未満のVOCに対応し得る)との間のMPPTを有し得る。加えて、上記で説明したように、インバータは、ブースト段階なしで、直接的にACに変換するのに十分なDC電圧を受け得る。結果として、本明細書で説明するような並列構造システムと共に採用されるストリングインバータは、より単純であり、コストがより低く、従来のシステムで採用されるストリングインバータより高い効率で動作し得る。
本明細書で説明する高電圧直流こけら葺き状太陽電池モジュールと共に採用されるマイクロインバータおよびストリングインバータの両方に関して、インバータの、DCブーストの必要性を取り除くべく、ソーラーモジュール(または、ソーラーモジュールの短い直列接続ストリング)を、ACのピークトゥピークを越える動作(例えば、最大電力点Vmp)DC電圧を提供するよう構成することが好ましいかもしれない。例えば、120VのACに関して、ピークトゥピークは、sqrt(2)*120V=170Vである。したがって、ソーラーモジュールは、例えば約175Vの最小のVmpを提供するよう構成されるかもしれない。標準状態のVmpは、約212V(0.35%の負電圧温度係数、および75℃の最大動作温度を想定)であるかもしれず、最も低い温度の動作状態(例えば、−15℃)でVmpは、(モジュールフィルファクターに依存して)約242V、したがって、約300Vを下回るVocであるかもしれない。単相120VのAC(または240VのAC)に関して、これらの数の全てが2倍になり、このことは、600VのDCが、多くの住居での応用に関して米国で許されている最大であるので好都合である。より高い電圧が必要であり、それを許容する商業的な応用に関して、これらの数はさらに大きくなり得る。
本明細書で説明するような高電圧のこけら葺き状太陽電池モジュールは、>600のVOCまたは>1000のVOCで動作するよう構成され得、この場合、モジュールは、モジュールにより提供される外部電圧が規定の要求を上回るのを防ぐ、統合されたパワーエレクトロニクスを含み得る。そのような配置により、低い温度でのVOCが600Vを上回る問題なしで、動作Vmpが単相120V(240V、約350Vが必要)のために十分となることが可能となり得る。
例えば消防士によって、建物の、送電網への接続が切断された場合に、建物へ電気を提供する(例えば、建物の屋根上の)ソーラーモジュールは、太陽が輝いていれば、依然として電力を生成することが出来る。このことにより生じる懸念は、そのようなソーラーモジュールにより、建物の、送電網からの切断の後、屋根が危険な電圧と「住んだ」ままとし得る、ということである。この懸念に対処すべく、本明細書で説明する高電圧直流こけら葺き状太陽電池モジュールは、オプションで、例えばモジュール接続箱内で、またはそれに隣接して断路器を含み得る。断路器は、例えば、物理的な断路器またはソリッドステートの断路器であり得る。断路器は、(例えば、インバータからの)特定の信号を受けなくなった場合に、ソーラーモジュールの高い電圧出力を屋根の回路から切断するよう、例えば「通常はOFF状態」であるよう構成され得る。断路器への通信は、例えば、高電圧ケーブル上で、別個の電線を通じて、または無線で行なわれ得る。
高電圧ソーラーモジュールをこけら葺き状にすることの重要な利点は、こけら葺き状スーパーセル内の太陽電池間で熱が拡散することである。本出願人は、隣接し合い重なり合うシリコン太陽電池間の薄い電気および熱伝導性接合を通じてシリコンスーパーセルに沿って熱が容易に移され得ることを発見した。電気伝導性接合剤により形成される隣接し合い重なり合う太陽電池間の導電接合の、太陽電池の前面および裏面と垂直な方向に測定される厚さは、例えば、約200ミクロンより小さい、若しくはそれと等しい、または約150ミクロンより小さい、若しくはそれと等しい、または約125ミクロンより小さい、若しくはそれと等しい、または約100ミクロンより小さい、若しくはそれと等しい、または約90ミクロンより小さい、若しくはそれと等しい、または約80ミクロンより小さい、若しくはそれと等しい、または約70ミクロンより小さい、若しくはそれと等しい、または約60ミクロンより小さい、若しくはそれと等しい、または約50ミクロンより小さい、若しくはそれと等しい、または約25ミクロンより小さい、若しくはそれと等しい厚さであり得る。そのような薄い接合は、電池間の相互接続における抵抗損失を少なくし、また、動作の間に現れるかもしれない、スーパーセル内の何らかのホットスポットからの、スーパーセルに沿った熱の流れを促す。太陽電池間の接合の熱伝導性は、例えば、≧約1.5ワット/(メートルK)であり得る。さらに、本明細書で典型的に採用される太陽電池の長方形のアスペクト比は、隣接し合う太陽電池間の熱的接触の領域を拡大させる。
対照的に、隣接し合う太陽電池間のリボン相互接続部を採用する従来のソーラーモジュール内で、一方の太陽電池で生成された熱は、それらリボン相互接続部を通じて、モジュール内の他の太陽電池へ容易には拡散しない。このことにより従来のソーラーモジュールは、本明細書で説明するソーラーモジュールより、よりホットスポットを生じさせ易くする。
さらに、本明細書で説明するスーパーセルは、典型的には、従来の太陽電池の作用面積より狭い作用面積(例えば、1/6)をそれぞれが有する長方形太陽電池をこけら葺き状にすることにより形成されるので、本明細書で説明するソーラーモジュール内のスーパーセルを通る電流は、典型的には、従来の太陽電池のストリングを通る電流未満である。
結果として、本明細書で開示するソーラーモジュール内で、降伏電圧で逆バイアスがかかった太陽電池において放散させられる熱の量が少なくなり、危険なホットスポットを生じさせることなく、スーパーセルおよびソーラーモジュールを通って熱が容易に拡散し得る。
いくつかの追加の、およびオプションの特徴により、本明細書で説明するようなスーパーセルを採用する高電圧ソーラーモジュールを、逆バイアスがかかった太陽電池において放散させられる熱に対してさらにより高い耐性を有するものとし得る。例えば、スーパーセルは、オレフィン系熱可塑性(TPO)ポリマー内に封入され得る。TPO封入材は、標準的なエチレン酢酸ビニル(EVA)封入材より光熱に対する安定性が高い。EVAは、温度および紫外線で褐色になり、電流を制限する電池により生じるホットスポットに関する課題に繋がる。さらに、ソーラーモジュールは、封入されたスーパーセルが、ガラス製の前面シートとガラス製の後面シートとの間に挟まれているガラス−ガラス構造を有し得る。そのようなガラス−ガラス構造により、ソーラーモジュールは、従来のポリマー後面シートが耐えられるより高い温度で安全に動作することが可能となる。さらにまた、存在する場合、接続箱が、ソーラーモジュールの後方ではなく、ソーラーモジュールの1または複数の縁上に取り付され得る。ここで接続箱は、その上方にあるモジュール太陽電池に対して、追加の熱隔離層を追加するであろう。
したがって、本出願人らは、スーパーセルを通る熱の流れにより、モジュールは、逆バイアスがかかる1または複数の太陽電池に伴った実質的なリスクなしで動作することが可能となり得るので、本明細書で説明するようなスーパーセルから形成された高電圧ソーラーモジュールは、従来のソーラーモジュール内で採用されるよりはるかに少ないバイパスダイオードを採用し得ることを認識している。例えば、いくつかの変形例において、本明細書で説明するような高電圧ソーラーモジュールは、25個の太陽電池当たり1つ未満のバイパスダイオード、30個の太陽電池当たり1つ未満のバイパスダイオード、50個の太陽電池当たり1つ未満のバイパスダイオード、75個の太陽電池当たり1つ未満のバイパスダイオード、100個の太陽電池当たり1つ未満のバイパスダイオード、単一のバイパスダイオードのみを採用し得、またはバイパスダイオードを採用してなくてよい。
ここで図61A−61Cを参照すると、バイパスダイオードを利用する例示的な高電圧ソーラーモジュールが提供されている。ソーラーモジュールの一部が影になっている場合に、バイパスダイオードの使用により、モジュールに対するダメージが防がれ得、または軽減され得る。図61Aに示す例示的なソーラーモジュール4700に関して、10個のスーパーセル100が直列に接続する。図示されているように、それら10個のスーパーセルは、平行行に配置されている。各スーパーセルが、40個の直列接続する太陽電池10を含んでおり、それら40個の太陽電池のうちそれぞれが、本明細書で説明するように、正方形または擬似正方形のおよそ1/6で作られている。通常の影になっていない動作で、電流は、コネクタ4715を通じて直列に接続するスーパーセル100のうちそれぞれを通じて接続箱4716から流れて入り、その後、電流は接続箱4717を通って流れ出る。オプションで、電流が1つの接続箱に戻るように、別個の接続箱4716および4717の代わりに、単一の接続箱が用いられ得る。図61Aに示す例は、1つのスーパーセル当たりおよそ1つのバイパスダイオードを用いる実施例を示す。示されているように、単一のバイパスダイオードが、近隣のスーパーセルのペア間で、スーパーセルに沿ったおよそ中間点において電気接続する(例えば、単一のバイパスダイオード4901Aが、第1スーパーセル内の第22太陽電池と、その近隣の、第2スーパーセル内の太陽電池との間に電気接続し、第2バイパスダイオード4901Bが、第2スーパーセルと、第3スーパーセルとの間に電気接続する、などである)。第1の電池ストリングおよび最後の電池ストリングは、1つのバイパスダイオード当たり、スーパーセル内に有する太陽電池の数がおよそ半分だけである。図61Aに示す例に関して、第1の電池ストリングおよび最後の電池ストリングは、1つのバイパスダイオード当たり22個の電池のみを含む。図61Aに図示されている高電圧ソーラーモジュールの変形例に関して、バイパスダイオードの総数(11)は、スーパーセルの数に、追加のバイパスダイオードを1つ加えた値に等しい。
各バイパスダイオードは、例えば、フレックス回路に組み込まれ得る。ここで図61Bを参照すると、2つの近隣のスーパーセルのバイパスダイオード接続領域の拡大図が示されている。図61Bの図は、陽が当たらない側から見たものである。示されているように、近隣のスーパーセル上の2つの太陽電池10は、バイパスダイオード4720を含むフレックス回路4718を用いて電気接続する。フレックス回路4718とバイパスダイオード4720とは、太陽電池の裏面に位置するコンタクトパッド4719を用いて太陽電池10に電気接続する。(バイパスダイオードに対して隠れタップを提供する隠れコンタクトパッドの使用についての、以下の更なる説明も参照。)追加のバイパスダイオード電気接続スキームが、1つのバイパスダイオード当たりの太陽電池の数を減らすのに採用され得る。一例は、図61Cに図示されている。示されているように、1つのバイパスダイオードが、近隣のスーパーセルの各ペア間で、スーパーセルに沿っておよそ中間点で電気接続する。バイパスダイオード4901Aが、第1および第2スーパーセル上の近隣の太陽電池間で電気接続し、バイパスダイオード4901Bが、第2および第3スーパーセル上の近隣の太陽電池間に電気接続し、バイパスダイオード4901Cが、第3および第4スーパーセル上の近隣の太陽電池間に電気接続する、などである。第2セットのバイパスダイオードが、部分的な影が起こった場合にバイパスされることになる太陽電池の数を減らすよう含まれ得る。例えば、バイパスダイオード4902Aが、第1スーパーセルと第2スーパーセルとの間で、バイパスダイオード4901Aとバイパスダイオード4901Bとの間の中間点において電気接続し、バイパスダイオード4902Bが、第2スーパーセルと第3スーパーセルとの間で、バイパスダイオード4901Bとバイパスダイオード4901Cとの間の中間点において電気接続する、などであり、これにより、1つのバイパスダイオード当たりの電池の数が減る。オプションで、さらに他のセットのバイパスダイオードが、部分的な影が生じた場合にバイパスされる太陽電池の数をさらに減らすよう電気接続し得る。バイパスダイオード4903Aが、第1スーパーセルと第2スーパーセルとの間で、バイパスダイオード4902Aとバイパスダイオード4901Bとの間の中間点において電気接続し、バイパスダイオード4903Bが、第2スーパーセルと第3スーパーセルとの間で、バイパスダイオード4902Bとバイパスダイオード4901Cとの間の中間点において電気接続し、これにより、1つのバイパスダイオード当たりの電池の数がさらに減る。この構成の結果として、電池の小さいグループが部分的な影が生じている間にバイパスされることを可能とするバイパスダイオードの入れ子になった構成となる。所望される、1つのバイパスダイオード当たりの太陽電池の数、例えば、1つのバイパスダイオード当たり約8、約6、約4、または約2つが達成されるまで、追加のダイオードが、このように電気接続し得る。いくつかのモジュールおいて、1つのバイパスダイオード当たり約4つの太陽電池が望ましい。所望される場合、図61Cに図示されているバイパスダイオードのうち1または複数が、図61B、に図示されているような隠れフレキシブル相互接続部に組み込まれ得る。
本明細書は、例えば、複数の幅狭の長方形または略長方形太陽電池となるよう従来サイズの正方形または擬似正方形太陽電池を分離させるのに用いられ得る太陽電池劈開ツールおよび太陽電池劈開方法を開示する。これらの劈開ツールおよび方法は、従来サイズの太陽電池の底面と湾曲支持面との間で真空を引いて、湾曲支持面に寄せて従来サイズの太陽電池を曲げ、それにより、事前に用意されたスクライブラインに沿って太陽電池を劈開する。これらの劈開ツールおよび劈開方法の利点は、それらが、太陽電池の上面と物理的な接触を要さないということである。結果として、これらの劈開ツールおよび方法は、物理的な接触によりダメージが与えられ得る、上面に柔らかい、および/または未硬化の材料を含む太陽電池を劈開するのに採用され得る。加えて、いくつかの変形例において、これらの劈開ツールおよび劈開方法は、太陽電池の底面の一部のみとの接触を要し得る。そのような変形例において、これらの劈開ツールおよび方法は、劈開ツールにより接触されない底面の一部に柔らかい、および/または未硬化の材料を含む太陽電池を劈開するのに採用され得る。
例えば、本明細書で開示する劈開ツールおよび方法を利用する1つの太陽電池製造方法は、
1または複数の従来サイズのシリコン太陽電池のうち各シリコン太陽電池上に1または複数のスクライブラインをレーザースクライブして、1または複数のシリコン太陽電池上に複数の長方形領域を画定する工程と、
1または複数のシリコン太陽電池の頂面の一部に電気伝導性粘着接合剤を適用する工程と、
1または複数のシリコン太陽電池の底面と湾曲支持面との間で真空を引いて、湾曲支持面に寄せて1または複数のシリコン太陽電池を曲げ、それにより、1または複数のスクライブラインに沿って1または複数のシリコン太陽電池を劈開して、長辺に隣接する前面に配された電気伝導性粘着接合剤の一部をそれぞれが含む複数の長方形シリコン太陽電池を提供する工程と
を含む。伝導性粘着接合剤は、太陽電池がレーザースクライブされる前または後のいずれかで、従来サイズのシリコン太陽電池に適用され得る。
結果として得られる複数の長方形シリコン太陽電池は、隣接し合う長方形シリコン太陽電池の長辺が、電気伝導性粘着接合剤の一部が間に配されてこけら葺き状に重なり合った状態で並んで配置され得る。その後、電気伝導性接合剤は硬化させられて、それにより隣接し合い重なり合う長方形シリコン太陽電池を互いに接合し、それらを直列に電気接続し得る。このプロセスにより、上記の「関連出願の相互参照」において列挙した特許出願で説明されているようなこけら葺き状「スーパーセル」が形成される。
本明細書で開示する劈開ツールおよび方法をより良く理解すべく、ここで図面を見ると、図20Aは、スクライブされた太陽電池を劈開するのに用いられ得る例示的な装置1050の側面図を概略的に図示している。本装置において、スクライブされた従来サイズの太陽電池ウェハ45は、真空マニホールド1070の湾曲部分上方を、穿孔付移動ベルト1060により運ばれる。太陽電池ウェハ45が、真空マニホールドの湾曲部分上方を通過する際、ベルトの穿孔を通じて引かれる真空が、真空マニホールドに寄せて太陽電池ウェハ45の底面を引っ張り、それにより、太陽電池を曲げる。真空マニホールドの湾曲部分の曲率半径Rは、このように太陽電池ウェハ45を曲げることにより、スクライブラインに沿って太陽電池を劈開して、長方形太陽電池10を形成するよう選択され得る。長方形太陽電池10は、例えば、図1および2に図示されているようなスーパーセルで用いられ得る。太陽電池ウェハ45は本方法により、伝導性粘着接合剤が適用された太陽電池ウェハ45の頂面に接触することなく劈開させられ得る。
各スクライブラインに関して、一端が、他端の前に真空マニホールドの湾曲部分に到達するように、例えば、スクライブラインが、真空マニホールドに対して角度θを付けて方向付けられるよう配置することにより、劈開は、優先的にスクライブラインの一端において(すなわち、太陽電池45の1つの縁において)開始され得る。図20Bに示すように、例えば、太陽電池は、それらのスクライブラインがベルトの移動方向に対して、および、ベルトの移動方向と垂直な方向に方向付けられたマニホールドの湾曲した劈開部分に対して角度を付けた状態で方向付けられ得る。他の例として、図20Cは、スクライブラインがベルトの移動方向と垂直な状態で方向付けられた電池と、ベルトの移動方向に対して角度を付けて方向付けられたマニホールドの湾曲した劈開部分とを示す。
劈開ツール1050は、例えば、太陽電池ウェハ45の幅におよそ等しい、その移動方向と垂直な方向への幅を有する単一の穿孔付移動ベルト1060を利用し得る。代替的に、ツール1050は、例えば、並んで平行に配置され、オプションで互いに離れ得る2、3、4、またはそれより多くの穿孔付移動ベルト1060を含み得る。劈開ツール1050は、例えば、太陽電池ウェハ45の幅におよそ等しい、太陽電池の移動方向と垂直な方向への幅を有し得る単一の真空マニホールドを利用し得る。そのような真空マニホールドが、例えば、単一の全幅の穿孔付移動ベルト1060と共に、または例えば、2またはそれより多くのそのような、並んで平行に配置され、オプションで互いに離れたベルトと共に採用され得る。
劈開ツール1050は、並んで平行に配置され、互いに離れた2またはそれより多くの、同じ曲率をそれぞれが有する湾曲した真空マニホールドを含み得る。そのような配置が、例えば、単一の全幅の穿孔付移動ベルト1060と共に、または2またはそれより多くのそのような、並んで平行に配置され、オプションで互いに離れたベルトと共に採用され得る。例えば、そのツールは、真空マニホールド毎に穿孔付移動ベルト1060を含み得る。後者の配置において、真空マニホールド、およびそれらの対応する穿孔付移動ベルトは、ベルトの幅により画定される2つの幅狭のストリップのみに沿って太陽電池ウェハの底部に接触するよう配置され得る。そのような場合、太陽電池は、ベルトにより接触されない太陽電池ウェハの底面の領域に柔らかい材料を含み得、劈開プロセスの間の、柔らかい材料に対するダメージのリスクは生じない。
穿孔付移動ベルトおよび真空マニホールドの任意の適した配置が、劈開ツール1050において用いられ得る。
いくつかの変形例において、スクライブされた太陽電池ウェハ45は、劈開ツール1050を用いて劈開する前に、それらの頂面および/または底面に未硬化の伝導性粘着接合剤および/または他の柔らかい材料を含む。太陽電池ウェハのスクライブおよび柔らかい材料の適用は、いずれかの順序で起こっていてよい。
図62Aは、上記で説明した劈開ツール1050と同様の他の例示的な劈開ツール5210の側面図を概略的に図示し、図62Bはその平面図を概略的に図示する。劈開ツール5210の使用において、従来サイズのスクライブされた太陽電池ウェハ45が、平行で互いに離れた真空マニホールド5235のペア上を一定速度で移動する、対応する平行で互いに離れた穿孔付ベルト5230のペア上に載置される。真空マニホールド5235は典型的には、同じ曲率を有する。ウェハが、劈開領域5235Cを通って真空マニホールド上をベルトと共に移動するにつれ、ウェハは、ウェハの底部を引っ張る真空の力により、真空マニホールドの湾曲支持面により画定される劈開範囲周りで曲げられる。ウェハが劈開範囲周りで曲げられるにつれ、スクライブラインは、個々の長方形太陽電池となるようウェハを分離させる裂け目となる。以下にさらに説明するように、真空マニホールドの曲率は、隣接し合う劈開された長方形太陽電池が同一面になく、隣接し合う劈開された長方形太陽電池の縁が結果として、劈開プロセスが起こった後に互いに接触しないよう配置される。劈開された長方形太陽電池は連続的に、以下にいくつかの例示的なものが説明されている任意の適した方法により穿孔付ベルトから降ろされ得る。典型的には、その降ろす方法によりさらに、隣接し合う劈開済の太陽電池が互いに分離されて、続いてそれらが同一面に横たわる場合にはそれら同士で接触するのを防ぐ。
図62A−62Bをさらに参照すると、各真空マニホールドは、例えば、真空を引かない、または低い、若しくは高い真空を引く平坦領域5235Fと、オプションである、その長さに沿って低い、または高い真空を引く、または低い真空から高い真空まで遷移させて引く湾曲した遷移領域5235Tと、高い真空を引く劈開領域5235Cと、低い真空を引くより半径の小さい劈開後領域5235PCとを含み得る。ベルト5230はウェハ45を、平坦領域5235Fから遷移領域5235T内に、およびそれを通るように搬送し、その後、ウェハが劈開する劈開領域5235C内に搬送し、その後、結果として得られる劈開済の太陽電池10を、劈開領域5235Cから出るように、および劈開後領域5235PC内に搬送する。
平坦領域5235Fは、典型的には、ウェハ45をベルトおよび真空マニホールドに留めるのに十分な程度の低い真空で動作する。ここで真空は、摩擦を、したがって、要するベルトの張力を減らすよう、および、ウェハ45を平坦面に留めておくことは湾曲面に留めることより容易なので、低くて(または存在しなくて)よい。平坦領域5235Fでの真空は、例えば、約1から約6水銀柱インチであり得る。
遷移領域5235Tは、平坦領域5235Fから劈開領域5235Cへ遷移する曲率を提供する。遷移領域5235Tでの曲率半径、または複数の曲率半径は、劈開領域5235Cでの曲率半径より大きい。遷移領域5235Tでの湾曲部は、例えば、楕円の一部であり得るが、任意の適した湾曲部が用いられ得る。領域5235Fにおける平坦な向きから、劈開領域5235Cにおける劈開範囲への直接的な遷移ではなく、遷移領域5235Tを通じてより小さな曲率の変化でウェハ45を劈開領域5235Cに近づけることは、ウェハ45の縁が持ち上がり、真空をなくならせてしまい、ウェハを、劈開領域5235Cにおいて劈開範囲に留めることが困難になるということが確実に起こらないようにするのに役立つ。遷移領域5235Tでの真空は、例えば、劈開領域5235Cでのものと同じであり得、領域5235Fおよび5235Cの真空の中間であり得、または領域5235Fでの真空と領域5235Cでの真空との間で、領域5235Tの長さに沿って遷移し得る。遷移領域5235Tでの真空は、例えば、約2から約8水銀柱インチであり得る。
劈開領域5235Cは、変化する曲率半径、またはオプションで、一定の曲率半径を有し得る。そのような一定の曲率半径は、例えば、約11.5インチ、約12.5インチ、または約6インチと約18インチとの間であり得る。任意の適した範囲の曲率が用いられ得、ウェハ45の厚さ、および、ウェハ45におけるスクライブラインの深さおよび幾何学に部分的に基づいて選択され得る。典型的には、ウェハが薄ければ薄い程、スクライブラインに沿ってウェハを十分に裂くようウェハを曲げるのに必要な曲率半径は短くなる。スクライブラインは、例えば、約60ミクロンから約140ミクロンの深さを有し得るが、任意の他の適したより浅い、またはより深いスクライブライン深さも用いられ得る。典型的には、スクライブが浅ければ浅いほど程、スクライブラインに沿ってウェハを十分に裂くようウェハを曲げるのに必要な曲率半径は短くなる。スクライブラインの断面形状も、必要とされる曲率半径に影響する。丸みのある形状、または丸みのある底部を有するスクライブラインより、楔形状を有する、または楔形状の底部を有するスクライブラインが、応力を効果的に集中させ得る。応力をより効果的に集中させるスクライブラインは、応力をあまり効果的に集中させないスクライブライン程小さい劈開領域内の曲率半径を要さないかもしれない。
2つの平行な真空マニホールドのうち少なくとも一方に関して、劈開領域5235Cでの真空は、典型的には、他の領域での真空より高くて、ウェハを劈開曲率半径に適切に留めることを確実にして、一定の曲げ応力を維持する。オプションで、および、以下にさらに説明するように、この領域において、スクライブラインに沿った裂けをより良好に制御するために、一方のマニホールドは、他方より高い真空を引き得る。劈開領域5235Cでの真空は、例えば、約4から約15水銀柱インチ、または約4から約26水銀柱インチであり得る。
劈開後領域5235PCは、典型的には、劈開領域5235Cより小さい曲率半径を有する。このことにより、隣接し合う劈開済の太陽電池の割れた表面に、擦らせる、または触れさせることなく(これらのことは、裂け目または他の不具合の形態から起こる太陽電池の不具合を引き起こし得る)、劈開済の太陽電池をベルト5230から運搬することが容易になる。特に、より小さい曲率半径は、ベルト上の隣接し合う劈開済の太陽電池の縁間のより大きな分離をもたらす。複数の太陽電池10となるようウェハ45は既に劈開させられており、もはや、太陽電池を、真空マニホールドの湾曲した半径に留める必要がないので、劈開後領域5235PCでの真空は、低くてよい(例えば、平坦領域5235Fでのものと同様であるか、または同じ)。劈開済の太陽電池10の縁は、例えば、ベルト5230から離れて持ち上がり得る。さらに、劈開済の太陽電池10に過度に応力がかからないのが望ましいかもしれない。
真空マニホールドの、平坦領域、遷移領域、劈開領域、および劈開後領域は、それらの端が一致した異なる曲線の不連続な部分であり得る。例えば、各マニホールドの上面は、平坦な平面部分、遷移領域のための楕円の一部、劈開領域のための円の弧、および、劈開後領域のための円の他の弧または楕円の一部を含み得る。代替的に、マニホールドの上面の湾曲部分の一部、または全てが、曲率が大きくなる(接触円の直径が短くなる)連続幾何学関数を含み得る。適したそのような関数は、例えば、クロソイドなどの螺旋関数、および自然対数関数を含み得るが、これらのに限定されない。クロソイドは、曲率が、曲線の経路の長さに沿って直線的に大きくなる曲線である。例えば、いくつかの変形例において、遷移領域、劈開領域、および劈開後領域は全て、一端が平坦領域に一致する単一のクロソイド曲線の一部である。いくつかの他の変形例において、遷移領域は、一端が平坦領域に一致し、他端が円形曲率を有する劈開領域に一致したクロソイド曲線である。後者の変形例において、劈開後領域は、例えば、より高い半径円形曲率、またはより高い半径クロソイド曲率を有し得る。
上述したように、および図62Bおよび図63Aに概略的に図示されているように、いくつかの変形例において、一方のマニホールドが、劈開領域5235Cにおいて高い真空を、他方のマニホールドが、劈開領域5235Cにおいて低い真空を引く。その高真空マニホールドは、それが支持するウェハの端を全体的にマニホールドの湾曲に留め、このことは、高真空マニホールドの上に横たわるスクライブラインの端に、スクライブラインに沿った裂け目を開始させるのに十分な応力を提供して。その低真空マニホールドは、それが支持するウェハの端を全体的にマニホールドの湾曲に留めないので、その側のウェハの曲げ半径は、スクライブラインにおいて裂け目を開始させるのに必要な応力を生じさせるには十分に小さくはない。しかし、その応力は、高真空マニホールドの上に横たわるスクライブラインの他端で開始した裂け目を伝播させるには十分に高い。ウェハのその端をマニホールドの湾曲に部分的および十分に留めるための「低真空」側のいくらかの真空なしでは、ウェハの反対側の「高真空の」端で開始した裂け目が、ウェハ全体を横切って伝播しないリスクがあり得る。丁度説明したような変形例において、1つのマニホールドはオプションで、平坦領域5235Fから劈開後領域5235PCを通るその長さ全体に沿って低真空を引き得る。
丁度説明したように劈開領域5235Cでの非対称な真空配置は、スクライブラインに沿った裂け目の核生成および伝播を制御する、スクライブラインに沿った非対称な応力を提供する。例えば、図63Bを参照すると、代わりに2つの真空マニホールドが劈開領域5235Cにおいて等しい(例えば、高い)真空を引いた場合、裂け目がウェハの両端で核となり、互いに向かって伝播し、ウェハの中央領域のどこかで出会うかもしれない。これらの状況下で、それら裂け目が互いに一線にならないかもしれず、したがってそれらが、裂け目が出会う、結果として生じる劈開済電池に潜在的な機械的な不具合のある点を生じさせるリスクがある。
上記で説明した、非対称な真空配置の代替例として、またはそれに加えて、スクライブラインの一端がマニホールドの劈開領域に、他端の前に到達するよう配置することにより、劈開が、優先的にスクライブラインの一端で開始させられ得る。このことは、例えば、図20Bに関連して上記で説明したように、真空マニホールドに対して角度を付けけて太陽電池ウェハを方向付けることにより達成され得る。代替的に、2つのマニホールドのうち一方のマニホールドの劈開領域が、他方の真空マニホールドの劈開領域より、ベルト経路に沿ってもっと先に真空マニホールドが配置され得る。例えば、同じ曲率を有する2つの真空マニホールドのうち一方のマニホールドの劈開領域に太陽電池ウェハが、他方の真空マニホールドの劈開領域に到達する前に到達するよう、それら2つの真空マニホールドは、移動ベルトの移動方向にわずかにオフセットされ得る。
ここで図64を参照すると、図示されている例において、各真空マニホールド5235は、真空チャネル5245の中心の下で並んで配置された貫通孔5240を含む。図65A−65Bに示すように、真空チャネル5245は、穿孔付ベルト5230を支持するマニホールドの上面内に窪んでいる。各真空マニホールドは、貫通孔5240間に位置付けられ、真空チャネル5245の中心の下で並んで配置された中心柱5250も含む。中心柱5250は、複数の中心柱の行の両側で2つの平行真空チャネルとなるよう真空チャネル5245を効果的に分離させる。中心柱5250は、ベルト5230のための支持も提供する。中心柱5250なしでは、ベルト5230は、より長い支持されていない領域に曝されるであろうし、貫通孔5240に向かって吸い込まれてしまいかねない。このことの結果として、ウェハ45が3次元の屈曲(劈開範囲による屈曲、および劈開範囲と垂直な方向への屈曲)ことになり得、このことは、太陽電池にダメージを与え、劈開プロセスを阻害し得る。
図65A−65Bおよび図66−67に示すように、図示されている例において、貫通孔5240は、低真空チャンバ5260L(図62Aの平坦領域5235Fおよび遷移領域5235T)と、高真空チャンバ(5260H(図62Aの劈開領域5235C)と、他の低真空チャンバ5260L(図62Aの劈開後領域5235PC)と連通する。この配置は、真空チャネル5245内の低真空領域と高真空領域との間のスムーズな遷移をもたらす。貫通孔5240は、ある孔が対応する領域が完全に開かれたままである場合、空気の流れが、その孔に完全に偏らず、これにより、他の領域が真空を維持出来る、十分な流れ抵抗を提供する。真空チャネル5245は、真空ベルト孔5255が常に真空を有し、貫通孔5240間に位置付けられた場合にデッドスポットとならないことを確実にするのに役立つ。
図65A−65Bを改めて、および図67も参照すると、穿孔付ベルト5230は、例えば、ベルトがマニホールドに沿って進む際にウェハ45または劈開済の太陽電池10の前縁および後縁527が、常に真空を引かれているようオプションで配置された2行の孔5255を含み得る。特に、図示されている例における複数の孔5255の互いにずらされた配置は、ウェハ45または劈開済の太陽電池10の縁が、各ベルト5230の少なくとも1つの孔5255に常に重なり合うことを確実にする。このことは、ウェハ45または劈開済の太陽電池10の縁が、ベルト5230およびマニホールド5235から離れる方向に持ち上がってしまうのを防ぐのに役立つ。孔5255の任意の他の適した配置も用いられ得る。いくつかの変形例において、複数の孔5255の配置は、ウェハ45または劈開済の太陽電池10の縁が常に真空を引かれることを確実にはしない。
劈開ツール5210の図示されている例における穿孔付移動ベルト5230は、太陽電池ウェハの横方向の縁に沿ったベルトの幅により画定される2つの幅狭のストリップに沿ってのみ、太陽電池ウェハ45の底部に接触する。結果として、太陽電池ウェハは、ベルト5230により接触されない太陽電池ウェハの底面の領域に、例えば、未硬化の接着剤などの柔らかい材料を含み得、劈開プロセスの間の、それら柔らかい材料に対するダメージのリスクは生じない。
代替的な変形例において、劈開ツール5210は、丁度説明したような2つの穿孔付移動ベルトではなく、例えば、太陽電池ウェハ45の幅におよそ等しい、その移動方向と垂直な方向への幅を有する単一の穿孔付移動ベルト5230を利用し得る。代替的に、劈開ツール5210は、並んで平行に配置され、オプションで互いに離れ得る3、4、またはそれより多くの穿孔付移動ベルト5230を含み得る。劈開ツール5210は、例えば、太陽電池ウェハ45の幅におよそ等しい、太陽電池の移動方向と垂直な方向への幅を有し得る単一の真空マニホールド5235を利用し得る。そのような真空マニホールドが、例えば、単一の全幅の穿孔付移動ベルト5230と共に、または2またはそれより多くのそのような、並んで平行に配置され、オプションで互いに離れたベルトと共に採用され得る。劈開ツール5210は、例えば、並んで平行に配置され、互いに離れた、同じ曲率をそれぞれが有する2つの湾曲した真空マニホールド5235により、対向し合う横方向の縁に沿って支持された単一の穿孔付移動ベルト5230を含み得る。劈開ツール5210は、並んで平行に配置され、互いに離れた、同じ曲率をそれぞれが有する3またはそれより多くの湾曲した真空マニホールド5235を含み得る。そのような配置が、例えば、単一の全幅の穿孔付移動ベルト5230と共に、または3またはそれより多くのそのような、並んで平行に配置され、オプションで互いに離れたベルトと共に採用され得る。その劈開ツールは、例えば、真空マニホールド毎に穿孔付移動ベルト5230を含み得る。
穿孔付移動ベルトおよび真空マニホールドの任意の適した配置が、劈開ツール5210において用いられ得る。
上述したように、いくつかの変形例において、劈開ツール5210により劈開される、スクライブされた太陽電池ウェハ45は、劈開の前に、それらの頂面および/または底面に未硬化の伝導性粘着接合剤および/または他の柔らかい材料を含む。太陽電池ウェハのスクライブおよび柔らかい材料の適用は、いずれかの順序で起こっていてよい。
劈開ツール5210内の穿孔付ベルト5230(および、劈開ツール1050内の穿孔付ベルト1060)は、ある速度、例えば、約40ミリメートル/秒(mm/s)から約2000mm/sまたはそれより速く、または、約40mm/sから約500mm/sまたはそれより速く、または約80mm/sまたはそれより速く太陽電池ウェハ45を搬送し得る。太陽電池ウェハ45の劈開は、より遅い速度で行うより、より速い速度で行うのが容易であり得る。
ここで図68を参照すると、劈開されると、湾曲部周りの屈曲の幾何学に起因して、隣接し合う劈開済電池10の前縁527と後縁527との間にはいくらかの分離があり、これにより、隣接し合う劈開済の太陽電池間に楔形状の間隙が形成される。劈開済電池が、先に劈開済電池間の分離が大きくなることなく平坦な同一面の向きに戻ることが許される場合、隣接し合う劈開済電池の縁が互いに接触し、ダメージを与え得る可能性がある。したがって、劈開済電池がまだ湾曲面により支持されている間に、それらをベルト5230(またはベルト1060)から取り除くことが有利である。
図69A−69Gは、劈開済の太陽電池をベルト5230(またはベルト1060)から取り除き、劈開済の太陽電池間の分離が広がった状態で1または複数の追加の移動ベルトまたは移動表面に届け得るいくつかの装置および方法を概略的に図示する。図69Aの例において、劈開済の太陽電池10は、ベルト5230より速く移動し、したがって、劈開済の太陽電池10間の分離を大きくする1または複数の運搬ベルト5265によりベルト5230から集められる。運搬ベルト5265は、例えば、2つのベルト5230間に位置付けられ得る。図69Bの例において、劈開済ウェハ10は、2つのベルト5230間に位置付けられたスライド5270を滑り降りるにより分離させられる。本例において、ベルト5230は、各劈開済電池10を、マニホールド5235の低真空(例えば、真空なしの)領域内に進めて、ウェハ45の未劈開部分がベルト5230によりまだ保持された状態で劈開済電池をスライド5270にリリースする。劈開済電池10とスライド5270との間にエアクッションを提供することは、この動作の間に電池およびスライドの両方が擦り減らないようにすることを確実するのに役立ち、また、劈開済電池10が、ウェハ45から離れる方向により速くスライドすることを可能とし、それにより、より速い劈開ベルト動作速度を可能とする。
図69Cの例において、回転する「大観覧車」配置5275のキャリッジ5275Aが、ベルト5230から1または複数のベルト5280へ劈開済の太陽電池10を運搬する。
図69Dの例において、回転するローラー5285が、アクチュエータ5285Aを通じて真空を引いて、ベルト5230から劈開済の太陽電池10をピックアップし、それらをベルト5280上に載置する。
図69Eの例において、キャリッジアクチュエータ5290は、キャリッジ5290Aと、キャリッジ上に取り付けられた伸縮可能なアクチュエータ5290Bとを含む。キャリッジ5290Aは、前後に並進してアクチュエータ5290Bを位置付けて、ベルト5230から劈開済の太陽電池10を取り除き、その後、アクチュエータ5290Bを位置付けてベルト5280上に劈開済の太陽電池を載置する。
図69Fの例において、キャリッジトラック配置5295は、キャリッジ5295Aを位置付けて、ベルト5230から劈開済の太陽電池10を取り除き、その後、キャリッジ5295Aを位置付けて、ベルト5280上に劈開済の太陽電池10を載置する移動ベルト5300に取り付けられたキャリッジ5295Aを含む。後者の動作は、ベルト5230の経路に起因して、キャリッジがベルト5280から落ちるまたは離れる際に起こる。
図69Gの例において、反転した真空ベルト配置5305が、1または複数の移動する穿孔付ベルトを通じて真空を引いて、ベルト5230からベルト5280へ劈開済の太陽電池10を運搬する。
図70A−70Cは、図62A−62Bおよびその後の図面を参照して上記で説明した例示的なツールの追加の変形例の、互いに直交し合う方向から見た図を提供する。この変形例5310は、図69Aの例でのように、運搬ベルト5265を用いて、未劈開のウェハ45を、ツールの劈開領域内に搬送する穿孔付ベルト5230から劈開済の太陽電池10を取り除く。図71A−71Bの透視図は、2つの異なる動作工程における劈開ツールのこの変形例を示す。図71Aにおいて、未劈開ウェハ45がツールの劈開領域に近づいており、図71Bにおいて、そのウェハ45は、劈開領域に入っており、2つの劈開済の太陽電池10が、ウェハから分離させられ、その後、さらに、それらが運搬ベルト5265により搬送されるにつれ互いに分離される。
前に説明した特徴に加えて、図70A−71Bは、各マニホールド上の複数の真空ポート5315を示す。1つのマニホールド当たり複数のポートを用いることにより、マニホールドの上面の長さに沿った真空の変化に関してより大きな度合いの制御を可能し得る。例えば、複数の異なる真空ポート5315が、オプションで、異な複数の真空チャンバ(例えば、図66および図72Bの5260Lおよび5260H)と連通し得、および/またはオプションで、複数の異なる真空ポンプと接続して、マニホールドに沿って、複数の異なる真空圧力を提供し得る。図70A−70Bはまた、ホイール5325、真空マニホールド5235の上面、およびホイール5320周りをループする穿孔付ベルト5230の経路全体を示す。ベルト5230は、例えば、ホイール5320またはホイール5325のうちいずれかにより駆動され得る。
図72Aおよび図72Bは、図70A−71Bの変形例に関して、穿孔付ベルト5230の一部が上に横たわる真空マニホールド5235の一部の透視図を示し、図72Aは、図72Bの一部に接近した図を提供する。図73Aは、穿孔付ベルト5230が上に横たわる真空マニホールド5235の一部の平面図を示し、図73Bは、図73Aに示される線C−Cに沿って切り取った、同じ真空マニホールドおよび穿孔付ベルトの配置の断面図を示す。図73Bに示すように、貫通孔5240の相対的な向きは、各貫通孔が、貫通孔の真上のマニホールドの上面の部分と垂直な方向に配置されるように、真空マニホールドの長さに沿って変化し得る。図74Aは、穿孔付ベルト5230が上に横たわる真空マニホールド5235の一部の他の平面図を示し、真空チャンバ5260Lおよび5260Hは局部透視図に示す。図74Bは、図74Aの一部に接近した図を示す。
図75A−75Gは、オプションで穿孔付真空ベルト5230に用いられ得るいくつかの例示的な孔パターンを示す。これらのパターンの共通の特徴は、ベルト上の任意の位置でベルトの長軸と垂直な方向にパターンを横切るウェハ45または劈開済の太陽電池10の真っ直ぐな縁が、常に、各ベルト内の少なくとも1つの孔5255に重なるであろういうことである。パターンは、例えば、互いにずらされた複数の正方形または長方形の孔の2またはそれより多くの行(図75A、75D)、互いにずらされた複数の円形の孔の2またはそれより多くの行(図75B、75E、75G)、角度が付けられた複数のスロットの2またはそれより多くの行(図75C、75F)、または孔の任意の他の適した配置を含み得る。
本明細書は、重なり合うこけら葺き状に配置され、隣接し合い重なり合う太陽電池間の伝導接合により直列に電気接続して、スーパーセルがソーラーモジュール内で複数の物理的に平行な行に配置された状態でスーパーセルを形成するシリコン太陽電池を含む高効率なソーラーモジュールを開示する。スーパーセルは、任意の適した数の太陽電池を含み得る。スーパーセルは、例えば、ソーラーモジュールの全長または全幅に本質的に亘って広がる長さを有し得、または、2またはそれより多くのスーパーセルが、行内で端と端とを繋いで配置され得る。この配置は、太陽電池−太陽電池間の電気相互接続を隠し、したがって、隣接し合う直列接続の太陽電池間にコントラストが殆ど、または全くない状態で視覚的に魅力的なソーラーモジュールを形成するのに用いられ得る。
本明細書はさらに、太陽電池の前(および、オプションで)裏面への金属被覆の孔版印刷を容易にする電池金属被覆パターンを開示する。本明細書で用いられるように、電池金属被覆の「孔版印刷」とは、他の場合においては不透過性の材料シートのパターニング開口部を通して太陽電池表面に金属被覆材料(例えば、銀製のペースト)を適用することを指す。ステンシルは、例えば、パターニングされたステンレス鋼シートであり得る。ステンシルのパターニング開口部は、全体的に、ステンシル材料を含まず、例えば、メッシュまたはスクリーンを何ら含まない。メッシュまたはスクリーン材料が、パターニングされたステンシル開口部において存在しないことは、本明細書で用いられるような「孔版印刷」を「スクリーン印刷」とは区別する。対照的に、スクリーン印刷において、金属被覆材料は、パターニングされた不透過性の材料を支持するスクリーン(例えば、メッシュ)を通して太陽電池表面に適用される。パターンは、金属被覆材料が通って太陽電池に適用される不透過性の材料にある開口部を含む。支持しているスクリーンは、不透過性の材料にある開口部に亘って延在する。
スクリーン印刷と比較して、電池金属被覆パターンの孔版印刷は、線幅がより狭くなること、アスペクト比(線の高さ対幅)がより高くなること、線の均一性および明確性がより良好になること、スクリーンと比較してステンシルの寿命がより長いことを含む多数の利点を提供する。しかし、孔版印刷は、従来の3バスバー金属被覆設計において必要とされるであろうような1回の通過で「島」を印刷出来ない。さらに、孔版印刷は、印刷の間にステンシルの面内に横たわるよう留められていない、ステンシルの載置および使用を阻害するかもしれない、支持されていない構造をステンシルが含むことを要するであろう金属被覆パターンを1回の通過で印刷出来ない。例えば、孔版印刷は、平行に配置された金属被覆フィンガーが、フィンガーと垂直に延びるバスバーまたは他の金属被覆特徴により相互接続する金属被覆パターンを1回の通過で印刷出来ない。なぜならば、そのような設計のための単一のステンシルは、バスバーのための開口部およびフィンガーのための開口部により画定されるシート材料の支持されていない舌を含むであろうからである。それら舌は、印刷の間、ステンシルの面内に横たわるよう、ステンシルの他の部分への物理的接続により留められないであろうし、面から外へずれて、ステンシルの載置および使用を歪める可能性が高い。
結果として、伝統的な太陽電池を印刷するためにステンシルを用いる試みは、2つの異なるステンシルによる、または、スクリーン印刷工程と組み合わせた孔版印刷工程による前側金属被覆のために2回の通過を要し、このことは、電池当たりの印刷工程の総数を増やし、また、2つの印刷が重なり合い、2倍の高さになる「ステッチング」の課題を生じさせる。ステッチングは、プロセスをさらに複雑化させ、追加の印刷工程および関連する工程は、コストを増やす。したがって、孔版印刷は太陽電池にとって一般的ではない。
以下にさらに説明するように、本明細書で説明する前面金属被覆パターンは、前面金属被覆パターンにより互いに接続しないフィンガーのアレイ(例えば平行線)を含み得る。必要とされるステンシルは、支持されていない部分または構造(例えば、舌)を含む必要がないので、これらのパターンは単一のステンシルで1回の通過でステンシル印刷され得る。そのような前面金属被覆パターンは、標準的サイズの太陽電池にとって、および、互いに離れた太陽電池が銅製のリボンにより相互接続する太陽電池のストリングにとって不利であり得る。なぜならば、金属被覆パターンそれ自体は、フィンガーと垂直な方向への実質的な電流の拡散または導電をもたらさないからである。しかし、本明細書で説明する前面金属被覆パターンは、太陽電池の前面金属被覆パターンの一部に、隣接する太陽電池の裏面金属被覆パターンが重なり、その一部が、同裏面金属被覆パターンに伝導接合する、本明細書で説明するような長方形太陽電池のこけら葺き状配置で良好な働きをし得る。これは、隣接する太陽電池の重なる裏面金属被覆が、前面金属被覆パターン内のフィンガーと垂直な方向への電流の拡散および導電を可能とし得るからである。
ここで、本明細書で説明するソーラーモジュールのより詳細な理解のために図面を見てみると、図1は、隣接し合う太陽電池の端が重なり合い電気接続して、スーパーセル100を形成している状態の、こけら葺き状に配置された直列接続する太陽電池10のストリングの断面図を示す。各太陽電池10は、半導体ダイオード構造、および同半導体ダイオード構造への複数の電気接触部を含む。これにより、太陽電池10が光により照射された場合に太陽電池10内に生成される電流は、外部負荷に提供され得る。
本明細書で説明する例において、各太陽電池10は、n−p接合の対向し合う側に電気接触をもたらす前(太陽側)面および裏(影側)面の金属被覆パターンを有する長方形の結晶シリコン太陽電池であり、前面金属被覆パターンは、n型導電性の半導体層上に配され、裏面金属被覆パターンは、p型導電性の半導体層上に配される。しかし、他の材料系、ダイオード構造、物理的寸法、または電気接触配置が、適している場合、用いられ得る。例えば、前(太陽側)面金属被覆パターンは、p型導電性の半導体層上に配され得、裏(影側)面金属被覆パターンは、n型導電性の半導体層上に配され得る。
図1を改めて参照すると、スーパーセル100において、隣接し合う太陽電池10は、それらが重なり合う領域で、一方の太陽電池の前面金属被覆パターンを、隣接する太陽電池の裏面金属被覆パターンに電気接続する電気伝導性接合剤により互いに直接伝導接合する。適した電気伝導性接合剤は、例えば、電気伝導性接着剤、電気伝導性粘着フィルムおよび粘着テープ、並びに従来のはんだを含み得る。
戻って図2A−2Rを参照すると、図2A−2Rは、ソーラーモジュールの長辺の長さにおよそ等しい長さをそれぞれが有する6つの長方形スーパーセル100を含む例示的な長方形ソーラーモジュール200を示す。それらスーパーセルは、6つの平行行として、長辺が同モジュールの長辺と平行に方向付けられた状態で配置されている。同様に構成されたソーラーモジュールが、本例において示されているより多い、またはより少ない、そのような辺の長さのスーパーセルの行を含み得る。他の変形例において、スーパーセルはそれぞれ、長方形ソーラーモジュールの短辺の長さにおよそ等しい長さを有し、それらの長辺がモジュールの短辺と平行に方向付けられた状態で平行行に配置され得る。さらに他の配置において、例えば、各行は、電気的に直列に相互接続し得る2またはそれより多くのスーパーセルを含み得る。モジュールは、長さが例えば約1メートルである短辺と、長さが例えば約1.5から約2.0メートルである長辺とを有し得る。ソーラーモジュールには任意の他の適した形状(例えば、正方形)および寸法も用いられ得る。本例における各スーパーセルが、156ミリメートル(mm)の正方形または擬似正方形ウェハの幅のおよそ1/6に等しい幅と、約156mmの長さとをそれぞれが有する72個の長方形太陽電池を含む。任意の他の適した寸法の任意の他の適した数の長方形太陽電池も用いられ得る。
図76は、上記で説明したような孔版印刷を容易にする、長方形太陽電池10上の例示的な前面金属被覆パターンを示す。前面金属被覆パターンは、例えば、銀製のペーストから形成され得る。図76の例において、前面金属被覆パターンは、互いに平行に、太陽電池の短辺と平行に、太陽電池の長辺と垂直に延びる複数のフィンガー6015を含む。前面金属被覆パターンは、各コンタクトパッド6020がフィンガー6015の端に位置した状態で太陽電池の長辺の縁と平行、かつ隣接して延び、オプションである複数のコンタクトパッド6020の行も含む。存在する場合、各コンタクトパッド6020は、図示されている太陽電池の前面を、隣接する太陽電池の裏面の重なる部分に伝導接合するのに用いられる電気伝導性接着剤(ECA)、はんだ、または他の電気伝導性接合剤の個々のビードのためのエリアを形成する。パッドは、例えば、円形、正方形、または長方形であり得るが、任意の適したパッド形状が用いられ得る。電気伝導性接合剤の個々のビードを用いることの代替例として、太陽電池の長辺の縁に沿って配された実線または破線状のECA、はんだ、伝導性テープ、または他の電気伝導性接合剤が、フィンガーのうちいくつか、または全てを相互接続し、また、太陽電池を、隣接し重なっている太陽電池に接合し得る。そのような破線または実線状の電気伝導性接合剤は、フィンガーの端にある伝導性パッドと組み合わせて、またはそのような伝導性パッドなしで用いられ得る。
太陽電池10は、例えば、長さが約156mmであり、幅が約26mmであり、したがって、アスペクト比(短辺の長さ/長辺の長さ)が、約1:6であり得る。6つのそのような太陽電池が、標準的な156mm×156mm寸法のシリコンウェハ上に用意され、その後、分離されて(ダイシングされて)、図示されているような複数の太陽電池を提供し得る。他の変形例において、寸法が約19.5mm×156mmである、したがって、アスペクト比が約1:8である8つの太陽電池10が標準的なシリコンウェハから用意され得る。より一般的に、太陽電池10は、アスペクト比が、例えば、約1:2から約1:20であり得、標準サイズのウェハから、または任意の他の適した寸法のウェハから用意され得る。
図76を改めて参照すると、前面金属被覆パターンは、例えば、幅が156mmの1つの電池当たり約60から約120個のフィンガー、例えば約90個のフィンガーを含み得る。フィンガー6015は、幅が、例えば、約10から約90ミクロン、例えば約30ミクロンであり得る。フィンガー6015は、太陽電池の表面と垂直な方向への高さが、例えば、約10から約50ミクロンであり得る。フィンガーの高さは、例えば、約10ミクロンまたはそれより高い、約20ミクロンまたはそれより高い、約30ミクロンまたはそれより高い、約40ミクロンまたはそれより高い、または約50ミクロンまたはそれより高いであり得る。パッド6020の直径(円)または辺の長さ(正方形または長方形)は、例えば、約0.1mmから約1mm、例えば約0.5mmであり得る。
長方形太陽電池10の裏面金属被覆パターンは、例えば、複数の不連続なコンタクトパッドの行、複数の相互接続するコンタクトパッドの行、または太陽電池の長辺の縁と平行、かつ隣接して延びる連続的なバスバーを含み得る。しかし、そのようなコンタクトパッドまたはバスバーは必須ではない。前面金属被覆パターンが、太陽電池の長辺のうち一方の縁に沿って配置されたコンタクトパッド6020を含む場合、裏面金属被覆パターン内の複数のコンタクトパッドの行またはバスバー(存在する場合)は、太陽電池の他方の長辺の縁に沿って配置される。裏面金属被覆パターンはさらに、太陽電池の残りの裏面の実質的に全てを覆う金属後接触部を含み得る。図77Aの例示的な裏面金属被覆パターンは、丁度説明したような金属後接触部6030と組み合わせて複数の不連続なコンタクトパッド6025の行を含み、図77Bの例示的な裏面金属被覆パターンは、丁度説明したような金属後接触部6030と組み合わせて連続的なバスバー35を含む。
こけら葺き状スーパーセル内で、太陽電池の前面金属被覆パターンは、隣接する太陽電池の裏面金属被覆パターンの重なる部分に伝導接合する。例えば、太陽電池が前面金属被覆コンタクトパッド6020を含む場合、各コンタクトパッド6020は、対応する裏面金属被覆コンタクトパッド6025(存在する場合)と位置合わせされ接合し、または裏面金属被覆バスバー35(存在する場合)と位置合わせされ接合し、または隣接する太陽電池上の金属後接触部6030(存在する場合)に接合し得る。このことは、例えば、太陽電池の縁と平行に延び、オプションでコンタクトパッド6020のうち2またはそれより多くを電気相互接続する、各コンタクトパッド6020上に配された電気伝導性接合剤の不連続な部分(例えば、ビード)により、または破線または実線状の電気伝導性接合剤により達成され得る。
太陽電池が前面金属被覆コンタクトパッド6020を有さない場合、例えば、各前面金属被覆パターンフィンガー6015は、対応する裏面金属被覆コンタクトパッド6025(存在する場合)と位置合わせされ接合し得、または、裏面金属被覆バスバー35(存在する場合)に接合し得、または、隣接する太陽電池上の金属後接触部6030(存在する場合)に接合し得る。このことは、例えば、太陽電池の縁と平行に延び、オプションでフィンガー6015のうち2またはそれより多くを電気相互接続する、各フィンガー6015の重なった端上に配された電気伝導性接合剤の不連続な部分(例えば、ビード)により、または破線または実線状の電気伝導性接合剤により達成され得る。
上述したように、隣接する太陽電池の重なった裏面金属被覆の一部、例えば、存在する場合、裏面バスバー35および/または後金属接触部6030が、前面金属被覆パターン内のフィンガーと垂直な方向への電流の拡散および導電を可能とし得る。上記で説明したような破線または実線状の電気伝導性接合剤を利用する変形例において、電気伝導性接合剤は、前面金属被覆パターン内のフィンガーと垂直な方向への電流の拡散および導電を可能とし得る。重なった裏金属被覆および/または電気伝導性接合剤は、例えば、前面金属被覆パターン内の壊れたフィンガー、または他のフィンガーの断絶をバイパスして電流を運び得る。
存在する場合、裏面金属被覆コンタクトパッド6025およびバスバー35は、例えば、孔版印刷、スクリーン印刷、または任意の他の適した方法により適用され得る銀製のペーストから形成され得る。金属後接触部6030は、例えば、アルミニウムから形成され得る。
任意の他の適した裏面金属被覆パターンおよび材料も用いられ得る。
図78は、ダイシングされて、図76に示す前面金属被覆パターンをそれぞれが有する複数の長方形太陽電池を形成し得る正方形太陽電池6300の例示的な前面金属被覆パターンを示す。
図79は、ダイシングされて、図77Aに示す裏面金属被覆パターンをそれぞれが有する複数の長方形太陽電池を形成し得る正方形太陽電池6300の例示的な裏面金属被覆パターンを示す。
本明細書で説明する前面金属被覆パターンは、標準的な3プリンタ太陽電池製造ライン上での前面金属被覆の孔版印刷を可能とし得る。例えば、製造プロセスは、第1プリンタを用い、正方形太陽電池の裏面に銀製のペーストを孔版またはスクリーン印刷して、裏面コンタクトパッドまたは裏面銀バスバーを形成すること、裏面銀製のペーストを乾燥させること、第2プリンタを用い、太陽電池の裏面にアルミニウム製の接触部を孔版またはスクリーン印刷すること、アルミニウム製の接触部を乾燥させること、第3プリンタにより、単一の孔版工程で単一のステンシルを用い、太陽電池の前面へ銀製のペーストを孔版印刷して、完全な前面金属被覆パターンを形成すること、銀製のペーストを乾燥させること、および太陽電池を焼成することを含み得る。これらの印刷工程および関連する工程は、適宜、任意の他の順序で起こり得、または省略され得る。
ステンシルを用いて前面金属被覆パターンを印刷することにより、スクリーン印刷により可能であるより幅狭のフィンガーの製造が可能となり、このことは、太陽電池効率を向上させ、銀の使用、したがって、製造コストを減らし得る。単一のステンシルにより単一の孔版印刷工程で前面金属被覆パターンを孔版印刷することにより、均一な高さを有する、例えば、異なる複数の方向に延在する特徴を画定するよう印刷を重なり合わせるために、複数のステンシルまたはスクリーン印刷と組み合わせて孔版印刷が用いられた場合に起こり得るステッチングを呈することなく、前面金属被覆パターンの製造が可能となる。
前面および裏面金属被覆パターンが正方形太陽電池上に形成された後、2またはそれより多くの長方形太陽電池となるよう各正方形太陽電池は分離され得る。このことは、例えば、劈開が後に続くレーザースクライブにより、または任意の他の適した方法により達成され得る。長方形太陽電池は、その後、上記で説明したように、重なり合うこけら葺き状に配置され互いに伝導接合して、スーパーセルを形成し得る。本明細書は、例えば、キャリア再結合を促す劈開縁がなく、太陽電池の縁でのキャリア再結合損失が減る太陽電池を製造するための方法を開示する。太陽電池は、例えば、シリコン太陽電池であり得、より具体的には、HITシリコン太陽電池であり得る。本明細書は、そのような太陽電池のこけら葺き状(重なり合う)スーパーセル配置も開示する。そのようなスーパーセル内の個々の太陽電池は、隣接し合う太陽電池の長辺が重なり合うよう配置された状態の、幅狭の長方形幾何学(例えば、ストリップ状の形状)を有し得る。
HIT太陽電池などの高効率の太陽電池の費用効果の高い実装に関する主要な課題は、大きな電流を1つのそのような高効率の太陽電池から隣接する直列接続する高効率の太陽電池へ運ぶ大量の金属の従来認められている必要性である。複数の幅狭の長方形太陽電池ストリップとなるようそのような高効率の太陽電池をダイシングし、その後、結果として得られる太陽電池を、隣接し合う太陽電池の重なり合う部分間の伝導接合と共に、重なり合う(こけら葺き状)パターンで配置して、スーパーセル内の直列接続する太陽電池ストリングを形成することは、プロセスの単純化を通じてモジュールコストを減らす機会を提供する。これは、従来、隣接し合う太陽電池を金属製のリボンで相互接続するのに必要とされてきたタブを付けるプロセス工程をなくし得るからである。このこけら葺き手法は、太陽電池を通る電流を減らすことにより(なぜならば、個々の太陽電池ストリップは、従来の作用面積より狭い面積を有し得るので)、および、隣接し合う太陽電池間の電流経路長さを短くすることによりモジュール効率も高め得、これらの両方のことにより、抵抗損失は減らすのに役立つ。また電流が減ることにより、性能が実質的に失われることなく、より安価であるが、より抵抗の大きな導体(例えば、銅)を、より高価であるがより抵抗が小さい導体(例えば、銀)の代わりに用いることも可能となる。加えて、このこけら葺き手法は、相互接続リボンおよび関連する接触部を太陽電池の前面から取り除くことにより、作用しないモジュール面積を減らし得る。
従来サイズの太陽電池は、例えば、寸法が約156ミリメートル(mm)×約156mmである略正方形の前面および裏面を有し得る。丁度説明したこけら葺きスキームにおいて、そのような太陽電池は、2またはそれより多くの(例えば、2から20の)長さが156mmの太陽電池ストリップとなるようダイシングされる。このこけら葺き手法に関して潜在的に困難なことは、薄いストリップとなるよう従来サイズの太陽電池をダイシングすることにより、従来サイズの太陽電池と比較して太陽電池の作用面積当たりの電池の縁長さが長くなり、このことが、その縁でのキャリア再結合に起因して性能を低下させ得る、ということである。
例えば、図80は、寸法が約156mm×約40mmの幅狭の長方形である前面および裏面をそれぞれが有する、いくつかの太陽電池ストリップ(7100a、7100b、7100c、および7100d)となるよう、前面および裏面の寸法が約156mm×約156mmであるHIT太陽電池7100のダイシングを概略的に図示する。(太陽電池ストリップの長い156mmの辺は、ページ内に延在する。)図示されている例において、HIT電池7100は、厚さが、例えば、約180ミクロンであり得、寸法が約156mm×約156mmの前および裏の正方形面を有し得るn型単結晶基板5105を含む。真性アモルファスSi:H(a−Si:H)の厚さが約5ナノメートル(nm)の層、およびn+ドープa−Si:Hの厚さが約5nmの層(両方の層は共に参照番号7110で示される)が、結晶シリコン基板7105の前面に配されている。透明な伝導性酸化物(TCO)の約厚さ65nmのフィルム5120が、a−Si:H層7110上に配されている。TCO層7120上に配された伝導性金属格子線7130は、太陽電池の前面への電気接触をもたらす。真性a−Si:Hの厚さが約5nmの層、およびp+ドープa−Si:Hの厚さが約5nmの層(両方の層は共に参照番号7115で示される)が、結晶シリコン基板7105の裏面に配されている。透明な伝導性酸化物(TCO)の厚さが約65nmのフィルム7125が、a−Si:H層7115上に配され、TCO層7125上に配された伝導性金属格子線7135が、太陽電池の裏面への電気接触をもたらす。(上記で言及された寸法および材料は、限定ではなく例示的であることを意図されており、適宜、変更され得る。)
さらに図80を参照すると、HIT太陽電池7100が、従来の方法により劈開されて、ストリップ太陽電池7100a、7100b、7100cおよび7100dを形成した場合、新たに形成される劈開縁7140がパッシベートされていない。これらのパッシベートされていない縁は、キャリア再結合を促し、太陽電池の性能を低下させる高密度のダングリング化学ボンドを含む。特に、n−p接合を露出する劈開表面7145と、(層7110において)重ドープ前面フィールドを露出する劈開済み表面とは、パッシベートされておらず、キャリア再結合を実質的に促し得る。さらに、従来のレーザー切断またはレーザースクライブプロセスが太陽電池7100のダイシングに用いられた場合、アモルファスシリコンの再結晶7150などの熱的ダメージが、新たに形成された縁上で起こり得る。パッシベートされていない縁および熱的ダメージの結果として、従来の製造プロセスが用いられた場合、劈開済の太陽電池7100a、7100b、7100cおよび7100d上に形成された新たな縁は、太陽電池の短絡電流、開回路電圧、および擬似フィルファクターを減らすことが予期され得る。このことが重なって、太陽電池の性能の実質的な低下に繋がる。
より幅狭の太陽電池ストリップとなるよう従来サイズのHIT太陽電池をダイシングする間に、再結合を促す縁が形成されることは、図81A−81Jに図示されている方法により避けられ得る。本方法は、従来サイズの太陽電池7100の前面および裏面の分離トレンチを用いて、他の場合においては少数キャリアにとって再結合位置として働くかもしれない劈開縁から、p−n接合および重ドープの前面フィールドを電気的に分離させる。トレンチの縁は、従来の劈開ではなく、代わりに化学エッチングまたはレーザパターニングにより画定され、その後に前および裏トレンチの両方をパッシベートするTCOなどのパッシベート層の堆積が続く。重ドープ領域と比較し、基板のドープは十分に低く、接合における電子が基板のパッシベートされていない切断縁に到達する確率は低い。加えて、切りみぞがないウェハダイシング技術、Thermal Laser Separation(TLS)が、ウェハを切断するのに用いられ得、これにより、潜在的な熱的ダメージが避けられ得る。
図81A−81Jに図示されている例において、出発原料は、バルク抵抗が、例えば、約1から約3オームセンチメートルであり得、厚さが、例えば、約180ミクロンであり得る約156mmの正方形のn型単結晶シリコンas−cutウェハである。(ウェハ7105は、太陽電池の基板を形成する。)
図81Aを参照すると、as−cutカットウェハ7105は、従来のようにテクスチャエッチングされ、酸洗浄され、すすがれ、乾燥させられる。
次に、図81Bにおいて、厚さが約5nmの真性a−Si:H層と厚さが約5nmのドープn+a−Si:H層(両方の層が共に、参照番号7110で示されている)が、例えば、プラズマエンハンスド化学蒸着法(PECVD)により、例えば、約150℃から約200℃の温度でウェハ7105の前面に堆積させられる。
次に、図81Cにおいて、厚さが約5nmの真性a−Si:H層と厚さが約5nmのドープp+a−Si:H層(両方の層が共に、参照番号7115で示されている)が、例えば、PECVDにより、例えば、約150℃から約200℃の温度でウェハ7105の裏面に堆積させられる。
次に、図81Dにおいて、前a−Si:H層7110がパターニングされて、分離トレンチ7112を形成する。分離トレンチ7112は、典型的には、層7110を貫通してウェハ7105に到達し、例えば、幅が、約100ミクロンから約1000ミクロン、例えば、約200ミクロンであり得る。典型的には、トレンチは、パターニング技術の正確性、および続いて適用される劈開技術に応じて用いられ得る最も狭い幅を有する。トレンチ7112のパターニングは、例えば、レーザパターニング、または化学エッチング(例えば、インクジェットウェットパターニング)を用いて達成され得る。
次に、図81Eにおいて、裏a−Si:H層7115がパターニングされて、分離トレンチ7117を形成する。分離トレンチ7112と同様に、分離トレンチ7117は、典型的には、層7115を貫通してウェハ7105に到達し、幅が、例えば、約100ミクロンから約1000ミクロン、例えば、約200ミクロンであり得る。トレンチ7117のパターニングは、例えば、レーザパターニング、または化学エッチング(例えば、インクジェットウェットパターニング)を用いて達成され得る。各トレンチ7117は、構造の前面の対応するトレンチ7112と並んでいる。
次に、図81Fにおいて、厚さが約65nmのTCO層7120が、パターニングされた前a−Si:H層7110上に堆積させられる。このことは、例えば、物理蒸着(PVD)により、またはイオンめっきにより達成され得る。TCO層7120は、a−Si:H層7110内のトレンチ7112を埋め、層7110の外縁をコーティングし、それにより、層7110の表面をパッシベートする。TCO層7120は、反射防止コーティングとしても機能する。
次に、図81Gにおいて、厚さが約65nmのTCO層7125が、パターニングされた裏a−Si:H層7115上に堆積させられる。このことは、例えば、PVDにより、またはイオンめっきにより達成され得る。TCO層7125は、a−Si:H層7117内のトレンチ7115を埋め、層115の外縁をコーティングし、それにより、層7115の表面をパッシベートする。TCO層7125は、反射防止コーティングとしても機能する。
次に、図81Hにおいて、伝導性(例えば、金属)前面格子線7130が、TCO層7120上にスクリーン印刷される。格子線7130は、例えば、低温の銀製のペーストから形成され得る。
次に、図81Iにおいて、伝導性(例えば、金属)裏面格子線7135が、TCO層7125上にスクリーン印刷される。格子線7135は、例えば、低温の銀製のペーストから形成され得る。
次に、格子線7130および格子線7135の堆積の後、太陽電池は、例えば約30分の間、約200℃の温度で硬化させられる。
次に、図81Jにおいて、トレンチの中心で太陽電池をダイシングすることにより、太陽電池が、太陽電池ストリップ7155a、7155b、7155cおよび7155dとなるよう分離させられる。ダイシングは、例えば、従来のレーザースクライブおよび機械的劈開をトレンチの中心において用いて、トレンチに沿って太陽電池を劈開して達成され得る。代替的に、ダイシングは、トレンチに沿った太陽電池の劈開に繋がる機械的応力をトレンチの中心でのレーザー誘起加熱が引き起こす(例えば、Jenoptik AGが開発したような)Thermal Laser Separationプロセスを用いて達成され得る。後者の手法は、太陽電池の縁に対する熱的ダメージを避け得る。
結果として得られるストリップ太陽電池7155a−7155dは、図80に示すストリップ太陽電池7100a−7100dとは異なる。特に、太陽電池7140a−7140d内のa−Si:H層7110およびa−Si:H層7115の縁は、機械的劈開によってではなく、エッチングまたはレーザパターニングにより形成される。加えて、太陽電池7155a−7155d内の層7110および7115の縁は、TCO層によりパッシベートされる。結果として、太陽電池7140a−7140dは、キャリア再結合を促す、太陽電池7100a−7100dに存在する劈開縁を有さない。
図81A−81Jに関連して説明する方法は、限定ではなく例示的であることが意図されている。特定の順序で実行されるものとして説明する工程は、適宜、他の順序で、または並行して実行され得る。工程および材料層は、適宜、省略され、追加され、または取り替えられ得る。例えば、銅めっきされた金属被覆が用いられた場合、追加のパターニングまたはシード層堆積工程が、プロセスに含められ得る。さらに、いくつかの変形例において、前a−Si:H層7110のみがパターニングされて、分離トレンチを形成し、裏a−Si:H層7115には分離トレンチが形成されない。他の変形例において、裏a−Si:H層7115のみがパターニングされて、分離トレンチを形成し、前a−Si:H層7115には分離トレンチが形成されない。図81A−81Jの例のように、これらの変形例においても、ダイシングは、トレンチの中心で起こる。
より幅狭の太陽電池ストリップとなるよう従来サイズのHIT太陽電池をダイシングする間に再結合を促す縁が形成されることは、図81A−81Jに関連して説明する方法において採用されるものと同様に分離トレンチを同じく用いる、図82A−82Jに図示されている方法によっても避けられ得る。
図82Aを参照すると、本例において、出発原料はここでも、バルク抵抗が、例えば、約1から約3オームセンチメートルであり得、厚さが、例えば、約180ミクロンであり得る約156mmの正方形のn型単結晶シリコンas−cutウェハ7105である。
図82Bを参照すると、トレンチ7160が、ウェハ7105の前面に形成される。これらのトレンチは、深さが、例えば、約80ミクロンから約150ミクロン、例えば、約90ミクロンであり得、幅が、例えば、約10ミクロンから約100ミクロンであり得る。分離トレンチ7160は、ウェハ7105から形成されることになる太陽電池ストリップの幾何学を画定する。以下に説明するように、ウェハ7105は、これらのトレンチに沿って劈開されるであろう。これらのトレンチ7160は、例えば、従来のレーザウェハスクライブにより形成され得る。
次に、図82Cにおいて、ウェハ7105は、従来のようにテクスチャエッチングされ、酸洗浄され、すすがれ、乾燥させられる。エッチングは、典型的には、as−cutウェハ7105の表面に最初から存在する、またはトレンチ7160の形成の間に引き起こされるダメージを取り除く。エッチングはまた、トレンチ7160を広げ得、深くし得る。
次に、図82Dにおいて、厚さが約5nmの真性a−Si:H層と厚さが約5nmのドープn+a−Si:H層(両方の層が共に、参照番号7110で示されている)が、例えば、PECVDにより、例えば、約150℃から約200℃の温度でウェハ7105の前面に堆積させられる。
次に、図82Eにおいて、厚さが約5nmの真性a−Si:H層と厚さが約5nmのドープp+a−Si:H層(両方の層が共に、参照番号7115で示されている)が、例えば、PECVDにより、例えば、約150℃から約200℃の温度でウェハ7105の裏面に堆積させられる。
次に、図82Fにおいて、厚さが約65nmのTCO層7120が、前a−Si:H層7110上に堆積させられる。このことは、例えば、物理蒸着(PVD)により、またはイオンめっきにより達成され得る。TCO層7120は、トレンチ7160を埋め、典型的には、トレンチ7160の壁部および底部、および層7110の外縁をコーティングし、それにより、コーティングされた表面をパッシベートし得る。TCO層7120は、反射防止コーティングとしても機能する。
次に、図82Gにおいて、厚さが約65nmのTCO層7125が、裏a−Si:H層7115上に堆積させられる。このことは、例えば、PVDにより、またはイオンめっきにより達成され得る。TCO層7125は、層7115の(例えば、外縁を含む)表面をパッシベートし、反射防止コーティングとしても機能する。
次に、図82Hにおいて、伝導性(例えば、金属)前面格子線7130が、TCO層7120上にスクリーン印刷される。格子線7130は、例えば、低温の銀製のペーストから形成され得る。
次に、図82Iにおいて、伝導性(例えば、金属)裏面格子線7135が、TCO層7125上にスクリーン印刷される。格子線7135は、例えば、低温の銀製のペーストから形成され得る。
次に、格子線7130および格子線7135の堆積の後、太陽電池は、例えば約30分の間、約200℃の温度で硬化させられる。
次に、図82Jにおいて、トレンチの中心で太陽電池をダイシングすることにより、太陽電池が、太陽電池ストリップ7165a、7165b、7165cおよび7165dとなるよう分離させられる。ダイシングは、例えば、従来の機械的劈開をトレンチの中心において用いて、トレンチに沿って太陽電池を劈開して達成され得る。代替的に、ダイシングは、例えば、上記で説明したようなThermal Laser Separationプロセスを用いて達成され得る。
結果として得られるストリップ太陽電池7165a−7165dは、図80に示すストリップ太陽電池7100a−7100dとは異なる。特に、太陽電池7165a−7165d内のa−Si:H層7110の縁は、機械的劈開によってではなく、エッチングにより形成される。加えて、太陽電池7165a−7165d内の層7110の縁は、TCO層によりパッシベートされる。結果として、太陽電池7165a−7165dは、キャリア再結合を促す、太陽電池7100a−7100dに存在する劈開縁を有さない。
図82A−82Jに関連して説明する方法は、限定ではなく例示的であることが意図されている。特定の順序で実行されるものとして説明する工程は、適宜、他の順序で、または並行して実行され得る。工程および材料層は、適宜、省略され、追加され、または取り替えられ得る。例えば、銅めっきされた金属被覆が用いられた場合、追加のパターニングまたはシード層堆積工程が、プロセスに含められ得る。さらに、いくつかの変形例において、トレンチ7160は、ウェハ7105の前面ではなく、ウェハ7105の裏面に形成され得る。
図81A−81Jおよび86A−86Jに関連して上記で説明した方法は、n型およびp型HIT太陽電池の両方に適用可能である。太陽電池は、前エミッタまたは裏エミッタであり得る。エミッタのない側に分離プロセスを適用することが好ましいかもしれない。さらに、劈開されたウェハ縁上での再結合を減らすよう上記で説明したように分離トレンチおよびパッシベート層を用いることは、他の太陽電池設計およびシリコン以外の材料系を用いる太陽電池に適用可能である。
図1を改めて参照すると、上記で説明した方法により形成される、複数の直列接続する太陽電池10のストリングは、有利に、隣接し合う太陽電池の端が重なり合い電気接続してスーパーセル100を形成した状態でこけら葺き状に配置され得る。スーパーセル100において、隣接し合う太陽電池10は、それらが重なり合う領域で、一方の太陽電池の前面金属被覆パターンを、隣接する太陽電池の裏面金属被覆パターンに電気接続する電気伝導性接合剤により互いに伝導接合する。適した電気伝導性接合剤は、例えば、電気伝導性接着剤、電気伝導性粘着フィルムおよび粘着テープ、並びに従来のはんだを含み得る。
図5A−5Bを改めて参照すると、図5Aは、ソーラーモジュールの短辺の半分の長さにおよそ等しい長さをそれぞれが有する20個の長方形スーパーセル100を含む例示的な長方形ソーラーモジュール200を示す。スーパーセルは、ペアを組んで端と端とを繋いで配置されて、10のスーパーセル行を、それら行と、スーパーセルの長辺とが、ソーラーモジュールの短辺と平行に方向付けられた状態で形成している。他の変形例において、各スーパーセル行は、3またはそれより多くのスーパーセルを含み得る。また、他の変形例において、スーパーセルは、行に、それら行とスーパーセルの長辺とが長方形ソーラーモジュールの長辺と平行に方向付けられた、または正方形ソーラーモジュールの辺と平行に方向付けられた状態で端と端とを繋いで配置され得る。さらに、ソーラーモジュールは、本例において示されるより多い、またはより少ないスーパーセルと、より多い、またはより少ないスーパーセル行とを含み得る。
各行のスーパーセル100が、それら各行内のスーパーセルのうち少なくとも1つがその行内の他のスーパーセルに隣接するスーパーセルの端上の前面端接触部を有するよう配置される変形例において、図5Aに示すオプションの間隙210が、ソーラーモジュールの中心線に沿った、スーパーセルの前面端接触部との電気接触を容易にするよう存在し得る。各スーパーセル行が3またはそれより多くのスーパーセルを含む変形例において、スーパーセル間の追加のオプションの間隙が存在し得て、同様に、ソーラーモジュールの辺から離れて位置する前面端接触部との電気接触を容易にし得る。
図5Bは、ソーラーモジュールの短辺の長さにおよそ等しい長さをそれぞれが有する10個の長方形スーパーセル100を含む他の例示的な長方形ソーラーモジュール300を示す。それらスーパーセルは、長辺が同モジュールの短辺と平行に方向付けられた状態で配置されている。他の変形例において、スーパーセルは、長方形ソーラーモジュールの長辺の長さにおよそ等しい長さを有し、それらの長辺がソーラーモジュールの長辺と平行な状態で方向付けられ得る。またスーパーセルは、正方形ソーラーモジュールの辺の長さにおよそ等しい長さを有し、それらの長辺がソーラーモジュールの辺と平行な状態で方向付けられ得る。さらに、ソーラーモジュールは、本例において示されているより多い、またはより少ないそのような辺の長さのスーパーセルを含み得る。
図5Bは、図5Aのソーラーモジュール200内の複数のスーパーセル行内の隣接し合うスーパーセル間に間隙がなかった場合にソーラーモジュール200がどのように見えるかも示す。ソーラーモジュール内のスーパーセル100の任意の他の適した配置も、用いられ得る。
以下の列挙されている段落は、本開示の追加の非限定的な態様を提供する。
1.N(≧25)個の、約10ボルトより高い降伏電圧を平均で有する長方形または略長方形太陽電池の直列接続ストリングであって、1または複数のスーパーセルとなるよう上記長方形または略長方形太陽電池はグループ化されており、上記1または複数のスーパーセルのそれぞれが、隣接し合う太陽電池の長辺が重なり合い電気および熱伝導性接着剤により互いに伝導接合した状態で並んで配置された上記複数の太陽電池のうち2またはそれより多くを含む、長方形または略長方形太陽電池の直列接続ストリングを備え、
太陽電池の上記ストリング内のいずれの単一の太陽電池も、またはN個より少ない太陽電池のグループも個別に、バイパスダイオードと並列に電気接続しない、ソーラーモジュール。
2.Nは、30より大きい、またはそれと等しい、項1に記載のソーラーモジュール。
3.Nは、50より大きい、またはそれと等しい、項1に記載のソーラーモジュール。
4.Nは、100より大きい、またはそれと等しい、項1に記載のソーラーモジュール。
5.上記接着剤は、上記複数の太陽電池と垂直な方向への厚さが約0.1mmより小さい、またはそれと等しく、上記複数の太陽電池と垂直な方向への熱伝導性が約1.5w/m/kより高い、またはそれと等しい、隣接し合う太陽電池間の複数の接合を形成する、項1に記載のソーラーモジュール。
6.上記N個の太陽電池は、単一のスーパーセルとなるようグループ化される、項1に記載のソーラーモジュール。
7.上記複数のスーパーセルは、ポリマー内に封入されている、項1に記載のソーラーモジュール。
7A.上記ポリマーは、熱可塑性オレフィンポリマーを含む、項7に記載のソーラーモジュール。
7B.上記ポリマーは、ガラス製の前面シートと後面シートとの間に挟まれている、項7に記載のソーラーモジュール。
7C.上記後面シートはガラスを含む、項7Bに記載のソーラーモジュール。
8.上記複数の太陽電池はシリコン太陽電池である、項1に記載のソーラーモジュール。
9.ソーラーモジュールであって、
上記ソーラーモジュールの縁と平行な上記ソーラーモジュールの全長または全幅に亘って実質的に広がるスーパーセルであって、上記スーパーセルは、隣接し合う太陽電池の長辺が重なり合い電気および熱伝導性接着剤により互いに伝導接合した状態で並んで配置された、N個の、約10ボルトより高い降伏電圧を平均で有する、長方形または略長方形太陽電池の直列接続ストリングを有する、スーパーセルを備え、
上記スーパーセル内のいずれの単一の太陽電池も、またはN個より少ない太陽電池のグループも個別に、バイパスダイオードと並列に電気接続しない、ソーラーモジュール。
10.N>24である、項9に記載のソーラーモジュール。
11.上記スーパーセルの、電流の流れの方向への長さが、少なくとも約500mmである、項9に記載のソーラーモジュール。
12.上記複数のスーパーセルは、ガラス製の前面シートと後面シートとの間に挟まれた熱可塑性オレフィンポリマー内に封入されている、項9に記載のソーラーモジュール。
13.スーパーセルであって、
複数のシリコン太陽電池を備え、
各シリコン太陽電池が、
対向して位置付けられた平行な第1長辺および第2長辺と2つの対向して位置付けられた短辺とにより画定される形状を有する長方形または略長方形の前面および後面であって、上記前面の少なくとも一部が、上記太陽電池ストリングの動作の間に太陽放射に曝される、前面および後面と、
上記前面に配され、上記第1長辺に隣接して位置付けられた少なくとも1つの前面コンタクトパッドを含む電気伝導性前面金属被覆パターンと、
上記後面に配され、上記第2長辺に隣接して位置付けられた少なくとも1つの後面コンタクトパッドを含む電気伝導性後面金属被覆パターンと
を有し、
上記複数のシリコン太陽電池は、隣接し合うシリコン太陽電池の第1長辺および第2長辺が重なり合った状態で、かつ、隣接し合うシリコン太陽電池上の前面および後面のコンタクトパッドが、重なり合い伝導性粘着接合剤により互いに伝導接合して、上記隣接し合うシリコン太陽電池を直列に電気接続した状態で並んで配置され、
各シリコン太陽電池の上記前面金属被覆パターンは、上記スーパーセルの製造の間の上記伝導性粘着接合剤の硬化の前に、上記伝導性粘着接合剤を少なくとも1つの前面コンタクトパッドへ実質的に封じ込めるよう構成されたバリアを含む、スーパーセル。
14.隣接し合い重なり合うシリコン太陽電池のそれぞれのペアに関して、上記シリコン太陽電池のうち一方の上記前面の上記バリアには、上記シリコン太陽電池のうち他方のシリコン太陽電池の一部が重なり、上記バリアは上記一部に隠れ、それにより、上記スーパーセルの製造の間に上記伝導性粘着接合剤の硬化の前に、上記シリコン太陽電池の上記前面の重なり合う領域に上記伝導性粘着接合剤を実質的に封じ込める、項13に記載のスーパーセル。
15.上記バリアは、上記第1長辺と平行に上記第1長辺の実質的に全長に亘って延びる連続する伝導線を含み、上記少なくとも1つの前面コンタクトパッドは、上記連続する伝導線と、上記太陽電池の上記第1長辺との間に位置する、項13に記載のスーパーセル。
16.上記前面金属被覆パターンは、上記少なくとも1つの前面コンタクトパッドに電気接続し、上記第1長辺と垂直な方向に延びる上記フィンガーを含み、上記連続する伝導線は、上記複数のフィンガーを電気相互接続して、各フィンガーから少なくとも1つの前面コンタクトパッドまでの複数の伝導路を提供する、項15に記載のスーパーセル。
17.上記前面金属被覆パターンは、上記第1長辺と隣接し、かつ平行な行に配置された複数の不連続なコンタクトパッドを含み、上記バリアは、各不連続なコンタクトパッドのために、上記スーパーセルの製造の間の上記伝導性粘着接合剤の硬化の前に、上記伝導性粘着接合剤を上記不連続なコンタクトパッドに実質的に封じ込める複数の別個のバリアを形成する複数の特徴を含む、項13に記載のスーパーセル。
18.上記複数の別個のバリアは、それらの対応する不連続なコンタクトパッドに当接しており、それらより高い、項17に記載のスーパーセル。
19.スーパーセルであって、
複数のシリコン太陽電池を備え、
各シリコン太陽電池が、
対向して位置付けられた平行な第1長辺および第2長辺と2つの対向して位置付けられた短辺とにより画定される形状を有する長方形または略長方形の前面および後面であって、上記前面の少なくとも一部が、上記太陽電池ストリングの動作の間に太陽放射に曝される、前面および後面と、
上記前面に配され、上記第1長辺に隣接して位置付けられた少なくとも1つの前面コンタクトパッドを含む電気伝導性前面金属被覆パターンと、
上記後面に配され、上記第2長辺に隣接して位置付けられた少なくとも1つの後面コンタクトパッドを含む電気伝導性後面金属被覆パターンと
を有し、
上記複数のシリコン太陽電池は、隣接し合うシリコン太陽電池の第1長辺および第2長辺が重なり合った状態で、かつ、隣接し合うシリコン太陽電池上の前面および後面のコンタクトパッドが、重なり合い伝導性粘着接合剤により互いに伝導接合して、上記隣接し合うシリコン太陽電池を直列に電気接続した状態で並んで配置され、
各シリコン太陽電池の上記後面金属被覆パターンは、上記スーパーセルの製造の間の上記伝導性粘着接合剤の硬化の前に、上記伝導性粘着接合剤を上記少なくとも1つの後面コンタクトパッドへ実質的に封じ込めるよう構成されたバリアを含む、スーパーセル。
20.上記後面金属被覆パターンは、上記第2長辺と隣接し、かつ平行な行に配置された1または複数の不連続なコンタクトパッドを含み、上記バリアは、各不連続なコンタクトパッドのために、上記スーパーセルの製造の間の上記伝導性粘着接合剤の硬化の前に、上記伝導性粘着接合剤を上記不連続なコンタクトパッドに実質的に封じ込める複数の別個のバリアを形成する複数の特徴を含む、項19に記載のスーパーセル。
21.上記複数の別個のバリアは、それらの対応する不連続なコンタクトパッドに当接しており、それらより高い、項20に記載のスーパーセル。
22.太陽電池ストリングを作る方法であって、
1または複数の擬似正方形シリコンウェハのうち各擬似正方形シリコンウェハの長い縁と平行な複数の線に沿って上記1または複数の擬似正方形シリコンウェハをダイシングして、長軸に沿って実質的に同じ長さをそれぞれが有する複数の長方形シリコン太陽電池を形成する工程と、
隣接し合う太陽電池の長辺が重なり合い互いに伝導接合して、上記隣接し合う太陽電池を直列に電気接続した状態で上記複数の長方形シリコン太陽電池を並べて配置する工程と、
上記複数の長方形シリコン太陽電池は、上記擬似正方形ウェハの複数の角に、または複数の角の一部に対応する2つの面取りされた角を含む少なくとも1つの長方形太陽電池と、面取りされた角をそれぞれが有さない1または複数の長方形シリコン太陽電池とを含み、
上記擬似正方形ウェハのダイシングが沿って行われる複数の平行線間の間隔は、上記面取りされた角を含む長方形シリコン太陽電池の上記長軸と垂直な幅を、上記面取りされた角を有さない1または複数の長方形シリコン太陽電池の長軸と垂直な幅より大きくすることにより、上記面取りされた角を補うよう選択され、これにより、上記太陽電池ストリング内の上記複数の長方形シリコン太陽電池のうちそれぞれが、上記太陽電池ストリングの動作において光に曝される面積が実質的に同じである前面を有する、方法。
23.太陽電池ストリングであって、
隣接し合う太陽電池の端部が重なり合い互いに伝導接合して、上記隣接し合う太陽電池を直列に電気接続した状態で並んで配置された複数のシリコン太陽電池を備え、
上記複数のシリコン太陽電池のうち少なくとも1つは、ダイシング元の擬似正方形シリコンウェハの複数の角、または複数の角の一部に対応する面取りされた角を有し、上記複数のシリコン太陽電池のうち少なくとも1つは、面取りされた角を有さず、上記複数のシリコン太陽電池のうちそれぞれが、上記太陽電池ストリングの動作の間に光に曝される面積が実質的に同じである前面を有する、太陽電池ストリング。
24.2またはそれより多くの太陽電池ストリングを作る方法であって、
1または複数の擬似正方形シリコンウェハのうち各擬似正方形シリコンウェハの長い縁と平行な複数の線に沿って上記1または複数の擬似正方形シリコンウェハをダイシングして、上記1または複数の擬似正方形シリコンウェハの複数の角、または複数の角の一部に対応する面取りされた角を含む第1の複数の長方形シリコン太陽電池と、上記1または複数の擬似正方形シリコンウェハの全幅に亘って広がる第1の長さをそれぞれが有し、面取りされた角を有さない第2の複数の長方形シリコン太陽電池とを形成する工程と、
上記第1の複数の長方形シリコン太陽電池のうちそれぞれから上記面取りされた角を取り除いて、上記第1の長さより短い第2の長さをそれぞれが有し、面取りされた角を有さない第3の複数の長方形シリコン太陽電池を形成する工程と、
隣接し合う長方形シリコン太陽電池の長辺が重なり合い互いに伝導接合した状態で上記第2の複数の長方形シリコン太陽電池を並べて配置して、上記第2の複数の長方形シリコン太陽電池を直列に電気接続して、幅が上記第1の長さと等しい太陽電池ストリングを形成する工程と、
隣接し合う長方形シリコン太陽電池の長辺が重なり合い互いに伝導接合した状態で上記第3の複数の長方形シリコン太陽電池を並べて配置して、上記第3の複数の長方形シリコン太陽電池を直列に電気接続して、幅が上記第2の長さと等しい太陽電池ストリングを形成する工程と
を備える、方法。
25.2またはそれより多くの太陽電池ストリングを作る方法であって、
1または複数の擬似正方形シリコンウェハのうち各擬似正方形シリコンウェハの長い縁と平行な複数の線に沿って上記1または複数の擬似正方形シリコンウェハをダイシングして、上記1または複数の擬似正方形シリコンウェハの複数の角、または複数の角の一部に対応する面取りされた角を含む第1の複数の長方形シリコン太陽電池と、面取りされた角を有さない第2の複数の長方形シリコン太陽電池とを形成する工程と、
隣接し合う長方形シリコン太陽電池の長辺が重なり合い互いに伝導接合した状態で上記第1の複数の長方形シリコン太陽電池を並べて配置して、上記第1の複数の長方形シリコン太陽電池を直列に電気接続する工程と、
隣接し合う長方形シリコン太陽電池の長辺が重なり合い互いに伝導接合した状態で上記第2の複数の長方形シリコン太陽電池を並べて配置して、上記第2の複数の長方形シリコン太陽電池を直列に電気接続する工程と
を備える、方法。
26.ソーラーモジュールを作る方法であって、
複数の擬似正方形シリコンウェハのうち各擬似正方形シリコンウェハの長い縁と平行な複数の線に沿って上記ウェハをダイシングして、上記複数の擬似正方形シリコンウェハの複数の角に対応する面取りされた角を含む複数の長方形シリコン太陽電池と、面取りされた角を有さない複数の長方形シリコン太陽電池とを上記複数の擬似正方形シリコンウェハから形成する工程と、
上記面取りされた角を有さない複数の長方形シリコン太陽電池のうち少なくともいくつかを配置して、複数の長方形シリコン太陽電池の長辺が重なり合い互いに伝導接合して、上記複数の長方形シリコン太陽電池を直列に電気接続した状態で並んで配置された、面取りされた角を有さない長方形シリコン太陽電池のみをそれぞれが含む第1の複数のスーパーセルを形成する工程と、
上記面取りされた角を含む複数の長方形シリコン太陽電池のうち少なくともいくつかを配置して、複数の長方形シリコン太陽電池の長辺が重なり合い互いに伝導接合して、上記複数の長方形シリコン太陽電池を直列に電気接続した状態で並んで配置された、面取りされた角を有する長方形シリコン太陽電池のみをそれぞれが含む第2の複数のスーパーセルを形成する工程と、
上記第1の複数のスーパーセルからの複数のスーパーセルのみまたは上記第2の複数のスーパーセルからの複数のスーパーセルのみを各行が含む、実質的に等しい長さの複数の平行なスーパーセル行に上記複数のスーパーセルを配置して、上記ソーラーモジュールの前面を形成する工程と
を備える、ソーラーモジュール。
27.上記ソーラーモジュールの平行な対向し合う縁に隣接する上記複数のスーパーセル行のうち2行は、上記第2の複数のスーパーセルからの複数のスーパーセルのみを含み、全ての他の複数のスーパーセル行は、上記第1の複数のスーパーセルからのスーパーセルのみを含む、項26に記載のソーラーモジュール。
28.上記ソーラーモジュールは、合計6つのスーパーセル行を含む、項27に記載のソーラーモジュール。
29.隣接し合うシリコン太陽電池の端部が重なり合い互いに伝導接合して、上記隣接し合うシリコン太陽電池を直列に電気接続した状態で第1方向に並んで配置された複数のシリコン太陽電池と、
細長のフレキシブル電気相互接続部と
を備え、
上記細長のフレキシブル電気相互接続部の長軸は、上記第1方向と垂直な第2方向と平行に方向付けられ、
上記細長のフレキシブル電気相互接続部は、
上記第2方向に沿って配置された3またはそれより多くの不連続な位置において上記複数のシリコン太陽電池のうち端のシリコン太陽電池の前面または後面に伝導接合し、
上記第2方向に上記端の太陽電池の少なくとも全幅に亘って延び、
上記端のシリコン太陽電池の上記前面または裏面と垂直な方向に測定される導体厚さが、約100ミクロン未満であり、またはそれと等しく、
上記第2方向への電流の流れに対して約0.012オームより低い、またはそれと等しい抵抗を提供し、
約−40℃から約85℃の温度範囲で、上記端のシリコン太陽電池と上記相互接続部との間で、上記第2方向への差異のある膨張に適応するフレキシブル性を提供するよう構成されている、スーパーセル。
30.上記フレキシブル電気相互接続部は、上記端のシリコン太陽電池の上記前面および裏面と垂直な方向に測定される導体厚さが、約30ミクロン未満である、またはそれと等しい、項29に記載のスーパーセル。
31.上記フレキシブル電気相互接続部は、上記第2方向に上記スーパーセルを越えて延在して、少なくとも、ソーラーモジュール内で上記スーパーセルと平行、かつ隣接して位置付けられた第2スーパーセルへの電気相互接続を提供する、項29に記載のスーパーセル。
32.上記フレキシブル電気相互接続部は、上記第1方向に上記スーパーセルを越えて延在して、ソーラーモジュール内で上記スーパーセルと平行、かつ並んで位置付けられた第2スーパーセルへの電気相互接続を提供する、項29に記載のスーパーセル。
33.ソーラーモジュールであって、
上記ソーラーモジュールの幅に亘って広がる2またはそれより多くの平行行に配置されて、上記ソーラーモジュールの前面を形成し、隣接し合うシリコン太陽電池の端部が重なり合い互いに伝導接合して、上記隣接し合うシリコン太陽電池を直列に電気接続した状態で並んで配置された複数のシリコン太陽電池をそれぞれが含む複数のスーパーセルを備え、
少なくとも、第1行内の上記ソーラーモジュールの縁に隣接する第1スーパーセルの端は、
複数の不連続な位置において電気伝導性粘着接合剤により上記第1スーパーセルの前面に接合し、
上記ソーラーモジュールの上記縁と平行に延び、
少なくとも一部が上記第1スーパーセルの上記端周りで折れ、上記ソーラーモジュールの前からの視界から隠れた、
フレキシブル電気相互接続部を介し、
第2行内の上記ソーラーモジュールの同じ上記縁に隣接する、第2スーパーセルの端に電気接続する、
ソーラーモジュール。
34.上記ソーラーモジュールの上記前面の上記フレキシブル電気相互接続部の表面は、覆われて、または着色されて、上記スーパーセルに対する視認出来るコントラストが下げられる、項33に記載のソーラーモジュール。
35.スーパーセルの上記2またはそれより多くの平行行は、白色の後面シート上に配置されて、上記ソーラーモジュールの動作の間に太陽放射により照射されることになる上記ソーラーモジュールの前面を形成し、
上記白色の後面シートは、上記スーパーセルの2またはそれより多くの平行行間の複数の間隙の位置と幅とに対応する位置と幅とを有する平行な濃色の複数のストライプを含み、
複数の上記後面シートの複数の白色の部分は、上記スーパーセルの2またはそれより多くの平行行間の上記複数の間隙を通して視認出来ない、項33に記載のソーラーモジュール。
36.太陽電池ストリングを作る方法であって、
1または複数のシリコン太陽電池のうち各シリコン太陽電池上に1または複数のスクライブラインをレーザースクライブして、上記1または複数のシリコン太陽電池上に複数の長方形領域を画定する工程と、
各長方形領域の長辺に隣接する1または複数の位置において、スクライブされた上記1または複数のシリコン太陽電池に電気伝導性粘着接合剤を適用する工程と、
上記1または複数のスクライブラインに沿って上記1または複数のシリコン太陽電池を分離させて、長辺に隣接した前面に配された上記電気伝導性粘着接合剤の一部をそれぞれが含む複数の長方形シリコン太陽電池を提供する工程と、
隣接し合う長方形シリコン太陽電池の長辺が、上記電気伝導性粘着接合剤の一部が間に配されてこけら葺き状に重なり合った状態で上記複数の長方形シリコン太陽電池を並べて配置する工程と、
上記電気伝導性接合剤を硬化させて、それにより、隣接し合い重なり合う長方形シリコン太陽電池を互いに接合し、それらを直列に電気接続する工程と
を備える、方法。
37.太陽電池ストリングを作る方法であって、
頂面と、対向して位置付けられた底面とをそれぞれが有する1または複数のシリコン太陽電池のうち各シリコン太陽電池上に1または複数のスクライブラインをレーザースクライブして、上記1または複数のシリコン太陽電池上に複数の長方形領域を画定する工程と、
上記1または複数のシリコン太陽電池の上記頂面の一部に電気伝導性粘着接合剤を適用する工程と、
上記1または複数のシリコン太陽電池の上記底面と湾曲支持面との間で真空を引いて、上記湾曲支持面に寄せて上記1または複数のシリコン太陽電池を曲げ、それにより、上記1または複数のスクライブラインに沿って上記1または複数のシリコン太陽電池を劈開して、長辺に隣接する前面に配された上記電気伝導性粘着接合剤の一部をそれぞれが含む複数の長方形シリコン太陽電池を提供する工程と、
隣接し合う長方形シリコン太陽電池の長辺が、上記電気伝導性粘着接合剤の一部が間に配されてこけら葺き状に重なり合った状態で上記複数の長方形シリコン太陽電池を並べて配置する工程と、
上記電気伝導性接合剤を硬化させ、それにより、隣接し合い重なり合う長方形シリコン太陽電池を互いに接合し、それらを直列に電気接続する工程と
を備える、方法。
38.上記電気伝導性粘着接合剤を上記1または複数のシリコン太陽電池に適用し、その後、上記1または複数のシリコン太陽電池のうち各シリコン太陽電池上に上記1または複数のスクライブラインをレーザースクライブする工程を備える、項37に記載の方法。
39.上記1または複数のシリコン太陽電池のうち各シリコン太陽電池上に上記1または複数のスクライブラインをレーザースクライブし、その後、上記電気伝導性粘着接合剤を上記1または複数のシリコン太陽電池に適用する工程を備える、項37に記載の方法。
40.ソーラーモジュールであって、
2またはそれより多くの平行行に配置されて、上記ソーラーモジュールの前面を形成する複数のスーパーセルを備え
各スーパーセルが、隣接し合うシリコン太陽電池の端部が重なり合い互いに伝導接合して、上記隣接し合うシリコン太陽電池を直列に電気接続した状態で並んで配置された複数のシリコン太陽電池を有し、
各スーパーセルが、上記スーパーセルの一端にある前面端接触部と、上記スーパーセルの反対側の端にある逆極性の後面端接触部とを有し、
第1スーパーセル行が、前面端接触部が、上記ソーラーモジュールの第1縁と隣接し、かつ平行な状態で配置された第1スーパーセルを含み、
上記ソーラーモジュールは、上記ソーラーモジュールの上記第1縁と平行に細長く延び、上記第1スーパーセルの上記前面端接触部に伝導接合し、上記ソーラーモジュールの上記第1縁に隣接する、上記ソーラーモジュールの上記第1縁と垂直な方向に測定する幅が約1センチメートル以下の上記ソーラーモジュールの上記前面の狭い部分のみを占有する第1フレキシブル電気相互接続部を備える、ソーラーモジュール。
41.上記第1フレキシブル電気相互接続部の一部は、上記ソーラーモジュールの上記第1縁に最も近く、上記第1スーパーセルの後方の、上記第1スーパーセルの上記端周りに延在する、項40に記載のソーラーモジュール。
42.上記第1フレキシブル相互接続部は、上記第1スーパーセルの上記前面端接触部に伝導接合する薄いリボン部分と、上記ソーラーモジュールの上記第1縁と平行に延びるより厚い部分とを含む、項40に記載のソーラーモジュール。
43.上記第1フレキシブル相互接続部は、上記第1スーパーセルの上記前面端接触部に伝導接合する薄いリボン部分と、上記ソーラーモジュールの上記第1縁と平行に延びるコイル巻きされたリボン部分とを含む、項40に記載のソーラーモジュール。
44.第2スーパーセル行が、前面端接触部が、上記ソーラーモジュールの上記第1縁と隣接し、かつ平行な状態で配置された第2スーパーセルを含み、上記第1スーパーセルの上記前面端接触部は、上記第1フレキシブル電気相互接続部を介し、上記第2スーパーセルの上記前面端接触部へ電気接続する、項40に記載のソーラーモジュール。
45.上記第1スーパーセルの上記後面端接触部は、上記ソーラーモジュールの上記第1縁と反対側の上記ソーラーモジュールの第2縁と隣接し、かつ平行に位置しており、
上記ソーラーモジュールの上記第2縁と平行に細長く延び、上記第1スーパーセルの上記後面端接触部に伝導接合し、全体が上記スーパーセルの後方に横たわる第2フレキシブル電気相互接続部を備える、項40に記載のソーラーモジュール。
46.第2スーパーセル行が、前面端接触部が、上記ソーラーモジュールの上記第1縁と隣接し、かつ平行な状態で、かつ、後面端接触部が、上記ソーラーモジュールの上記第2縁と隣接し、かつ平行に位置する状態で配置された第2スーパーセルを含み、
上記第1スーパーセルの上記前面端接触部は、上記第1フレキシブル電気相互接続部を介し、上記第2スーパーセルの上記前面端接触部に電気接続し、
上記第1スーパーセルの上記後面端接触部は、上記第2フレキシブル電気相互接続部を介し、上記第2スーパーセルの上記後面端接触部に電気接続する、項45に記載のソーラーモジュール。
47.後面端接触部が、上記ソーラーモジュールの上記第1縁と反対側の上記ソーラーモジュールの第2縁に隣接した状態で上記第1スーパーセルと直列に、上記第1スーパーセル行に配置された第2スーパーセルと、
上記ソーラーモジュールの上記第2縁と平行に細長く延び、上記第1スーパーセルの上記後面端接触部に伝導接合し、全体が上記スーパーセルの後方に横たわる第2フレキシブル電気相互接続部と
を備える、項40に記載のソーラーモジュール。
48.第2スーパーセル行が、第3スーパーセルの前面端接触部が上記ソーラーモジュールの上記第1縁に隣接し、第4スーパーセルの後面端接触部が上記ソーラーモジュールの上記第2縁に隣接した状態で直列に配置された上記第3スーパーセルと上記第4スーパーセルとを含み、
上記第1スーパーセルの上記前面端接触部は、上記第1フレキシブル電気相互接続部を介し、上記第3スーパーセルの上記前面端接触部に電気接続し、上記第2スーパーセルの上記後面端接触部は、上記第2フレキシブル電気相互接続部を介し、上記第4スーパーセルの上記後面端接触部に電気接続する、項47に記載のソーラーモジュール。
49.上記複数のスーパーセルは、スーパーセルの上記2またはそれより多くの平行行間の複数の間隙の位置と幅とに対応する位置と幅とを有する平行な濃色の複数のストライプを含む白色の後面シート上に配置され、
複数の上記後面シートの複数の白色の部分は、上記スーパーセルの2またはそれより多くの平行行間の上記複数の間隙を通して視認出来ない、項40に記載のソーラーモジュール。
50.上記ソーラーモジュールの上記前面に位置する、上記第1フレキシブル電気相互接続部の全ての部分が、覆われて、または着色されて、上記スーパーセルに対する視認出来るコントラストが下げられる、項40に記載のソーラーモジュール。
51.各シリコン太陽電池が、
対向して位置付けられた平行な第1長辺および第2長辺と2つの対向して位置付けられた短辺とにより画定される形状を有する長方形または略長方形の前面および後面であって、上記前面の少なくとも一部が、上記太陽電池ストリングの動作の間に太陽放射に曝される、前面および後面と、
上記前面に配され、上記第1長辺および上記第2長辺と垂直に延びる複数のフィンガーと、上記第1長辺に隣接する行内に位置付けられた複数の不連続な前面コンタクトパッドとを含む電気伝導性前面金属被覆パターンであって、各前面コンタクトパッドが、上記複数のフィンガーのうち少なくとも1つに電気接続する、電気伝導性前面金属被覆パターンと、
上記後面に配され、上記第2長辺に隣接する行内に位置付けられた複数の不連続な後面コンタクトパッドを含む電気伝導性後面金属被覆パターンと、
各スーパーセル内で、上記複数のシリコン太陽電池は、隣接し合うシリコン太陽電池の第1長辺および第2長辺が重なり合った状態で、かつ、隣接し合うシリコン太陽電池上の対応し合う不連続な前面コンタクトパッドと不連続な後面コンタクトパッドとが互いに位置合わせされ、重なり合い、伝導性粘着接合剤により伝導接合して、上記隣接し合うシリコン太陽電池を直列に電気接続した状態で並んで配置されている、項40に記載のソーラーモジュール。
52.各シリコン太陽電池の上記前面金属被覆パターンは、隣接し合う不連続な前面コンタクトパッドを電気相互接続する複数の薄い導体を含み、各薄い導体が、上記複数の太陽電池の上記長辺と垂直な方向に測定する上記複数の不連続なコンタクトパッドの幅より薄い、項51に記載のソーラーモジュール。
53.上記伝導性粘着接合剤は、上記複数の不連続な前面コンタクトパッドに隣接する1または複数のバリアを形成する、上記前面金属被覆パターンの複数の特徴により、上記複数の不連続な前面コンタクトパッドの上記複数の位置に実質的に封じ込められる、項51に記載のソーラーモジュール。
54.上記伝導性粘着接合剤は、上記複数の不連続な後面コンタクトパッドに隣接する1または複数のバリアを形成する、上記後面金属被覆パターンの複数の特徴により、上記複数の不連続な後面コンタクトパッドの上記複数の位置に実質的に封じ込められる、項51に記載のソーラーモジュール。
55.複数のスーパーセルを組み立てる工程であって、隣接し合う長方形シリコン太陽電池の長辺上の複数の端部がこけら葺き状に重なり合った状態で並んで配置された複数の長方形シリコン太陽電池を各スーパーセルが含む、工程と
上記複数のスーパーセルを加熱および加圧することにより、隣接し合う長方形シリコン太陽電池の重なり合う上記端部間に配された電気伝導性接合剤を硬化させ、それにより、隣接し合い重なり合う長方形シリコン太陽電池を互いに接合し、それらを直列に電気接続する、工程と、
封入材を含む層スタック内で、所望されるソーラーモジュール構成で上記複数のスーパーセルを配置し相互接続する工程と、
上記層スタックを加熱および加圧して、積層構造を形成する工程と
を備える、ソーラーモジュールを作る方法。
56.上記層スタックを加熱および加圧して、上記積層構造を形成する工程の前に、上記複数のスーパーセルを加熱および加圧することにより、上記電気伝導性接合剤を硬化または部分硬化させる工程であって、それにより、上記積層構造の形成の前に、中間製品として硬化または部分硬化させられたスーパーセルを形成する、工程を備える、項55に記載の方法。
57.スーパーセルの組み立ての間にそれぞれの追加の長方形シリコン太陽電池が上記スーパーセルに追加される際に、新たに追加される上記太陽電池と、その隣接し重なっている太陽電池との間の上記電気伝導性粘着接合剤は、他の長方形シリコン太陽電池が上記スーパーセルに追加される前に硬化または部分硬化させられる、項56に記載の方法。
58.スーパーセル内の上記電気伝導性接合剤の全てを同じ工程で硬化または部分硬化させる工程を備える、項56に記載の方法。
59.上記層スタックを加熱および加圧して、上記積層構造を形成する工程の前に、上記複数のスーパーセルを加熱および加圧することにより、上記電気伝導性接合剤を部分硬化させる工程であって、それにより、上記積層構造の形成の前に、中間製品として部分硬化させられたスーパーセルを形成する、工程と
上記層スタックを加熱および加圧しつつ、上記電気伝導性接合剤の硬化を完了させて、上記積層構造を形成する工程と
を備える、項56に記載の方法。
60.上記積層構造の形成の前に、中間製品として硬化または部分硬化させられたスーパーセルを形成することなく、上記層スタックを加熱および加圧しつつ上記電気伝導性接合剤を硬化させて、積層構造を形成する工程を備える、項55に記載の方法。
61.複数の長方形となるよう1または複数のシリコン太陽電池をダイシングして、上記複数の長方形シリコン太陽電池を提供する工程を備える、項55に記載の方法。
62.上記1または複数のシリコン太陽電池をダイシングする工程の前に上記1または複数のシリコン太陽電池に上記電気伝導性粘着接合剤を適用して、事前に適用された電気伝導性粘着接合剤を有する複数の長方形シリコン太陽電池を提供する工程を備える、項61に記載の方法。
63.上記1または複数のシリコン太陽電池に上記電気伝導性粘着接合剤を適用し、その後、レーザーを用いて、上記1または複数のシリコン太陽電池のうち各シリコン太陽電池上に1または複数の線をスクライブし、その後、スクライブされた上記1または複数の線に沿って上記1または複数のシリコン太陽電池を劈開する工程を備える、項62に記載の方法。
64.レーザーを用いて、上記1または複数のシリコン太陽電池のうち各シリコン太陽電池上に1または複数の線をスクライブし、その後、上記1または複数のシリコン太陽電池に上記電気伝導性粘着接合剤を適用して、その後、スクライブされた上記1または複数の線に沿って上記1または複数のシリコン太陽電池を劈開する工程を備える、項62に記載の方法。
65.上記電気伝導性粘着接合剤は、上記1または複数のシリコン太陽電池のうち各シリコン太陽電池の頂面に適用され、上記1または複数のシリコン太陽電池のうち各シリコン太陽電池の、対向して位置付けられた底面には適用されず、
上記1または複数のシリコン太陽電池の上記底面と湾曲支持面との間で真空を引いて、上記湾曲支持面に寄せて上記1または複数のシリコン太陽電池を曲げ、それにより、複数のスクライブラインに沿って上記1または複数のシリコン太陽電池を劈開する、工程を備える、項62に記載の方法。
66.上記1または複数のシリコン太陽電池をダイシングして、上記複数の長方形シリコン太陽電池を提供する工程の後に、上記複数の長方形シリコン太陽電池に上記電気伝導性粘着接合剤を適用する工程を備える、項61に記載の方法。
67.上記伝導性粘着接合剤は、約0℃より低い、またはそれと等しいガラス転移温度を有する、項55に記載の方法。
1A.ソーラーモジュールであって、
2またはそれより多くの平行行に配置されて、上記ソーラーモジュールの前面を形成する複数のスーパーセルを備え、
各スーパーセルが、隣接し合うシリコン太陽電池の端部が重なり合い互いに伝導接合して、上記隣接し合うシリコン太陽電池を直列に電気接続した状態で並んで配置された複数のシリコン太陽電池を有し、
各スーパーセルが、上記スーパーセルの一端にある前面端接触部と、上記スーパーセルの反対側の端にある逆極性の後面端接触部とを有し、
第1スーパーセル行が、前面端接触部が、上記ソーラーモジュールの第1縁と隣接し、かつ平行な状態で配置された第1スーパーセルを含み、
上記ソーラーモジュールは、上記ソーラーモジュールの上記第1縁と平行に細長く延び、上記第1スーパーセルの上記前面端接触部に伝導接合し、上記ソーラーモジュールの上記第1縁に隣接する、上記ソーラーモジュールの上記第1縁と垂直な方向に測定する幅が約1センチメートル以下の上記ソーラーモジュールの上記前面の狭い部分のみを占有する第1フレキシブル電気相互接続部を備える、ソーラーモジュール。
2A.上記第1フレキシブル電気相互接続部の一部は、上記ソーラーモジュールの上記第1縁に最も近く、上記第1スーパーセルの後方の、上記第1スーパーセルの上記端周りに延在する、項1Aに記載のソーラーモジュール。
3A.上記第1フレキシブル相互接続部は、上記第1スーパーセルの上記前面端接触部に伝導接合する薄いリボン部分と、上記ソーラーモジュールの上記第1縁と平行に延びるより厚い部分とを含む、項1Aに記載のソーラーモジュール。
4A.上記第1フレキシブル相互接続部は、上記第1スーパーセルの上記前面端接触部に伝導接合する薄いリボン部分と、上記ソーラーモジュールの上記第1縁と平行に延びるコイル巻きされたリボン部分とを含む、項1Aに記載のソーラーモジュール。
5A.第2スーパーセル行が、前面端接触部が、上記ソーラーモジュールの上記第1縁と隣接し、かつ平行な状態で配置された第2スーパーセルを含み、上記第1スーパーセルの上記前面端接触部は、上記第1フレキシブル電気相互接続部を介し、上記第2スーパーセルの上記前面端接触部へ電気接続する、項1Aに記載のソーラーモジュール。
6A.上記第1スーパーセルの上記後面端接触部は、上記ソーラーモジュールの上記第1縁と反対側の上記ソーラーモジュールの第2縁と隣接し、かつ平行に位置しており、
細長の上記ソーラーモジュールの上記第2縁と平行に延び、上記第1スーパーセルの上記後面端接触部に伝導接合し、全体が上記スーパーセルの後方に横たわる第2フレキシブル電気相互接続部を備える、項1Aに記載のソーラーモジュール。
7A.第2スーパーセル行が、前面端接触部が、上記ソーラーモジュールの上記第1縁と隣接し、かつ平行な状態で、かつ、後面端接触部が、上記ソーラーモジュールの上記第2縁と隣接し、かつ平行に位置する状態で配置された第2スーパーセルを含み、
上記第1スーパーセルの上記前面端接触部は、上記第1フレキシブル電気相互接続部を介し、上記第2スーパーセルの上記前面端接触部に電気接続し、
上記第1スーパーセルの上記後面端接触部は、上記第2フレキシブル電気相互接続部を介し、上記第2スーパーセルの上記後面端接触部に電気接続する、項6Aに記載のソーラーモジュール。
8A.後面端接触部が、上記ソーラーモジュールの上記第1縁と反対側の上記ソーラーモジュールの第2縁に隣接した状態で上記第1スーパーセルと直列に、上記第1スーパーセル行に配置された第2スーパーセルと、
上記ソーラーモジュールの上記第2縁と平行に細長く延び、上記第1スーパーセルの上記後面端接触部に伝導接合し、全体が上記スーパーセルの後方に横たわる第2フレキシブル電気相互接続部と
を備える、項1Aに記載のソーラーモジュール。
9A.第2スーパーセル行が、第3スーパーセルの前面端接触部が上記ソーラーモジュールの上記第1縁に隣接し、第4スーパーセルの後面端接触部が上記ソーラーモジュールの上記第2縁に隣接した状態で直列に配置された上記第3スーパーセルと上記第4スーパーセルとを含み、
上記第1スーパーセルの上記前面端接触部は、上記第1フレキシブル電気相互接続部を介し、上記第3スーパーセルの上記前面端接触部に電気接続し、上記第2スーパーセルの上記後面端接触部は、上記第2フレキシブル電気相互接続部を介し、上記第4スーパーセルの上記後面端接触部に電気接続する、項8Aに記載のソーラーモジュール。
10A.上記ソーラーモジュールの複数の外縁から離れる方向には、上記ソーラーモジュールの上記前面の作用面積を減少させる、上記複数のスーパーセル間の電気相互接続はない、項1Aに記載のソーラーモジュール。
11A.少なくとも1つのスーパーセルペアが、上記スーパーセルペアに含まれる一方のスーパーセルの裏面接触端が、上記スーパーセルのペアに含まれる他方のスーパーセルの裏面接触端に隣接した状態で行内に並んで配置される、項1Aに記載のソーラーモジュール。
12A.少なくとも1つのスーパーセルペアが、2つのスーパーセルの隣接し合う端が、逆極性の端接触部を有した状態で行内で並んで配置され、
上記スーパーセルのペアの上記隣接し合う端は重なり合い、
上記スーパーセルのペアに含まれる上記2つのスーパーセルは、それらの重なり合う端間に挟まれ、上記前面を影にしないフレキシブル相互接続部により、直列に電気接続する、項1Aに記載のソーラーモジュール。
13A.上記複数のスーパーセルは、上記スーパーセルの2またはそれより多くの平行行間の複数の間隙の位置と幅とに対応する位置と幅とを有する平行な濃色の複数のストライプを含む白色のバッキングシート上に配置され、
複数の上記バッキングシートの複数の白色の部分は、上記スーパーセルの2またはそれより多くの平行行間の上記複数の間隙を通して視認出来ない、項1Aに記載のソーラーモジュール。
14A.上記ソーラーモジュールの上記前面に位置する、上記第1フレキシブル電気相互接続部の全ての部分が、覆われて、または着色されて、上記スーパーセルに対する視認出来るコントラストが下げられる、項1Aに記載のソーラーモジュール。
15A.各シリコン太陽電池が、
対向して位置付けられた平行な第1長辺および第2長辺と2つの対向して位置付けられた短辺とにより画定される形状を有する長方形または略長方形の前面および後面であって、上記前面の少なくとも一部が、上記太陽電池ストリングの動作の間に太陽放射に曝される、前面および後面と、
上記前面に配され、上記第1長辺および上記第2長辺と垂直に延びる複数のフィンガーと、上記第1長辺に隣接する行内に位置付けられた複数の不連続な前面コンタクトパッドとを含む電気伝導性前面金属被覆パターンであって、各前面コンタクトパッドが、上記複数のフィンガーのうち少なくとも1つに電気接続する、電気伝導性前面金属被覆パターンと、
上記後面に配され、上記第2長辺に隣接する行内に位置付けられた複数の不連続な後面コンタクトパッドを含む電気伝導性後面金属被覆パターンと、
各スーパーセル内で、上記複数のシリコン太陽電池は、隣接し合うシリコン太陽電池の第1長辺および第2長辺が重なり合った状態で、かつ、隣接し合うシリコン太陽電池上の対応し合う不連続な前面コンタクトパッドと不連続な後面コンタクトパッドとが互いに位置合わせされ、重なり合い、伝導性粘着接合剤により伝導接合して、上記隣接し合うシリコン太陽電池を直列に電気接続した状態で並んで配置されている、項1Aに記載のソーラーモジュール。
16A.各シリコン太陽電池の上記前面金属被覆パターンは、隣接し合う不連続な前面コンタクトパッドを電気相互接続する複数の薄い導体を含み、各薄い導体が、上記複数の太陽電池の上記長辺と垂直な方向に測定する上記複数の不連続なコンタクトパッドの幅より薄い、項15Aに記載のソーラーモジュール。
17A.上記伝導性粘着接合剤は、各不連続な前面コンタクトパッド周りに複数のバリアを形成する、上記前面金属被覆パターンの複数の特徴により、上記複数の不連続な前面コンタクトパッドの上記複数の位置に実質的に封じ込められる、項15Aに記載のソーラーモジュール。
18A.上記伝導性粘着接合剤は、各不連続な後面コンタクトパッド周りに複数のバリアを形成する、上記後面金属被覆パターンの複数の特徴により、上記複数の不連続な後面コンタクトパッドの上記複数の位置に実質的に封じ込められる、項15Aに記載のソーラーモジュール。
19A.上記複数の不連続な後面コンタクトパッドは、複数の不連続な銀製の後面コンタクトパッドであり、上記複数の不連続な銀製の後面コンタクトパッドを除き、各シリコン太陽電池の上記後面金属被覆パターンは、隣接するシリコン太陽電池が重なっていない上記太陽電池の上記前面の一部の下に横たわるどの位置においても銀製の接触部を含まない、項15Aに記載のソーラーモジュール。
20A.ソーラーモジュールであって、
複数のスーパーセルであって、隣接し合うシリコン太陽電池の端部が重なり合い互いに伝導接合して、上記隣接し合うシリコン太陽電池を直列に電気接続した状態で並んで配置された複数のシリコン太陽電池を各スーパーセルが有する、複数のスーパーセルを備え、
各シリコン太陽電池が、
対向して位置付けられた平行な第1長辺および第2長辺と2つの対向して位置付けられた短辺とにより画定される形状を有する長方形または略長方形の前面および後面であって、上記前面の少なくとも一部が、上記太陽電池ストリングの動作の間に太陽放射に曝される、前面および後面と、
上記前面に配され、上記第1長辺および上記第2長辺と垂直に延びる複数のフィンガーと、上記第1長辺に隣接する行内に位置付けられた複数の不連続な前面コンタクトパッドとを含む電気伝導性前面金属被覆パターンであって、各前面コンタクトパッドが、上記複数のフィンガーのうち少なくとも1つに電気接続する、電気伝導性前面金属被覆パターンと、
上記後面に配され、上記第2長辺に隣接する行内に位置付けられた複数の不連続な後面コンタクトパッドを含む電気伝導性後面金属被覆パターンと、
各スーパーセル内で、上記複数のシリコン太陽電池は、隣接し合うシリコン太陽電池の第1長辺および第2長辺が重なり合った状態で、かつ、隣接し合うシリコン太陽電池上の対応し合う不連続な前面コンタクトパッドと不連続な後面コンタクトパッドとが互いに位置合わせされ、重なり合い、伝導性粘着接合剤により伝導接合して、上記隣接し合うシリコン太陽電池を直列に電気接続した状態で並んで配置されており、
上記複数のスーパーセルは、上記ソーラーモジュールの長さまたは幅に亘って実質的に広がる単一の行に、または2またはそれより多くの平行行に配置されて、上記ソーラーモジュールの動作の間太陽放射により照射されることになる上記ソーラーモジュールの前面を形成する、ソーラーモジュール。
21A.上記複数の不連続な後面コンタクトパッドは、複数の不連続な銀製の後面コンタクトパッドであり、上記複数の不連続な銀製の後面コンタクトパッドを除き、各シリコン太陽電池の上記後面金属被覆パターンは、隣接するシリコン太陽電池が重なっていない上記太陽電池の上記前面の一部の下に横たわるどの位置においても銀製の接触部を含まない、項20Aに記載のソーラーモジュール。
22A.各シリコン太陽電池の上記前面金属被覆パターンは、隣接し合う不連続な前面コンタクトパッドを電気相互接続する複数の薄い導体を含み、各薄い導体が、上記複数の太陽電池の上記長辺と垂直な方向に測定する、上記複数の不連続なコンタクトパッドの幅より薄い、項20Aに記載のソーラーモジュール。
23A.上記伝導性粘着接合剤は、各不連続な前面コンタクトパッド周りに複数のバリアを形成する、上記前面金属被覆パターンの複数の特徴により、上記複数の不連続な前面コンタクトパッドの上記複数の位置に実質的に封じ込められる、項20Aに記載のソーラーモジュール。
24A.上記伝導性粘着接合剤は、各不連続な後面コンタクトパッド周りに複数のバリアを形成する、上記後面金属被覆パターンの複数の特徴により、上記複数の不連続な後面コンタクトパッドの上記複数の位置に実質的に封じ込められる、項20Aに記載のソーラーモジュール。
25A.スーパーセルであって、
複数のシリコン太陽電池を備え、
各シリコン太陽電池が、
対向して位置付けられた平行な第1長辺および第2長辺と2つの対向して位置付けられた短辺とにより画定される形状を有する長方形または略長方形の前面および後面であって、上記前面の少なくとも一部が、上記太陽電池ストリングの動作の間に太陽放射に曝される、前面および後面と、
上記前面に配され、上記第1長辺および上記第2長辺と垂直に延びる複数のフィンガーと、上記第1長辺に隣接する行内に位置付けられた複数の不連続な前面コンタクトパッドとを含む電気伝導性前面金属被覆パターンであって、各前面コンタクトパッドが、上記複数のフィンガーのうち少なくとも1つに電気接続する、電気伝導性前面金属被覆パターンと、
上記後面に配され、上記第2長辺に隣接する行内に位置付けられた複数の不連続な銀製の後面コンタクトパッドを含む電気伝導性後面金属被覆パターンと、
上記複数のシリコン太陽電池は、隣接し合うシリコン太陽電池の第1長辺および第2長辺が重なり合った状態で、かつ、隣接し合うシリコン太陽電池上の対応し合う不連続な前面コンタクトパッドと不連続な後面コンタクトパッドとが互いに位置合わせされ、重なり合い、伝導性粘着接合剤により伝導接合して、上記隣接し合うシリコン太陽電池を直列に電気接続した状態で並んで配置されている、スーパーセル。
26A.上記複数の不連続な後面コンタクトパッドは、複数の不連続な銀製の後面コンタクトパッドであり、上記複数の不連続な銀製の後面コンタクトパッドを除き、各シリコン太陽電池の上記後面金属被覆パターンは、隣接するシリコン太陽電池が重なっていない上記太陽電池の上記前面の一部の下に横たわるどの位置においても銀製の接触部を含まない、項25Aに記載のソーラーモジュール。
27A.上記前面金属被覆パターンは、隣接し合う不連続な前面コンタクトパッドを電気相互接続する複数の薄い導体を含み、各薄い導体が、上記複数の太陽電池の上記長辺と垂直な方向に測定する、上記複数の不連続なコンタクトパッドの幅より薄い、項25Aに記載の太陽電池ストリング。
28A.上記伝導性粘着接合剤は、各不連続な前面コンタクトパッド周りに複数のバリアを形成する、上記前面金属被覆パターンの複数の特徴により、上記複数の不連続な前面コンタクトパッドの上記複数の位置に実質的に封じ込められる、項25Aに記載の太陽電池ストリング。
29A.上記伝導性粘着接合剤は、各不連続な後面コンタクトパッド周りに複数のバリアを形成する、上記後面金属被覆パターンの複数の特徴により、上記複数の不連続な後面コンタクトパッドの上記複数の位置に実質的に封じ込められる、項25Aに記載の太陽電池ストリング。
30A.上記伝導性粘着接合剤は、約0℃より低い、またはそれと等しいガラス転移を有する、項25Aに記載の太陽電池ストリング。
31A.複数のスーパーセルを組み立てる工程であって、隣接し合う長方形シリコン太陽電池の長辺上の複数の端部がこけら葺き状に重なり合った状態で並んで配置された複数の長方形シリコン太陽電池を各スーパーセルが含む、工程と
上記複数のスーパーセルを加熱および加圧することにより、隣接し合う長方形シリコン太陽電池の重なり合う上記端部間に配された電気伝導性接合剤を硬化させ、それにより、隣接し合い重なり合う長方形シリコン太陽電池を互いに接合し、それらを直列に電気接続する、工程と、
封入材を含む層スタック内で、所望されるソーラーモジュール構成で上記複数のスーパーセルを配置し相互接続する工程と、
上記層スタックを加熱および加圧して、積層構造を形成する工程と
を備える、ソーラーモジュールを作る方法。
32A.上記層スタックを加熱および加圧して、上記積層構造を形成する工程の前に、上記複数のスーパーセルを加熱および加圧することにより、上記電気伝導性接合剤を硬化または部分硬化させる工程であって、それにより、上記積層構造の形成の前に、中間製品として硬化または部分硬化させられたスーパーセルを形成する、工程を備える、項31Aに記載の方法。
33A.スーパーセルの組み立ての間にそれぞれの追加の長方形シリコン太陽電池が上記スーパーセルに追加される際に、新たに追加される上記太陽電池と、その隣接し重なっている太陽電池との間の上記電気伝導性粘着接合剤は、他の長方形シリコン太陽電池が上記スーパーセルに追加される前に硬化または部分硬化させられる、項32Aに記載の方法。
34A.スーパーセル内の上記電気伝導性接合剤の全てを同じ工程で硬化または部分硬化させる工程を備える、項32Aに記載の方法。
35A.上記層スタックを加熱および加圧して、上記積層構造を形成する工程の前に、上記複数のスーパーセルを加熱および加圧することにより、上記電気伝導性接合剤を部分硬化させる工程であって、それにより、上記積層構造の形成の前に、中間製品として部分硬化させられたスーパーセルを形成する、工程と
上記層スタックを加熱および加圧しつつ、上記電気伝導性接合剤の硬化を完了させて、上記積層構造を形成する工程と
を備える、項32Aに記載の方法。
36A.上記積層構造の形成の前に、中間製品として硬化または部分硬化させられたスーパーセルを形成することなく、上記層スタックを加熱および加圧しつつ上記電気伝導性接合剤を硬化させて、積層構造を形成する工程を備える、項31Aに記載の方法。
37A.複数の長方形となるよう1または複数のシリコン太陽電池をダイシングして、上記複数の長方形シリコン太陽電池を提供する工程を備える、項31Aに記載の方法。
38A.上記1または複数のシリコン太陽電池をダイシングする工程の前に上記1または複数のシリコン太陽電池に上記電気伝導性粘着接合剤を適用して、事前に適用された電気伝導性粘着接合剤を有する複数の長方形シリコン太陽電池を提供する工程を備える、項37Aに記載の方法。
39A.上記1または複数のシリコン太陽電池に上記電気伝導性粘着接合剤を適用し、その後、レーザーを用いて、上記1または複数のシリコン太陽電池のうち各シリコン太陽電池上に1または複数の線をスクライブし、その後、スクライブされた上記1または複数の線に沿って上記1または複数のシリコン太陽電池を劈開する工程を備える、項38Aに記載の方法。
40A.レーザーを用いて、上記1または複数のシリコン太陽電池のうち各シリコン太陽電池上に1または複数の線をスクライブし、その後、上記1または複数のシリコン太陽電池に上記電気伝導性粘着接合剤を適用して、その後、スクライブされた上記1または複数の線に沿って上記1または複数のシリコン太陽電池を劈開する工程を備える、項38Aに記載の方法。
41A.上記電気伝導性粘着接合剤は、上記1または複数のシリコン太陽電池のうち各シリコン太陽電池の頂面に適用され、上記1または複数のシリコン太陽電池のうち各シリコン太陽電池の、対向して位置付けられた底面には適用されず、
上記1または複数のシリコン太陽電池の上記底面と湾曲支持面との間で真空を引いて、上記湾曲支持面に寄せて上記1または複数のシリコン太陽電池を曲げ、それにより、複数のスクライブラインに沿って上記1または複数のシリコン太陽電池を劈開する、工程を備える、項38Aに記載の方法。
42A.上記1または複数のシリコン太陽電池をダイシングして、上記複数の長方形シリコン太陽電池を提供する工程の後に、上記複数の長方形シリコン太陽電池に上記電気伝導性粘着接合剤を適用する工程を備える、項37Aに記載の方法。
43A.上記伝導性粘着接合剤は、約0℃より低い、またはそれと等しいガラス転移温度を有する、項31Aに記載の方法。
44A.スーパーセルを作る方法であって、
1または複数のシリコン太陽電池のうち各シリコン太陽電池上に1または複数のスクライブラインをレーザースクライブして、上記1または複数のシリコン太陽電池上に複数の長方形領域を画定する工程と、
各長方形領域の長辺に隣接する1または複数の位置において、スクライブされた上記1または複数のシリコン太陽電池に電気伝導性粘着接合剤を適用する工程と、
上記1または複数のスクライブラインに沿って上記1または複数のシリコン太陽電池を分離させて、長辺に隣接した前面に配された上記電気伝導性粘着接合剤の一部をそれぞれが含む複数の長方形シリコン太陽電池を提供する工程と、
隣接し合う長方形シリコン太陽電池の長辺が、上記電気伝導性粘着接合剤の一部が間に配されてこけら葺き状に重なり合った状態で上記複数の長方形シリコン太陽電池を並べて配置する工程と、
上記電気伝導性接合剤を硬化させて、それにより、隣接し合い重なり合う長方形シリコン太陽電池を互いに接合し、それらを直列に電気接続する工程と
を備える、方法。
45A.スーパーセルを作る方法であって、
頂面と、対向して位置付けられた底面とをそれぞれが有する1または複数のシリコン太陽電池のうち各シリコン太陽電池上に1または複数のスクライブラインをレーザースクライブして、上記1または複数のシリコン太陽電池上に複数の長方形領域を画定する工程と、
上記1または複数のシリコン太陽電池の上記頂面の一部に電気伝導性粘着接合剤を適用する工程と、
上記1または複数のシリコン太陽電池の上記底面と湾曲支持面との間で真空を引いて、上記湾曲支持面に寄せて上記1または複数のシリコン太陽電池を曲げ、それにより、上記1または複数のスクライブラインに沿って上記1または複数のシリコン太陽電池を劈開して、長辺に隣接する前面に配された上記電気伝導性粘着接合剤の一部をそれぞれが含む複数の長方形シリコン太陽電池を提供する工程と、
隣接し合う長方形シリコン太陽電池の長辺が、上記電気伝導性粘着接合剤の一部が間に配されてこけら葺き状に重なり合った状態で上記複数の長方形シリコン太陽電池を並べて配置する工程と、
上記電気伝導性接合剤を硬化させ、それにより、隣接し合い重なり合う長方形シリコン太陽電池を互いに接合し、それらを直列に電気接続する工程と
を備える、方法。
46A.スーパーセルを作る方法であって、
1または複数の擬似正方形シリコンウェハのうち各擬似正方形シリコンウェハの長い縁と平行な複数の線に沿って上記1または複数の擬似正方形シリコンウェハをダイシングして、長軸に沿って実質的に同じ長さをそれぞれが有する複数の長方形シリコン太陽電池を形成する工程と、
隣接し合う太陽電池の長辺が重なり合い互いに伝導接合して、上記隣接し合う太陽電池を直列に電気接続した状態で上記複数の長方形シリコン太陽電池を並べて配置する工程と、
上記複数の長方形シリコン太陽電池は、上記擬似正方形ウェハの複数の角に、または複数の角の一部に対応する2つの面取りされた角を含む少なくとも1つの長方形太陽電池と、面取りされた角をそれぞれが有さない1または複数の長方形シリコン太陽電池とを含み、
上記擬似正方形ウェハのダイシングが沿って行われる複数の平行線間の間隔は、上記面取りされた角を含む長方形シリコン太陽電池の上記長軸と垂直な幅を、上記面取りされた角を有さない1または複数の長方形シリコン太陽電池の長軸と垂直な幅より大きくすることにより、上記面取りされた角を補うよう選択され、これにより、上記太陽電池ストリング内の上記複数の長方形シリコン太陽電池のうちそれぞれが、上記太陽電池ストリングの動作において光に曝される面積が実質的に同じである前面を有する、方法。
47A.スーパーセルであって、
隣接し合う太陽電池の端部が重なり合い互いに伝導接合して、上記隣接し合う太陽電池を直列に電気接続した状態で並んで配置された複数のシリコン太陽電池を備え、
上記複数のシリコン太陽電池のうち少なくとも1つは、ダイシング元の擬似正方形シリコンウェハの複数の角、または複数の角の一部に対応する面取りされた角を有し、上記複数のシリコン太陽電池のうち少なくとも1つは、面取りされた角を有さず、上記複数のシリコン太陽電池のうちそれぞれが、上記太陽電池ストリングの動作の間に光に曝される面積が実質的に同じである前面を有する、スーパーセル。
48A.2またはそれより多くのスーパーセルを作る方法であって、
1または複数の擬似正方形シリコンウェハのうち各擬似正方形シリコンウェハの長い縁と平行な複数の線に沿って上記1または複数の擬似正方形シリコンウェハをダイシングして、上記1または複数の擬似正方形シリコンウェハの複数の角、または複数の角の一部に対応する面取りされた角を含む第1の複数の長方形シリコン太陽電池と、上記1または複数の擬似正方形シリコンウェハの全幅に亘って広がる第1の長さをそれぞれが有し、面取りされた角を有さない第2の複数の長方形シリコン太陽電池とを形成する工程と、
上記第1の複数の長方形シリコン太陽電池のうちそれぞれから上記面取りされた角を取り除いて、上記第1の長さより短い第2の長さをそれぞれが有し、面取りされた角を有さない第3の複数の長方形シリコン太陽電池を形成する工程と、
隣接し合う長方形シリコン太陽電池の長辺が重なり合い互いに伝導接合した状態で上記第2の複数の長方形シリコン太陽電池を並べて配置して、上記第2の複数の長方形シリコン太陽電池を直列に電気接続して、幅が上記第1の長さと等しい太陽電池ストリングを形成する工程と、
隣接し合う長方形シリコン太陽電池の長辺が重なり合い互いに伝導接合した状態で上記第3の複数の長方形シリコン太陽電池を並べて配置して、上記第3の複数の長方形シリコン太陽電池を直列に電気接続して、幅が上記第2の長さと等しい太陽電池ストリングを形成する工程と
を備える、方法。
49A.2またはそれより多くのスーパーセルを作る方法であって、
1または複数の擬似正方形シリコンウェハのうち各擬似正方形シリコンウェハの長い縁と平行な複数の線に沿って上記1または複数の擬似正方形シリコンウェハをダイシングして、上記1または複数の擬似正方形シリコンウェハの複数の角、または複数の角の一部に対応する面取りされた角を含む第1の複数の長方形シリコン太陽電池と、面取りされた角を有さない第2の複数の長方形シリコン太陽電池とを形成する工程と、
隣接し合う長方形シリコン太陽電池の長辺が重なり合い互いに伝導接合した状態で上記第1の複数の長方形シリコン太陽電池を並べて配置して、上記第1の複数の長方形シリコン太陽電池を直列に電気接続する工程と、
隣接し合う長方形シリコン太陽電池の長辺が重なり合い互いに伝導接合した状態で上記第2の複数の長方形シリコン太陽電池を並べて配置して、上記第2の複数の長方形シリコン太陽電池を直列に電気接続する工程と
を備える、方法。
50A.N(≧25)個の、約10ボルトより高い降伏電圧を平均で有する長方形または略長方形太陽電池の直列接続ストリングであって、1または複数のスーパーセルとなるよう上記長方形または略長方形太陽電池はグループ化されており、上記1または複数のスーパーセルのそれぞれが、隣接し合う太陽電池の長辺が重なり合い電気および熱伝導性接着剤により互いに伝導接合した状態で並んで配置された上記複数の太陽電池のうち2またはそれより多くを含む、長方形または略長方形太陽電池の直列接続ストリングを備え、
太陽電池の上記ストリング内のいずれの単一の太陽電池も、またはN個より少ない太陽電池のグループも個別に、バイパスダイオードと並列に電気接続しない、ソーラーモジュール。
51A.Nは、30より大きい、またはそれと等しい、項50Aに記載のソーラーモジュール。
52A.Nは、50より大きい、またはそれと等しい、項50Aに記載のソーラーモジュール。
53A.Nは、100より大きい、またはそれと等しい、項50Aに記載のソーラーモジュール。
54A.上記接着剤は、上記複数の太陽電池と垂直な方向への厚さが約0.1mmより小さい、またはそれと等しく、上記複数の太陽電池と垂直な方向への熱伝導性が約1.5w/m/kより高い、またはそれと等しい、隣接し合う太陽電池間の複数の接合を形成する、項50Aに記載のソーラーモジュール。
55A.上記N個の太陽電池は、単一のスーパーセルとなるようグループ化される、項50Aに記載のソーラーモジュール。
56A.上記複数の太陽電池はシリコン太陽電池である、項50Aに記載のソーラーモジュール。
57A.ソーラーモジュールであって、
上記ソーラーモジュールの縁と平行な上記ソーラーモジュールの全長または全幅に亘って実質的に広がるスーパーセルであって、上記スーパーセルは、隣接し合う太陽電池の長辺が重なり合い電気および熱伝導性接着剤により互いに伝導接合した状態で並んで配置された、N個の、約10ボルトより高い降伏電圧を平均で有する、長方形または略長方形太陽電池の直列接続ストリングを有する、スーパーセルを備え、
上記スーパーセル内のいずれの単一の太陽電池も、またはN個より少ない太陽電池のグループも個別に、バイパスダイオードと並列に電気接続しない、ソーラーモジュール。
58A.N>24である、項57Aに記載のソーラーモジュール。
59A.上記スーパーセルの、電流の流れの方向への長さが、少なくとも約500mmである、項57Aに記載のソーラーモジュール。
60A.スーパーセルであって、
複数のシリコン太陽電池を備え、
各シリコン太陽電池が、
対向して位置付けられた平行な第1長辺および第2長辺と2つの対向して位置付けられた短辺とにより画定される形状を有する長方形または略長方形の前面および後面であって、上記前面の少なくとも一部が、上記太陽電池ストリングの動作の間に太陽放射に曝される、前面および後面と、
上記前面に配され、上記第1長辺に隣接して位置付けられた少なくとも1つの前面コンタクトパッドを含む電気伝導性前面金属被覆パターンと、
上記後面に配され、上記第2長辺に隣接して位置付けられた少なくとも1つの後面コンタクトパッドを含む電気伝導性後面金属被覆パターンと
を有し、
上記複数のシリコン太陽電池は、隣接し合うシリコン太陽電池の第1長辺および第2長辺が重なり合った状態で、かつ、隣接し合うシリコン太陽電池上の前面および後面のコンタクトパッドが、重なり合い伝導性粘着接合剤により互いに伝導接合して、上記隣接し合うシリコン太陽電池を直列に電気接続した状態で並んで配置され、
各シリコン太陽電池の上記前面金属被覆パターンは、上記スーパーセルの製造の間の上記伝導性粘着接合剤の硬化の前に、上記伝導性粘着接合剤を上記少なくとも1つの前面コンタクトパッドへ実質的に封じ込めるよう構成されたバリアを含む、スーパーセル。
61A.隣接し合い重なり合うシリコン太陽電池のそれぞれのペアに関して、上記シリコン太陽電池のうち一方の上記前面の上記バリアには、上記シリコン太陽電池のうち他方のシリコン太陽電池の一部が重なり、上記バリアは上記一部に隠れ、それにより、上記スーパーセルの製造の間の上記伝導性粘着接合剤の硬化の前に、上記シリコン太陽電池の上記前面の重なり合う領域に上記伝導性粘着接合剤を実質的に封じ込める、項60Aに記載のスーパーセル。
62A.上記バリアは、上記第1長辺と平行に上記第1長辺の実質的に全長に亘って延びる連続する伝導線を含み、上記少なくとも1つの前面コンタクトパッドは、上記連続する伝導線と、上記太陽電池の上記第1長辺との間に位置する、項60Aに記載のスーパーセル。
63A.上記前面金属被覆パターンは、上記少なくとも1つの前面コンタクトパッドに電気接続し、上記第1長辺と垂直な方向に延びる上記フィンガーを含み、上記連続する伝導線は、上記複数のフィンガーを電気相互接続して、各フィンガーから少なくとも1つの前面コンタクトパッドまでの複数の伝導路を提供する、項62Aに記載のスーパーセル。
64A.上記前面金属被覆パターンは、上記第1長辺と隣接し、かつ平行な行に配置された複数の不連続なコンタクトパッドを含み、上記バリアは、各不連続なコンタクトパッドのために、上記スーパーセルの製造の間の上記伝導性粘着接合剤の硬化の前に、上記伝導性粘着接合剤を上記不連続なコンタクトパッドに実質的に封じ込める複数の別個のバリアを形成する複数の特徴を含む、項60Aに記載のスーパーセル。
65A.上記複数の別個のバリアは、それらの対応する不連続なコンタクトパッドに当接しており、それらより高い、項64Aに記載のスーパーセル。
66A.スーパーセルであって、
複数のシリコン太陽電池を備え、
各シリコン太陽電池が、
対向して位置付けられた平行な第1長辺および第2長辺と2つの対向して位置付けられた短辺とにより画定される形状を有する長方形または略長方形の前面および後面であって、上記前面の少なくとも一部が、上記太陽電池ストリングの動作の間に太陽放射に曝される、前面および後面と、
上記前面に配され、上記第1長辺に隣接して位置付けられた少なくとも1つの前面コンタクトパッドを含む電気伝導性前面金属被覆パターンと、
上記後面に配され、上記第2長辺に隣接して位置付けられた少なくとも1つの後面コンタクトパッドを含む電気伝導性後面金属被覆パターンと
を有し、
上記複数のシリコン太陽電池は、隣接し合うシリコン太陽電池の第1長辺および第2長辺が重なり合った状態で、かつ、隣接し合うシリコン太陽電池上の前面および後面のコンタクトパッドが、重なり合い伝導性粘着接合剤により互いに伝導接合して、上記隣接し合うシリコン太陽電池を直列に電気接続した状態で並んで配置され、
各シリコン太陽電池の上記後面金属被覆パターンは、上記スーパーセルの製造の間の上記伝導性粘着接合剤の硬化の前に、上記伝導性粘着接合剤を上記少なくとも1つの後面コンタクトパッドへ実質的に封じ込めるよう構成されたバリアを含む、スーパーセル。
67A.上記後面金属被覆パターンは、上記第2長辺と隣接し、かつ平行な行に配置された1または複数の不連続なコンタクトパッドを含み、上記バリアは、各不連続なコンタクトパッドのために、上記スーパーセルの製造の間の上記伝導性粘着接合剤の硬化の前に、上記伝導性粘着接合剤を上記不連続なコンタクトパッドに実質的に封じ込める複数の別個のバリアを形成する複数の特徴を含む、項66Aに記載のスーパーセル。
68A.上記複数の別個のバリアは、それらの対応する不連続なコンタクトパッドに当接しており、それらより高い、項67Aに記載のスーパーセル。
69A.太陽電池ストリングを作る方法であって、
1または複数の擬似正方形シリコンウェハのうち各擬似正方形シリコンウェハの長い縁と平行な複数の線に沿って上記1または複数の擬似正方形シリコンウェハをダイシングして、長軸に沿って実質的に同じ長さをそれぞれが有する複数の長方形シリコン太陽電池を形成する工程と、
隣接し合う太陽電池の長辺が重なり合い互いに伝導接合して、上記隣接し合う太陽電池を直列に電気接続した状態で上記複数の長方形シリコン太陽電池を並べて配置する工程と、
上記複数の長方形シリコン太陽電池は、上記擬似正方形ウェハの複数の角に、または複数の角の一部に対応する2つの面取りされた角を含む少なくとも1つの長方形太陽電池と、面取りされた角をそれぞれが有さない1または複数の長方形シリコン太陽電池とを含み、
上記擬似正方形ウェハのダイシングが沿って行われる複数の平行線間の間隔は、上記面取りされた角を含む長方形シリコン太陽電池の上記長軸と垂直な幅を、上記面取りされた角を有さない1または複数の長方形シリコン太陽電池の長軸と垂直な幅より大きくすることにより、上記面取りされた角を補うよう選択され、これにより、上記太陽電池ストリング内の上記複数の長方形シリコン太陽電池のうちそれぞれが、上記太陽電池ストリングの動作において光に曝される面積が実質的に同じである前面を有する、方法。
70A.太陽電池ストリングであって、
隣接し合う太陽電池の端部が重なり合い互いに伝導接合して、上記隣接し合う太陽電池を直列に電気接続した状態で並んで配置された複数のシリコン太陽電池を備え、
上記複数のシリコン太陽電池のうち少なくとも1つは、ダイシング元の擬似正方形シリコンウェハの複数の角、または複数の角の一部に対応する面取りされた角を有し、上記複数のシリコン太陽電池のうち少なくとも1つは、面取りされた角を有さず、上記複数のシリコン太陽電池のうちそれぞれが、上記太陽電池ストリングの動作の間に光に曝される面積が実質的に同じである前面を有する、太陽電池ストリング。
71A.2またはそれより多くの太陽電池ストリングを作る方法であって、
1または複数の擬似正方形シリコンウェハのうち各擬似正方形シリコンウェハの長い縁と平行な複数の線に沿って上記1または複数の擬似正方形シリコンウェハをダイシングして、上記1または複数の擬似正方形シリコンウェハの複数の角、または複数の角の一部に対応する面取りされた角を含む第1の複数の長方形シリコン太陽電池と、上記1または複数の擬似正方形シリコンウェハの全幅に亘って広がる第1の長さをそれぞれが有し、面取りされた角を有さない第2の複数の長方形シリコン太陽電池とを形成する工程と、
上記第1の複数の長方形シリコン太陽電池のうちそれぞれから上記面取りされた角を取り除いて、上記第1の長さより短い第2の長さをそれぞれが有し、面取りされた角を有さない第3の複数の長方形シリコン太陽電池を形成する工程と、
隣接し合う長方形シリコン太陽電池の長辺が重なり合い互いに伝導接合した状態で上記第2の複数の長方形シリコン太陽電池を並べて配置して、上記第2の複数の長方形シリコン太陽電池を直列に電気接続して、幅が上記第1の長さと等しい太陽電池ストリングを形成する工程と、
隣接し合う長方形シリコン太陽電池の長辺が重なり合い互いに伝導接合した状態で上記第3の複数の長方形シリコン太陽電池を並べて配置して、上記第3の複数の長方形シリコン太陽電池を直列に電気接続して、幅が上記第2の長さと等しい太陽電池ストリングを形成する工程と
を備える、方法。
72A.2またはそれより多くの太陽電池ストリングを作る方法であって、
1または複数の擬似正方形シリコンウェハのうち各擬似正方形シリコンウェハの長い縁と平行な複数の線に沿って上記1または複数の擬似正方形シリコンウェハをダイシングして、上記1または複数の擬似正方形シリコンウェハの複数の角、または複数の角の一部に対応する面取りされた角を含む第1の複数の長方形シリコン太陽電池と、面取りされた角を有さない第2の複数の長方形シリコン太陽電池とを形成する工程と、
隣接し合う長方形シリコン太陽電池の長辺が重なり合い互いに伝導接合した状態で上記第1の複数の長方形シリコン太陽電池を並べて配置して、上記第1の複数の長方形シリコン太陽電池を直列に電気接続する工程と、
隣接し合う長方形シリコン太陽電池の長辺が重なり合い互いに伝導接合した状態で上記第2の複数の長方形シリコン太陽電池を並べて配置して、上記第2の複数の長方形シリコン太陽電池を直列に電気接続する工程と
を備える、方法。
73A.ソーラーモジュールを作る方法であって、
複数の擬似正方形シリコンウェハのうち各擬似正方形シリコンウェハの長い縁と平行な複数の線に沿って上記ウェハをダイシングして、上記複数の擬似正方形シリコンウェハの複数の角に対応する面取りされた角を含む複数の長方形シリコン太陽電池と、面取りされた角を有さない複数の長方形シリコン太陽電池とを上記複数の擬似正方形シリコンウェハから形成する工程と、
上記面取りされた角を有さない複数の長方形シリコン太陽電池のうち少なくともいくつかを配置して、複数の長方形シリコン太陽電池の長辺が重なり合い互いに伝導接合して、上記複数の長方形シリコン太陽電池を直列に電気接続した状態で並んで配置された、面取りされた角を有さない長方形シリコン太陽電池のみをそれぞれが含む第1の複数のスーパーセルを形成する工程と、
上記面取りされた角を含む複数の長方形シリコン太陽電池のうち少なくともいくつかを配置して、複数の長方形シリコン太陽電池の長辺が重なり合い互いに伝導接合して、上記複数の長方形シリコン太陽電池を直列に電気接続した状態で並んで配置された、面取りされた角を有さない長方形シリコン太陽電池のみをそれぞれが含む第2の複数のスーパーセルを形成する工程と、
上記第1の複数のスーパーセルからの複数のスーパーセルのみまたは上記第2の複数のスーパーセルからの複数のスーパーセルのみを各行が含む、実質的に等しい長さの複数の平行なスーパーセル行に上記複数のスーパーセルを配置して、上記ソーラーモジュールの前面を形成する工程と
を備える、ソーラーモジュール。
74A.上記ソーラーモジュールの平行な対向し合う縁に隣接する上記複数のスーパーセル行のうち2行は、上記第2の複数のスーパーセルからの複数のスーパーセルのみを含み、全ての他の複数のスーパーセル行は、上記第1の複数のスーパーセルからのスーパーセルのみを含む、項73Aに記載のソーラーモジュール。
75A.上記ソーラーモジュールは、合計6つのスーパーセル行を含む、項74Aに記載のソーラーモジュール。
76A.隣接し合うシリコン太陽電池の端部が重なり合い互いに伝導接合して、上記隣接し合うシリコン太陽電池を直列に電気接続した状態で第1方向に並んで配置された複数のシリコン太陽電池と、
細長のフレキシブル電気相互接続部と
を備え、
上記細長のフレキシブル電気相互接続部の長軸は、上記第1方向と垂直な第2方向と平行に方向付けられ、
上記細長のフレキシブル電気相互接続部は、
上記第2方向に沿って配置された3またはそれより多くの不連続な位置において上記複数のシリコン太陽電池のうち端のシリコン太陽電池の前面または後面に伝導接合し、
上記第2方向に上記端の太陽電池の少なくとも全幅に亘って延び、
上記端のシリコン太陽電池の上記前面または裏面と垂直な方向に測定される導体厚さが、約100ミクロン未満であり、またはそれと等しく、
上記第2方向への電流の流れに対して約0.012オームより低い、またはそれと等しい抵抗を提供し、
約−40℃から約85℃の温度範囲で、上記端のシリコン太陽電池と上記相互接続部との間で、上記第2方向への差異のある膨張に適応するフレキシブル性を提供するよう構成されている、スーパーセル。
77A.上記フレキシブル電気相互接続部は、上記端のシリコン太陽電池の上記前面および裏面と垂直な方向に測定される導体厚さが、約30ミクロン未満である、またはそれと等しい、項76Aに記載のスーパーセル。
78A.上記フレキシブル電気相互接続部は、上記第2方向に上記スーパーセルを越えて延在して、少なくとも、ソーラーモジュール内で上記スーパーセルと平行、かつ隣接して位置付けられた第2スーパーセルへの電気相互接続を提供する、項76Aに記載のスーパーセル。
79A.上記フレキシブル電気相互接続部は、上記第1方向に上記スーパーセルを越えて延在して、ソーラーモジュール内で上記スーパーセルと平行、かつ並んで位置付けられた第2スーパーセルへの電気相互接続を提供する、項76Aに記載のスーパーセル。
80A.ソーラーモジュールであって、
上記ソーラーモジュールの幅に亘って広がる2またはそれより多くの平行行に配置されて、上記ソーラーモジュールの前面を形成し、隣接し合うシリコン太陽電池の端部が重なり合い互いに伝導接合して、上記隣接し合うシリコン太陽電池を直列に電気接続した状態で並んで配置された複数のシリコン太陽電池をそれぞれが含む複数のスーパーセルを備え、
少なくとも、第1行内の上記ソーラーモジュールの縁に隣接する第1スーパーセルの端は、
複数の不連続な位置において電気伝導性粘着接合剤により上記第1スーパーセルの前面に接合し、
上記ソーラーモジュールの上記縁と平行に延び、
少なくとも一部が上記第1スーパーセルの上記端周りで折れ、上記ソーラーモジュールの前からの視界から隠れた、
フレキシブル電気相互接続部を介し、
第2行内の上記ソーラーモジュールの同じ上記縁に隣接する、第2スーパーセルの端に電気接続する、
ソーラーモジュール。
81A.上記ソーラーモジュールの上記前面の上記フレキシブル電気相互接続部の表面は、覆われて、または着色されて、上記スーパーセルに対する視認出来るコントラストが下げられる、項80Aに記載のソーラーモジュール。
82A.スーパーセルの上記2またはそれより多くの平行行は、白色のバッキングシート上に配置されて、上記ソーラーモジュールの動作の間に太陽放射により照射されることになる上記ソーラーモジュールの前面を形成し、
上記白色のバッキングシートは、上記スーパーセルの2またはそれより多くの平行行間の複数の間隙の位置と幅とに対応する位置と幅とを有する平行な濃色の複数のストライプを含み、
複数の上記バッキングシートの複数の白色の部分は、上記スーパーセルの2またはそれより多くの平行行間の上記複数の間隙を通して視認出来ない、項80Aに記載のソーラーモジュール。
83A.太陽電池ストリングを作る方法であって、
1または複数のシリコン太陽電池のうち各シリコン太陽電池上に1または複数のスクライブラインをレーザースクライブして、上記1または複数のシリコン太陽電池上に複数の長方形領域を画定する工程と、
各長方形領域の長辺に隣接する1または複数の位置において、スクライブされた上記1または複数のシリコン太陽電池に電気伝導性粘着接合剤を適用する工程と、
上記1または複数のスクライブラインに沿って上記1または複数のシリコン太陽電池を分離させて、長辺に隣接した前面に配された上記電気伝導性粘着接合剤の一部をそれぞれが含む複数の長方形シリコン太陽電池を提供する工程と、
隣接し合う長方形シリコン太陽電池の長辺が、上記電気伝導性粘着接合剤の一部が間に配されてこけら葺き状に重なり合った状態で上記複数の長方形シリコン太陽電池を並べて配置する工程と、
上記電気伝導性接合剤を硬化させて、それにより、隣接し合い重なり合う長方形シリコン太陽電池を互いに接合し、それらを直列に電気接続する工程と
を備える、方法。
84A.太陽電池ストリングを作る方法であって、
頂面と、対向して位置付けられた底面とをそれぞれが有する1または複数のシリコン太陽電池のうち各シリコン太陽電池上に1または複数のスクライブラインをレーザースクライブして、上記シリコン太陽電池上に複数の長方形領域を画定する工程と、
上記1または複数のシリコン太陽電池の上記頂面の一部に電気伝導性粘着接合剤を適用する工程と、
上記1または複数のシリコン太陽電池の上記底面と湾曲支持面との間で真空を引いて、上記湾曲支持面に寄せて上記1または複数のシリコン太陽電池を曲げ、それにより、上記1または複数のスクライブラインに沿って上記1または複数のシリコン太陽電池を劈開して、長辺に隣接する前面に配された上記電気伝導性粘着接合剤の一部をそれぞれが含む複数の長方形シリコン太陽電池を提供する工程と、
隣接し合う長方形シリコン太陽電池の長辺が、上記電気伝導性粘着接合剤の一部が間に配されてこけら葺き状に重なり合った状態で上記複数の長方形シリコン太陽電池を並べて配置する工程と、
上記電気伝導性接合剤を硬化させ、それにより、隣接し合い重なり合う長方形シリコン太陽電池を互いに接合し、それらを直列に電気接続する工程と
を備える、方法。
85A.上記電気伝導性粘着接合剤を上記1または複数のシリコン太陽電池に適用し、その後、上記1または複数のシリコン太陽電池のうち各シリコン太陽電池上に上記1または複数のスクライブラインをレーザースクライブする工程を備える、項84Aに記載の方法。
86A.上記1または複数のシリコン太陽電池のうち各シリコン太陽電池上に上記1または複数のスクライブラインをレーザースクライブし、その後、上記電気伝導性粘着接合剤を上記1または複数のシリコン太陽電池に適用する工程を備える、項84Aに記載の方法。
1B.共通のバイパスダイオードと並列に接続する少なくとも25個の太陽電池の直列接続ストリングを備え、
各太陽電池は、約10ボルトより高い降伏電圧を有し、隣接し合う太陽電池の長辺が重なり合い接着剤により伝導接合した状態で配置された上記少なくとも25個の太陽電池を含むスーパーセルとなるようグループ化される、装置。
2B.Nは、30より大きい、またはそれと等しい、項1Bに記載の装置。
3B.Nは、50より大きい、またはそれと等しい、項1Bに記載の装置。
4B.Nは、100より大きい、またはそれと等しい、項1Bに記載の装置。
5B.上記接着剤は、厚さが約0.1mm未満であり、またはそれと等しく、熱伝導性が約1.5W/m/Kより高い、またはそれと等しい、項1Bに記載の装置。
6B.上記N個の太陽電池は、単一のスーパーセルとなるようグループ化される、項1Bに記載の装置。
7B.上記N個の太陽電池は、同じバッキング上の複数のスーパーセルとなるようグループ化される、項1Bに記載の装置。
8B.上記少なくとも25個の太陽電池はシリコン太陽電池である、項1Bに記載の装置。
9B.上記スーパーセルの、電流の流れの方向への長さが、少なくとも約500mmである、項1Bに記載の装置。
10B.上記少なくとも25個の太陽電池は、上記接着剤の広がりを封じ込めるよう構成された特徴を含む、項1Bに記載の装置。
11B.上記特徴は高くなった特徴を含む、項10Bに記載の装置。
12B.上記特徴は金属被覆を含む、項10Bに記載の装置。
13B.上記金属被覆は、上記第1長辺の全長に亘って延びる線を含み、
上記線と上記第1長辺との間に位置する少なくとも1つのコンタクトパッドをさらに備える、項12Bに記載の装置。
14B.上記金属被覆は、上記少なくとも1つのコンタクトパッドに電気接続し、上記第1長辺と垂直な方向に延びる複数のフィンガーをさらに含み、
上記伝導線は上記複数のフィンガーを相互接続する、項13Bに記載の装置。
15B.上記特徴は、上記太陽電池の前側にある、項10Bに記載の装置。
16B.上記特徴は、上記太陽電池の後側にある、項10Bに記載の装置。
17B.上記特徴は窪んだ特徴を含む、項10Bに記載の装置。
18B.上記特徴は、上記スーパーセルの隣接する太陽電池に隠れる、項10Bに記載の装置。
19B.上記スーパーセルの第1太陽電池は、複数の面取りされた角を有し、上記スーパーセルの第2太陽電池は、面取りされた角を有さず、上記第1太陽電池と上記第2太陽電池とは、光に曝される面積が同じである、項1Bに記載の装置。
20B.長軸が、上記第1方向と垂直な第2方向と平行であるフレキシブル電気相互接続部をさらに備え、
上記フレキシブル電気相互接続部は、上記太陽電池の表面に伝導接合し、二次元での太陽電池の熱膨張に適応する、項1Bに記載の装置。
21B.上記フレキシブル電気相互接続部は、厚さが約100ミクロン未満であって、またはそれと等しくて、約0.012オームより低い、またはそれと等しい抵抗を提供する、項20Bに記載の装置。
22B.上記表面は後面を含む、項20Bに記載の装置。
23B.上記フレキシブル電気相互接続部は他のスーパーセルに接触する、項20Bに記載の装置。
24B.上記他のスーパーセルは、上記スーパーセルと並んでいる、項23Bに記載の装置。
25B.上記他のスーパーセルは、上記スーパーセルに隣接する、項23Bに記載の装置。
26B.上記相互接続部の第1部分は、残りの第2相互接続部分が上記スーパーセルの後側にあるように、上記スーパーセルの縁周りで折れる、項20Bに記載の装置。
27B.上記フレキシブル電気相互接続部は、バイパスダイオードに電気接続する、項20Bに記載の装置。
28B.複数のスーパーセルが、バッキングシート上の2またはそれより多くの平行行に配置されて、ソーラーモジュール前面を形成し、
上記バッキングシートは白く、複数のスーパーセル間の間隙に対応する位置および幅の濃色のストライプを含む、項1Bに記載の装置。
29B.上記スーパーセルは、電力管理システムに接続する少なくとも1つの電池ストリングペアを含む、項1Bに記載の装置。
30B.上記スーパーセルと電気通信を行う電力管理デバイスをさらに備え、
上記電力管理デバイスは、
上記スーパーセルの電圧出力を受け、
上記電圧に基づき、太陽電池に逆バイアスがかかっているかを判断し、
逆バイアスがかかっている上記太陽電池をスーパーセルモジュール回路から切断する
よう構成されている、項1Bに記載の装置。
31B.上記スーパーセルは、第1バッキング上に配されて、太陽エネルギーの方向に面する第1の側の上側伝導性リボンを有する第1モジュールを形成し、
第2バッキング上に配されて、上記太陽エネルギーの上記方向から離れる方向に面する第2の側の下側リボンを有する第2モジュールを形成する他のスーパーセルをさらに備え、
上記第2モジュールは、上記上側リボンを含む上記第1モジュールの一部に重なり、上記一部に接合する、項1Bに記載の装置。
32B.上記第2モジュールは、接着剤により上記第1モジュールに接合する、項31Bに記載の装置。
33B.上記第2モジュールは、嵌合配置により上記第1モジュールに接合する、項31Bに記載の装置。
34B.上記第2モジュールが重なる接続箱をさらに備える、項31Bに記載の装置。
35B.上記第2モジュールは、嵌合配置により上記第1モジュールに接合する、項34Bに記載の装置。
36B.上記嵌合配置は、上記接続箱と、上記第2モジュール上の他の接続箱との間にある、項35Bに記載の装置。
37B.上記第1バッキングはガラスを含む、項31Bに記載の装置。
38B.上記第1バッキングは、ガラス以外を含む、項31Bに記載の装置。
39B.上記太陽電池は、より大きな部品から切断された面取りされた部分を含む、項1Bに記載の装置。
40B.上記スーパーセルは、面取りされた部分を有する他の太陽電池をさらに含み、
上記太陽電池の長辺が、同様の長さの上記他の太陽電池の長辺と電気接触する、項39Bに記載の装置。
1C1.同じバッキング上に、少なくともN(≧25)個の太陽電池の直列接続ストリングを含むスーパーセルを形成する工程であって、各太陽電池は、約10ボルトより高い降伏電圧を有し、隣接し合う太陽電池の長辺が重なり合い接着剤により伝導接合した状態で配置される、工程と、
各スーパーセルを、多くて単一のバイパスダイオードと接続する工程と
を備える、方法。
2C1.Nは、30より大きい、またはそれと等しい、項1C1に記載の方法。
3C1.Nは、50より大きい、またはそれと等しい、項1C1に記載の方法。
4C1.Nは、100より大きい、またはそれと等しい、項1C1に記載の方法。
5C1.上記接着剤は、厚さが約0.1mm未満であり、またはそれと等しく、熱伝導性が約1.5w/m/kより高い、またはそれと等しい、項1C1に記載の方法。
6C1.上記複数の太陽電池はシリコン太陽電池である、項1C1に記載の方法。
7C1.上記スーパーセルの、電流の流れの方向への長さが、少なくとも約500mmである、項1C1に記載の方法。
8C1.上記スーパーセルの第1太陽電池は、複数の面取りされた角を有し、上記スーパーセルの第2太陽電池は、面取りされた角を有さず、上記第1太陽電池と上記第2太陽電池とは、光に曝される面積が同じである、項1C1に記載の方法。
9C1.太陽電池表面の特徴を利用して上記接着剤の広がりを封じ込める工程をさらに備える、項1C1に記載の方法。
10C1.上記特徴は高くなった特徴を含む、項9C1に記載の方法。
11C1.上記特徴は金属被覆を含む、項9C1に記載の方法。
12C1.上記金属被覆は、上記第1長辺の全長に亘って延びる線を含み、
少なくとも1つのコンタクトパッドが、上記線と上記第1長辺との間に位置する、項11C1に記載の方法。
13C1.上記金属被覆は、上記少なくとも1つのコンタクトパッドに電気接続し、上記第1長辺と垂直な方向に延びる複数のフィンガーをさらに含み、
上記伝導線は上記複数のフィンガーを相互接続する、項12C1に記載の方法。
14C1.上記特徴は、上記太陽電池の前側にある、項9C1に記載の方法。
15C1.上記特徴は、上記太陽電池の後側にある、項9C1に記載の方法。
16C1.上記特徴は窪んだ特徴を含む、項9C1に記載の方法。
17C1.上記特徴は、上記スーパーセルの隣接する太陽電池に隠れる、項9C1に記載の方法。
18C1.上記同じバッキング上に他のスーパーセルを形成する工程をさらに備える、項1C1に記載の方法。
19C1.太陽電池の表面に、長軸が、上記第1方向と垂直な第2方向と平行であるフレキシブル電気相互接続部を伝導接合する工程と、
上記フレキシブル電気相互接続部に、二次元での上記太陽電池の熱膨張に適応させる工程と
をさらに備える、項1C1に記載の方法。
20C1.上記フレキシブル電気相互接続部は、厚さが約100ミクロン未満であって、またはそれと等しくて、約0.012オームより低い、またはそれと等しい抵抗を提供する、項19C1に記載の方法。
21C1.上記表面は後面を含む、項19C1に記載の方法。
22C1.他のスーパーセルを上記フレキシブル電気相互接続部と接触させる工程をさらに備える、項19C1に記載の方法。
23C1.上記他のスーパーセルは、上記スーパーセルと並んでいる、項22C1に記載の方法。
24C1.上記他のスーパーセルは、上記スーパーセルに隣接する、項22C1に記載の方法。
25C1.上記相互接続部の第1部分を、残りの第2相互接続部分が上記スーパーセルの後側にあるように、上記スーパーセルの縁周りで折る工程をさらに備える、項19C1に記載の方法。
26C1.上記フレキシブル電気相互接続部をバイパスダイオードに電気接続する工程をさらに備える、項19C1に記載の方法。
27C1.複数のスーパーセルを、上記同じバッキング上の2またはそれより多くの平行行に配置して、ソーラーモジュール前面を形成する工程をさらに備え、
上記バッキングシートは白く、複数のスーパーセル間の間隙に対応する位置および幅の濃色のストライプを含む、項1C1に記載の方法。
28C1.少なくとも1つの電池ストリングペアを電力管理システムに接続する工程をさらに備える、項1C1に記載の方法。
29C1.電力管理デバイスを上記スーパーセルと電気接続する工程と、
上記電力管理デバイスに、上記スーパーセルの電圧出力を受けさせる工程と、
上記電圧に基づき、太陽電池に逆バイアスがかかっているかを上記電力管理デバイスに判断させる工程と、
上記電力管理デバイスに、逆バイアスがかかっている上記太陽電池をスーパーセルモジュール回路から切断させる工程と
をさらに備える、項1C1に記載の方法。
30C1.上記スーパーセルは、上記バッキング上に配されて、太陽エネルギーの方向に面する第1の側の上側伝導性リボンを有する第1モジュールを形成し、
他のバッキング上に他のスーパーセルを配して、上記太陽エネルギーの上記方向から離れる方向に面する第2の側の下側リボンを有する第2モジュールを形成する工程をさらに備え、
上記第2モジュールは、上記上側リボンを含む上記第1モジュールの一部に重なり、上記一部に接合する、項1C1に記載の方法。
31C1.上記第2モジュールは、接着剤により上記第1モジュールに接合する、項30C1に記載の方法。
32C1.上記第2モジュールは、嵌合配置により上記第1モジュールに接合する、項30C1に記載の方法。
33C1.接続箱を上記第2モジュールと重ねる工程をさらに備える、項30C1に記載の方法。
34C1.上記第2モジュールは、嵌合配置により上記第1モジュールに接合する、項33C1に記載の方法。
35C1.上記嵌合配置は、上記接続箱と、上記第2モジュール上の他の接続箱との間にある、項34C1に記載の方法。
36C1.上記バッキングはガラスを含む、項30C1に記載の方法。
37C1.上記バッキングはガラス以外を含む、項30C1に記載の方法。
38C1.上記第1モジュールと上記第2モジュールとの間にリレースイッチを直列に電気接続する工程と、
コントローラにより上記第1モジュールの出力電圧を感知する工程と、
上記出力電圧が制限を下回ったときに、上記コントローラにより上記リレースイッチをアクティブにする工程と
をさらに備える、項30C1に記載の方法。
39C1.上記太陽電池は、より大きな部品から切断された面取りされた部分を含む、項1C1に記載の方法。
40C1.上記スーパーセルを形成する工程は、上記太陽電池の長辺を、面取りされた部分を有する他の太陽電池の同様の長さの長辺と電気接触させる工程を有する、項39C1に記載の方法。
1C2.隣接し合う太陽電池の長辺が重なり合い接着剤により伝導接合した状態で配置された第1スーパーセルとなるようグループ化された少なくとも19個の太陽電池の第1直列接続ストリングを含む前面を含むソーラーモジュールと、
上記第1スーパーセルの裏面接触部に電気接続して、電気構成要素への隠れタップを提供するリボン導体と
を備える、装置。
2C2.上記電気構成要素はバイパスダイオードを含む、項1C2に記載の装置。
3C2.上記バイパスダイオードは、上記ソーラーモジュールの裏面に位置する、項2C2に記載の装置。
4C2.上記バイパスダイオードは、接続箱の外側に位置する、項3C2に記載の装置。
5C2.上記接続箱は単一の端子を含む、項4C2に記載の装置。
6C2.上記バイパスダイオードは、上記ソーラーモジュールの縁近くに位置付けられる、項3C2に記載の装置。
7C2.バイパスダイオードが、積層構造内に位置付けられる、項2C2に記載の装置。
8C2.上記第1スーパーセルは、上記積層構造内に封入される、項7C2に記載の装置。
9C2.上記バイパスダイオードは、上記ソーラーモジュールの周囲に位置付けられる、項2C2に記載の装置。
10C2.上記電気構成要素は、モジュール端子、接続箱、電力管理システム、スマートスイッチ、継電器、電圧感知コントローラ、セントラルインバータ、DC/ACマイクロインバータ、または、DC/DCモジュール電力オプティマイザーを含む、項1C2に記載の装置。
11C2.上記電気構成要素は、上記ソーラーモジュールの裏面に位置する、項1C1に記載の装置。
12C2.上記ソーラーモジュールは、第1端が上記第1スーパーセルを直列に電気接続する第2スーパーセルとなるようグループ化された少なくとも19個の太陽電池の第2直列接続ストリングをさらに含む、項1C1に記載の装置。
13C2.上記第2スーパーセルは、上記第1スーパーセルに重なり上記第1スーパーセルと伝導性接着剤により直列に電気接続する、項12C2に記載の装置。
14C2.上記裏面接触部は、上記第1端から離れて位置する、項12C2に記載の装置。
15C2.上記第1端と上記第1スーパーセルとの間のフレキシブル相互接続部をさらに備える、項12C2に記載の装置。
16C2.上記フレキシブル相互接続部は、上記第1スーパーセルおよび上記第2スーパーセルの側縁を越えて延在して、他のスーパーセルと並列に上記第1スーパーセルおよび上記第2スーパーセルを電気接続する、項15C2に記載の装置。
17C2.上記接着剤は、厚さが約0.1mm未満であり、またはそれと等しく、熱伝導性が約1.5w/m/kより高い、またはそれと等しい、項1C2に記載の装置。
18C2.上記複数の太陽電池は、約10Vより高い降伏電圧を有するシリコン太陽電池である、項1C2に記載の装置。
19C2.上記第1スーパーセルの、電流の流れの方向への長さが、少なくとも約500mmである、項1C2に記載の装置。
20C2.上記第1スーパーセルの太陽電池が、上記接着剤の広がりを封じ込めるよう構成された特徴を含む、項1C2に記載の装置。
21C2.上記特徴は高くなった特徴を含む、項20C2に記載の装置。
22C2.上記特徴は金属被覆を含む、項21C2に記載の装置。
23C2.上記金属被覆は、上記第1長辺の全長に亘って延びる伝導線を含み、
上記伝導線と上記第1長辺との間に位置する少なくとも1つのコンタクトパッドをさらに備える、項22C2に記載の装置。
24C2.上記金属被覆は、上記少なくとも1つのコンタクトパッドに電気接続し、上記第1長辺と垂直な方向に延びる複数のフィンガーをさらに含み、
上記伝導線は上記複数のフィンガーを相互接続する、項23C2に記載の装置。
25C2.上記特徴は、上記太陽電池の前側にある、項20C2に記載の装置。
26C2.上記特徴は、上記太陽電池の後側にある、項20C2に記載の装置。
27C2.上記特徴は窪んだ特徴を含む、項20C2に記載の装置。
28C2.上記特徴は、上記第1スーパーセルの隣接する太陽電池に隠れる、項20C2に記載の装置。
29C2.上記第1スーパーセルの太陽電池が、面取りされた部分を含む、項1C2に記載の装置。
30C2.上記第1スーパーセルは、面取りされた部分を有する他の太陽電池をさらに含み、
上記太陽電池の長辺が、同様の長さの上記他の太陽電池の長辺と電気接触する、項29C2に記載の装置。
31C2.上記第1スーパーセルは、面取りされた角を有さない他の太陽電池をさらに含み、
上記太陽電池と上記他の太陽電池とは、光に曝される面積が同じである、項29C2に記載の装置。
32C2.上記第1スーパーセルは、第2スーパーセルと共に、バッキングシートの前面の複数の平行行に配置され、
上記バッキングシートは白く、上記第1スーパーセルと上記第2スーパーセルとの間の間隙に対応する位置および幅の濃色のストライプを含む、項1C2に記載の装置。
33C2.上記第1スーパーセルは、電力管理システムに接続する少なくとも1つの電池ストリングペアを含む、項1C2に記載の装置。
34C2.上記第1スーパーセルと電気通信を行う電力管理デバイスをさらに備え、
上記電力管理デバイスは、
上記第1スーパーセルの電圧出力を受け、
上記電圧に基づき、上記第1スーパーセルの太陽電池に逆バイアスがかかっているかを判断し、
逆バイアスがかかっている上記太陽電池をスーパーセルモジュール回路から切断する
よう構成されている、項1C2に記載の装置。
35C2.上記電力管理デバイスは継電器を含む、項34C2に記載の装置。
36C2.上記第1スーパーセルは、第1バッキング上に配されて、太陽エネルギーの方向に面する第1の側の上側伝導性リボンを有する上記モジュールを形成し、
第2バッキング上に配されて、上記太陽エネルギーの上記方向から離れる方向に面する第2の側の下側リボンを有する異なるモジュールを形成する他のスーパーセルをさらに備え、
上記異なるモジュールは、上記上側リボンを含む上記モジュールの一部に重なり、上記一部に接合する、項1C2に記載の装置。
37C2.上記異なるモジュールは、接着剤により、上記モジュールに接合する、項36C2に記載の装置。
38C2.上記異なるモジュールは、嵌合配置により、上記モジュールに接合する、項36C2に記載の装置。
39C2.上記異なるモジュールが重なる接続箱をさらに備える、項36C2に記載の装置。
40C2.上記異なるモジュールは、上記接続箱と、異なるソーラーモジュール上の他の接続箱との間の嵌合配置により上記モジュールに接合する、項39C2に記載の装置。
1C3.ソーラーモジュール前面に配され、約10Vより高い降伏電圧をそれぞれが有する複数の太陽電池を有する第1スーパーセルと、
上記第1スーパーセルの裏面接触部と電気接続して、電気構成要素への第1隠れタップを提供する第1リボン導体と、
上記ソーラーモジュール前面に配され、約10Vより高い降伏電圧をそれぞれが有する複数の太陽電池を有する第2スーパーセルと、
上記第2スーパーセルの裏面接触部と電気接続して、第2隠れタップを提供する第2リボン導体と
を備える、装置。
2C3.上記電気構成要素はバイパスダイオードを含む、項1C3に記載の装置。
3C3.上記バイパスダイオードは、ソーラーモジュール裏面に位置する、項2C3に記載の装置。
4C3.上記バイパスダイオードは、接続箱の外側に位置する、項3C3に記載の装置。
5C3.上記接続箱は単一の端子を含む、項4C3に記載の装置。
6C3.上記バイパスダイオードは、上記ソーラーモジュールの縁近くに位置付けられる、項3C3に記載の装置。
7C3.上記バイパスダイオードは、積層構造内に位置付けられる、項2C3に記載の装置。
8C3.上記第1スーパーセルは、上記積層構造内に封入される、項7C3に記載の装置。
9C3.上記バイパスダイオードは、上記ソーラーモジュールの周囲に位置付けられる、項8C3に記載の装置。
10C3.上記第1スーパーセルは、上記第2スーパーセルと直列に接続する、項1C3に記載の装置。
11C3.上記第1スーパーセルと上記第2スーパーセルとは、第1ペアを形成し、
上記第1ペアと並列に接続する第2ペアに含まれる2つの追加のスーパーセルをさらに備える、項10C3に記載の装置。
12C3.上記第2隠れタップは、上記電気構成要素に接続する、項10C3に記載の装置。
13C3.上記電気構成要素はバイパスダイオードを含む、項12C3に記載の装置。
14C3.上記第1スーパーセルは、19個以上の太陽電池を含む、項13C3に記載の装置。
15C3.上記電気構成要素は電力管理システムを含む、項12C3に記載の装置。
16C3.上記電気構成要素はスイッチを含む、項1C3に記載の装置。
17C3.上記スイッチと通信する電圧感知コントローラをさらに備える、項16C3に記載の装置。
18C3.上記スイッチは、セントラルインバータと通信する、項16C3に記載の装置。
19C3.上記電気構成要素は、電力管理デバイスをさらに含み、
上記電力管理デバイスは、
上記第1スーパーセルの電圧出力を受け、
上記電圧に基づき、上記第1スーパーセルの太陽電池に逆バイアスがかかっているかを判断し、
逆バイアスがかかっている上記太陽電池をスーパーセルモジュール回路から切断する
よう構成されている、項1C3に記載の装置。
20C3.上記電気構成要素はインバータを含む、項1に記載の装置。
21C3.上記インバータは、DC/ACマイクロインバータを含む、項20C3に記載の装置。
22C3.上記電気構成要素はソーラーモジュール端子を含む、項1C3に記載の装置。
23C3.上記ソーラーモジュール端子は、接続箱内の、単一のソーラーモジュール端子である、項22C3に記載の装置。
24C3.上記電気構成要素は、ソーラーモジュール裏面に位置する、項1C3に記載の装置。
25C3.上記裏面接触部は、上記第2スーパーセルに重なり合う、上記第1スーパーセルの端から離れて位置する、項1C3に記載の装置。
26C3.上記第1スーパーセルの、電流の流れの方向への長さが、少なくとも約500mmである、項1C3に記載の装置。
27C3.上記第1スーパーセルの太陽電池が、上記接着剤の広がりを封じ込めるよう構成された特徴を含む、項1C3に記載の装置。
28C3.上記特徴は高くなった特徴を含む、項27C3に記載の装置。
29C3.上記特徴は金属被覆を含む、項28C3に記載の装置。
30C3.上記特徴は窪んだ特徴を含む、項27C3に記載の装置。
31C3.上記特徴は、上記太陽電池の後側にある、項27C3に記載の装置。
32C3.上記特徴は、上記第1スーパーセルの隣接する太陽電池に隠れる、項27C3に記載の装置。
33C3.上記第1スーパーセルの太陽電池が、面取りされた部分を含む、項1C3に記載の装置。
34C3.上記第1スーパーセルは、面取りされた部分を有する他の太陽電池をさらに含み、
上記太陽電池の長辺が、同様の長さの上記他の太陽電池の長辺と電気接触する、項33C3に記載の装置。
35C3.上記第1スーパーセルは、面取りされた角を有さない他の太陽電池をさらに含み、
上記太陽電池と上記他の太陽電池とは、光に曝される面積が同じである、項33C3に記載の装置。
36C3.上記第1スーパーセルは、第2スーパーセルと共に、バッキングシートの前面の複数の平行行に配置され、
上記バッキングシートは白く、上記第1スーパーセルと上記第2スーパーセルとの間の間隙に対応する位置および幅の濃色のストライプを含む、項1C3に記載の装置。
37C3.上記第1スーパーセルは、第1バッキング上に配されて、太陽エネルギーの方向に面するモジュールの前面の上側伝導性リボンを有する上記モジュールを形成し、
第2バッキング上に配されて、上記太陽エネルギーの上記方向から離れる方向に面する第2の側の下側リボンを有する異なるモジュールを形成する第3スーパーセルをさらに備え、
上記異なるモジュールは、上記上側リボンを含む上記モジュールの一部に重なり、上記一部に接合する、項1C3に記載の装置。
38C3.上記異なるモジュールは、接着剤により、上記モジュールに接合する、項37C3に記載の装置。
39C3.上記異なるモジュールが重なる接続箱をさらに備える、項37C3に記載の装置。
40C3.上記異なるモジュールは、上記接続箱と、上記異なるモジュール上の他の接続箱との間の嵌合配置により上記モジュールに接合する、項39C3に記載の装置。
1C4.隣接し合う太陽電池の辺が重なり合い接着剤により伝導接合した状態で配置された第1スーパーセルとなるようグループ化された第1直列接続太陽電池ストリングを含む前面を含むソーラーモジュールと、
上記接着剤を封じ込めるよう構成された太陽電池表面特徴と
を備える、装置。
2C4.上記太陽電池表面特徴は窪んだ特徴を含む、項1C4に記載の装置。
3C4.上記太陽電池表面特徴は高くなった特徴を含む、項1C4に記載の装置。
4C4.上記高くなった特徴は、太陽電池の前面にある、項3C4に記載の装置。
5C4.上記高くなった特徴は金属被覆パターンを含む、項4C4に記載の装置。
6C4.上記金属被覆パターンは、上記太陽電池の長辺と平行に延び、上記長辺に実質的に沿った伝導線を含む、項5C4に記載の装置。
7C4.上記伝導線と上記長辺との間のコンタクトパッドをさらに備える、項6C4に記載の装置。
8C4.上記金属被覆パターンは複数のフィンガーをさらに含み、
上記伝導線は、上記複数のフィンガーを電気相互接続して、各フィンガーから上記コンタクトパッドへの複数の伝導路を提供する、項7C4に記載の装置。
9C4.上記長辺と隣接し、かつ平行な行に配置された複数の不連続なコンタクトパッドをさらに備え、
上記金属被覆パターンは複数の別個のバリアを形成して、上記接着剤を上記複数の不連続なコンタクトパッドに封じ込める、項7C4に記載の装置。
10C4.上記複数の別個のバリアは、複数の対応する不連続なコンタクトパッドに当接する、項8C4に記載の装置。
11C4.上記複数の別個のバリアは、複数の対応する不連続なコンタクトパッドより高い、項8C4に記載の装置。
12C4.上記太陽電池表面特徴は、他の太陽電池の重なる辺に隠れる、項1C4に記載の装置。
13C4.上記他の太陽電池は、上記スーパーセルの一部である、項12C4に記載の装置。
14C4.上記他の太陽電池は、他のスーパーセルの一部である、項12C4に記載の装置。
15C4.上記高くなった特徴は、太陽電池の後面にある、項3C4に記載の装置。
16C4.上記高くなった特徴は金属被覆パターンを含む、項15C4に記載の装置。
17C4.上記金属被覆パターンは、複数の別個のバリアを形成して、上記太陽電池が重なる他の太陽電池の前面に位置する複数の不連続なコンタクトパッドに上記接着剤を封じ込める、項16C4に記載の装置。
18C4.上記複数の別個のバリアは、複数の対応する不連続なコンタクトパッドに当接する、項17C4に記載の装置。
19C4.上記複数の別個のバリアは、複数の対応する不連続なコンタクトパッドより高い、項17C4に記載の装置。
20C4.上記スーパーセルの各太陽電池は、10Vまたはそれより高い降伏電圧を有する、項1C1に記載の装置。
21C4.上記スーパーセルの、電流の流れの方向への長さが、少なくとも約500mmである、項1C1に記載の装置。
22C4.上記第スーパーセルの太陽電池が、面取りされた部分を含む、項1C1に記載の装置。
23C4.上記スーパーセルは、面取りされた部分を有する他の太陽電池をさらに含み、
上記太陽電池の長辺が、同様の長さの上記他の太陽電池の長辺と電気接触する、項22C4に記載の装置。
24C4.上記スーパーセルは、面取りされた角を有さない他の太陽電池をさらに含み、
上記太陽電池と上記他の太陽電池とは、光に曝される面積が同じである、項22C4に記載の装置。
25C4.上記スーパーセルは、第2スーパーセルと共に第1バッキングシートの前面に配置されて、第1モジュールを形成する、項1C4に記載の装置。
26C4.上記バッキングシートは白く、上記スーパーセルと上記第2スーパーセルとの間の間隙に対応する位置および幅の複数の濃色のストライプを含む、項25C4に記載の装置。
27C4.上記第1モジュールは、太陽エネルギーの方向に面する第1モジュール前面の上側伝導性リボンを有し、
第2バッキング上に配されて、太陽エネルギーから離れる方向に面する第2モジュールの側の下側リボンを有する第2モジュールを形成する第3スーパーセルをさらに備え、
上記第2モジュールは、上記上側リボンを含む上記第1モジュールの一部に重なり、上記一部に接合する、項25C4に記載の装置。
28C4.上記第2モジュールは、接着剤により上記第1モジュールに接合する、項27C4に記載の装置。
29C4.上記第2モジュールが重なる接続箱をさらに備える、項27C4に記載の装置。
30C4.上記第2モジュールは、上記接続箱と、上記第2モジュール上の他の接続箱との間にある上記嵌合配置により上記第1モジュールに接合する、項29C4に記載の装置。
31C4.上記接続箱は単一のモジュール端子を収容する、項29C4に記載の装置。
32C4.上記第1モジュールと上記第2モジュールとの間のスイッチをさらに備える、項27C4に記載の装置。
33C4.上記スイッチと通信する電圧感知コントローラをさらに備える、項32C4に記載の装置。
34C4.上記スーパーセルは、単一のバイパスダイオードと並列に個別に電気接続する19個以上の太陽電池を含む、項27C4に記載の装置。
35C4.上記単一のバイパスダイオードは、上記第1モジュールの縁近くに位置付けられる、項34C4に記載の装置。
36C4.上記単一のバイパスダイオードは、積層構造内に位置付けられる、項34C4に記載の装置。
37C4.上記スーパーセルは、上記積層構造内に封入される、項36C4に記載の装置。
38C4.上記単一のバイパスダイオードは、上記第1モジュールの周囲に位置付けられる、項34C4に記載の装置。
39C4.上記スーパーセルと上記第2スーパーセルとは、電力管理デバイスに個別に接続するペアを構成する、項25C4に記載の装置。
40C4.電力管理デバイスをさらに備え、
上記電力管理デバイスは、
上記スーパーセルの電圧出力を受け、
上記電圧に基づき、上記スーパーセルの太陽電池に逆バイアスがかかっているかを判断し、
逆バイアスがかかっている上記太陽電池をスーパーセルモジュール回路から切断する
よう構成されている、項25C4に記載の装置。
1C5.第1スーパーセルとなるようグループ化された複数のシリコン太陽電池の第1直列接続ストリングを含む前面を含むソーラーモジュールを備え、
上記第1スーパーセルは、複数の面取りされた角を有し、辺が第2シリコン太陽電池に重なり接着剤により伝導接合した状態で配置された第1シリコン太陽電池を含む、装置。
2C5.上記第2シリコン太陽電池は、面取りされた角を有さず、
上記第1スーパーセルの各シリコン太陽電池は、光に曝される前面の面積が実質的に同じである、項1C5に記載の装置。
3C5.上記第1シリコン太陽電池と上記第2シリコン太陽電池とは同じ長さを有し、
上記第1シリコン太陽電池の幅が、上記第2シリコン太陽電池の幅より大きい、項2C5に記載の装置。
4C5.上記長さは、擬似正方形ウェハの形状を再現する、項3C5に記載の装置。
5C5.上記長さは156mmである、項3C5に記載の装置。
6C5.上記長さは125mmである、項3C5に記載の装置。
7C5.上記第1太陽電池の上記幅と上記長さとの間のアスペクト比が、約1:2から約1:20の間である、項3C5に記載の装置。
8C5.上記第1シリコン太陽電池は、約1mmから約5mm分、上記第2シリコン太陽電池に重なる、項3C5に記載の装置。
9C5.上記第1スーパーセルは、約10ボルトより高い降伏電圧をそれぞれが有する、少なくとも19個のシリコン太陽電池を含む、項3C5に記載の装置。
10C5.上記第1スーパーセルの、電流の流れの方向への長さが、少なくとも約500mmである、項3C5に記載の装置。
11C5.上記第1スーパーセルは、上記前面で第2スーパーセルと並列に接続し、
上記前面は、上記第1スーパーセルと上記第2スーパーセルとの間の間隙に対応する位置および幅の複数の濃色のストライプを有する白色のバッキングを含む、項3C5に記載の装置。
12C5.上記第2シリコン太陽電池は面取りされた角を含む、項1C5に記載の装置。
13C5.上記第1シリコン太陽電池の長辺が、上記第2シリコン太陽電池の長辺に重なる、項12C5に記載の装置。
14C5.上記第1シリコン太陽電池の長辺が、上記第2シリコン太陽電池の短辺に重なる、項12C5に記載の装置。
15C5.上記前面は、
複数の面取りされた角を含む複数の太陽電池から成る上記第1スーパーセルを含む第1行と、
上記第1スーパーセルと並列に接続し、面取りされた角を有さない複数の太陽電池から成る第2スーパーセルとなるようグループ化されたシリコン太陽電池の第2直列接続ストリングを含む第2行と
を含み、
上記第2行の長さが、上記第1行の長さと実質的に同じである、項1C5に記載の装置。
16C5.上記第1行は、モジュール縁に隣接し、上記第2行は、上記モジュール縁に隣接しない、項15C5に記載の装置。
17C5.上記第1スーパーセルは、約10ボルトより高い降伏電圧をそれぞれが有する、少なくとも19個の太陽電池を含み、
上記第1スーパーセルの、電流の流れの方向への長さが、少なくとも約500mmである、項15C5に記載の装置。
18C5.上記前面は、上記第1スーパーセルと上記第2スーパーセルとの間の間隙に対応する位置および幅の複数の濃色のストライプを有する白色のバッキングを含む、項15C5に記載の装置。
19C5.上記第2太陽電池の前側にある金属被覆パターンをさらに備える、項1C5に記載の装置。
20C5.上記金属被覆パターンは、面取りされた角周りに延在するテーパ部分を含む、項19C5に記載の装置。
21C5.上記金属被覆パターンは、上記接着剤の広がりを封じ込める高くなった特徴を含む、項19C5に記載の装置。
22C5.上記金属被覆パターンは、
複数の不連続なコンタクトパッドと、
上記複数の不連続なコンタクトパッドに電気接続する複数のフィンガーと、
上記複数のフィンガーを相互接続する伝導線と
を含む、項19C5に記載の装置。
23C5.上記金属被覆パターンは、複数の別個のバリアを形成して、上記複数の不連続なコンタクトパッドに上記接着剤を封じ込める、項22C5に記載の装置。
24C5.上記複数の別個のバリアは、複数の対応する不連続なコンタクトパッドに当接し、上記複数の対応する不連続なコンタクトパッドより高い、項23C5に記載の装置。
25C5.上記第1太陽電池の表面に伝導接合し、二次元での上記第1太陽電池の熱膨張に適応するフレキシブル電気相互接続部をさらに備える、項1C5に記載の装置。
26C5.上記相互接続部の第1部分は、残りの第2相互接続部分が上記第1スーパーセルの後側にあるように、上記第1スーパーセルの縁周りで折れる、項25C5に記載の装置。
27C5.上記モジュールは、太陽エネルギーの方向に面する上記前面に上側伝導性リボンを有し、
前面に配された第2スーパーセルを有する他のモジュールであって、上記他のモジュール上の下側リボンは、上記太陽エネルギーから離れる方向に面している、上記他のモジュールをさらに備え、
上記第2モジュールは、上記上側リボンを含む上記第1モジュールの一部に重なり、上記一部に接合する、項1C5に記載の装置。
28C5.上記他のモジュールは、接着剤により、上記モジュールに接合する、項27C5に記載の装置。
29C5.上記他のモジュールが重なる接続箱をさらに備える、項27C5に記載の装置。
30C5.上記他のモジュールは、上記接続箱と、上記他のモジュール上の他の接続箱との間の嵌合配置により上記モジュールに接合する、項29C5に記載の装置。
31C5.上記接続箱は単一のモジュール端子を収容する、項29C5に記載の装置。
32C5.上記モジュールと上記他のモジュールとの間のスイッチをさらに備える、項27C5に記載の装置。
33C5.上記スイッチと通信する電圧感知コントローラをさらに備える、項32C5に記載の装置。
34C5.上記第1スーパーセルは、単一のバイパスダイオードと電気接続する19個以上の太陽電池を含む、項27C5に記載の装置。
35C5.上記単一のバイパスダイオードは、上記第1モジュールの縁近くに位置付けられる、項34C5に記載の装置。
36C5.上記単一のバイパスダイオードは、積層構造内に位置付けられる、項34C5に記載の装置。
37C5.上記スーパーセルは、上記積層構造内に封入される、項36C5に記載の装置。
38C5.上記単一のバイパスダイオードは、上記第1モジュールの周囲に位置付けられる、項34C5に記載の装置。
39C5.上記第1スーパーセルと上記第2スーパーセルとは、電力管理デバイスに接続するペアを構成する、項27C5に記載の装置。
40C5.電力管理デバイスをさらに備え、
上記電力管理デバイスは、
上記第1スーパーセルの電圧出力を受け、
上記電圧に基づき、上記第1スーパーセルの太陽電池に逆バイアスがかかっているかを判断し、
逆バイアスがかかっている上記太陽電池をスーパーセルモジュール回路から切断する
よう構成されている、項27C5に記載の装置。
1C6.第1スーパーセルとなるようグループ化されたシリコン太陽電池の第1直列接続ストリングを含む前面を含むソーラーモジュールを備え、
上記第1スーパーセルは、複数の面取りされた角を有し、辺が第2シリコン太陽電池に重なり接着剤により伝導接合した状態で配置された第1シリコン太陽電池を含む、装置。
2C6.上記第2シリコン太陽電池は、面取りされた角を有さず、
上記第1スーパーセルの各シリコン太陽電池は、光に曝される前面の面積が実質的に同じである、項1C6に記載の装置。
3C6.上記第1シリコン太陽電池と上記第2シリコン太陽電池とは同じ長さを有し、
上記第1シリコン太陽電池の幅が、上記第2シリコン太陽電池の幅より大きい、項2C6に記載の装置。
4C6.上記長さは、擬似正方形ウェハの形状を再現する、項3C6に記載の装置。
5C6.上記長さは156mmである、項3C6に記載の装置。
6C6.上記長さは125mmである、項3C6に記載の装置。
7C6.上記第1太陽電池の上記幅と上記長さとの間のアスペクト比が、約1:2から約1:20の間である、項3C6に記載の装置。
8C6.上記第1シリコン太陽電池は、約1mmから約5mm分、上記第2シリコン太陽電池に重なる、項3C6に記載の装置。
9C6.上記第1スーパーセルは、約10ボルトより高い降伏電圧をそれぞれが有する、少なくとも19個のシリコン太陽電池を含む、項3C6に記載の装置。
10C6.上記第1スーパーセルの、電流の流れの方向への長さが、少なくとも約500mmである、項3C6に記載の装置。
11C6.上記第1スーパーセルは、上記前面で第2スーパーセルと並列に接続し、
上記前面は、上記第1スーパーセルと上記第2スーパーセルとの間の間隙に対応する位置および幅の複数の濃色のストライプを有する白色のバッキングを含む、項3C6に記載の装置。
12C6.上記第2シリコン太陽電池は面取りされた角を含む、項1C6に記載の装置。
13C6.上記第1シリコン太陽電池の長辺が、上記第2シリコン太陽電池の長辺に重なる、項12C6に記載の装置。
14C6.上記第1シリコン太陽電池の長辺が、上記第2シリコン太陽電池の短辺に重なる、項12C6に記載の装置。
15C6.上記前面は、
複数の面取りされた角を含む複数の太陽電池から成る上記第1スーパーセルを含む第1行と、
上記第1スーパーセルと並列に接続し、面取りされた角を有さない複数の太陽電池から成る第2スーパーセルとなるようグループ化されたシリコン太陽電池の第2直列接続ストリングを含む第2行と
を含み、
上記第2行の長さが、上記第1行の長さと実質的に同じである、項1C6に記載の装置。
16C6.上記第1行は、モジュール縁に隣接し、上記第2行は、上記モジュール縁に隣接しない、項15C6に記載の装置。
17C6.上記第1スーパーセルは、約10ボルトより高い降伏電圧をそれぞれが有する、少なくとも19個の太陽電池を含み、
上記第1スーパーセルの、電流の流れの方向への長さが、少なくとも約500mmである、項15C6に記載の装置。
18C6.上記前面は、上記第1スーパーセルと上記第2スーパーセルとの間の間隙に対応する位置および幅の複数の濃色のストライプを有する白色のバッキングを含む、項15C6に記載の装置。
19C6.上記第2太陽電池の前側にある金属被覆パターンをさらに備える、項1C6に記載の装置。
20C6.上記金属被覆パターンは、面取りされた角周りに延在するテーパ部分を含む、項19C6に記載の装置。
21C6.上記金属被覆パターンは、上記接着剤の広がりを封じ込める高くなった特徴を含む、項19C6に記載の装置。
22C6.上記金属被覆パターンは、
複数の不連続なコンタクトパッドと、
上記複数の不連続なコンタクトパッドに電気接続する複数のフィンガーと、
上記複数のフィンガーを相互接続する伝導線と
を含む、項19C6に記載の装置。
23C6.上記金属被覆パターンは、複数の別個のバリアを形成して、上記複数の不連続なコンタクトパッドに上記接着剤を封じ込める、項22C6に記載の装置。
24C6.上記複数の別個のバリアは、複数の対応する不連続なコンタクトパッドに当接し、上記複数の対応する不連続なコンタクトパッドより高い、項23C6に記載の装置。
25C6.上記第1太陽電池の表面に伝導接合し、二次元での上記第1太陽電池の熱膨張に適応するフレキシブル電気相互接続部をさらに備える、項1C6に記載の装置。
26C6.上記相互接続部の第1部分は、残りの第2相互接続部分が上記第1スーパーセルの後側にあるように、上記第1スーパーセルの縁周りで折れる、項25C6に記載の装置。
27C6.上記モジュールは、太陽エネルギーの方向に面する上記前面に上側伝導性リボンを有し、
前面に配された第2スーパーセルを有する他のモジュールであって、上記他のモジュール上の下側リボンは、上記太陽エネルギーから離れる方向に面している、上記他のモジュールをさらに備え、
上記第2モジュールは、上記上側リボンを含む上記第1モジュールの一部に重なり、上記一部に接合する、項1C6に記載の装置。
28C6.上記他のモジュールは、接着剤により、上記モジュールに接合する、項27C6に記載の装置。
29C6.上記他のモジュールが重なる接続箱をさらに備える、項27C6に記載の装置。
30C6.上記他のモジュールは、上記接続箱と、上記他のモジュール上の他の接続箱との間の嵌合配置により上記モジュールに接合する、項29C6に記載の装置。
31C6.上記接続箱は単一のモジュール端子を収容する、項29C6に記載の装置。
32C6.上記モジュールと上記他のモジュールとの間のスイッチをさらに備える、項27C6に記載の装置。
33C6.上記スイッチと通信する電圧感知コントローラをさらに備える、項32C6に記載の装置。
34C6.上記第1スーパーセルは、単一のバイパスダイオードと電気接続する19個以上の太陽電池を含む、項27C6に記載の装置。
35C6.上記単一のバイパスダイオードは、上記第1モジュールの縁近くに位置付けられる、項34C6に記載の装置。
36C6.上記単一のバイパスダイオードは、積層構造内に位置付けられる、項34C6に記載の装置。
37C6.上記スーパーセルは、上記積層構造内に封入される、項36C6に記載の装置。
38C6.上記単一のバイパスダイオードは、上記第1モジュールの周囲に位置付けられる、項34C6に記載の装置。
39C6.上記第1スーパーセルと上記第2スーパーセルとは、電力管理デバイスに接続するペアを構成する、項27C6に記載の装置。
40C6.電力管理デバイスをさらに備え、
上記電力管理デバイスは、
上記第1スーパーセルの電圧出力を受け、
上記電圧に基づき、上記第1スーパーセルの太陽電池に逆バイアスがかかっているかを判断し、
逆バイアスがかかっている上記太陽電池をスーパーセルモジュール回路から切断する
よう構成されている、項27C6に記載の装置。
1C7.少なくとも19個の太陽電池の第1直列接続ストリングを含む前面を有するソーラーモジュールであって、上記少なくとも19個の太陽電池はそれぞれ、約10Vより高い降伏電圧を有し、端が、第2シリコン太陽電池に重なり接着剤により伝導接合した状態で配置された第1シリコン太陽電池を含むスーパーセルとなるようグループ化される、ソーラーモジュールと、
太陽電池表面に伝導接合する相互接続部と
を備える、装置。
2C7.上記太陽電池表面は、上記第1シリコン太陽電池の背面を含む、項1C7に記載の装置。
3C7.上記スーパーセルを電気構成要素に電気接続するリボン導体をさらに備える、項2C7に記載の装置。
4C7.上記リボン導体は、重なる上記端から離れる方向に上記太陽電池表面に伝導接合する、項3C7に記載の装置。
5C7.上記電気構成要素は、ソーラーモジュール裏面にある、項4C7に記載の装置。
6C7.上記電気構成要素は接続箱を含む、項4C7に記載の装置。
7C7.上記接続箱は、上記モジュールが重なる異なるモジュール上の他の接続箱と噛み合い係合する、項6C7に記載の装置。
8C7.上記電気構成要素はバイパスダイオードを含む、項4C7に記載の装置。
9C7.上記電気構成要素はモジュール端子を含む、項4C7に記載の装置。
10C7.上記電気構成要素はインバータを含む、項4C7に記載の装置。
11C7.上記インバータは、DC/ACマイクロインバータを含む、項10C7に記載の装置。
12C7.上記DC/ACマイクロインバータは、ソーラーモジュール裏面にある、項11C7に記載の装置。
13C7.上記電気構成要素は電力管理デバイスを含む、項4C7に記載の装置。
14C7.上記電力管理デバイスはスイッチを含む、項13C7に記載の装置。
15C7.上記スイッチと通信する電圧感知コントローラをさらに備える、項14C7に記載の装置。
16C7.上記電力管理デバイスは、
上記スーパーセルの電圧出力を受け、
上記電圧に基づき、上記スーパーセルの太陽電池に逆バイアスがかかっているかを判断し、
逆バイアスがかかっている、上記太陽電池をスーパーセルモジュール回路から切断する
よう構成されている、項13C7に記載の装置。
17C7.上記電力管理デバイスは、セントラルインバータと電気通信を行っている、項16C7に記載の装置。
18C7.上記電力管理デバイスは、DC/DCモジュール電力オプティマイザーを含む、項13C7に記載の装置。
19C7.上記相互接続部は、上記スーパーセルと、上記ソーラーモジュールの上記前面の他のスーパーセルとの間に挟まれている、項3C7に記載の装置。
20C7.上記リボン導体は、上記相互接続部に伝導接合する、項3C7に記載の装置。
21C7.上記に相互接続部は、約0.012オームより低い、またはそれと等しい抵抗を電流の流れに対して提供する、項3C7に記載の装置。
22C7.上記相互接続部は、約−40℃から約85℃の間の温度範囲で、上記第1シリコン太陽電池と上記相互接続部との間の差異のある膨張に適応するよう構成されている、項3C7に記載の装置。
23C7.上記相互接続部の厚さは、約100ミクロンより小さい、またはそれと等しい、項3C7に記載の装置。
24C7.上記相互接続部の厚さは、約30ミクロンより小さい、またはそれと等しい、項3C7に記載の装置。
25C7.上記スーパーセルの、電流の流れの方向への長さが、少なくとも約500mmである、項3C7に記載の装置。
26C7.上記ソーラーモジュールの上記前面の他のスーパーセルをさらに備える、項3C7に記載の装置。
27C7.上記相互接続部は、上記他のスーパーセルを、上記スーパーセルと直列に接続する、項26C7に記載の装置。
28C7.上記相互接続部は、上記他のスーパーセルを、上記スーパーセルと並列に接続する、項26C7に記載の装置。
29C7.上記前面は、上記スーパーセルと上記他のスーパーセルとの間の間隙に対応する位置および幅の複数の濃色のストライプを有する白色のバッキングを含む、項26C7に記載の装置。
30C7.上記相互接続部はパターンを含む、項3C7に記載の装置。
31C7.上記パターンは、スリット、スロット、および/または孔を含む、項30C7に記載の装置。
32C7.上記相互接続部の一部は濃色である、項3C7に記載の装置。
33C7.上記第1シリコン太陽電池は、複数の面取りされた角を含み、
上記第2シリコン太陽電池は、面取りされた角を有さず、
上記スーパーセルの各シリコン太陽電池は、光に曝される前面の面積が実質的に同じである、項3C7に記載の装置。
34C7.上記第1シリコン太陽電池は、複数の面取りされた角を含み、
上記第2シリコン太陽電池は、複数の面取りされた角を含み、
上記辺は、上記第2シリコン太陽電池の長辺に重なった長辺を含む、項3C7に記載の装置。
35C7.上記相互接続部は、バスを形成する、項3C7に記載の装置。
36C7.上記相互接続部は、接着された連結部で上記太陽電池表面に伝導接合する、項3C7に記載の装置。
37C7.上記相互接続部の第1部分は、残りの第2部分が上記スーパーセルの後側に位置するよう、上記スーパーセルの縁周りで折れている、項3C7に記載の装置。
38C7.上記前面にあり、長辺に沿って延びる線を含む金属被覆パターンをさらに備え、
上記線と上記長辺との間に位置する複数の不連続なコンタクトパッドをさらに備える、項3C7に記載の装置。
39C7.上記金属被覆は、それぞれの不連続なコンタクトパッドに電気接続する、上記長辺と垂直な方向に延びる複数のフィンガーをさらに含み、
上記伝導線は、上記複数のフィンガーを相互接続する、項38C7に記載の装置。
40C7.上記金属被覆パターンは、上記接着剤の広がりを封じ込める高くなった特徴を含む、項38C7に記載の装置。
1C8.ソーラーモジュール前面の複数の行に配置された複数のスーパーセルであって、各スーパーセルが、隣接し合うシリコン太陽電池の端部が重なり合い伝導接合して、上記隣接し合うシリコン太陽電池を直列に電気接続した状態で並んで配置される、少なくとも10Vの降伏電圧を有する少なくとも19個のシリコン太陽電池を含む、複数のスーパーセルを備え、
第1行内のモジュール縁に隣接する第1スーパーセルの端は、上記第1スーパーセルの上記前面に接合するフレキシブル電気相互接続部を介し、第2行内の上記モジュール縁に隣接する第2スーパーセルの端に電気接続する、装置。
2C8.上記フレキシブル電気相互接続部の一部は、濃色のフィルムにより覆われている、項1C8に記載の装置。
3C8.上記ソーラーモジュール前面は、上記フレキシブル電気相互接続部に対して視覚的コントラストが低いバッキングシートを含む、項2C8に記載の装置。
4C98.上記フレキシブル電気相互接続部の一部は着色されている、項1C8に記載の装置。
5C8.上記ソーラーモジュール前面は、上記フレキシブル電気相互接続部に対して視覚的コントラストが低いバッキングシートを含む、項4C8に記載の装置。
6C8.上記ソーラーモジュール前面は、白色のバッキングシートを含む、項1C8に記載の装置。
7C8.上記複数の行の間の間隙に対応する複数の濃色のストライプをさらに備える、項6C8に記載の装置。
8C8.上記シリコン太陽電池のn型半導体層が、上記バッキングシートに面する、項6C8に記載の装置。
9C8.上記ソーラーモジュール前面はバッキングシートを含み、
上記バッキングシート、上記フレキシブル電気相互接続部、上記第1スーパーセル、および封入材が、積層構造を構成する、項1C8に記載の装置。
10C8.上記封入材は熱可塑性ポリマーを含む、項9C8に記載の装置。
11C8.上記熱可塑性ポリマーは熱可塑性オレフィンポリマーを含む、項10C8に記載の装置。
12C8.ガラス製の前面シートをさらに備える、項9C8に記載の装置。
13C8.上記バッキングシートはガラスを含む、項12C8に記載の装置。
14C8.上記フレキシブル電気相互接続部は、複数の不連続な位置において接合する、項1C8に記載の装置。
15C8.上記フレキシブル電気相互接続部は、電気伝導性粘着接合剤により接合する、項1C8に記載の装置。
16C8.接着された連結部をさらに備える、項1C8に記載の装置。
17C8.上記フレキシブル電気相互接続部は、上記モジュール縁と平行に延びる、項1C8に記載の装置。
18C8.上記フレキシブル電気相互接続部の一部は、上記第1スーパーセル周りに折れ、隠れる、項1C8に記載の装置。
19C8.上記第1スーパーセルを電気構成要素に電気接続するリボン導体をさらに備える、項1C8に記載の装置。
20C8.上記リボン導体は、上記フレキシブル電気相互接続部に伝導接合する、項19C8に記載の装置。
21C8.上記リボン導体は、重なり合う端から離れる方向に太陽電池表面に伝導接合する、項19C8に記載の装置。
22C8.上記電気構成要素は、ソーラーモジュール裏面にある、項19C8に記載の装置。
23C8.上記電気構成要素は接続箱を含む、項19C8に記載の装置。
24C8.上記接続箱は、他のソーラーモジュール前面の他の接続箱と噛み合係合する、項23C8に記載の装置。
25C8.上記接続箱は、単一の端子の接続箱を含む、項23C8に記載の装置。
26C8.上記電気構成要素はバイパスダイオードを含む、項19C8に記載の装置。
27C8.上記電気構成要素はスイッチを含む、項19C8に記載の装置。
28C8.電圧感知コントローラをさらに備え、
上記電圧感知コントローラは、
上記第1スーパーセルの電圧出力を受け、
上記電圧に基づき、上記第1スーパーセルの太陽電池に逆バイアスがかかっているかを判断し、
上記スイッチと通信して、逆バイアスがかかっている上記太陽電池をスーパーセルモジュール回路から切断する
よう構成されている、項27C8に記載の装置。
29C8.上記第1スーパーセルは、上記第2スーパーセルと直列である、項1C8に記載の装置。
30C8.上記第1スーパーセルの第1シリコン太陽電池は、複数の面取りされた角を含み、
上記第1スーパーセルの第2シリコン太陽電池は、面取りされた角を有さず、
上記第1スーパーセルの各シリコン太陽電池は、光に曝される前面の面積が実質的に同じである、項1C8に記載の装置。
31C8.上記第1スーパーセルの第1シリコン太陽電池は、複数の面取りされた角を含み、
上記第1スーパーセルの第2シリコン太陽電池は、複数の面取りされた角を含み、
上記第1シリコン太陽電池の長辺が、上記第2シリコン太陽電池の長辺に重なる、項1C8に記載の装置。
32C8.上記第1スーパーセルのシリコン太陽電池は、長さが約156mmのストリップを含む、項1C8に記載の装置。
33C8.上記第1スーパーセルのシリコン太陽電池は、長さが約125mmのストリップを含む、項1C8に記載の装置。
34C8.上記第1スーパーセルのシリコン太陽電池は、約1:2から約1:20の間の幅と長さとの間のアスペクト比を有するストリップを含む、項1C8に記載の装置。
35C8.上記第1スーパーセルの重なり合う上記隣接し合うシリコン太陽電池は、接着剤により伝導接合し、
上記接着剤の広がりを封じ込めるよう構成された特徴をさらに備える、項1C8に記載の装置。
36C8.上記特徴は堀を含む、項35C8に記載の装置。
37C8.上記堀は、金属被覆パターンにより形成される、項36C8に記載の装置。
38C8.上記金属被覆パターンは、上記シリコン太陽電池の長辺に沿って延びる線を含み、
上記線と上記長辺との間に位置する複数の不連続なコンタクトパッドをさらに備える、項37C8に記載の装置。
39C8.上記金属被覆パターンは、上記第1スーパーセルのシリコン太陽電池の前部上に位置する、項37C8に記載の装置。
40C8.上記金属被覆パターンは、上記第2スーパーセルのシリコン太陽電池の背面に位置する、項37C8に記載の装置。
1C9.直列接続する複数のシリコン太陽電池を含む前面を含むソーラーモジュールを備え、
上記複数のシリコン太陽電池は、第2カットストリップが重なる第1外縁に沿って前側金属被覆パターンを有する第1カットストリップを含む第1スーパーセルとなるようグループ化される、装置。
2C9.上記第1カットストリップおよび上記第2カットストリップの長さは、上記第1カットストリップの分割元のウェハの形状を再現する、項1C9に記載の装置。
3C9.上記長さは156mmである、項2C9に記載の装置。
4C9.上記長さは125mmである、項2C9に記載の装置。
5C9.上記第1カットストリップの幅と上記長さとの間のアスペクト比が、約1:2から約1:20の間である、項2C9に記載の装置。
6C9.上記第1カットストリップは、第1の面取りされた角を含む、項2C9に記載の装置。
7C9.上記第1の面取りされた角は、上記第1外縁に沿っている、項6C9に記載の装置。
8C9.上記第1の面取りされた角は、上記第1外縁に沿わない、項6C9に記載の装置。
9C9.上記第2カットストリップは、第2の面取りされた角を含む、項6C9に記載の装置。
10C9.上記第2カットストリップの重なった縁が、上記第2の面取りされた角を含む、項9C9に記載の装置。
11C9.上記第2カットストリップの重なった縁が、上記第2の面取りされた角を含まない、項9C9に記載の装置。
12C9.上記長さは、上記第1カットストリップの分割元の擬似正方形ウェハの形状を再現する、項6C9に記載の装置。
13C9.上記第1カットストリップの幅が、上記第1カットストリップと上記第2カットストリップとがおよそ同じ面積を有するよう、上記第2カットストリップの幅とは異なる、項6C9に記載の装置。
14C9.上記第2カットストリップは、約1から5mm分、上記第1カットストリップに重なる、項1C9に記載の装置。
15C9.上記前側金属被覆パターンはバスバーを含む、項1C9に記載の装置。
16C9.バスバーは、テーパ部分を含む、項15C9に記載の装置。
17C9.上記前側金属被覆パターンは、不連続なコンタクトパッドを含む、項1C9に記載の装置。
18C9.第2カットストリップは、接着剤により上記第1カットストリップに接合し、
上記不連続なコンタクトパッドは、接着剤の広がりを封じ込める特徴をさらに含む、項17C9に記載の装置。
19C9.上記特徴は堀を含む、項18C9に記載の装置。
20C9.上記前側金属被覆パターンはバイパス導体を含む、項1C9に記載の装置。
21C9.上記前側金属被覆パターンはフィンガーを含む、項1C9に記載の装置。
22C9.上記第1カットストリップは、上記第1外縁と反対側の第2外縁に沿った裏側金属被覆パターンをさらに含む、項1C9に記載の装置。
23C9.上記裏側金属被覆パターンは、コンタクトパッドを含む、項22C9に記載の装置。
24C9.上記裏側金属被覆パターンは、バスバーを含む、項22C9に記載の装置。
25C9.上記スーパーセルは、約10ボルトより高い降伏電圧をそれぞれが有する少なくとも19個のシリコンカットストリップを含む、項1C9に記載の装置。
26C9.上記スーパーセルは、上記ソーラーモジュールの上記前面の他のスーパーセルと接続する、項1C9に記載の装置。
27C9.上記ソーラーモジュールの上記前面は、上記スーパーセルと上記他のスーパーセルとの間の間隙に対応する複数の濃色のストライプを有する白色のバッキングを含む、項26C9に記載の装置。
28C9.上記ソーラーモジュールの上記前面はバッキングシートを含み、
上記バッキングシート、上記相互接続部、上記スーパーセル、および封入材が、積層構造を構成する、項26C9に記載の装置。
29C9.上記封入材は熱可塑性ポリマーを含む、項28C9に記載の装置。
30C9.上記熱可塑性ポリマーは熱可塑性オレフィンポリマーを含む、項29C9に記載の装置。
31C9.上記スーパーセルと上記他のスーパーセルとの間の相互接続部をさらに備える、項26C9に記載の装置。
32C9.上記相互接続部の一部は、濃色のフィルムにより覆われる、項31C9に記載の装置。
33C9.上記相互接続部の一部は着色されている、項31C9に記載の装置。
34C9.上記スーパーセルを電気構成要素に電気接続するリボン導体をさらに備える、項31C9に記載の装置。
35C9.上記リボン導体は、上記第1カットストリップの裏側に伝導接合する、項34C9に記載の装置。
36C9.上記電気構成要素はバイパスダイオードを含む、項34C9に記載の装置。
37C9.上記電気構成要素はスイッチを含む、項34C9に記載の装置。
38C9.上記電気構成要素は接続箱を含む、項34C9に記載の装置。
39C9.上記接続箱は、他の接続箱に重なり、上記他の接続箱と嵌合配置されている、項38C9に記載の装置。
40C9.上記スーパーセルと上記他のスーパーセルとは、直列に接続する、項26C9に記載の装置。
1C10.シリコンウェハ上にスクライブラインをレーザースクライブして、太陽電池領域を画定する工程と、
上記太陽電池領域の長辺に隣接するスクライブされた上記シリコンウェハの頂面に電気伝導性粘着接合剤を適用する工程と、
上記スクライブラインに沿って上記シリコンウェハを分離させて、上記太陽電池ストリップの長辺に隣接して配された上記電気伝導性粘着接合剤の一部を含む太陽電池ストリップを提供する工程と
を備える、方法。
2C10.上記分離させる工程により、上記長辺に沿った金属被覆パターンを有する上記太陽電池ストリップが生成されるように、上記シリコンウェハに上記金属被覆パターンを提供する工程をさらに備える、項1C10に記載の方法。
3C10.上記金属被覆パターンは、バスバーまたは不連続なコンタクトパッドを含む、項2C10に記載の方法。
4C10.上記提供する工程は、上記金属被覆パターンを印刷する工程を有する、項2C10に記載の方法。
5C10.上記提供する工程は、上記金属被覆パターンを電気めっきする工程を有する、項2C10に記載の方法。
6C10.上記金属被覆パターンは、上記電気伝導性粘着接合剤の広がりを封じ込めるよう構成された特徴を含む、項2C10に記載の方法。
7C10.上記特徴は堀を含む、項6C10に記載の装置。
8C10.上記適用する工程は、印刷する工程を有する、項1C10に記載の方法。
9C10.上記適用する工程は、マスクを用いて堆積させる工程を有する、項1C10に記載の方法。
10C10.上記太陽電池ストリップの上記長辺の長さは、上記ウェハの形状を再現する、項1C10に記載の方法。
11C10.上記長さは、156mmまたは125mmである、項10C10に記載の方法。
12C10.上記太陽電池ストリップの幅と上記長さと間のアスペクト比が、約1:2から約1:20の間である、項10C10に記載の方法。
13C10.上記分離させる工程は、上記ウェハの底面と湾曲支持面との間で真空を引いて、上記湾曲支持面に寄せて上記太陽電池領域を曲げ、それにより、上記スクライブラインに沿って上記シリコンウェハを劈開する、項1C10に記載の方法。
14C10.隣接し合う太陽電池ストリップの長辺が重なり合い上記電気伝導性粘着接合剤の一部が間に配された状態で複数の太陽電池ストリップを並べて配置する工程と、
上記電気伝導性接合剤を硬化させ、それにより、隣接し合い重なり合う太陽電池ストリップを互いに接合し、それらを直列に電気接続する、工程と
をさらに備える、項1C10に記載の方法。
15C10.上記硬化させる工程は、加熱する工程を有する、項14C10に記載の方法。
16C10.上記硬化させる工程は、加圧する工程を有する、項14C10に記載の方法。
17C10.上記配置する工程は、層状構造を形成する工程を有する、項14C10に記載の方法。
18C10.上記硬化させる工程は、上記層状構造を加圧および加熱する工程を有する、項17C10に記載の方法。
19C10.上記層状構造は封入材を含む、項17C10に記載の方法。
20C10.上記封入材は熱可塑性ポリマーを含む、項19C10に記載の方法。
21C10.上記熱可塑性ポリマーは、熱可塑性オレフィンポリマーを含む、項20C10に記載の方法。
22C10.上記層状構造はバッキングシートを含む、項17C10に記載の方法。
23C10.上記バッキングシートは白く、
上記層状構造は濃色のストライプをさらに含む、項22C10に記載の方法。
24C10.上記配置する工程は、少なくとも19個の太陽電池ストリップを並べて配置する工程を有する、項14C10に記載の方法。
25C10.上記少なくとも19個の太陽電池ストリップのうちそれぞれが、少なくとも10Vの降伏電圧を有する、項24C10に記載の方法。
26C10.上記少なくとも19個の太陽電池ストリップが単一のバイパスダイオードのみと連通状態にする工程をさらに備える、項24C10に記載の方法。
27C10.上記少なくとも19個の太陽電池ストリップのうち1つと上記単一のバイパスダイオードとの間にリボン導体を形成する工程をさらに備える、項26C10に記載の方法。
28C10.上記単一のバイパスダイオードは、接続箱内に位置する、項27C10に記載の方法。
29C10.上記接続箱は、異なるソーラーモジュールの他の接続箱と嵌合配置で、ソーラーモジュールの後側にある、項28C10に記載の方法。
30C10.上記複数の太陽電池ストリップの重なった電池ストリップは、約1から5mm分、上記太陽電池ストリップに重なる、項14C10に記載の方法。
31C10.上記太陽電池ストリップは第1の面取りされた角を含む、項14C10に記載の方法。
32C10.上記複数の太陽電池ストリップのうち重なっている太陽電池ストリップの長辺が、第2の面取りされた角を含まない、項31C10に記載の方法。
33C10.上記太陽電池ストリップと上記重なっている太陽電池ストリップとがおよそ同じ面積を有するよう、上記太陽電池ストリップの幅が、上記重なっている太陽電池ストリップの幅より大きい、項32C10に記載の方法。
34C10.上記複数の太陽電池ストリップのうち重なっている太陽電池ストリップの長辺が、第2の面取りされた角を含む、項31C10に記載の方法。
35C10.上記複数の太陽電池ストリップのうち上記重なっている太陽電池ストリップの上記長辺は、上記第1の面取りされた角を含む上記電池ストリップの上記長辺に重なる、項34C10に記載の方法。
36C10.上記複数の太陽電池ストリップのうち上記重なっている太陽電池ストリップの上記長辺は、上記第1の面取りされた角を含まない上記電池ストリップの長辺に重なる、項34C10に記載の方法。
37C10.相互接続部を利用して、上記複数の太陽電池ストリップを、他の複数の太陽電池ストリップと接続する工程をさらに備える、項14C10に記載の方法。
38C10.上記相互接続部の一部は、濃色のフィルムにより覆われる、項37C10に記載の方法。
39C10.上記相互接続部の一部が着色されている、項37C10に記載の方法。
40C10.上記複数の太陽電池ストリップは、上記他の複数の太陽電池ストリップと直列に接続する、項37C10に記載の方法。
1C11.長さを有するシリコンウェハを提供する工程と、
上記シリコンウェハ上にスクライブラインをスクライブして、太陽電池領域を画定する工程と、
上記シリコンウェハの表面に電気伝導性粘着接合剤を適用する工程と、
上記スクライブラインに沿って上記シリコンウェハを分離させて、上記太陽電池ストリップの長辺に隣接して配された上記電気伝導性粘着接合剤の一部を含む太陽電池ストリップを提供する工程と
を備える、方法。
2C11.上記スクライブはレーザースクライブを含む、項1C11に記載の方法。
3C11.上記スクライブラインをレーザースクライブし、その後、上記電気伝導性粘着接合剤を適用する工程を備える、項2C11に記載の方法。
4C11.上記ウェハに上記電気伝導性粘着接合剤を適用し、その後、上記スクライブラインをレーザースクライブする工程を備える、項2C11に記載の方法。
5C11.上記適用する工程は、未硬化の電気伝導性粘着接合剤を適用する工程を有し、
上記レーザースクライブする工程は、上記レーザーからの熱で上記未硬化の伝導性粘着接合剤を硬化させることを避ける工程を有する、項4C11に記載の方法。
6C11.上記避ける工程は、レーザーパワー、および/または上記スクライブラインと上記未硬化の伝導性粘着接合剤との間の距離を選択する工程を含む、項5C11に記載の方法。
7C11.上記適用する工程は、印刷する工程を有する、項1C11に記載の方法。
8C11.上記適用する工程は、マスクを用いて堆積させる工程を有する、項1C11に記載の方法。
9C11.上記スクライブラインと上記電気伝導性粘着接合剤とは上記表面にある、項1C11に記載の方法。
10C11.上記分離させる工程は、上記シリコンウェハの表面と湾曲支持面との間で真空を引いて、上記湾曲支持面に寄せて上記太陽電池領域を曲げ、それにより、上記スクライブラインに沿って上記シリコンウェハを劈開する、項1C11に記載の方法。
11C11.上記分離させる工程は、真空マニホールドに対して角度を付けて上記スクライブラインを配置する工程を有する、項10C11に記載の方法。
12C11.上記分離させる工程は、ローラーを用いて、上記ウェハを加圧する工程を有する、項1C11に記載の方法。
13C11.上記提供する工程は、上記分離させる工程によって、上記長辺に沿った金属被覆パターンを有する上記太陽電池ストリップが生成されるよう、上記シリコンウェハに上記金属被覆パターンを提供する工程を有する、項1C11に記載の方法。
14C11.上記金属被覆パターンは、バスバーまたは不連続なコンタクトパッドを含む、項13C11に記載の方法。
15C11.上記提供する工程は、上記金属被覆パターンを印刷する工程を含む、項13C11に記載の方法。
16C11.上記提供する工程は、上記金属被覆パターンを電気めっきする工程を含む、項13C11に記載の方法。
17C11.上記金属被覆パターンは、上記電気伝導性粘着接合剤の広がりを封じ込めるよう構成された特徴を含む、項13C11に記載の方法。
18C11.上記太陽電池ストリップの上記長辺の長さは、上記ウェハの形状を再現する、項1C11に記載の方法。
19C11.上記長さは、156mmまたは125mmである、項18C11に記載の方法。
20C11.上記太陽電池ストリップの幅と上記長さとの間のアスペクト比が、約1:2から約1:20の間である、項18C11に記載の方法。
21C11.隣接し合う太陽電池ストリップの長辺が重なり合い上記電気伝導性粘着接合剤の一部が間に配された状態で複数の太陽電池ストリップを並べて配置する工程と、
上記電気伝導性接合剤を硬化させ、それにより、隣接し合い重なり合う太陽電池ストリップを互いに接合し、それらを直列に電気接続する、工程と
をさらに備える、項1C11に記載の方法。
22C11.上記配置する工程は、層状構造を形成する工程を有し、
上記硬化させる工程は、上記層状構造を加熱および/または加圧する工程を有する、項21C11に記載の方法。
23C11.上記層状構造は、熱可塑性オレフィンポリマーの封入材を含む、項22C11に記載の方法。
24C11.上記層状構造は
白色のバッキングシートと
上記白色のバッキングシート上の濃色のストライプと
を含む、項22C11に記載の方法。
25C11.複数のウェハがテンプレート上に提供され、
上記伝導性粘着接合剤は、上記複数のウェハ上に分配され、
上記複数のウェハは、固定具により複数の太陽電池ストリップとなるよう同時に分離させられた電池である、項21C11に記載の方法。
26C11.上記複数の太陽電池ストリップをグループとして搬送する工程をさらに備え、
上記配置する工程は、上記複数の太陽電池ストリップをモジュール内に配置する工程を有する、項25C11に記載の方法。
27C11.上記配置する工程は、単一のバイパスダイオードのみと、少なくとも10Vの降伏電圧を有する少なくとも19個の太陽電池ストリップを並べて配置する工程を有する、項21C11に記載の方法。
28C11.上記少なくとも19個の太陽電池ストリップのうち1つと上記単一のバイパスダイオードとの間にリボン導体を形成する工程をさらに備える、項27C11に記載の方法。
29C11.上記単一のバイパスダイオードは、第2ソーラーモジュールの第2接続箱と嵌合配置されている第1ソーラーモジュールの第1接続箱内に位置する、項28C11に記載の方法。
30C11.上記少なくとも19個の太陽電池ストリップのうち1つとスマートスイッチとの間にリボン導体を形成する工程をさらに備える、項27C11に記載の方法。
31C11.上記複数の太陽電池ストリップのうち重なった電池ストリップは、約1から5mm分、上記太陽電池ストリップに重なる、項21C11に記載の方法。
32C11.上記太陽電池ストリップは第1の面取りされた角を含む、項21C11に記載の方法。
33C11.上記複数の太陽電池ストリップのうち重なっている太陽電池ストリップの長辺が、第2の面取りされた角を含まない、項32C11に記載の方法。
34C11.上記太陽電池ストリップと上記重なっている太陽電池ストリップとがおよそ同じ面積を有するよう、上記太陽電池ストリップの幅が、上記重なっている太陽電池ストリップの幅より大きい、項33C11に記載の方法。
35C11.上記複数の太陽電池ストリップのうち重なっている太陽電池ストリップの長辺が、第2の面取りされた角を含む、項32C11に記載の方法。
36C11.上記複数の太陽電池ストリップのうち上記重なっている太陽電池ストリップの上記長辺は、上記第1の面取りされた角を含む上記電池ストリップの上記長辺に重なる、項35C11に記載の方法。
37C11.上記複数の太陽電池ストリップのうち上記重なっている太陽電池ストリップの上記長辺は、上記第1の面取りされた角を含まない上記電池ストリップの長辺に重なる、項35C11に記載の方法。
38C11.相互接続部を利用して、上記複数の太陽電池ストリップを、他の複数の太陽電池ストリップと接続する工程をさらに備える、項21C11に記載の方法。
39C11.上記相互接続部の一部は、濃色のフィルムにより覆われる、または着色される、項38C11に記載の方法。
40C11.上記複数の太陽電池ストリップは、上記他の複数の太陽電池ストリップと直列に接続する、項38C11に記載の方法。
1C12.長さを有するシリコンウェハを提供する工程と、
シリコンウェハ上にスクライブラインをスクライブして、太陽電池領域を画定する工程と、
上記スクライブラインに沿って上記シリコンウェハを分離させて、太陽電池ストリップを提供する工程と、
上記太陽電池ストリップの長辺に隣接して配された電気伝導性粘着接合剤を適用する工程と
を備える、方法。
2C12.上記スクライブする工程は、レーザースクライブする工程を有する、項1C12に記載の方法。
3C12.上記適用する工程は、スクリーン印刷する工程を有する、項1C12に記載の方法。
4C12.上記適用する工程は、インクジェット印刷する工程を有する、項1C12に記載の方法。
5C12.上記適用する工程は、マスクを用いて堆積させる工程を有する、項1C12に記載の方法。
6C12.上記分離させる工程は、上記ウェハの表面と湾曲面との間に真空を引く工程を有する、項1C12に記載の方法。
7C12.上記湾曲面は、真空マニホールドを含み、上記分離させる工程は、上記真空マニホールドに対して角度を付けて上記スクライブラインを方向付ける工程を有する、項6C12に記載の方法。
8C12.上記角度は垂直である、項7C12に記載の方法。
9C12.上記角度は、垂直以外である、項7C12に記載の方法。
10C12.上記真空は、移動ベルトを通して引かれる、項6C12に記載の方法。
11C12.隣接し合う太陽電池ストリップの長辺が、間に配された上記電気伝導性粘着接合剤に重なった状態で複数の太陽電池ストリップを並べて配置する工程と、
上記電気伝導性接合剤を硬化して、隣接し合い重なり合う、直列に電気接続する太陽電池ストリップを接合する工程と
をさらに備える、項1C12に記載の方法。
12C12.上記配置する工程は、封入材を含む層状構造を形成する工程を有し、
上記層状構造を積層させる工程をさらに備える、項11C12に記載の方法。
13C12.上記硬化させる工程は、上記積層させる工程の間に少なくとも部分的に起こる、項12C12に記載の方法。
14C12.上記硬化させる工程は、上記積層させる工程とは個別に起こる、項12C12に記載の方法。
15C12.上記積層させる工程は、真空を引く工程を有する、項12C12に記載の方法。
16C12.上記真空は、ブラダーに対して引かれる、項15C12に記載の方法。
17C12.上記真空は、ベルトに対して引かれる、項15C12に記載の方法。
18C12.上記封入材は熱可塑性オレフィンポリマーを含む、項12C12に記載の方法。
19C12.上記層状構造は
白色のバッキングシートと
上記白色のバッキングシート上の濃色のストライプと
を含む、項12C12に記載の方法。
20C12.上記提供する工程は、上記分離させる工程により、上記長辺に沿った金属被覆パターンを有する上記太陽電池ストリップが生成されるよう、上記シリコンウェハに上記金属被覆パターンを提供する工程を有する、項11C12に記載の方法。
21C12.上記金属被覆パターンは、バスバーまたは不連続なコンタクトパッドを含む、項20C12に記載の方法。
22C12.上記提供する工程は、上記金属被覆パターンを印刷または電気めっきする工程を有する、項20C12に記載の方法。
23C12.上記配置する工程は、上記金属被覆パターン特徴を用いて上記電気伝導性粘着接合剤の広がりを封じ込める工程を有する、項20C12に記載の方法。
24C12.上記特徴は、上記太陽電池ストリップの前側にある、項23C12に記載の方法。
25C12.上記特徴は、上記太陽電池ストリップの後側にある、項23C12に記載の方法。
26C12.上記太陽電池ストリップの上記長辺の長さは、上記ウェハの形状を再現する、項11C12に記載の方法。
27C12.上記長さは、156mmまたは125mmである、項26C12に記載の方法。
28C12.上記太陽電池ストリップの幅と上記長さとの間のアスペクト比が、約1:2から約1:20の間である、項26C12に記載の方法。
29C12.上記配置する工程は、単一のバイパスダイオードのみと、少なくとも10Vの降伏電圧を有する少なくとも19個の太陽電池ストリップを並べて第1スーパーセルとして配置する工程を有する、項11C12に記載の方法。
30C12.上記第1スーパーセルと相互接続部との間に上記電気伝導性粘着接合剤を適用する工程をさらに備える、項29C12に記載の方法。
31C12.上記相互接続部は、上記第1スーパーセルを、第2スーパーセルと並列に接続する、項30C12に記載の方法。
32C12.上記相互接続部は、上記第1スーパーセルを、第2スーパーセルと直列に接続する、項30C12に記載の方法。
33C12.上記第1スーパーセルと、上記単一のバイパスダイオードとの間にリボン導体を形成する工程をさらに備える、項29C12に記載の方法。
34C12.上記単一のバイパスダイオードは、第2ソーラーモジュールの第2接続箱と嵌合配置されている第1ソーラーモジュールの第1接続箱内に位置する、項33C12に記載の方法。
35C12.上記太陽電池ストリップは第1の面取りされた角を含む、項11C12に記載の方法。
36C12.上記複数の太陽電池ストリップのうち重なっている太陽電池ストリップの長辺が、第2の面取りされた角を含まない、項35C12に記載の方法。
37C12.上記太陽電池ストリップと上記重なっている太陽電池ストリップとがおよそ同じ面積を有するよう、上記太陽電池ストリップの幅が、上記重なっている太陽電池ストリップの幅より大きい、項36C12に記載の方法。
38C12.上記複数の太陽電池ストリップのうち重なっている太陽電池ストリップの長辺が、第2の面取りされた角を含む、項35C12に記載の方法。
39C12.上記複数の太陽電池ストリップのうち上記重なっている太陽電池ストリップの上記長辺は、上記第1の面取りされた角を含む上記電池ストリップの上記長辺に重なる、項38C12に記載の方法。
40C12.上記複数の太陽電池ストリップのうち上記重なっている太陽電池ストリップの上記長辺は、上記第1の面取りされた角を含まない上記電池ストリップの長辺に重なる、項38C12に記載の方法。
1C13.第1外縁に沿った第1金属被覆パターンと、上記第1外縁と反対側の第2外縁に沿った第2金属被覆パターンとを含む第1表面を有する半導体ウェハを備え、
上記半導体ウェハは、上記第1金属被覆パターンと上記第2金属被覆パターンとの間の第1スクライブラインをさらに有する、装置。
2C13.上記第1金属被覆パターンは不連続なコンタクトパッドを含む、項1C13に記載の装置。
3C13.上記第1金属被覆パターンは、上記第2金属被覆パターンに向かって上記第1外縁から離れる方向を指す第1フィンガーを含む、項1C13に記載の装置。
4C13.上記第1金属被覆パターンは、上記第1外縁に沿って延び、上記第1フィンガーと交差するバスバーをさらに含む、項3C13に記載の装置。
5C13.上記第2金属被覆パターンは、
上記第1金属被覆パターンに向かって上記第2外縁から離れる方向を指す第2フィンガーと、
上記第2外縁に沿って延び、上記第2フィンガーと交差する第2バスバーと
を含む、項4C13に記載の装置。
6C13.上記第1外縁に沿って延び、上記第1フィンガーと接触する電気伝導性接着剤をさらに備える、項3C13に記載の装置。
7C13.上記第1金属被覆パターンは第1バイパス導体をさらに含む、項3C13に記載の装置。
8C13.上記第1金属被覆パターンは第1端導体をさらに含む、項3C13に記載の装置。
9C13.上記第1金属被覆パターンは銀を含む、項1C13に記載の装置。
10C13.上記第1金属被覆パターンは銀製のペーストを含む、項9C13に記載の装置。
11C13.上記第1金属被覆パターンは不連続な接触部を含む、項9C13に記載の装置。
12C13.上記第1金属被覆パターンは、スズ、アルミニウム、または他の、銀より安価な導体を含む、項1C13に記載の装置。
13C13.上記第1金属被覆パターンは銅を含む、項1C13に記載の装置。
14C13.上記第1金属被覆パターンは電気めっきされた銅を含む、項13C13に記載の装置。
15C13.再結合を減らすパッシベートスキームをさらに備えるに備える、項13C13に記載の装置。
16C13.上記第1外縁または上記第2外縁に近接しない、上記半導体ウェハの上記第1表面の第3金属被覆パターンと、
上記第3金属被覆パターンと上記第2金属被覆パターンとの間の第2スクライブラインと
をさらに備え、
上記第1スクライブラインは、上記第1金属被覆パターンと上記第3金属被覆パターンとの間にある、項1C13に記載の装置。
17C13.上記第1スクライブラインと上記第2スクライブラインとの間で画定される第1幅を上記半導体ウェハの長さで除算した比は、約1:2から約1:20の間である、項16C13に記載の装置。
18C13.上記長さは、約156mmまたは約125mmである、項17C13に記載の装置。
19C13.上記半導体ウェハは、面取りされた角を含む、項17C13に記載の装置。
20C13.上記第1スクライブラインは、上記第1外縁と共に、2つの面取りされた角と、上記第1金属被覆パターンとを含む第1長方形領域を画定し、
上記第1長方形領域は、上記長さと、上記第1幅より大きい第2幅との積から、上記2つの面取りされた角を組み合わせた面積を減算して得られる値に対応する面積を有し、
上記第2スクライブラインは、上記第1スクライブラインと共に、面取りされた角を含まず上記第3金属被覆パターンを含む第2長方形領域を画定し、
上記第2長方形領域は、上記長さと上記第1幅の積に対応する面積を有する、項19C13に記載の装置。
21C13.上記第3金属被覆パターンは、上記第2金属被覆パターンを指すフィンガーを含む、項16C13に記載の装置。
22C13.上記第1表面と反対側にある、上記半導体ウェハの第2表面の第3金属被覆パターンをさらに備える、項1C13に記載の装置。
23C13.上記第3金属被覆パターンは、上記第1スクライブラインの位置に近接したコンタクトパッドを有する、項22C13に記載の装置。
24C13.上記第1スクライブラインは、レーザーにより形成される、項1C13に記載の装置。
25C13.上記第1スクライブラインは、上記第1表面内にある、項1C13に記載の装置。
26C13.第1金属被覆パターンは、電気伝導性接着剤の広がりを封じ込めるよう構成された特徴を含む、項1C13に記載の装置。
27C13.上記特徴は高くなった特徴を含む、項26C13に記載の装置。
28C13.上記第1金属被覆パターンはコンタクトパッドを含み、上記特徴は、上記コンタクトパッドに当接し、上記コンタクトパッドより高いダムを含む、項27C13に記載の装置。
29C13.上記特徴は窪んだ特徴を含む、項26C13に記載の装置。
30C13.上記窪んだ特徴は堀を含む、項29C13に記載の装置。
31C13.上記第1金属被覆パターンに接触する上記電気伝導性接着剤をさらに備える、項26C13に記載の装置。
32C13.上記電気伝導性接着剤は印刷される、項31C13に記載の装置。
33C13.上記半導体ウェハはシリコンを含む、項1C13に記載の装置。
34C13.上記半導体ウェハは結晶シリコンを含む、項33C13に記載の装置。
35C13.上記第1表面はn型導電性である、項33C13に記載の装置。
36C13.上記第1表面はp型導電性である、項33C13に記載の装置。
37C13.上記第1金属被覆パターンは、上記第1外縁から5mmまたはそれ未満であり、
上記第2金属被覆パターンは、上記第2外縁から5mmまたはそれ未満である、
項1C13に記載の装置。
38C13.上記半導体ウェハは、複数の面取りされた角を含み、上記第1金属被覆パターンは、面取りされた角周りに延在するテーパ部分を含む、項1C13に記載の装置。
39C13.上記テーパ部分はバスバーを含む、項38C13に記載の装置。
40C13.上記テーパ部分は、不連続なコンタクトパッドを接続する導体を含む、項38C13に記載の装置。
1C14.ウェハ上に第1スクライブラインをスクライブする工程と、
真空を利用して上記第1スクライブラインに沿ってウェハを分離させて、太陽電池ストリップを提供する工程と
を備える、方法。
2C14.上記スクライブする工程はレーザースクライブする工程を有する、項1C14に記載の方法。
3C14.上記分離させる工程は、上記ウェハの表面と湾曲面との間に上記真空を引く工程を有する、項2C14に記載の方法。
4C14.上記湾曲面は真空マニホールドを含む、項3C14に記載の方法。
5C14.上記ウェハは、上記真空マニホールドへ動くベルト上で支持され、
上記真空は、上記ベルトを通して引かれる、項4C14に記載の方法。
6C14.上記分離させる工程は、
上記真空マニホールドに対して角度を付けて上記第1スクライブラインを方向付ける工程と、
上記第1スクライブラインの一端で劈開を開始する工程と
を有する、項5C14に記載の方法。
7C14.上記角度は、実質的に垂直である、項6C14に記載の方法。
8C14.上記角度は、実質的に垂直である以外の角度である、項6C14に記載の方法。
9C14.未硬化の電気伝導性粘着接合剤を適用する工程をさらに備える、項3C14に記載の方法。
10C14.上記第1スクライブラインと上記未硬化の電気伝導性粘着接合剤とは、上記ウェハの同じ表面にある、項9C14に記載の方法。
11C14.上記レーザースクライブする工程は、レーザーパワー、および/または上記第1スクライブラインと上記未硬化の伝導性粘着接合剤との間の距離を選択することにより上記未硬化の伝導性粘着接合剤の硬化を避ける、項10C14に記載の方法。
12C14.上記同じ表面は、上記ウェハを上記湾曲面に動かすベルトにより支持されるウェハ表面の反対側にある、項10C14に記載の方法。
13C14.上記湾曲面は真空マニホールドを含む、項12C14に記載の方法。
14C14.上記適用する工程は、上記スクライブする工程の後に起こる、項9C14に記載の方法。
15C14.上記適用する工程は、上記分離させる工程の後に起こる、項9C14に記載の方法。
16C14.上記適用する工程は、スクリーン印刷する工程を有する、項9C14に記載の方法。
17C14.上記適用する工程は、インクジェット印刷する工程を有する、項9C14に記載の方法。
18C14.上記適用する工程は、マスクを用いて堆積させる工程を有する、項9C14に記載の方法。
19C14.上記第1スクライブラインは、
第1外縁に沿った上記ウェハの表面の第1金属被覆パターンと、
第2外縁に沿った上記ウェハの上記表面の第2金属被覆パターンと
の間にある、項3C14に記載の方法。
20C14.上記ウェハは、上記第1外縁または上記第2外縁に近接しない、上記半導体ウェハの上記表面の第3金属被覆パターンをさらに含み、
上記第1スクライブラインが、上記第1金属被覆パターンと上記第3金属被覆パターンとの間にあるよう、上記第3金属被覆パターンと上記第2金属被覆パターンとの間に第2スクライブラインをスクライブする工程と、
上記第2スクライブラインに沿って上記ウェハを分離させて、他の太陽電池ストリップを提供する工程と
をさらに備える、項19C14に記載の方法。
21C14.上記第1スクライブラインと上記第2スクライブラインとの間の距離は、約125mmまたは約156mmである上記ウェハの長さに対する、約1:2から約1:20の間となるアスペクト比を規定する幅を形成する、項20C14に記載の方法。
22C14.上記第1金属被覆パターンは、上記第2金属被覆パターンを指すフィンガーを含む、項19C14に記載の方法。
23C14.上記第1金属被覆パターンは、上記フィンガーに交差するバスバーをさらに含む、項22C14に記載の方法。
24C14.上記バスバーは、上記第1外縁の5mm以内にある、項23C14に記載の方法。
25C14.上記フィンガーに接触する未硬化の電気伝導性粘着接合剤をさらに備える、項22C14に記載の方法。
26C14.上記第1金属被覆パターンは不連続なコンタクトパッドを含む、項19C14に記載の方法。
27C14.上記ウェハ上の上記第1金属被覆パターンを印刷または電気めっきする工程をさらに備える、項19C14に記載の方法。
28C14.隣接し合う太陽電池ストリップの長辺が、間に配された上記電気伝導性粘着接合剤に重なった状態で、少なくとも10Vの降伏電圧をそれぞれが有する少なくとも19個の太陽電池ストリップを含む第1スーパーセルに上記太陽電池ストリップを配置する工程と、
上記電気伝導性接合剤を硬化させて、隣接し合い重なり合う、直列に電気接続する太陽電池ストリップを接合する工程と
をさらに備える、項3に記載の方法。
29C14.上記配置する工程は、封入材を含む層状構造を形成する工程を含み、
上記層状構造を積層させる工程をさらに備える、項28C14に記載の方法。
30C14.上記硬化させる工程は、上記積層させる工程の間に少なくとも部分的に起こる、項29C14に記載の方法。
31C14.上記硬化させる工程は、上記積層させる工程とは個別に起こる、項29C14に記載の方法。
32C14.上記封入材は熱可塑性オレフィンポリマーを含む、項29C14に記載の方法。
33C14.上記層状構造は
白色のバッキングシートと
上記白色のバッキングシート上の濃色のストライプと
を含む、項29C14に記載の方法。
34C14.上記配置する工程は、上記金属被覆パターン特徴を用いて上記電気伝導性粘着接合剤の広がりを封じ込める工程を有する、項28C14に記載の方法。
35C14.金属被覆パターン特徴が、上記太陽電池ストリップの前面にある、項34C14に記載の方法。
36C14.金属被覆パターン特徴が、上記太陽電池ストリップの後面にある、項34C14に記載の方法。
37C14.上記第1スーパーセルと、第2スーパーセルを直列に接続する相互接続部の間に上記電気伝導性粘着接合剤を適用する工程をさらに備える、項28C14に記載の方法。
38C14.上記第1スーパーセルの単一のバイパスダイオード間にリボン導体を形成する工程をさらに備え、
上記単一のバイパスダイオードは、第2ソーラーモジュールの第2接続箱と嵌合配置で、第1ソーラーモジュールの第1接続箱内に位置する、項28C14に記載の方法。
39C14.上記太陽電池ストリップは第1の面取りされた角を含み、
上記複数の太陽電池ストリップのうち重なっている太陽電池ストリップの長辺が、第2の面取りされた角を含まず、
上記太陽電池ストリップの幅が、上記太陽電池ストリップと上記重なっている太陽電池ストリップとがおよそ同じ面積を有するよう、上記重なっている太陽電池ストリップの幅より大きい、項28C14に記載の方法。
40C14.上記太陽電池ストリップは、第1の面取りされた角を含み、
上記複数の太陽電池ストリップのうち重なっている太陽電池ストリップの長辺が、第2の面取りされた角を含み、
上記複数の太陽電池ストリップのうち上記重なっている太陽電池ストリップの上記長辺は、上記第1の面取りされた角を含まない上記太陽電池ストリップの長辺に重なる、項28C14に記載の方法。
1C15.半導体ウェハの第1表面の第1外縁に沿って第1金属被覆パターンを形成する工程と、
上記第1外縁と反対側の、上記第1表面の第2外縁に沿って第2金属被覆パターンを形成する工程と、
上記第1金属被覆パターンと上記第2金属被覆パターンとの間に第1スクライブラインを形成する工程と
を備える、方法。
2C15.上記第1金属被覆パターンは、上記第2金属被覆パターンを指す第1フィンガーを含み、
上記第2金属被覆パターンは、上記第1金属被覆パターンを指す第2フィンガーを含む、項1C15に記載の方法。
3C15.上記第1金属被覆パターンは、上記第1フィンガーに交差する、上記第1外縁の5mm以内に位置する第1バスバーをさらに含み、
上記第2金属被覆パターンは、上記第2フィンガーに交差する、上記第2外縁の5mm以内に位置する第2バスバーを含む、項2C15に記載の方法。
4C15.上記第1外縁に沿わない、または上記第2外縁に沿わない第3金属被覆パターンを上記第1表面に形成する工程をさらに備え
上記第3金属被覆パターンは、
上記第1バスバーと平行な第3バスバーと、
上記第2金属被覆パターンを指す第3フィンガーと
を含み、
上記第3金属被覆パターンと上記第2金属被覆パターンとの間に第2スクライブラインを形成する工程をさらに備え、
上記第1スクライブラインは、上記第1金属被覆パターンと上記第3金属被覆パターンとの間にある、項3C15に記載の方法。
5C15.上記第1スクライブラインと上記第2スクライブラインとは、約1:2から約1:20の間である、上記半導体ウェハの長さに対する比を有する幅分、分離されている、項4C15に記載の方法。
6C15.上記半導体ウェハの上記長さは、約156mmまたは約125mmである、項5C15に記載の方法。
7C15.上記半導体ウェハは、面取りされた角を含む、項4C15に記載の方法。
8C15.上記第1スクライブラインは、上記第1外縁と共に、2つの面取りされた角と、上記第1金属被覆パターンとを含む第1太陽電池領域を画定し、
上記第1太陽電池領域は、上記半導体ウェハの長さと、第1幅との積から、上記2つの面取りされた角の組み合わせられた面積を減算して得られる値に対応する第1面積を有し、
上記第2スクライブラインは、上記第1スクライブラインと共に、面取りされた角を含まず上記第3金属被覆パターンを含む第2太陽電池領域を画定し、
上記第2太陽電池領域は、上記長さと、上記第1幅より狭い第2幅との積に対応する、上記第1面積とおよそ同じであるような第2面積を有する、項7C15に記載の方法。
9C15.上記長さは、約156mmまたは約125mmである、項8C15に記載の方法。
10C15.上記第1スクライブラインを形成する工程と、上記第2スクライブラインを形成する工程とは、レーザースクライブする工程を有する、項4C15に記載の方法。
11C15.上記第1金属被覆パターンを形成する工程と、上記第2金属被覆パターンを形成する工程と、上記第3金属被覆パターンを形成する工程とは、印刷する工程を有する、項4C15に記載の方法。
12C15.上記第1金属被覆パターンを形成する工程と、上記第2金属被覆パターンを形成する工程と、上記第3金属被覆パターンを形成する工程とは、スクリーン印刷する工程を有する、項11C15に記載の方法。
13C15.上記第1金属被覆パターンを形成する工程は、銀を含む複数のコンタクトパッドを形成する工程を有する、項11C15に記載の方法。
14C15.上記第1金属被覆パターンを形成する工程と、上記第2金属被覆パターンを形成する工程と、上記第3金属被覆パターンを形成する工程とは、電気めっきする工程を有する、項4C15に記載の方法。
15C15.上記第1金属被覆パターンと、上記第2金属被覆パターンと、上記第3金属被覆パターンとは銅を含む、項14C15に記載の方法。
16C15.上記第1金属被覆パターンは、アルミニウム、スズ、銀、銅、および/または、銀より安価な導体を含む、項4C15に記載の方法。
17C15.上記半導体ウェハはシリコンを含む、項4C15に記載の方法。
18C15.上記半導体ウェハは結晶シリコンを含む、項17C15に記載の方法。
19C15.上記第1外縁と、上記第2スクライブラインの位置の5mm以内との間に、上記半導体ウェハの第2表面に第4金属被覆パターンを形成する工程をさらに備える、項4C15に記載の方法。
20C15.上記第1表面は第1導電型を有し、上記第2表面は、上記第1導電型と逆の第2導電型を有する、項4C15に記載の方法。
21C15.上記第4金属被覆パターンはコンタクトパッドを含む、項4C15に記載の方法。
22C15.上記半導体ウェハに伝導性接着剤を適用する工程をさらに備える、項3C15に記載の方法。
23C15.上記第1フィンガーに接触して上記伝導性接着剤を適用する工程をさらに備える、項22C15に記載の方法。
24C15.上記伝導性接着剤を適用する工程は、スクリーン印刷する、またはマスクを利用して堆積させる工程を有する、項23C15に記載の方法。
25C15.上記第1スクライブラインに沿って上記半導体ウェハを分離させて、上記第1金属被覆パターンを含む第1太陽電池ストリップを形成する工程をさらに備える、項3C15に記載の方法。
26C15.上記分離させる工程は、上記第1スクライブラインに真空を引く工程を有する、項25C15に記載の方法。
27C15.上記真空へ動くベルト上に上記半導体ウェハを配する工程をさらに備える、項26C15に記載の方法。
28C15.上記第1太陽電池ストリップに伝導性接着剤を適用する工程をさらに備える、項25C15に記載の方法。
29C15.隣接し合う太陽電池ストリップの長辺が、間に配された伝導性接着剤に重なった状態で、少なくとも10Vの降伏電圧をそれぞれが有する少なくとも19個の太陽電池ストリップを含む第1スーパーセルに上記第1太陽電池ストリップを配置する工程と、
上記伝導性接着剤を硬化させて、隣接し合い重なり合う、直列に電気接続する太陽電池ストリップを接合する工程と
をさらに備える、項25C15に記載の方法。
30C15.上記配置する工程は、封入材を含む層状構造を形成する工程を有し、
上記層状構造を積層させる工程をさらに備える、項29C15に記載の方法。
31C15.上記硬化させる工程は、上記積層させる工程の間に少なくとも部分的に起こる、項30C15に記載の方法。
32C15.上記硬化させる工程は、上記積層させる工程とは個別に起こる、項30C15に記載の方法。
33C15.上記封入材は熱可塑性オレフィンポリマーを含む、項30C15に記載の方法。
34C15.上記層状構造は
白色のバッキングシートと
上記白色のバッキングシート上の濃色のストライプと
を含む、項30C15に記載の方法。
35C15.上記配置する工程は、上記金属被覆パターン特徴により上記伝導性接着剤の広がりを封じ込める工程を有する、項29C15に記載の方法。
36C15.上記金属被覆パターン特徴は、上記第1太陽電池ストリップの前面にある、項35C15に記載の方法。
37C15.上記第1スーパーセルと、第2スーパーセルを直列に接続する相互接続部の間に上記伝導性接着剤を適用する工程をさらに備える、項29C15に記載の方法。
38C15.上記第1スーパーセルの単一のバイパスダイオード間にリボン導体を形成する工程をさらに備え、
上記単一のバイパスダイオードは、第2ソーラーモジュールの第2接続箱と嵌合配置で、第1ソーラーモジュールの第1接続箱内に位置する、項29C15に記載の方法。
39C15.上記第1太陽電池ストリップは第1の面取りされた角を含み、
上記第1スーパーセルの重なっている太陽電池ストリップの長辺が、第2の面取りされた角を含まず、
上記第1太陽電池ストリップの幅が、上記第1太陽電池ストリップと上記重なっている太陽電池ストリップとがおよそ同じ面積を有するよう、上記重なっている太陽電池ストリップの幅より大きい、項29C15に記載の方法。
40C15.上記第1太陽電池ストリップは第1の面取りされた角を含み、
上記第1スーパーセルの重なっている太陽電池ストリップの長辺が、第2の面取りされた角を含み、
上記重なっている太陽電池ストリップの上記長辺は、上記第1の面取りされた角を含まない上記第1太陽電池ストリップの長辺に重なる、項29C15に記載の方法。
1C16.シリコンウェハの第1外縁と平行、かつ隣接して配置された第1のバスバーまたはコンタクトパッド行と、上記シリコンウェハの上記第1縁と反対側にあり、かつ平行な、上記シリコンウェハの第2外縁と平行、かつ隣接して配置された第2のバスバーまたはコンタクトパッド行とを含む前面金属被覆パターンを含む上記シリコンウェハを得る、または提供する工程と、
上記シリコンウェハの上記第1外縁と上記第2外縁と平行な1または複数のスクライブラインに沿って上記シリコンウェハを分離させて、複数の長方形太陽電池を形成する工程であって、上記第1のバスバーまたはコンタクトパッド行は、上記複数の長方形太陽電池のうち第1長方形太陽電池の長い外縁と平行、かつ隣接して配置され、上記第2のバスバーまたはコンタクトパッド行は、上記複数の長方形太陽電池のうち第2長方形太陽電池の長い外縁と平行、かつ隣接して配置される、工程と、
隣接し合う太陽電池の長辺が重なり合い互いに伝導接合して、上記隣接し合う太陽電池を直列に電気接続した状態で上記複数の長方形太陽電池を並べて配置して、スーパーセルを形成する工程と
を備え、
上記複数の長方形太陽電池のうち上記第1長方形太陽電池の上記第1のバスバーまたはコンタクトパッド行には、上記スーパーセル内の隣接する長方形太陽電池の底面が重なり伝導接合する、方法。
2C16.上記複数の長方形太陽電池のうち上記第2長方形太陽電池上の上記第2のバスバーまたはコンタクトパッド行には、上記スーパーセル内の隣接する長方形太陽電池の底面が重なり伝導接合する、項1C16に記載の方法。
3C16.上記シリコンウェハは、正方形または擬似正方形シリコンウェハである、項1C16に記載の方法。
4C16.上記シリコンウェハは、長さが約125mmである、または長さが約156mmである辺を有する、項3C16に記載の方法。
5C16.各長方形太陽電池の長さ対幅の比は、約2:1と約20:1との間である、項3C16に記載の方法。
6C16.上記シリコンウェハは結晶シリコンウェハである、項1C16に記載の方法。
7C16.上記第1のバスバーまたはコンタクトパッド行と上記第2のバスバーまたはコンタクトパッド行とは、上記シリコンウェハの複数の中央領域より低効率で光を電気に変換する、上記シリコンウェハの複数の縁領域に位置する、項1C16に記載の方法。
8C16.上記前面金属被覆パターンは、上記第1のバスバーまたはコンタクトパッド行に電気接続する、上記シリコンウェハの上記第1外縁から内側に延在する第1の複数の平行なフィンガーと、上記第2のバスバーまたはコンタクトパッド行に電気接続する、上記シリコンウェハの上記第2外縁から内側に延在する第2の複数の平行なフィンガーとを含む、項1C16に記載の方法。
9C16.上記前面金属被覆パターンは、少なくとも、上記第1のバスバーまたはコンタクトパッド行と上記第2のバスバーまたはコンタクトパッド行と平行に方向付けられ、上記第1のバスバーまたはコンタクトパッド行と上記第2のバスバーまたはコンタクトパッド行との間に位置する第3のバスバーまたはコンタクトパッド行と、上記第3のバスバーまたはコンタクトパッド行と垂直な方向に方向付けられ、上記第3のバスバーまたはコンタクトパッド行に電気接続する第3の複数の平行なフィンガーとを含み、上記第3のバスバーまたはコンタクトパッド行は、上記シリコンウェハが分離されて、上記複数の長方形太陽電池を形成した後、上記複数の長方形太陽電池のうち第3長方形太陽電池の長い外縁と平行、かつ隣接して配置される、項1C16に記載の方法。
10C16.上記第1のバスバーまたはコンタクトパッド行に伝導性接着剤を適用して、上記第1長方形太陽電池を隣接する太陽電池に伝導接合する工程を備える、項1C16に記載の方法。
11C16.上記金属被覆パターンは、上記伝導性接着剤の広がりを封じ込めるよう構成されたバリアを含む、項10C16に記載の方法。
12C16.スクリーン印刷により上記伝導性接着剤を適用する工程を備える、項10C16に記載の方法。
13C16.インクジェット印刷により上記伝導性接着剤を適用する工程を備える、項10C16に記載の方法。
14C16.上記伝導性接着剤は、上記シリコンウェハにおける上記1または複数のスクライブラインの形成の前に適用される、項10C16に記載の方法。
15C16.上記1または複数のスクライブラインに沿って上記シリコンウェハを分離させる工程は、上記シリコンウェハの底面と湾曲支持面との間で真空を引いて、上記湾曲支持面に寄せて上記シリコンウェハを曲げ、それにより、上記1または複数のスクライブラインに沿って上記シリコンウェハを劈開する工程を有する、項1C16に記載の方法。
16C16.上記シリコンウェハは、面取りされた複数の角を含む擬似正方形シリコンウェハであって、上記シリコンウェハを分離させて、上記複数の長方形太陽電池を形成する工程の後、上記長方形太陽電池のうち1または複数は、上記面取りされた複数の角のうち1または複数を含み、
スクライブライン間の間隔は、面取りされた複数の角を含む上記長方形太陽電池の長軸と垂直な幅を、複数の面取りされた角を有さない上記長方形太陽電池の長軸と垂直な幅より大きくすることにより上記面取りされた角を補うよう選択され、これにより、上記スーパーセル内の上記複数の長方形太陽電池のうちそれぞれが、上記スーパーセルの動作において光に露出される面積が実質的に同じである前面を有する、項1C16に記載の方法。
17C16.透明な前面シートと後面シートとの間の層状構造に上記スーパーセルを配置し、上記層状構造を積層させる工程を備える、項1C16に記載の方法。
18C16.上記層状構造を積層させる工程は、上記スーパーセル内の上記隣接し合う長方形太陽電池間に配された伝導性接着剤の硬化を完了させて、上記隣接し合う長方形太陽電池を互いに伝導接合する、項17C16に記載の方法。
19C16.上記スーパーセルは、スーパーセルの2またはそれより多くの平行行のうち1行内の上記層状構造に配置され、上記後面シートは、上記スーパーセルの2またはそれより多くの平行行間の間隙の位置および幅に対応する位置および幅を有する複数の平行な濃色のストライプを含む白色のシートであり、これにより、上記後面シートの複数の白色の部分は、組み立てられたモジュールにおいて上記スーパーセルの2またはそれより多くの平行行間の間隙を通して視認出来ない、項17C16に記載の方法。
20C16.上記前面シートおよび上記後面シートは、ガラス製のシートであり、上記スーパーセルは、上記ガラス製のシート間に挟まれた熱可塑性オレフィン層内に封入されている、項17C16に記載の方法。
21C16.第2ソーラーモジュールの第2接続箱と嵌合配置されている接続箱を含む第1モジュールに上記スーパーセルを配置する工程を備える、項1C16に記載の方法。
1D.2またはそれより多くの平行行に配置された複数のスーパーセルであって、各スーパーセルが、隣接し合うシリコン太陽電池の長辺が重なり合い互いに直接伝導接合して、上記隣接し合うシリコン太陽電池を直列に電気接続した状態で並んで配置された複数の長方形または略長方形シリコン太陽電池を有する、複数のスーパーセルと、
上記複数のスーパーセルのうち第1スーパーセルに沿った中間位置に位置する第1太陽電池の後面に位置する第1隠れタップコンタクトパッドと、
上記第1隠れタップコンタクトパッドに伝導接合する第1電気相互接続部と、
を備え、
上記第1電気相互接続部は、上記相互接続部と、それの接合先の上記シリコン太陽電池との間の差異のある熱膨張に適応する応力緩和特徴を含む、ソーラーモジュール。
2D.上記複数のスーパーセルのうち第2スーパーセルに沿った中間位置において上記第1太陽電池に隣接して位置する第2太陽電池の後面に位置する第2隠れタップコンタクトパッドを備え、
上記第1隠れタップコンタクトパッドは、上記第1電気相互接続部を通じて上記第2隠れタップコンタクトパッドに電気接続する、項1Dに記載のソーラーモジュール。
3D.上記第1電気相互接続部は、上記第1スーパーセルと上記第2スーパーセルとの間の間隙を跨いで延在し、上記第2隠れタップコンタクトパッドに伝導接合する、項2Dに記載のソーラーモジュール。
4D.上記複数のスーパーセルのうち第1スーパーセルに沿った他の中間位置に位置する第2太陽電池の後面に位置する第2隠れタップコンタクトパッドと、
上記第2隠れタップコンタクトパッドに伝導接合する第2電気相互接続部と、
上記第1隠れタップコンタクトパッドと上記第2隠れタップコンタクトパッドとの間に位置する上記太陽電池と並列に上記第1電気相互接続部および上記第2電気相互接続部により電気接続するバイパスダイオードと
を備える、項1Dに記載のソーラーモジュール。
5D.上記第1隠れタップコンタクトパッドは、上記第1太陽電池の長軸と平行に延びる行内の上記第1太陽電池の上記後面に配置された複数の隠れタップコンタクトパッドのうち1つであり、
上記第1電気相互接続部は、上記複数の隠れ接触部のうちそれぞれに伝導接合し、上記長軸に沿った上記第1太陽電池の上記長さに亘って実質的に広がる、項1Dに記載のソーラーモジュール。
6D.上記第1隠れタップコンタクトパッドは、上記第1太陽電池の上記後面の短辺に隣接して位置し、
上記第1電気相互接続部は、上記太陽電池の上記長軸に沿って上記隠れタップコンタクトパッドから実質的に内側に延在せず、
上記第1太陽電池上の後面金属被覆パターンが、約5オーム/スクエアより低い、またはそれと等しいシート抵抗を有する上記相互接続部への伝導路を提供する、項1Dに記載のソーラーモジュール。
7D.上記シート抵抗は、約2.5オーム/スクエアより低い、またはそれと等しい、項6Dに記載のソーラーモジュール。
8D.上記第1相互接続部は、上記応力緩和特徴の対向し合う側に位置付けられた2つのタブを含み、
上記2つのタブのうち一方は、上記第1隠れタップコンタクトパッドに伝導接合する、項6Dに記載のソーラーモジュール。
9D.上記2つのタブの長さは異なる、項8Dに記載のソーラーモジュール。
10D.上記第1電気相互接続部は、上記第1隠れタップコンタクトパッドとの所望される位置合わせを特定する位置合わせ特徴を含む、項1Dに記載のソーラーモジュール。
11D.上記第1電気相互接続部は、上記第1スーパーセルの縁との所望される位置合わせを特定する位置合わせ特徴を含む、項1Dに記載のソーラーモジュール。
12D.重なり合う領域における電気接続先の他のソーラーモジュールと重なり合うこけら葺き状に配置される、項1Dに記載のソーラーモジュール。
13D.ソーラーモジュールであって、
ガラス製の前面シートと、
後面シートと、
上記ガラス製の前面シートと上記後面シートとの間の2またはそれより多くの平行行に配置された複数のスーパーセルであって、各スーパーセルが、隣接し合うシリコン太陽電池の長辺が重なり合いフレキシブルに互いに直接伝導接合して、上記隣接し合うシリコン太陽電池を直列に電気接続した状態で並んで配置された複数の長方形または略長方形シリコン太陽電池を有する、複数のスーパーセルと、
上記複数のスーパーセルのうち第1スーパーセルに強固に伝導接合する第1フレキシブル電気相互接続部と
を備え、
重なり合う太陽電池間の複数のフレキシブルな上記伝導接合は、上記ソーラーモジュールにダメージを与えることなく約−40℃から約100℃の温度範囲で、上記複数のスーパーセルと上記ガラス製の前面シートとの間の、上記2またはそれより多くの平行行と平行な方向への熱膨張の不一致に適応する機械的コンプライアンスを上記複数のスーパーセルに提供し、
上記第1スーパーセルと上記第1フレキシブル電気相互接続部との間の強固な上記伝導接合は、上記ソーラーモジュールにダメージを与えることなく約−40℃から約180℃の温度範囲で、上記第1フレキシブル電気相互接続部に、上記第1スーパーセルと上記第1フレキシブル相互接続部との間の、上記2またはそれより多くの平行行と垂直な方向への熱膨張の不一致に適応させる、ソーラーモジュール。
14D.スーパーセル内の重なり合い隣接し合う太陽電池間の複数の上記伝導接合は、上記スーパーセルと上記フレキシブル電気相互接続部との間の複数の上記伝導接合とは異なる伝導性接着剤を利用する、項13Dに記載のソーラーモジュール。
15D.両方の伝導性接着剤が同じ処理工程で硬化させられ得る、項14Dに記載のソーラーモジュール。
16D.スーパーセル内の少なくとも1つの太陽電池の一辺の上記伝導接合は、その他辺の上記伝導接合とは異なる伝導性接着剤を利用する、項13Dに記載のソーラーモジュール。
17D.両方の伝導性接着剤が同じ処理工程で硬化させられ得る、項16Dに記載のソーラーモジュール。
18D.重なり合い隣接し合う太陽電池間の複数の上記伝導接合は、各電池と上記ガラス製の前面シートとの間の約15ミクロンより大きい、またはそれと等しい差異のある運動に適応する、項13Dに記載のソーラーモジュール。
19D.重なり合い隣接し合う太陽電池間の複数の上記伝導接合は、上記複数の太陽電池と垂直な方向への厚さが約50ミクロンより薄く、またはそれと等しく、上記複数の太陽電池と垂直な方向への熱伝導性が約1.5W/(メートル−K)より高い、またはそれと等しい、項13Dに記載のソーラーモジュール。
20D.上記第1フレキシブル電気相互接続部は、上記第1フレキシブル相互接続部の、約40ミクロンより大きい、またはそれと等しい熱膨張または収縮に耐える、項13Dに記載のソーラーモジュール。
21D.上記スーパーセルに伝導接合する、上記第1フレキシブル電気相互接続部の部分は、銅から形成されたリボン状であり、それの接合先の上記太陽電池の表面と垂直な方向への厚さが約50ミクロンより小さい、またはそれと等しい、項13Dに記載のソーラーモジュール。
22D.上記スーパーセルに伝導接合する、上記第1フレキシブル電気相互接続部の部分は、銅から形成されたリボン状であり、それの接合先の上記太陽電池の表面と垂直な方向への厚さが約30ミクロンより小さい、またはそれと等しい、項21Dに記載のソーラーモジュール。
23D.上記第1フレキシブル電気相互接続部は、上記太陽電池に伝導接合する、上記第1フレキシブル電気相互接続部の部分より高い伝導性を提供する、上記太陽電池に接合しない一体の伝導性銅部分を有する、項21Dに記載のソーラーモジュール。
24D.上記第1フレキシブル電気相互接続部は、上記太陽電池の表面の面における、上記相互接続部を通る電流の流れと垂直な方向への幅が、約10mmより大きい、またはそれと等しい、項21Dに記載のソーラーモジュール。
25D.上記第1フレキシブル電気相互接続部は、上記第1電気相互接続部より高い伝導性を提供する、上記太陽電池に近接した導体に伝導接合する、項21Dに記載のソーラーモジュール。
26D.重なり合う領域における電気接続先の他のソーラーモジュールと重なり合うこけら葺き状に配置される、項13Dに記載のソーラーモジュール。
27D.2またはそれより多くの平行行に配置された複数のスーパーセルであって、各スーパーセルが、隣接し合うシリコン太陽電池の長辺が重なり合い互いに直接伝導接合して、上記隣接し合うシリコン太陽電池を直列に電気接続した状態で並んで配置された複数の長方形または略長方形シリコン太陽電池を有する、複数のスーパーセルと、
第1太陽電池の後面に位置する、通常動作で実質的な電流を伝導しない隠れタップコンタクトパッドと
を備え、
上記第1太陽電池は、スーパーセルの上記2またはそれより多くの平行行のうち第1行内の上記複数のスーパーセルのうち第1スーパーセルに沿った中間位置に位置し、上記隠れタップコンタクトパッドは、上記スーパーセルの2またはそれより多くの平行行のうち第2行内の少なくとも第2太陽電池と並列に電気接続する、ソーラーモジュール。
28D.上記隠れタップコンタクトパッドに接合し、上記隠れタップコンタクトパッドを上記第2太陽電池に電気相互接続する電気相互接続部を備え、
上記電気相互接続部は、上記第1太陽電池の長さに亘って実質的に広がらず、
上記第1太陽電池上の後面金属被覆パターンが、約5オーム/スクエアより低い、またはそれと等しいシート抵抗を有する、上記隠れタップコンタクトパッドへの伝導路を提供する、項27Dに記載のソーラーモジュール。
29D.上記複数のスーパーセルは、3またはそれより多くの平行行と垂直な上記ソーラーモジュールの幅に亘って広がる上記3またはそれより多くの平行行に配置され、
上記隠れタップコンタクトパッドは、スーパーセルの上記3またはそれより多くの平行行のうち各行内の少なくとも1つの太陽電池上の隠れコンタクトパッドに電気接続して、スーパーセルの上記3またはそれより多くの平行行を並列に電気接続し、
複数の上記隠れタップコンタクトパッドのうち少なくとも1つへの、または複数の隠れタップコンタクトパッドの間の相互接続部への少なくとも1つのバス接続が、バイパスダイオードまたは他の電子デバイスに接続する、項27Dに記載のソーラーモジュール。
30D.上記隠れタップコンタクトパッドに伝導接合して、それを上記第2太陽電池に電気接続するフレキシブル電気相互接続部を備え、
上記隠れタップコンタクトパッドに伝導接合する、上記フレキシブル電気相互接続部の部分は、銅から形成されたリボン状であり、それの接合先の上記太陽電池の表面と垂直な方向への厚さが約50ミクロンより薄く、またはそれと等しく、
上記隠れタップコンタクトパッドと上記フレキシブル電気相互接続部との間の上記伝導接合は、上記ソーラーモジュールにダメージを与えることなく約−40℃から約180℃の温度範囲で、上記フレキシブル電気相互接続部に、上記第1太陽電池と上記フレキシブル相互接続部との間の熱膨張の不一致を耐えさせ、熱膨張から結果として生じる上記第1太陽電池と上記第2太陽電池との間の相対運動に適応させる、項27Dに記載のソーラーモジュール。
31D.上記ソーラーモジュールの動作において、上記第1隠れコンタクトパッドは、上記複数の太陽電池のうち任意の1つで生成される電流より大きい電流を伝導し得る、項27Dに記載のソーラーモジュール。
32D.上記第1太陽電池の、上記第1隠れタップコンタクトパッド上に横たわる前面は、コンタクトパッドまたは任意の他の相互接続特徴により占有されていない、項27Dに記載のソーラーモジュール。
33D.上記第1太陽電池の、上記第1スーパーセル内の隣接する太陽電池の一部が重なっていない前面のどのエリアも、コンタクトパッドまたは任意の他の相互接続特徴により占有されていない、項27Dに記載のソーラーモジュール。
34D.各スーパーセル内で、上記複数の電池の殆どは、隠れタップコンタクトパッドを有さない、項27Dに記載のソーラーモジュール。
35D.隠れタップコンタクトパッドを有する上記複数の電池は、隠れタップコンタクトパッドを有さない上記複数の電池より大きな集光面積を有する、項34Dに記載のソーラーモジュール。
36D.重なり合う領域における電気接続先の他のソーラーモジュールと重なり合うこけら葺き状に配置される、項27Dに記載のソーラーモジュール。
37D.ガラス製の前面シートと、
後面シートと、
上記ガラス製の前面シートと上記後面シートとの間の2またはそれより多くの平行行に配置された複数のスーパーセルであって、各スーパーセルが、隣接し合うシリコン太陽電池の長辺が重なり合いフレキシブルに互いに直接伝導接合して、上記隣接し合うシリコン太陽電池を直列に電気接続した状態で並んで配置された複数の長方形または略長方形シリコン太陽電池を有する、複数のスーパーセルと、
上記複数のスーパーセルのうち第1スーパーセルに強固に伝導接合する第1フレキシブル電気相互接続部と
を備え、
重なり合う太陽電池間の複数のフレキシブルな上記伝導接合は、第1伝導性接着剤から形成され、約800メガパスカルより低い、またはそれと等しい剛性率を有し、
上記第1スーパーセルと上記第1フレキシブル電気相互接続部との間の強固な上記伝導接合は、第2伝導性接着剤から形成され、約2000メガパスカルより高い、またはそれと等しい剛性率を有する、ソーラーモジュール。
38D.上記第1伝導性接着剤と上記第2伝導性接着剤とは異なり、両方の伝導性接着剤が、同じ処理工程で硬化させられ得る、項37Dに記載のソーラーモジュール。
39D.重なり合い隣接し合う太陽電池間の複数の上記伝導接合は、上記複数の太陽電池と垂直な方向への厚さが約50ミクロンより薄く、またはそれと等しく、上記複数の太陽電池と垂直な方向への熱伝導性が約1.5W/(メートル−K)より高い、またはそれと等しい、項37Dに記載のソーラーモジュール。
40D.重なり合う領域における電気接続先の他のソーラーモジュールと重なり合うこけら葺き状に配置される、項37Dに記載のソーラーモジュール。
1E.2またはそれより多くの平行行に複数のスーパーセルとして配置された、N個(約150より大きい、またはそれと等しい数の)長方形または略長方形シリコン太陽電池を備え、
各スーパーセルが、隣接し合うシリコン太陽電池の長辺が重なり合い互いに伝導接合して、上記隣接し合うシリコン太陽電池を直列に電気接続した状態で並んで配置された複数のシリコン太陽電池を含み、
上記複数のスーパーセルは、電気接続して、約90ボルトより高い、またはそれと等しい高い直流電圧を提供する、ソーラーモジュール。
2E.上記複数のスーパーセルを直列に電気接続して、上記高い直流電圧を提供するよう配置された1または複数のフレキシブル電気相互接続部を備える、項1Eに記載のソーラーモジュール。
3E.上記高い直流電圧を交流電圧に変換するインバータを含むモジュールレベルのパワーエレクトロニクスを備える、項2Eに記載のソーラーモジュール。
4E.上記モジュールレベルのパワーエレクトロニクスは、上記高い直流電圧を感知し、上記モジュールを最適な電流−電圧電力点で動作させる、項3Eに記載のソーラーモジュール。
5E.複数の個々の、隣接し合う直列接続するスーパーセル行ペアに電気接続し、それら複数のスーパーセル行ペアのうち1または複数を直列に電気接続して、上記高い直流電圧を提供するモジュールレベルのパワーエレクトロニクスと、
上記高い直流電圧を交流電圧に変換するインバータと
を備える、項1Eに記載のソーラーモジュール。
6E.上記モジュールレベルのパワーエレクトロニクスは、各個々のスーパーセル行ペアにかかる電圧を感知し、最適な電流−電圧電力点で各個々のスーパーセル行ペアを動作させる、項5Eに記載のソーラーモジュール。
7E.個々のスーパーセル行ペアにかかる電圧が閾値を下回った場合、上記モジュールレベルのパワーエレクトロニクスは、上記高い直流電圧を提供している回路から上記行ペアをスイッチアウトする、項6Eに記載のソーラーモジュール。
8E.各個々のスーパーセル行に電気接続し、上記複数のスーパーセル行のうち2またはそれより多くを直列に電気接続して、上記高い直流電圧を提供するモジュールレベルのパワーエレクトロニクスと、
上記高い直流電圧を交流電圧に変換するインバータと
を備える、項1Eに記載のソーラーモジュール。
9E.上記モジュールレベルのパワーエレクトロニクスは、各個々のスーパーセル行にかかる電圧を感知し、最適な電流−電圧電力点で各個々のスーパーセル行を動作させる、項8Eに記載のソーラーモジュール。
10E.個々のスーパーセル行にかかる電圧が閾値を下回った場合、上記モジュールレベルのパワーエレクトロニクスは、上記高い直流電圧を提供している回路から上記スーパーセル行をスイッチアウトする、項9Eに記載のソーラーモジュール。
11E.各個々のスーパーセルに電気接続し、上記複数のスーパーセルのうち2またはそれより多くを直列に電気接続して、上記高い直流電圧を提供するモジュールレベルのパワーエレクトロニクスと、
上記高い直流電圧を交流電圧に変換するインバータと
を備える、項1Eに記載のソーラーモジュール。
12E.上記モジュールレベルのパワーエレクトロニクスは、各個々のスーパーセルにかかる電圧を感知し、最適な電流−電圧電力点で各個々のスーパーセルを動作させる、項11Eに記載のソーラーモジュール。
13E.個々のスーパーセルにかかる電圧が閾値を下回った場合、上記モジュールレベルのパワーエレクトロニクスは、上記高い直流電圧を提供している回路から上記スーパーセルをスイッチアウトする、項12Eに記載のソーラーモジュール。
14E.各スーパーセルが、複数の隠れタップにより、複数のセグメントとなるよう電気的にセグメント化されており、
上記複数の隠れタップを通じて各スーパーセルの各セグメントに電気接続し、2またはそれより多くのセグメントを直列に電気接続して、上記高い直流電圧を提供するモジュールレベルのパワーエレクトロニクスと、
上記高い直流電圧を交流電圧に変換するインバータと
を備える、項1Eに記載のソーラーモジュール。
15E.上記モジュールレベルのパワーエレクトロニクスは、各スーパーセルの各個々のセグメントにかかる電圧を感知し、最適な電流−電圧電力点で各個々のセグメントを動作させる、項14Eに記載のソーラーモジュール。
16E.個々のセグメントにかかる電圧が閾値を下回った場合、上記モジュールレベルのパワーエレクトロニクスは、上記高い直流電圧を提供している回路から上記セグメントをスイッチアウトする、項15Eに記載のソーラーモジュール。
17E.上記最適な電流−電圧電力点は、最大電流−電圧電力点である、項4E、6E、9E、12Eまたは15Eのいずれか一項に記載のソーラーモジュール。
18E.上記モジュールレベルのパワーエレクトロニクスは、直流−直流ブースト構成要素を有さない、項3Eから17Eのいずれか一項に記載のソーラーモジュール。
19E.Nは、約200より大きい、若しくはそれと等しい、約250より大きい、若しくはそれと等しい、約300より大きい、若しくはそれと等しい、約350より大きい、若しくはそれと等しい、約400より大きい、若しくはそれと等しい、約450より大きい、若しくはそれと等しい、約500より大きい、若しくはそれと等しい、約550より大きい、若しくはそれと等しい、約600より大きい、若しくはそれと等しい、約650より大きい、若しくはそれと等しい、または、約700より大きい、若しくはそれと等しい、項1Eから18Eのいずれか一項に記載のソーラーモジュール。
20E.上記高い直流電圧は、約120ボルトより高い、若しくはそれと等しい、約180ボルトより高い、若しくはそれと等しい、約240ボルトより高い、若しくはそれと等しい、約300ボルトより高い、若しくはそれと等しい、約360ボルトより高い、若しくはそれと等しい、約420ボルトより高い、若しくはそれと等しい、約480ボルトより高い、若しくはそれと等しい、約540ボルトより高い、若しくはそれと等しい、または、約600ボルトより高い、若しくはそれと等しい、項1Eから19Eのいずれか一項に記載のソーラーモジュール。
21E.並列に電気接続する2またはそれより多くのソーラーモジュールと、
インバータと
を備え、
各ソーラーモジュールは、2またはそれより多くの平行行に複数のスーパーセルとして配置されたN個の(約150より大きい、またはそれと等しい数の)長方形または略長方形シリコン太陽電池を有し、
各モジュール内の各スーパーセルが、当該モジュール内に、隣接し合うシリコン太陽電池の長辺が重なり合い互いに伝導接合して、上記隣接し合うシリコン太陽電池を直列に電気接続した状態で並んで配置された上記シリコン太陽電池のうち2またはそれより多くを含み、
各モジュールにおいて、上記複数のスーパーセルは、電気接続して、約90ボルトより高い、またはそれと等しい高電圧直流モジュール出力を提供し、
上記インバータは、上記2またはそれより多くのソーラーモジュールに電気接続して、それらの高電圧直流出力を交流に変換する、太陽光発電システム。
22E.各ソーラーモジュールは、上記ソーラーモジュール内の上記複数のスーパーセルを直列に電気接続するよう配置されて、上記ソーラーモジュールの高電圧直流出力を提供する1または複数のフレキシブル電気相互接続部を含む、項21Eに記載の太陽光発電システム。
23E.並列に電気接続する上記2またはそれより多くのソーラーモジュールのうち第1ソーラーモジュールと直列に電気接続する第3ソーラーモジュールを少なくとも備え、
上記第3ソーラーモジュールは、2またはそれより多くの平行行に複数のスーパーセルとして配置されたN'個の(約150より大きい、またはそれと等しい数の)長方形または略長方形シリコン太陽電池を有し、
上記第3ソーラーモジュール内の各スーパーセルが、当該モジュール内に、隣接し合うシリコン太陽電池の長辺が重なり合い互いに伝導接合して、上記隣接し合うシリコン太陽電池を直列に電気接続した状態で並んで配置された上記シリコン太陽電池のうち2またはそれより多くを含み、
上記第3ソーラーモジュール内で、上記複数のスーパーセルは、電気接続して、約90ボルトより高い、またはそれと等しい高電圧直流モジュール出力を提供する、項21Eに記載の太陽光発電システム。
24E.並列に電気接続する上記2またはそれより多くのソーラーモジュールのうち第2ソーラーモジュールと直列に電気接続する第4ソーラーモジュールを少なくとも備え、
上記第4ソーラーモジュールは、2またはそれより多くの平行行に複数のスーパーセルとして配置されたN''個の(約150より大きい、またはそれと等しい数の)長方形または略長方形シリコン太陽電池を有し、
上記第4ソーラーモジュール内の各スーパーセルが、当該モジュール内に、隣接し合うシリコン太陽電池の長辺が重なり合い互いに伝導接合して、上記隣接し合うシリコン太陽電池を直列に電気接続した状態で並んで配置された上記シリコン太陽電池のうち2またはそれより多くを含み、
上記第4ソーラーモジュール内で、上記複数のスーパーセルは、電気接続して、約90ボルトより高い、またはそれと等しい高電圧直流モジュール出力を提供する、項23Eに記載の太陽光発電システム。
25E.上記2またはそれより多くのソーラーモジュールのうち任意の1つに起こっている短絡が、他のソーラーモジュールで生成された電力を放散させるのを防ぐよう配置された複数のヒューズを備える、項21Eから24Eに記載の太陽光発電システム。
26E.上記2またはそれより多くのソーラーモジュールのうち任意の1つに起こっている短絡が、上記2またはそれより多くのソーラーモジュールのうち他のソーラーモジュールで生成された電力を放散させるのを防ぐよう配置された複数のブロッキングダイオードを備える、項21Eから25Eのいずれか一項に記載の太陽光発電システム。
27E.上記2またはそれより多くのソーラーモジュールの並列な電気接続先および上記インバータの電気接続先の正極バスおよび負極バスを備える、項21Eから26Eのいずれか一項に記載の太陽光発電システム。
28E.上記2またはそれより多くのソーラーモジュールの別個の導体による電気接続先のコンバイナボックスを備え、
上記コンバイナボックスは、上記2またはそれより多くのソーラーモジュールを並列に電気接続する、項21Eから26Eのいずれか一項に記載の太陽光発電システム。
29E.上記コンバイナボックスは、上記複2またはそれより多くのソーラーモジュールのうち任意の1つに起こっている短絡が、他のソーラーモジュールで生成された電力を放散させるのを防ぐよう配置された複数のヒューズを有する、項28Eに記載の太陽光発電システム。
30E.上記コンバイナボックスは、上記2またはそれより多くのソーラーモジュールのうち任意の1つに起こっている短絡が、上記2またはそれより多くのソーラーモジュールのうち他のソーラーモジュールで生成された電力を放散させるのを防ぐよう配置された複数のブロッキングダイオードを有する、項28Eまたは項29Eに記載の太陽光発電システム。
31E.上記インバータは、モジュールに逆バイアスをかけることを避けるよう設定された最小値より高い直流電圧で上記2またはそれより多くのソーラーモジュールを動作させるよう構成されている、項21Eから30Eのいずれか一項に記載の太陽光発電システム。
32E.上記インバータは、逆バイアス状態を認識し、上記逆バイアス状態を避ける電圧で上記2またはそれより多くのソーラーモジュールを動作させるよう構成されている、項21Eから30Eのいずれか一項に記載の太陽光発電システム。
33E.Nは、約200より大きい、若しくはそれと等しい、約250より大きい、若しくはそれと等しい、約300より大きい、若しくはそれと等しい、約350より大きい、若しくはそれと等しい、約400より大きい、若しくはそれと等しい、約450より大きい、若しくはそれと等しい、約500より大きい、若しくはそれと等しい、約550より大きい、若しくはそれと等しい、約600より大きい、若しくはそれと等しい、約650より大きい、若しくはそれと等しい、または、約700より大きい、若しくはそれと等しい、項21Eから32Eのいずれか一項に記載のソーラーモジュール。
34E.上記高い直流電圧は、約120ボルトより高い、若しくはそれと等しい、約180ボルトより高い、若しくはそれと等しい、約240ボルトより高い、若しくはそれと等しい、約300ボルトより高い、若しくはそれと等しい、約360ボルトより高い、若しくはそれと等しい、約420ボルトより高い、若しくはそれと等しい、約480ボルトより高い、若しくはそれと等しい、約540ボルトより高い、若しくはそれと等しい、または、約600ボルトより高い、若しくはそれと等しい、項21Eから33Eのいずれか一項に記載のソーラーモジュール。
35E.屋根上に位置付けられる、項21Eから34Eのいずれか一項に記載の太陽光発電システム。
36E.2またはそれより多くの平行行に複数のスーパーセルとして配置された、N個(約150より大きい、またはそれと等しい数の)長方形または略長方形シリコン太陽電池であって、各スーパーセルが、隣接し合うシリコン太陽電池の長辺が重なり合い互いに伝導接合して、上記隣接し合うシリコン太陽電池を直列に電気接続した状態で並んで配置された複数のシリコン太陽電池を含む、長方形または略長方形シリコン太陽電池を有する第1ソーラーモジュールと、
インバータと
を備え、
上記複数のスーパーセルは、電気接続して、約90ボルトより高い、またはそれと等しい高い直流電圧を、その直流を交流に変換する上記インバータに提供する、太陽光発電システム。
37E.上記インバータは、上記第1ソーラーモジュールと統合されたマイクロインバータである、項36Eに記載の太陽光発電システム。
38E.上記第1ソーラーモジュールは、上記ソーラーモジュール内の上記複数のスーパーセルを直列に電気接続して、上記ソーラーモジュールの高電圧直流出力を提供するよう配置された1または複数のフレキシブル電気相互接続部を含む、項36Eに記載の太陽光発電システム。
39E.上記第1ソーラーモジュールと直列に電気接続する第2ソーラーモジュールを少なくとも備え、
上記第2ソーラーモジュールは、2またはそれより多くの平行行に複数のスーパーセルとして配置されたN'個の(約150より大きい、またはそれと等しい数の)長方形または略長方形シリコン太陽電池を有し、
上記第2ソーラーモジュール内の各スーパーセルが、当該モジュール内に、隣接し合うシリコン太陽電池の長辺が重なり合い互いに伝導接合して、上記隣接し合うシリコン太陽電池を直列に電気接続した状態で並んで配置された上記シリコン太陽電池のうち2またはそれより多くを含み、
上記第2ソーラーモジュール内で、上記複数のスーパーセルは、電気接続して、約90ボルトより高い、またはそれと等しい高電圧直流モジュール出力を提供する、項36Eから38Eのいずれか一項に記載の太陽光発電システム。
40E.上記インバータは、直流−直流ブースト構成要素を有さない、項36Eから39Eのいずれか一項に記載のソーラーモジュール。
41E.Nは、約200より大きい、若しくはそれと等しい、約250より大きい、若しくはそれと等しい、約300より大きい、若しくはそれと等しい、約350より大きい、若しくはそれと等しい、約400より大きい、若しくはそれと等しい、約450より大きい、若しくはそれと等しい、約500より大きい、若しくはそれと等しい、約550より大きい、若しくはそれと等しい、約600より大きい、若しくはそれと等しい、約650より大きい、若しくはそれと等しい、または、約700より大きい、若しくはそれと等しい、項36Eから40Eのいずれか一項に記載のソーラーモジュール。
42E.上記高い直流電圧は、約120ボルトより高い、若しくはそれと等しい、約180ボルトより高い、若しくはそれと等しい、約240ボルトより高い、若しくはそれと等しい、約300ボルトより高い、若しくはそれと等しい、約360ボルトより高い、若しくはそれと等しい、約420ボルトより高い、若しくはそれと等しい、約480ボルトより高い、若しくはそれと等しい、約540ボルトより高い、若しくはそれと等しい、または、約600ボルトより高い、若しくはそれと等しい、項36Eから41Eのいずれか一項に記載のソーラーモジュール。
43E.2またはそれより多くの平行行に複数の直列接続するスーパーセルとして配置された、N個の(約250より大きい、またはそれと等しい数の)長方形または略長方形シリコン太陽電池であって、各スーパーセルが、複数のシリコン太陽電池を有し、上記複数のシリコン太陽電池は、隣接し合うシリコン太陽電池の長辺が重なり合い電気および熱伝導性接着剤により互いに直接伝導接合して、上記スーパーセル内の上記複数のシリコン太陽電池を直列に電気接続した状態で並んで配置されている、長方形または略長方形シリコン太陽電池と、
25個の太陽電池当たり1つ未満のバイパスダイオードと
を備え、
上記電気および熱伝導性接着剤は、上記複数の太陽電池と垂直な方向への厚さが約50ミクロンより小さい、またはそれと等しく、上記複数の太陽電池と垂直な方向への熱伝導性が約1.5W/(メートル−K)より高い、またはそれと等しい、隣接し合う太陽電池間の複数の接合を形成する、ソーラーモジュール。
44E.上記複数のスーパーセルは、前面シートと後面シートとの間の熱可塑性オレフィン層内に封入されている、項43Eに記載のソーラーモジュール。
45E.上記複数のスーパーセルは、ガラス製の前面シートと後面シートとの間に封入されている、項43Eに記載のソーラーモジュール。
46E.30個の太陽電池当たり1つ未満のバイパスダイオード、または50個の太陽電池当たり1つ未満のバイパスダイオード、または100個の太陽電池当たり1つ未満のバイパスダイオード、または、単一のバイパスダイオードのみを備える、またはバイパスダイオードを備えない、項43Eに記載のソーラーモジュール。
47E.バイパスダイオードを備えない、または、単一のバイパスダイオードのみ、または3つ以下のバイパスダイオード、または6つ以下のバイパスダイオード、または10個以下のバイパスダイオードを備える、項43Eに記載のソーラーモジュール。
48E.重なり合う太陽電池間の伝導性の上記複数の接合は、上記ソーラーモジュールにダメージを与えることなく約−40℃から約100℃の温度範囲で、上記複数のスーパーセルと上記ガラス製の前面シートとの間の、上記2またはそれより多くの平行行と平行な方向への熱膨張の不一致に適応する機械的コンプライアンスを、上記複数のスーパーセルに提供する、項43Eに記載のソーラーモジュール。
49E.Nは、約300より大きい、若しくはそれと等しい、約350より大きい、若しくはそれと等しい、約400より大きい、若しくはそれと等しい、約450より大きい、若しくはそれと等しい、約500より大きい、若しくはそれと等しい、約550より大きい、若しくはそれと等しい、約600より大きい、若しくはそれと等しい、約650より大きい、若しくはそれと等しい、または、約700より大きい、若しくはそれと等しい、項43Eから48Eのいずれか一項に記載のソーラーモジュール。
50E.上記複数のスーパーセルは、電気接続して、約120ボルトより高い、若しくはそれと等しい、約180ボルトより高い、若しくはそれと等しい、約240ボルトより高い、若しくはそれと等しい、約300ボルトより高い、若しくはそれと等しい、約360ボルトより高い、若しくはそれと等しい、約420ボルトより高い、若しくはそれと等しい、約480ボルトより高い、若しくはそれと等しい、約540ボルトより高い、若しくはそれと等しい、または、約600ボルトより高い、若しくはそれと等しい高い直流電圧を提供する、項43Eから49Eのいずれか一項に記載のソーラーモジュール。
51E.項43Eに記載のソーラーモジュールと、
上記ソーラーモジュールに電気接続し、上記ソーラーモジュールからのDC出力を変換して、AC出力を提供するよう構成されたインバータと
を備える、太陽エネルギーシステム。
52E.上記インバータは、DC−DCブースト構成要素を有さない、項51Eに記載の太陽エネルギーシステム。
53E.上記インバータは、太陽電池に逆バイアスをかけることを避けるよう設定された最小値より高い直流電圧で上記ソーラーモジュールを動作させるよう構成されている、項51Eに記載の太陽エネルギーシステム。
54E.上記最小電圧値は温度依存である、項53Eに記載の太陽エネルギーシステム。
55E.上記インバータは、逆バイアス状態を認識し、上記逆バイアス状態を避ける電圧で上記ソーラーモジュールを動作させるよう構成されている、項51Eに記載の太陽エネルギーシステム。
56E.上記インバータは、上記ソーラーモジュールの電圧−電流出力曲線の極大領域において上記ソーラーモジュールを動作させて、上記逆バイアス状態を避けるよう構成されている、項55Eに記載の太陽エネルギーシステム。
57E.上記インバータは、上記ソーラーモジュールと統合されたマイクロインバータである、項51Eから56Eのいずれか一項に記載の太陽エネルギーシステム。
1F.湾曲面に沿って太陽電池ウェハを進行させる工程と、
上記湾曲面と上記太陽電池ウェハの底面の間で真空を引いて、上記湾曲面に寄せて上記太陽電池ウェハを曲げ、それにより、事前に用意された1または複数のスクライブラインに沿って上記太陽電池ウェハを劈開して、複数の太陽電池を上記太陽電池ウェハから分離させる工程と
を備える、太陽電池を製造する方法。
2F.上記湾曲面は、上記真空を上記太陽電池ウェハの上記底面に対して引く真空マニホールドの上記上面の湾曲部分である、項1Fに記載の方法。
3F.上記真空マニホールドにより上記太陽電池ウェハの上記底面に対して引かれる上記真空は、上記太陽電池ウェハの移動方向に沿って変化し、上記太陽電池ウェハが劈開される、上記真空マニホールドの領域において最も強い、項2Fに記載の方法。
4F.上記真空マニホールドの湾曲した上記上面に沿って、穿孔付ベルトにより上記太陽電池ウェハを搬送する工程であって、上記真空は、上記穿孔付ベルトの複数の穿孔を通じて上記太陽電池ウェハの上記底面に対して引かれる、工程を備える、項2Fまたは項3Fに記載の方法。
5F.上記穿孔付ベルトの上記複数の穿孔は、上記太陽電池ウェハの移動方向に沿った上記太陽電池ウェハの前縁および後縁が、上記穿孔付ベルトの少なくとも1つの穿孔上に横たわるように配置される、項4Fに記載の方法。
6F.上記真空マニホールドの上記上面の平坦領域に沿って上記太陽電池ウェハを進行させて、第1曲率を有する、上記真空マニホールドの上記上面の遷移湾曲領域に到達させ、その後、上記太陽電池ウェハが劈開される、上記真空マニホールドの上記上面の劈開領域内に上記太陽電池ウェハを進行させる工程であって、上記真空マニホールドの上記劈開領域は、上記第1曲率より高い第2曲率を有する、工程を備える、項2Fから5Fのいずれか一項に記載の方法。
7F.上記遷移領域の上記曲率は、曲率が大きくなる連続幾何学関数により規定される、項6Fに記載の方法。
8F.上記劈開領域の上記曲率は、上記曲率が大きくなる連続幾何学関数により規定される、項7Fに記載の方法。
9F.上記第2曲率より高い第3曲率を有する上記真空マニホールドの劈開後領域内に劈開済の上記複数の太陽電池を進行させる工程を備える、項6Fに記載の方法。
10F.上記遷移湾曲領域、上記劈開領域、および上記劈開後領域の上記曲率は、曲率が大きくなる単一の連続幾何学関数により規定される、項9Fに記載の方法。
11F.上記曲率が大きくなる連続幾何学関数は、クロソイドである、項7F、項8F、または項10Fに記載の方法。
12F.各スクライブラインの一端で、その後、各スクライブラインの反対側の端で、より強い上記太陽電池ウェハと上記湾曲面との間の真空を引いて、各スクライブラインに沿った単一の劈開裂け目の核生成および伝播を促す、各スクライブラインに沿った非対称な応力分布を提供する工程を備える、項1Fから11Fのいずれか一項に記載の方法。
13F.上記湾曲面から、劈開済の上記複数の太陽電池を取り除く工程であって、上記劈開済の複数の太陽電池の複数の縁は、上記湾曲面からの、上記太陽電池の取り除きの前には触れない、工程を備える、項1Fから12Fのいずれか一項に記載の方法。
14F.上記1または複数のスクライブラインを上記太陽電池ウェハ上にレーザースクライブする工程と、
上記1または複数のスクライブラインに沿って上記太陽電池ウェハを劈開する前に上記太陽電池ウェハの頂面の一部へ電気伝導性粘着接合剤を適用する工程と
備え、
各劈開済の太陽電池は、その頂面の劈開縁に沿って配された上記電気伝導性粘着接合剤の一部を含む、項1Fから13Fのいずれか一項に記載の方法。
15F.上記1または複数のスクライブラインをレーザースクライブし、その後、上記電気伝導性粘着接合剤を適用する工程を備える、項14Fに記載の方法。
16F.上記電気伝導性粘着接合剤を適用し、その後、上記1または複数のスクライブラインをレーザースクライブする工程を備える、項14Fに記載の方法。
17F.項14Fから16Fのいずれか一項に記載の方法により製造された複数の劈開済の太陽電池から太陽電池ストリングを作る方法であって、
上記複数の劈開済の太陽電池は複数の長方形太陽電池であり、
隣接し合う長方形太陽電池の長辺が、上記電気伝導性粘着接合剤の一部が間に配されてこけら葺き状に重なり合った状態で上記複数の長方形太陽電池を並べて配置する工程と、
上記電気伝導性粘着接合剤を硬化させ、それにより、隣接し合い重なり合う長方形太陽電池を互いに接合し、それらを直列に電気接続する工程と
を備える、方法。
18F.上記太陽電池ウェハは、正方形または擬似正方形シリコン太陽電池ウェハである、項1Fから17Fのいずれか一項に記載の方法。
1G.1または複数の正方形太陽電池のうち各正方形太陽電池上に裏面金属被覆パターンを形成する工程と、
単一の孔版印刷工程で、単一のステンシルを用いて、上記1または複数の正方形太陽電池のうち各正方形太陽電池上に完全な前面金属被覆パターンを孔版印刷する工程と、
2またはそれより多くの長方形太陽電池となるよう各正方形太陽電池を分離させて、完全な前面金属被覆パターンと裏面金属被覆パターンとをそれぞれが含む複数の長方形太陽電池を、上記1または複数の正方形太陽電池から形成する工程と、
隣接し合う長方形太陽電池の長辺がこけら葺き状に重なり合った状態で上記複数の長方形太陽電池を並べて配置する工程と、
隣接し合い重なり合う長方形太陽電池の各ペアに含まれる上記長方形太陽電池を間に配された電気伝導性接合剤で互いに伝導接合する工程であって、上記ペアに含まれる上記長方形太陽電池のうち一方の長方形太陽電池の上記前面金属被覆パターンを、上記ペアに含まれる上記長方形太陽電池のうち他方の長方形太陽電池の上記裏面金属被覆パターンに電気接続し、それにより、上記複数の長方形太陽電池を直列に電気接続する、工程と
を備える、太陽電池ストリングを作る方法。
2G.上記1または複数の正方形太陽電池上の上記前面金属被覆パターンの1または複数の特徴を画定する、上記ステンシルの全ての部分が、孔版印刷の間、上記ステンシルの面内に横たわるよう上記ステンシルの他の部分への物理的接続により留められる、項1Gに記載の方法。
3G.各長方形太陽電池上の上記前面金属被覆パターンは、上記長方形太陽電池の長辺と垂直な方向に方向付けられた複数のフィンガーを含み、上記前面金属被覆パターン内の上記複数のフィンガーはどれも、上記前面金属被覆パターンにより互いに物理的に接続しない、項1Gに記載の方法。
4G.上記複数のフィンガーは幅が約10ミクロンから約90ミクロンである、項3Gに記載の方法。
5G.上記複数のフィンガーは幅が約10ミクロンから約50ミクロンである、項3Gに記載の方法。
6G.上記複数のフィンガーは幅が約10ミクロンから約30ミクロンである、項3Gに記載の方法。
7G.上記複数のフィンガーは、上記長方形太陽電池の前面と垂直な方向の高さが、約10ミクロンから約50ミクロンである、項3Gに記載の方法。
8G.上記複数のフィンガーは、上記長方形太陽電池の前面と垂直な方向の高さが、約30ミクロン、またはそれより大きい、項3Gに記載の方法。
9G.各長方形太陽電池上の上記前面金属被覆パターンは、上記長方形太陽電池の長辺の縁と平行、かつ隣接して配置された、対応するフィンガーの端にそれぞれが位置する複数のコンタクトパッドを含む、項3Gに記載の方法。
10G.各長方形太陽電池上の上記裏面金属被覆パターンは、上記長方形太陽電池の長辺の縁と平行、かつ隣接する行に配置された複数のコンタクトパッドを含み、
隣接し合い重なり合う長方形太陽電池の各ペアは、上記長方形太陽電池のペアに含まれる一方の長方形太陽電池上の裏面の上記複数のコンタクトパッドのうちそれぞれが、上記ペアに含まれる上記長方形太陽電池のうち他方の長方形太陽電池上の上記前面金属被覆パターン内の対応するフィンガーと位置合わせされ、電気接続した状態で配置される、項3Gに記載の方法。
11G.各長方形太陽電池上の上記裏面金属被覆パターンは、上記長方形太陽電池の長辺の縁と平行、かつ隣接して延びるバスバーを含み、
隣接し合い重なり合う長方形太陽電池の各ペアは、上記長方形太陽電池のペアに含まれる一方の長方形太陽電池上の上記バスバーが、上記ペアに含まれる上記長方形太陽電池のうち他方の長方形太陽電池上の上記前面金属被覆パターン内の上記複数のフィンガーに重なり電気接続した状態で配置される、項3Gに記載の方法。
12G.各長方形太陽電池上の上記前面金属被覆パターンは、上記長方形太陽電池の長辺の縁と平行、かつ隣接して配置され、対応するフィンガーの端にそれぞれが位置する複数のコンタクトパッドを含み、
各長方形太陽電池上の上記裏面金属被覆パターンは、上記長方形太陽電池の長辺の縁と平行、かつ隣接する行に配置された複数のコンタクトパッドを含み、
隣接し合い重なり合う長方形太陽電池の各ペアは、上記長方形太陽電池のペアに含まれる一方の長方形太陽電池上の裏面の上記複数のコンタクトパッドのうちそれぞれが、上記ペアに含まれる上記長方形太陽電池のうち他方の長方形太陽電池上の上記前面金属被覆パターン内の対応するコンタクトパッドに重なり電気接続した状態で配置される、項3Gに記載の方法。
13G.隣接し合い重なり合う長方形太陽電池の各ペアに含まれる上記長方形太陽電池は、重なり合う前面の上記複数のコンタクトパッドと裏面の上記複数のコンタクトパッドとの間に配された電気伝導性接合剤の不連続な部分により互いに伝導接合する、項12Gに記載の方法。
14G.隣接し合い重なり合う長方形太陽電池の各ペアに含まれる上記長方形太陽電池は、上記長方形太陽電池のペアに含まれる一方の長方形太陽電池の上記前面金属被覆パターン、および上記長方形太陽電池のペアに含まれる他方の長方形太陽電池の上記裏面金属被覆パターン内の上記複数のフィンガーの重なり合う端の間に配された電気伝導性接合剤の不連続な部分により互いに伝導接合する、項3Gに記載の方法。
15G.隣接し合い重なり合う長方形太陽電池の各ペアに含まれる上記長方形太陽電池は、上記長方形太陽電池のペアに含まれる一方の長方形太陽電池の上記前面金属被覆パターン、および上記長方形太陽電池のペアに含まれる他方の長方形太陽電池の上記裏面金属被覆パターン内の上記複数のフィンガーの重なり合う端の間に配された破線または実線状の電気伝導性接合剤により互いに伝導接合し、
上記破線または実線状の電気伝導性接合剤は、上記複数のフィンガーのうち1または複数を電気相互接続する、項3Gに記載の方法。
16G.各長方形太陽電池上の上記前面金属被覆パターンは、上記長方形太陽電池の長辺の縁と平行、かつ隣接して配置された、対応するフィンガーの端にそれぞれが位置する複数のコンタクトパッドを含み、
隣接し合い重なり合う長方形太陽電池の各ペアに含まれる上記長方形太陽電池は、上記長方形太陽電池のペアに含まれる一方の長方形太陽電池の上記前面金属被覆パターンの上記複数のコンタクトパッドと、上記長方形太陽電池のペアに含まれる他方の長方形太陽電池の上記裏面金属被覆パターンとの間に配された電気伝導性接合剤の不連続な部分により互いに伝導接合する、項3Gに記載の方法。
17G.各長方形太陽電池上の上記前面金属被覆パターンは、上記長方形太陽電池の長辺の縁と平行、かつ隣接して配置された、対応するフィンガーの端にそれぞれが位置する複数のコンタクトパッドを含み、
隣接し合い重なり合う長方形太陽電池の各ペアに含まれる上記長方形太陽電池は、上記長方形太陽電池のペアに含まれる一方の長方形太陽電池の上記前面金属被覆パターンの上記複数のコンタクトパッドと、上記長方形太陽電池のペアに含まれる他方の長方形太陽電池の上記裏面金属被覆パターンとの間に配された破線または実線状の電気伝導性接合剤により互いに伝導接合し、
上記破線または実線状の電気伝導性接合剤は、上記複数のフィンガーのうち1または複数を電気相互接続する、項3Gに記載の方法。
18G.上記前面金属被覆パターンは銀製のペーストから形成される、項1Gから17Gのいずれか一項に記載の方法。
1H.複数の太陽電池を製造する方法であって、
結晶シリコンウェハの前面に1または複数の前面アモルファスシリコン層を堆積させる工程であって、上記前面アモルファスシリコン層は、上記複数の太陽電池の動作において光により照射される、工程と、
上記結晶シリコンウェハの上記前面の反対側にある上記結晶シリコンウェハの裏面に1または複数の裏面アモルファスシリコン層を堆積させる工程と、
上記1または複数の前面アモルファスシリコン層をパターニングして、上記1または複数の前面アモルファスシリコン層に1または複数の前面トレンチを形成する工程と、
上記1または複数の前面アモルファスシリコン層上および上記1または複数の前面トレンチ内に前面パッシベート層を堆積させる工程と、
上記1または複数の裏面アモルファスシリコン層をパターニングして、上記1または複数の裏面アモルファスシリコン層内に1または複数の裏面トレンチを形成する工程であって、上記1または複数の裏面トレンチのうちそれぞれが、上記1または複数の前面トレンチのうち対応する1つと並んで形成される、工程と、
上記1または複数の裏面アモルファスシリコン層上および上記1または複数の裏面トレンチ内に裏面パッシベート層を堆積させる工程と、
1または複数の劈開面において上記結晶シリコンウェハを劈開する工程であって、各劈開面は、対応し合う前面トレンチおよび裏面トレンチの異なるペア上で中心、または実質的に中心に位置する、工程と
を備える、方法。
2H.上記1または複数の前面トレンチを形成して、上記前面アモルファスシリコン層を貫通させて、上記結晶シリコンウェハの上記前面に到達させる工程を備える、項1Hに記載の方法。
3H.上記1または複数の裏面トレンチを形成して、上記1または複数の裏面アモルファスシリコン層を貫通させて、上記結晶シリコンウェハの上記裏面に到達させる工程を備える、項1Hに記載の方法。
4H.上記前面パッシベート層および上記裏面パッシベート層を透明な伝導性酸化物から形成する工程を備える、項1Hに記載の方法。
5H.レーザーを用いて、上記結晶シリコンウェハに熱応力を引き起こして、上記1または複数の劈開面において上記結晶シリコンウェハを劈開する、項1Hに記載の方法。
6H.上記1または複数の劈開面において上記結晶シリコンウェハを機械的に劈開する工程を備える、項1Hに記載の方法。
7H.上記1または複数の前面アモルファス結晶シリコン層は、上記結晶シリコンウェハとn−p接合を形成する、項1Hに記載の方法。
8H.上記結晶シリコンウェハを、その裏面側から劈開する工程を備える、項7Hに記載の方法。
9H.上記1または複数の裏面アモルファス結晶シリコン層は、上記結晶シリコンウェハとn−p接合を形成する、項1Hに記載の方法。
10H.上記結晶シリコンウェハを、その前面側から劈開する工程を備える、項9Hに記載の方法。
11H.複数の太陽電池を製造する方法であって、
結晶シリコンウェハの第1表面に1または複数のトレンチを形成する工程と、
上記結晶シリコンウェハの上記第1表面に1または複数のアモルファスシリコン層を堆積させる工程と、
上記結晶シリコンウェハの上記第1表面の上記1または複数のトレンチ内および上記1または複数のアモルファスシリコン層上にパッシベート層を堆積させる工程と、
上記結晶シリコンウェハの上記第1表面の反対側にある上記結晶シリコンウェハの第2表面に1または複数のアモルファスシリコン層を堆積させる工程と、
1または複数の劈開面において上記結晶シリコンウェハを劈開する工程であって、各劈開面は、上記1または複数のトレンチのうち異なる1つのトレンチ上で中心、または実質的に中心に位置する、工程と
を備える、方法。
12H.上記パッシベート層を透明な伝導性酸化物から形成する工程を備える、項11Hに記載の方法。
13H.レーザーを用いて、上記結晶シリコンウェハに熱応力を引き起こして、上記1または複数の劈開面において上記結晶シリコンウェハを劈開する工程を備える、項11Hに記載の方法。
14H.上記1または複数の劈開面において上記結晶シリコンウェハを機械的に劈開する工程を備える、項11Hに記載の方法。
15H.上記第1表面の上記1または複数のアモルファス結晶シリコン層は、上記結晶シリコンウェハとn−p接合を形成する、項11Hに記載の方法。
16H.上記第2表面の上記1または複数のアモルファス結晶シリコン層は、上記結晶シリコンウェハとn−p接合を形成する、項11Hに記載の方法。
17H.上記結晶シリコンウェハの上記第1表面は、上記複数の太陽電池の動作の間に光により照射されることになる、項11Hに記載の方法。
18H.上記結晶シリコンウェハの上記第2表面は、上記複数の太陽電池の動作の間に光により照射されることになる、項11Hに記載の方法。
19H.隣接し合う太陽電池の端部が、互いにこけら葺き状に重なり合い伝導接合して、上記隣接し合う太陽電池を直列に電気接続した状態で並んで配置された複数の太陽電池をそれぞれが有する複数のスーパーセルを備え、
各太陽電池は、
結晶シリコン基板と、
上記結晶シリコン基板の第1表面に配されてn−p接合を形成する1または複数の第1表面アモルファスシリコン層と、
上記結晶シリコン基板の上記第1表面の反対側にある上記結晶シリコン基板の第2表面に配された1または複数の第2表面アモルファスシリコン層と、
上記1または複数の第1表面アモルファスシリコン層の縁における、上記1または複数の第2表面アモルファスシリコン層の縁における、または、上記1または複数の第1表面アモルファスシリコン層の縁および上記1または複数の第2表面アモルファスシリコン層の縁におけるキャリア再結合を防ぐ複数のパッシベート層と
を含む、ソーラーパネル。
20H.上記複数のパッシベート層は、透明な伝導性酸化物を含む、項19Hに記載のソーラーパネル。
21H.上記複数のスーパーセルは、単一の行に、または2またはそれより多くの平行行に配置されて、上記ソーラーパネルの動作の間に太陽放射により照射されることになる、上記ソーラーパネルの前面を形成する、項19Hに記載のソーラーパネル。
Z1.ソーラーモジュールであって、
2またはそれより多くの平行行に複数の直列接続するスーパーセルとして配置された、N個の(約250より大きい、またはそれと等しい数の)長方形または略長方形シリコン太陽電池であって、各スーパーセルが、複数のシリコン太陽電池を有し、上記複数のシリコン太陽電池は、隣接し合うシリコン太陽電池の長辺が重なり合い電気および熱伝導性接着剤により互いに直接伝導接合して、上記スーパーセル内の上記複数のシリコン太陽電池を直列に電気接続した状態で並んで配置されている、長方形または略長方形シリコン太陽電池と、
1または複数のバイパスダイオードと
を備え、
上記ソーラーモジュール内の隣接し合う平行行の各ペアは、上記ペアに含まれる一方の行内で中央に位置する太陽電池上の裏面電気接触部に伝導接合し、上記ペアに含まれる他方の行内の隣接する太陽電池上の裏面電気接触部に伝導接合するバイパスダイオードにより電気接続する、
ソーラーモジュール。
Z2.隣接し合う平行行の各ペアは、上記ペアに含まれる一方の行内の太陽電池上の裏面電気接触部に伝導接合し、上記ペアに含まれる他方の行内の隣接する太陽電池上の裏面電気接触部に伝導接合する少なくとも1つの他のバイパスダイオードにより電気接続する、項Z1に記載のソーラーモジュール。
Z3.隣接し合う平行行の各ペアは、上記ペアに含まれる一方の行内の太陽電池上の裏面電気接触部に伝導接合し、上記ペアに含まれる他方の行内の隣接する太陽電池上の裏面電気接触部に伝導接合する少なくとも1つの他のバイパスダイオードにより電気接続する、項Z2に記載のソーラーモジュール。
Z4.上記電気および熱伝導性接着剤は、上記複数の太陽電池と垂直な方向への厚さが約50ミクロンより薄く、またはそれと等しく、上記複数の太陽電池と垂直な方向への熱伝導性が約1.5W/(メートル−K)より高い、またはそれと等しい、隣接し合う太陽電池間の複数の接合を形成する、項Z1に記載のソーラーモジュール。
Z5.上記複数のスーパーセルは、ガラス製の前面シートと後面シートとの間の熱可塑性オレフィン層内に封入されている、項Z1に記載のソーラーモジュール。
Z6.重なり合う太陽電池間の伝導性の上記複数の接合は、上記ソーラーモジュールにダメージを与えることなく約−40℃から約100℃の温度範囲で、上記複数のスーパーセルと上記ガラス製の前面シートとの間の、上記2またはそれより多くの平行行と平行な方向への熱膨張の不一致に適応する機械的コンプライアンスを、上記複数のスーパーセルに提供する、項Z1に記載のソーラーモジュール。
Z7.Nは、約300より大きい、若しくはそれと等しい、約350より大きい、若しくはそれと等しい、約400より大きい、若しくはそれと等しい、約450より大きい、若しくはそれと等しい、約500より大きい、若しくはそれと等しい、約550より大きい、若しくはそれと等しい、約600より大きい、若しくはそれと等しい、約650より大きい、若しくはそれと等しい、または、約700より大きい、若しくはそれと等しい、項Z1からZ6のいずれか一項に記載のソーラーモジュール。
Z8.上記複数のスーパーセルは、電気接続して、約120ボルトより高い、若しくはそれと等しい、約180ボルトより高い、若しくはそれと等しい、約240ボルトより高い、若しくはそれと等しい、約300ボルトより高い、若しくはそれと等しい、約360ボルトより高い、若しくはそれと等しい、約420ボルトより高い、若しくはそれと等しい、約480ボルトより高い、若しくはそれと等しい、約540ボルトより高い、若しくはそれと等しい、または、約600ボルトより高い、若しくはそれと等しい高い直流電圧を提供する、項Z1からZ7のいずれか一項に記載のソーラーモジュール。
Z9.項Z1に記載のソーラーモジュールと、
上記ソーラーモジュールに電気接続し、上記ソーラーモジュールからのDC出力を変換して、AC出力を提供するよう構成されたインバータと
を備える、太陽エネルギーシステム。
Z10.上記インバータは、DC−DCブースト構成要素を有さない、項Z9に記載の太陽エネルギーシステム。
Z11.上記インバータは、太陽電池に逆バイアスをかけることを避けるよう設定された最小値より高い直流電圧で上記ソーラーモジュールを動作させるよう構成されている、項Z9に記載の太陽エネルギーシステム。
Z12.上記最小電圧値は温度依存である、項Z11に記載の太陽エネルギーシステム。
Z13.上記インバータは、逆バイアス状態を認識し、上記逆バイアス状態を避ける電圧で上記ソーラーモジュールを動作させるよう構成されている、項Z9に記載の太陽エネルギーシステム。
Z14.上記インバータは、上記ソーラーモジュールの電圧−電流出力曲線の極大領域において上記ソーラーモジュールを動作させて、上記逆バイアス状態を避けるよう構成されている、項Z13に記載の太陽エネルギーシステム。
Z15.上記インバータは、上記ソーラーモジュールと統合されたマイクロインバータである、項Z9からZ14のいずれか一項に記載の太陽エネルギーシステム。
本開示は、例示であって、限定ではない。本開示を考慮すれば当業者には更なる修正が明らかになり、それら更なる修正は、添付の特許請求の範囲に含まれることが意図されている。
本開示は、例示であって、限定ではない。本開示を考慮すれば当業者には更なる修正が明らかになり、それら更なる修正は、添付の特許請求の範囲に含まれることが意図されている。
[項目1]
2またはそれより多くの平行行に配置された複数のスーパーセルであって、各スーパーセルが、隣接し合うシリコン太陽電池の長辺が重なり合い互いに直接伝導接合して、上記隣接し合うシリコン太陽電池を直列に電気接続した状態で並んで配置された複数の長方形または略長方形シリコン太陽電池を有する、複数のスーパーセルと、
第1太陽電池の後面に位置する、通常動作で実質的な電流を伝導しない隠れタップコンタクトパッドと
を備え、
上記第1太陽電池は、スーパーセルの上記2またはそれより多くの平行行のうち第1行内の上記複数のスーパーセルのうち第1スーパーセルに沿った中間位置に位置し、上記隠れタップコンタクトパッドは、上記スーパーセルの2またはそれより多くの平行行のうち第2行内の少なくとも第2太陽電池と並列に電気接続する、ソーラーモジュール。
[項目2]
上記隠れタップコンタクトパッドに接合し、上記隠れタップコンタクトパッドを上記第2太陽電池に電気相互接続する電気相互接続部を備え、
上記電気相互接続部は、上記第1太陽電池の長さに亘って実質的に広がらず、
上記第1太陽電池上の後面金属被覆パターンが、約5オーム/スクエアより低い、またはそれと等しいシート抵抗を有する、上記隠れタップコンタクトパッドへの伝導路を提供する、項目1に記載のソーラーモジュール。
[項目3]
上記複数のスーパーセルは、3またはそれより多くの平行行と垂直な上記ソーラーモジュールの幅に亘って広がる上記3またはそれより多くの平行行に配置され、
上記隠れタップコンタクトパッドは、スーパーセルの上記3またはそれより多くの平行行のうち各行内の少なくとも1つの太陽電池上の隠れコンタクトパッドに電気接続して、スーパーセルの上記3またはそれより多くの平行行を並列に電気接続し、
複数の上記隠れタップコンタクトパッドのうち少なくとも1つへの、または複数の隠れタップコンタクトパッドの間の相互接続部への少なくとも1つのバス接続が、バイパスダイオードまたは他の電子デバイスに接続する、項目1に記載のソーラーモジュール。
[項目4]
上記隠れタップコンタクトパッドに伝導接合して、それを上記第2太陽電池に電気接続するフレキシブル電気相互接続部を備え、
上記隠れタップコンタクトパッドに伝導接合する、上記フレキシブル電気相互接続部の部分は、銅から形成されたリボン状であり、それの接合先の上記太陽電池の表面と垂直な方向への厚さが約50ミクロンより薄く、またはそれと等しく、
上記隠れタップコンタクトパッドと上記フレキシブル電気相互接続部との間の上記伝導接合は、上記ソーラーモジュールにダメージを与えることなく約−40℃から約180℃の温度範囲で、上記フレキシブル電気相互接続部に、上記第1太陽電池と上記フレキシブル相互接続部との間の熱膨張の不一致を耐えさせ、熱膨張から結果として生じる上記第1太陽電池と上記第2太陽電池との間の相対運動に適応させる、項目1に記載のソーラーモジュール。
[項目5]
上記ソーラーモジュールの動作において、上記第1隠れコンタクトパッドは、上記複数の太陽電池のうち任意の1つで生成される電流より大きい電流を伝導し得る、項目1に記載のソーラーモジュール。
[項目6]
上記第1太陽電池の、上記第1隠れタップコンタクトパッド上に横たわる前面は、コンタクトパッドまたは任意の他の相互接続特徴により占有されていない、項目1に記載のソーラーモジュール。
[項目7]
上記第1太陽電池の、上記第1スーパーセル内の隣接する太陽電池の一部が重なっていない前面のどのエリアも、コンタクトパッドまたは任意の他の相互接続特徴により占有されていない、項目1に記載のソーラーモジュール。
[項目8]
各スーパーセル内で、上記複数の電池の殆どは、隠れタップコンタクトパッドを有さない、項目1に記載のソーラーモジュール。
[項目9]
隠れタップコンタクトパッドを有する上記複数の電池は、隠れタップコンタクトパッドを有さない上記複数の電池より大きな集光面積を有する、項目8に記載のソーラーモジュール。
[項目10]
重なり合う領域における電気接続先の他のソーラーモジュールと重なり合うこけら葺き状に配置される、項目1に記載のソーラーモジュール。
[項目11]
ソーラーモジュールであって、
ガラス製の前面シートと、
後面シートと、
上記ガラス製の前面シートと上記後面シートとの間の2またはそれより多くの平行行に配置され、複数の長方形または略長方形シリコン太陽電池をそれぞれが有する複数のスーパーセルであって、上記複数の長方形または略長方形シリコン太陽電池は、隣接し合うシリコン太陽電池の長辺が重なり合いフレキシブルに互いに直接伝導接合して、上記隣接し合うシリコン太陽電池を直列に電気接続した状態で並んで配置される、複数のスーパーセルと、
上記複数のスーパーセルのうち第1スーパーセルに強固に伝導接合する第1フレキシブル電気相互接続部と
を備え、
重なり合う太陽電池間の複数のフレキシブルな上記伝導接合は、上記ソーラーモジュールにダメージを与えることなく約−40℃から約100℃の温度範囲で、上記複数のスーパーセルと上記ガラス製の前面シートとの間の、上記2またはそれより多くの平行行と平行な方向への熱膨張の不一致に適応する機械的コンプライアンスを上記複数のスーパーセルに提供し、
上記第1スーパーセルと上記第1フレキシブル電気相互接続部との間の強固な上記伝導接合は、上記ソーラーモジュールにダメージを与えることなく約−40℃から約180℃の温度範囲で、上記第1フレキシブル電気相互接続部に、上記第1スーパーセルと上記第1フレキシブル相互接続部との間の、上記2またはそれより多くの平行行と垂直な方向への熱膨張の不一致に適応させる、ソーラーモジュール。
[項目12]
スーパーセル内の重なり合い隣接し合う太陽電池間の複数の上記伝導接合は、上記スーパーセルと上記フレキシブル電気相互接続部との間の複数の上記伝導接合とは異なる伝導性接着剤を利用する、項目11に記載のソーラーモジュール。
[項目13]
両方の伝導性接着剤が同じ処理工程で硬化させられ得る、項目12に記載のソーラーモジュール。
[項目14]
スーパーセル内の少なくとも1つの太陽電池の一辺の上記伝導接合は、その他辺の上記伝導接合とは異なる伝導性接着剤を利用する、項目11に記載のソーラーモジュール。
[項目15]
両方の伝導性接着剤が同じ処理工程で硬化させられ得る、項目14に記載のソーラーモジュール。
[項目16]
重なり合い隣接し合う太陽電池間の複数の上記伝導接合は、各電池と上記ガラス製の前面シートとの間の約15ミクロンより大きい、またはそれと等しい差異のある運動に適応する、項目11に記載のソーラーモジュール。
[項目17]
重なり合い隣接し合う太陽電池間の複数の上記伝導接合は、上記複数の太陽電池と垂直な方向への厚さが約50ミクロンより薄く、またはそれと等しく、上記複数の太陽電池と垂直な方向への熱伝導性が約1.5W/(メートル−K)より高い、またはそれと等しい、項目11に記載のソーラーモジュール。
[項目18]
上記第1フレキシブル電気相互接続部は、上記第1フレキシブル相互接続部の、約40ミクロンより大きい、またはそれと等しい熱膨張または収縮に耐える、項目11に記載のソーラーモジュール。
[項目19]
上記スーパーセルに伝導接合する、上記第1フレキシブル電気相互接続部の部分は、銅から形成されたリボン状であり、それの接合先の上記太陽電池の表面と垂直な方向への厚さが約50ミクロンより小さい、またはそれと等しい、項目11に記載のソーラーモジュール。
[項目20]
上記スーパーセルに伝導接合する、上記第1フレキシブル電気相互接続部の部分は、銅から形成されたリボン状であり、それの接合先の上記太陽電池の表面と垂直な方向への厚さが約30ミクロンより小さい、またはそれと等しい、項目19に記載のソーラーモジュール。
[項目21]
上記第1フレキシブル電気相互接続部は、上記太陽電池に伝導接合する、上記第1フレキシブル電気相互接続部の部分より高い伝導性を提供する、上記太陽電池に接合しない一体の伝導性銅部分を有する、項目19に記載のソーラーモジュール。
[項目22]
上記第1フレキシブル電気相互接続部は、上記太陽電池の表面の面における、上記相互接続部を通る電流の流れと垂直な方向への幅が約10mmより大きい、またはそれと等しい、項目19に記載のソーラーモジュール。
[項目23]
上記第1フレキシブル電気相互接続部は、上記第1電気相互接続部より高い伝導性を提供する、上記太陽電池に近接した導体に伝導接合する、項目19に記載のソーラーモジュール。
[項目24]
重なり合う領域におけるそれの電気接続先の他のソーラーモジュールと重なり合うこけら葺き状に配置される、項目11に記載のソーラーモジュール。
[項目25]
ガラス製の前面シートと、
後面シートと、
上記ガラス製の前面シートと上記後面シートとの間の2またはそれより多くの平行行に配置され、複数の長方形または略長方形シリコン太陽電池をそれぞれが有する複数のスーパーセルであって、上記複数の長方形または略長方形シリコン太陽電池は、隣接し合うシリコン太陽電池の長辺が重なり合いフレキシブルに互いに直接伝導接合して、上記隣接し合うシリコン太陽電池を直列に電気接続した状態で並んで配置される、複数のスーパーセルと、
上記複数のスーパーセルのうち第1スーパーセルに強固に伝導接合する第1フレキシブル電気相互接続部と
を備え、
重なり合う太陽電池間の複数のフレキシブルな上記伝導接合は、第1伝導性接着剤から形成され、約800メガパスカルより低い、またはそれと等しい剛性率を有し、
上記第1スーパーセルと上記第1フレキシブル電気相互接続部との間の強固な上記伝導接合は、第2伝導性接着剤から形成され、約2000メガパスカルより高い、またはそれと等しい剛性率を有する、ソーラーモジュール。
[項目26]
上記第1伝導性接着剤と上記第2伝導性接着剤とは異なり、両方の伝導性接着剤が、同じ処理工程で硬化させられ得る、項目25に記載のソーラーモジュール。
[項目27]
重なり合い隣接し合う太陽電池間の複数の上記伝導接合は、上記複数の太陽電池と垂直な方向への厚さが約50ミクロンより薄く、またはそれと等しく、上記複数の太陽電池と垂直な方向への熱伝導性が約1.5W/(メートル−K)より高い、またはそれと等しい、項目25に記載のソーラーモジュール。
[項目28]
重なり合う領域における電気接続先の他のソーラーモジュールと重なり合うこけら葺き状に配置される、項目25に記載のソーラーモジュール。
[項目29]
シリコンウェハの第1外縁と平行、かつ隣接して配置された第1のバスバーまたはコンタクトパッド行と、上記シリコンウェハの上記第1縁と反対側にあり、かつ平行な、上記シリコンウェハの第2外縁と平行、かつ隣接して配置された第2のバスバーまたはコンタクトパッド行とを含む前面金属被覆パターンを含む上記シリコンウェハを得る、または提供する工程と、
上記シリコンウェハの上記第1外縁と上記第2外縁と平行な1または複数のスクライブラインに沿って上記シリコンウェハを分離させて、複数の長方形太陽電池を形成する工程であって、上記第1のバスバーまたはコンタクトパッド行は、上記複数の長方形太陽電池のうち第1長方形太陽電池の長い外縁と平行、かつ隣接して配置され、上記第2のバスバーまたはコンタクトパッド行は、上記複数の長方形太陽電池のうち第2長方形太陽電池の長い外縁と平行、かつ隣接して配置される、工程と、
上記複数の長方形太陽電池を、隣接し合う太陽電池の長辺が重なり合い互いに伝導接合して、上記隣接し合う太陽電池を直列に電気接続した状態で並べて配置して、スーパーセルを形成する工程と
を備え、
上記複数の長方形太陽電池のうち上記第1長方形太陽電池上の上記第1のバスバーまたはコンタクトパッド行には、上記スーパーセル内の隣接する長方形太陽電池の底面が重なり伝導接合する、方法。
[項目30]
上記複数の長方形太陽電池のうち上記第2長方形太陽電池上の上記第2のバスバーまたはコンタクトパッド行には、上記スーパーセル内の隣接する長方形太陽電池の底面が重なり伝導接合する、項目29に記載の方法。
[項目31]
上記シリコンウェハは、正方形または擬似正方形シリコンウェハである、項目29に記載の方法。
[項目32]
上記シリコンウェハは、長さが約125mmである、または長さが約156mmである辺を有する、項目31に記載の方法。
[項目33]
各長方形太陽電池の長さ対幅の比は、約2:1と約20:1との間である、項目31に記載の方法。
[項目34]
上記シリコンウェハは結晶シリコンウェハである、項目29に記載の方法。
[項目35]
上記第1のバスバーまたはコンタクトパッド行と上記第2のバスバーまたはコンタクトパッド行とは、上記シリコンウェハの複数の中央領域より低効率で光を電気に変換する、上記シリコンウェハの複数の縁領域に位置する、項目29に記載の方法。
[項目36]
上記前面金属被覆パターンは、上記第1のバスバーまたはコンタクトパッド行に電気接続する、上記シリコンウェハの上記第1外縁から内側に延在する第1の複数の平行なフィンガーと、上記第2のバスバーまたはコンタクトパッド行に電気接続する、上記シリコンウェハの上記第2外縁から内側に延在する第2の複数の平行なフィンガーとを含む、項目29に記載の方法。
[項目37]
上記前面金属被覆パターンは、少なくとも、上記第1のバスバーまたはコンタクトパッド行と上記第2のバスバーまたはコンタクトパッド行と平行に方向付けられ、上記第1のバスバーまたはコンタクトパッド行と上記第2のバスバーまたはコンタクトパッド行との間に位置する第3のバスバーまたはコンタクトパッド行と、上記第3のバスバーまたはコンタクトパッド行と垂直な方向に方向付けられた、上記第3のバスバーまたはコンタクトパッド行に電気接続する第3の複数の平行なフィンガーとを含み、上記第3のバスバーまたはコンタクトパッド行は、上記シリコンウェハが分離されて、上記複数の長方形太陽電池を形成した後、上記複数の長方形太陽電池のうち第3長方形太陽電池の長い外縁と平行、かつ隣接して配置される、項目29に記載の方法。
[項目38]
上記第1のバスバーまたはコンタクトパッド行に伝導性接着剤を適用して、上記第1長方形太陽電池を隣接する太陽電池に伝導接合する工程を備える、項目29に記載の方法。
[項目39]
上記金属被覆パターンは、上記伝導性接着剤の広がりを封じ込めるよう構成されたバリアを含む、項目38に記載の方法。
[項目40]
スクリーン印刷により上記伝導性接着剤を適用する工程を備える、項目38に記載の方法。
[項目41]
インクジェット印刷により上記伝導性接着剤を適用する工程を備える、項目38に記載の方法。
[項目42]
上記伝導性接着剤は、上記シリコンウェハにおける上記1または複数のスクライブラインの形成の前に適用される、項目38に記載の方法。
[項目43]
上記1または複数のスクライブラインに沿って上記シリコンウェハを分離させる工程は、上記シリコンウェハの底面と湾曲支持面との間で真空を引いて、上記湾曲支持面に寄せて上記シリコンウェハを曲げ、それにより、上記1または複数のスクライブラインに沿って上記シリコンウェハを劈開する工程を有する、項目29に記載の方法。
[項目44]
上記シリコンウェハは、面取りされた複数の角を含む擬似正方形シリコンウェハであって、上記シリコンウェハを分離させて、上記複数の長方形太陽電池を形成する工程の後、上記長方形太陽電池のうち1または複数は、上記面取りされた複数の角のうち1または複数を含み、
スクライブライン間の間隔は、面取りされた複数の角を含む上記長方形太陽電池の長軸と垂直な幅を、複数の面取りされた角を有さない上記長方形太陽電池の長軸と垂直な幅より大きくすることにより上記面取りされた角を補うよう選択され、これにより、上記スーパーセル内の上記複数の長方形太陽電池のうちそれぞれが、上記スーパーセルの動作において光に露出される面積が実質的に同じである前面を有する、項目29に記載の方法。
[項目45]
透明な前面シートと後面シートとの間の層状構造に上記スーパーセルを配置し、上記層状構造を積層させる工程を備える、項目29に記載の方法。
[項目46]
上記層状構造を積層させる工程は、上記スーパーセル内の上記隣接し合う長方形太陽電池間に配された伝導性接着剤の硬化を完了させて、上記隣接し合う長方形太陽電池を互いに伝導接合する、項目45に記載の方法。
[項目47]
上記スーパーセルは、スーパーセルの2またはそれより多くの平行行のうち1行内の上記層状構造に配置され、上記後面シートは、上記スーパーセルの2またはそれより多くの平行行間の間隙の位置および幅に対応する位置および幅を有する複数の平行な濃色のストライプを含む白色のシートであり、これにより、上記後面シートの複数の白色の部分は、組み立てられたモジュールにおいて上記スーパーセルの2またはそれより多くの平行行間の間隙を通して視認出来ない、項目45に記載の方法。
[項目48]
上記前面シートおよび上記後面シートは、ガラス製のシートであり、上記スーパーセルは、上記ガラス製のシート間に挟まれた熱可塑性オレフィン層内に封入されている、項目45に記載の方法。
[項目49]
第2ソーラーモジュールの第2接続箱と嵌合配置されている接続箱を含む第1モジュールに上記スーパーセルを配置する工程を備える、項目29に記載の方法。
[項目50]
湾曲面に沿って太陽電池ウェハを進行させる工程と、
上記湾曲面と上記太陽電池ウェハの底面の間で真空を引いて、上記湾曲面に寄せて上記太陽電池ウェハを曲げ、それにより、事前に用意された1または複数のスクライブラインに沿って上記太陽電池ウェハを劈開して、複数の太陽電池を上記太陽電池ウェハから分離させる工程と
を備える、太陽電池を製造する方法。
[項目51]
上記湾曲面は、上記真空を上記太陽電池ウェハの上記底面に対して引く真空マニホールドの上面の湾曲部分である、項目50に記載の方法。
[項目52]
上記真空マニホールドにより上記太陽電池ウェハの上記底面に対して引かれる上記真空は、上記太陽電池ウェハの移動方向に沿って変化し、上記太陽電池ウェハが劈開される、上記真空マニホールドの領域において最も強い、項目50に記載の方法。
[項目53]
上記真空マニホールドの湾曲した上記上面に沿って、穿孔付ベルトにより上記太陽電池ウェハを搬送する工程であって、上記真空は、上記穿孔付ベルトの複数の穿孔を通じて上記太陽電池ウェハの上記底面に対して引かれる、工程を備える、項目51または52に記載の方法。
[項目54]
上記穿孔付ベルトの上記複数の穿孔は、上記太陽電池ウェハの移動方向に沿った上記太陽電池ウェハの前縁および後縁が、上記穿孔付ベルトの少なくとも1つの穿孔上に横たわるように配置される、項目53に記載の方法。
[項目55]
上記真空マニホールドの上記上面の平坦領域に沿って上記太陽電池ウェハを進行させて、第1曲率を有する、上記真空マニホールドの上記上面の遷移湾曲領域に到達させ、その後、上記太陽電池ウェハが劈開される、上記真空マニホールドの上記上面の劈開領域内に上記太陽電池ウェハを進行させる工程であって、上記真空マニホールドの上記劈開領域は、上記第1曲率より高い第2曲率を有する、工程を備える、項目50から54のいずれか一項に記載の方法。
[項目56]
上記遷移領域の上記曲率は、曲率が大きくなる連続幾何学関数により規定される、項目55に記載の方法。
[項目57]
上記劈開領域の上記曲率は、上記曲率が大きくなる連続幾何学関数により規定される、項目56に記載の方法。
[項目58]
上記第2曲率より高い第3曲率を有する上記真空マニホールドの劈開後領域内へ劈開済の上記複数の太陽電池を進行させる工程を備える、項目57に記載の方法。
[項目59]
上記遷移湾曲領域、上記劈開領域、および上記劈開後領域の上記曲率は、曲率が大きくなる単一の連続幾何学関数により規定される、項目57に記載の方法。
[項目60]
上記曲率が大きくなる連続幾何学関数は、クロソイドである、項目57、58または59に記載の方法。
[項目61]
各スクライブラインの一端で、その後、各スクライブラインの反対側の端で、より強い上記太陽電池ウェハと上記湾曲面との間の真空を引いて、各スクライブラインに沿った単一の劈開裂け目の核生成および伝播を促す、各スクライブラインに沿った非対称な応力分布を提供する工程を備える、項目50から60のいずれか一項に記載の方法。
[項目62]
上記湾曲面から、劈開済の上記複数の太陽電池を取り除く工程であって、上記劈開済の複数の太陽電池の複数の縁は、上記湾曲面からの、上記太陽電池の取り除きの前には触れない、工程を備える、項目50から61のいずれか一項に記載の方法。
[項目63]
上記1または複数のスクライブラインを上記太陽電池ウェハ上にレーザースクライブする工程と、
上記1または複数のスクライブラインに沿って上記太陽電池ウェハを劈開する前に上記太陽電池ウェハの頂面の一部へ電気伝導性粘着接合剤を適用する工程と
備え、
各劈開済の太陽電池は、その頂面の劈開縁に沿って配された上記電気伝導性粘着接合剤の一部を含む、項目50から62のいずれか一項に記載の方法。
[項目64]
上記1または複数のスクライブラインをレーザースクライブし、その後、上記電気伝導性粘着接合剤を適用する工程を備える、項目63に記載の方法。
[項目65]
上記電気伝導性粘着接合剤を適用し、その後、上記1または複数のスクライブラインをレーザースクライブする工程を備える、項目64に記載の方法。
[項目66]
項目63から65のいずれか一項に記載の方法により製造された複数の劈開済の太陽電池から太陽電池ストリングを作る方法であって、
上記複数の劈開済の太陽電池は複数の長方形太陽電池であり、
隣接し合う長方形太陽電池の長辺が、上記電気伝導性粘着接合剤の一部が間に配されてこけら葺き状に重なり合った状態で上記複数の長方形太陽電池を並べて配置する工程と、
上記電気伝導性粘着接合剤を硬化させ、それにより、隣接し合い重なり合う長方形太陽電池を互いに接合し、それらを直列に電気接続する工程と
を備える、方法。
[項目67]
上記太陽電池ウェハは、正方形または擬似正方形シリコン太陽電池ウェハである、項目50から66のいずれか一項に記載の方法。
[項目68]
1または複数の正方形太陽電池のうち各正方形太陽電池上に裏面金属被覆パターンを形成する工程と、
単一の孔版印刷工程で、単一のステンシルを用いて、上記1または複数の正方形太陽電池のうち各正方形太陽電池上に完全な前面金属被覆パターンを孔版印刷する工程と、
2またはそれより多くの長方形太陽電池となるよう各正方形太陽電池を分離させて、完全な前面金属被覆パターンと裏面金属被覆パターンとをそれぞれが含む複数の長方形太陽電池を、上記1または複数の正方形太陽電池から形成する工程と、
隣接し合う長方形太陽電池の長辺がこけら葺き状に重なり合った状態で上記複数の長方形太陽電池を並べて配置する工程と、
隣接し合い重なり合う長方形太陽電池の各ペアに含まれる上記長方形太陽電池を間に配された電気伝導性接合剤で互いに伝導接合する工程であって、上記ペアに含まれる上記長方形太陽電池のうち一方の長方形太陽電池の上記前面金属被覆パターンを、上記ペアに含まれる上記長方形太陽電池のうち他方の長方形太陽電池の上記裏面金属被覆パターンに電気接続し、それにより、上記複数の長方形太陽電池を直列に電気接続する、工程と
を備える、太陽電池ストリングを作る方法。
[項目69]
上記1または複数の正方形太陽電池上の上記前面金属被覆パターンの1または複数の特徴を画定する、上記ステンシルの全ての部分が、孔版印刷の間、上記ステンシルの面内に横たわるよう上記ステンシルの他の部分への物理的接続により留められる、項目68に記載の方法。
[項目70]
各長方形太陽電池上の上記前面金属被覆パターンは、上記長方形太陽電池の長辺と垂直な方向に方向付けられた複数のフィンガーを含み、上記前面金属被覆パターン内の上記複数のフィンガーはどれも、上記前面金属被覆パターンにより互いに物理的に接続しない、項目68に記載の方法。
[項目71]
上記複数のフィンガーは幅が約10ミクロンから約90ミクロンである、項目68に記載の方法。
[項目72]
上記複数のフィンガーは幅が約10ミクロンから約50ミクロンである、項目68に記載の方法。
[項目73]
上記複数のフィンガーは幅が約10ミクロンから約30ミクロンである、項目68に記載の方法。
[項目74]
上記複数のフィンガーは、上記長方形太陽電池の前面と垂直な方向の高さが、約10ミクロンから約50ミクロンである、項目68に記載の方法。
[項目75]
上記複数のフィンガーは、上記長方形太陽電池の前面と垂直な方向の高さが、約30ミクロン、またはそれより大きい、項目68に記載の方法。
[項目76]
各長方形太陽電池上の上記前面金属被覆パターンは、上記長方形太陽電池の長辺の縁と平行、かつ隣接して配置された、対応するフィンガーの端にそれぞれが位置する複数のコンタクトパッドを含む、項目68に記載の方法。
[項目77]
各長方形太陽電池上の上記裏面金属被覆パターンは、上記長方形太陽電池の長辺の縁と平行、かつ隣接する行に配置された複数のコンタクトパッドを含み、
隣接し合い重なり合う長方形太陽電池の各ペアは、上記長方形太陽電池のペアに含まれる一方の長方形太陽電池上の裏面の上記複数のコンタクトパッドのうちそれぞれが、上記ペアに含まれる上記長方形太陽電池のうち他方の長方形太陽電池上の上記前面金属被覆パターン内の対応するフィンガーと位置合わせされ電気接続した状態で配置される、項目68に記載の方法。
[項目78]
各長方形太陽電池上の上記裏面金属被覆パターンは、上記長方形太陽電池の長辺の縁と平行、かつ隣接して延びるバスバーを含み、
隣接し合い重なり合う長方形太陽電池の各ペアは、上記長方形太陽電池のペアに含まれる一方の長方形太陽電池上の上記バスバーが、上記ペアに含まれる上記長方形太陽電池のうち他方の長方形太陽電池上の上記前面金属被覆パターン内の上記複数のフィンガーに重なり電気接続した状態で配置される、項目68に記載の方法。
[項目79]
各長方形太陽電池上の上記前面金属被覆パターンは、上記長方形太陽電池の長辺の縁と平行、かつ隣接して配置され、対応するフィンガーの端にそれぞれが位置する複数のコンタクトパッドを含み、
各長方形太陽電池上の上記裏面金属被覆パターンは、上記長方形太陽電池の長辺の縁と平行、かつ隣接する行に配置された複数のコンタクトパッドを含み、
隣接し合い重なり合う長方形太陽電池の各ペアは、上記長方形太陽電池のペアに含まれる一方の長方形太陽電池上の裏面の上記複数のコンタクトパッドのうちそれぞれが、上記ペアに含まれる上記長方形太陽電池のうち他方の長方形太陽電池上の上記前面金属被覆パターン内の対応するコンタクトパッドに重なり電気接続した状態で配置される、項目68に記載の方法。
[項目80]
隣接し合い重なり合う長方形太陽電池の各ペアに含まれる上記長方形太陽電池は、重なり合う前面の上記複数のコンタクトパッドと裏面の上記複数のコンタクトパッドとの間に配された電気伝導性接合剤の不連続な部分により互いに伝導接合する、項目68に記載の方法。
[項目81]
隣接し合い重なり合う長方形太陽電池の各ペアに含まれる上記長方形太陽電池は、上記長方形太陽電池のペアに含まれる一方の長方形太陽電池の上記前面金属被覆パターン、および上記長方形太陽電池のペアに含まれる他方の長方形太陽電池の上記裏面金属被覆パターン内の上記複数のフィンガーの重なり合う端の間に配された電気伝導性接合剤の不連続な部分により互いに伝導接合する、項目68に記載の方法。
[項目82]
隣接し合い重なり合う長方形太陽電池の各ペアに含まれる上記長方形太陽電池は、上記長方形太陽電池のペアに含まれる一方の長方形太陽電池の上記前面金属被覆パターン、および上記長方形太陽電池のペアに含まれる他方の長方形太陽電池の上記裏面金属被覆パターン内の上記複数のフィンガーの重なり合う端の間に配された破線または実線状の電気伝導性接合剤により互いに伝導接合し、
上記破線または実線状の電気伝導性接合剤は、上記複数のフィンガーのうち1または複数を電気相互接続する、項目68に記載の方法。
[項目83]
各長方形太陽電池上の上記前面金属被覆パターンは、上記長方形太陽電池の長辺の縁と平行、かつ隣接して配置された、対応するフィンガーの端にそれぞれが位置する複数のコンタクトパッドを含み、
隣接し合い重なり合う長方形太陽電池の各ペアに含まれる上記長方形太陽電池は、上記長方形太陽電池のペアに含まれる一方の長方形太陽電池の上記前面金属被覆パターンの上記複数のコンタクトパッドと、上記長方形太陽電池のペアに含まれる他方の長方形太陽電池の上記裏面金属被覆パターンとの間に配された電気伝導性接合剤の不連続な部分により互いに伝導接合する、項目68に記載の方法。
[項目84]
各長方形太陽電池上の上記前面金属被覆パターンは、上記長方形太陽電池の長辺の縁と平行、かつ隣接して配置された、対応するフィンガーの端にそれぞれが位置する複数のコンタクトパッドを含み、
隣接し合い重なり合う長方形太陽電池の各ペアに含まれる上記長方形太陽電池は、上記長方形太陽電池のペアに含まれる一方の長方形太陽電池の上記前面金属被覆パターンの上記複数のコンタクトパッドと、上記長方形太陽電池のペアに含まれる他方の長方形太陽電池の上記裏面金属被覆パターンとの間に配された破線または実線状の電気伝導性接合剤により互いに伝導接合し、
上記破線または実線状の電気伝導性接合剤は、上記複数のフィンガーのうち1または複数を電気相互接続する、項目68に記載の方法。
[項目85]
上記前面金属被覆パターンは銀製のペーストから形成される、項目68から84のいずれか一項に記載の方法。
[項目86]
2またはそれより多くの平行行に複数の直列接続するスーパーセルとして配置された、N個の(約250より大きい、またはそれと等しい数の)長方形または略長方形シリコン太陽電池であって、各スーパーセルが、複数のシリコン太陽電池を有し、上記複数のシリコン太陽電池は、隣接し合うシリコン太陽電池の長辺が重なり合い電気および熱伝導性接着剤により互いに直接伝導接合して、上記スーパーセル内の上記複数のシリコン太陽電池を直列に電気接続した状態で並んで配置されている、長方形または略長方形シリコン太陽電池と、
25個の太陽電池当たり1つ未満のバイパスダイオードと
を備え、
上記電気および熱伝導性接着剤は、上記複数の太陽電池と垂直な方向への厚さが約50ミクロンより薄く、またはそれと等しく、上記複数の太陽電池と垂直な方向への熱伝導性が約1.5W/(メートル−K)より高い、またはそれと等しい、隣接し合う太陽電池間の複数の接合を形成する、ソーラーモジュール。
[項目87]
上記複数のスーパーセルは、前面シートと後面シートとの間の熱可塑性オレフィン層内に封入されている、項目86に記載のソーラーモジュール。
[項目88]
上記複数のスーパーセルは、ガラス製の前面シートと後面シートとの間に封入されている、項目86に記載のソーラーモジュール。
[項目89]
30個の太陽電池当たり1つ未満のバイパスダイオード、または50個の太陽電池当たり1つ未満のバイパスダイオード、または100個の太陽電池当たり1つ未満のバイパスダイオード、または、単一のバイパスダイオードのみを備える、またはバイパスダイオードを備えない、項目86に記載のソーラーモジュール。
[項目90]
バイパスダイオードを備えない、または、単一のバイパスダイオードのみ、または3つ以下のバイパスダイオード、または6つ以下のバイパスダイオード、または10個以下のバイパスダイオードを備える、項目86に記載のソーラーモジュール。
[項目91]
重なり合う太陽電池間の伝導性の上記複数の接合は、上記ソーラーモジュールにダメージを与えることなく約−40℃から約100℃の温度範囲で、上記複数のスーパーセルと上記ガラス製の前面シートとの間の、上記2またはそれより多くの平行行と平行な方向への熱膨張の不一致に適応する機械的コンプライアンスを、上記複数のスーパーセルに提供する、項目86に記載のソーラーモジュール。
[項目92]
Nは、約300より大きい、若しくはそれと等しい、約350より大きい、若しくはそれと等しい、約400より大きい、若しくはそれと等しい、約450より大きい、若しくはそれと等しい、約500より大きい、若しくはそれと等しい、約550より大きい、若しくはそれと等しい、約600より大きい、若しくはそれと等しい、約650より大きい、若しくはそれと等しい、または、約700より大きい、若しくはそれと等しい、項目86から91のいずれか一項に記載のソーラーモジュール。
[項目93]
上記複数のスーパーセルは、電気接続して、約120ボルトより高い、若しくはそれと等しい、約180ボルトより高い、若しくはそれと等しい、約240ボルトより高い、若しくはそれと等しい、約300ボルトより高い、若しくはそれと等しい、約360ボルトより高い、若しくはそれと等しい、約420ボルトより高い、若しくはそれと等しい、約480ボルトより高い、若しくはそれと等しい、約540ボルトより高い、若しくはそれと等しい、または、約600ボルトより高い、若しくはそれと等しい高い直流電圧を提供する、項目86から92のいずれか一項に記載のソーラーモジュール。
[項目94]
項目86に記載のソーラーモジュールと、
上記ソーラーモジュールに電気接続し、上記ソーラーモジュールからのDC出力を変換して、AC出力を提供するよう構成されたインバータと
を備える、太陽エネルギーシステム。
[項目95]
上記インバータは、DC−DCブースト構成要素を有さない、項目94に記載の太陽エネルギーシステム。
[項目96]
上記インバータは、太陽電池に逆バイアスをかけることを避けるよう設定された最小値より高い直流電圧で上記ソーラーモジュールを動作させるよう構成されている、項目94に記載の太陽エネルギーシステム。
[項目97]
上記最小電圧値は温度依存である、項目96に記載の太陽エネルギーシステム。
[項目98]
上記インバータは、逆バイアス状態を認識し、上記逆バイアス状態を避ける電圧で上記ソーラーモジュールを動作させるよう構成されている、項目94に記載の太陽エネルギーシステム。
[項目99]
上記インバータは、上記ソーラーモジュールの電圧−電流出力曲線の極大領域において上記ソーラーモジュールを動作させて、上記逆バイアス状態を避けるよう構成されている、項目98に記載の太陽エネルギーシステム。
[項目100]
上記インバータは、上記ソーラーモジュールと統合されたマイクロインバータである、項目94から99のいずれか一項に記載の太陽エネルギーシステム。
[項目101]
N(≧25)個の、約10ボルトより高い降伏電圧を平均で有する長方形または略長方形太陽電池の直列接続ストリングであって、1または複数のスーパーセルとなるよう上記長方形または略長方形太陽電池はグループ化されており、上記1または複数のスーパーセルのそれぞれが、隣接し合う太陽電池の長辺が重なり合い電気および熱伝導性接着剤により互いに伝導接合した状態で並んで配置された上記複数の太陽電池のうち2またはそれより多くを含む、長方形または略長方形太陽電池の直列接続ストリングを備え、
太陽電池の上記ストリング内のいずれの単一の太陽電池も、またはN個より少ない太陽電池のグループも個別に、バイパスダイオードと並列に電気接続しない、ソーラーモジュール。
[項目102]
Nは、30より大きい、またはそれと等しい、項目101に記載のソーラーモジュール。
[項目103]
Nは、50より大きい、またはそれと等しい、項目101に記載のソーラーモジュール。
[項目104]
Nは、100より大きい、またはそれと等しい、項目101に記載のソーラーモジュール。
[項目105]
上記接着剤は、上記複数の太陽電池と垂直な方向への厚さが約0.1mmより小さい、またはそれと等しく、上記複数の太陽電池と垂直な方向への熱伝導性が約1.5W/m/Kより高い、またはそれと等しい、隣接し合う太陽電池間の複数の接合を形成する、項目101に記載のソーラーモジュール。
[項目106]
上記N個の太陽電池は、単一のスーパーセルとなるようグループ化される、項目101に記載のソーラーモジュール。
[項目107]
上記複数のスーパーセルは、ポリマー内に封入されている、項目101に記載のソーラーモジュール。
[項目108]
上記ポリマーは、熱可塑性オレフィンポリマーを含む、項目107に記載のソーラーモジュール。
[項目109]
上記ポリマーは、ガラス製の前面シートと後面シートとの間に挟まれている、項目107に記載のソーラーモジュール。
[項目110]
上記後面シートはガラスを含む、項目109に記載のソーラーモジュール。
[項目111]
上記複数の太陽電池はシリコン太陽電池である、項目101に記載のソーラーモジュール。
[項目112]
ソーラーモジュールであって、
上記ソーラーモジュールの縁と平行な上記ソーラーモジュールの全長または全幅に亘って実質的に広がるスーパーセルであって、上記スーパーセルは、隣接し合う太陽電池の長辺が重なり合い電気および熱伝導性接着剤により互いに伝導接合した状態で並んで配置された、N個の、約10ボルトより高い降伏電圧を平均で有する、長方形または略長方形太陽電池の直列接続ストリングを有する、スーパーセルを備え、
上記スーパーセル内のいずれの単一の太陽電池も、またはN個より少ない太陽電池のグループも個別に、バイパスダイオードと並列に電気接続しない、ソーラーモジュール。
[項目113]
N>24である、項目112に記載のソーラーモジュール。
[項目114]
上記スーパーセルの、電流の流れの方向への長さが、少なくとも約500mmである、項目112に記載のソーラーモジュール。
[項目115]
上記複数のスーパーセルは、ガラス製の前面シートと後面シートとの間に挟まれた熱可塑性オレフィンポリマー内に封入されている、項目112に記載のソーラーモジュール。
[項目116]
ソーラーモジュールであって、
2またはそれより多くの平行行に複数の直列接続するスーパーセルとして配置された、N個の(約250より大きい、またはそれと等しい数の)長方形または略長方形シリコン太陽電池であって、各スーパーセルが、複数のシリコン太陽電池を有し、上記複数のシリコン太陽電池は、隣接し合うシリコン太陽電池の長辺が重なり合い電気および熱伝導性接着剤により互いに直接伝導接合して、上記スーパーセル内の上記複数のシリコン太陽電池を直列に電気接続した状態で並んで配置されている、長方形または略長方形シリコン太陽電池と、
1または複数のバイパスダイオードと
を備え、
上記ソーラーモジュール内の隣接し合う平行行の各ペアは、上記ペアに含まれる一方の行内で中央に位置する太陽電池上の裏面電気接触部に伝導接合し、上記ペアに含まれる他方の行内の隣接する太陽電池上の裏面電気接触部に伝導接合するバイパスダイオードにより電気接続する、
ソーラーモジュール。
[項目117]
隣接し合う平行行の各ペアは、上記ペアに含まれる一方の行内の太陽電池上の裏面電気接触部に伝導接合し、上記ペアに含まれる他方の行内の隣接する太陽電池上の裏面電気接触部に伝導接合する少なくとも1つの他のバイパスダイオードにより電気接続する、項目116に記載のソーラーモジュール。
[項目118]
隣接し合う平行行の各ペアは、上記ペアに含まれる一方の行内の太陽電池上の裏面電気接触部に伝導接合し、上記ペアに含まれる他方の行内の隣接する太陽電池上の裏面電気接触部に伝導接合する少なくとも1つの他のバイパスダイオードにより電気接続する、項目117に記載のソーラーモジュール。
[項目119]
上記電気および熱伝導性接着剤は、上記複数の太陽電池と垂直な方向への厚さが約50ミクロンより薄く、またはそれと等しく、上記複数の太陽電池と垂直な方向への熱伝導性が約1.5W/(メートル−K)より高い、またはそれと等しい、隣接し合う太陽電池間の複数の接合を形成する、項目116に記載のソーラーモジュール。
[項目120]
上記複数のスーパーセルは、ガラス製の前面シートと後面シートとの間の熱可塑性オレフィン層内に封入されている、項目116に記載のソーラーモジュール。
[項目121]
重なり合う太陽電池間の伝導性の上記複数の接合は、上記ソーラーモジュールにダメージを与えることなく約−40℃から約100℃の温度範囲で、上記複数のスーパーセルと上記ガラス製の前面シートとの間の、上記2またはそれより多くの平行行と平行な方向への熱膨張の不一致に適応する機械的コンプライアンスを、上記複数のスーパーセルに提供する、項目116に記載のソーラーモジュール。
[項目122]
Nは、約300より大きい、若しくはそれと等しい、約350より大きい、若しくはそれと等しい、約400より大きい、若しくはそれと等しい、約450より大きい、若しくはそれと等しい、約500より大きい、若しくはそれと等しい、約550より大きい、若しくはそれと等しい、約600より大きい、若しくはそれと等しい、約650より大きい、若しくはそれと等しい、または、約700より大きい、若しくはそれと等しい、項目116から121のいずれか一項に記載のソーラーモジュール。
[項目123]
上記複数のスーパーセルは、電気接続して、約120ボルトより高い、若しくはそれと等しい、約180ボルトより高い、若しくはそれと等しい、約240ボルトより高い、若しくはそれと等しい、約300ボルトより高い、若しくはそれと等しい、約360ボルトより高い、若しくはそれと等しい、約420ボルトより高い、若しくはそれと等しい、約480ボルトより高い、若しくはそれと等しい、約540ボルトより高い、若しくはそれと等しい、または、約600ボルトより高い、若しくはそれと等しい高い直流電圧を提供する、項目116から122のいずれか一項に記載のソーラーモジュール。
[項目124]
項目116に記載のソーラーモジュールと、
上記ソーラーモジュールに電気接続し、上記ソーラーモジュールからのDC出力を変換して、AC出力を提供するよう構成されたインバータと
を備える、太陽エネルギーシステム。
[項目125]
上記インバータは、DC−DCブースト構成要素を有さない、項目124に記載の太陽エネルギーシステム。
[項目126]
上記インバータは、太陽電池に逆バイアスをかけることを避けるよう設定された最小値より高い直流電圧で上記ソーラーモジュールを動作させるよう構成されている、項目124に記載の太陽エネルギーシステム。
[項目127]
上記最小電圧値は温度依存である、項目126に記載の太陽エネルギーシステム。
[項目128]
上記インバータは、逆バイアス状態を認識し、上記逆バイアス状態を避ける電圧で上記ソーラーモジュールを動作させるよう構成されている、項目124に記載の太陽エネルギーシステム。
[項目129]
上記インバータは、上記ソーラーモジュールの電圧−電流出力曲線の極大領域において上記ソーラーモジュールを動作させて、上記逆バイアス状態を避けるよう構成されている、項目128に記載の太陽エネルギーシステム。
[項目130]
上記インバータは、上記ソーラーモジュールと統合されたマイクロインバータである、項目124から129のいずれか一項に記載の太陽エネルギーシステム。

Claims (130)

  1. 2またはそれより多くの平行行に配置された複数のスーパーセルであって、各スーパーセルが、隣接し合うシリコン太陽電池の長辺が重なり合い互いに直接伝導接合して、前記隣接し合うシリコン太陽電池を直列に電気接続した状態で並んで配置された複数の長方形または略長方形シリコン太陽電池を有する、複数のスーパーセルと、
    第1太陽電池の後面に位置する、通常動作で実質的な電流を伝導しない隠れタップコンタクトパッドと
    を備え、
    前記第1太陽電池は、スーパーセルの前記2またはそれより多くの平行行のうち第1行内の前記複数のスーパーセルのうち第1スーパーセルに沿った中間位置に位置し、前記隠れタップコンタクトパッドは、前記スーパーセルの2またはそれより多くの平行行のうち第2行内の少なくとも第2太陽電池と並列に電気接続する、ソーラーモジュール。
  2. 前記隠れタップコンタクトパッドに接合し、前記隠れタップコンタクトパッドを前記第2太陽電池に電気相互接続する電気相互接続部を備え、
    前記電気相互接続部は、前記第1太陽電池の長さに亘って実質的に広がらず、
    前記第1太陽電池上の後面金属被覆パターンが、約5オーム/スクエアより低い、またはそれと等しいシート抵抗を有する、前記隠れタップコンタクトパッドへの伝導路を提供する、請求項1に記載のソーラーモジュール。
  3. 前記複数のスーパーセルは、3またはそれより多くの平行行と垂直な前記ソーラーモジュールの幅に亘って広がる前記3またはそれより多くの平行行に配置され、
    前記隠れタップコンタクトパッドは、スーパーセルの前記3またはそれより多くの平行行のうち各行内の少なくとも1つの太陽電池上の隠れコンタクトパッドに電気接続して、スーパーセルの前記3またはそれより多くの平行行を並列に電気接続し、
    複数の前記隠れタップコンタクトパッドのうち少なくとも1つへの、または複数の隠れタップコンタクトパッドの間の相互接続部への少なくとも1つのバス接続が、バイパスダイオードまたは他の電子デバイスに接続する、請求項1に記載のソーラーモジュール。
  4. 前記隠れタップコンタクトパッドに伝導接合して、それを前記第2太陽電池に電気接続するフレキシブル電気相互接続部を備え、
    前記隠れタップコンタクトパッドに伝導接合する、前記フレキシブル電気相互接続部の部分は、銅から形成されたリボン状であり、それの接合先の前記太陽電池の表面と垂直な方向への厚さが約50ミクロンより薄く、またはそれと等しく、
    前記隠れタップコンタクトパッドと前記フレキシブル電気相互接続部との間の前記伝導接合は、前記ソーラーモジュールにダメージを与えることなく約−40℃から約180℃の温度範囲で、前記フレキシブル電気相互接続部に、前記第1太陽電池と前記フレキシブル相互接続部との間の熱膨張の不一致を耐えさせ、熱膨張から結果として生じる前記第1太陽電池と前記第2太陽電池との間の相対運動に適応させる、請求項1に記載のソーラーモジュール。
  5. 前記ソーラーモジュールの動作において、前記第1隠れコンタクトパッドは、前記複数の太陽電池のうち任意の1つで生成される電流より大きい電流を伝導し得る、請求項1に記載のソーラーモジュール。
  6. 前記第1太陽電池の、前記第1隠れタップコンタクトパッド上に横たわる前面は、コンタクトパッドまたは任意の他の相互接続特徴により占有されていない、請求項1に記載のソーラーモジュール。
  7. 前記第1太陽電池の、前記第1スーパーセル内の隣接する太陽電池の一部が重なっていない前面のどのエリアも、コンタクトパッドまたは任意の他の相互接続特徴により占有されていない、請求項1に記載のソーラーモジュール。
  8. 各スーパーセル内で、前記複数の電池の殆どは、隠れタップコンタクトパッドを有さない、請求項1に記載のソーラーモジュール。
  9. 隠れタップコンタクトパッドを有する前記複数の電池は、隠れタップコンタクトパッドを有さない前記複数の電池より大きな集光面積を有する、請求項8に記載のソーラーモジュール。
  10. 重なり合う領域における電気接続先の他のソーラーモジュールと重なり合うこけら葺き状に配置される、請求項1に記載のソーラーモジュール。
  11. ソーラーモジュールであって、
    ガラス製の前面シートと、
    後面シートと、
    前記ガラス製の前面シートと前記後面シートとの間の2またはそれより多くの平行行に配置され、複数の長方形または略長方形シリコン太陽電池をそれぞれが有する複数のスーパーセルであって、前記複数の長方形または略長方形シリコン太陽電池は、隣接し合うシリコン太陽電池の長辺が重なり合いフレキシブルに互いに直接伝導接合して、前記隣接し合うシリコン太陽電池を直列に電気接続した状態で並んで配置される、複数のスーパーセルと、
    前記複数のスーパーセルのうち第1スーパーセルに強固に伝導接合する第1フレキシブル電気相互接続部と
    を備え、
    重なり合う太陽電池間の複数のフレキシブルな前記伝導接合は、前記ソーラーモジュールにダメージを与えることなく約−40℃から約100℃の温度範囲で、前記複数のスーパーセルと前記ガラス製の前面シートとの間の、前記2またはそれより多くの平行行と平行な方向への熱膨張の不一致に適応する機械的コンプライアンスを前記複数のスーパーセルに提供し、
    前記第1スーパーセルと前記第1フレキシブル電気相互接続部との間の強固な前記伝導接合は、前記ソーラーモジュールにダメージを与えることなく約−40℃から約180℃の温度範囲で、前記第1フレキシブル電気相互接続部に、前記第1スーパーセルと前記第1フレキシブル相互接続部との間の、前記2またはそれより多くの平行行と垂直な方向への熱膨張の不一致に適応させる、ソーラーモジュール。
  12. スーパーセル内の重なり合い隣接し合う太陽電池間の複数の前記伝導接合は、前記スーパーセルと前記フレキシブル電気相互接続部との間の複数の前記伝導接合とは異なる伝導性接着剤を利用する、請求項11に記載のソーラーモジュール。
  13. 両方の伝導性接着剤が同じ処理工程で硬化させられ得る、請求項12に記載のソーラーモジュール。
  14. スーパーセル内の少なくとも1つの太陽電池の一辺の前記伝導接合は、その他辺の前記伝導接合とは異なる伝導性接着剤を利用する、請求項11に記載のソーラーモジュール。
  15. 両方の伝導性接着剤が同じ処理工程で硬化させられ得る、請求項14に記載のソーラーモジュール。
  16. 重なり合い隣接し合う太陽電池間の複数の前記伝導接合は、各電池と前記ガラス製の前面シートとの間の約15ミクロンより大きい、またはそれと等しい差異のある運動に適応する、請求項11に記載のソーラーモジュール。
  17. 重なり合い隣接し合う太陽電池間の複数の前記伝導接合は、前記複数の太陽電池と垂直な方向への厚さが約50ミクロンより薄く、またはそれと等しく、前記複数の太陽電池と垂直な方向への熱伝導性が約1.5W/(メートル−K)より高い、またはそれと等しい、請求項11に記載のソーラーモジュール。
  18. 前記第1フレキシブル電気相互接続部は、前記第1フレキシブル相互接続部の、約40ミクロンより大きい、またはそれと等しい熱膨張または収縮に耐える、請求項11に記載のソーラーモジュール。
  19. 前記スーパーセルに伝導接合する、前記第1フレキシブル電気相互接続部の部分は、銅から形成されたリボン状であり、それの接合先の前記太陽電池の表面と垂直な方向への厚さが約50ミクロンより小さい、またはそれと等しい、請求項11に記載のソーラーモジュール。
  20. 前記スーパーセルに伝導接合する、前記第1フレキシブル電気相互接続部の部分は、銅から形成されたリボン状であり、それの接合先の前記太陽電池の表面と垂直な方向への厚さが約30ミクロンより小さい、またはそれと等しい、請求項19に記載のソーラーモジュール。
  21. 前記第1フレキシブル電気相互接続部は、前記太陽電池に伝導接合する、前記第1フレキシブル電気相互接続部の部分より高い伝導性を提供する、前記太陽電池に接合しない一体の伝導性銅部分を有する、請求項19に記載のソーラーモジュール。
  22. 前記第1フレキシブル電気相互接続部は、前記太陽電池の表面の面における、前記相互接続部を通る電流の流れと垂直な方向への幅が約10mmより大きい、またはそれと等しい、請求項19に記載のソーラーモジュール。
  23. 前記第1フレキシブル電気相互接続部は、前記第1電気相互接続部より高い伝導性を提供する、前記太陽電池に近接した導体に伝導接合する、請求項19に記載のソーラーモジュール。
  24. 重なり合う領域におけるそれの電気接続先の他のソーラーモジュールと重なり合うこけら葺き状に配置される、請求項11に記載のソーラーモジュール。
  25. ガラス製の前面シートと、
    後面シートと、
    前記ガラス製の前面シートと前記後面シートとの間の2またはそれより多くの平行行に配置され、複数の長方形または略長方形シリコン太陽電池をそれぞれが有する複数のスーパーセルであって、前記複数の長方形または略長方形シリコン太陽電池は、隣接し合うシリコン太陽電池の長辺が重なり合いフレキシブルに互いに直接伝導接合して、前記隣接し合うシリコン太陽電池を直列に電気接続した状態で並んで配置される、複数のスーパーセルと、
    前記複数のスーパーセルのうち第1スーパーセルに強固に伝導接合する第1フレキシブル電気相互接続部と
    を備え、
    重なり合う太陽電池間の複数のフレキシブルな前記伝導接合は、第1伝導性接着剤から形成され、約800メガパスカルより低い、またはそれと等しい剛性率を有し、
    前記第1スーパーセルと前記第1フレキシブル電気相互接続部との間の強固な前記伝導接合は、第2伝導性接着剤から形成され、約2000メガパスカルより高い、またはそれと等しい剛性率を有する、ソーラーモジュール。
  26. 前記第1伝導性接着剤と前記第2伝導性接着剤とは異なり、両方の伝導性接着剤が、同じ処理工程で硬化させられ得る、請求項25に記載のソーラーモジュール。
  27. 重なり合い隣接し合う太陽電池間の複数の前記伝導接合は、前記複数の太陽電池と垂直な方向への厚さが約50ミクロンより薄く、またはそれと等しく、前記複数の太陽電池と垂直な方向への熱伝導性が約1.5W/(メートル−K)より高い、またはそれと等しい、請求項25に記載のソーラーモジュール。
  28. 重なり合う領域における電気接続先の他のソーラーモジュールと重なり合うこけら葺き状に配置される、請求項25に記載のソーラーモジュール。
  29. シリコンウェハの第1外縁と平行、かつ隣接して配置された第1のバスバーまたはコンタクトパッド行と、前記シリコンウェハの前記第1縁と反対側にあり、かつ平行な、前記シリコンウェハの第2外縁と平行、かつ隣接して配置された第2のバスバーまたはコンタクトパッド行とを含む前面金属被覆パターンを含む前記シリコンウェハを得る、または提供する工程と、
    前記シリコンウェハの前記第1外縁と前記第2外縁と平行な1または複数のスクライブラインに沿って前記シリコンウェハを分離させて、複数の長方形太陽電池を形成する工程であって、前記第1のバスバーまたはコンタクトパッド行は、前記複数の長方形太陽電池のうち第1長方形太陽電池の長い外縁と平行、かつ隣接して配置され、前記第2のバスバーまたはコンタクトパッド行は、前記複数の長方形太陽電池のうち第2長方形太陽電池の長い外縁と平行、かつ隣接して配置される、工程と、
    前記複数の長方形太陽電池を、隣接し合う太陽電池の長辺が重なり合い互いに伝導接合して、前記隣接し合う太陽電池を直列に電気接続した状態で並べて配置して、スーパーセルを形成する工程と
    を備え、
    前記複数の長方形太陽電池のうち前記第1長方形太陽電池上の前記第1のバスバーまたはコンタクトパッド行には、前記スーパーセル内の隣接する長方形太陽電池の底面が重なり伝導接合する、方法。
  30. 前記複数の長方形太陽電池のうち前記第2長方形太陽電池上の前記第2のバスバーまたはコンタクトパッド行には、前記スーパーセル内の隣接する長方形太陽電池の底面が重なり伝導接合する、請求項29に記載の方法。
  31. 前記シリコンウェハは、正方形または擬似正方形シリコンウェハである、請求項29に記載の方法。
  32. 前記シリコンウェハは、長さが約125mmである、または長さが約156mmである辺を有する、請求項31に記載の方法。
  33. 各長方形太陽電池の長さ対幅の比は、約2:1と約20:1との間である、請求項31に記載の方法。
  34. 前記シリコンウェハは結晶シリコンウェハである、請求項29に記載の方法。
  35. 前記第1のバスバーまたはコンタクトパッド行と前記第2のバスバーまたはコンタクトパッド行とは、前記シリコンウェハの複数の中央領域より低効率で光を電気に変換する、前記シリコンウェハの複数の縁領域に位置する、請求項29に記載の方法。
  36. 前記前面金属被覆パターンは、前記第1のバスバーまたはコンタクトパッド行に電気接続する、前記シリコンウェハの前記第1外縁から内側に延在する第1の複数の平行なフィンガーと、前記第2のバスバーまたはコンタクトパッド行に電気接続する、前記シリコンウェハの前記第2外縁から内側に延在する第2の複数の平行なフィンガーとを含む、請求項29に記載の方法。
  37. 前記前面金属被覆パターンは、少なくとも、前記第1のバスバーまたはコンタクトパッド行と前記第2のバスバーまたはコンタクトパッド行と平行に方向付けられ、前記第1のバスバーまたはコンタクトパッド行と前記第2のバスバーまたはコンタクトパッド行との間に位置する第3のバスバーまたはコンタクトパッド行と、前記第3のバスバーまたはコンタクトパッド行と垂直な方向に方向付けられた、前記第3のバスバーまたはコンタクトパッド行に電気接続する第3の複数の平行なフィンガーとを含み、前記第3のバスバーまたはコンタクトパッド行は、前記シリコンウェハが分離されて、前記複数の長方形太陽電池を形成した後、前記複数の長方形太陽電池のうち第3長方形太陽電池の長い外縁と平行、かつ隣接して配置される、請求項29に記載の方法。
  38. 前記第1のバスバーまたはコンタクトパッド行に伝導性接着剤を適用して、前記第1長方形太陽電池を隣接する太陽電池に伝導接合する工程を備える、請求項29に記載の方法。
  39. 前記金属被覆パターンは、前記伝導性接着剤の広がりを封じ込めるよう構成されたバリアを含む、請求項38に記載の方法。
  40. スクリーン印刷により前記伝導性接着剤を適用する工程を備える、請求項38に記載の方法。
  41. インクジェット印刷により前記伝導性接着剤を適用する工程を備える、請求項38に記載の方法。
  42. 前記伝導性接着剤は、前記シリコンウェハにおける前記1または複数のスクライブラインの形成の前に適用される、請求項38に記載の方法。
  43. 前記1または複数のスクライブラインに沿って前記シリコンウェハを分離させる工程は、前記シリコンウェハの底面と湾曲支持面との間で真空を引いて、前記湾曲支持面に寄せて前記シリコンウェハを曲げ、それにより、前記1または複数のスクライブラインに沿って前記シリコンウェハを劈開する工程を有する、請求項29に記載の方法。
  44. 前記シリコンウェハは、面取りされた複数の角を含む擬似正方形シリコンウェハであって、前記シリコンウェハを分離させて、前記複数の長方形太陽電池を形成する工程の後、前記長方形太陽電池のうち1または複数は、前記面取りされた複数の角のうち1または複数を含み、
    スクライブライン間の間隔は、面取りされた複数の角を含む前記長方形太陽電池の長軸と垂直な幅を、複数の面取りされた角を有さない前記長方形太陽電池の長軸と垂直な幅より大きくすることにより前記面取りされた角を補うよう選択され、これにより、前記スーパーセル内の前記複数の長方形太陽電池のうちそれぞれが、前記スーパーセルの動作において光に露出される面積が実質的に同じである前面を有する、請求項29に記載の方法。
  45. 透明な前面シートと後面シートとの間の層状構造に前記スーパーセルを配置し、前記層状構造を積層させる工程を備える、請求項29に記載の方法。
  46. 前記層状構造を積層させる工程は、前記スーパーセル内の前記隣接し合う長方形太陽電池間に配された伝導性接着剤の硬化を完了させて、前記隣接し合う長方形太陽電池を互いに伝導接合する、請求項45に記載の方法。
  47. 前記スーパーセルは、スーパーセルの2またはそれより多くの平行行のうち1行内の前記層状構造に配置され、前記後面シートは、前記スーパーセルの2またはそれより多くの平行行間の間隙の位置および幅に対応する位置および幅を有する複数の平行な濃色のストライプを含む白色のシートであり、これにより、前記後面シートの複数の白色の部分は、組み立てられたモジュールにおいて前記スーパーセルの2またはそれより多くの平行行間の間隙を通して視認出来ない、請求項45に記載の方法。
  48. 前記前面シートおよび前記後面シートは、ガラス製のシートであり、前記スーパーセルは、前記ガラス製のシート間に挟まれた熱可塑性オレフィン層内に封入されている、請求項45に記載の方法。
  49. 第2ソーラーモジュールの第2接続箱と嵌合配置されている接続箱を含む第1モジュールに前記スーパーセルを配置する工程を備える、請求項29に記載の方法。
  50. 湾曲面に沿って太陽電池ウェハを進行させる工程と、
    前記湾曲面と前記太陽電池ウェハの底面の間で真空を引いて、前記湾曲面に寄せて前記太陽電池ウェハを曲げ、それにより、事前に用意された1または複数のスクライブラインに沿って前記太陽電池ウェハを劈開して、複数の太陽電池を前記太陽電池ウェハから分離させる工程と
    を備える、太陽電池を製造する方法。
  51. 前記湾曲面は、前記真空を前記太陽電池ウェハの前記底面に対して引く真空マニホールドの上面の湾曲部分である、請求項50に記載の方法。
  52. 前記真空マニホールドにより前記太陽電池ウェハの前記底面に対して引かれる前記真空は、前記太陽電池ウェハの移動方向に沿って変化し、前記太陽電池ウェハが劈開される、前記真空マニホールドの領域において最も強い、請求項50に記載の方法。
  53. 前記真空マニホールドの湾曲した前記上面に沿って、穿孔付ベルトにより前記太陽電池ウェハを搬送する工程であって、前記真空は、前記穿孔付ベルトの複数の穿孔を通じて前記太陽電池ウェハの前記底面に対して引かれる、工程を備える、請求項51または52に記載の方法。
  54. 前記穿孔付ベルトの前記複数の穿孔は、前記太陽電池ウェハの移動方向に沿った前記太陽電池ウェハの前縁および後縁が、前記穿孔付ベルトの少なくとも1つの穿孔上に横たわるように配置される、請求項53に記載の方法。
  55. 前記真空マニホールドの前記上面の平坦領域に沿って前記太陽電池ウェハを進行させて、第1曲率を有する、前記真空マニホールドの前記上面の遷移湾曲領域に到達させ、その後、前記太陽電池ウェハが劈開される、前記真空マニホールドの前記上面の劈開領域内に前記太陽電池ウェハを進行させる工程であって、前記真空マニホールドの前記劈開領域は、前記第1曲率より高い第2曲率を有する、工程を備える、請求項50から54のいずれか一項に記載の方法。
  56. 前記遷移領域の前記曲率は、曲率が大きくなる連続幾何学関数により規定される、請求項55に記載の方法。
  57. 前記劈開領域の前記曲率は、前記曲率が大きくなる連続幾何学関数により規定される、請求項56に記載の方法。
  58. 前記第2曲率より高い第3曲率を有する前記真空マニホールドの劈開後領域内へ劈開済の前記複数の太陽電池を進行させる工程を備える、請求項57に記載の方法。
  59. 前記遷移湾曲領域、前記劈開領域、および前記劈開後領域の前記曲率は、曲率が大きくなる単一の連続幾何学関数により規定される、請求項57に記載の方法。
  60. 前記曲率が大きくなる連続幾何学関数は、クロソイドである、請求項57、58または59に記載の方法。
  61. 各スクライブラインの一端で、その後、各スクライブラインの反対側の端で、より強い前記太陽電池ウェハと前記湾曲面との間の真空を引いて、各スクライブラインに沿った単一の劈開裂け目の核生成および伝播を促す、各スクライブラインに沿った非対称な応力分布を提供する工程を備える、請求項50から60のいずれか一項に記載の方法。
  62. 前記湾曲面から、劈開済の前記複数の太陽電池を取り除く工程であって、前記劈開済の複数の太陽電池の複数の縁は、前記湾曲面からの、前記太陽電池の取り除きの前には触れない、工程を備える、請求項50から61のいずれか一項に記載の方法。
  63. 前記1または複数のスクライブラインを前記太陽電池ウェハ上にレーザースクライブする工程と、
    前記1または複数のスクライブラインに沿って前記太陽電池ウェハを劈開する前に前記太陽電池ウェハの頂面の一部へ電気伝導性粘着接合剤を適用する工程と
    備え、
    各劈開済の太陽電池は、その頂面の劈開縁に沿って配された前記電気伝導性粘着接合剤の一部を含む、請求項50から62のいずれか一項に記載の方法。
  64. 前記1または複数のスクライブラインをレーザースクライブし、その後、前記電気伝導性粘着接合剤を適用する工程を備える、請求項63に記載の方法。
  65. 前記電気伝導性粘着接合剤を適用し、その後、前記1または複数のスクライブラインをレーザースクライブする工程を備える、請求項64に記載の方法。
  66. 請求項63から65のいずれか一項に記載の方法により製造された複数の劈開済の太陽電池から太陽電池ストリングを作る方法であって、
    前記複数の劈開済の太陽電池は複数の長方形太陽電池であり、
    隣接し合う長方形太陽電池の長辺が、前記電気伝導性粘着接合剤の一部が間に配されてこけら葺き状に重なり合った状態で前記複数の長方形太陽電池を並べて配置する工程と、
    前記電気伝導性粘着接合剤を硬化させ、それにより、隣接し合い重なり合う長方形太陽電池を互いに接合し、それらを直列に電気接続する工程と
    を備える、方法。
  67. 前記太陽電池ウェハは、正方形または擬似正方形シリコン太陽電池ウェハである、請求項50から66のいずれか一項に記載の方法。
  68. 1または複数の正方形太陽電池のうち各正方形太陽電池上に裏面金属被覆パターンを形成する工程と、
    単一の孔版印刷工程で、単一のステンシルを用いて、前記1または複数の正方形太陽電池のうち各正方形太陽電池上に完全な前面金属被覆パターンを孔版印刷する工程と、
    2またはそれより多くの長方形太陽電池となるよう各正方形太陽電池を分離させて、完全な前面金属被覆パターンと裏面金属被覆パターンとをそれぞれが含む複数の長方形太陽電池を、前記1または複数の正方形太陽電池から形成する工程と、
    隣接し合う長方形太陽電池の長辺がこけら葺き状に重なり合った状態で前記複数の長方形太陽電池を並べて配置する工程と、
    隣接し合い重なり合う長方形太陽電池の各ペアに含まれる前記長方形太陽電池を間に配された電気伝導性接合剤で互いに伝導接合する工程であって、前記ペアに含まれる前記長方形太陽電池のうち一方の長方形太陽電池の前記前面金属被覆パターンを、前記ペアに含まれる前記長方形太陽電池のうち他方の長方形太陽電池の前記裏面金属被覆パターンに電気接続し、それにより、前記複数の長方形太陽電池を直列に電気接続する、工程と
    を備える、太陽電池ストリングを作る方法。
  69. 前記1または複数の正方形太陽電池上の前記前面金属被覆パターンの1または複数の特徴を画定する、前記ステンシルの全ての部分が、孔版印刷の間、前記ステンシルの面内に横たわるよう前記ステンシルの他の部分への物理的接続により留められる、請求項68に記載の方法。
  70. 各長方形太陽電池上の前記前面金属被覆パターンは、前記長方形太陽電池の長辺と垂直な方向に方向付けられた複数のフィンガーを含み、前記前面金属被覆パターン内の前記複数のフィンガーはどれも、前記前面金属被覆パターンにより互いに物理的に接続しない、請求項68に記載の方法。
  71. 前記複数のフィンガーは幅が約10ミクロンから約90ミクロンである、請求項68に記載の方法。
  72. 前記複数のフィンガーは幅が約10ミクロンから約50ミクロンである、請求項68に記載の方法。
  73. 前記複数のフィンガーは幅が約10ミクロンから約30ミクロンである、請求項68に記載の方法。
  74. 前記複数のフィンガーは、前記長方形太陽電池の前面と垂直な方向の高さが、約10ミクロンから約50ミクロンである、請求項68に記載の方法。
  75. 前記複数のフィンガーは、前記長方形太陽電池の前面と垂直な方向の高さが、約30ミクロン、またはそれより大きい、請求項68に記載の方法。
  76. 各長方形太陽電池上の前記前面金属被覆パターンは、前記長方形太陽電池の長辺の縁と平行、かつ隣接して配置された、対応するフィンガーの端にそれぞれが位置する複数のコンタクトパッドを含む、請求項68に記載の方法。
  77. 各長方形太陽電池上の前記裏面金属被覆パターンは、前記長方形太陽電池の長辺の縁と平行、かつ隣接する行に配置された複数のコンタクトパッドを含み、
    隣接し合い重なり合う長方形太陽電池の各ペアは、前記長方形太陽電池のペアに含まれる一方の長方形太陽電池上の裏面の前記複数のコンタクトパッドのうちそれぞれが、前記ペアに含まれる前記長方形太陽電池のうち他方の長方形太陽電池上の前記前面金属被覆パターン内の対応するフィンガーと位置合わせされ電気接続した状態で配置される、請求項68に記載の方法。
  78. 各長方形太陽電池上の前記裏面金属被覆パターンは、前記長方形太陽電池の長辺の縁と平行、かつ隣接して延びるバスバーを含み、
    隣接し合い重なり合う長方形太陽電池の各ペアは、前記長方形太陽電池のペアに含まれる一方の長方形太陽電池上の前記バスバーが、前記ペアに含まれる前記長方形太陽電池のうち他方の長方形太陽電池上の前記前面金属被覆パターン内の前記複数のフィンガーに重なり電気接続した状態で配置される、請求項68に記載の方法。
  79. 各長方形太陽電池上の前記前面金属被覆パターンは、前記長方形太陽電池の長辺の縁と平行、かつ隣接して配置され、対応するフィンガーの端にそれぞれが位置する複数のコンタクトパッドを含み、
    各長方形太陽電池上の前記裏面金属被覆パターンは、前記長方形太陽電池の長辺の縁と平行、かつ隣接する行に配置された複数のコンタクトパッドを含み、
    隣接し合い重なり合う長方形太陽電池の各ペアは、前記長方形太陽電池のペアに含まれる一方の長方形太陽電池上の裏面の前記複数のコンタクトパッドのうちそれぞれが、前記ペアに含まれる前記長方形太陽電池のうち他方の長方形太陽電池上の前記前面金属被覆パターン内の対応するコンタクトパッドに重なり電気接続した状態で配置される、請求項68に記載の方法。
  80. 隣接し合い重なり合う長方形太陽電池の各ペアに含まれる前記長方形太陽電池は、重なり合う前面の前記複数のコンタクトパッドと裏面の前記複数のコンタクトパッドとの間に配された電気伝導性接合剤の不連続な部分により互いに伝導接合する、請求項68に記載の方法。
  81. 隣接し合い重なり合う長方形太陽電池の各ペアに含まれる前記長方形太陽電池は、前記長方形太陽電池のペアに含まれる一方の長方形太陽電池の前記前面金属被覆パターン、および前記長方形太陽電池のペアに含まれる他方の長方形太陽電池の前記裏面金属被覆パターン内の前記複数のフィンガーの重なり合う端の間に配された電気伝導性接合剤の不連続な部分により互いに伝導接合する、請求項68に記載の方法。
  82. 隣接し合い重なり合う長方形太陽電池の各ペアに含まれる前記長方形太陽電池は、前記長方形太陽電池のペアに含まれる一方の長方形太陽電池の前記前面金属被覆パターン、および前記長方形太陽電池のペアに含まれる他方の長方形太陽電池の前記裏面金属被覆パターン内の前記複数のフィンガーの重なり合う端の間に配された破線または実線状の電気伝導性接合剤により互いに伝導接合し、
    前記破線または実線状の電気伝導性接合剤は、前記複数のフィンガーのうち1または複数を電気相互接続する、請求項68に記載の方法。
  83. 各長方形太陽電池上の前記前面金属被覆パターンは、前記長方形太陽電池の長辺の縁と平行、かつ隣接して配置された、対応するフィンガーの端にそれぞれが位置する複数のコンタクトパッドを含み、
    隣接し合い重なり合う長方形太陽電池の各ペアに含まれる前記長方形太陽電池は、前記長方形太陽電池のペアに含まれる一方の長方形太陽電池の前記前面金属被覆パターンの前記複数のコンタクトパッドと、前記長方形太陽電池のペアに含まれる他方の長方形太陽電池の前記裏面金属被覆パターンとの間に配された電気伝導性接合剤の不連続な部分により互いに伝導接合する、請求項68に記載の方法。
  84. 各長方形太陽電池上の前記前面金属被覆パターンは、前記長方形太陽電池の長辺の縁と平行、かつ隣接して配置された、対応するフィンガーの端にそれぞれが位置する複数のコンタクトパッドを含み、
    隣接し合い重なり合う長方形太陽電池の各ペアに含まれる前記長方形太陽電池は、前記長方形太陽電池のペアに含まれる一方の長方形太陽電池の前記前面金属被覆パターンの前記複数のコンタクトパッドと、前記長方形太陽電池のペアに含まれる他方の長方形太陽電池の前記裏面金属被覆パターンとの間に配された破線または実線状の電気伝導性接合剤により互いに伝導接合し、
    前記破線または実線状の電気伝導性接合剤は、前記複数のフィンガーのうち1または複数を電気相互接続する、請求項68に記載の方法。
  85. 前記前面金属被覆パターンは銀製のペーストから形成される、請求項68から84のいずれか一項に記載の方法。
  86. 2またはそれより多くの平行行に複数の直列接続するスーパーセルとして配置された、N個の(約250より大きい、またはそれと等しい数の)長方形または略長方形シリコン太陽電池であって、各スーパーセルが、複数のシリコン太陽電池を有し、前記複数のシリコン太陽電池は、隣接し合うシリコン太陽電池の長辺が重なり合い電気および熱伝導性接着剤により互いに直接伝導接合して、前記スーパーセル内の前記複数のシリコン太陽電池を直列に電気接続した状態で並んで配置されている、長方形または略長方形シリコン太陽電池と、
    25個の太陽電池当たり1つ未満のバイパスダイオードと
    を備え、
    前記電気および熱伝導性接着剤は、前記複数の太陽電池と垂直な方向への厚さが約50ミクロンより薄く、またはそれと等しく、前記複数の太陽電池と垂直な方向への熱伝導性が約1.5W/(メートル−K)より高い、またはそれと等しい、隣接し合う太陽電池間の複数の接合を形成する、ソーラーモジュール。
  87. 前記複数のスーパーセルは、前面シートと後面シートとの間の熱可塑性オレフィン層内に封入されている、請求項86に記載のソーラーモジュール。
  88. 前記複数のスーパーセルは、ガラス製の前面シートと後面シートとの間に封入されている、請求項86に記載のソーラーモジュール。
  89. 30個の太陽電池当たり1つ未満のバイパスダイオード、または50個の太陽電池当たり1つ未満のバイパスダイオード、または100個の太陽電池当たり1つ未満のバイパスダイオード、または、単一のバイパスダイオードのみを備える、またはバイパスダイオードを備えない、請求項86に記載のソーラーモジュール。
  90. バイパスダイオードを備えない、または、単一のバイパスダイオードのみ、または3つ以下のバイパスダイオード、または6つ以下のバイパスダイオード、または10個以下のバイパスダイオードを備える、請求項86に記載のソーラーモジュール。
  91. 重なり合う太陽電池間の伝導性の前記複数の接合は、前記ソーラーモジュールにダメージを与えることなく約−40℃から約100℃の温度範囲で、前記複数のスーパーセルと前記ガラス製の前面シートとの間の、前記2またはそれより多くの平行行と平行な方向への熱膨張の不一致に適応する機械的コンプライアンスを、前記複数のスーパーセルに提供する、請求項86に記載のソーラーモジュール。
  92. Nは、約300より大きい、若しくはそれと等しい、約350より大きい、若しくはそれと等しい、約400より大きい、若しくはそれと等しい、約450より大きい、若しくはそれと等しい、約500より大きい、若しくはそれと等しい、約550より大きい、若しくはそれと等しい、約600より大きい、若しくはそれと等しい、約650より大きい、若しくはそれと等しい、または、約700より大きい、若しくはそれと等しい、請求項86から91のいずれか一項に記載のソーラーモジュール。
  93. 前記複数のスーパーセルは、電気接続して、約120ボルトより高い、若しくはそれと等しい、約180ボルトより高い、若しくはそれと等しい、約240ボルトより高い、若しくはそれと等しい、約300ボルトより高い、若しくはそれと等しい、約360ボルトより高い、若しくはそれと等しい、約420ボルトより高い、若しくはそれと等しい、約480ボルトより高い、若しくはそれと等しい、約540ボルトより高い、若しくはそれと等しい、または、約600ボルトより高い、若しくはそれと等しい高い直流電圧を提供する、請求項86から92のいずれか一項に記載のソーラーモジュール。
  94. 請求項86に記載のソーラーモジュールと、
    前記ソーラーモジュールに電気接続し、前記ソーラーモジュールからのDC出力を変換して、AC出力を提供するよう構成されたインバータと
    を備える、太陽エネルギーシステム。
  95. 前記インバータは、DC−DCブースト構成要素を有さない、請求項94に記載の太陽エネルギーシステム。
  96. 前記インバータは、太陽電池に逆バイアスをかけることを避けるよう設定された最小値より高い直流電圧で前記ソーラーモジュールを動作させるよう構成されている、請求項94に記載の太陽エネルギーシステム。
  97. 前記最小電圧値は温度依存である、請求項96に記載の太陽エネルギーシステム。
  98. 前記インバータは、逆バイアス状態を認識し、前記逆バイアス状態を避ける電圧で前記ソーラーモジュールを動作させるよう構成されている、請求項94に記載の太陽エネルギーシステム。
  99. 前記インバータは、前記ソーラーモジュールの電圧−電流出力曲線の極大領域において前記ソーラーモジュールを動作させて、前記逆バイアス状態を避けるよう構成されている、請求項98に記載の太陽エネルギーシステム。
  100. 前記インバータは、前記ソーラーモジュールと統合されたマイクロインバータである、請求項94から99のいずれか一項に記載の太陽エネルギーシステム。
  101. N(≧25)個の、約10ボルトより高い降伏電圧を平均で有する長方形または略長方形太陽電池の直列接続ストリングであって、1または複数のスーパーセルとなるよう前記長方形または略長方形太陽電池はグループ化されており、前記1または複数のスーパーセルのそれぞれが、隣接し合う太陽電池の長辺が重なり合い電気および熱伝導性接着剤により互いに伝導接合した状態で並んで配置された前記複数の太陽電池のうち2またはそれより多くを含む、長方形または略長方形太陽電池の直列接続ストリングを備え、
    太陽電池の前記ストリング内のいずれの単一の太陽電池も、またはN個より少ない太陽電池のグループも個別に、バイパスダイオードと並列に電気接続しない、ソーラーモジュール。
  102. Nは、30より大きい、またはそれと等しい、請求項101に記載のソーラーモジュール。
  103. Nは、50より大きい、またはそれと等しい、請求項101に記載のソーラーモジュール。
  104. Nは、100より大きい、またはそれと等しい、請求項101に記載のソーラーモジュール。
  105. 前記接着剤は、前記複数の太陽電池と垂直な方向への厚さが約0.1mmより小さい、またはそれと等しく、前記複数の太陽電池と垂直な方向への熱伝導性が約1.5W/m/Kより高い、またはそれと等しい、隣接し合う太陽電池間の複数の接合を形成する、請求項101に記載のソーラーモジュール。
  106. 前記N個の太陽電池は、単一のスーパーセルとなるようグループ化される、請求項101に記載のソーラーモジュール。
  107. 前記複数のスーパーセルは、ポリマー内に封入されている、請求項101に記載のソーラーモジュール。
  108. 前記ポリマーは、熱可塑性オレフィンポリマーを含む、請求項107に記載のソーラーモジュール。
  109. 前記ポリマーは、ガラス製の前面シートと後面シートとの間に挟まれている、請求項107に記載のソーラーモジュール。
  110. 前記後面シートはガラスを含む、請求項109に記載のソーラーモジュール。
  111. 前記複数の太陽電池はシリコン太陽電池である、請求項101に記載のソーラーモジュール。
  112. ソーラーモジュールであって、
    前記ソーラーモジュールの縁と平行な前記ソーラーモジュールの全長または全幅に亘って実質的に広がるスーパーセルであって、前記スーパーセルは、隣接し合う太陽電池の長辺が重なり合い電気および熱伝導性接着剤により互いに伝導接合した状態で並んで配置された、N個の、約10ボルトより高い降伏電圧を平均で有する、長方形または略長方形太陽電池の直列接続ストリングを有する、スーパーセルを備え、
    前記スーパーセル内のいずれの単一の太陽電池も、またはN個より少ない太陽電池のグループも個別に、バイパスダイオードと並列に電気接続しない、ソーラーモジュール。
  113. N>24である、請求項112に記載のソーラーモジュール。
  114. 前記スーパーセルの、電流の流れの方向への長さが、少なくとも約500mmである、請求項112に記載のソーラーモジュール。
  115. 前記複数のスーパーセルは、ガラス製の前面シートと後面シートとの間に挟まれた熱可塑性オレフィンポリマー内に封入されている、請求項112に記載のソーラーモジュール。
  116. ソーラーモジュールであって、
    2またはそれより多くの平行行に複数の直列接続するスーパーセルとして配置された、N個の(約250より大きい、またはそれと等しい数の)長方形または略長方形シリコン太陽電池であって、各スーパーセルが、複数のシリコン太陽電池を有し、前記複数のシリコン太陽電池は、隣接し合うシリコン太陽電池の長辺が重なり合い電気および熱伝導性接着剤により互いに直接伝導接合して、前記スーパーセル内の前記複数のシリコン太陽電池を直列に電気接続した状態で並んで配置されている、長方形または略長方形シリコン太陽電池と、
    1または複数のバイパスダイオードと
    を備え、
    前記ソーラーモジュール内の隣接し合う平行行の各ペアは、前記ペアに含まれる一方の行内で中央に位置する太陽電池上の裏面電気接触部に伝導接合し、前記ペアに含まれる他方の行内の隣接する太陽電池上の裏面電気接触部に伝導接合するバイパスダイオードにより電気接続する、
    ソーラーモジュール。
  117. 隣接し合う平行行の各ペアは、前記ペアに含まれる一方の行内の太陽電池上の裏面電気接触部に伝導接合し、前記ペアに含まれる他方の行内の隣接する太陽電池上の裏面電気接触部に伝導接合する少なくとも1つの他のバイパスダイオードにより電気接続する、請求項116に記載のソーラーモジュール。
  118. 隣接し合う平行行の各ペアは、前記ペアに含まれる一方の行内の太陽電池上の裏面電気接触部に伝導接合し、前記ペアに含まれる他方の行内の隣接する太陽電池上の裏面電気接触部に伝導接合する少なくとも1つの他のバイパスダイオードにより電気接続する、請求項117に記載のソーラーモジュール。
  119. 前記電気および熱伝導性接着剤は、前記複数の太陽電池と垂直な方向への厚さが約50ミクロンより薄く、またはそれと等しく、前記複数の太陽電池と垂直な方向への熱伝導性が約1.5W/(メートル−K)より高い、またはそれと等しい、隣接し合う太陽電池間の複数の接合を形成する、請求項116に記載のソーラーモジュール。
  120. 前記複数のスーパーセルは、ガラス製の前面シートと後面シートとの間の熱可塑性オレフィン層内に封入されている、請求項116に記載のソーラーモジュール。
  121. 重なり合う太陽電池間の伝導性の前記複数の接合は、前記ソーラーモジュールにダメージを与えることなく約−40℃から約100℃の温度範囲で、前記複数のスーパーセルと前記ガラス製の前面シートとの間の、前記2またはそれより多くの平行行と平行な方向への熱膨張の不一致に適応する機械的コンプライアンスを、前記複数のスーパーセルに提供する、請求項116に記載のソーラーモジュール。
  122. Nは、約300より大きい、若しくはそれと等しい、約350より大きい、若しくはそれと等しい、約400より大きい、若しくはそれと等しい、約450より大きい、若しくはそれと等しい、約500より大きい、若しくはそれと等しい、約550より大きい、若しくはそれと等しい、約600より大きい、若しくはそれと等しい、約650より大きい、若しくはそれと等しい、または、約700より大きい、若しくはそれと等しい、請求項116から121のいずれか一項に記載のソーラーモジュール。
  123. 前記複数のスーパーセルは、電気接続して、約120ボルトより高い、若しくはそれと等しい、約180ボルトより高い、若しくはそれと等しい、約240ボルトより高い、若しくはそれと等しい、約300ボルトより高い、若しくはそれと等しい、約360ボルトより高い、若しくはそれと等しい、約420ボルトより高い、若しくはそれと等しい、約480ボルトより高い、若しくはそれと等しい、約540ボルトより高い、若しくはそれと等しい、または、約600ボルトより高い、若しくはそれと等しい高い直流電圧を提供する、請求項116から122のいずれか一項に記載のソーラーモジュール。
  124. 請求項116に記載のソーラーモジュールと、
    前記ソーラーモジュールに電気接続し、前記ソーラーモジュールからのDC出力を変換して、AC出力を提供するよう構成されたインバータと
    を備える、太陽エネルギーシステム。
  125. 前記インバータは、DC−DCブースト構成要素を有さない、請求項124に記載の太陽エネルギーシステム。
  126. 前記インバータは、太陽電池に逆バイアスをかけることを避けるよう設定された最小値より高い直流電圧で前記ソーラーモジュールを動作させるよう構成されている、請求項124に記載の太陽エネルギーシステム。
  127. 前記最小電圧値は温度依存である、請求項126に記載の太陽エネルギーシステム。
  128. 前記インバータは、逆バイアス状態を認識し、前記逆バイアス状態を避ける電圧で前記ソーラーモジュールを動作させるよう構成されている、請求項124に記載の太陽エネルギーシステム。
  129. 前記インバータは、前記ソーラーモジュールの電圧−電流出力曲線の極大領域において前記ソーラーモジュールを動作させて、前記逆バイアス状態を避けるよう構成されている、請求項128に記載の太陽エネルギーシステム。
  130. 前記インバータは、前記ソーラーモジュールと統合されたマイクロインバータである、請求項124から129のいずれか一項に記載の太陽エネルギーシステム。
JP2016567741A 2014-05-27 2015-05-26 システム Active JP6554703B2 (ja)

Applications Claiming Priority (75)

Application Number Priority Date Filing Date Title
US201462003223P 2014-05-27 2014-05-27
US62/003,223 2014-05-27
US201462035624P 2014-08-11 2014-08-11
US62/035,624 2014-08-11
US201462036215P 2014-08-12 2014-08-12
US62/036,215 2014-08-12
US201462042615P 2014-08-27 2014-08-27
US62/042,615 2014-08-27
US201462048858P 2014-09-11 2014-09-11
US62/048,858 2014-09-11
US201462064260P 2014-10-15 2014-10-15
US29/506,415 2014-10-15
US62/064,260 2014-10-15
US29506415 2014-10-15
US201462064834P 2014-10-16 2014-10-16
US62/064,834 2014-10-16
US29/506,755 2014-10-20
US29506755 2014-10-20
US14/530,405 US9780253B2 (en) 2014-05-27 2014-10-31 Shingled solar cell module
US14/530,405 2014-10-31
US14/532,293 US20150349193A1 (en) 2014-05-27 2014-11-04 Shingled solar cell module
US14/532,293 2014-11-04
US29508323 2014-11-05
US29/508,323 2014-11-05
US14/536,486 US20150349168A1 (en) 2014-05-27 2014-11-07 Shingled solar cell module
US14/536,486 2014-11-07
US14/539,546 2014-11-12
US14/539,546 US20150349169A1 (en) 2014-05-27 2014-11-12 Shingled solar cell module
US14/543,580 US9882077B2 (en) 2014-05-27 2014-11-17 Shingled solar cell module
US14/543,580 2014-11-17
US201462081200P 2014-11-18 2014-11-18
US62/081,200 2014-11-18
US29/509,588 USD767484S1 (en) 2014-11-19 2014-11-19 Solar panel
US29/509,588 2014-11-19
US29/509,586 USD750556S1 (en) 2014-11-19 2014-11-19 Solar panel
US14/548,081 2014-11-19
US14/548,081 US20150349701A1 (en) 2014-05-27 2014-11-19 Shingled solar cell module
US29/509,586 2014-11-19
US201462082904P 2014-11-21 2014-11-21
US14/550,676 2014-11-21
US14/550,676 US20150349171A1 (en) 2014-05-27 2014-11-21 Shingled solar cell module
US62/082,904 2014-11-21
US14/552,761 US20150349172A1 (en) 2014-05-27 2014-11-25 Shingled solar cell module
US14/552,761 2014-11-25
US14/560,577 US9876132B2 (en) 2014-05-27 2014-12-04 Shingled solar cell module
US14/560,577 2014-12-04
US14/565,820 2014-12-10
US14/565,820 US20150349145A1 (en) 2014-05-27 2014-12-10 Shingled solar cell module
US14/566,278 2014-12-10
US14/566,278 US20150349703A1 (en) 2014-05-27 2014-12-10 Shingled solar cell module
US14/572,206 US9401451B2 (en) 2014-05-27 2014-12-16 Shingled solar cell module
US14/572,206 2014-12-16
US14/577,593 US9356184B2 (en) 2014-05-27 2014-12-19 Shingled solar cell module
US14/577,593 2014-12-19
US14/585,917 2014-12-30
US14/586,025 US20150349153A1 (en) 2014-05-27 2014-12-30 Shingled solar cell module
US14/585,917 US20150349162A1 (en) 2014-05-27 2014-12-30 Shingled solar cell module
US14/586,025 2014-12-30
US14/594,439 US9397252B2 (en) 2014-05-27 2015-01-12 Shingled solar cell module
US14/594,439 2015-01-12
US201562103816P 2015-01-15 2015-01-15
US62/103,816 2015-01-15
US14/605,695 US9484484B2 (en) 2014-05-27 2015-01-26 Shingled solar cell module
US14/605,695 2015-01-26
US201562111757P 2015-02-04 2015-02-04
US62/111,757 2015-02-04
US201562113250P 2015-02-06 2015-02-06
US62/113,250 2015-02-06
US201562134176P 2015-03-17 2015-03-17
US62/134,176 2015-03-17
US14/674,983 2015-03-31
US14/674,983 US9947820B2 (en) 2014-05-27 2015-03-31 Shingled solar cell panel employing hidden taps
US201562150426P 2015-04-21 2015-04-21
US62/150,426 2015-04-21
PCT/US2015/032472 WO2015183827A2 (en) 2014-05-27 2015-05-26 Shingled solar cell module

Related Child Applications (4)

Application Number Title Priority Date Filing Date
JP2018236747A Division JP6582351B2 (ja) 2014-05-27 2018-12-18 こけら葺き状太陽電池モジュール
JP2018236748A Division JP6575671B2 (ja) 2014-05-27 2018-12-18 こけら葺き状太陽電池モジュール
JP2018236740A Division JP6663616B2 (ja) 2014-05-27 2018-12-18 こけら葺き状太陽電池モジュール
JP2018236749A Division JP6642841B2 (ja) 2014-05-27 2018-12-18 こけら葺き状太陽電池モジュール

Publications (3)

Publication Number Publication Date
JP2017517145A true JP2017517145A (ja) 2017-06-22
JP2017517145A5 JP2017517145A5 (ja) 2018-09-13
JP6554703B2 JP6554703B2 (ja) 2019-08-07

Family

ID=57321491

Family Applications (5)

Application Number Title Priority Date Filing Date
JP2016567741A Active JP6554703B2 (ja) 2014-05-27 2015-05-26 システム
JPD2019-794F Active JP1661435S (ja) 2014-05-27 2015-05-26
JPD2019-790F Active JP1676513S (ja) 2014-05-27 2015-05-26
JP2021154700A Active JP7369746B2 (ja) 2014-05-27 2021-09-22 こけら葺き状太陽電池モジュール
JP2023178007A Pending JP2023171674A (ja) 2014-05-27 2023-10-16 こけら葺き状太陽電池モジュール

Family Applications After (4)

Application Number Title Priority Date Filing Date
JPD2019-794F Active JP1661435S (ja) 2014-05-27 2015-05-26
JPD2019-790F Active JP1676513S (ja) 2014-05-27 2015-05-26
JP2021154700A Active JP7369746B2 (ja) 2014-05-27 2021-09-22 こけら葺き状太陽電池モジュール
JP2023178007A Pending JP2023171674A (ja) 2014-05-27 2023-10-16 こけら葺き状太陽電池モジュール

Country Status (6)

Country Link
JP (5) JP6554703B2 (ja)
KR (3) KR102482566B1 (ja)
CN (4) CN114582986A (ja)
AU (10) AU2015267239B2 (ja)
MX (2) MX2016015573A (ja)
SA (3) SA520420653B1 (ja)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6467549B1 (ja) * 2018-06-01 2019-02-13 株式会社カネカ 太陽電池セル
JP2019050375A (ja) * 2017-09-11 2019-03-28 エルジー エレクトロニクス インコーポレイティド 太陽電池パネル
JP2019103224A (ja) * 2017-11-30 2019-06-24 株式会社カネカ 太陽電池モジュール
JP2019195092A (ja) * 2017-03-09 2019-11-07 フレックス,リミテッド 板葺きアレイ太陽電池、及びそれを含むソーラモジュールを製造する方法
JP2019195054A (ja) * 2018-04-11 2019-11-07 サンパワー コーポレイション 太陽電池デバイスを製造する方法及び装置
JP2020027934A (ja) * 2018-08-09 2020-02-20 フレックス,リミテッド 板葺きソーラーモジュールの製造方法
JP2020509595A (ja) * 2018-01-18 2020-03-26 フレックス,リミテッド バスバーレス瓦状アレイ太陽電池セルおよび太陽電池セルを製造する方法
JP2020509596A (ja) * 2018-01-18 2020-03-26 フレックス,リミテッド こけら板状ソーラーモジュールを製造する方法
WO2020071083A1 (ja) 2018-10-02 2020-04-09 株式会社カネカ 太陽電池デバイスおよび太陽電池モジュール
WO2020121694A1 (ja) 2018-12-12 2020-06-18 株式会社カネカ 太陽電池デバイスおよび太陽電池モジュール
JP2020518999A (ja) * 2018-03-01 2020-06-25 テスラ,インコーポレイテッド 光起電屋根タイルをパッケージするためのシステムおよび方法
WO2020184301A1 (ja) * 2019-03-11 2020-09-17 株式会社カネカ 太陽電池デバイスおよび太陽電池モジュール、並びに太陽電池デバイスの製造方法
JP2020181905A (ja) * 2019-04-25 2020-11-05 シャープ株式会社 太陽電池モジュール
JP2021501548A (ja) * 2018-11-23 2021-01-14 チェンドゥ イエファン サイエンス アンド テクノロジー シーオー., エルティーディー.Chengdu Yefan Science And Technology Co., Ltd. 板葺きソーラーセルと板葺きソーラーモジュールを製造するための方法とシステム
US10991634B2 (en) 2018-11-23 2021-04-27 Chengdu Yefan Science And Technology Co., Ltd. Method and system for manufacturing solar cells and shingled solar cell modules
JP2021082722A (ja) * 2019-11-20 2021-05-27 株式会社カネカ 太陽電池モジュール
WO2021162009A1 (ja) * 2020-02-12 2021-08-19 株式会社カネカ 太陽電池モジュール
JP2021523581A (ja) * 2018-10-31 2021-09-02 浙江正泰太▲陽▼能科技有限公司 ダブル発電ユニットシングルセル式モジュール
JP2021136280A (ja) * 2020-02-25 2021-09-13 シャープ株式会社 配線シート、配線シート付き太陽電池セル、および太陽電池モジュール
US11245355B2 (en) 2018-09-04 2022-02-08 Tesla, Inc. Solar roof tile module
US11245354B2 (en) 2018-07-31 2022-02-08 Tesla, Inc. Solar roof tile spacer with embedded circuitry
WO2022075308A1 (ja) * 2020-10-05 2022-04-14 株式会社カネカ 太陽電池セル
US11437534B2 (en) 2018-02-20 2022-09-06 Tesla, Inc. Inter-tile support for solar roof tiles
JP2022542516A (ja) * 2019-08-02 2022-10-04 ジョジアン ジンコ ソーラー カンパニー リミテッド 太陽光発電モジュールの製造方法
JP7478063B2 (ja) 2020-08-11 2024-05-02 株式会社カネカ 太陽電池モジュール
JP7547490B2 (ja) 2020-09-15 2024-09-09 株式会社東芝 太陽電池
US12094992B2 (en) 2019-10-18 2024-09-17 Jusung Engineering Co., Ltd Unit cell, solar cell comprising same, and method for manufacturing solar cell
US12107180B2 (en) 2020-03-30 2024-10-01 Kaneka Corporation Cell assembly, method for producing cell assembly, solar cell, and method for producing solar cell

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10673379B2 (en) * 2016-06-08 2020-06-02 Sunpower Corporation Systems and methods for reworking shingled solar cell modules
KR101929442B1 (ko) * 2017-07-03 2019-03-14 엘지전자 주식회사 화합물 태양전지 모듈
KR102374146B1 (ko) * 2017-08-21 2022-03-15 엘지전자 주식회사 태양 전지 패널 및 이의 제조 방법
KR102379388B1 (ko) * 2017-08-24 2022-03-28 엘지전자 주식회사 태양 전지 및 이를 포함하는 태양 전지 패널
KR101852606B1 (ko) * 2017-08-28 2018-04-30 주식회사 탑선 분할 태양전지 모듈
KR101976175B1 (ko) * 2017-09-20 2019-05-08 엘지전자 주식회사 화합물 태양전지 모듈 및 그 제조 방법
KR102398002B1 (ko) * 2017-09-25 2022-05-13 엘지전자 주식회사 태양 전지 및 이를 포함하는 태양 전지 패널
KR102020347B1 (ko) * 2017-11-21 2019-09-11 한국생산기술연구원 슁글드 어레이유닛, 슁글드 어레이유닛을 갖는 태양광모듈 및 슁글드 어레이유닛의 제조방법
KR102470791B1 (ko) * 2017-12-07 2022-11-28 상라오 징코 솔라 테크놀러지 디벨롭먼트 컴퍼니, 리미티드 태양 전지 패널
KR102483986B1 (ko) * 2018-02-13 2023-01-03 상라오 징코 솔라 테크놀러지 디벨롭먼트 컴퍼니, 리미티드 태양 전지 패널
KR20190101705A (ko) * 2018-02-23 2019-09-02 엘지전자 주식회사 화합물 태양전지 모듈
KR102542153B1 (ko) * 2018-04-16 2023-06-12 상라오 징코 솔라 테크놀러지 디벨롭먼트 컴퍼니, 리미티드 태양전지 모듈
KR102524019B1 (ko) * 2018-03-26 2023-04-21 상라오 징코 솔라 테크놀러지 디벨롭먼트 컴퍼니, 리미티드 태양전지 및 이를 이용한 태양전지 모듈과 이의 제조 방법
KR20200010791A (ko) 2018-07-23 2020-01-31 한국생산기술연구원 스트링 어레이를 이용한 태양광 모듈 및 그의 제조방법
KR102604429B1 (ko) * 2018-07-30 2023-11-22 상라오 징코 솔라 테크놀러지 디벨롭먼트 컴퍼니, 리미티드 태양 전지 모듈 및 이의 제조 방법
CN109192792A (zh) * 2018-08-08 2019-01-11 连云港神舟新能源有限公司 一种提高电池片光电转换效率的方法
CN108987516B (zh) * 2018-08-10 2024-07-26 广东爱旭科技股份有限公司 网格状双面直连太阳能电池组件及制备方法
KR20200048864A (ko) * 2018-10-31 2020-05-08 한국생산기술연구원 고출력 슁글드 어레이 구조의 태양전지 모듈 및 그 제조방법
KR102186560B1 (ko) * 2018-10-31 2020-12-03 한국생산기술연구원 도로 블록용 태양전지 모듈 및 그 제조방법
CN111276549B (zh) * 2018-11-20 2021-03-09 成都晔凡科技有限公司 用于叠瓦组件的电池片、叠瓦组件及制备电池片的方法
CN109698253B (zh) * 2018-12-25 2023-12-08 无锡先导智能装备股份有限公司 放片装置及其方法
KR102219056B1 (ko) * 2019-02-13 2021-02-23 ㈜에이치엔에스 중첩된 태양전지 모듈에 리본을 부착하는 방법
KR102642720B1 (ko) * 2019-04-30 2024-03-05 상라오 신위안 웨동 테크놀러지 디벨롭먼트 컴퍼니, 리미티드 버스 리본 부재 및 이를 포함하는 태양 전지 패널
KR20210013950A (ko) 2019-07-29 2021-02-08 한국생산기술연구원 슁글드 태양광 패널용 태양전지 셀의 제조방법 및 이를 이용한 태양광 패널
WO2021106417A1 (ja) * 2019-11-29 2021-06-03 株式会社カネカ 太陽電池、太陽電池モジュール及び太陽電池の製造方法
KR20200103612A (ko) 2020-08-27 2020-09-02 한국생산기술연구원 스트링 어레이를 이용한 태양광 모듈의 제조방법
KR20220123819A (ko) * 2021-03-02 2022-09-13 엘지전자 주식회사 태양 전지 및 그를 포함하는 태양 전지 모듈
KR102354015B1 (ko) * 2021-03-31 2022-01-21 주식회사 신성이엔지 슁글드 스트링 및 이를 포함하는 태양전지 모듈의 제조 방법
MX2023013029A (es) * 2021-05-06 2023-11-16 GAF Energy LLC Modulo fotovoltaico con bordes perimetrales transparentes.
KR102628295B1 (ko) * 2021-07-06 2024-01-23 고려대학교 산학협력단 태양광 모듈의 제조 방법
CN113594281B (zh) * 2021-07-30 2023-07-28 成都中建材光电材料有限公司 一种抗热斑光伏发电玻璃及制作方法
WO2023214600A1 (ko) * 2022-05-04 2023-11-09 주식회사 에스제이이노테크 솔라 셀 절단장치
KR102688198B1 (ko) * 2022-06-22 2024-07-24 성균관대학교산학협력단 탠덤 태양전지 셀, 탠덤 태양전지 모듈 및 이의 제조 방법
CN115472428A (zh) * 2022-08-12 2022-12-13 安徽省宁国市海伟电子有限公司 一种薄膜电容器用金属化薄膜及薄膜电容器

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0722357A (ja) * 1990-05-25 1995-01-24 Internatl Business Mach Corp <Ibm> 半導体ウェーハ一括切断及び切断切子面被覆方法
JPH10116801A (ja) * 1996-10-09 1998-05-06 Rohm Co Ltd 基板分割方法及びその基板分割を用いた発光素子製造 方法
US6364751B1 (en) * 1999-04-09 2002-04-02 Infineon Technologies Ag Method for singling semiconductor components and semiconductor component singling device
JP2002110588A (ja) * 2000-09-27 2002-04-12 Nec Kansai Ltd チップ製造装置
US20060103371A1 (en) * 2004-10-16 2006-05-18 Dieter Manz Testing system for solar cells
JP2006525137A (ja) * 2003-05-09 2006-11-09 オリジン エナジー ソーラー ピーティワイ リミテッド 半導体ストリップの切り離しおよび組み立て
JP2006344910A (ja) * 2005-06-10 2006-12-21 Canon Machinery Inc ウェーハ分割方法およびウェーハ分割治具
JP2009130193A (ja) * 2007-11-26 2009-06-11 Toyota Motor Corp 太陽電池モジュール
WO2012043770A1 (ja) * 2010-09-29 2012-04-05 京セラ株式会社 太陽電池モジュールおよびその製造方法
JP2013012575A (ja) * 2011-06-29 2013-01-17 Toray Eng Co Ltd 太陽電池モジュールの製造システム及びその製造方法
JP2013089659A (ja) * 2011-10-14 2013-05-13 Nitto Denko Corp 太陽電池セルの製造方法、及び太陽電池モジュール
JP2013253317A (ja) * 2012-05-08 2013-12-19 Fujifilm Corp 半導体装置用基板、半導体装置、調光型照明装置、自己発光表示装置、太陽電池および反射型液晶表示装置
US20140124014A1 (en) * 2012-11-08 2014-05-08 Cogenra Solar, Inc. High efficiency configuration for solar cell string

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2912496B2 (ja) * 1991-09-30 1999-06-28 シャープ株式会社 太陽電池モジュール
US5710065A (en) * 1995-01-03 1998-01-20 Texas Instruments Incorporated Method and apparatus for breaking and separating dies from a wafer
US6262358B1 (en) * 1999-02-18 2001-07-17 Sharp Kabushiki Kaisha Solar cell module and solar cell panel using the same
JP3888860B2 (ja) * 2000-05-24 2007-03-07 シャープ株式会社 太陽電池セルの保護方法
JP2001352089A (ja) * 2000-06-08 2001-12-21 Showa Shell Sekiyu Kk 熱膨張歪み防止型太陽電池モジュール
US20030121228A1 (en) * 2001-12-31 2003-07-03 Stoehr Robert P. System and method for dendritic web solar cell shingling
KR101257786B1 (ko) * 2004-08-09 2013-04-30 트랜스폼 솔라 피티와이 리미티드 태양전지(슬라이버) 서브모듈 형성
US20080223429A1 (en) * 2004-08-09 2008-09-18 The Australian National University Solar Cell (Sliver) Sub-Module Formation
US7759158B2 (en) * 2005-03-22 2010-07-20 Applied Materials, Inc. Scalable photovoltaic cell and solar panel manufacturing with improved wiring
CA2612383A1 (en) * 2005-06-17 2006-12-21 The Australian National University A solar cell interconnection process
WO2006137746A1 (en) * 2005-06-24 2006-12-28 Renewable Energy Corporation Asa Stress relieving ribbons
EP2654089A3 (en) * 2007-02-16 2015-08-12 Nanogram Corporation Solar cell structures, photovoltaic modules and corresponding processes
JP4942518B2 (ja) * 2007-03-12 2012-05-30 シャープ株式会社 インターコネクタ
KR101645045B1 (ko) * 2008-03-11 2016-08-02 쌩-고벵 글래스 프랑스 태양광 모듈
GB2459274A (en) * 2008-04-15 2009-10-21 Renewable Energy Corp Asa Wafer based solar panels
US20090283137A1 (en) * 2008-05-15 2009-11-19 Steven Thomas Croft Solar-cell module with in-laminate diodes and external-connection mechanisms mounted to respective edge regions
US20100139754A1 (en) * 2008-12-09 2010-06-10 Palo Alto Research Center Incorporated Solar Cell With Co-Planar Backside Metallization
US9608149B2 (en) * 2008-12-19 2017-03-28 Sphelar Power Corporation Solar cell module and method for producing the same
WO2010135801A1 (en) * 2009-05-25 2010-12-02 Day4 Energy Lnc. Photovoltaic module string arrangement and shading protection therefor
CN101908578A (zh) * 2009-06-02 2010-12-08 江西天能电力股份有限公司 一片硅片制造一个以上太阳电池的方法
US20110083716A1 (en) * 2009-07-22 2011-04-14 Applied Materials, Inc. Monolithic module assembly using back contact solar cells and metal ribbon
KR101097252B1 (ko) * 2009-11-17 2011-12-21 삼성에스디아이 주식회사 광전변환소자
US8691694B2 (en) * 2009-12-22 2014-04-08 Henry Hieslmair Solderless back contact solar cell module assembly process
US20110271999A1 (en) * 2010-05-05 2011-11-10 Cogenra Solar, Inc. Receiver for concentrating photovoltaic-thermal system
JP5562762B2 (ja) * 2010-08-20 2014-07-30 株式会社東芝 開放電圧制御システム
US20120080078A1 (en) * 2010-10-02 2012-04-05 Applied Solar, Llc Photovoltaic modules and methods of manufacturing
US20120318319A1 (en) * 2011-06-17 2012-12-20 Solopower, Inc. Methods of interconnecting thin film solar cells
WO2013105472A1 (ja) * 2012-01-13 2013-07-18 三洋電機株式会社 車載用太陽電池モジュール
DE102012019097A1 (de) * 2012-09-28 2014-04-03 Michael Pashley Photovoltaikanlage mit wellenförmiger Oberfläche
CN104813480B (zh) * 2012-10-16 2017-03-01 索莱克赛尔公司 用于光伏太阳能电池和模块中的单片集成旁路开关的系统和方法
JP2016500931A (ja) * 2012-11-05 2016-01-14 ソレクセル、インコーポレイテッド 一体アイル型太陽光発電セル及びモジュールのためのシステム及び方法
US20140124013A1 (en) * 2012-11-08 2014-05-08 Cogenra Solar, Inc. High efficiency configuration for solar cell string

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0722357A (ja) * 1990-05-25 1995-01-24 Internatl Business Mach Corp <Ibm> 半導体ウェーハ一括切断及び切断切子面被覆方法
JPH10116801A (ja) * 1996-10-09 1998-05-06 Rohm Co Ltd 基板分割方法及びその基板分割を用いた発光素子製造 方法
US6364751B1 (en) * 1999-04-09 2002-04-02 Infineon Technologies Ag Method for singling semiconductor components and semiconductor component singling device
JP2002110588A (ja) * 2000-09-27 2002-04-12 Nec Kansai Ltd チップ製造装置
JP2006525137A (ja) * 2003-05-09 2006-11-09 オリジン エナジー ソーラー ピーティワイ リミテッド 半導体ストリップの切り離しおよび組み立て
US20060103371A1 (en) * 2004-10-16 2006-05-18 Dieter Manz Testing system for solar cells
JP2006344910A (ja) * 2005-06-10 2006-12-21 Canon Machinery Inc ウェーハ分割方法およびウェーハ分割治具
JP2009130193A (ja) * 2007-11-26 2009-06-11 Toyota Motor Corp 太陽電池モジュール
WO2012043770A1 (ja) * 2010-09-29 2012-04-05 京セラ株式会社 太陽電池モジュールおよびその製造方法
JP2013012575A (ja) * 2011-06-29 2013-01-17 Toray Eng Co Ltd 太陽電池モジュールの製造システム及びその製造方法
JP2013089659A (ja) * 2011-10-14 2013-05-13 Nitto Denko Corp 太陽電池セルの製造方法、及び太陽電池モジュール
JP2013253317A (ja) * 2012-05-08 2013-12-19 Fujifilm Corp 半導体装置用基板、半導体装置、調光型照明装置、自己発光表示装置、太陽電池および反射型液晶表示装置
US20140124014A1 (en) * 2012-11-08 2014-05-08 Cogenra Solar, Inc. High efficiency configuration for solar cell string

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019195092A (ja) * 2017-03-09 2019-11-07 フレックス,リミテッド 板葺きアレイ太陽電池、及びそれを含むソーラモジュールを製造する方法
US11901464B2 (en) 2017-09-11 2024-02-13 Shangrao Xinyuan Yuedong Technology Development Co. Ltd. Solar cell panel
JP2019050375A (ja) * 2017-09-11 2019-03-28 エルジー エレクトロニクス インコーポレイティド 太陽電池パネル
JP2019103224A (ja) * 2017-11-30 2019-06-24 株式会社カネカ 太陽電池モジュール
JP7002558B2 (ja) 2018-01-18 2022-01-20 フレックス,リミテッド バスバーレス瓦状アレイ太陽電池セルおよび太陽電池セルを製造する方法
JP2020509595A (ja) * 2018-01-18 2020-03-26 フレックス,リミテッド バスバーレス瓦状アレイ太陽電池セルおよび太陽電池セルを製造する方法
JP2020509596A (ja) * 2018-01-18 2020-03-26 フレックス,リミテッド こけら板状ソーラーモジュールを製造する方法
US11437534B2 (en) 2018-02-20 2022-09-06 Tesla, Inc. Inter-tile support for solar roof tiles
JP7071387B2 (ja) 2018-03-01 2022-05-18 テスラ,インコーポレイテッド 光起電屋根タイルをパッケージするためのシステムおよび方法
JP2020518999A (ja) * 2018-03-01 2020-06-25 テスラ,インコーポレイテッド 光起電屋根タイルをパッケージするためのシステムおよび方法
JP2019195054A (ja) * 2018-04-11 2019-11-07 サンパワー コーポレイション 太陽電池デバイスを製造する方法及び装置
US11830956B2 (en) 2018-04-11 2023-11-28 Maxeon Solar Pte. Ltd. Method and apparatus of fabricating a solar cell device
JP6467549B1 (ja) * 2018-06-01 2019-02-13 株式会社カネカ 太陽電池セル
JP2019212882A (ja) * 2018-06-01 2019-12-12 株式会社カネカ 太陽電池セル
US11245354B2 (en) 2018-07-31 2022-02-08 Tesla, Inc. Solar roof tile spacer with embedded circuitry
JP2020027934A (ja) * 2018-08-09 2020-02-20 フレックス,リミテッド 板葺きソーラーモジュールの製造方法
US11245355B2 (en) 2018-09-04 2022-02-08 Tesla, Inc. Solar roof tile module
WO2020071083A1 (ja) 2018-10-02 2020-04-09 株式会社カネカ 太陽電池デバイスおよび太陽電池モジュール
JP2021523581A (ja) * 2018-10-31 2021-09-02 浙江正泰太▲陽▼能科技有限公司 ダブル発電ユニットシングルセル式モジュール
JP2021501548A (ja) * 2018-11-23 2021-01-14 チェンドゥ イエファン サイエンス アンド テクノロジー シーオー., エルティーディー.Chengdu Yefan Science And Technology Co., Ltd. 板葺きソーラーセルと板葺きソーラーモジュールを製造するための方法とシステム
US10991633B2 (en) 2018-11-23 2021-04-27 Chengdu Yefan Science And Technology Co., Ltd. Method and system for manufacturing solar cells and shingled solar cell modules
US10991634B2 (en) 2018-11-23 2021-04-27 Chengdu Yefan Science And Technology Co., Ltd. Method and system for manufacturing solar cells and shingled solar cell modules
WO2020121694A1 (ja) 2018-12-12 2020-06-18 株式会社カネカ 太陽電池デバイスおよび太陽電池モジュール
JPWO2020184301A1 (ja) * 2019-03-11 2021-11-04 株式会社カネカ 太陽電池デバイスおよび太陽電池モジュール、並びに太陽電池デバイスの製造方法
WO2020184301A1 (ja) * 2019-03-11 2020-09-17 株式会社カネカ 太陽電池デバイスおよび太陽電池モジュール、並びに太陽電池デバイスの製造方法
JP2020181905A (ja) * 2019-04-25 2020-11-05 シャープ株式会社 太陽電池モジュール
JP2022542516A (ja) * 2019-08-02 2022-10-04 ジョジアン ジンコ ソーラー カンパニー リミテッド 太陽光発電モジュールの製造方法
JP7418548B2 (ja) 2019-08-02 2024-01-19 ジョジアン ジンコ ソーラー カンパニー リミテッド 太陽光発電モジュールの製造方法
US12094992B2 (en) 2019-10-18 2024-09-17 Jusung Engineering Co., Ltd Unit cell, solar cell comprising same, and method for manufacturing solar cell
JP2021082722A (ja) * 2019-11-20 2021-05-27 株式会社カネカ 太陽電池モジュール
WO2021162009A1 (ja) * 2020-02-12 2021-08-19 株式会社カネカ 太陽電池モジュール
JP2021136280A (ja) * 2020-02-25 2021-09-13 シャープ株式会社 配線シート、配線シート付き太陽電池セル、および太陽電池モジュール
JP7507569B2 (ja) 2020-02-25 2024-06-28 シャープ株式会社 配線シート、配線シート付き太陽電池セル、および太陽電池モジュール
US12107180B2 (en) 2020-03-30 2024-10-01 Kaneka Corporation Cell assembly, method for producing cell assembly, solar cell, and method for producing solar cell
JP7478063B2 (ja) 2020-08-11 2024-05-02 株式会社カネカ 太陽電池モジュール
JP7547490B2 (ja) 2020-09-15 2024-09-09 株式会社東芝 太陽電池
WO2022075308A1 (ja) * 2020-10-05 2022-04-14 株式会社カネカ 太陽電池セル
JP7493052B2 (ja) 2020-10-05 2024-05-30 株式会社カネカ 太陽電池セル

Also Published As

Publication number Publication date
AU2023251472A1 (en) 2023-11-09
JP7369746B2 (ja) 2023-10-26
CN109346538B (zh) 2022-11-29
JP1676513S (ja) 2021-01-12
SA520420653B1 (ar) 2023-01-02
MX2016015573A (es) 2017-07-13
KR102054420B1 (ko) 2020-01-22
AU2019101205B4 (en) 2020-07-30
KR20210013311A (ko) 2021-02-03
AU2021261854A1 (en) 2021-12-02
CN109768095B (zh) 2023-04-04
KR102368110B1 (ko) 2022-02-25
AU2019101205A4 (en) 2019-11-07
AU2018279029A1 (en) 2019-01-17
AU2015267239B2 (en) 2019-07-04
AU2018279033A1 (en) 2019-01-17
AU2019101206B4 (en) 2020-09-24
AU2015267239A1 (en) 2016-11-24
AU2018279035B2 (en) 2019-07-11
AU2019101207A4 (en) 2019-11-07
KR102482566B1 (ko) 2022-12-29
SA516380384B1 (ar) 2021-07-17
AU2018279033B2 (en) 2019-07-11
MX2020012189A (es) 2021-01-29
CN109346538A (zh) 2019-02-15
CN114582986A (zh) 2022-06-03
SA520420601B1 (ar) 2022-11-16
CN109768095A (zh) 2019-05-17
JP6554703B2 (ja) 2019-08-07
CN108305904A (zh) 2018-07-20
AU2018279035A1 (en) 2019-01-17
JP2022000916A (ja) 2022-01-04
AU2018279029B2 (en) 2019-07-11
KR20220028170A (ko) 2022-03-08
JP1661435S (ja) 2020-06-08
CN108305904B (zh) 2022-08-05
AU2019222952A1 (en) 2019-12-05
AU2019101206A4 (en) 2019-11-07
AU2019101207B4 (en) 2020-05-14
JP2023171674A (ja) 2023-12-01
KR20170057177A (ko) 2017-05-24

Similar Documents

Publication Publication Date Title
JP6554703B2 (ja) システム
US11038072B2 (en) Shingled solar cell module
KR102126790B1 (ko) 슁글드 태양 전지 모듈
US10861999B2 (en) Shingled solar cell module comprising hidden tap interconnects
JP6601705B1 (ja) こけら葺き状太陽電池モジュール
US11482639B2 (en) Shingled solar cell module
TWI737989B (zh) 蓄板太陽能電池模組
US20220367735A1 (en) Shingled solar cell module

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180524

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180801

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20180801

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20180827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180918

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190611

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190617

R150 Certificate of patent or registration of utility model

Ref document number: 6554703

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250