KR20170057177A - 슁글드 태양 전지 모듈 - Google Patents

슁글드 태양 전지 모듈 Download PDF

Info

Publication number
KR20170057177A
KR20170057177A KR1020167036325A KR20167036325A KR20170057177A KR 20170057177 A KR20170057177 A KR 20170057177A KR 1020167036325 A KR1020167036325 A KR 1020167036325A KR 20167036325 A KR20167036325 A KR 20167036325A KR 20170057177 A KR20170057177 A KR 20170057177A
Authority
KR
South Korea
Prior art keywords
solar
solar cells
solar cell
module
cells
Prior art date
Application number
KR1020167036325A
Other languages
English (en)
Other versions
KR102054420B1 (ko
Inventor
라트손 모라드
길라드 알모지
이타이 수에즈
진 험멜
나단 벡케트
야푸 린
존 간논
마이클 제이. 스타케이
로버트 스튜어트
타미르 란세
단 매이단
Original Assignee
선파워 코포레이션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=57321491&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=KR20170057177(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from US14/530,405 external-priority patent/US9780253B2/en
Priority claimed from US29/509,586 external-priority patent/USD750556S1/en
Priority claimed from US29/509,588 external-priority patent/USD767484S1/en
Priority claimed from US14/674,983 external-priority patent/US9947820B2/en
Application filed by 선파워 코포레이션 filed Critical 선파워 코포레이션
Priority claimed from PCT/US2015/032472 external-priority patent/WO2015183827A2/en
Publication of KR20170057177A publication Critical patent/KR20170057177A/ko
Application granted granted Critical
Publication of KR102054420B1 publication Critical patent/KR102054420B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02002Arrangements for conducting electric current to or from the device in operations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02002Arrangements for conducting electric current to or from the device in operations
    • H01L31/02005Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier
    • H01L31/02008Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/044PV modules or arrays of single PV cells including bypass diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • H01L31/0508Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module the interconnection means having a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • H01L31/0745Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells
    • H01L31/0747Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells comprising a heterojunction of crystalline and amorphous materials, e.g. heterojunction with intrinsic thin layer or HIT® solar cells; solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1876Particular processes or apparatus for batch treatment of the devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • H02S40/32Electrical components comprising DC/AC inverter means associated with the PV module itself, e.g. AC modules
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • H02S40/34Electrical components comprising specially adapted electrical connection means to be structurally associated with the PV module, e.g. junction boxes
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • H02S40/36Electrical components characterised by special electrical interconnection means between two or more PV modules, e.g. electrical module-to-module connection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

태양 전지 모듈을 위한 고효율 구성은 슈퍼 셀들을 형성하도록 슁글드 방식으로 서로 전기적으로 결합되는 태양 전지들을 포함하며, 이들은 상기 태양광 모듈의 면적을 효율적으로 이용하고, 직렬 저항을 감소시키며, 모듈 효율을 증가시키도록 배열될 수 있다. 상기 태양 전지들 상의 전면 금속화 패턴들은 단일 단계 스텐실 프린팅이 가능하도록 구성될 수 있고, 이는 상기 슈퍼 셀들 내의 태양 전지들의 중첩되는 구성에 의해 가능하다. 태양광 발전 시스템은 서로와 인버터에 병렬로 전기적으로 연결되는 둘 또는 그 이상의 이러한 고전압 태양 전지 모듈들을 포함할 수 있다. 태양 전지 절단 기구들 및 태양 전지 절단 방법들은 곡선의 지지면에 대해 상기 태양 전지 웨이퍼를 굽히도록 태양 전지 웨이퍼의 저면들과 상기 곡선의 지지면 사이에 진공을 적용하며, 이에 따라 복수의 태양 전지들을 제공하도록 하나 또는 그 이상의 미리 제조된 스크라이브 라인들을 따라 상기 태양 전지 웨이퍼를 절단한다. 이들 절단 기구들 및 절단 방법들의 이점은 이들이 상기 태양 전지 웨이퍼의 상부 표면들과의 물리적인 접촉을 요구하지 않는 것이다. 태양 전지들은, 예를 들면 전하 재결합을 증진시키는 절단된 에지들이 없이 상기 태양 전지의 에지들에서 감소된 전하 재결합 손실들을 가지며 제조된다. 상기 태양 전지들은 좁은 직사각형의 기가학적 구조들을 가질 수 있고, 슈퍼 셀들을 형성하도록 슁글드(중첩되는) 배치들로 유리하게 채용될 수 있다.

Description

슁글드 태양 전지 모듈{SHINGLED SOLAR CELL MODULE}
본 발명은 대체로 태양 전지들이 슁글드 방식(shingled manner)으로 배열되는 태양 전지 모듈들에 관한 것이다.
본 국제 특허 출원은, 2014년 10월 31일에 출원된 미국 특허 출원 제14/530,405호(발명의 명칭: "슁글드 태양 전지 모듈(Shingled Solar Cell Module)"), 2014년 11월 4일에 출원된 미국 특허 출원 제14/532,293호(발명의 명칭: "슁글드 태양 전지 모듈(Shingled Solar Cell Module)"), 2014년 11월 7일에 출원된 미국 특허 출원 제14/536,486호(발명의 명칭: "슁글드 태양 전지 모듈(Shingled Solar Cell Module)"), 2014년 11월 12일에 출원된 미국 특허 출원 제14/539,546호(발명의 명칭: "슁글드 태양 전지 모듈(Shingled Solar Cell Module)"), 2014년 11월 17일에 출원된 미국 특허 출원 제14/543,580호(발명의 명칭: "슁글드 태양 전지 모듈(Shingled Solar Cell Module)"), 2014년 11월 19일에 출원된 미국 특허 출원 제14/548,081호(발명의 명칭: "슁글드 태양 전지 모듈(Shingled Solar Cell Module)"), 2014년 11월 21일에 출원된 미국 특허 출원 제14/550,676호(발명의 명칭: "슁글드 태양 전지 모듈(Shingled Solar Cell Module)"), 2014년 11월 25일에 출원된 미국 특허 출원 제14/552,761호(발명의 명칭: "슁글드 태양 전지 모듈(Shingled Solar Cell Module)"), 2014년 12월 4일에 출원된 미국 특허 출원 제14/560,577호(발명의 명칭: "슁글드 태양 전지 모듈(Shingled Solar Cell Module)"), 2014년 12월 10일에 출원된 미국 특허 출원 제14/566,278호(발명의 명칭: "슁글드 태양 전지 모듈(Shingled Solar Cell Module)"), 2014년 12월 10일에 출원된 미국 특허 출원 제14/565,820호(발명의 명칭: "슁글드 태양 전지 모듈(Shingled Solar Cell Module)"), 2014년 12월 16일에 출원된 미국 특허 출원 제14/572,206호(발명의 명칭: "슁글드 태양 전지 모듈(Shingled Solar Cell Module)"), 2014년 12월 19일에 출원된 미국 특허 출원 제14/577,593호(발명의 명칭: "슁글드 태양 전지 모듈(Shingled Solar Cell Module)"), 2014년 12월 30일에 출원된 미국 특허 출원 제14/586,025호(발명의 명칭: "슁글드 태양 전지 모듈(Shingled Solar Cell Module)"), 2014년 12월 30일에 출원된 미국 특허 출원 제14/585,917호(발명의 명칭: "슁글드 태양 전지 모듈(Shingled Solar Cell Module)"), 2015년 1월 12일에 출원된 미국 특허 출원 제14/594,439호(발명의 명칭: "슁글드 태양 전지 모듈(Shingled Solar Cell Module)"), 2015년 1월 26일에 출원된 미국 특허 출원 제14/605,695호(발명의 명칭: "슁글드 태양 전지 모듈(Shingled Solar Cell Module)"), 2014년 3월 27일에 출원된 미국 임시 특허 출원 제62/003,223호(발명의 명칭: "슁글드 태양 전지 모듈(Shingled Solar Cell Module)"), 2014년 8월 12일에 출원된 미국 임시 특허 출원 제62/036,215호(발명의 명칭: "슁글드 태양 전지 모듈(Shingled Solar Cell Module)"), 2014년 8월 27일에 출원된 미국 임시 특허 출원 제62/042,615호(발명의 명칭: "슁글드 태양 전지 모듈(Shingled Solar Cell Module)"), 2014년 9월 11일에 출원된 미국 임시 특허 출원 제62/048,858호(발명의 명칭: "슁글드 태양 전지 모듈(Shingled Solar Cell Module)"), 2014년 10월 15일에 출원된 미국 임시 특허 출원 제62/064,260호(발명의 명칭: "슁글드 태양 전지 모듈(Shingled Solar Cell Module)"), 2014년 10월 16일에 출원된 미국 임시 특허 출원 제62/064,834호(발명의 명칭: "슁글드 태양 전지 모듈(Shingled Solar Cell Module)"), 2015년 3월 31일에 출원된 미국 특허 출원 제14/674,983호(발명의 명칭: "히든 탭들을 채용한 슁글드 태양 전지 패널(Shingled Solar Cell Panel Employing Hidden Taps)"), 2014년 11월 18일에 출원된 미국 임시 특허 출원 제62/081,200호(발명의 명칭: "히든 탭들을 채용한 태양 전지 패널(Solar Cell Panel Employing Hidden Taps)"), 2015년 2월 6일에 출원된 미국 임시 특허 출원 제62/113,250호(발명의 명칭: "히든 탭들을 채용한 슁글드 태양 전지 패널(Shingled Solar Cell Panel Employing Hidden Taps)"), 2014년 11월 21일에 출원된 미국 임시 특허 출원 제62/082,904호(발명의 명칭: "고전압 태양광 패널(High Voltage Solar Panel)"), 2015년 1월 15일에 출원된 미국 임시 특허 출원 제62/103,816호(발명의 명칭: "고전압 태양 전지 패널(High Voltage Solar Panel)"), 2015년 2월 4일에 출원된 미국 임시 특허 출원 제62/111,757호(발명의 명칭: "고전압 태양 전지 패널(High Voltage Solar Panel)"), 2015년 3월 17일에 출원된 미국 임시 특허 출원 제62/134,176호(발명의 명칭: "태양 전지 절단 기구들 및 방법들(Solar Cell Cleaving Tools and Methods)"), 2015년 4월 21일에 출원된 미국 임시 특허 출원 제62/150,426호(발명의 명칭: "스텐실 프린트된 셀 금속화를 포함하는 슁글드 태양 전지 패널(Shingled Solar Cell Panel Comprising Stencil-Printed Cell Metallization)"), 2014년 8월 11일에 출원된 미국 임시 특허 출원 제62/035,624호(발명의 명칭: "감소된 에지 전하 재결합을 갖는 태양 전지들(Solar Cells with Reduced Edge Carrier Recombination)"), 2014년 10월 15일에 출원된 미국 디자인 특허 출원 제29/506,415호, 2014년 10월 20일에 출원된 미국 디자인 특허 출원 제29/506,755호, 2014년 11월 5일에 출원된 미국 디자인 특허 출원 제29/508,323호, 2014년 11월 19일에 출원된 미국 디자인 특허 출원 제29/509,586호, 그리고 2014년 11월 19일에 출원된 미국 디자인 특허 출원 제29/509,588호를 우선권들로 수반한다. 앞서 열거한 각각의 상기 특허 출원들은 모든 목적들을 위해 그 개시 사항들이 여기에 참조로 포함된다.
에너지의 대체 소스들이 증가하고 있는 범세계적인 모든 에너지 요구들을 충족시키기 위해 요구되고 있다. 태양 에너지 자원들은 태양(예를 들면, 광 발전) 전지들로 발생되는 전력의 공급에 의해 부분적으로 이러한 요구들을 만족시키기 위해 많은 지리적 지역들에서 충분하다.
태양 전지 모듈 내의 태양 전지들의 고효율 배치들 및 이러한 태양광 모듈(solar module)들을 만드는 방법들이 여기에 개시된다.
일 측면에 있어서, 태양광 모듈은 약 10볼트보다 큰 항복 전압을 갖는 N≥25 직사각형 또는 실질적으로 직사각형의 태양 전지들의 직렬 연결된 스트링(string)을 포함한다. 상기 태양 전지들은 중첩되고 전기적 및 열적으로 도전성인 접착제로 서로 도전성으로 결합되는 인접하는 태양 전지들의 긴 측면들과 일렬로 배열되는 상기 태양 전지들의 둘 또는 그 이상을 포함하는 하나 또는 그 이상의 슈퍼 셀(super cell)들 내로 그룹화된다. 상기 태양 전지들의 스트링 내의 <N 태양 전지들의 단일의 태양 전지 또는 그룹은 바이패스 다이오드(bypass diode)에 개별적으로 전기적으로 병렬로 연결되지 않는다. 상기 태양광 모듈의 안전과 신뢰성 있는 동작은 인접하는 태양 전지들의 결합되고 중첩되는 부분들을 통한 상기 슈퍼 셀들을 따른 효과적인 열전도에 의해 가능해지며, 이는 역 바이어스된(reverse biased) 태양 전지들 내에 핫 스팟(hot spot)들의 형성을 방지하거나 감소시킨다. 상기 슈퍼 셀들은, 예를 들면, 유리 전면 및 후면 시트들 사이에 개재되는 열가소성 올레핀 폴리머(thermoplastic olefin polymer) 내에 봉지될 수 있고, 열적 손상에 대한 상기 모듈의 견고성을 보다 향상시킨다. 일부 변형예들에서, N은 ≥30, ≥50 또는 ≥100이다.
다른 측면에 있어서, 슈퍼 셀은 각기 제1 및 제2 대향되게 위치하는 평행한 긴 측면(long side)들 및 두 개의 대향되게 위치하는 짧은 측면(short side)들에 의해 한정되는 형상들을 갖는 직사각형 또는 실질적으로 직사각형의 전면(태양측(sun side)) 및 후면들을 구비하는 복수의 실리콘 태양 전지들을 포함한다. 각 태양 전지는 상기 제1 긴 측면에 인접하여 위치하는 적어도 하나의 전면 콘택 패드를 구비하는 전기적으로 도전성인 전면 금속화(metallization) 패턴 및 상기 제2 긴 측면에 인접하여 위치하는 적어도 하나의 후면 콘택 패드를 구비하는 전기적으로 도전성인 후면 금속화 패턴을 포함한다. 상기 실리콘 태양 전지들은 상기 실리콘 태양 전지들을 전기적으로 직렬로 연결하도록 중첩되고 인접하는 실리콘 태양 전지들의 제1 및 제2 긴 측면들 그리고 중첩되고 도전성 접착 결합 물질로 서로 도전성으로 결합되는 인접하는 실리콘 태양 전지들 상의 전면 및 후면 콘택 패드들과 일렬로 배열된다. 각 실리콘 태양 전지의 상기 전면 금속화 패턴은 상기 슈퍼 셀의 제조 동안에 상기 도전성 접착 결합 물질의 큐어링(curing) 이전에 상기 도전성 접착 결합 물질을 상기 적어도 하나의 전면 콘택 패드들에 실질적으로 제한하도록 구성되는 배리어(barrier)를 포함한다.
다른 측면에 있어서, 슈퍼 셀은 각기 제1 및 제2 대향되게 위치하는 평행한 긴 측면들 및 두 개의 대향되게 위치하는 짧은 측면들에 의해 한정되는 형상들을 갖는 직사각형 또는 실질적으로 직사각형의 전면(태양측) 및 후면을 구비하는 복수의 실리콘 태양 전지들을 포함한다. 각 태양 전지는 상기 제1 긴 측면에 인접하여 위치하는 적어도 하나의 전면 콘택 패드를 구비하는 전기적으로 도전성인 전면 금속화 패턴 및 상기 제2 긴 측면에 인접하여 위치하는 적어도 하나의 후면 콘택 패드를 구비하는 전기적으로 도전성인 후면 금속화 패턴을 포함한다. 상기 실리콘 태양 전지들은 상기 실리콘 태양 전지들을 전기적으로 직렬로 연결하도록 중첩되고 인접하는 실리콘 태양 전지들의 제1 및 제2 긴 측면들 그리고 중첩되고 도전성 접착 결합 물질로 서로 도전성으로 결합되는 인접하는 실리콘 태양 전지들 상의 전면 및 후면 콘택 패드들과 일렬로 배열된다. 각 실리콘 태양 전지의 후면 금속화 패턴은 상기 슈퍼 셀의 제조 동안에 상기 도전성 접착 결합 물질의 큐어링 이전에 상기 도전성 접착 결합 물질을 상기 적어도 하나의 후면 콘택 패드들에 실질적으로 제한하도록 구성되는 배리어를 포함한다.
다른 측면에 있어서, 태양 전지들의 스트링을 만드는 방법은 각기 그 긴 축을 따라 질적으로 동일한 길이를 갖는 복수의 직사각형의 실리콘 태양 전지들을 형성하도록 각 웨이퍼의 긴 에지에 평행한 복수의 라인들을 따라 하나 또는 그 이상의 의사 정사각형의 실리콘 웨이퍼들을 다이싱(dicing)하는 단계를 포함한다. 상기 방법은 또한 상기 태양 전지들을 전기적으로 직렬로 연결하도록 중첩되고 서로 도전성으로 결합되는 인접하는 태양 전지들의 긴 측면들과 일렬로 상기 직사각형의 실리콘 태양 전지들을 배열하는 단계를 포함한다. 상기 복수의 직사각형의 실리콘 태양 전지들은 상기 의사 정사각형의 웨이퍼의 모서리들 또는 모서리들의 일부들에 대응되는 두 챔퍼 처리된(chamfered) 모서리들을 갖는 적어도 하나의 직사각형의 태양 전지 및 각기 챔퍼 처리된 모서리들이 결핍된 하나 또는 그 이상의 정사각형의 실리콘 태양 전지들을 포함한다. 상기 의사 정사각형의 웨이퍼가 따라서 다이스되는 평행한 라인들 사이의 간격은 상기 챔퍼 처리된 모서리들을 구비하는 정사각형의 실리콘 태양 전지들의 긴 축에 직교하는 폭을 상기 챔퍼 처리된 모서리들이 결핍된 직사각형의 실리콘 태양 전지들의 긴 축에 직교하는 폭보다 크게 만들어 상기 챔퍼 처리된 모서리들을 보상하도록 선택되므로, 상기 태양 전지들의 스트링 내의 각각의 상기 복수의 정사각형의 실리콘 태양 전지들이 상기 태양 전지들의 스트링의 동작에서 광에 노출되는 실질적으로 동일한 면적의 전면을 가진다.
다른 측면에 있어서, 슈퍼 셀은 상기 태양 전지들을 전기적으로 직렬로 연결하도록 중첩되고 서로 도전성으로 결합되는 인접하는 태양 전지들의 단부들과 일렬로 배열되는 복수의 실리콘 태양 전지들을 포함한다. 상기 실리콘 태양 전지들의 적어도 하나는 그가 다이스되었던 의사 정사각형의 실리콘 웨이퍼의 모서리들 또는 모서리들의 일부들에 대응되는 챔퍼 처리된 모서리들을 가지고, 상기 실리콘 태양 전지들의 적어도 하나는 챔퍼 처리된 모서리들이 결핍되며, 각각의 상기 실리콘 태양 전지들은 상기 태양 전지들의 스트링의 동작 동안에 광에 노출되는 실질적으로 동일한 면적의 전면을 가진다.
다른 측면에 있어서, 둘 또는 그 이상의 슈퍼 셀들을 만드는 방법은 의사 정사각형의 실리콘 웨이퍼들의 모서리들 또는 모서리들의 일부들에 대응되는 챔퍼 처리된 모서리들을 구비하는 제1 복수의 직사각형의 실리콘 태양 전지들 및 각기 상기 의사 정사각형의 실리콘 웨이퍼들의 전체 폭에 걸치는 제1 길이이고 챔퍼 처리된 모서리들이 결핍된 제2 복수의 직사각형의 실리콘 태양 전지들을 형성하도록 하나 또는 그 이상의 의사 정사각형의 실리콘 웨이퍼들을 다이싱하는 단계를 포함한다. 상기 방법은 또한 각기 상기 제1 길이보다 짧은 제2 길이이고, 챔퍼 처리된 모서리들이 결핍된 제3 복수의 직사각형의 실리콘 태양 전지들을 형성하도록 각각의 상기 제1 복수의 직사각형의 실리콘 태양 전지들로부터 상기 챔퍼 처리된 모서리들을 제거하는 단계를 포함한다. 상기 방법은 상기 제1 길이와 동일한 폭을 갖는 태양 전지 스트링을 형성하기 위해 상기 제2 복수의 직사각형의 실리콘 태양 전지들을 전기적으로 직렬로 연결하도록 중첩되고 서로 도전성으로 결합되는 인접하는 직사각형의 실리콘 태양 전지들의 긴 측면들과 일렬로 상기 제2 복수의 직사각형의 실리콘 태양 전지들을 배열하는 단계, 그리고 상기 제2 길이와 동일한 폭을 갖는 태양 전지 스트링을 형성하기 위해 상기 제3 복수의 직사각형의 실리콘 태양 전지들을 전기적으로 직렬로 연결하도록 서로 도전성으로 결합되는 인접하는 직사각형의 실리콘 태양 전지들의 긴 측면들과 일렬로 상기 제3 복수의 직사각형의 실리콘 태양 전지들을 배열하는 단계를 더 포함한다.
다른 측면에 있어서, 둘 또는 그 이상의 슈퍼 셀들을 만드는 방법은 의사 정사각형의 실리콘 웨이퍼들의 모서리들 또는 모서리들의 일부들에 대응되는 챔퍼 처리된 모서리들을 구비하는 제1 복수의 직사각형의 실리콘 태양 전지들 및 챔퍼 처리된 모서리들이 결핍된 제2 복수의 직사각형의 실리콘 태양 전지들을 형성하도록 각 웨이퍼의 긴 에지에 평행한 복수의 라인들을 따라 하나 또는 그 이상의 의사 정사각형의 실리콘 웨이퍼들을 다이싱하는 단계, 상기 제1 복수의 직사각형의 실리콘 태양 전지들을 전기적으로 직렬로 연결하도록 중첩되고 서로 도전성으로 결합되는 인접하는 직사각형의 실리콘 태양 전지들의 긴 측면들과 일렬로 상기 제1 복수의 직사각형의 실리콘 태양 전지들을 배열하는 단계, 그리고 상기 제2 복수의 직사각형의 실리콘 태양 전지들을 전기적으로 직렬로 연결하도록 중첩되고 서로 도전성으로 결합되는 인접하는 직사각형의 실리콘 태양 전지들의 긴 측면들과 일렬로 상기 제2 복수의 직사각형의 실리콘 태양 전지들을 배열하는 단계를 포함한다.
다른 측면에 있어서, 슈퍼 셀은 실리콘 태양 전지들을 전기적으로 직렬로 연결하도록 중첩되고 서로 도전성으로 결합되는 인접하는 실리콘 태양 전지들의 단부들과 제1 방향으로 일렬로 배열되는 복수의 실리콘 태양 전지들, 그리고 상기 제1 방향에 직교하는 제2 방향에 평행하게 배향된 그 긴 축을 가지고, 상기 제2 방향을 따라 배열되는 복수의 별개의 위치들에서 상기 실리콘 태양 전지들의 단부의 것의 전면 또는 후면에 도전성으로 결합되며, 상기 제2 방향으로 상기 단부 태양 전지의 적어도 전체 폭으로 진행되고, 상기 단부 실리콘 태양 전지의 전면 또는 후면에 직교하게 측정된 약 100미크론보다 작거나 같은 두께를 가지며, 약 0.012옴(Ohm)보다 작거나 같은 상기 제2 방향으로의 전류 흐름에 대한 저항을 제공하고, 약 -40℃ 내지 약 85℃의 온도 범위에 대해 상기 단부 실리콘 태양 전지 및 인터커넥트 사이의 상기 제2 방향으로의 차등 팽창을 수용하는 유연성을 제공하는 연장된 유연한 전기적 인터커넥트(interconnect)를 포함한다.
상기 유연한 전기적 인터커넥트는, 예를 들면 상기 단부 실리콘 태양 전지의 전면 및 후면에 직교하게 측정된 약 30미크론보다 작거나 같은 컨덕터(conductor) 두께를 가질 수 있다. 상기 전기적 인터커넥트는 태양광 모듈(solar module) 내의 사익 슈퍼 셀에 평행하고 인접하게 위치하는 적어도 제2 슈퍼 셀에 대해 전기적 상호 연결을 제공하도록 상기 슈퍼 셀을 지나 상기 제2 방향으로 연장될 수 있다. 추가적으로 또는 선택적으로는, 상기 유연한 전기적 인터커넥트는 태양광 모듈 내의 상기 슈퍼 셀에 평행하고 일렬로 위치하는 제2 슈퍼 셀에 대해 전기적 상호 연결을 제공하도록 상기 슈퍼 셀을 지나 상기 제1 방향으로 연장될 수 있다.
다른 측면에 있어서, 태양광 모듈은 상기 모듈의 전면을 형성하도록 상기 모듈의 폭에 걸치는 둘 또는 그 이상의 평행한 열들로 배열되는 복수의 슈퍼 셀들을 포함한다. 각 슈퍼 셀은 실리콘 태양 전지들을 전기적으로 직렬로 연결하도록 중첩되고 서로 도전성으로 결합되는 인접하는 실리콘 태양 전지들의 단부들과 일렬로 배열되는 복수의 실리콘 태양 전지들을 포함한다. 제1 열 내의 상기 모듈의 에지에 인접하는 제1 슈퍼 셀의 적어도 단부는, 전기적으로 도전성인 접착 결합 물질로 복수의 별개의 위치들에서 상기 제2 슈퍼 셀의 전면에 결합되고, 상기 모듈의 에지에 평행하게 진행되며, 그 적어도 일부가 상기 슈퍼 셀의 단부 주위에서 접히고 상기 모듈의 전방으로부터 시야에서 감춰지는 유연한 전기적 인터커넥트를 통해 제2 열 내의 상기 모듈의 동일한 에지에 인접하는 제2 슈퍼 셀의 단부에 전기적으로 연결된다.
다른 측면에 있어서, 슈퍼 셀을 만드는 방법은, 실리콘 태양 전지들 상에 복수의 직사각형의 영역들을 한정하도록 각각의 하나 또는 그 이상의 실리콘 태양 전지들 상에 하나 또는 그 이상의 스크라이브 라인(scribe line)들을 레이저 스크라이빙하는 단계, 각 직사각형의 영역의 긴 측면에 인접하는 하나 또는 그 이상의 위치들에서 전기적으로 도전성의 접착 결합 물질을 상기 하나 또는 그 이상의 스크라이브된 실리콘 태양 전지들에 적용하는 단계, 각기 긴 측면에 인접하는 그 전면 상에 배치되는 상기 전기적으로 도전성의 접착 결합 물질의 일부를 구비하는 복수의 직사각형의 실리콘 태양 전지들을 제공하도록 상기 실리콘 태양 전지들을 상기 스크라이브 라인들을 따라 분리하는 단계, 상기 복수의 직사각형의 실리콘 태양 전지들을 그 사이에 배치되는 상기 전기적으로 도전성의 접착 결합 물질의 일부로 슁글드 방식(shingled manner)으로 중첩되는 인접하는 직사각형의 실리콘 태양 전지들의 긴 측면들과 일렬로 배열하는 단계, 그리고 상기 전기적으로 도전성의 결합 물질을 큐어링하여, 인접하고 중첩되는 직사각형의 실리콘 태양 전지들을 서로 결합하고 이들을 전기적으로 직렬로 연결하는 단계를 포함한다.
다른 측면에 있어서, 슈퍼 셀을 만드는 방법은, 실리콘 태양 전지들 상에 복수의 직사각형의 영역들을 한정하도록 각각의 하나 또는 그 이상의 실리콘 태양 전지들 상에 하나 또는 그 이상의 스크라이브 라인들을 레이저 스크라이빙하는 단계, 전기적으로 도전성의 접착 결합 물질을 상기 하나 또는 그 이상의 실리콘 태양 전지들의 상면들의 일부들에 적용하는 단계, 상기 하나 또는 그 이상의 실리콘 태양 전지들을 곡선의 지지면(supporting surface)에 대해 구부리도록 상기 하나 또는 그 이상의 실리콘 태양 전지들의 저면들 및 곡선인 지지면 사이에 진공을 인가하며, 이에 따라 각기 긴 측면에 인접하는 그 전면 상에 배치되는 상기 전기적으로 도전성의 접착 결합 물질의 일부를 구비하는 복수의 직사각형의 실리콘 태양 전지들을 제공하도록 상기 하나 또는 그 이상의 실리콘 태양 전지들을 상기 스트라이브 라인들을 따라 절단하는 단계, 상기 복수의 직사각형의 실리콘 태양 전지들을 그 사이에 배치되는 상기 전기적으로 도전성의 접착 결합 물질의 일부로 슁글드 방식으로 중첩되는 인접하는 직사각형의 실리콘 태양 전지들의 긴 측면들과 일렬로 배열하는 단계, 그리고 상기 전기적으로 도전성의 결합 물질을 큐어링하여, 인접하고 중첩되는 직사각형의 실리콘 태양 전지들을 서로 결합하고 이들을 전기적으로 직렬로 연결하는 단계를 포함한다.
다른 측면에 있어서, 태양광 모듈을 만드는 방법은 복수의 슈퍼 셀들을 조립하는 단계를 포함하고, 각 슈퍼 셀은 슁글드 방식으로 중첩되고 인접하는 직사각형의 실리콘 태양 전지들의 긴 측면들 상의 단부들과 일렬로 배열되는 복수의 직사각형의 실리콘 태양 전지들을 포함한다. 상기 방법은 또한 상기 인접하는 직사각형의 실리콘 태양 전지들의 중첩되는 단부들 사이에 배치되는 전기적으로 도전성의 결합 물질을 상기 슈퍼 셀들에 열 및 압력을 인가하여 큐어링함으로써, 인접하고 중첩되는 직사각형의 실리콘 태양 전지들을 설 결합하고 이들을 전기적으로 직렬로 연결하는 단계를 포함한다. 상기 방법은 또한 원하는 태양광 모듈 구성 내의 상기 슈퍼 셀들을 봉지재(encapsulant)를 포함하는 층들의 스택(stack) 내에 배열하고 상호 연결하는 단계, 그리고 라미네이트된(laminated) 구조를 형성하도록 상기 층들의 스택에 열과 압력을 인가하는 단계를 포함한다.
상기 방법의 일부 변형예들은 상기 라미네이트된 구조를 형성하도록 상기 층들의 스택에 열 및 압력을 인가하기 이전에 상기 슈퍼 셀들에 열 및 압력을 인가하여 상기 전기적으로 도전성의 결합 물질을 큐어링하거나 부분적으로 큐어링함으로써, 상기 라미네이트된 구조를 형성하기 전에 중간 생성물로서 큐어링되거나 부분적으로 큐어링되는 슈퍼 셀들을 형성하는 단계를 포함한다. 일부 변형예들에서, 각 추가적인 직사각형의 실리콘 태양 전지가 상기 슈퍼 셀의 조립 동안에 슈퍼 셀에 추가되면서, 새롭게 추가된 태양 전지 및 이의 인접하고 중첩되는 태양 전지 사이의 전기적으로 도전성의 접착 결합 물질이 임의의 다른 직사각형의 실리콘 태양 전지가 상기 슈퍼 셀에 추가되기 전에 큐어링되거나 부분적으로 큐어링된다. 선택적으로는, 일부 변형예들은 상기 슈퍼 셀 내의 전기적으로 도전성의 결합 물질을 동일한 단계에서 큐어링하거나 부분적으로 큐어링하는 단계를 포함한다.
상기 슈퍼 셀들이 부분적으로 큐어링된 중간 생성물들로서 형성될 경우, 상기 방법은 상기 라미네이트된 구조를 형성하도록 상기 층들의 스택에 열 및 압력을 인가하면서 상기 전기적으로 도전성의 결합 물질의 큐어링을 완료하는 단계를 포함할 수 있다.
상기 방법의 일부 변형예들은 라미네이트된 구조를 형성하기 전에 중간 생성물로서 큐어링되거나 부분적으로 큐어링되는 슈퍼 셀들을 형성하지 않고, 상기 라미네이트된 구조를 형성하도록 상기 층들의 스택에 열 및 압력을 인가하면서 상기 전기적으로 도전성의 결합 물질을 큐어링하는 단계를 포함한다.
상기 방법은 하나 또는 그 이상의 표준 크기의 실리콘 태양 전지들을 상기 직사각형의 실리콘 태양 전지들을 제공하도록 보다 작은 면적의 직사각형의 형상들로 다이싱하는 단계를 포함할 수 있다. 상기 전기적으로 도전성인 접착 결합 물질은 미리 적용된 전기적으로 도전성의 접착 결합 물질을 갖는 상기 직사각형의 실리콘 태양 전지들을 제공하도록 상기 하나 또는 그 이상의 실리콘 태양 전지들을 다이싱하기 전에 상기 하나 또는 그 이상의 실리콘 태양 전지들에 적용될 수 있다. 선택적으로는, 상기 전기적으로 도전성의 접착 결합 물질은 상기 직사각형의 실리콘 태양 전지들을 제공하도록 상기 하나 또는 그 이상의 실리콘 태양 전지들을 다이싱한 후에 상기 직사각형의 실리콘 태양 전지들에 적용될 수 있다.
일 측면에 있어서, 태양광 모듈은 둘 또는 그 이상의 평행한 열들로 배열되는 복수의 슈퍼 셀들을 포함한다. 각 슈퍼 셀은 실리콘 태양 전지들을 전기적으로 직렬로 연결하도록 중첩되고 서로 도전성으로 결합되는 인접하는 실리콘 태양 전지들의 긴 측면과 일렬로 배열되는 복수의 직사각형 또는 실질적으로 직사각형의 실리콘 태양 전지들을 포함한다. 태양 전지판(solar panel)은 또한 상기 슈퍼 셀들의 제1의 것을 따라 중간 위치에 위치하는 제1 태양 전지의 후면 상에 위치하는 제1 히든 탭(hidden tap) 콘택 패드 및 상기 제1 히든 탭 콘택 패드에 도전성으로 결합되는 제1 전기적 인터커넥트를 포함한다. 상기 제1 전기적 인터커넥트는 상기 인터커넥트 및 그가 결합되는 상기 실리콘 태양 전지 사이의 차등 열팽창을 수용하는 스트레스 제거 특징을 포함한다. "스트레스 제거 특징(stress relieving feature)"이라는 용어는 인터커넥트에 대해 여기에 사용되는 바에 있어서, 예를 들면 상기 인터커넥트의 두께(예를 들면, 매우 얇은) 및/또는 상기 인터커넥트의 연성에 대한 킹크(kink), 루프(loop) 또는 슬롯(slot)과 같은 기하학적 특징을 언급할 수 있다. 예를 들면, 상기 스트레스 제거 특징은 상기 인터커넥트가 매우 얇은 구리 리본으로 형성되는 것이 될 수 있다.
상기 태양광 모듈은 인접하는 슈퍼 셀 열 내의 상기 슈퍼 셀들의 제2의 것을 따라 중간 위치에서 제1 태양 전지에 인접하여 위치하는 제2 태양 전지의 후면 상에 위치하는 제2 히든 탭 콘택 패드를 포함할 수 있고, 상기 제1 히든 탭 콘택 패드는 상기 제1 전기적 인터커넥트를 통해 상기 제2 히든 탭 콘택 패드에 전기적으로 연결된다. 이러한 경우들에서, 상기 제1 전기적 인터커넥트는 상기 제1 슈퍼 셀 및 상기 제2 슈퍼 셀 사이의 갭(gap)을 가로질러 연장될 수 있고, 상기 제2 히든 탭 콘택 패드에 도전성으로 결합될 수 있다. 선택적으로는, 상기 제1 및 제2 히든 탭 콘택 패드들 사이의 전기적 연결은 상기 제2 히든 탭 콘택 패드에 도전성으로 결합되고 상기 제1 전기적 인터커넥트에 전기적으로 연결되는(예를 들면, 도전성으로 결합되는) 다른 전기적 인터커넥트를 포함할 수 있다. 각 상호 연결 계획은 슈퍼 셀들의 추가적인 열들에 걸쳐 선택적으로 확장될 수 있다. 예를 들면, 각 상호 연결 계획은 상기 히든 탭 콘택 패드들을 통해 각 열 내의 태양 전지를 상호 연결하도록 상기 모듈의 전체 폭에 걸쳐 선택적으로 확장될 수 있다.
상기 태양광 모듈은 상기 슈퍼 셀들의 제1의 것을 따라 다른 중간 위치에 위치하는 제2 태양 전지의 후면 상에 위치하는 제2 히든 탭 콘택 패드, 상기 제2 히든 탭 콘택 패드에 도전성으로 결합되는 제2 전기적 인터커넥트, 그리고 상기 제1 및 제2 전기적 인터커넥트들에 의해 상기 제1 히든 탭 콘택 패드 및 상기 제2 히든 탭 콘택 패드 사이에 위치하는 상기 태양 전지들과 전기적으로 병렬로 연결되는 바이패스 다이오드를 포함할 수 있다.
상기 변형예들의 임의의 것에서, 상기 제1 히든 탭 콘택 패드는 상기 제1 태양 전지의 긴 축에 평행하게 진행되는 열 내의 상기 제1 태양 전지의 후면 상에 배열되는 복수의 히든 탭 콘택 패드들의 하나가 될 수 있고, 상기 제1 전기적 인터커넥트는 각각의 상기 복수의 히든 콘택들에 도전성으로 결합되며, 상기 긴 축을 따라 상기 제1 태양 전지의 길이를 실질적으로 가로지른다. 추가적으로 또는 선택적으로는, 상기 제1 히든 탭 콘택 패드는 상기 제1 태양 전지의 긴 축에 직교하게 진행되는 열 내의 상기 제1 태양 전지의 후면 상에 배열되는 복수의 히든 탭 콘택 패드들의 하나가 될 수 있다. 후자의 경우에서, 상기 히든 탭 콘택 패드들의 열은, 예를 들면 상기 제1 태양 전지의 짧은 에지에 인접하여 위치할 수 있다. 상기 제1 히든 탭 콘택 패드는 상기 제1 태양 전지의 후면의 2차원 어레이로 배열되는 복수의 히든 탭 콘택 패드들의 하나가 될 수 있다.
선택적으로는, 앞서의 변형예들의 임의의 것에서 상기 제1 히든 탭 콘택 패드는 상기 제1 태양 전지의 후면의 긴 측면에 인접하여 위치할 수 있고, 상기 제1 전기적 인터커넥트는 상기 태양 전지의 긴 축을 따라 상기 히든 탭 콘택 패드로부터 내측으로 실질적으로 연장되지 않으며, 상기 제1 태양 전지 상의 후면 금속화 패턴은 상기 인터커넥트에 대해 바람직하게는 평방 당 약 5옴보다 작거나 같은, 또는 평방 당 약 2.5옴보다 작거나 같은 시트 저항(sheet resistance)을 갖는 도전성 통로를 제공한다. 이러한 경우들에서, 상기 제1 인터커넥트는, 예를 들면, 상기 스트레스 제거 특징의 대향하는 측면들 상에 위치하는 두 개의 탭들을 포함할 수 있고, 상기 탭들의 하나는 상기 제1 히든 탭 콘택 패드에 도전성으로 결합될 수 있다. 상기 두 탭들은 다른 길이들이 될 수 있다.
상기 변형예들의 임의의 것에서, 상기 제1 전기적 인터커넥트는 상기 제1 히든 탭 콘택 패드와의 원하는 정렬을 확인하거나, 상기 제1 슈퍼 셀의 에지와의 원하는 정렬을 확인하거나, 상기 제1 히든 탭 콘택 패드와의 원하는 정렬 및 상기 제1 슈퍼 셀의 에지와의 원하는 정렬을 확인하는 정렬 특징(alignment feature)들을 포함할 수 있다.
다른 측면에 있어서, 태양광 모듈은 유리 전면 시트(front sheet), 후면 시트(back sheet), 그리고 상기 유리 전면 시트 및 상기 후면 시트 사이에 둘 또는 그 이상의 평행한 열들로 배열되는 복수의 슈퍼 셀들을 포함한다. 각 슈퍼 셀은 실리콘 태양 전지들을 전기적으로 직렬로 연결하도록 중첩되고 서로 도전성으로 결합되는 인접하는 실리콘 태양 전지들의 긴 측면들과 일렬로 배열되는 복수의 직사각형 또는 실질적으로 직사각형의 실리콘 태양 전지들을 포함한다. 제1 유연한 전기적 인터커넥트는 상기 슈퍼 셀들의 제1의 것에 단단하게 도전성으로 결합된다. 상기 중첩되는 태양 전지들 사이의 유연한 도전성 결합들은 상기 슈퍼 셀들에 상기 태양광 모듈을 손상시키지 않고 약 -40℃ 내지 약 100℃의 온도 범위에 대해 상기 열들에 평행한 방향으로 상기 슈퍼 셀들 및 상기 유리 전면 시트 사이의 열팽창의 불일치를 수용하는 기계적 컴플라이언스(mechanical compliance)를 제공한다. 상기 제1 슈퍼 셀 및 상기 제1 유연한 전기적 인터커넥트 사이의 상기 단단한 도전성 결합은 상기 제1 유연한 전기적 인터커넥트가 상기 태양광 모듈을 손상시키지 않고 약 -40℃ 내지 약 180℃의 온도 범위에 대해 상기 열들에 직교하는 방향으로 상기 제1 슈퍼 셀 및 상기 제1 유연한 전기적 인터커넥트 사이의 열팽창의 불일치를 수용하게 한다.
슈퍼 셀 내의 중첩되고 인접하는 태양 전지들 사이의 상기 도전성 결합들은 상기 슈퍼 셀 및 상기 유연한 전기적 인터커넥트 사이의 도전성 결합들과 다른 도전성 접착제를 사용할 수 있다. 슈퍼 셀 내의 적어도 하나의 태양 전지의 일측면에서 상기 도전성 결합은 그 타측면에서의 도전성 결합과 다른 도전성 접착제를 사용할 수 있다. 상기 슈퍼 셀 및 상기 유연한 전기적 인터커넥트 사이에 단단한 결합을 형성하는 상기 도전성 접착제는, 예를 들면 땜납(solder)이 될 수 있다. 일부 변형예들에서, 슈퍼 셀 내의 중첩되는 태양 전지들 사이의 상기 도전성 결합들은 땜납이 아닌 도전성 접착제로 형성되고, 상기 슈퍼 셀 및 상기 유연한 전기적 인터커넥트 사이의 도전성 결합은 땜납으로 형성된다.
앞서 기술한 바와 같이 두 가지 다른 도전성 접착제들을 사용하는 일부 변형예들에서, 양 도전성 접착제들은 동일한 처리 단계에서(예를 들면, 동일한 온도에서, 동일한 압력에서 및/또는 동일한 시간 간격으로) 큐어링될 수 있다.
상기 중첩되고 인접하는 태양 전지들 사이의 도전성 결합들은, 예를 들면 약 15미크론보다 크거나 같은 각 셀 및 상기 유리 전면 기판 사이의 차등 운동을 수용할 수 있다.
상기 중첩되고 인접하는 태양 전지들 사이의 도전성 결합들은, 예를 들면 약 50미크론보다 작거나 같은 상기 태양 전지들에 직교하는 두께 및 약 1.5W/(미터-K)보다 크거나 같은 상기 태양 전지들에 직교하는 열전도율을 가질 수 있다.
상기 제1 유연한 전기적 인터커넥트는, 예를 들면 약 40미크론보다 크거나 같은 상기 제1 유연한 인터커넥트의 열팽창 또는 수축을 견딜 수 있다.
상기 슈퍼 셀에 도전성으로 결합되는 상기 제1 유연한 전기적 인터커넥트의 일부는 구리로 형성되는 리본과 같을 수 있으며, 예를 들면 약 30미크론보다 작거나 같은 또는 약 50미크론보다 작거나 같은 그가 결합되는 상기 태양 전지의 표면에 직교하는 두께를 가질 수 있다. 상기 제1 유연한 전기적 인터커넥트는 상기 태양 전지에 결합되지 않으며, 상기 태양 전지에 도전성으로 결합되는 상기 제1 유연한 전기적 인터커넥트의 일부보다 높은 전도율을 제공하는 필수적인 도전성의 구리 부분을 포함할 수 있다. 상기 제1 유연한 전기적 인터커넥트는 약 30미크론보다 작거나 같은, 또는 약 50미크론보다 작거나 같은 그가 결합되는 상기 태양 전지의 표면에 직교하는 두께 및 상기 인터커넥트를 통한 전류의 흐름에 직교하는 방향으로 상기 태양 전지의 표면의 평면 내에 약 10㎜보다 크거나 같은 폭을 가질 수 있다. 상기 제1 유연한 전기적 인터커넥트는 상기 제1 전기적 인터커넥트보다 높은 전도율을 제공하는 상기 태양 전지에 근접하는 컨덕터에 도전성으로 결합될 수 있다.
다른 측면에 있어서, 태양광 모듈은 둘 또는 그 이상의 평행한 열들로 배열되는 복수의 슈퍼 셀들을 포함한다. 각 슈퍼 셀은 실리콘 태양 전지들을 전기적으로 직렬로 연결하도록 중첩되고 서로 도전성으로 직접 결합되는 인접하는 실리콘 태양 전지들의 긴 측면들과 일렬로 배열되는 복수의 직사각형 또는 실질적으로 직사각형의 실리콘 태양 전지들을 구비한다. 정상 동작에서 유효한 전류를 전도하지 않는 히든 탭 콘택 패드는 상기 슈퍼 셀들의 열들의 제1의 것 내의 상기 슈퍼 셀들의 제1의 것을 따라 중간 위치에 위치하는 제1 태양 전지의 후면 상에 위치한다. 상기 히든 탭 콘택 패드는 상기 슈퍼 셀들의 열들의 제2의 것 내의 적어도 제2 태양 전지에 전기적으로 병렬로 연결된다.
상기 태양광 모듈은 상기 히든 탭 콘택 패드에 결합되고, 상기 히든 탭 콘택 패드를 상기 제2 태양 전지에 전기적으로 상호 연결하는 전기적 인터커넥트를 포함할 수 있다. 일부 변형예들에서, 상기 전기적 인터커넥트는 상기 제1 태양 전지의 길이에 실질적으로 걸치지 않으며, 상기 제1 태양 전지 상의 후면 금속화 패턴은 평방 당 약 5O옴보다 크거나 같은 시트 저항을 갖는 상기 히든 탭 콘택 패드에 도전성 통로를 제공한다.
상기 복수의 슈퍼 셀들은 상기 열들에 직교하는 상기 태양광 모듈의 폭을 가로지르는 셋 또는 그 이상의 평행한 열들로 배열될 수 있고, 상기 히든 탭 콘택 패드는 상기 슈퍼 셀들의 모든 열들을 전기적으로 병렬로 연결하도록 상기 슈퍼 셀들의 각각의 열들 내의 적어도 하나의 태양 전지 상의 히든 탭 콘택 패드에 전기적으로 연결된다. 이러한 변형예들에서, 상기 태양광 모듈은 바이패스 다이오드 또는 다른 전자 장치에 연결되는 상기 히든 탭 콘택 패드들의 적어도 하나, 또는 히든 탭 콘택 패드들 사이의 인터커넥트에 대한 적어도 하나의 버스 연결(bus connection)을 포함할 수 있다.
상기 태양광 모듈은 이를 상기 제2 태양 전지에 전기적으로 연결하도록 상기 히든 탭 콘택 패드에 도전성으로 결합되는 유연한 전기적 인터커넥트를 포함할 수 있다. 상기 히든 탭 콘택 패드에 도전성으로 결합되는 유연한 전기적 인터커넥트의 일부는, 예를 들면 구리로 형성되는 리본(ribbon)과 같으며, 약 50미크론보다 작거나 같은 그가 결합되는 상기 태양 전지의 표면에 직교하는 두께를 가질 수 있다. 상기 히든 탭 콘택 패드 및 상기 유연한 전기적 인터커넥트 사이의 도전성 결합은 상기 유연한 전기적 인터커넥트가 상기 제1 태양 전지 및 상기 유연한 인터커넥트 사이의 열팽창의 불일치를 견디게 할 수 있으며, 상기 태양광 모듈을 손상시키지 않고 약 -40℃ 내지 약 180℃의 온도 범위에 대해 열팽창으로부터 야기되는 상기 제1 태양 전지 및 상기 제2 태양 전지 사이의 상대적인 운동을 수용하게 할 수 있다.
일부 변형예들에서, 상기 태양광 모듈의 동작에서 상기 제1 히든 탭 콘택 패드는 상기 태양 전지들의 임의의 단일의 것 내에 발생되는 전류보다 큰 전류를 전도할 수 있다.
통상적으로, 상기 제1 히든 탭 콘택 패드 위에 놓인 상기 제1 태양 전지의 전면은 콘택 패드들 또는 임의의 다른 인터커넥트 특징들에 의해 점유되지 않는다. 통상적으로, 제1 슈퍼 샐 내의 인접하는 태양 전지의 일부에 의해 중첩되지 않는 상기 제1 태양 전지의 전면의 임의의 영역은 콘택 패드들 또는 임의의 다른 인터커넥트 특징들에 의해 점유되지 않는다.
일부 변형예들에서, 각 슈퍼 셀에서 상기 셀들의 대부분은 히든 탭 콘택 패드들을 가지지 않는다. 이러한 변형예들에서, 히든 탭 콘택 패드들을 가지는 셀들은 히든 탭 콘택 패드들을 가지지 않는 셀들보다 큰 집광 면적을 가질 수 있다.
다른 측면에 있어서, 태양광 모듈은 유리 전면 시트, 후면 시트, 그리고 상기 유리 전면 시트 및 상기 후면 시트 사이에 둘 또는 그 이상의 평행한 열들로 배열되는 복수의 슈퍼 셀들을 포함한다. 각 슈퍼 셀은 상기 실리콘 태양 전지들을 전기적으로 직렬로 연결하도록 중첩되고 서로 유연하게 도전성으로 직접 결합되는 인접하는 실리콘 태양 전지들의 긴 측면들과 일렬로 배열되는 복수의 직사각형 또는 실질적으로 직사각형의 실리콘 태양 전지들을 구비한다. 제1 유연한 전기적 인터커넥트는 상기 슈퍼 셀들의 제1의 것에 단단하게 도전성으로 결합된다. 상기 중첩되는 태양 전지들 사이의 유연한 도전성 결합들은 제1 도전성 접착제로 형성되고, 약 800메가파스칼(megapascal)보다 작거나 같은 전단 탄성 계수(shear modulus)를 가진다. 상기 제1 슈퍼 셀 및 상기 제1 유연한 전기적 인터커넥트 사이의 상기 단단한 도전성 결합은 제2 도전성 접착제로 형성되고, 약 2000메가파스칼보다 크거나 같은 전단 탄성 계수를 가진다.
상기 제1 도전성 접착제는, 예를 들면 약 0℃보다 작거나 같은 유리 전이 온도(glass transition temperature)를 가질 수 있다.
일부 변형예들에서, 상기 제1 도전성 접착제 및 상기 제2 도전성 접착제는 다르며, 상기 도전성 접착제들 모두는 동일한 처리 공정에서 큐어링될 수 있다.
일부 변형예들에서, 상기 중첩되고 인접하는 태양 전지들 사이의 상기 도전성 결합들은 약 50미크론보다 작거나 같은 상기 태양 전지들에 직교하는 두께 및 약 1.5W/(미터-K)보다 크거나 같은 상기 태양 전지들에 직교하는 열전도율을 가질 수 있다.
일 측면에 있어서, 태양광 모듈은 둘 또는 그 이상의 평행한 열들 내의 복수의 직렬 연결된 슈퍼 셀들로서 배열되는 약 250보다 크거나 같은 숫자 N의 직사각형 또는 실질적으로 직사각형의 실리콘 태양 전지들을 포함한다. 각 슈퍼 셀은 상기 슈퍼 셀 내의 실리콘 태양 전지들을 전기적으로 직렬로 연결하도록 중첩되고 전기적 및 열적으로 도전성인 접착제로 서로 도전성으로 결합되는 인접하는 실리콘 태양 전지들의 긴 측면들과 일렬로 배열되는 복수의 실리콘 태양 전지들을 구비한다. 상기 슈퍼 셀들은 약 90볼트보다 크거나 같은 높은 직류 전압을 제공하도록 전기적으로 연결된다.
일 변형예에서, 상기 태양광 모듈은 높은 직류 전압을 제공하기 위해 상기 복수의 슈퍼 셀들을 전기적으로 직렬로 연결하도록 배열되는 하나 또는 그 이상의 유연한 전기적 인터커넥트들을 포함한다. 상기 태양광 모듈은 상기 높은 직류 전압을 교류 전압으로 변환시키는 인버터(inverter)를 포함하여 모듈 레벨 파워 일렉트로닉스(power electronics)를 구비할 수 있다. 상기 모듈 레벨 파워 일렉트로닉스는 상기 높은 직류 전압을 감지할 수 있고, 최적의 전류-전압 전력점(power point)에서 상기 모듈을 동작시킬 수 있다.
다른 변형예에서, 상기 태양광 모듈은 슈퍼 셀들의 인접하는 직렬 연결된 열들의 개별적인 쌍들에 전기적으로 연결되고, 상기 높은 직류 전압을 제공하도록 상기 슈퍼 셀들의 열들의 쌍들의 하나 또는 그 이상을 전기적으로 직렬로 연결하며, 상기 높은 직류 전압을 교류 전압으로 변환하는 인버터를 구비하는 모듈 레벨 파워 일렉트로닉스를 포함한다. 선택적으로, 상기 모듈 레벨 파워 일렉트로닉스는 상기 슈퍼 셀들의 열들의 각 개별적인 쌍에 걸친 전압을 감지할 수 있고, 최적의 전류-전압 전력점에서 상기 슈퍼 셀들의 열들의 각 개별적인 쌍을 동작시킬 수 있다. 선택적으로, 상기 모듈 레벨 파워 일렉트로닉스는 상기 열들의 쌍에 걸친 전압이 문턱값(threshold value) 아래일 경우에 상기 높은 직류 전압을 제공하는 회로로부터 상기 슈퍼 셀들의 열들의 개별적인 쌍을 스위치할 수 있다.
다른 변형예에서, 상기 태양광 모듈은 상기 슈퍼 셀들의 각 개별적인 열에 전기적으로 연결되고, 상기 높은 직류 전압을 제공하도록 상기 슈퍼 셀들의 열들의 둘 또는 그 이상을 전기적으로 직렬로 연결하며, 상기 높은 직류 전압을 교류 전압으로 변환하는 인버터를 구비하는 모듈 레벨 파워 일렉트로닉스를 포함한다. 선택적으로, 상기 모듈 레벨 파워 일렉트로닉스는 상기 슈퍼 셀들의 각 개별적인 열에 걸친 전압을 감지할 수 있고, 상기 슈퍼 셀들의 각 개별적인 열을 최적의 전류-전압 전력점에서 동작시킬 수 있다. 선택적으로, 상기 모듈 레벨 파워 일렉트로닉스는 상기 슈퍼 셀들의 열에 걸친 전압이 문턱값 아래일 경우에 상기 높은 직류 전압을 제공하는 회로로부터 상기 슈퍼 셀들의 개별적인 열을 스위치할 수 있다.
다른 변형예에서, 상기 태양광 모듈은 각 개개의 슈퍼 셀에 전기적으로 연결되고, 상기 높은 직류 전압을 제공하도록 상기 슈퍼 셀들의 둘 또는 그 이상을 전기적으로 직렬로 연결하며, 상기 높은 직류 전압을 교류 전압으로 변환하는 인버터를 구비하는 모듈 레벨 파워 일렉트로닉스를 포함한다. 선택적으로, 상기 모듈 레벨 파워 일렉트로닉스는 각 개별적인 슈퍼 셀에 걸친 전압을 감지할 수 있고, 각 개별적인 슈퍼 셀을 최적의 전류-전압 전력점에서 동작시킬 수 있다. 선택적으로, 상기 모듈 레벨 파워 일렉트로닉스는 상기 슈퍼 셀에 걸친 전압이 문턱값 아래일 경우에 상기 높은 직류 전압을 제공하는 회로로부터 개별적인 슈퍼 셀을 스위치할 수 있다.
다른 변형예에서, 상기 모듈 내의 각 슈퍼 셀은 히든 탭들에 의해 복수의 세그먼트(segment)들로 전기적으로 분할된다. 상기 태양광 모듈은 상기 히든 탭들을 통해 각 슈퍼 셀의 각 세그먼트에 전기적으로 연결되고, 상기 높은 직류 전압을 제공하도록 둘 또는 그 이상의 세그먼트들을 전기적으로 직렬로 연결하며, 상기 높은 직류 전압을 교류 전압으로 변환하는 인버터를 구비하는 모듈 레벨 파워 일렉트로닉스를 포함한다. 선택적으로, 상기 모듈 레벨 파워 일렉트로닉스는 상기 모듈 레벨 파워 일렉트로닉스는 각 슈퍼 셀의 각 세그먼트에 걸친 전압을 감지할 수 있고, 각 개별적인 세그먼트를 최적의 전류-전압 전력점에서 동작시킬 수 있다. 선택적으로, 상기 모듈 레벨 파워 일렉트로닉스는 상기 세그먼트에 걸친 전압이 문턱값 아래일 경우에 상기 높은 직류 전압을 제공하는 회로로부터 개별적인 세그먼트를 스위치할 수 있다.
상기 변형예들의 임의의 것에서, 상기 최적의 전류-전압 전력점은 최대 전류-전압 전력점이 될 수 있다.
상기 변형예들의 임의의 것에서, 상기 모듈 레벨 파워 일렉트로닉스는 직류 대 직류 부스트 구성 요소(boost component)가 결핍될 수 있다.
상기 변형예들의 임의의 것에서, N은 약 200보다 크거나 같거나, 약 250보다 크거나 같거나, 약 300보다 크거나 같거나, 약 350보다 크거나 같거나, 약 400보다 크거나 같거나, 약 450보다 크거나 같거나, 약 500보다 크거나 같거나, 약 550보다 크거나 같거나, 약 600보다 크거나 같거나, 약 650보다 크거나 같거나, 약 700보다 크거나 같을 수 있다.
상기 변형예들의 임의의 것에서, 상기 높은 직류 전압은 약 120볼트보다 크거나 같거나, 약 180볼트보다 크거나 같거나, 약 240볼트보다 크거나 같거나, 약 300볼트보다 크거나 같거나, 약 360볼트보다 크거나 같거나, 약 420볼트보다 크거나 같거나, 약 480볼트보다 크거나 같거나, 약 540볼트보다 크거나 같거나, 약 600볼트보다 크거나 같을 수 있다.
다른 측면에 있어서, 태양광 발전 시스템(solar photovoltaic system)은 전기적으로 병렬로 연결되는 둘 또는 그 이상의 태양광 모듈들 및 인버터를 포함한다. 각 태양광 모듈은 둘 또는 그 이상의 평행한 열들 내의 복수의 슈퍼 셀들로서 배열되는 약 150보다 크거나 같은 숫자 N의 직사각형 또는 실질적으로 직사각형의 실리콘 태양 전지들을 포함한다. 각 모듈 내의 각 태양 전지는 상기 실리콘 태양 전지들을 전기적으로 직렬로 연결하도록 중첩되고 서로 도전성으로 결합되는 인접하는 실리콘 태양 전지들의 긴 측면들과 일렬로 배열되는 상기 실리콘 태양 전지들의 둘 또는 그 이상을 포함한다. 각 모듈에서, 상기 슈퍼 셀들은 약 90볼트보다 크거나 같은 고전압 직류 모듈 출력을 제공하도록 전기적으로 연결된다. 상기 인버터는 이들의 고전압 직류 출력을 교류로 변환하도록 상기 둘 또는 그 이상의 태양광 모듈들에 전기적으로 연결된다.
각 태양광 모듈은 상기 태양광 모듈의 고전압 직류 출력을 제공하기 위해 상기 태양광 모듈 내의 슈퍼 셀들을 전기적으로 직렬로 연결하도록 배열되는 하나 또는 그 이상의 유연한 전기적 인터커넥트들을 포함할 수 있다.
상기 태양광 발전 시스템은 전기적으로 병렬로 연결되는 상기 둘 또는 그 이상의 태양광 모듈들의 제1의 것과 전기적으로 직렬로 연결되는 적어도 제3 태양광 모듈을 포함할 수 있다. 이러한 경우들에서, 상기 제3 태양광 모듈은 둘 또는 그 이상의 평행한 열들 내의 복수의 슈퍼 셀들로서 배열되는 약 150보다 크거나 같은 숫자 N'의 직사각형 또는 실질적으로 직사각형의 실리콘 태양 전지들을 포함할 수 있다. 상기 제3 태양광 모듈 내의 각 슈퍼 셀은 상기 실리콘 태양 전지들을 전기적으로 직렬로 연결하도록 중첩되고 서로 도전성으로 결합되는 인접하는 실리콘 태양 전지들의 긴 측면들과 일렬로 배열되는 상기 모듈 내의 실리콘 태양 전지들의 둘 또는 그 이상을 포함한다. 상기 제3 태양광 모듈에서 상기 슈퍼 셀들은 약 90볼트보다 크거나 같은 고전압 직류 모듈 출력을 제공하도록 전기적으로 연결된다.
앞서 설명한 바와 같이 상기 둘 또는 그 이상의 태양광 모듈들의 제1의 것과 전기적으로 직렬로 연결되는 제3 태양광 모듈을 포함하는 변형예들은 또한 전기적으로 병렬로 연결되는 상기 둘 또는 그 이상의 태양광 모듈들의 제2의 것과 전기적으로 직렬로 연결되는 적어도 제4 태양광 모듈을 포함할 수 있다. 상기 제4 태양광 모듈은 둘 또는 그 이상의 평행한 열들 내의 복수의 슈퍼 셀들로서 배열되는 약 150보다 크거나 같은 숫자 N"의 직사각형 또는 실질적으로 직사각형의 실리콘 태양 전지들을 포함할 수 있다. 상기 제4 태양광 모듈 내의 각 슈퍼 셀은 상기 실리콘 태양 전지들을 전기적으로 직렬로 연결하도록 중첩되고 서로 도전성으로 결합되는 인접하는 실리콘 태양 전지들의 긴 측면들과 일렬로 배열되는 상기 모듈 내의 실리콘 태양 전지들의 둘 또는 그 이상을 포함한다. 상기 제4 태양광 모듈에서 상기 슈퍼 셀들은 약 90볼트보다 크거나 같은 고전압 직류 모듈 출력을 제공하도록 전기적으로 연결된다.
상기 태양광 발전 시스템은 상기 태양광 모듈들의 임의의 것 내에서 일어나는 단락(short circuit)이 다른 태양광 모듈들 내에서 발생되는 전력을 소실시키는 것을 방지하도록 배열되는 퓨즈(fuse)들 및/또는 차단 다이오드(blocking diode)들을 포함할 수 있다.
상기 태양광 발전 시스템은 상기 둘 또는 그 이상의 태양광 모듈들이 전기적으로 병렬로 연결되고, 상기 인버터가 전지적으로 연결되는 양의 및 음의 버스들을 포함할 수 있다. 선택적으로는, 상기 태양광 발전 시스템은 상기 둘 또는 그 이상의 태양광 모듈들이 분리된 컨덕터에 의해 전기적으로 연결되는 결합기 박스(combiner box)를 포함할 수 있다. 상기 결합기 박스는 상기 태양광 모듈들을 전기적으로 병렬로 연결하고, 상기 태양광 모듈들의 임의의 것에서 일어나는 단락이 다른 태양광 모듈들 내에서 발생되는 전력을 소실시키는 것을 방지하도록 배열되는 퓨즈들 및/또는 차단 다이오드들을 선택적으로 포함할 수 있다.
상기 인버터는 태양광 모듈을 역 바이어싱하는 것을 회피하도록 성정된 최소값 이상의 직류 전압에서 상기 태양광 모듈들을 동작시키도록 구성될 수 있다.
상기 인버터는 상기 태양광 모듈들의 하나 또는 그 이상의 내에서 일어나는 역 바이어스 조건을 인식하고, 상기 역 바이어스 조건을 회피하는 전압에서 상기 태양광 모듈들을 동작시키도록 구성될 수 있다.
상기 태양광 발전 시스템은 지붕 상단 상에 위치할 수 있다.
상기 변형예들의 임의의 것에서, N, N' 및 N"는 약 200보다 크거나 같거나, 약 250보다 크거나 같거나, 약 300보다 크거나 같거나, 약 350보다 크거나 같거나, 약 400보다 크거나 같거나, 약 450보다 크거나 같거나, 약 500보다 크거나 같거나, 약 550보다 크거나 같거나, 약 600보다 크거나 같거나, 약 650보다 크거나 같거나, 약 700보다 크거나 같을 수 있다. N, N' 및 N"는 동일하거나 다른 값들을 가질 수 있다.
상기 변형예들의 임의의 것에서, 상기 태양광 모듈에 의해 제공되는 높은 직류 전압은 약 120볼트보다 크거나 같거나, 약 180볼트보다 크거나 같거나, 약 240볼트보다 크거나 같거나, 약 300볼트보다 크거나 같거나, 약 360볼트보다 크거나 같거나, 약 420볼트보다 크거나 같거나, 약 480볼트보다 크거나 같거나, 약 540볼트보다 크거나 같거나, 약 600볼트보다 크거나 같을 수 있다.
다른 측면에 있어서, 태양광 발전 시스템은 둘 또는 그 이상의 평행한 열들 내의 복수의 슈퍼 셀들로서 배열되는 약 150보다 크거나 같은 숫자 N의 직사각형 또는 실질적으로 직사각형의 실리콘 태양 전지들을 구비하는 제1 태양광 모듈을 포함한다. 각 슈퍼 셀은 상기 실리콘 태양 전지들을 전기적으로 직렬로 연결하도록 중첩되고 서로 도전성으로 결합되는 인접하는 실리콘 태양 전지들의 긴 측면들과 일렬로 배열되는 복수의 실리콘 태양 전지들을 포함한다. 상기 시스템은 또한 인버터를 포함한다. 상기 인버터는, 예를 들면 상기 제1 태양광 모듈과 통합되는 마이크로인버터가 될 수 있다. 상기 제1 태양광 모듈 내의 슈퍼 셀들은 직류를 교류로 변환하는 상기 인버터에 약 90볼트보다 크거나 같은 높은 직류 전압을 제공하도록 전기적으로 연결된다.
상기 제1 태양광 모듈은 상기 태양광 모듈의 고전압 직류 출력을 제공하기 위해 상기 태양광 모듈 내의 슈퍼 셀들을 전기적으로 직렬로 연결하도록 배열되는 하나 또는 그 이상의 유연한 전기적 인터커넥트들을 포함할 수 있다.
상기 태양광 발전 시스템은 상기 제1 태양광 모듈에 전기적으로 직렬로 연결되는 적어도 제2 태양광 모듈을 포함할 수 있다. 상기 제2 태양광 모듈은 둘 또는 그 이상의 평행한 열들 내의 복수의 슈퍼 셀들로서 배열되는 약 150보다 크거나 같은 숫자 N'의 직사각형 또는 실질적으로 직사각형의 실리콘 태양 전지들을 포함할 수 있다. 상기 제2 태양광 모듈 내의 각 슈퍼 셀은 상기 실리콘 태양 전지들을 전기적으로 직렬로 연결하도록 중첩되고 서로 도전성으로 결합되는 인접하는 실리콘 태양 전지들의 긴 측면들과 일렬로 배열되는 상기 모듈 내의 실리콘 태양 전지들의 둘 또는 그 이상을 포함한다. 상기 제2 태양광 모듈에서 상기 슈퍼 셀들은 약 90볼트보다 크거나 같은 고전압 직류 모듈 출력을 제공하도록 전기적으로 연결된다.
상기 인버터(예를 들면, 마이크로인버터)는 직류 대 직류 부스트 구성 요소가 결핍될 수 있다.
상기 변형예들의 임의의 것에서, N 및 N'는 약 200보다 크거나 같거나, 약 250보다 크거나 같거나, 약 300보다 크거나 같거나, 약 350보다 크거나 같거나, 약 400보다 크거나 같거나, 약 450보다 크거나 같거나, 약 500보다 크거나 같거나, 약 550보다 크거나 같거나, 약 600보다 크거나 같거나, 약 650보다 크거나 같거나, 약 700보다 크거나 같을 수 있다. N 및 N'는 동일하거나 다른 값들을 가질 수 있다.
상기 변형예들의 임의의 것에서, 상기 태양광 모듈에 의해 제공되는 높은 직류 전압은 약 120볼트보다 크거나 같거나, 약 180볼트보다 크거나 같거나, 약 240볼트보다 크거나 같거나, 약 300볼트보다 크거나 같거나, 약 360볼트보다 크거나 같거나, 약 420볼트보다 크거나 같거나, 약 480볼트보다 크거나 같거나, 약 540볼트보다 크거나 같거나, 약 600볼트보다 크거나 같을 수 있다.
다른 측면에 있어서, 태양광 모듈은 둘 또는 그 이상의 평행한 열들 내의 복수의 직렬 연결된 슈퍼 셀들로서 배열되는 약 250보다 크거나 같은 숫자 N의 직사각형 또는 실질적으로 직사각형의 실리콘 태양 전지들을 포함한다. 각 슈퍼 셀은 상기 슈퍼 셀 내의 실리콘 태양 전지들을 전기적으로 직렬로 연결하도록 중첩되고 전기적 및 열적으로 도전성인 접착제로 서로 도전성으로 직접 결합되는 인접하는 실리콘 태양 전지들의 긴 측면들과 일렬로 배열되는 복수의 실리콘 태양 전지들을 포함한다. 상기 태양광 모듈은 25개의 태양 전지들 당 하나 이하의 바이패스 다이오드를 포함한다. 상기 전기적 및 열적으로 도전성인 접착제는 인접하는 태양 전지들 사이에 약 50미크론보다 작거나 같은 상기 태양 전지들에 직교하는 두께 및 약 1.5W/(미터-K)보다 크거나 같은 상기 태양 전지들에 직교하는 두께 열전도율을 갖는 결합들을 형성한다.
상기 슈퍼 셀들은 전면 및 후면 시트들 사이의 열가소성 올레핀층 내에 봉지될 수 있다. 상기 슈퍼 셀들 및 이들의 봉지재는 유리 전면 및 후면 시트들 사이에 개재될 수 있다.
상기 태양광 모듈은, 예를 들면, 30개의 태양 전지들 당 하나 이하의 바이패스 다이오드, 또는 50개의 태양 전지들 당 하나 이하의 바이패스 다이오드, 또는 100개의 태양 전지들 당 하나 이하의 바이패스 다이오드를 포함할 수 있다. 상기 태양광 모듈은, 예를 들면, 바이패스 다이오드를 포함하지 않거나, or only a single 단일의 바이패스 다이오드만, 또는 셋을 넘지 않는 바이패스 다이오드들, 또는 여섯을 넘지 않는 바이패스 다이오드들, 또는 열을 넘지 않는 바이패스 다이오드들을 포함할 수 있다.
상기 중첩되는 태양 전지들 사이의 도전성 결합들은 상기 슈퍼 셀들에 대해 상기 태양광 모듈을 손상시키지 않고 약 -40℃ 내지 약 100℃의 온도 범위에 대해 상기 열에 평행한 방향으로 상기 슈퍼 셀들 및 상기 유리 전면 시트 사이의 열팽창의 불일치를 수용하는 기계적 컴플라이언스를 선택적으로 제공할 수 있다.
상기 변형예들의 임의의 것에서, N은 약 300보다 크거나 같거나, 약 350보다 크거나 같거나, 약 400보다 크거나 같거나, 약 450보다 크거나 같거나, 약 500보다 크거나 같거나, 약 550보다 크거나 같거나, 약 600보다 크거나 같거나, 약 650보다 크거나 같거나, 약 700보다 크거나 같을 수 있다.
상기 변형예들의 임의의 것에서, 상기 슈퍼 셀들은 약 120볼트보다 크거나 같거나, 약 180볼트보다 크거나 같거나, 약 240볼트보다 크거나 같거나, 약 300볼트보다 크거나 같거나, 약 360볼트보다 크거나 같거나, 약 420볼트보다 크거나 같거나, 약 480볼트보다 크거나 같거나, 약 540볼트보다 크거나 같거나, 약 600볼트보다 크거나 같은 높은 직류 전압을 제공하도록 전기적으로 연결될 수 있다.
태양 에너지 시스템은 앞서의 변형예들의 임의의 것의 태양광 모듈 및 상기 태양광 모듈에 전기적으로 연결되고, AC 출력을 제공하기 위해 상기 태양광 모듈로부터의 DC 출력을 변환시키도록 구성되는 인버터(예를 들면, 마이크로인버터)를 포함할 수 있다. 상기 인버터는 DC 대 DC 구성 요소가 결핍될 수 있다. 상기 인버터는 태양 전지의 역 바이어싱을 회피하도록 설정된 최소 전압 이상의 직류 전압에서 상기 태양광 모듈을 동작시키도록 구성될 수 있다. 상기 최소 전압값은 온도에 의존할 수 있다. 상기 인버터는 역 바이어스 조건을 인식하고, 상기 역 바이어스 조건을 회피하는 전압에서 상기 태양광 모듈을 동작시키도록 구성될 수 있다. 예를 들면, 상기 인버터는 상기 역 바이어스 조건을 회피하도록 상기 태양광 모듈의 전압-전류 출력 곡선의 극대(local maximum) 영역에서 상기 태양광 모듈을 동작시키도록 구성될 수 있다.
본 명세서에는 태양 전지 절단 기구(cleaving tool)들 및 태양 전지 절단 방법(cleaving method)들이 개시된다.
일 측면에 있어서, 태양 전지들을 제조하는 방법은, 태양 전지 웨이퍼를 곡선의 표면을 따라 진행시키는 단계 및 곡선의 표면에 대해 상기 태양 전지 웨이퍼를 구부리도록 상기 곡선의 표면 및 상기 태양 전지 웨이퍼의 저면 사이에 진공을 인가하고, 이에 따라 상기 태양 전지 웨이퍼로부터 복수의 태양 전지들을 분리하도록 상기 태양 전지 웨이퍼를 하나 또는 그 이상의 미리 마련된 스크라이브 라인들을 따라 절단하는 단계를 포함한다. 상기 태양 전지 웨이퍼는, 예를 들면 상기 곡선의 표면을 따라 연속하여 진행될 수 있다. 선택적으로는, 상기 태양 전지는 별도의 이동들로 상기 곡선의 표면을 따라 진행될 수 있다.
상기 곡선의 표면은, 예를 들면 상기 진공을 상기 태양 전지 웨이퍼의 저면에 인가하는 진공 매니폴드(vacuum manifold)의 상부 표면의 곡선의 부분이 될 수 있다. 상기 진공 매니폴드에 의해 상기 태양 전지 웨이퍼의 저면에 인가되는 진공은 상기 태양 전지 웨이퍼의 진행의 방향을 따라 변화될 수 있고, 예를 들면, 상기 태양 전지 웨이퍼가 후속하여 절단되는 상기 진공 매니폴드의 영역에서 가장 강할 수 있다.
상기 방법은 상기 태양 전지 웨이퍼를 천공된 벨트로 상기 진공 매니폴드의 곡선의 상부 표면을 따라 이송하는 단계를 포함할 수 있고, 상기 진공은 상기 천공된 벨트의 천공들을 통해 상기 태양 전지 웨이퍼의 저면에 인가된다. 상기 천공들은 상기 태양 전지 웨이퍼의 진행의 방향을 따라 상기 태양 전지 웨이퍼의 리딩(leading) 및 트레일링(trailing) 에지들이 상기 벨트 내의 적어도 하나의 천공 상부에 놓여야 하고, 이에 따라 상기 진공에 의해 상기 곡선의 표면을 향해 당겨져야 하도록 선택적으로 배열될 수 있지만, 이러한 점이 요구되는 것은 아니다.
상기 방법은 상기 태양 전지 웨이퍼를 제1 곡률을 갖는 상기 진공 매니폴드의 상부 표면의 곡선의 전이 영역에 도달하도록 상기 진공 매니폴드의 상부 표면의 평탄한 영역을 따라 진행시키고, 이후에 상기 태양 전지 웨이퍼를 상기 태양 전지 웨이퍼가 후속하여 절단되는 상기 진공 매니폴드의 상부 표면의 절단 영역 내로 진행시키는 단계를 포함할 수 있으며, 상기 진공 매니폴드의 절단 영역은 상기 제1 곡률보다 급격한 제2 곡률을 가진다. 상기 방법은 상기 절단된 태양 전지들을 상기 곡률보다 급격한 제3 곡률을 갖는 상기 진공 매니폴드의 후-절단 영역 내로 진행시키는 단계를 더 포함할 수 있다.
상기 변형예들의 임의의 것에서, 상기 방법은 각 스크라이브 라인을 따라 단일의 절단하는 크랙(cleaving crack)의 생성과 전파를 증진시키는 각 스크라이브 라인을 따른 비대칭 스트레스 분포를 제공하도록 각 스크라이브 라인의 대향하는 단부보다 각 스크라이브 라인의 일측 단부에서 상기 태양 전지 웨이퍼 및 상기 곡선의 표면 사이에 보다 강은 진공을 인가하는 단계를 더 포함할 수 있다. 선택적으로는 또는 추가적으로는, 상기 변형예들의 임의의 것에서 상기 방법은 각 스크라이브 라인에 대해 일측 단부가 타측 단부 전에 상기 진공 매니폴드의 곡선의 절단 영역에 도달하도록 상기 태양 전지 웨이퍼 상의 스크라이브 라인들을 상기 진공 매니폴드에 대해 각도로 배향하는 단계를 포함할 수 있다.
상기 변형예들의 임의의 것에서, 상기 방법은 상기 절단된 태양 전지들의 에지들이 접촉되기 전에 상기 곡선의 표면으로부터 상기 절단된 태양 전지들을 제거하는 단계를 포함할 수 있다. 예를 들면, 상기 방법은 상기 셀들을 상기 매니폴드를 따른 상기 셀들의 진행의 속도보다 큰 속도로 상기 매니폴드의 곡선의 표면에 접선(tangential)이거나 대략적으로 접선인 방향으로 제거하는 단계를 포함할 수 있다. 이는, 예를 들면, 접선으로 배열되는 이동 벨트 또는 임의의 다른 적합한 메커니즘(mechanism)으로 구현될 수 있다.
상기 변형예들의 임의의 것에서, 상기 방법은 상기 태양 전지 웨이퍼 상으로 상기 스크라이브 라인들을 스크라이빙하는 단계 및 상기 태양 전지 웨이퍼를 상기 스크라이브 라인들을 따라 절단하기 이전에 상기 태양 전지 웨이퍼의 상면 또는 저면의 일부들에 전기적으로 도전성의 접착 결합 물질을 적용하는 단계를 포함할 수 있다. 각각의 결과적인 절단된 태양 전지들은 그러면 그 상면 또는 저면의 절단된 에지를 따라 배치되는 상기 전기적으로 도전성의 접착 결합 물질의 일부를 포함할 수 있다. 상기 스크라이브 라인들은 임의의 적합한 스크라이빙 방법을 이용하여 상기 전기적으로 도전성의 접착 결합 물질이 적용되기 전후에 형성될 수 있다. 상기 스크라이브 라인들은, 예를 들면 레이저 스크라이빙에 의해 형성될 수 있다.
상기 변형예들의 임의의 것에서, 상기 태양 전지 웨이퍼는 정사각형 또는 의사 정사각형의 실리콘 태양 전지 웨이퍼가 될 수 있다.
다른 측면에 있어서, 태양 전지들의 스트링을 만드는 방법은 슁글드 방식으로 중첩되는 인접하는 직사각형의 태양 전지들의 긴 측면들과 일렬로 복수의 직사각형의 태양 전지들을 그 사이에 배치되는 전기적으로 도전성의 접착 결합 물질로 배열하는 단계, 그리고 상기 전기적으로 도전성의 결합 물질을 큐어링하여 인접하고 중첩되는 직사각형의 태양 전지들을 서로 결합시키고, 이들을 전기적으로 직렬로 연결하는 단계를 포함한다. 상기 태양 전지들은, 예를 들면, 전술한 태양 전지들을 제조하기 위한 방법의 변형예들의 임의의 것에 의해 제조될 수 있다.
일 측면에 있어서, 태양 전지들의 스트링을 만드는 방법은 각각의 하나 또는 그 이상의 정사각형의 태양 전지들 상에 후면 금속화 패턴을 형성하는 단계, 그리고 각각의 상기 하나 또는 그 이상의 정사각형의 태양 전지들 상에 완전한 전면 금속화 패턴을 단일의 스텐실 프린팅(stencil printing) 단계에서 단일의 스텐실을 사용하여 스텐실 프린팅하는 단계를 포함한다. 이들 단계들은 어느 하나의 순서로 수행될 수 있고, 적합할 경우에 동시에 수행될 수 있다. "완전한 전면 금속화 패턴"은 상기 스텐실 프린팅 단계 후에 상기 전면 금속화의 형성을 완료하도록 추가적인 금속화 물질이 상기 정사각형의 태양 전지의 전면 상에 증착될 필요가 없는 것을 의미한다. 상기 방법은 또한 상기 하나 또는 그 이상의 정사각형의 태양 전지들로부터 각기 완전한 전면 금속화 패턴 및 후면 금속화 패턴을 구비하는 복수의 직사각형의 태양 전지들을 형성하도록 각 정사각형의 태양 전지를 둘 또는 그 이상의 직사각형의 태양 전지들로 분리하는 단계, 상기 복수의 직사각형의 태양 전지들을 슁글드 방식으로 중첩되는 인접하는 직사각형의 태양 전지들의 긴 측면들과 일렬로 배열하는 단계, 그리고 인접하고 중첩되는 직사각형의 태양 전지들의 각 쌍 내의 상기 직사각형의 태양 전지들을 이들 사이에 배치되는 전기적으로 도전성의 결합 물질로 도전성으로 결합하여, 상기 쌍 내의 상기 직사각형의 태양 전지들의 하나의 전면 금속화 패턴을 상기 쌍 내의 상기 직사각형의 태양 전지들의 다른 하나의 후면 금속화 패턴에 전기적으로 연결함으로써, 상기 복수의 직사각형의 태양 전지들을 전기적으로 직렬로 연결하는 단계를 포함한다.
상기 스텐실은 상기 하나 또는 그 이상의 정사각형의 태양 전지들 상의 전면 금속화 패턴의 하나 또는 그 이상의 특징들을 정의하는 상기 스텐실의 모든 부분들이 스텐실 프린팅 동안에 상기 스텐실의 평면 내에 놓이도록 상기 스텐실의 다른 부분들에 대한 물리적 연결들에 의해 제한되도록 구성될 수 있다.
각 직사각형의 태양 전지 상의 상기 전면 금속화 패턴은, 예를 들면 상기 직사각형의 태양 전지의 긴 측면들에 직교하게 배향되는 복수의 핑거(finger)들을 포함할 수 있고, 상기 전면 금속화 패턴 내의 핑거들은 상기 전면 금속화 패턴에 의해 서로 물리적으로 연결되지 않는다.
본 명세서에는, 예를 들면 전하 재결합(carrier recombination)을 증진시키는 절단된 에지들이 없이 태양 전지의 에지들에서 감소된 전하 재결합 손실들을 갖는 태양 전지들, 이러한 태양 전지들을 제조하기 위한 방법들, 그리고 슈퍼 셀들을 형성하도록 슁글드(중첩되는) 배치들로의 이러한 태양 전지들의 사용이 개시된다.
일 측면에 있어서, 복수의 태양 전지들을 제조하는 방법은, 결정질 실리콘 웨이퍼의 전면 상에 하나 또는 그 이상의 전면 비정질 실리콘층들을 증착하는 단계, 상기 전면으로부터 상기 결정질 실리콘 웨이퍼의 대향하는 측면 상의 상기 결정질 실리콘 웨이퍼의 후면 상에 하나 또는 그 이상의 후면 비정질 실리콘층들을 증착하는 단계, 상기 하나 또는 그 이상의 전면 비정질 실리콘층들 내에 하나 또는 그 이상의 전면 트렌치(trench)들을 형성하도록 상기 하나 또는 그 이상의 전면 비정질 실리콘층들을 패터닝하는 단계, 상기 하나 또는 그 이상의 전면 비정질 실리콘층들 상부와 상기 전면 트렌치들 내에 전면 패시베이팅층(passivating layer)을 증착하는 단계, 상기 하나 또는 그 이상의 후면 비정질 실리콘층들 내에 하나 또는 그 이상의 후면 트렌치들을 형성하도록 상기 하나 또는 그 이상의 후면 비정질 실리콘층들을 패터닝하는 단계, 그리고 상기 하나 또는 그 이상의 후면 비정질 실리콘층들 상부 및 상기 후면 트렌치들 내에 후면 패시베이팅층을 증착하는 단계를 포함한다. 각각의 상기 하나 또는 그 이상의 후면 트렌치들은 상기 전면 트렌치들의 대응되는 것과 일렬로 형성된다. 상기 방법은 하나 또는 그 이상의 절단 평면들에서 상기 결정질 실리콘 웨이퍼를 절단하는 단계를 더 포함하며, 각 절단 평면은 대응되는 전면 및 후면 트렌치들의 다른 쌍 상에 중심을 두거나 실질적으로 중심을 둔다. 결과적인 태양 전지들의 동작에서 상기 전면 비정질 실리콘층들은 광에 조명된다.
일부 변형예들에서 상기 전면 트렌치들만이 형성되고, 상기 후면 트렌치들은 형성되지 않는다. 다른 변형예들에서, 상기 후면 트렌치들만이 형성되고, 상기 전면 트렌치들은 형성되지 않는다.
상기 방법은 상기 결정질 실리콘 웨이퍼의 전면에 도달되도록 상기 전면 비정질 실리콘층을 관통하는 상기 하나 또는 그 이상의 전면 트렌치들을 형성하는 단계 및/또는 상기 결정질 실리콘 웨이퍼의 후면에 도달되도록 상기 하나 또는 그 이상의 후면 비정질 실리콘층들을 관통하는 상기 하나 또는 그 이상의 후면 트렌치들을 형성하는 단계를 포함할 수 있다.
상기 방법은 투명 도전성 산화물로 상기 전면 패시베이팅층을 형성하는 단계 및/또는 상기 후면 패시베이팅층을 형성하는 단계를 포함할 수 있다.
펄스 레이저 또는 다이아몬드 팁(tip)이 절단 지점(예를 들면, 100미크론 길이의 크기)을 개시하는 데 사용될 수 있다. CW 레이저 및 냉각 노즐이 높은 압축 및 인장 열 스트레스를 후속하여 유도하고, 상기 하나 또는 그 이상의 절단 평면들에서 상기 결정성 실리콘 웨이퍼를 분리하기 위해 상기 결정질 실리콘 웨이퍼 내의 완전한 절단 전파를 안내하도록 사용될 수 있다. 선택적으로는, 상기 결정성 실리콘 웨이퍼는 상기 하나 또는 그 이상의 절단 평면들에서 기계적으로 절단될 수 있다. 임의의 적합한 절단 방법들이 이용될 수 있다.
상기 하나 또는 그 이상의 전면 비정질 결정질 실리콘층들은 상기 결정질 실리콘 웨이퍼와 n-p 접합을 형성할 수 있고, 이 경우에 상기 결정질 실리콘 웨이퍼를 그 후면측으로부터 절단하는 것이 바람직할 수 있다. 선택적으로는, 상기 하나 또는 그 이상의 후면 비정질 결정질 실리콘층들은 상기 결정질 실리콘 웨이퍼와 n-p 접합을 형성할 수 있고, 이 경우에 상기 결정질 실리콘 웨이퍼를 그 전면측으로부터 절단하는 것이 바람직할 수 있다.
다른 측면에 있어서, 복수의 태양 전지들을 제조하는 방법은, 결정질 실리콘 웨이퍼의 제1 표면 내에 하나 또는 그 이상의 트렌치들을 형성하는 단계, 상기 결정질 실리콘 웨이퍼의 제1 표면상에 하나 또는 그 이상의 비정질 실리콘층들을 증착하는 단계, 상기 트렌치들 내 및 상기 결정질 실리콘 웨이퍼의 제1 표면상의 상기 하나 또는 그 이상의 비정질 실리콘층들 상에 패시베이팅층을 증착하는 단계, 상기 제1 표면으로부터 상기 결정질 실리콘 웨이퍼 의 대향하는 측면 상의 상기 결정질 실리콘 웨이퍼의 제2 표면상에 하나 또는 그 이상의 비정질 실리콘층들을 증착하는 단계, 그리고 하나 또는 그 이상의 절단 평면들에서 상기 결정질 실리콘 웨이퍼를 절단하는 단계를 포함하며, 각 절단 평면은 상기 하나 또는 그 이상의 트렌치들의 다른 것들 상에 중심을 두거나 실질적으로 중심을 둔다.
상기 방법은 투명 도전성 산화물로 상기 패시베이팅층을 형성하는 단계를 포함할 수 있다.
레이저가 상기 결정질 실리콘 웨이퍼를 상기 하나 또는 그 이상의 절단 평면들에서 절단하도록 상기 결정질 실리콘 웨이퍼 내에 열 스트레스를 유도하는 데 사용될 수 있다. 선택적으로는, 상기 결정성 실리콘 웨이퍼는 상기 하나 또는 그 이상의 절단 평면들에서 기계적으로 절단될 수 있다. 임의의 적합한 절단 방법이 사용될 수 있다.
상기 하나 또는 그 이상의 전면 비정질 결정질 실리콘층들은 상기 결정질 실리콘 웨이퍼와 n-p 접합을 형성할 수 있다. 선택적으로는, 상기 하나 또는 그 이상의 후면 비정질 결정질 실리콘층들은 상기 결정질 실리콘 웨이퍼와 n-p 접합을 형성할 수 있다.
다른 측면에 있어서, 태양 전지판은 복수의 슈퍼 셀들을 포함하고, 각 슈퍼 셀은 태양 전지들을 전기적으로 직렬로 연결하도록 슁글드 방식으로 중첩되고 서로 도전성으로 결합되는 인접하는 태양 전지들의 단부들과 일렬로 배열되는 복수의 태양 전지들을 포함한다. 각 태양 전지는, 결정질 실리콘 베이스, n-p 접합을 형성하도록 상기 결정질 실리콘 베이스의 제1 표면상에 배치되는 하나 또는 그 이상의 제1 표면 비정질 실리콘층들, 상기 제1 표면으로부터 상기 결정질 실리콘 베이스의 대향하는 측면 상의 상기 결정질 실리콘 베이스의 제2 표면상에 배치되는 하나 또는 그 이상의 제2 표면 비정질 실리콘층들, 그리고 상기 제1 표면 비정질 실리콘층들의 에지들, 상기 제2 표면 비정질 실리콘층들의 에지들, 또는 상기 제1 표면 비정질 실리콘층들의 에지들 및 상기 제2 표면 비정질 실리콘층들의 에지들에서 전하 재결합을 방지하는 패시베이팅층들을 포함한다. 상기 패시베이팅층들은 투명 도전성 산화물을 포함할 수 있다.
상기 태양 전지들은, 예를 들면 앞서 요약하거나 본 명세서에 개시되는 방법들의 임의의 것에 의해 형성될 수 있다.
본 발명의 이들과 다른 실시예들, 특징들 및 이점들은 먼저 간략하게 설명되는 첨부된 도면들과 함께 다음의 본 발명의 보다 상세한 설명을 참조할 때에 해당 기술 분야의 숙련자에게 보다 분명해질 것이다.
도 1은 슁글드 슈퍼 셀을 형성하도록 중첩되는 인접하는 태양 전지들의 단부들을 구비하여 슁글드 방식으로 배열되는 직렬 연결된 태양 전지들의 스트링의 단면도를 도시한다.
도 2a는 슁글드 슈퍼 셀들을 형성하는 데 사용될 수 있는 예시적인 직사각형의 태양 전지의 전면(태양측) 및 전면 금속화 패턴의 도면을 도시한다.
도 2b 및 도 2c는 슁글드 슈퍼 셀들을 형성하는 데 사용될 수 있는 라운드진 모서리들을 갖는 두 예시적인 직사각형의 태양 전지들의 전면(태양측) 및 전면 금속화 패턴들의 도면들을 도시한다.
도 2d 및 도 2e는 도 2a에 도시한 태양 전지에 대한 후면 및 예시적인 후면 금속화 패턴들의 도면들을 도시한다.
도 2f 및 도 2g는 각기 도 2b 및 도 2c에 도시한 태양 전지들에 대한 후면들 및 예시적인 후면 금속화 패턴들의 도면들을 도시한다.
도 2h는 슁글드 슈퍼 셀들을 형성하는 데 사용될 수 있는 다른 예시적인 직사각형의 태양 전지의 전면(태양측) 및 전면 금속화 패턴의 도면을 도시한다. 상기 전면 금속화 패턴은 별개의 콘택 패드들을 포함하고, 이들 각각은 그 콘택 패드 상에 증착되는 큐어링되지 않은 도전성의 접착 결합 물질이 상기 콘택 패드로부터 떨어져 흐르는 것을 방지하도록 구성되는 배리어에 의해 둘러싸인다.
도 2i는 도 2h의 태양 전지의 단면도를 도시하며, 콘택 패드 및 상기 콘택 패드를 둘러싸는 배리어의 일부들을 포함하는 도 2j 및 도 2k의 확대도에 도시한 전면 금속화 패턴의 세부 사항을 식별한다.
도 2j는 도 2i로부터의 세부 사항의 확대도를 도시한다.
도 2k는 배리어에 의해 별개의 콘택 패드의 위치에 실질적으로 제한되는 큐어링되지 않은 도전성 접착 결합 물질을 구비하는 도 2i의 세부 사항의 확대도를 도시한다.
도 2l은 도 2h의 태양 전지에 대한 후면 및 예시적인 후면 금속화 패턴의 도면을 도시한다. 상기 후면 금속화 패턴은 별개의 콘택 패드들을 포함하며, 이들 각각은 그 콘택 패드 상에 증착되는 큐어링되지 않은 도전성의 접착 결합 물질이 상기 콘택 패드로부터 떨어져 흐르는 것을 방지하도록 구성되는 배리어에 의해 둘러싸인다.
도 2m은 도 2l의 태양 전지의 단면도를 도시하며, 콘택 패드 및 상기 콘택 패드를 둘러싸는 배리어를 포함하는 도 2n의 확대도에 도시한 후면 금속화 패턴의 세부 사항을 식별한다.
도 2n은 도 2m으로부터의 세부 사항의 확대도를 도시한다.
도 2o는 큐어링되지 않은 도전성의 접착 결합 물질이 콘택 패드로부터 멀어져 흐르는 것을 방지하도록 구성되는 배리어를 포함하는 금속화 패턴의 다른 변형예를 도시한다. 상기 배리어는 상기 콘택 패드의 일 측면에 인접하고, 상기 콘택 패드보다 크다.
도 2p는 콘택 패드의 적어도 두 측면들에 인접하는 배리어를 구비하는 도 2o의 금속화 패턴의 다른 변형예를 도시한다.
도 2q는 다른 예시적인 직사각형의 태양 전지에 대한 후면 및 예시적인 후면 금속화 패턴의 도면을 도시한다. 상기 후면 금속화 패턴은 상기 태양 전지의 에지를 따라 상기 태양 전지의 긴 측면의 길이로 실질적으로 진행되는 연속되는 콘택 패드를 포함한다. 상기 콘택 패드는 상기 콘택 패드 상에 증착되는 큐어링되지 않은 도전성의 접착 결합 물질이 상기 콘택 패드로부터 떨어져 흐르는 것을 방지하도록 구성되는 배리어에 의해 둘러싸인다.
도 2r은 슁글드 슈퍼 셀들을 형성하는 데 사용될 수 있는 다른 예시적인 직사각형의 태양 전지의 전면(태양측) 및 전면 금속화 패턴의 도면을 도시한다. 상기 전면 금속화 패턴은 상기 태양 전지의 에지를 따라 열로 배열되는 별개의 콘택 패드들 및 상기 콘택 패드들의 열에 평행하고 그로부터 기판 내측으로 진행되는 길고 얇은 컨덕터를 포함한다. 상기 길고 얇은 컨덕터는 그 콘택 패드들 상에 증착되는 큐어링되지 않은 도전성의 접착 결합 물질이 상기 콘택 패드들로부터 떨어지고 상기 태양 전지의 활성 영역 상으로 흐르는 것을 방지하도록 구성되는 배리어를 형성한다.
도 3a는 표준 크기 및 형상의 의사 정사각형의 실리콘 태양 전지가 슁글드 슈퍼 셀들을 형성하는 데 사용될 수 있는 두 가지 다른 길이들의 직사각형의 태양 전지들로 분리(예를 들면, 절단 또는 파쇄)될 수 있는 예시적인 방법을 예시하는 도면을 도시한다.
도 3b 및 도 3c는 의사 정사각형의 실리콘 태양 전지가 직사각형의 태양 전지들로 분리될 수 있는 다른 예시적인 방법을 예시하는 도면들을 도시한다. 도 3b는 상기 웨이퍼의 전면 및 예시적인 전면 금속화 패턴을 도시한다. 도 3c는 상기 웨이퍼의 후면 및 예시적인 후면 금속화 패턴을 도시한다.
도 3d 및 도 3e는 정사각형의 실리콘 태양 전지가 직사각형의 태양 전지들로 분리될 수 있는 예시적인 방법을 예시하는 도면들을 도시한다. 도 3d는 상기 웨이퍼의 전면 및 예시적인 전면 금속화 패턴을 도시한다. 도 3e는 상기 웨이퍼의 후면 및 예시적인 후면 금속화 패턴을 도시한다.
도 4a는 도 1에 도시한 바와 같이 슁글드 방식으로 배열되는, 예를 들면 도 2a에 도시한 바와 같은 직사각형의 태양 전지들을 포함하는 예시적인 직사각형의 슈퍼 셀의 전면의 부분도를 도시한다.
도 4b 및 도 4c는 도 1에 도시한 바와 같이 슁글드 방식으로 배열되는, 예를 들면 도 2b에 도시한 바와 같은 챔퍼 처리된 모서리들을 갖는 "쉐브론" 직사각형의 태양 전지들을 포함하는 예시적인 직사각형의 슈퍼 셀의 전면도 및 후면도를 각기 도시한다.
도 5a는 복수의 직사각형의 슁글드 슈퍼 셀들을 포함하는 예시적인 직사각형의 태양광 모듈의 도면을 도시하며, 각 슈퍼 셀의 긴 측면은 상기 모듈의 짧은 측면들의 길이의 대략적으로 절반인 길이를 가진다. 상기 슈퍼 셀들의 쌍들은 상기 모듈의 짧은 측면들에 평행한 상기 슈퍼 셀들의 긴 측면들을 갖는 열들을 형성하도록 단대단으로 배열된다.
도 5b는 복수의 직사각형의 슁글드 슈퍼 셀들을 포함하는 다른 예시적인 직사각형의 태양광 모듈의 도면을 도시하며, 각 슈퍼 셀의 긴 측면은 상기 모듈의 짧은 측면들의 길이의 대략적으로 같은 길이를 가진다. 상기 슈퍼 셀들은 상기 모듈의 짧은 측면들에 평행한 이들의 긴 측면들을 구비하여 배열된다.
도 5c는 복수의 직사각형의 슁글드 슈퍼 셀들을 포함하는 다른 예시적인 직사각형의 태양광 모듈의 도면을 도시하며, 각 슈퍼 셀의 긴 측면은 상기 모듈의 긴 측면의 길이와 대략적으로 같은 길이를 가진다. 상기 슈퍼 셀들은 상기 모듈의 측면들에 평행한 이들의 긴 측면들을 구비하여 배열된다.
도 5d는 복수의 직사각형의 슁글드 슈퍼 셀들을 포함하는 예시적인 직사각형의 태양광 모듈의 도면을 도시하며, 각 슈퍼 셀의 긴 측면은 상기 모듈의 긴 측면들의 길이의 대략적으로 절반인 길이를 가진다. 상기 슈퍼 셀들의 쌍들은 상기 모듈의 긴 측면들에 평행한 상기 슈퍼 셀들의 긴 측면들을 갖는 열들을 형성하도록 단대단으로 배열된다.
도 5e는 도 5c의 경우와 구성이 유사한 다른 예시적인 직사각형의 태양광 모듈의 도면을 도시하며, 여기서 상기 슈퍼 셀들이 형성되는 모든 태양 전지들은 상기 태양 전지들이 분리되었던 의사-정사각형의 웨이퍼들의 모서리들에 대응되는 챔퍼 처리된 모서리들을 갖는 쉐브론 태양 전지들이다.
도 5f는 도 5c의 경우와 구성이 유사한 다른 예시적인 직사각형의 태양광 모듈의 도면을 도시하며, 여기서 상기 슈퍼 셀들이 형성되는 모든 태양 전지들은 이들이 분리되었던 의사-정사각형의 웨이퍼들의 형상들을 재생하도록 배열되는 쉐브론 및 정사각형의 태양 전지들의 혼합을 포함한다.
도 5g는 슈퍼 셀 내의 인접하는 쉐브론 태양 전지들이 이들의 중첩되는 에지들이 동일한 길이가 되도록 서로 거울상들로서 배열되는 점을 제외하면 도 5e의 경우와 구성이 유사한 다른 예시적인 직사각형의 태양광 모듈의 도면들 도시한다.
도 6은 슈퍼 셀들을 각 열 내에 서로 직렬로 두고, 상기 열들을 서로 병렬로 두도록 유연한 전기적 인터커넥트들에 의해 상호 연결되는 슈퍼 셀들의 세 개의 열들의 예시적인 배치를 도시한다. 이들은, 예를 들면 도 5d의 태양광 모듈 내의 세 개의 열들이 될 수 있다.
도 7a는 슈퍼 셀들을 직렬 또는 병렬로 상호 연결하는 데 사용될 수 있는 예시적인 유연한 인터커넥트들을 도시한다. 예들의 일부는 이들의 긴 축들을 따르거나, 이들의 짧은 축들을 따르거나, 이들의 긴 축들 및 이들의 짧은 축들을 따라 이들의 유연성(기계적 컴플라이언스)을 증가시키는 패터닝을 나타낸다. 도 7a는 여기서 설명하는 바와 같이 슈퍼 셀들에 대한 히든 탭들 내에 또는 전면 또는 후면 슈퍼 셀 단자 콘택들에 대한 인터커넥트들로 사용될 수 있는 예시적인 스트레스를 제거하는 긴 인터커넥트 구성들을 도시한다. 도 7b-1 및 도 7b-2는 평면 외의 스트레스 제거 특징들의 예들을 예시한다. 도 7b-1 및 도 7b-2는 평면 외의 스트레스 제거 특징들을 포함하고, 슈퍼 셀들에 대한 히든 탭들 내에 또는 전면 또는 후면 슈퍼 셀 단자 콘택들에 대한 인터커넥트들로서 사용될 수 있는 예시적인 긴 인터커넥트 구성을 도시한다.
도 8a는 도 5d로부터의 세부 사항 A를 도시하며, 슈퍼 셀들의 열들의 후면 단자 콘택들에 결합되는 유연한 전기적 인터커넥트들의 단면 세부 사항들을 도시하는 도 5d의 예시적인 태양광 모듈의 단면도이다.
도 8b는 도 5d로부터의 세부 사항 C를 도시하며, 슈퍼 셀들의 열들의 전면(태양측) 단자 콘택들에 결합되는 유연한 전기적 인터커넥트들의 단면 세부 사항들을 도시하는 도 5d의 예시적인 태양광 모듈의 단면도이다.
도 8c는 도 5d로부터의 세부 사항 D를 도시하며, 열들 내의 슈퍼 셀들을 직렬로 상호 연결하도록 배열되는 유연한 인터커넥트들의 단면 세부 사항들을 도시하는 도 5d의 예시적인 태양광 모듈의 단면도이다.
도 8d-도 8g는 태양광 모듈의 에지에 인접하여 슈퍼 셀들의 열의 단부에서 슈퍼 셀의 전면 단자 콘택에 결합되는 전기적 인터커넥트들의 추가적인 예들을 도시한다. 상기 예시적인 인터커넥트들은 상기 모듈의 전면 상에 작은 풋 프린트(foot print)를 가지도록 구성된다.
도 9a는 여섯 개의 직사각형의 슁글드 슈퍼 셀들을 포함하는 다른 예시적인 정사각형의 태양광 모듈의 도면들 도시하며, 각 슈퍼 셀의 긴 측면은 상기 모듈의 긴 측면의 길이와 대략적으로 동일한 길이를 가진다. 상기 슈퍼 셀들은 서로 전기적으로 병렬로 연결되고 상기 태양광 모듈의 후면 상의 접합 박스 내에 배치되는 바이패스 다이오드와 전기적으로 병렬로 연결되는 여섯 개의 열들로 배열된다. 상기 슈퍼 셀들과 상기 바이패스 다이오드 사이의 전기적 연결들은 상기 모듈의 라미네이트 구조에 내장되는 리본들을 통해 이루어진다.
도 9b는 여섯 개의 직사각형의 슁글드 슈퍼 셀들을 포함하는 다른 예시적인 직사각형의 태양광 모듈의 도면을 도시하며, 각 슈퍼 셀의 긴 측면은 상기 모듈의 긴 측면의 길이와 대략적으로 동일한 길이를 가진다. 상기 슈퍼 셀들은 서로 전기적으로 병렬로 연결되고 상기 태양광 모듈의 에지 부근에서 후면 상의 접합 박스 내에 배치되는 바이패스 다이오드와 전기적으로 병렬로 연결되는 여섯 개의 열들로 배열된다. 제2의 접합 박스는 상기 태양광 모듈의 대향하는 단부 부근의 후면 상에 위치한다. 상기 슈퍼 셀들과 상기 바이패스 다이오드 사이의 전기적 연결은 상기 접합 박스들 사이의 외부 케이블을 통해 이루어진다.
도 9c는 여섯 개의 직사각형의 슁글드 슈퍼 셀들을 포함하는 예시적인 유리-유리 직사각형의 태양광 모듈을 도시하며, 각 슈퍼 셀의 긴 측면은 상기 모듈의 긴 측면의 길이와 대략적으로 동일한 길이를 가진다. 상기 슈퍼 셀들은 서로 전기적으로 병렬로 연결되는 여섯 개의 열들로 배열된다. 두 접합 박스들은 상기 모듈의 대향하는 에지들 상에 장착되며, 상기 모듈의 활성 영역을 최대화한다.
도 9d는 도 9c에 예시한 태양광 모듈의 측면도이다.
도 9e는 여섯 개의 직사각형의 슁글드 슈퍼 셀들을 포함하는 다른 예시적인 태양광 모듈을 도시하며, 각 슈퍼 셀은 상기 모듈의 긴 측면의 길이와 대략적으로 동일한 길이를 가진다. 상기 슈퍼 셀들은 상기 태양광 모듈 상의 전원 관리 장치에 개별적으로 연결되는 열들의 세 쌍들을 포함하여 여섯 개의 열들로 배열된다.
도 9f는 여섯 개의 직사각형의 슁글드 슈퍼 셀들을 포함하는 다른 예시적인 태양광 모듈을 도시하며, 각 슈퍼 셀의 긴 측면은 상기 모듈의 긴 측면의 길이와 대략적으로 같은 길이를 가진다. 상기 슈퍼 셀들은 각 열이 개별적으로 상기 태양광 모듈 상의 전원 관리 장치에 연결되는 여섯 개의 열들로 배열된다.
도 9g 및 도 9h는 슁글드 슈퍼 셀들을 사용하는 모듈 레벨 전원 관리를 위한 구성들의 다른 예들을 도시한다.
도 10a는 도 5b에 예시한 바와 같은 태양광 모듈을 위한 예시적인 개략적 전기 회로도를 도시한다.
도 10b-1 및 도 10b-2는 도 10a의 개략적인 회로도를 갖는 도 5b에 예시한 바와 같은 태양광 모듈을 위한 다양한 전기적 상호 연결들에 대한 예시적인 물리적 레이아웃을 도시한다.
도 11a는 도 5a에 예시한 바와 같은 태양광 모듈의 예시적인 개략적 전기 회로도를 도시한다.
도 11b-1 및 도 11b-2는 도 11a의 개략적인 전기 회로도를 갖는 도 5a에 예시한 바와 같은 태양광 모듈을 위한 다양한 전기적 상호 연결들에 대한 예시적인 물리적 레이아웃을 도시한다.
도 11c-1 및 도 11c-2는 도 11a의 개략적인 전기 회로도를 갖는 도 5a에 예시한 바와 같은 태양광 모듈을 위한 다양한 전기적 상호 연결들에 대한 다른 예시적인 물리적 레이아웃을 도시한다.
도 12a는 도 5a에 예시한 바와 같은 태양광 모듈을 위한 다른 예시적인 개략적 전기 회로도를 도시한다.
도 12b-1 및 도 12b-2는 도 12a의 개략적인 회로도를 갖는 도 5a에 예시한 바와 같은 태양광 모듈을 위한 다양한 전기적 상호 연결들에 대한 예시적인 물리적 레이아웃을 도시한다.
도 12c-1, 도 12c-2 및 도 12c-3은 도 12a의 개략적인 회로도를 갖는 도 5a에 예시한 바와 같은 태양광 모듈을 위한 다양한 전기적 상호 연결들에 대한 다른 예시적인 물리적 레이아웃을 도시한다.
도 13a는 도 5a에 예시한 바와 같은 태양광 모듈을 위한 다른 예시적인 개략적 회로도를 도시한다.
도 13b는 도 5b에 예시한 바와 같은 태양광 모듈을 위한 다른 예시적인 개략적 회로도를 도시한다.
도 13c-1 및 도 13c-2는 도 13a의 개략적인 회로도를 갖는 도 5a에 예시한 바와 같은 태양광 모듈을 위한 다양한 전기적 상호 연결들에 대한 예시적인 물리적 레이아웃을 도시한다. 약간 변경된 도 13c-1 및 도 13c-2의 물리적 레이아웃은 도 13b의 개략적인 회로도를 갖는 도 5b에 예시한 바와 같은 태양광 모듈에 대해 적합하다.
도 14a는 복수의 직사각형의 슁글드 슈퍼 셀들을 포함하는 다른 예시적인 직사각형의 태양광 모듈의 도면을 도시하며, 각 슈퍼 셀의 긴 측면은 상기 모듈의 짧은 측면의 길이의 절반과 대략적으로 같은 길이를 가진다. 상기 슈퍼 셀들의 쌍들은 상기 모듈의 짧은 측면에 평행한 상기 슈퍼 셀들의 긴 측면들을 갖는 열들을 형성하도록 단대단으로 배열된다.
도 14b는 도 14a에 예시한 바와 같은 태양광 모듈을 위한 예시적인 개략적 회로도를 도시한다.
도 14c-1 및 도 14c-2는 도 14b의 개략적인 회로도를 갖는 도 14a에 예시한 바와 같은 태양광 모듈을 위한 다양한 전기적 상호 연결들에 대한 예시적인 물리적 레이아웃을 도시한다.
도 15는 도 10a의 개략적인 회로도를 갖는 도 5b에 예시한 바와 같은 태양광 모듈을 위한 다양한 전기적 상호 연결들에 대한 다른 예시적인 물리적 레이아웃을 도시한다.
도 16은 두 개의 태양광 모듈들을 직렬로 상호 연결하는 스마트 스위치의 예시적인 배치를 도시한다.
도 17은 슈퍼 셀들을 구비하는 태양광 모듈을 만드는 예시적인 방법의 흐름도를 도시한다.
도 18은 슈퍼 셀들을 구비하는 태양광 모듈을 만드는 다른 예시적인 방법의 흐름도를 도시한다.
도 19a-도 19d는 열과 압력으로 슈퍼 셀들이 큐어링될 수 있는 예시적인 배치들을 도시한다.
도 20a-도 20c는 스크라이브된 태양 전지들을 절단하는 데 사용될 수 있는 예시적인 장치를 개략적으로 예시한다. 상기 장치는 도전성 접착 결합 물질이 적용되었던 스크라이브된 슈퍼 셀들을 절단하는 데 사용될 때에 특히 유리할 수 있다.
도 21은 슈퍼 셀들 및 상기 모듈의 전방으로부터 보일 수 있는 백 시트의 일부들 사이의 가시적인 대비를 감소시키도록 슈퍼 셀들의 평행한 열들을 포함하는 태양광 모듈들 내에 사용될 수 있는 다크 라인들을 갖는 예시적인 백색 후면 시트 "얼룩 줄무늬(zebra striped)"를 도시한다.
도 22a는 핫 스팟 조건들 하에서 전통적인 리본 연결들을 활용하는 종래의 모듈의 평면도를 도시한다. 도 22b 또한 핫 스팟 조건들 하에서 실시예들에 따른 열확산을 활용하는 모듈의 평면도를 도시한다.
도 23a-도 23b는 챔퍼 처리된 셀들을 구비하는 슈퍼 셀 스트링 레이아웃들의 예들을 도시한다.
도 24-도 25는 슁글드 구성들로 조립되는 복수의 모듈들을 포함하는 어레이들의 단순화된 단면도들을 도시한다.
도 26은 모듈의 후면 상의 접합 박스에 대한 슁글드 슈퍼 셀의 전면(태양측) 단자 전기적 콘택들의 예시적인 전기적 상호 연결을 예시하는 태양광 모듈의 후면(차광)의 도면을 도시한다.
도 27은 병렬로 둘 또는 그 이상의 슁글드 슈퍼 셀들의 예시적인 전기적 상호 연결을 예시하는 태양광 모듈의 후면(차광)의 도면들 도시하며, 상기 슈퍼 셀들의 전면(태양측) 단자 전기적 콘택들은 서로에 대해서와 상기 모듈의 후면 상의 접합 박스에 연결된다.
도 28은 병렬로 둘 또는 그 이상의 슁글드 슈퍼 셀들의 다른 예시적인 전기적 상호 연결을 예시하는 태양광 모듈의 후면(차광)의 도면을 도시하며, 상기 슈퍼 셀들의 전면(태양측) 단자 전기적 콘택들은 서로에 대해서와 상기 모듈의 후면 상의 접합 박스에 연결된다.
도 29는 상기 슈퍼 셀들을 전기적으로 직렬로 연결하고 접합 박스에 대한 전기적 연결을 제공하도록 인접하는 슈퍼 셀들의 중첩되는 단부들 사이에 개재되는 유연한 인터커넥트의 사용을 예시하는 두 슈퍼 셀들의 부분 단면도 및 사시도를 도시한다.
도 29a는 도 29의 관심의 대상인 영역의 확대도를 도시한다.
도 30a는 그 전면 및 후면 단자 콘택들에 결합되는 전기적 인터커넥트들을 갖는 예시적인 슈퍼 셀을 도시한다. 도 30b는 병렬로 상호 연결된 도 30a의 슈퍼 셀들의 둘을 도시한다.
도 31a-도 31c는 여기서 설명하는 바와 같은 히든 탭들을 슈퍼 셀들에 생성하는 데 채용될 수 있는 예시적인 후면 금속화 패턴들의 도면들을 도시한다.
도 32-도 33은 상기 슈퍼 셀의 전체 폭으로 대략적으로 진행되는 인터커넥트들과 함께 히든 탭들의 사용의 예들을 도시한다.
도 34a-도 34c는 슈퍼 셀 후면(도 34a) 및 전면(도 34b-도 34c) 단자 콘택들에 결합되는 인터커넥트들의 예들을 도시한다.
도 35-도 36은 인접하는 슈퍼 셀들 사이의 갭을 가로지르지만, 직사각형의 태양 전지들의 긴 축을 따라 내측으로 실질적으로 연장되지 않는 짧은 인터커넥트들과 함께 히든 탭들의 사용의 예들을 도시한다.
도 37a-1 내지 도 37f-3은 평면 내 스트레스 제거 특징들을 포함하는 짧은 히든 탭 인터커넥트들에 대한 예시적인 구성들을 도시한다.
도 38a-1 내지 도 38b-2는 평면 외 스트레스 제거 특징들을 포함하는 짧은 히든 탭 인터커넥트들에 대한 예시적인 구성들을 도시한다.
도 39a-1 및 도 39a-2는 정렬 특징들을 포함하는 짧은 히든 탭 인터커넥트들에 대한 예시적인 구성들을 도시한다. 도 39b-1 및 도 39b-2는 비대칭의 탭 길이들을 갖는 짧은 히든 탭 인터커넥트들에 대한 예시적인 구성을 도시한다.
도 40 및 도 42a-도 44b는 히든 탭들을 채용하는 예시적인 태양광 모듈 레이아웃들을 도시한다.
도 41은 도 40 및 도 42a-도 44b의 태양광 모듈 레이아웃들에 대한 예시적인 전기 회로도를 도시한다.
도 45는 도전 상태의 바이패스 다이오드를 구비하는 예시적인 태양광 모듈 내의 전류 흐름을 도시한다.
도 46a-도 46b는 각기 슈퍼 셀들의 열들에 평행한 방향 및 상기 태양광 모듈 내의 슈퍼 셀들의 열들에 직교하는 방향으로의 열 사이클로부터 야기되는 태양광 모듈 구성 요소들 사이의 상대적인 운동을 도시한다.
도 47a-도 47b는 각기 히든 탭들을 채용하는 다른 예시적인 태양광 모듈 레이아웃 및 대응되는 전기 회로도를 도시한다.
도 48a-도 48b는 내장된 바이패스 다이오드들과 결합되어 히든 탭들을 채용하는 추가적인 태양 전지 모듈 레이아웃들을 도시한다.
도 49a-도 49b는 각기 마이크로인버터에 종래의 DC 전압을 제공하는 태양광 모듈 및 마이크로인버터에 높은 DC 전압을 제공하는 여기서 설명되는 바와 같은 고전압 태양광 모듈에 대한 블록도들을 도시한다.
도 50a-도 50b는 예시적인 물리적 레이아웃 및 전기 회로도들, 예를 들면 바이패스 다이오드들을 포함하는 고전압 태양광 모듈들을 도시한다.
도 51a-도 55b는 슁글드 슈퍼 셀들을 포함하는 고전압 태양광 모듈들의 모듈 레벨 전원 관리를 위한 예시적인 구성을 도시한다.
도 56은 유연한 전기적 인터커넥트들에 의해 오프셋되고 직렬로 상호 연결되는 인접하는 열들의 단부들을 갖는 여섯 개의 평행한 열들로의 여섯 개의 슈퍼 셀들의 예시적인 배치를 도시한다.
도 57a는 서로에 대해서와 스트링 인버터에 전기적으로 병렬로 연결되는 복수의 높은 DC 전압 슁글드 태양 전지 모듈들을 포함하는 광 발전 시스템을 개략적으로 예시한다.
도 57b는 지붕 상단 상에 배치되는 도 57a의 광 발전 시스템을 도시한다.
도 58a-도 58D는 단락을 갖는 높은 DC 전압의 슁글드 태양 전지 모듈이 전기적으로 병렬로 연결되는 다른 높은 DC 전압의 슁글드 태양 전지 모듈들 내에서 발생되는 상당한 전력을 소실시키는 것을 방지하도록 사용될 수 있는 한류 퓨즈들 및 차단 다이오드들의 배치를 도시한다.
도 59a-도 59b는 둘 또는 그 이상의 높은 DC 전압의 슁글드 태양 전지 모듈들이 한류 퓨즈들 및 차단 다이오드들을 포함할 수 있는 결합기 박스 내에서 전기적으로 병렬로 연결되는 예시적인 배치들을 도시한다.
도 60a-도 60b는 각기 전기적으로 병렬로 연결되는 복수의 높은 DC 전압의 슁글드 태양 전지 모듈들에 대한 전류 대 전압의 도표 및 전력 대 전압의 도표를 도시한다. 도 60a의 도표들은 역 바이어스된 태양 전지를 포함하는 모듈들이 없는 예시적인 경우에 대한 것이다. 도 60b의 도표들은 모듈들의 일부가 하나 또는 그 이상의 역 바이어스된 태양 전지들을 포함하는 예시적인 경우에 대한 것이다.
도 61a는 슈퍼 셀 당 약 1개의 바이패스 다이오드를 사용하는 태양광 모듈의 예를 예시한다. 도 61c는 내재 구성으로 바이패스 다이오드들을 사용하는 태양광 모듈의 예를 예시한다. 도 61b는 유연한 전기적 인터커넥트를 사용하여 두 개의 이웃하는 슈퍼 셀들 사이에 연결되는 바이패스 다이오드에 대한 예시적인 구성을 예시한다.
도 62a-도 62b는 각기 다른 예시적인 절단 기구의 측면도 및 상면도를 개략적으로 예시한다.
도 63a는 웨이퍼를 절단할 때에 스크라이브 라인들을 따라 크랙들의 생성과 전파를 컨트롤하기 위한 예시적인 비대칭 진공 배치의 사용을 개략적으로 예시한다. 도 63b는 도 63a의 배치이외에 절단의 적은 제어를 제공하는 예시적인 대칭 진공 배치의 사용을 개략적으로 예시한다.
도 64는 도 62a-도 62b의 절단 기구에 사용될 수 있는 예시적인 진공 매니폴드의 일부의 상면도를 개략적으로 예시한다.
도 65a 및 도 65b는 각기 천공된 벨트에 의해 오버레이되는 도 64의 예시적인 진공 매니폴드의 상면도 및 사시도의 개략적인 예시들을 제공한다.
도 66은 도 62a-도 62b의 절단 기구에 사용될 수 있는 예시적인 진공 매니폴드의 측면도를 개략적으로 예시한다.
도 67은 천공된 벨트 및 진공 매니폴드의 예시적인 배치 위에 놓이는 절단된 태양 전지를 개략적으로 예시한다.
도 68은 예시적인 절단 공정에서 절단된 태양 전지 및 상기 태양 전지가 절단되었던 표준 크기 웨이퍼의 절단되지 않은 부분의 상대적인 위치들과 배향들을 개략적으로 예시한다.
도 69a-도 69g는 절단된 태양 전지들이 절단 기구로부터 연속하여 제거될 수 있는 장치 및 방법들을 개략적으로 예시한다.
도 70a-도 70c는 도 62a-도 62b의 예시적인 절단 기구의 다른 변형예의 직교 투영도들을 제공한다.
도 71a 및 도 71b는 절단 공정의 두 다른 단계들에서의 도 70a-도 70c의 예시적인 절단 기구의 사시도들을 제공한다.
도 72a-도 74b는 도 70a-도 70c의 예시적인 절단 기구의 천공된 벨트들 및 진공 매니폴드들 의 세부 사항들을 예시한다.
도 75a-도 75g는 도 10a-도 10C의 예시적인 절단 기구 내의 천공된 진공 벨트들에 대해 사용될 수 있는 몇몇 예시적인 홀 패턴들의 세부 사항들을 예시한다.
도 76은 직사각형의 태양 전지 상의 예시적인 전면 금속화 패턴을 도시한다.
도 77a-도 77b는 직사각형의 태양 전지들 상의 예시적인 후면 금속화 패턴들을 도시한다.
도 78은 각기 도 76에 도시한 전면 금속화 패턴을 갖는 복수의 직사각형의 태양 전지들을 형성하도록 다이스될 수 있는 정사각형의 태양 전지 상의 예시적인 전면 금속화 패턴을 도시한다.
도 79는 각기 도 77a에 도시한 후면 금속화 패턴을 갖는 복수의 직사각형의 태양 전지들을 형성하도록 다이스될 수 있는 정사각형의 태양 전지 상의 예시적인 후면 금속화 패턴을 도시한다.
도 80은 전하 재결합을 증진시키는 절단된 에지들을 야기하는 종래의 절단 방법들을 이용하여 좁은 스트립 태양 전지들로 다이스되는 종래 크기의 HIT 태양 전지의 개략적인 도면이다.
도 81a-도 81j는 종래 크기의 HIT 태양 전지를 전하 재결합을 증진시키는 절단된 에지들이 결핍된 좁은 태양 전지 스트립들로 다이싱하는 예시적인 방법의 단계들을 개략적으로 예시한다.
도 82a-도 82j는 종래 크기의 HIT 태양 전지를 전하 재결합을 증진시키는 절단된 에지들이 결핍된 좁은 태양 전지 스트립들로 다이싱하는 다른 예시적인 방법의 단계들을 개략적으로 예시한다.
다음의 상세한 설명은 동일한 참조 부호들이 다른 도면들에 걸쳐 동일한 요소들을 언급하는 도면들을 참조하여 이해되어야 한다. 반드시 일정한 비율일 필요는 없는 도면들은 선택적인 실시예들을 도시하며, 본 발명의 범주를 제한하려는 의도는 아니다. 발명의 상세한 기재는 본 발명의 원리들을 제한의 형태로가 아니라 예의 형태로 예시한다. 이러한 기재는 분명히 해당 기술 분야의 숙련자가 본 발명을 구성하고 사용하게 할 것이며, 본 발명을 수행하는 최적의 모드로 현재 여겨지는 것을 포함하여 본 발명의 몇몇 실시예들, 조정들, 변형들, 선택들 및 사용들을 설명할 것이다.
본 명세서 및 첨부된 특허청구범위에 사용되는 바에 있어서, "일", "하나" 및 "상기"의 단수 표현들은 본 문에서 명백하게 다르게 기재되지 않는 한 복수의 지시 대상들을 포함한다. 또한, "평행한"이라는 용어는 "평행한 또는 실질적으로 평행한"을 의미하고, 여기에 설명되는 임의의 평행한 배치들이 정확하게 평행한 것을 요구하기보다는 평행한 기하학적 구조들로부터의 미소한 편차들을 포괄하도록 의도된다. "직교하는"이라는 용어는 "직교하는 또는 실질적으로 직교하는"을 의미하고, 여기에 설명되는 임의의 직교하는 배치들이 정확하게 직교하는 것을 요구하기보다는 직교하는 기하학적 구조들로부터의 미소한 편차들을 포괄하도록 의도된다. "정사각형의"이라는 용어는 "정사각형 또는 실질적으로 정사각형의"를 의미하고, 정사각형의 형상들, 예를 들면 챔퍼 처리된(chamfered)(예를 들면, 라운드(round)지거나 그렇지 않으면 끝이 절단된) 모서리들을 갖는 실질적으로 정사각형의 형상들로부터의 미소한 편차들을 포괄하도록 의도된다. "직사각형의"이라는 용어는 "직사각형 또는 실질적으로 직사각형의"를 의미하고, 직사각형의 형상들, 예를 들면 챔퍼 처리된(예를 들면, 라운드지거나 그렇지 않으면 끝이 절단된) 모서리들을 갖는 실질적으로 직사각형의 형상들로부터의 미소한 편차들을 포괄하도록 의도된다.
본 명세서에는 태양 전지 모듈들 내의 실리콘 태양 전지(solar cell)들의 고효율의 슁글드(shingled) 배치들뿐만 아니라, 이러한 배치들에 사용될 수 있는 태양 전지들을 위한 전면(front surface) 및 후면(rear surface) 금속화(metallization) 패턴들과 인터커넥트(interconnect)들이 개시된다. 본 명세서에는 또한 이러한 태양광 모듈(solar module)들을 제조하기 위한 방법들이 개시된다. 상기 태양 전지 모듈들은 "원 썬(one sun)"(비집중) 조명하에서 유리하게 채용될 수 있으며, 이들이 종래의 실리콘 태양 전지 모듈들을 대체하게 하는 물리적 치수들 및 전기적 사양들을 가질 수 있다.
도 1은 슈퍼 셀(super cell)(100)을 형성하도록 중첩되고 전기적으로 연결되는 인접하는 태양 전지들의 단부들을 구비하는 슁글드 방식(shingled manner)으로 배열되는 직렬로 연결된 태양 전지들(10)의 스트링(string)의 단면도를 도시한다. 각 태양 전지(10)는 반도체 다이오드 구조 및 광에 의해 조명될 때에 외부 부하(load)에 제공될 수 있는 태양 전지(10) 내에 발생되는 전류에 의한 상기 반도체 다이오드 구조에 대한 전기적 콘택(contact)들을 포함한다.
본 명세서에서 설명되는 예들에 있어서, 각 태양 전지(10)는 n-p 접합의 대향하는 측면들에 대해 전기적 콘택들을 제공하는 전면(태양측(sun side)) 및 후면(차광측(shaded side)) 금속화 패턴들을 갖는 결정질 실리콘 태양 전지이며, 상기 전면 금속화 패턴은 n-형의 도전성의 반도체층 상에 배치되고, 상기 후면 금속회 패턴은 p-형의 도전성의 반도체층 상에 배치된다. 그러나, 임의의 다른 적합한 물질 시스템, 다이오드 구조, 물리적 치수들, 또는 전기적 콘택 배치를 채용하는 임의의 다른 적합한 태양 전지들이 본 명세서에서 설명되는 태양광 모듈들 내의 태양 전지들(10) 대신에 또는 추가적으로 사용될 수 있다. 예를 들면, 상기 전면(태양측) 금속화 패턴은 p-형의 도전성의 반도체층 상에 배치될 수 있고, 상기 후면(차광측) 금속화 패턴은 n-형의 도전성의 반도체층 상에 배치될 수 있다.
도 1을 다시 참조하면, 슈퍼 셀(100)에서 인접하는 태양 전지들(10)은 이들이 하나의 태양 전지의 전면 금속화 패턴을 인접하는 태양 전지의 후면 금속화 패턴에 전기적으로 연결하는 전기적으로 도전성인 결합 물질에 의해 중첩되는 영역 내에서 서로 도전성으로 결합된다. 적합한 전기적으로 도전성인 도전성 결합 물질들은, 예를 들면, 전기적으로 도전성인 접착제들 및 전기적으로 도전성인 접착 필름들과 접착 테이프들, 그리고 종래의 땜납들을 포함할 수 있다. 바람직하게는, 상기 전기적으로 도전성인 결합 물질은 상기 전기적으로 도전성인 결합 물질의 열팽창 계수(CTE) 및 상기 태양 전지들의 열팽창 계수(예를 들면, 실리콘의 CTE) 사이의 불일치로부터 야기되는 스트레스를 수용하는 인접하는 태양 전지들 사이의 결합에 기계적 컴플라이언스(mechanical compliance)를 제공한다. 이러한 기계적 컴플라이언스를 제공하기 위하여, 일부 변형예들에서 상기 전기적으로 도전성인 결합 물질은 약 0℃보다 작거나 같은 유리 전이 온도(glass transition temperature)를 가지는 것으로 선택된다. CTE 불일치로부터 야기되는 상기 태양 전지들의 중첩되는 에지들에 평행한 스트레스를 보다 감소시키고 수용하기 위하여, 상기 전기적으로 도전성인 결합 물질은 선택적으로 상기 태양 전지들의 에지들의 길이로 실질적으로 연장되는 연속되는 라인으로 보다는 상기 태양 전지들의 중첩되는 영역들을 따라 별개의 위치들에서만 적용될 수 있다.
상기 전기적으로 도전성인 결합 물질에 의해 형성되며, 상기 태양 전지들의 전면 및 후면들에 직교하게 측정되는 인접하고 중첩되는 태양 전지들 사이의 상기 전기적으로 도전성인의 두께는, 예를 들면 약 0.1㎜ 이하가 될 수 있다. 이와 같은 얇은 결합은 셀들 사이의 상호 연결(interconnection)에서 저항성 손실(resistive loss)을 감소시키며, 또한 동작 동안에 진전될 수 있는 상기 슈퍼 셀 내의 임의의 핫 스팟(hot spot)으로부터 상기 슈퍼 셀을 따라 열의 흐름을 증진시킨다. 상기 태양 전지들 사이의 결합의 열전도율은, 예를 들면 ≥약 1.5와트/(미터-K)가 될 수 있다.
도 2a는 슈퍼 셀(100) 내에 사용될 수 있는 예시적인 직사각형의 태양 전지(10)의 전면을 도시한다. 태양 전지(10)를 위한 다른 형상들 또한 적절하게 사용될 수 있다. 예시된 예에서, 상기 태양 전지(10)의 전면 금속화 패턴은 태양 전지(10)의 긴 측면(long side)들의 하나의 에지에 인접하여 위치하고, 실질적으로 상기 긴 측면들의 길이를 위해 상기 긴 측면들에 대해 평행하게 진행하는 버스 바(bus bar)(15) 및 상기 버스 바에 직교하게 부착되며, 실질적으로 짧은 측면(short side)들의 길이를 위해 서로에 대해서와 상기 태양 전지(10)의 짧은 측면들에 대해 평행하게 진행하는 핑거(finger)들(20)을 포함한다.
도 2a의 예에서, 태양 전지(10)는 약 156㎜의 길이, 약 26㎜의 폭 및 이에 따른 약 1:6의 종횡비(aspect ratio)(짧은 측면의 길이/긴 측면의 길이)를 가진다. 여섯 개의 이러한 태양 전지들이 표준 156㎜×156㎜ 치수의 실리콘 웨이퍼 상에 제조될 수 있고, 이후에 예시한 바와 같이 태양 전지들을 제공하도록 분리(다이스(dice)될 수 있다. 다른 변형예들에서, 약 19.5㎜×156㎜의 치수들 및 이에 따른 약 1:8의 종횡비를 갖는 여덟 개의 태양 전지들(10)이 표준 실리콘 웨이퍼로부터 제조될 수 있다. 보다 일반적으로, 태양 전지들(10)은, 예를 들면 약 1:2 내지 약 1:20의 종횡비들을 가질 수 있으며, 표준 크기 웨이퍼들로부터 또는 임의의 다른 적합한 치수들의 웨이퍼들로부터 제조될 수 있다.
도 3a는 앞서 기술한 바와 같이 직사각형의 태양 전지들을 형성하도록 표준 크기 및 형상의 의사(pseudo) 정사각형의 실리콘 태양 전지 웨이퍼(45)가 절단될 수 있거나, 부서질 수 있거나, 그렇지 않으면 분리될 수 있는 예시적인 방법을 도시한다. 이러한 예에서, 몇몇 전체 폭의 직사각형의 태양 전지들(10L)은 상기 웨이퍼의 중심부로부터 절단되고, 추가적으로 몇몇 보다 짧은 직사각형의 태양 전지들(10S)은 상기 웨이퍼의 단부들로부터 절단되며, 상기 웨이퍼의 챔퍼 처리되거나 라운드진 모서리들은 버려진다. 태양 전지들(10L)은 하나의 폭의 슁글드(shingled) 슈퍼 셀들을 형성하는 데 사용될 수 있으며, 태양 전지들(10S)은 보다 좁은 폭의 슁글드 슈퍼 셀들을 형성하는 데 사용될 수 있다.
선택적으로는, 상기 챔퍼 처리된(예를 들면, 라운드진) 모서리들은 상기 웨이퍼의 단부들로부터 절단되는 상기 태양 전지들 상에 유지될 수 있다. 도 2b-도 2c는 도 2a의 경우와 실질적으로 유사하지만, 상기 태양 전지들이 절단되었던 상기 웨이퍼로부터 유지되는 챔퍼 처리된 모서리들을 갖는 예시적인 "쉐브론(chevron)" 직사각형의 태양 전지들(10)의 전면들을 도시한다. 도 2b에서, 버스 바(15)는 실질적으로 상기 측면의 길이를 위해 두 긴 측면들의 보다 짧은 것에 인접하여 위치하고 평행하게 진행되며, 적어도 부분적으로 상기 태양 전지의 챔퍼 처리된 모서리들 주위의 양 단부들에서 더 연장된다. 도 2c에서, 버스 바(15)는 실질적으로 상기 측면의 길이를 위해 상기 두 긴 측면들의 보다 긴 것에 인접하여 위치하고 평행하게 진행된다. 도 3b-도 3c는 도 2a에 도시한 경우와 유사한 전면 금속화 패턴들을 갖는 복수의 태양 전지들(10) 및 도 2b에 도시한 경우와 유사한 전면 금속화 패턴들을 갖는 두 개의 챔퍼 처리된 태양 전지들(10)을 제공하도록 도 3c에 도시한 파선들을 따라 다이스될 수 있는 의사(pseudo) 정사각형의 웨이퍼(45)의 전면도 및 후면도를 도시한다.
도 2b에 도시한 예시적인 전면 금속화 패턴에서, 상기 셀의 챔퍼 처리된 모서리들 주위로 연장되는 상기 버스 바(15)의 두 단부들은 각기 상기 셀의 긴 측면에 인접하여 위치하는 상기 버스 바의 일부로부터 증가되는 거리로 테이퍼(taper)지는(점차 좁아지는) 폭을 가질 수 있다. 유사하게, 도 3b에 도시한 예시적인 전면 금속화 패턴에서, 별개의 콘택 패드(contact pad)들(15)을 상호 연결하는 얇은 컨덕터(conductor)의 두 단부들은 상기 태양 전지의 챔퍼 처리된 모서리들 주위로 연장되고, 이를 따라 상기 별개의 콘택 패드들이 배열되는 상기 태양 전지의 긴 측면으로부터 증가되는 거리로 테이퍼진다. 이러한 테이퍼링(tapering)은 선택적이지만, 저항성 손실을 상당히 증가시키지 않고 금속의 사용 및 상기 태양 전지의 활성 영역의 쉐이딩(shading)을 유리하게 감소시킬 수 있다.
도 3d-도 3e는 도 2a에 도시한 경우와 유사한 전면 금속화 패턴들을 갖는 복수의 태양 전지들(10)을 제공하도록 도 3e에 도시한 파선들을 따라 다이스될 수 있는 완전한 정사각형의 웨이퍼(47)의 전면도 및 후면도를 도시한다.
챔퍼 처리된 직사각형의 태양 전지들은 챔퍼 처리된 태양 전지들만을 포함하는 슈퍼 셀들을 형성하는 데 사용될 수 있다. 추가적으로 또는 선택적으로는, 하나 또는 그 이상의 이러한 챔퍼 처리된 직사각형의 태양 전지들이 슈퍼 셀을 형성하도록 하나 또는 그 이상의 챔퍼 처리되지 않은 직사각형의 태양 전지들(예를 들면, 도 2a)과 결합되어 사용될 수 있다. 예를 들면, 슈퍼 셀의 단부 태양 전지들은 챔퍼 처리된 태양 전지들이 될 수 있고, 중앙부 태양 전지들은 챔퍼 처리되지 않은 태양 전지들이 될 수 있다. 챔퍼 처리된 태양 전지들이 슈퍼 셀 내에 또는 보다 일반적으로 태양광 모듈 내에 챔퍼 처리되지 않은 태양 전지들과 결합되어 사용될 경우, 상기 태양 전지들의 동작 동안에 광에 노출되는 동일한 전면 면적을 갖는 상기 챔퍼 처리된 및 챔퍼 처리되지 않은 태양 전지들의 결과가 되게 하는 상기 태양 전지들에 대한 치수를 사용하는 것이 바람직할 수 있다. 이러한 방식으로 상기 태양 전지 면적들을 일치(matching)시키는 것은 상기 챔퍼 처리된 및 챔퍼 처리되지 않은 태양 전지들 내에 생성되는 전류를 일치시키며, 이는 챔퍼 처리된 및 챔퍼 처리되지 않은 태양 전지들 모두를 포함하는 직렬 연결된 스트링(string)의 성능을 향상시킨다. 동일한 의사 정사각형의 웨이퍼로부터 절단되는 챔퍼 처리된 및 챔퍼 처리되지 않은 태양 전지들의 면적은, 예를 들면 상기 챔퍼 처리된 태양 전지들 상의 없어진 모서리들을 보상하기 위해 이들의 긴 축들에 직교하는 방향으로 상기 챔퍼 처리된 태양 전지들이 챔퍼 처리되지 않은 태양 전지들보다 약간 넓게 만들도록 상기 웨이퍼가 다이스되는 라인들의 위치들을 조정함에 의해 일치될 수 있다.
태양광 모듈은 오직 챔퍼 처리되지 않은 직사각형의 태양 전지들로부터 형성되는 슈퍼 셀들만을 포함할 수 있거나, 챔퍼 처리된 직사각형의 태양 전지들로부터 형성되는 슈퍼 셀들만을 포함할 수 있거나, 챔퍼 처리된 및 챔퍼 처리되지 않은 태양 전지들을 구비하는 슈퍼 셀들만을 포함할 수 있거나, 슈퍼 셀의 이들 세 변형예들의 임의의 결합을 포함할 수 있다.
일부 예들에서, 웨이퍼의 에지들 부근의 표준 크기의 정사각형 또는 의사 정사각형의 태양 전지 웨이퍼(예를 들면, 웨이퍼(45) 또는 웨이퍼(47))의 일부들은 상기 에지들로부터 떨어져 위치하는 상기 웨이퍼의 일부들보다 낮은 효율로 광을 전기로 변환시킬 수 있다. 결과적인 직사각형의 태양 전지들의 효율을 개선하기 위하여, 일부 변형예들에서 상기 웨이퍼의 하나 또는 그 이상의 에지들은 상기 웨이퍼가 다이스되기 전에 보다 낮은 효율의 부분들을 제거하도록 트림(trim)된다. 상기 웨이퍼의 에지들로부터 트림되는 부분들은, 예를 들면 약 1㎜ 내지 약 5㎜의 폭들을 가질 수 있다. 또한, 도 3b 및 도 3d에 도시한 바와 같이, 상기 웨이퍼로부터 다이스되는 두 개의 단부 태양 전지들(10)은 이들의 외측 에지들을 따르며 이에 따라 상기 웨이퍼의 에지들의 두 개를 따라 이들의 전면 버스 바(bus bar)들(또는 별개의 콘택 패드들)(15)을 구비하여 배향될 수 있다. 본 명세서에 개시되는 슈퍼 셀들에서 버스 바들(또는 별개의 콘택 패드들)(15)이 통상적으로 인접하는 태양 전지에 의해 중첩되기 때문에, 상기 웨이퍼의 이들 두 에지들을 따른 낮은 광 변환 효율은 통상적으로 상기 태양 전지들의 성능에 영향을 미치지 않는다. 이에 따라, 일부 변형예들에서 상기 직사각형의 태양 전지들의 짧은 측면들에 평행하게 배향된 정사각형 또는 의사 정사각형의 웨이퍼의 에지들은 앞서 설명한 바와 같이 트림되지만, 직사각형의 태양 전지들의 긴 측면들에 평행하게 배향된 상기 웨이퍼의 에지들은 그렇지 않다. 다른 변형예들에서, 정사각형의 웨이퍼(예를 들면, 도 3d의 웨이퍼(47))의 하나, 둘, 셋 또는 네 개의 에지들이 앞서 설명한 바와 같이 트림된다. 다른 변형예들에서, 의사-정사각형의 웨이퍼의 긴 에지들의 하나, 둘, 셋 또는 네 개가 앞서 설명한 바와 같이 트림된다.
길고 좁은 종횡비와 표준 156㎜×156㎜ 태양 전지의 경우보다 작은 면적들을 갖는 태양 전지들이, 예시한 바와 같이 본 명세서에 개시되는 태양 전지 모듈들에서 I2R 저항성 출력 손실들을 감소시키도록 유리하게 채용될 수 있다. 특히, 표준 크기의 실리콘 태양 전지들에 비해 태양 전지들(10)의 감소된 면적은 상기 태양 전지 내에 생성되는 전류를 감소시켜, 상기 태양 전지 및 이러한 태양 전지들의 직렬로 연결된 스트링 내의 저항성 출력 손실을 직접 감소시킨다. 또한, 슈퍼 셀을 통해 전류가 상기 태양 전지들의 짧은 측면들에 평행하게 흐르도록 슈퍼 셀(100) 내에 이러한 직사각형의 태양 전지들을 배열하는 것은 전류가 상기 전면 금속화 패턴 내의 핑거들(20)에 도달하도록 상기 반도체 물질을 통해 흘러야 하는 거리를 감소시킬 수 있고, 상기 핑거들의 요구되는 길이를 감소시킬 수 있으며, 이는 또한 저항성 출력 손실을 감소시킬 수 있다.
전술한 바와 같이, 상기 태양 전지들을 직렬로 연결하도록 이들의 중첩되는 영역 내에서 중첩된 태양 전지들(10)을 결합시키는 것은 태양 전지들의 종래의 태브드(tabbed) 직렬 연결된 스트링들에 비하여 인접하는 태양 전지들 사이의 전기적인 연결의 길이를 감소시킨다. 이는 또한 저항성 출력 손실을 감소시킨다.
도 2a를 다시 참조하면, 예시한 예에서 상기 태양 전지(10) 상의 전면 금속화 패턴은 버스 바(15)에 평행하고 이로부터 이격되는 선택적인 바이패스 컨덕터(bypass conductor)(40)를 포함한다(이와 같은 바이패스 컨덕터는 또한 도 2b-도 2c, 도 3b 및 도 3d에 도시한 금속화 패턴들에 선택적으로 사용될 수 있으며, 또한 연속되는 버스 바보다는 별개의 콘택 패드들(15)과 결합되어 도 2q에 도시한다). 바이패스 컨덕터(40)는 버스 바(15)와 바이패스 컨덕터(40) 사이에 형성될 수 있는 크랙(crack)들을 전기적으로 우회하도록 핑거들(20)을 상호 연결한다. 버스 바(15) 부근의 위치들에서 핑거들(20)을 자를 수 있는 이러한 크랙들은 그렇지 않으면 태양 전지(10)의 영역들을 버스 바(15)로부터 분리할 수 있다. 상기 바이패스 컨덕터는 이러한 끊어진 핑거들과 상기 버스 바 사이에 선택적인 전기적 통로를 제공한다. 예시한 예는 버스 바(15)에 평행하게 위치하여, 상기 버스 바의 대략적인 전체 길이로 연장되며, 모든 핑거들(20)을 상호 연결하는 바이패스 컨덕터(40)를 도시한다. 이러한 배치가 바람직할 수 있지만, 요구되는 것은 아니다. 존재할 경우, 상기 바이패스 컨덕터는 상기 버스 바에 평행하게 진행될 필요가 없으며, 상기 버스 바의 전체 길이로 연장될 필요가 없다. 또한, 바이패스 컨덕터는 적어도 두 핑거들을 상호 연결하지만, 모든 핑거들을 상호 연결할 필요는 없다. 둘 또는 그 이상의 짧은 바이패스 컨덕터들이, 예를 들면 보다 긴 바이패스 컨덕터 대신에 사용될 수 있다. 바이패스 컨덕터들의 임의의 적합한 배치가 사용될 수 있다. 이러한 바이패스 컨덕터들의 사용은 2012년 2월 13일에 출원되었고, 그 개시 사항이 여기에 참조로 포함되는 미국 특허 출원 제13/371,790호(발명의 명칭: "크래킹을 보상하거나 방지할 수 있는 금속화를 구비하는 태양 전지(Solar Cell With Metallization Compensating For Or Preventing Cracking)")에 보다 상세하게 기재되어 있다.
도 2a의 예시적인 전면 금속화 패턴은 또한 버스 바(15)로부터 대향되는 이들의 먼 단부들에서 핑거들(20)을 상호 연결하는 선택적인 단부 컨덕터(42)를 포함한다(이와 같은 단부 컨덕터는 또한 도 2b-도 2c, 도 3b와 도 3d 및 도 2q에 도시한 금속화 패턴들에 선택적으로 사용될 수 있다). 상기 컨덕터(42)의 폭은, 예를 들면 핑거(20)의 폭과 대략적으로 동일할 수 있다. 컨덕터(42)는 바이패스 컨덕터(40)와 컨덕터(42) 사이에 형성될 수 있는 크랙들을 전기적으로 우회하도록 핑거들(20)을 상호 연결하며, 이에 따라 그렇지 않으면 이러한 크랙들에 의해 전기적으로 분리될 수 있는 태양 전지(10)의 영역들을 위하여 버스 바(15)에 대해 전류 통로를 제공한다.
비록 예시한 예들의 일부가 균일한 폭으로 실질적으로 태양 전지(10)의 긴 측면들의 길이로 연장되는 전방 버스 바(15)를 도시하지만, 이러한 점이 요구되는 것은 아니다. 예를 들면, 앞서 시사한 바와 같이 전방 버스 바(15)는, 예를 들면 도 2h, 도 2q 및 도 3b에 도시한 바와 같은 태양 전지(10)의 측면을 따라 예를 들어 서로 일렬로 배열될 수 있는 둘 또는 그 이상의 전면의 별개의 콘택 패드들(15)로 대체될 수 있다. 이러한 분리된 콘택 패드들은, 예를 들면 앞서 언급한 도면들에 도시한 바와 같이 이들 사이로 진행되는 보다 얇은 컨덕터들에 의해 선택적으로 상호 연결될 수 있다. 이러한 변형예들에서, 상기 태양 전지의 긴 측면에 직교하게 측정된 상기 콘택 패드들의 폭은, 예를 들면 상기 콘택 패드들을 상호 연결하는 얇은 컨덕터들의 폭의 약 2배 내지 약 20배가 될 수 있다. 상기 전면 금속화 패턴 내의 각 핑거에 대해 분리된(예를 들면, 작은) 콘택 패드가 존재할 수 있거나, 각 콘택 패드가 둘 또는 그 이상의 핑거들에 연결될 수 있다. 전면 콘택 패드들(15)은, 예를 들면 정사각형이 될 수 있거나, 상기 태양 전지의 에지에 평행하게 연장되는 직사각형의 형상을 가질 수 있다. 전면 콘택 패드들(15)은 예를 들면, 약 1㎜ 내지 약 1.5㎜의 상기 태양 전지의 긴 측면에 직교하는 폭들 및 예를 들면, 약 1㎜ 내지 약 10㎜의 상기 태양 전지의 긴 측면에 평행한 길이들을 가질 수 있다. 상기 태양 전지의 긴 측면에 평행하게 측정된 콘택 패드들(15) 사이의 간격은, 예를 들면 약 3㎜ 내지 약 30㎜가 될 수 있다.
선택적으로는, 태양 전지(10)는 전방 버스 바(15) 및 별개의 전방 콘택 패드들(15)이 모두 결핍될 수 있고, 상기 전면 금속화 패턴 내의 핑거들(20)만을 포함할 수 있다. 이러한 변형예들에서, 그렇지 않으면 전방 버스 바(15) 또는 콘택 패드들(15)에 의해 수행될 수 있는 전류 집전(current-collecting) 기능들이 두 태양 전지들(10)을 상술한 중첩되는 구성으로 서로 결합하는 데 사용되는 도전성 물질에 의해 대신 수행될 수 있거나, 부분적으로 수행될 수 있다.
버스 바(15) 및 콘택 패드들(15)이 모두 결핍된 태양 전지들은 바이패스 컨덕터(40)를 포함할 수 있거나, 바이패스 컨덕터(40)를 포함하지 않을 수 있다. 버스 바(15) 및 콘택 패드들(15)이 존재하지 않을 경우, 바이패스 컨덕터(40)는 상기 바이패스 컨덕터와 상기 중첩되는 태양 전지에 도전성으로 결합되는 상기 전면 금속화 패턴의 일부 사이에 형성되는 크랙들을 우회하도록 배열될 수 있다.
버스 바 또는 별개의 콘택 패드들(15), 핑거들(20), 바이패스 컨덕터(40)(존재할 경우) 및 단부 컨덕터(42)(존재할 경우)를 포함하는 상기 전면 금속화 패턴들은, 예를 들면 종래의 스크린 프린팅(screen printing) 방법들에 의해 이러한 목적들을 위해 종래에 사용되고 증착되는, 예를 들면 실버 페이스트(silver paste)로부터 형성될 수 있다. 선택적으로는, 상기 전면 금속화 패턴들은 전기 도금된 구리로부터 형성될 수 있다. 임의의 다른 적합한 물질들 및 공정들 또한 사용될 수 있다. 상기 전면 금속화 패턴이 실버로 형성되는 변형예들에서, 상기 셀의 에지를 따라 연속되는 버스 바(15)보다 별개의 전면 콘택 패드들(15)의 사용이 상기 태양 전지 상의 실버의 양을 감소시키며, 이는 유리하게 비용을 감소시킨다. 상기 전면 금속화 패턴이 구리로부터 또는 실버보다 덜 비싼 다른 도체로부터 형성되는 변형예들에서, 연속되는 버스 바(15)가 비용적인 문제가 없이 채용될 수 있다.
도 2d-도 2g, 도 3c 및 도 3e는 태양 전지를 위한 예시적인 후면 금속화 패턴들을 도시한다. 이들 예들에서, 상기 후면 금속화 패턴들은 상기 태양 전지의 후면의 긴 에지들의 하나를 따라 배열되는 별개의 후면 콘택 패드들(25) 및 상기 태양 전지의 남아 있는 후면의 실질적으로 모두를 덮는 금속 콘택(30)을 포함한다. 슁글드 슈퍼 셀에서, 콘택 패드들(25)은 두 태양 전지들을 직렬로 전기적으로 연결하도록, 예를 들면 버스 바에 또는 인접하고 중첩되는 태양 전지의 상부 표면의 에지를 따라 배열되는 별개의 콘택 패드들에 결합된다. 예를 들면, 각 별개의 후면 콘택 패드(25)는 상기 중첩되는 태양 전지의 전면 상의 대응되는 별개의 전면 콘택 패드(15)와 정렬될 수 있고, 상기 분리된 콘택 패드들에만 적용되는 전기적으로 도전성인 결합 물질에 의해 결합될 수 있다. 분리된 콘택 패드들(25)은, 예를 들면 정사각형(도 2d)이 될 수 있거나, 상기 태양 전지의 에지(도 2e-도 2g, 도 3c, 도 3e)에 평행하게 연장되는 직사각형의 형상을 가질 수 있다. 콘택 패드들(25)은 예를 들면, 약 1㎜ 내지 약 5㎜의 상기 태양 전지의 긴 측면에 직교하는 폭들 및 예를 들면, 약 1㎜ 내지 약 10㎜의 상기 태양 전지의 긴 측면에 평행한 길이들을 가질 수 있다. 상기 태양 전지의 긴 측면에 평행하게 측정된 콘택 패드들(25) 사이의 간격은, 예를 들면 약 3㎜ 내지 약 30㎜가 될 수 있다.
콘택(30)은, 예를 들면 알루미늄으로부터 및/또는 전기 도금된 구리로부터 형성될 수 있다. 알루미늄 후방 콘택(30)의 형성은 통상적으로 상기 태양 전지 내의 후면 재결합(back surface recombination)을 감소시키는 후면 전계(back surface field)를 제공하며, 이에 따라 태양 전지 효율을 향상시킨다. 콘택(30)이 알루미늄보다는 구리로부터 형성될 경우, 콘택(30)은 후면 재결합을 유사하게 감소시키도록 다른 패시베이션(passivation) 계획(예를 들면, 알루미늄 산화물)과 결합되어 사용될 수 있다. 별개의 콘택 패드들(25)은, 예를 들면, 실버 페이스트로부터 형성될 수 있다. 상기 셀의 에지를 따라 연속되는 실버 콘택 패드보다는 별개의 실버 콘택 패드들(25)의 사용이 상기 후면 금속화 패턴 내의 실버의 양을 감소시킬 수 있으며, 이는 비용을 유리하게 감소시킬 수 있다.
또한, 상기 태양 전지들이 후면 재결합을 감소시키도록 알루미늄 콘택의 형성에 의해 제공되는 후면 전계에 의존할 경우, 연속되는 실버 콘택보다는 별개의 실버 콘택들의 사용이 태양 전지 효율을 향상시킬 수 있다. 이는 상기 실버 후면 콘택들이 후면 전계를 제공하지 않으며, 이에 따라 전하 재결합(carrier recombination)을 증진시키고 상기 실버 콘택들 상부의 상기 태양 전지들 내의 불용(비활성) 부피를 생성하는 경향이 있기 때문이다. 종래의 리본-태브드(ribbon-tabbed) 태양 전지 스트링들에서, 이들 불용 부피(dead volume)들은 통상적으로 상기 태양 전지의 전면 상의 리본들 및/또는 버스 바들에 의해 가려지며, 이에 따라 효율의 어떠한 추가적인 손실을 가져오지 않는다. 그러나 여기에 개시되는 태양 전지들 및 슈퍼 셀들에서, 후면 실버 콘택 패드들(25) 상부의 상기 태양 전지의 부피는 통상적으로 임의의 전면 금속화에 의해 가려지지 않으며, 실버 후면 금속화의 사용으로부터 야기되는 임의의 불용 부피들은 상기 셀의 효율을 감소시킨다. 상기 태양 전지의 후면의 에지를 따라 연속되는 실버 콘택 패드보다 별개의 실버 콘택 패드들(25)의 사용은 이에 따라 임의의 대응되는 불용 영역들의 부피를 감소시키며, 상기 태양 전지의 효율을 증가시킨다.
후면 재결합을 감소시키기 위해 후면 전계에 의존하지 않는 변형예들에서, 상기 후면 금속화 패턴은, 예를 들면 도 2q에 도시한 바와 같이, 별개의 콘택 패드들(25)보다는 상기 태양 전지의 길이로 연장되는 연속되는 버스 바(25)를 채용할 수 있다. 이와 같은 버스 바(25)는 예를 들면, 주석 또는 실버로 형성될 수 있다.
상기 후면 금속화 패턴들의 다른 변형예들은 별개의 주석 콘택 패드들(25)을 채용할 수 있다. 상기 후면 금속화 패턴들의 변형예들은 도 2a-도 2c의 전면 금속화 패턴들에 도시한 경우들과 유사한 핑거 콘택들을 채용할 수 있고, 콘택 패드들 및 버스 바가 결핍될 수 있다.
비록 도면들에 도시한 특정한 예시적인 태양 전지들이 전면 및 후면 금속화 패턴들의 특정한 결합들을 가지는 것으로 설명되지만, 보다 일반적으로는 전면 및 후면 금속화 패턴들의 임의의 적합한 결합이 사용될 수 있다. 예를 들면, 하나의 적합한 결합은 별개의 콘택 패드들(15), 핑거들(20) 및 선택적인 바이패스 컨덕터(40)를 포함하는 실버 전면 금속화 패턴, 그리고 알루미늄 콘택(30) 및 별개의 실버 콘택 패드들(25)을 포함하는 후면 금속화 패턴을 채용할 수 있다. 다른 적합한 결합은 연속되는 버스 바(15), 핑거들(20) 및 선택적인 바이패스 컨덕터(40)를 포함하는 구리 전면 금속화 패턴, 그리고 연속되는 버스 바(25) 및 구리 콘택(30)을 포함하는 후면 금속화 패턴을 채용할 수 있다.
상기 슈퍼 셀 제조 공정(다음에 보다 상세하게 설명됨)에서, 슈퍼 셀 내의 인접하고 중첩되는 태양 전지들을 결합시키는 데 사용되는 상기 전기적으로 도전성인 결합 물질은 상기 태양 전지의 전면 또는 후면의 에지에서 (별개의 또는 연속되는)콘택 패드들 상으로만 분배될 수 있고, 상기 태양 전지의 주위의 부분들 상으로는 분배되지 않을 수 있다. 이는 물질의 사용을 감소시키며, 상술한 바와 같이 상기 전기적으로 도전성인 결합 물질과 상기 태양 전지 사이의 CTE 불일치로부터 야기되는 스트레스를 감소시키거나 수용할 수 있다. 그러나, 증착 동안이나 이 후 및 큐어링(curing) 이전에, 전기적으로 도전성인 결합 물질의 일부들이 상기 콘택 패드들을 넘어서 상기 태양 전지의 주위의 부분들 상으로 확산되는 경향이 있을 수 있다. 예를 들면, 상기 전기적으로 도전성인 결합 물질의 결합시키는 수지 부분이 모세관 힘들에 의해 상기 태양 전지 표면의 텍스처드(textured) 또는 다공성의 인접하는 부분들 상으로 콘택 패드에서 빼내질 수 있다. 또한, 상기 증착 공정 동안에 상기 도전성 결합 물질의 일부가 상기 콘택 패드를 빗나갈 수 있고, 대신에 상기 태양 전지 표면의 인접하는 부분들 상에 증착될 수 있으며, 그로부터 가능하게 확산될 수 있다. 상기 도전성 결합 물질의 이러한 확산 및/또는 부정확한 증착은 상기 중첩되는 태양 전지들 사이의 결합을 약화시킬 수 있고, 그 상부로 상기 도전성 결합 물질이 분산되었거나 잘못되게 증착되었던 상기 태양 전지의 일부들을 손상시킬 수 있다. 상기 전기적으로 도전성인 결합 물질의 이러한 확산은, 예를 들면, 상기 전기적으로 도전성인 결합 물질을 실질적으로 제 위치에 유지하도록 각 콘택 패드 부근 또는 주위에 댐(dam)이나 배리어(barrier)를 형성하는 금속화 패턴으로 감소되거나 방지될 수 있다.
도 2h-도 2k에 도시한 바와 같이, 예를 들면, 상기 전면 금속화 패턴은 별개의 콘택 패드들(15), 핑거들(20) 및 배리어들(17)을 포함할 수 있고, 각 배리어(17)는 대응되는 콘택 패드(15)를 둘러싸며, 상기 콘택 패드와 상기 배리어 사이에 모우트(moat)를 형성하도록 댐으로 기능한다. 상기 태양 전지 상으로 분산될 때에 상기 콘택 패드들에서 흘러나오거나 상기 콘택 패드들을 벗어나는 큐어링되지 않은 도전성 접착 결합 물질(18)의 일부들(19)은 배리어들(17)에 의해서 모우트들에 제한될 수 있다. 이는 상기 도전성 접착 결합 물질이 상기 콘택 패드들로부터 상기 셀들의 주위의 부분들 상으로 더 확산되는 것을 방지한다. 배리어들(17)은, 예를 들면 핑거들(20) 및 콘택 패드들(15)과 동일한 물질(예를 들면, 실버)로부터 형성될 수 있고, 예를 들면 약 10미크론 내지 약 40미크론의 높이들을 가질 수 있으며, 예를 들면 약 30미크론 내지 약 100미크론의 폭들을 가질 수 있다. 배리어(17)와 콘택 패드(15) 사이에 형성되는 모우트는, 예를 들면 약 100미크론 내지 약 2㎜의 폭을 가질 수 있다. 비록 예시한 예들이 각 전방 콘택 패드(15) 주위에 단일 배리어(17)만을 포함하지만, 다른 변형예들에서 둘 또는 그 이상의 이러한 배리어들이, 예를 들면 각 콘택 패드 주위에 동심으로 위치할 수 있다. 전면 콘택 패드 및 이의 하나 또는 그 이상의 주위의 배리어들은, 예를 들면 "불스-아이(bulls-eye)" 타겟과 유사한 형상을 형성할 수 있다. 도 2h에 도시한 바와 같이, 예를 들면, 배리어들(17)은 핑거들(20) 및 콘택 패드들(15)을 상호 연결하는 얇은 컨덕터들과 상호 연결될 수 있다.
유사하게, 도 2l-도 2n에 도시한 바와 같이, 예를 들면 상기 후면 금속화 패턴은 (예를 들면, 실버)별개의 후방 콘택 패드들(25), 실질적으로 상기 태양 전지의 후면의 모두를 덮는 (예를 들면, 알루미늄)콘택(30), 그리고 (예를 들면, 실버)배리어들(27)을 포함할 수 있고, 각 배리어(27)는 대응되는 후방 콘택 패드(25)를 둘러싸고, 상기 콘택 패드와 상기 배리어 사이의 모우트를 형성하는 댐으로 작용한다. 콘택(30)의 일부는 예시한 바와 같이 상기 모우트를 채울 수 있다. 상기 태양 전지 상으로 분산될 때에 콘택 패드들(25)에서 흘러나오거나 상기 콘택 패드들을 벗어나는 큐어링되지 않은 도전성 접착 결합 물질의 일부들은 배리어들(27)에 의해 상기 모우트들에 제한될 수 있다. 이는 상기 도전성 접착 결합 물질이 상기 콘택 패드들로부터 상기 셀의 주위의 부분들 상으로 더 확산되는 것을 방지한다. 배리어들(27)은, 예를 들면 약 10미크론 내지 약 40미크론의 높이들을 가질 수 있고, 예를 들면 약 50미크론 내지 약 500미크론의 폭들을 가질 수 있다. 배리어(27)와 콘택 패드(25) 사이에 형성되는 모우트는, 예를 들면 약 100미크론 내지 약 2㎜의 폭을 가질 수 있다. 비록 예시한 예들이 각 후면 콘택 패드(25) 주위에 단일 배리어(27)만을 포함하지만, 다른 변형예들에서 둘 또는 그 이상의 이러한 배리어들이, 예를 들면 각 콘택 패드 주위에 동심으로 배치될 수 있다. 후면 콘택 패드 및 이의 하나 또는 그 이상의 주위의 배리어들은, 예를 들면 "불스-아이" 타겟과 유사한 형상을 형성할 수 있다.
실질적으로 상기 태양 전지의 에지의 길이로 진행되는 연속되는 버스 바 또는 콘택 패드 또한 상기 도전성 접착 결합 물질의 확산을 방지하는 배리어에 의해 둘러싸일 수 있다. 예를 들면, 도 2q는 후면 버스 바(25)를 둘러싸는 이와 같은 배리어(27)를 도시한다. 전면 버스 바(예를 들면, 도 2a의 버스 바(15))는 배리어에 의해 유사하게 둘러싸일 수 있다. 유사하게, 전면 또는 후면 콘택 패드들의 열(row)은 분리된 배리어들에 의해 개별적으로 둘러싸이기 보다는 이와 같은 배리어에 의해 그룹으로 둘러싸일 수 있다.
앞서 설명한 바와 같이 주위의 버스 바 또는 하나 또는 그 이상의 콘택 패드들 보다는, 상기 전면 또는 후면 금속화 패턴의 특징은 배리어와 상기 태양 전지의 에지 사이에 위치하는 상기 버스 바 또는 콘택 패드들을 구비하여 상기 태양 전지의 중첩된 에지에 평행하게 실질적으로 상기 태양 전지의 길이로 진행되는 상기 배리어를 형성할 수 있다. 이와 같은 배리어는 바이패스 컨덕터(앞서 설명한)로서 두 가지 역할을 할 수 있다. 예를 들면, 도 2r에서, 바이패스 컨덕터(40)는 콘택 패드들(15) 상의 큐어링되지 않은 도전성 접착 결합 물질이 상기 태양 전지의 전면의 활성 영역 상으로 확산되는 것을 방지하는 경향이 있는 배리어를 제공한다. 유사한 배치가 후면 금속화 패턴들에 대해 사용될 수 있다.
도전성 접착 결합 물질의 확산에 대한 배리어들은 앞서 설명한 바와 같이 모우트를 형성하도록 콘택 패드들 또는 버스 바들로부터 이격될 수 있지만, 이러한 점이 요구되는 것은 아니다. 이러한 배리어들은, 예를 들면 도 2o 또는 도 2p에 도시한 바와 같이 인접한 콘택 패드 또는 버스 바를 대신할 수 있다. 이러한 변형예들에서, 상기 배리어는 상기 큐어링되지 않은 도전성 접착 결합 물질을 상기 콘택 패드 또는 버스 바 상에 유지하도록 바람직하게는 상기 콘택 패드 또는 버스 바보다 크다. 비록 도 2o 및 도 2p에 전면 금속화 패턴의 일부들이 도시되지만, 유사한 배치들이 후면 금속화 패턴들에 대해 사용될 수 있다.
도전성 접착 결합 물질의 확산에 대한 배리어들 및/또는 이러한 배리어들과 콘택 패드들 또는 버스 바들 사이의 모우트들, 그리고 이러한 모우트들 내로 확산된 임의의 도전성 접착 결합 물질은 상기 슈퍼 셀 내의 인접하는 태양 전지에 의해 중첩되는 상기 태양 전지 표면의 영역 내에 선택적으로 놓일 수 있고, 이에 따라 시야에서 감춰질 수 있으며 태양 복사에 대한 노출로부터 가려질 수 있다.
앞서 설명한 바와 같은 배리어들의 사용에 선택적으로 또는 추가적으로, 상기 전기적으로 도전성인 결합 물질은 마스크를 사용하거나 정확한 증착을 가능하게 하는 임의의 다른 적합한 방법(예를 들면, 스크린 프린팅)으로 증착될 수 있으며, 이에 따라 증착 동안에 상기 콘택 패드들을 넘어 확산되거나 상기 콘택 패드들을 벗어날 가능성이 있는 전기적으로 도전성인 결합 물질의 감소된 양들이 요구될 수 있다.
보다 일반적으로, 태양 전지들(10)은 임의의 적합한 전면 및 후면 금속화 패턴들을 채용할 수 있다.
도 4a는 도 1에 도시한 바와 같이 슁글드 방식으로 배열되는 도 2a에 도시한 바와 같은 태양 전지들(10)을 포함하는 예시적인 직사각형의 슈퍼 셀(100)의 전면의 일부를 도시한다. 슁글링(shingling) 기하학적 구조의 결과로, 태양 전지들(10)의 쌍들 사이에 물리적인 갭(gap)이 존재하지 않는다. 또한, 비록 슈퍼 셀(100)의 일측 단부에서 상기 태양 전지(10)의 버스 바(15)가 보일 수 있지만, 다른 태양 전지들의 버스 바들(또는 전면 콘택 패드들)은 인접하는 태양 전지들의 중첩되는 부분들 아래에 감춰진다. 그 결과, 슈퍼 셀(100)이 태양광 모듈 내에서 차지하는 면적을 효율적으로 이용한다. 특히, 상기 면적의 보다 큰 부분이 상기 태양 전지들의 예시한 표면상에 많은 가시적인 버스 바들을 포함하는 종래의 태브드 태양 전지 배치들 및 태양 전지 배치들에 대한 경우보다 전기를 생산하는 데 이용될 수 있다. 도 4b-도 4c는 챔퍼 처리된 쉐브론 직사각형의 실리콘 태양 전지들을 주로 포함하지만 그렇지 않았다면 도 4a의 경우와 유사한 다른 예시적인 슈퍼 셀(100)의 전면도와 후면도를 각기 도시한다.
도 4a에 예시된 예에서, 바이패스 컨덕터들(40)은 인접하는 셀들의 중첩되는 부분들에 의해 감춰진다. 선택적으로는, 바이패스 컨덕터들(40)을 포함하는 태양 전지들은 상기 바이패스 컨덕터들을 덮지 않고 도 4a에 도시한 바와 유사하게 중첩될 수 있다.
상기 슈퍼 셀(100)의 일측 단부에서의 노출된 전면 버스 바(15) 및 상기 슈퍼 셀(100)의 타측 단부에서의 상기 태양 전지의 후면 금속화는 상기 슈퍼 셀(100)을 다른 슈퍼 셀들에 및/또는 원하는 경우에 다른 전기적 구성 요소들에 전기적으로 연결하는 데 사용될 수 있는 상기 슈퍼 셀을 위한 음극 및 양극(단자) 단부 콘택들을 제공한다.
슈퍼 셀(100) 내의 인접하는 태양 전지들은 임의의 적합한 양으로, 예를 들면 약 1밀리미터(㎜) 내지 약 5㎜로 중첩될 수 있다.
도 5a-도 5g에 도시한 바와 같이, 예를 들면, 앞서 설명한 바와 같은 슁글드 슈퍼 셀들은 태양광 모듈의 면적을 효율적으로 채울 수 있다. 이러한 태양광 모듈들은, 예를 들면 정사각형 또는 직사각형이 될 수 있다. 도 5a-도 5g에 예시한 바와 같은 직사각형의 태양광 모듈들은 예를 들면, 약 1미터의 길이를 갖는 짧은 측면들 및 예를 들면, 약 1.5미터 내지 약 2.0미터의 길이를 갖는 긴 측면들을 가질 수 있다. 상기 태양광 모듈들을 위한 임의의 다른 적합한 형상들 및 치수들 또한 사용될 수 있다. 태양광 모듈 내의 슈퍼 셀들의 임의의 적합한 배치가 사용될 수 있다.
정사각형 또는 직사각형의 태양광 모듈에서, 상기 슈퍼 셀들은 통상적으로 상기 태양광 모듈의 짧은 측면 또는 긴 측면에 평행한 열들로 배열된다. 각 열은 단대단(end-to-end)으로 배열된 하나, 둘 또는 그 이상의 슈퍼 셀들을 포함할 수 있다. 이와 같은 태양광 모듈의 일부를 형성하는 슈퍼 셀(100)은 임의의 적절한 숫자의 태양 전지들(10)을 포함할 수 있고, 임의의 적절한 길이가 될 수 있다. 일부 변형예들에서, 슈퍼 셀들(100)은 각기 이들이 일부인 직사각형의 태양광 모듈의 짧은 측면들의 길이와 대략적으로 동일한 길이를 가진다. 다른 변형예들에서, 슈퍼 셀들(100)은 각기 이들이 일부인 직사각형의 태양광 모듈의 짧은 측면들의 길이의 절반과 대략적으로 동일한 길이를 가진다. 다른 변형예들에서, 슈퍼 셀들(100)은 각기 이들이 일부인 직사각형의 태양광 모듈의 긴 측면들의 길이와 대략적으로 동일한 길이를 가진다. 다른 변형예들에서, 슈퍼 셀들(100)은 각기 이들이 일부인 상기 직사각형의 태양광 모듈의 긴 측면들의 길이의 절반과 대략적으로 동일한 길이를 가진다. 이들 길이들의 슈퍼 셀들을 만드는 데 요구되는 태양 전지들의 숫자는 물론 상기 태양광 모듈의 치수들, 상기 태양 전지들의 치수들, 그리고 인접하는 태양 전지들이 중첩되는 양에 의존한다. 슈퍼 셀들을 위한 임의의 다른 적합한 길이들 또한 이용될 수 있다.
슈퍼 셀(100)이 직사각형의 태양광 모듈의 짧은 측면들의 길이와 대략적으로 동일한 길이를 가지는 변형예들에서, 상기 슈퍼 셀은, 예를 들면, 약 19.5밀리미터(㎜) 곱하기 약 156㎜의 치수들을 갖는 56개의 직사각형의 태양 전지들을 포함할 수 있고, 인접하는 태양 전지들은 약 3㎜로 중첩될 수 있다. 여덟 개의 이러한 직사각형의 태양 전지들이 종래의 정사각형 또는 의사 정사각형의 156㎜ 웨이퍼로부터 분리될 수 있다. 선택적으로는, 이와 같은 슈퍼 셀은, 예를 들면, 약 26㎜ 곱하기 약 156㎜의 치수들을 갖는 38개의 직사각형의 태양 전지들을 포함할 수 있고, 인접하는 태양 전지들은 약 2㎜로 중첩될 수 있다. 여섯 개의 이러한 직사각형의 태양 전지들이 종래의 정사각형 또는 의사 정사각형의 156㎜ 웨이퍼로부터 분리될 수 있다. 슈퍼 셀(100)이 직사각형의 태양광 모듈의 짧은 측면들의 길이의 절반과 대략적으로 동일한 길이를 가지는 변형예들에서, 상기 슈퍼 셀은, 예를 들면, 약 19.5밀리미터(㎜) 곱하기 약 156㎜의 치수들을 갖는 28개의 직사각형의 태양 전지들을 포함할 수 있고, 인접하는 태양 전지들은 약 3㎜로 중첩될 수 있다. 선택적으로는, 이와 같은 슈퍼 셀은, 예를 들면, 약 26㎜ 곱하기 약 156㎜의 치수들을 갖는 19개의 직사각형의 태양 전지들을 포함할 수 있고, 인접하는 태양 전지들은 약 2㎜로 중첩될 수 있다.
슈퍼 셀(100)이 직사각형의 태양광 모듈의 긴 측면들의 길이와 대략적으로 동일한 길이를 가지는 변형예들에서, 상기 슈퍼 셀은, 예를 들면, 약 26㎜ 곱하기 약 156㎜의 치수들을 갖는 72개의 직사각형의 태양 전지들을 포함할 수 있고, 인접하는 태양 전지들은 약 2㎜로 중첩될 수 있다. 슈퍼 셀(100)이 직사각형의 태양광 모듈의 긴 측면들의 길이의 절반과 대략적으로 동일한 길이를 가지는 변형예들에서, 상기 슈퍼 셀은, 예를 들면, 약 26㎜ 곱하기 약 156㎜의 치수들을 갖는 36개의 직사각형의 태양 전지들을 포함할 수 있고, 인접하는 태양 전지들은 약 2㎜로 중첩될 수 있다.
도 5a는 각기 상기 태양광 모듈의 짧은 측면들의 길이의 절반과 대략적으로 동일한 길이를 가지는 이십 개의 직사각형의 슈퍼 셀들(100)을 포함하는 예시적인 직사각형의 태양광 모듈(200)을 도시한다. 상기 슈퍼 셀들은 슈퍼 셀들의 열 개의 열들을 형성하도록 쌍들로 단대단으로 배열되며, 상기 슈퍼 셀들의 열들과 긴 측면들은 상기 태양광 모듈의 짧은 측면들에 평행하게 배향된다. 다른 변형예들에서, 슈퍼 셀들의 각 열은 셋 또는 그 이상의 슈퍼 셀들을 포함할 수 있다. 또한, 유사하게 구성되는 태양광 모듈은 이러한 예에서 도시한 경우보다 많거나 보다 적은 슈퍼 셀들의 열들을 포함할 수 있다(도 14a는, 예를 들면 각기 두 슈퍼 셀들의 열 두 개의 열들로 배열되는 이십 사개의 직사각형의 슈퍼 셀들을 포함하는 태양광 모듈을 도시한다).
각 열 내의 상기 슈퍼 셀들이 이들의 적어도 하나가 상기 열 내의 다른 하나의 슈퍼 셀에 인접하는 슈퍼 셀의 단부 상에 전면 단부 콘택을 가지도록 배열되는 변형예들에서, 도 5a에 도시한 갭(210)은 상기 태양광 모듈의 중심선을 따라 슈퍼 셀들(100)의 전면 단부 콘택들(예를 들면, 노출된 버스 바들 또는 별개의 콘택들(15))에 대한 전기적 콘택을 만드는 것을 가능하게 한다. 예를 들면, 열 내의 상기 두 슈퍼 셀들은 상기 태양광 모듈의 중심선을 따라 그 전면 단자 콘택을 갖는 하나의 슈퍼 셀 및 상기 태양광 모듈의 중심선을 따라 그 후면 단자 콘택을 갖는 다른 하나의 슈퍼 셀로 배열될 수 있다. 이와 같은 배치에서, 열 내의 상기 두 슈퍼 셀들은 상기 태양광 모듈의 중심선을 따라 배열되고, 상기 하나의 슈퍼 셀의 전면 단자 콘택 및 상기 다른 하나의 슈퍼 셀의 후면 단자 콘택에 결합되는 인터커넥트(interconnect)에 의해 직렬로 전기적으로 연결될 수 있다(예를 들면, 다음에 논의되는 도 8c 참조). 슈퍼 셀들의 각 열이 셋 또는 그 이상의 슈퍼 셀들을 포함하는 변형예들에서, 슈퍼 셀들 사이의 추가적인 갭들이 존재할 수 있고, 유사하게 상기 태양광 모듈의 측면들로부터 떨어져 위치하는 전면 단부 콘택들에 대해 전기적인 콘택을 만드는 것을 가능하게 할 수 있다.
도 5b는 각기 상기 태양광 모듈의 짧은 측면들의 길이와 대략적으로 동일한 길이를 가지는 열 개의 직사각형의 슈퍼 셀들(100)을 포함하는 예시적인 직사각형의 태양광 모듈(300)을 도시한다. 상기 슈퍼 셀들은 상기 모듈의 짧은 측면들에 평행하게 배향된 이들의 긴 측면들을 가지는 열 개의 평행한 열들로 배열된다. 유사하게 구성되는 태양광 모듈은 이러한 예에서 도시한 이러한 측부 길이의 슈퍼 셀들의 보다 많거나 보다 적은 열들을 포함할 수 있다.
도 5b는 또한 태양광 모듈(200) 내의 슈퍼 셀들의 열들 내에서 인접하는 슈퍼 셀들 사이에 갭들이 존재하지 않을 때에 도 5a의 태양광 모듈(200)이 어떻게 보이는 가를 도시한다. 도 5a의 갭(210)은, 예를 들면, 각 열 내의 양 슈퍼 셀들이 상기 모듈의 중심선을 따라 이들의 후면 단부 콘택들을 가지도록 상기 슈퍼 셀들을 배열함에 의해 제거될 수 있다. 이 경우, 상기 슈퍼 셀들은 상기 슈퍼 셀의 전면에 대한 접근이 상기 모듈의 중심을 따라 요구되지 않기 때문에 이들 사이에 갭이 작거나 추가적인 갭이 없이 서로 거의 인접하여 배열될 수 있다. 선택적으로는, 열 내의 두 슈퍼 셀들(100)은 하나가 상기 모듈의 측면을 따라 그 전면 단부 콘택을 가지고 상기 모듈의 중심선들 따라 후면 단부 콘택을 가지며, 다른 하나가 상기 모듈의 중심선을 따라 그 전면 단부 콘택을 가지고 상기 모듈의 대향하는 측면을 따라 그 후면 단부 콘택을 가지며, 상기 슈퍼 셀들의 인접하는 단부들이 중첩되게 배열될 수 있다. 유연한 인터커넥트가 상기 슈퍼 셀들의 하나의 전면 단부 콘택 및 다른 하나의 슈퍼 셀의 후면 단부 콘택에 대한 전기적 연결을 제공하도록 상기 태양광 모듈의 전면의 임의의 부분을 가리지 않고 상기 슈퍼 셀들의 중첩되는 단부들 사이에 개재될 수 있다. 셋 또는 그 이상의 슈퍼 셀들을 포함하는 열들에 대하여, 이들 두 가지 접근 방식들이 결합되어 사용될 수 있다.
5A-5B에 도시한 슈퍼 셀들 및 슈퍼 셀들의 열들은, 예를 들면 도 10a-도 15에 대해 다음에 더 설명되는 바와 같이 직렬 및 병렬의 전기적 연결들의 임의의 적합한 결합에 의해 상호 연결될 수 있다. 슈퍼 셀들 사이의 상호 연결들은, 예를 들면, 도 5c-도 5g와 후속하는 도면들에 대해 다음에 설명하는 바와 유사하게 유연한 인터커넥트들을 이용하여 이루어질 수 있다. 본 명세서에 설명되는 많은 예들에 의해 입증되는 바와 같이, 여기에 설명되는 태양광 모듈들 내의 슈퍼 셀들은 종래의 태양광 모듈의 경우와 실질적으로 동일한 상기 모듈에 대한 출력 전압을 제공하도록 직렬 결합들 및 병렬 연결들에 의해 상호 연결될 수 있다. 이러한 경우들에서, 상기 태양광 모듈로부터의 출력 전류 또한 종래의 태양광 모듈에 대한 경우와 실질적으로 동일할 수 있다. 선택적으로는, 다음에 더 설명하는 바와 같이, 상기 태양광 모듈 내의 슈퍼 셀들은 종래의 태양광 모듈들에 의해 제공되는 경우보다 상당히 높은 출력 전압을 상기 태양광 모듈로부터 제공하도록 상호 연결될 수 있다.
도 5c는 각기 태양광 모듈의 긴 측면들의 길이와 대략적으로 동일한 길이를 가지는 여섯 개의 직사각형의 슈퍼 셀들(100)을 포함하는 예시적인 직사각형의 태양광 모듈(350)을 도시한다. 상기 슈퍼 셀들은 상기 모듈의 긴 측면들에 평행하게 배향되는 이들의 긴 측면들을 구비하여 여섯 개의 평행한 열들로 배열된다. 유사하게 구성되는 태양광 모듈은 이러한 예에서 이러한 측면 길이의 슈퍼 셀들의 보다 많거나 보다 적은 열들을 포함할 수 있다. 이러한 예에서(및 다음의 예들의 몇몇에서), 각 슈퍼 셀은 각기 156㎜ 정사각형 또는 의사 정사각형의 웨이퍼의 폭의 1/6과 대략적으로 동일한 폭을 갖는 72개의 직사각형의 태양 전지들을 포함한다. 임의의 다른 적합한 치수들인 임의의 다른 적합한 숫자의 직사각형의 태양 전지들 또한 사용될 수 있다. 이러한 예에서, 상기 슈퍼 셀들의 전면 단자 콘택들은 상기 모듈의 하나의 짧은 측면의 에지에 인접하여 위치하고 평행하게 진행되는 유연한 인터커넥트들(400)로 서로 전기적으로 연결된다. 상기 슈퍼 셀들의 후면 단자 콘택들은 유사하게 상기 태양광 모듈의 뒤의 다른 하나의 짧은 측면의 에지에 인접하여 위치하고 평행하게 진행되는 유연한 인터커넥트들에 의해 서로 전기적으로 연결된다. 상기 후면 인터커넥트들은 도 5c에서 시야에서 감춰진다. 이러한 배치는 상기 여섯 개의 모듈 길이의 슈퍼 셀들을 병렬로 전기적으로 연결한다. 이들 및 다른 태양광 모듈 구성들에서 상기 유연한 인터커넥트들 및 이들의 배치의 세부 사항들은 도 6-도 8g에 대하여 다음에 보다 상세하게 논의된다.
도 5d는 각기 태양광 모듈의 긴 측면들의 길이의 절반과 대략적으로 동일한 길이를 가지는 열두 개의 직사각형의 슈퍼 셀들(100)을 포함하는 예시적인 직사각형의 태양광 모듈(360)을 도시한다. 상기 슈퍼 셀들은 슈퍼 셀들의 여섯 개의 열들을 형성하도록 쌍들로 단대단으로 배열되고, 상기 열들 및 상기 슈퍼 셀들의 긴 측면들은 상기 태양광 모듈의 긴 측면들에 평행하게 배향된다. 다른 변형예들에서, 슈퍼 셀들의 각 열은 셋 또는 그 이상의 슈퍼 셀들을 포함할 수 있다. 또한, 유사하게 구성되는 태양광 모듈은 이러한 예에 도시한 슈퍼 셀들의 보다 많거나 보다 적은 열들을 포함할 수 있다. 이러한 예에서(및 다음의 예들의 몇몇에서), 각 슈퍼 셀은 각기 156㎜ 정사각형 또는 의사 정사각형의 웨이퍼의 폭의 1/6과 대략적으로 동일한 폭을 가지는 36개의 직사각형의 태양 전지들을 포함한다. 임의의 다른 적합한 치수들인 임의의 다른 적합한 숫자의 직사각형의 태양 전지들 또한 사용될 수 있다. 갭(410)은 상기 태양광 모듈의 중심선을 따라 슈퍼 셀들(100)의 전면 단부 콘택들에 대한 전기적 콘택을 만드는 것을 가능하게 한다. 이러한 예에서, 상기 모듈의 하나의 짧은 측면의 에지에 인접하여 위치하고 평행하게 진행되는 유연한 인터커넥트들(400)은 상기 슈퍼 셀들의 여섯 개의 전면 단자 콘택들을 전기적으로 상호 연결한다. 유사하게, 상기 모듈 뒤의 상기 모듈의 다른 짧은 측면의 에지에 인접하여 위치하고 평행하게 진행되는 유연한 인터커넥트들은 다른 여섯 개의 슈퍼 셀들의 후면 단자 콘택들을 전기적으로 연결한다. 갭(410)을 따라 위치하는 유연한 인터커넥트들(본 도면에서는 도시되지 않음)은 열 내의 슈퍼 셀들의 각 쌍을 직렬로 상호 연결하며, 선택적으로는 인접하는 열들을 병렬로 상호 연결하도록 측방으로 연장된다. 이러한 배치는 상기 슈퍼 셀들의 여섯 개의 열들을 병렬로 전기적으로 연결한다. 선택적으로, 상기 슈퍼 셀들의 제1 그룹에서 각 열 내의 제1 슈퍼 셀은 각각의 다른 열들 내의 상기 제1 슈퍼 셀과 병렬로 전기적으로 연결되고, 슈퍼 셀들의 제2 그룹에서 상기 제2 슈퍼 셀은 각각의 다른 열들 내의 상기 제2 슈퍼 셀과 병렬로 전기적으로 연결되며, 상기 슈퍼 셀들의 두 그룹들은 직렬로 전기적으로 연결된다. 후자의 배치는 각각의 상기 슈퍼 셀들의 두 그룹들이 바이패스 다이오드(bypass diode)로 병렬로 개별적으로 입력되게 한다.
도 5d의 세부 사항 A는 상기 모듈의 하나의 짧은 측면의 에지를 따른 상기 슈퍼 셀들의 후면 단자 콘택들의 상호 연결의 도 8a에 도시한 단면도의 위치를 확인한다. 세부 사항 B는 유사하게 상기 모듈의 다른 하나의 짧은 측면을 따른 상기 슈퍼 셀들의 전면 단자 콘택들의 상호 연결의 도 8b에 도시한 단면도의 위치를 확인한다. 세부 사항 C는 갭(410)을 따른 열 내의 상기 슈퍼 셀들의 직렬 상호 연결의 도 8c에 도시한 단면도의 위치를 확인한다.
도 5e는 이러한 예에서 슈퍼 셀들이 형성되는 태양 전지들 모두가 상기 태양 전지들이 분리되었던 의사-정사각형의 웨이퍼들의 모서리들에 대응되는 챔퍼 처리된 모서리들을 갖는 쉐브론 태양 전지들인 점을 제외하면, 도 5c의 경우와 유사하게 구성되는 예시적인 직사각형의 태양광 모듈(370)을 도시한다.
도 5f는 이러한 예에서 슈퍼 셀들이 형성되는 태양 전지들이 이들이 분리되었던 의사-정사각형의 웨이퍼들의 형상들을 재현하도록 쉐브론 및 직사각형의 태양 전지들의 혼합을 포함하는 점을 제외하면, 도 5c의 경우와 유사하게 구성되는 다른 예시적인 직사각형의 태양광 모듈(380)을 도시한다. 도 5f의 예에서, 상기 쉐브론 태양 전지들은 상기 쉐브론 셀들 상의 벗어나는 모서리들을 보상하도록 상기 직사각형의 태양 전지들 보다는 이들의 긴 축들에 직교하게 보다 넓을 수 있으므로, 상기 쉐브론 태양 전지들 및 상기 직사각형의 태양 전지들은 상기 모듈의 동작 동안에 태양 복사에 노출되는 동일한 활성 영역과 이에 따라 일치되는 전류를 가진다.
도 5g는 도 5g의 태양광 모듈에서 슈퍼 셀 내의 인접하는 쉐브론 태양 전지들이 서로 거울상들로 배열되어 이들의 중첩되는 에지들이 동일한 길이인 점을 제외하면, 도 5e의 경우(즉, 쉐브론 태양 전지들만을 포함하는)와 유사하게 구성되는 다른 예시적인 직사각형의 태양광 모듈을 도시한다. 이는 각 중첩되는 연결 부위(joint)의 길이를 최대화하며, 이에 따라 상기 슈퍼 셀을 통한 열 유동을 가능하게 한다.
직사각형의 태양광 모듈들의 다른 구성들은 직사각형의(챔퍼 처리되지 않은) 태양 전지들로만 형성되는 슈퍼 셀들의 하나 또는 그 이상의 열들 및 챔퍼 처리된 태양 전지들로만 형성되는 슈퍼 셀들의 하나 또는 그 이상의 열들을 포함할 수 있다. 예를 들면, 직사각형의 태양광 모듈은 챔퍼 처리된 태양 전지들로만 형성되는 슈퍼 셀들의 열에 의해 각기 대체되는 슈퍼 셀들의 두 개의 외측 열들을 가지는 점을 제외하면 도 5c의 경우와 유사하게 구성될 수 있다. 이들 열 내의 상기 챔퍼 처리된 태양 전지들은, 예를 들면 도 5g에 도시한 바와 같이 거울상의 쌍들로 배열될 수 있다.
도 5c-도 5g에 도시한 예시적인 태양광 모듈들에서, 슈퍼 셀들의 각 열을 따른 전류는 상기 슈퍼 셀들이 형성되는 직사각형의 태양 전지들이 종래 크기의 태양 전지의 경우의 약 1/6의 활성 영역을 가지기 때문에 동일한 면적의 종래의 태양광 모듈의 경우의 약 1/6이다. 그러나 이들 예들에서 상기 슈퍼 셀들의 여섯 개의 열들이 병렬로 전기적으로 연결되기 때문에, 상기 예시적인 태양광 모듈들은 동일한 면적의 종래의 태양광 모듈에 의해 발생되는 경우와 동일한 전체 전류를 발생시킬 수 있다. 이는 종래의 태양광 모듈들에 대한 도 5c-도 5g의 예시적인 태양광 모듈들(및 다음에 설명되는 다른 예들)의 서브스테이션(substation)을 가능하게 한다.
도 6은 각 열 내의 슈퍼 셀들을 서로 직렬로 두고, 상기 열들을 서로 병렬로 두도록 유연한 전기적 인터커넥트들로 상호 연결되는 슈퍼 셀들의 세 개의 열들의 예시적인 배치를 도 5c-도 5g보다 상세하게 도시한다. 이들은, 예를 들면 도 5d의 태양광 모듈 내의 세 개의 열들이 될 수 있다. 도 6의 예에서, 각 슈퍼 셀(100)은 그 전면 단자 콘택에 도전성으로 결합되는 유연한 인터커넥트(400) 및 그 후면 단자 콘택에 도전성으로 결합되는 다른 유연한 인터커넥트를 가진다. 각 열 내의 두 슈퍼 셀들은 하나의 슈퍼 셀의 전면 단자 콘택 및 다른 하나의 슈퍼 셀의 후면 단자 콘택에 도전성으로 결합되는 공유되는 유연한 인터커넥트에 의해 직렬로 전기적으로 연결된다. 각 유연한 인터커넥트는 그가 결합되는 슈퍼 셀의 단부에 인접하게 위치하고 평행하게 진행되며, 상기 슈퍼 셀을 넘어서 인접하는 열 내의 슈퍼 셀 상의 유연한 인터커넥트에 도전성으로 결합되도록 측방으로 연장될 수 있으며, 인접하는 열들을 병렬로 전기적으로 연결한다. 도 6의 점선들은 상기 슈퍼 셀들의 중첩되는 부분들에 의해 사야에서 가려지는 상기 유연한 인터커넥트들의 일부들, 또는 상기 유연한 인터커넥트들의 중첩되는 일부들에 의해 시야에서 감춰지는 상기 슈퍼 셀들의 일부들을 나타낸다.
유연한 인터커넥트들(400)은, 예를 들면, 중첩된 태양 전지들을 결합시키는 데 사용되기 위해 상술한 바와 같은 기계적으로 유연하고 전기적으로 도전성인 결합 물질로 상기 슈퍼 셀들에 도전성으로 결합될 수 있다. 선택적으로, 상기 전기적으로 도전성인 결합 물질은 상기 전기적으로 도전성인 결합 물질 또는 상기 인터커넥트들의 열팽창 계수와 상기 슈퍼 셀의 열팽창 계수 사이의 불일치로부터 야기되는 상기 슈퍼 셀의 에지들에 평행한 스트레스를 감소시키거나 수용하기 위해 실질적으로 상기 슈퍼 셀의 에지의 길이로 연장되는 연속되는 라인으로 보다는 상기 슈퍼 셀의 에지들을 따라 별개의 위치들에 위치할 수 있다.
유연한 인터커넥트들(400)은, 예를 들면 얇은 구리 시트들로 형성될 수 있거나 포함할 수 있다. 유연한 인터커넥트들(400)은 상기 인터커넥트의 CTE와 상기 슈퍼 셀들의 CTE 사이의 불일치로부터 야기되는 상기 슈퍼 셀들의 에지들에 모두 직교하고 평행한 이들의 기계적 컴플라이언스(유연성)를 증가시키기 위해 선택적으로 패터닝될 수 있거나 그렇지 않으면 구성될 수 있다. 이러한 패터닝은, 예를 들면, 슬릿(slit)들, 슬롯(slot)들, 또는 홀(hole)들을 포함할 수 있다. 인터커넥트들(400)의 도전성인 부분들은 상기 인터커넥트들을 유연성을 증가시키도록, 예를 들면, 약 100미크론 이하, 약 50미크론 이하, 약 30미크론 이하, 또는 약 25미크론 이하의 두께를 가질 수 있다. 상기 유연한 인터커넥트의 기계적 컴플라이언스 및 상기 슈퍼 셀들에 대한 이의 결합은 슁글드 태양 전지 모듈들을 제조하는 방법들에 대하여 다음에 보다 상세하게 설명하는 라미네이션(lamination) 공정 동안에 CTE 불일치로부터 야기되는 스트레스를 견디고, 약 -40℃ 내지 약 85℃의 온도 사이클링 시험(temperature cycling testing) 동안에 CTE 불일치로부터 야기되는 스트레스를 견디기 위하여 상기 상호 연결된 슈퍼 셀들에 대해 충분하여야 한다.
바람직하게는, 유연한 인터커넥트들(400)은 이들이 결합되는 상기 슈퍼 셀들의 단부들에 평행한 전류 흐름에 대해 약 0.015옴(Ohm)보다 작거나 같거나, 약 0.012옴보다 작거나 같거나, 약 0.01옴보다 작거나 같은 저항을 나타낸다.
도 7a는 유연한 인터커넥트(400)를 위해 적합할 수 있는 참조 부호들 400A-400T로 나타낸 몇몇 예시적인 구성들을 도시한다.
도 8a-도 8c의 단면도들에 도시한 바와 같이, 예를 들면, 본 명세서에 설명되는 태양광 모듈들은 통상적으로 슈퍼 셀들 및 투명한 전면 시트(front sheet)(420)와 배면 시트(back sheet)(430) 사이에 개재되는 하나 또는 그 이상의 봉지재(encapsulant) 물질들(4101)을 구비하는 라미네이트 구조를 포함한다. 상기 투명한 전면 시트는, 예를 들면 유리가 될 수 있다. 선택적으로, 상기 배면 시트 또한 투명할 수 있으며, 이는 상기 태양광 모듈의 양면 동작을 가능하게 할 수 있다. 상기 배면 시트는, 예를 들면 폴리머 시트가 될 수 있다. 선택적으로는, 상기 태양광 모듈은 상기 전면 및 배면 시트들 모두 유리를 구비하는 유리-유리 모듈이 될 수 있다.
도 8a(도 5d로부터의 세부 사항 A)의 단면도는 상기 태양광 모듈의 에지 부근에서 슈퍼 셀의 후면 단자 콘택에 도전성으로 결합되고, 상기 슈퍼 셀 아래로 내측으로 연장되어 상기 태양광 모듈의 전방으로부터 시야에서 감춰지는 유연한 인터커넥트(400)의 예를 도시한다. 봉지재의 추가적인 스트립(strip)이 예시한 바와 같이 인터커넥트(400)와 상기 슈퍼 셀의 후면 사이에 배치될 수 있다.
도 8b(도 5b로부터의 세부 사항 B)의 단면도는 슈퍼 셀의 전면 단자 콘택에 도전성으로 결합되는 유연한 인터커넥트(400)의 예를 도시한다.
도 8c(도 5b로부터의 세부 사항 C)의 단면도는 두 슈퍼 셀들을 직렬로 전기적으로 연결하도록 하나의 슈퍼 셀의 전면 단자 콘택 및 다른 하나의 슈퍼 셀의 후면 단자 콘택에 도전성으로 결합되는 공유된 유연한 인터커넥트(400)의 예를 도시한다.
슈퍼 셀의 전면 단자 콘택에 전기적으로 연결되는 유연한 인터커넥트들은 상기 태양광 모듈의 전면의 좁은 폭만을 점유하도록 구성되거나 배열될 수 있으며, 이들은 예를 들면 상기 태양광 모듈의 에지에 인접하여 위치할 수 있다. 이러한 인터커넥트들에 의해 점유되는 상기 모듈의 전면의 영역은 상기 슈퍼 셀의 에지에 직교하는, 예를 들면, ≤약 10㎜, ≤약 5㎜, 또는 ≤약 3㎜의 좁은 폭을 가질 수 있다. 도 8b에 도시한 배치에서, 예를 들면 유연한 인터커넥트(400)는 단지 이와 같은 거리로 상기 슈퍼 셀의 단부를 넘어서 연장되도록 구성될 수 있다. 도 8d-도 8g는 슈퍼 셀의 전면 단자 콘택에 전기적으로 연결되는 유연한 인터커넥트가 상기 모듈의 전면의 좁은 폭만을 점유할 수 있는 배치들의 추가적인 예들을 도시한다. 이러한 배치들은 전기를 생산하기 위한 상기 모듈의 전면 면적의 효율적인 이용을 가능하게 한다.
도 8d는 슈퍼 셀의 단자 전면 콘택에 도전성으로 결합되고, 상기 슈퍼 셀의 에지의 주위에서 상기 슈퍼 셀의 후방으로 접혀지는 유연한 인터커넥트(400)를 도시한다. 유연한 인터커넥트(400) 상에 미리 도포될 수 있는 절연막(435)이 유연한 인터커넥트(400)와 상기 슈퍼 셀의 후면 사이에 배치될 수 있다.
도 8e는 슈퍼 셀의 단자 전면 콘택에 도전성으로 결합되는 얇고 좁은 리본(ribbon)(440) 및 상기 슈퍼 셀의 후면 뒤로 연장되는 얇고 넓은 리본(445)도 포함하는 유연한 인터커넥트(400)를 도시한다. 리본(445) 상에 미리 도포될 수 있는 절연막(435)은 리본(445)과 상기 슈퍼 셀의 후면 사이에 배치될 수 있다.
도 8f는 슈퍼 셀의 단자 전면 콘택에 결합되고, 상기 태양광 모듈 전면의 좁은 폭만을 점유하는 평탄화된 코일(coil) 내로 감겨지고 눌려지는 유연한 인터커넥트(400)를 도시한다.
도 8g는 슈퍼 셀의 단자 전면 콘택에 도전성으로 결합되는 얇은 리본 섹션(section) 및 상기 슈퍼 셀에 인접하여 위치하는 두꺼운 단면 부분을 포함하는 유연한 인터커넥트(400)를 도시한다.
도 8a-도 8g에서, 유연한 인터커넥트들(400)은, 예를 들면 도 6에 도시한 바와 같이 상기 슈퍼 셀들의 에지들의 전체 길이들을 따라(예를 들면, 도면의 지면 내로) 연장될 수 있다.
선택적으로, 그렇지 않으면 상기 모듈의 전방으로부터 보일 수 있는 유연한 인터커넥트(400)의 일부들은 정상적인 색각을 갖는 사람에 의해 인식되는 바와 같이 상기 인터커넥트와 상기 슈퍼 셀 사이의 가시적인 대비를 감소시키도록 어두운 색상의 필름으로 덮일 수 있거나, 코팅될 수 있거나, 그렇지 않으면 착색될 수 있다. 예를 들면, 도 8c에서 선택적인 흑색 필름 또는 코팅(425)이 그렇지 않으면 상기 모듈의 전방으로부터 보일 수 있었던 상기 인터커넥트(400)의 일부들을 커버한다. 그렇지 않으면 다른 도면들에 도시한 인터커넥트(400)의 보일 수 있는 부분들은 덮여질 수 있거나 색상을 가질 수 있다.
종래의 태양광 모듈들은 통상적으로 셋 또는 그 이상의 바이패스 다이오드들을 포함하며, 각 바이패스 다이오드는 18개-24개의 실리콘 태양 전지들의 직렬 연결된 그룹과 병렬로 연결된다. 이는 역 바이어스된(reverse biased) 태양 전지 내에서 열로 소실될 수 있는 전력의 양을 제한하도록 이루어진다. 태양 전지는, 예를 들면 결함, 더러운 전면, 또는 상기 스트링 내에서 발생되는 전류를 통과시키는 그 능력을 감소시키는 고르지 못한 조명으로 인하여 역 바이어스될 수 있다. 역 바이어스에서 태양 전지 내에 발생되는 열은 상기 태양 전지에 걸친 전압 및 상기 태양 전지를 통하는 전류에 의존한다. 상기 역 바이어스된 태양 전지에 걸친 전압이 상기 태양 전지의 항복 전압(breakdown voltage)을 초과할 경우, 상기 셀 내에서 소실되는 열은 상기 스트링 내에서 발생되는 전체 전류 시간들에서 상기 항복 전압과 같아질 것이다. 실리콘 태양 전지들은 통상적으로 16볼트-30볼트의 항복 전압을 가진다. 각 실리콘 태양 전지가 동작 시에 약 0.64볼트의 전압을 생성하기 때문에, 24개 이상의 태양 전지들의 스트링은 상기 항복 전압을 초과하는 역 바이어스된 태양 전지에 걸친 전압을 생성할 수 있었다.
상기 태양 전지들이 서로 이격되고, 리본들로 상호 연결되는 종래의 태양광 모듈들에서, 열이 뜨거운 태양 전지로부터 멀리 쉽게 이송되지 못한다. 이에 따라, 항복 전압에서 태양 전지 내에 소실되는 전력은 상당한 열적 손상과 아마도 화재를 야기하는 상기 태양 전지 내의 핫 스팟을 생성할 수 있었다. 종래의 태양광 모듈들에서, 바이패스 다이오드는 이에 따라 상기 항복 전압 이상으로 역 바이어스될 수 있는 상기 스트링 내의 태양 전지가 없는 점을 보장하도록 18개-24개의 직렬 연결된 태양 전지들의 모든 그룹에 대해 요구되었다.
본 발명자들은 열이 실리콘 슈퍼 셀을 따라 상기 인접하고 중첩되는 실리콘 태양 전지들 사이의 얇은 전기적으로 및 열적으로 도전성인 결합들을 통해 쉽게 이송되는 점을 발견하였다. 또한, 여기에 설명되는 태양광 모듈들 내의 슈퍼 셀을 통하는 전류는 여기에 설명되는 슈퍼 셀들이 통상적으로 각기 종래의 태양 전지의 경우보다 작은(예를 들면, 1/6) 활성 영역을 가지는 직사각형의 태양 전지들을 슁글링함에 의해 형성되기 때문에, 통상적으로 종래의 태양 전지들의 스트링을 통하는 경우보다 작다. 더욱이, 여기서 채용되는 태양 전지들의 직사각형의 종횡비는 통상적으로 인접하는 태양 전지들 사이의 단자 콘택의 연장된 영역들을 제공한다. 그 결과, 상기 항복 전압에서 역 바이어스된 태양 전지 내에서 열이 적게 소실되고, 상기 열이 위험한 핫 스팟을 생성하지 않고 상기 슈퍼 셀 및 상기 태양광 모듈을 통해 쉽게 확산된다. 본 발명자들은 이에 따라 여기에 설명되는 바와 같은 슈퍼 셀들로부터 형성되는 태양광 모듈들이 종래에 요구되는 것으로 여겨지는 경우보다 훨씬 적은 바이패스 다이오드들을 채용할 수 있는 점을 인지하였다.
예를 들면, 여기에 설명되는 바와 같은 태양광 모듈들의 일부 변형예들에서 N>25개의 태양 전지들, N≥약 30개의 태양 전지들, N≥약 50개의 태양 전지들, N≥약 70개의 태양 전지들, 또는 N≥약 100개의 태양 전지들을 포함하는 슈퍼 셀이 바이패스 다이오드와 개별적으로 병렬로 전기적으로 연결되는 슈퍼 셀 내의 단일의 태양 전지 또는 <N의 태양 전지들의 그룹 없이 채용될 수 있다. 선택적으로, 이들 길이들의 전체 슈퍼 셀은 단일의 바이패스 다이오드로 병렬로 전기적으로 연결될 수 있다. 선택적으로, 이들 길이들의 슈퍼 셀들은 바이패스 다이오드 없이 채용될 수 있다.
몇몇 추가적이고 선택적인 설계 특징들은 역 바이어스된 태양 전지 내에서 소실되는 열을 한층 더 견디는 여기에 설명되는 바와 같은 슈퍼 셀들을 채용하는 태양광 모듈들을 구현할 수 있다. 도 8a-도 8c를 다시 참조하면, 봉지재(4101)는 열가소성 올레핀(thermoplastic olefin: TPO) 폴리머가 될 수 있거나 이를 포함할 수 있으며, TPO 봉지재들은 표준 에틸렌-비닐 아세테이트(ethylene-vinyl acetate: EVA) 봉지재들보다 광-열(photo-thermal)적으로 안정하다. EVA는 온도와 자외선으로 갈색으로 될 것이며, 셀들을 제한하는 전류에 의해 생성되는 핫 스팟 문제들을 가져올 것이다. 이들 문제들은 TPO 봉지재로써 감소되거나 회피된다. 또한, 상기 태양광 모듈들은 상기 투명한 전면 시트(420) 및 상기 배면 시트(430) 모두가 유리인 유리-유리 구조를 가질 수 있다. 이와 같은 유리-유리는 상기 태양광 모듈이 종래의 폴리머 배면 시트에 의해 견뎌지는 경우들보다 높은 온도에서 안정적으로 동작하게 한다. 더욱이, 접합 박스(junction box)들이 상기 태양광 모듈의 뒤에 보다는 태양광 모듈의 하나 또는 그 이상의 에지들 상에 장착될 수 있으며, 여기서 접합 박스는 그 상부의 상기 모듈 내에서 상기 태양 전지들에 대해 열 절연의 추가적인 층을 추가할 수 있었다.
도 9a는 상기 태양광 모듈의 긴 측면들의 길이로 연장되는 여섯 개의 열들로 배열되는 여섯 개의 직사각형의 슁글드 슈퍼 셀들을 포함하는 예시적인 직사각형의 태양광 모듈을 도시한다. 상기 여섯 개의 슈퍼 셀들은 서로에 대해서와 상기 태양광 모듈의 후면 상의 접합 박스(junction box)(490) 내에 배치되는 바이패스 다이오드에 병렬로 전기적으로 연결된다. 상기 슈퍼 셀들과 상기 바이패스 다이오드 사이의 전기적 연결들은 상기 모듈의 라미네이트 구조 내에 내장되는 리본들(450)을 통해 이루어진다.
도 9b는 상기 태양광 모듈의 긴 측면들의 길이로 연장되는 여섯 개의 열들로 배열되는 여섯 개의 직사각형의 슁글드 슈퍼 셀들을 포함하는 다른 예시적인 직사각형의 태양광 모듈을 도시한다. 상기 슈퍼 셀들은 서로 전기적으로 병렬로 연결된다. 분리된 양극(490P) 및 음극(490N) 단자 접합 박스들은 상기 태양광 모듈의 대향하는 단부들에서 상기 태양광 모듈의 후면 상에 배치된다. 상기 슈퍼 셀들은 상기 접합 박스들 사이로 진행되는 외부 케이블(455)에 의해 상기 접합 박스들의 하나 내에 위치하는 바이패스 다이오드와 전기적으로 병렬로 연결된다.
도 9c-도 9d는 유리 전면 및 배면 시트들을 포함하는 라미네이션 구조 내의 상기 태양광 모듈의 긴 측면들의 길이로 연장되는 여섯 개의 열들로 배열되는 여섯 개의 직사각형의 슁글드 슈퍼 셀들을 포함하는 예시적인 유리-유리 직사각형의 태양광 모듈을 도시한다. 상기 슈퍼 셀들은 서로 병렬로 전기적으로 연결된다. 분리된 양극(490P) 및 음극(490N) 단자 접합 박스들은 상기 태양광 모듈의 대향하는 에지들 상에 장착된다.
슁글드 슈퍼 셀들은 모듈 레벨 전원 관리(power management) 장치들(예를 들면, DC/AC 마이크로인버터(microinverter)들, DC/DC 모듈 파워 옵티마이저(power optimizers), 전압 지능(voltage intelligence) 및 스마트 스위치들, 그리고 관련 장치들)에 대해 모듈 레이아웃을 위한 특유한 기회들을 가능하게 한다. 상기 모듈 레벨 전원 관리 시스템들의 중요한 특징은 전력 최적화이다. 여기에 설명되고 채용되는 바와 같은 슈퍼 셀들은 전통적인 패널들보다 높은 전압들을 생산할 수 있다. 또한, 슈퍼 셀 모듈 레이아웃은 상기 모듈을 더 분할할 수 있다. 보다 높은 전압들 및 증가된 분할 모두는 전력 최적화를 위한 잠재적인 이점들을 생성한다.
도 9e는 슁글드 슈퍼 셀들을 사용하는 모듈 레벨 전원 관리를 위한 하나의 예시적인 구성을 도시한다. 본 도면에서, 예시적인 직사각형의 태양광 모듈은 상기 태양광 모듈의 긴 측면들의 길이로 연장되는 여섯 개의 열들로 배열되는 여섯 개의 직사각형의 슁글드 슈퍼 셀들을 포함한다. 세 쌍의 슈퍼 셀들은 전원 관리 시스템(460)에 개별적으로 연결되고, 상기 모듈의 보다 별도의 전력 최적화를 가능하게 한다.
도 9f는 슁글드 슈퍼 셀들을 사용하는 모듈 레벨 전원 관리를 위한 다른 예시적인 구성을 도시한다. 본 도면에서, 예시적인 직사각형의 태양광 모듈은 상기 태양광 모듈의 긴 측면들의 길이로 연장되는 여섯 개의 열들로 배열되는 여섯 개의 직사각형의 슁글드 슈퍼 셀들을 포함한다. 상기 여섯 개의 슈퍼 셀들은 전원 관리 시스템(460)에 개별적으로 연결되고, 상기 모듈의 보다 별도의 전력 최적화를 더욱 가능하게 한다.
도 9g는 슁글드 슈퍼 셀들을 사용하는 모듈 레벨 전원 관리를 위한 다른 예시적인을 도시한다. 본 도면에서, 예시적인 직사각형의 태양광 모듈은 여섯 또는 그 이상의 열들로 배열되는 여섯 또는 그 이상의 직사각형의 슁글드 슈퍼 셀들(998)을 포함하며, 여기서 상기 셋 또는 그 이상의 슈퍼 셀들 쌍들은 상기 모듈의 더욱 보다 별도의 전력 최적화를 가능하게 하도록 바이패스 다이오드 또는 전원 관리 시스템(460)에 개별적으로 연결된다.
도 9h는 슁글드 슈퍼 셀들을 사용하는 모듈 레벨 전원 관리를 위한 다른 예시적인 구성을 도시한다. 본 도면에서, 예시적인 직사각형의 태양광 모듈은 여섯 또는 그 이상의 열들로 배열되는 여섯 또는 그 이상의 직사각형의 슁글드 슈퍼 셀들(998)을 포함하며, 여기서 두 슈퍼 셀은 각기 직렬로 연결되고, 모든 쌍들은 병렬로 연결된다. 바이패스 다이오드 또는 전원 관리 시스템(460)은 모든 쌍들에 병렬로 연결되고, 상기 모듈의 전력 최적화를 가능하게 한다.
일부 변형예들에서, 모듈 레벨 전원 관리는 핫 스팟들의 위험을 여전히 배제하면서 상기 태양광 모듈 상의 모든 바이패스 다이오드들의 제거를 가능하게 한다. 이는 상기 모듈 레벨에서 전압 지능을 통합시킴에 의해 구현된다. 상기 태양광 모듈 내의 태양 전지 회로(예를 들면, 하나 또는 그 이상의 슈퍼 셀들)의 전압 출력을 모니터링함에 의해, "스마트 스위치(smart switch)" 전원 관리 장치는 이러한 회로가 역 바이어스에 있는 임의의 태양 전지들을 포함하는 지를 결정할 수 있다. 역 바이어스된 태양 전지가 검출될 경우, 상기 전원 관리 장치는, 예를 들면 계전기 스위치(relay switch) 또는 다른 구성 요소를 사용하여 상기 전기 시스템으로부터 상기 대응되는 회로를 연결 해제할 수 있다. 예를 들면, 상기 모니터된 태양 전지 회로의 전압이 소정의 한계(VLimit) 아래로 떨어질 경우, 그러면 상기 전원 관리 장치는 상기 모듈 또는 모듈들의 스트링이 연결되어 남아 있게 하면서 이러한 회로를 차단(개방 회로(open circuit))시킬 것이다.
특정 실시예들에서, 상기 회로들의 전압이 동일한 태양 전지 어레이 내에서 다른 하나의 회로들로부터 특정 퍼센티지나 크기(예를 들면, 20% 또는 10V) 이상으로 떨어질 경우, 이는 차단될 것이다. 상기 전자 장치는 모듈간 통신에 기초하여 이러한 변화를 검출할 것이다.
이러한 전압 지능의 구현은 현존하는 모듈 레벨 전원 관리 솔루션들(예를 들면, 엔파스 에너지사(Enphase Energy Inc.), 솔라레지 테크놀로지스사(Solaredge Technologies, Inc.), 티고 에너지사(Tigo Energy, Inc.)로부터) 내로 통합될 수 있거나, 주문형 회로 설계를 거칠 수 있다.
상기 VLimit 문턱 전압이 어떻게 계산될 수 있는 지의 하나의 예는,
CellVocc@Low Irr & High Temp ×Nnumber of cells in series-VrbReverse breakdown voltage≤VLimit이며, 여기서,
● CellVoc@Low Irr & High Temp=낮은 조사 및 높은 온도에서 동작하는 셀의 개방 회로 전압(가장 낮은 예상되는 동작 Voc)이고,
● Nnumber of cells in series=모니터되는 각 슈퍼 셀 내의 직렬로 연결된 셀들의 숫자이며,
● VrbReverse breakdown voltage=전류를 셀로 통과시키는 데 요구되는 반전된 극성 전압이다.
스마트 스위치를 사용하는 모듈 레벨 전원 관리에 대한 이러한 접근은 안정성이나 모듈 신뢰성에 영향을 미치지 않고 단일 모듈 내에서, 예를 들면 100개 이상의 실리콘 태양 전지들이 직렬로 연결되게 할 수 있다. 또한, 이와 같은 스마트 스위치는 중심 인버터(inverter)로 진행하는 스트링 전압을 제한하는 데 사용될 수 있다. 보다 긴 모듈 스트링들은 이에 따라 전압에 관하여 안정성이나 우려를 허용하지 않고 설치될 수 있다. 가장 약한 모듈은 스트링 전압들이 상기 한계에 대해 상승될 경우에 우회될(꺼질) 수 있다.
다음에 설명되는 도 10a, 도 11a, 도 12a, 도 13a, 도 13b 및 도 14b는 슁글드 슈퍼 셀들을 채용하는 태양광 모듈들을 위한 추가의 예시적인 개략적 전기 회로들을 제공한다. 도 10b-1, 도 10b-2, 도 11b-1, 도 11b-2, 도 11c-1, 도 11c-2, 도 12b-1, 도 12b-2, 도 12c-1, 도 12c-2, 도 12c-3, 도 13c-1, 도 13c-2, 도 14c-1 및 도 14c-2는 이들 개략적인 회로들에 대응되는 예시적인 물리적 레이아웃들을 제공한다. 상기 물리적 레이아웃들의 설명은 각 슈퍼 셀의 전면 단부 콘택이 음의 극성이고, 각 슈퍼 셀의 후면 단부 콘택이 양의 극성인 것으로 상정한다. 상기 모듈들이 대신에 양의 극성의 전면 단부 콘택들 및 음의 극성의 후면 단부 콘택들을 갖는 슈퍼 셀들을 채용할 경우, 그러면 다음의 물리적 레이아웃들의 논의는 양을 음으로 바꾸고 상기 바이패스 다이오드들의 배향을 반전시킴에 의해 변경될 수 있다. 이들 도면들의 설명에서 언급되는 다양한 버스들의 일부는, 예를 들면 앞서 설명한 인터커넥트들(400)로 형성될 수 있다. 이들 도면들에서 설명되는 다른 버스들은, 예를 들면 상기 태양광 모듈의 라미네이트 구조(laminate structure) 내에 내장되는 리본들 또는 외부 케이블들로 구현될 수 있다.
도 10a는 도 5b에 예시한 바와 같은 태양광 모듈을 위한 예시적인 전기 회로를 도시하며, 여기서 상기 태양광 모듈은 각기 상기 태양광 모듈의 짧은 측면들의 길이와 대략적으로 동일한 길이를 가지는 열 개의 직사각형의 슈퍼 셀들(100)을 포함한다. 상기 슈퍼 셀들은 상기 모듈의 짧은 측면들에 평행하게 배향된 이들의 긴 측면들을 구비하여 상기 태양광 모듈 내에 배열된다. 상기 슈퍼 셀들 모두는 바이패스 다이오드(480)와 병렬로 전기적으로 연결된다.
도 10b-1 및 도 10b-2는 도 10a의 태양광 모듈에 대한 예시적인 물리적 레이아웃을 도시한다. 버스(485N)는 상기 슈퍼 셀들(100)의 음의(전면) 단부 콘택들을 상기 모듈의 후면 상에 위치하는 접합 박스(490) 내에서 바이패스 다이오드(480)의 양극 단자에 연결한다. 버스(485P)는 상기 슈퍼 셀들(100)의 양의(후면) 단부 콘택들을 바이패스 다이오드(480)의 음극 단자에 연결한다. 버스(485P)는 전체적으로 상기 슈퍼 셀들 뒤에 놓일 수 있다. 버스(485N) 및/또는 상기 슈퍼 셀들에 대한 이의 상호 연결은 상기 모듈의 전면의 일부를 점유한다.
도 11a는 도 5a에 예시한 바와 같은 태양광 모듈을 위한 예시적인 개략적 전기 회로를 도시하며, 여기서 상기 태양광 모듈은 각기 상기 태양광 모듈의 짧은 측면들의 길이의 절반과 대략적으로 동일한 길이를 가지는 이십 개의 직사각형의 슈퍼 셀들(100)을 포함하고, 상기 슈퍼 셀들은 슈퍼 셀들의 열 개의 열들을 형성하도록 쌍으로 단대단으로 배열된다. 각 열 내의 제1 슈퍼 셀은 다른 열들 내의 상기 제1 슈퍼 셀들과 병렬로 연결되고, 바이패스 다이오드(500)와 병렬로 연결된다. 각 열 내의 제2 슈퍼 셀은 다른 열들 내의 상기 제2 슈퍼 셀들과 병렬로 연결되고, 바이패스 다이오드(510)와 병렬로 연결된다. 상기 슈퍼 셀들의 두 그룹들은 상기 두 바이패스 다이오드들의 경우와 같이 직렬로 연결된다.
도 11b-1 및 도 11b-2는 도 11a의 태양광 모듈을 위한 예시적인 물리적 레이아웃을 도시한다. 이러한 레이아웃에서, 각 열 내의 제1 슈퍼 셀은 상기 모듈의 제1 측면을 따라 그 전면(음의) 단부 콘택 및 상기 모듈의 중심선을 따라 그 후면(양의) 단부 콘택을 가지며, 각 열 내의 제2 슈퍼 셀은 상기 모듈의 중심선을 따라 그 전면(음의) 단부 콘택 및 상기 제1 측면에 대향하는 상기 모듈의 제2 측면을 따라 그 후면(양의) 단부 콘택을 가진다. 버스(515N)는 각 열 내의 상기 제1 슈퍼 셀의 전면(음의) 단부 콘택을 바이패스 다이오드(500)의 양극 단자에 연결한다. 버스(515P)는 각 열 내의 상기 제2 슈퍼 셀의 후면(양의) 단부 콘택을 상기 바이패스 다이오드(510)의 음극 단자에 연결한다. 버스(520)는 각 열 내의 상기 제1 슈퍼 셀의 후면(양의) 단부 콘택 및 각 열 내의 상기 제2 슈퍼 셀의 전면(음의) 단부 콘택을 상기 바이패스 다이오드(500)의 음극 단자 및 상기 바이패스 다이오드(510)의 양극 단자에 연결한다.
버스(515P)는 전체적으로 상기 슈퍼 셀들의 뒤에 놓일 수 있다. 버스(515N) 및/또는 상기 슈퍼 셀들에 대한 이의 상호 연결은 상기 모듈의 전면의 일부를 차지한다. 버스(520)는 상기 모듈의 전면의 일부를 점유할 수 있고, 도 5a에 도시한 바와 같이 갭(210)을 요구할 수 있다. 선택적으로는, 버스(520)는 전체적으로 상기 슈퍼 셀들의 뒤에 놓일 수 있고, 상기 슈퍼 셀들의 중첩되는 단부들 사이에 개재되는 히든(hidden) 인터커넥트들로 상기 슈퍼 셀들에 전기적으로 연결될 수 있다. 이와 같은 경우, 작은 갭(210)이 요구되거나, 갭(210)이 요구되지 않는다.
도 11c-1, 도 11c-2 및 도 11c-3은 도 11a의 태양광 모듈을 위한 다른 예시적인 물리적 레이아웃을 도시한다. 이러한 레이아웃에서, 각 열 내의 상기 제1 슈퍼 셀은 상기 모듈의 제1 측면을 따라 그 전면(음의) 단부 콘택 및 상기 모듈의 중심선을 따라 그 후면(양의) 단부 콘택을 가지며, 각 열 내의 상기 제2 슈퍼 셀은 상기 모듈의 중심선을 따라 그 후면(양의) 단부 콘택 및 상기 제1 측면에 대향하는 상기 모듈의 제2 측면을 따라 그 전면(음의) 단부 콘택을 가진다. 버스(525N)는 각 열 내의 상기 제1 슈퍼 셀의 전면(음의) 단부 콘택을 상기 바이패스 다이오드(500)의 양극 단자에 연결한다. 버스(530N)는 각 열 내의 상기 제2 셀의 전면(음의) 단부 콘택을 바이패스 다이오드(500)의 음극 단자 및 바이패스 다이오드(510)의 양극 단자에 연결한다. 버스(535P)는 각 열 내의 상기 제1 셀의 후면(양의) 단부 콘택을 상기 바이패스 다이오드(500)의 음극 단자 및 상기 바이패스 다이오드(510)의 양극 단자에 연결한다. 버스(540P)는 각 열 내의 상기 제2 셀의 후면(양의) 단부 콘택을 상기 바이패스 다이오드(510)의 음극 단자에 연결한다.
버스(535P) 및 버스(540P)는 전체적으로 상기 슈퍼 셀들 뒤에 놓일 수 있다. 버스(525N)와 버스(530N) 및/또는 상기 슈퍼 셀들에 대한 이들의 상호 연결은 상기 모듈의 전면의 일부를 점유한다.
도 12a는 도 5a에 예시한 바와 같은 태양광 모듈을 위한 다른 예시적인 개략적 회로도를 도시하며, 여기서 상기 태양광 모듈은 각기 상기 태양광 모듈의 짧은 측면들의 길이의 절반과 대략적으로 동일한 길이를 가지는 이십 개의 직사각형의 슈퍼 셀들(100)을 포함하고, 상기 슈퍼 셀들은 슈퍼 셀들의 열 개의 열들을 형성하도록 쌍들로 단대단으로 배열된다. 도 12a에 도시한 회로에서, 상기 슈퍼 셀들은 네 그룹들로 배열된다. 제1 그룹에서 상부의 다섯 개의 열들의 제1 슈퍼 셀들은 서로에 대해서와 바이패스 다이오드(545)에 병렬로 연결되고, 제2 그룹에서 상부의 다섯 개의 열들의 제2 슈퍼 셀들은 서로에 대해서와 바이패스 다이오드(505)에 병렬로 연결되며, 제3 그룹에서 하부의 다섯 개의 열들의 제1 슈퍼 셀들은 서로에 대해서와 바이패스 다이오드(560)에 병렬로 연결되고, 제4 그룹에서 하부의 다섯 개의 열들의 제2 슈퍼 셀들은 서로에 대해서와 바이패스 다이오드(555)에 병렬로 연결된다. 상기 슈퍼 셀들의 네 그룹들은 서로 직렬로 연결된다. 상기 네 개의 바이패스 다이오드들 또한 직렬로 연결된다.
도 12b-1 및 도 12b-2는 도 12a의 태양광 모듈을 위한 예시적인 물리적 레이아웃을 도시한다. 이러한 레이아웃에서, 슈퍼 셀들의 제1 그룹은 상기 모듈의 제1 측면을 따라 그 전면(음의) 단부 콘택들 및 상기 모듈의 중심선을 따라 그 후면(양의) 단부 콘택들을 가지고, 슈퍼 셀들의 제2 그룹은 상기 모듈의 중심선을 따라 그 전면(음의) 단부 콘택들 및 상기 제1 측면에 대향하는 상기 모듈의 제2 측면을 따라 그 후면(양의) 단부 콘택들을 가지며, 슈퍼 셀들의 제3 그룹은 상기 모듈의 제1 측면을 따라 그 후면(양의) 단부 콘택들 상기 모듈의 중심선을 따라 그 전면(음의) 단부 콘택들을 가지고, 상기 슈퍼 셀들의 제4 그룹은 상기 모듈의 중심선을 따라 그 후면(양의) 단부 콘택 및 상기 모듈의의 제2 측면을 따라 그 전면(음의) 단부 콘택을 가진다.
버스(565N)는 상기 슈퍼 셀들의 제1 그룹 내의 상기 슈퍼 셀들의 전면(음의) 단부 콘택들을 서로에 대해서와 상기 바이패스 다이오드(545)의 양극 단자에 연결한다. 버스(570)는 상기 슈퍼 셀들의 제1 그룹 내의 상기 슈퍼 셀들의 후면(양의) 단부 콘택들 및 상기 슈퍼 셀들의 제2 그룹 내의 상기 슈퍼 셀들의 전면(음의) 단부 콘택들을 서로에 대해서와 상기 바이패스 다이오드(545)의 음극 단자 및 상기 바이패스 다이오드(550)의 양극 단자에 연결한다. 버스(575)는 상기 슈퍼 셀들의 제2 그룹 내의 상기 슈퍼 셀들의 후면(양의) 단부 콘택들 및 상기 슈퍼 셀들의 제4 그룹 내의 상기 슈퍼 셀들의 전면(음의) 단부 콘택들을 서로에 대해서와 상기 바이패스 다이오드(550)의 음극 단자 및 상기 바이패스 다이오드(555)의 양극 단자에 연결한다. 버스(580)는 상기 슈퍼 셀들의 제4 그룹 내의 상기 슈퍼 셀들의 후면(양의) 단부 콘택들 및 상기 슈퍼 셀들의 제3 그룹 내의 상기 슈퍼 셀들의 전면(음의) 단부 콘택들을 서로에 대해서와 다이오드(555)의 음극 단자 및 바이패스 다이오드(560)의 양극 단자에 연결한다. 버스(585P)는 상기 슈퍼 셀들의 제3 그룹 내의 상기 슈퍼 셀들의 후면(양의) 단부 콘택들을 서로에 대해서와 상기 바이패스 다이오드(560)의 음극 단자에 연결한다.
버스(585P) 및 상기 슈퍼 셀들의 제2 그룹 내의 상기 슈퍼 셀들을 연결하는 버스(575)의 일부는 전체적으로 상기 슈퍼 셀들 뒤에 놓일 수 있다. 버스(575)의 나머지 부분과 버스(565N) 및/또는 상기 슈퍼 셀들에 대한 이들의 상호 연결은 상기 모듈의 전면의 일부를 차지한다.
버스(570) 및 버스(580)는 상기 모듈의 전면의 일부를 점유할 수 있고, 도 5a에 도시한 바와 같은 갭(210)을 요구할 수 있다. 선택적으로는, 이들은 전체적으로 상기 슈퍼 셀들 뒤에 놓일 수 있으며, 슈퍼 셀들의 중첩되는 단부들 사이에 개재되는 히든 인터커넥트들로 상기 슈퍼 셀들에 전기적으로 연결될 수 있다. 이와 같은 경우에서, 작은 갭(210)이 요구되거나 갭(210)이 요구되지 않는 다.
도 12c-1, 도 12c-2 및 도 12c-3은 도 12a의 태양광 모듈을 위한 대한 선택적인 물리적 레이아웃을 도시한다. 이러한 레이아웃은 도 12b-1 및 도 12b-2에 도시한 단일의 접합 박스(490) 대신에 두 개의 접합 박스들(490A, 490B)을 사용하지만, 그렇지 않으면 도 12b-1 및 도 12b-2의 경우와 동등하다.
도 13a는 도 5a에 예시한 바와 같은 태양광 모듈을 위한 다른 예시적인 개략적 회로도를 도시하며, 여기서 상기 태양광 모듈은 각기 상기 태양광 모듈의 짧은 측면들의 길이의 절반과 대략적으로 동일한 길이를 가지는 이십 개의 직사각형의 슈퍼 셀들(100)을 포함하고, 상기 슈퍼 셀들은 슈퍼 셀들의 열 개의 열들을 형성하도록 쌍들로 단대단으로 배열된다. 도 13a에 도시한 회로에서, 상기 슈퍼 셀들은 네 그룹들로 배열된다. 제1 그룹에서 상부의 다섯 개의 열들의 제1 슈퍼 셀들은 서로 병렬로 연결되고, 제2 그룹에서 상부의 다섯 개의 열들의 제2 슈퍼 셀들은 서로 병렬로 연결되며, 제3 그룹에서 하부의 다섯 개의 열들의 제1 슈퍼 셀들은 서로 병렬로 연결되고, 제4 그룹에서 하부의 다섯 개의 열들의 제2 슈퍼 셀들은 서로 병렬로 연결된다. 상기 제1 그룹 및 상기 제2 그룹은 서로 직렬로 연결되며, 이에 따라 바이패스 다이오드(590)와 병렬로 연결된다. 상기 제3 그룹 및 상기 제4 그룹은 서로 직렬로 연결되며, 이에 따라 다른 바이패스 다이오드(595)와 병렬로 연결된다. 상기 제1 및 제2 그룹들은 상기 제3 및 제4 그룹들과 직렬로 연결되고, 상기 두 개의 바이패스 다이오드들 역시 직렬로 연결된다.
도 13c-1 및 도 13c-2는 도 13a의 태양광 모듈을 위한 예시적인 물리적 레이아웃을 도시한다. 이러한 레이아웃에서, 슈퍼 셀들의 제1 그룹은 상기 모듈의 제1 측면을 따라 그 전면(음의) 단부 콘택 및 상기 모듈의 중심선을 따라 그 후면(양의) 단부 콘택을 가지고, 슈퍼 셀들의 제2 그룹은 상기 모듈의 중심선을 따라 그 전면(음의) 단부 콘택 및 상기 제1 측면에 대향하는 상기 모듈의 제2 측면들 따라 그 후면(양의) 단부 콘택을 가지며, 슈퍼 셀들의 제3 그룹은 상기 모듈의 제1 측면을 따라 그 후면(양의) 단부 콘택 및 상기 모듈의 중심선을 따라 그 전면(음의) 단부 콘택을 가지고, 슈퍼 셀들의 제4 그룹은 상기 모듈의 중심선을 따라 그 후면(양의) 단부 콘택 및 상기 모듈의 제2 측면을 따라 그 전면(음의) 단부 콘택을 가진다.
버스(600)는 상기 슈퍼 셀들의 제1 그룹의 전면(음의) 단부 콘택들을 서로에 대해서와 상기 슈퍼 셀들의 제3 그룹의 후면(양의) 단부 콘택들, 바이패스 다이오드(590)의 음극 단자, 그리고 바이패스 다이오드(595)의 음극 단자에 연결한다. 버스(605)는 상기 슈퍼 셀들의 제1 그룹의 후면(양의) 단부 콘택들을 서로에 대해서와 상기 슈퍼 셀들의 제2 그룹의 전면(음의) 단부 콘택들에 연결한다. 버스(610P)는 상기 슈퍼 셀들의 제2 그룹의 후면(양의) 단부 콘택들을 서로에 대해서와 상기 바이패스 다이오드(590)의 음극 단자에 연결한다. 버스(615N)는 상기 슈퍼 셀들의 제4 그룹의 전면(음의) 단부 콘택들을 서로에 대해서와 상기 바이패스 다이오드(595)의 양극 단자에 연결한다. 버스(620)는 상기 슈퍼 셀들의 제3 그룹의 전면(음의) 단부 콘택들을 서로에 대해서와 상기 슈퍼 셀들의 제4 그룹의 후면(양의) 단부 콘택들에 연결한다.
버스(610P) 및 상기 슈퍼 셀들의 제3 그룹의 슈퍼 셀들을 연결하는 버스(600)의 일부는 전체적으로 상기 슈퍼 셀들 뒤에 놓일 수 있다. 버스(600)의 나머지 부분과 버스(615N) 및/또는 상기 슈퍼 셀들에 대한 이들의 상호 연결은 상기 모듈의 전면의 일부를 차지한다.
버스(605) 및 버스(620)는 상기 모듈의 전면의 일부를 점유하며, 도 5a에 도시한 바와 같이 갭(210)을 요구한다. 선택적으로는, 이들은 전체적으로 상기 슈퍼 셀들 뒤에 놓일 수 있으며, 슈퍼 셀들의 중첩되는 단부들 사이에 개재되는 히든 인터커넥트들로 상기 슈퍼 셀들에 전기적으로 연결될 수 있다. 이와 같은 경우에서, 작은 갭(210)이 요구되거나 갭(210)이 요구되지 않는다.
도 13b는 도 5b에 예시한 바와 같은 태양광 모듈을 위한 예시적인 개략적 회로도를 도시하며, 여기서 상기 태양광 모듈은 상기 태양광 모듈의 짧은 측면들의 길이와 대략적으로 동일한 길이를 가지는 열 개의 직사각형의 슈퍼 셀들(100)을 포함한다. 상기 슈퍼 셀들은 상기 모듈의 짧은 측면들에 평행하게 배향되는 이들의 긴 측면들을 구비하여 상기 태양광 모듈 내에 배열된다. 도 13b에 도시한 회로에서, 상기 슈퍼 셀들은 두 그룹들로 배열된다. 제1 그룹에서 상부의 다섯 개의 슈퍼 셀들은 서로에 대해서와 바이패스 다이오드(590)에 병렬로 연결되며, 제2 그룹에서 하부의 다섯 개의 슈퍼 셀들은 서로에 대해서와 바이패스 다이오드(595)에 병렬로 연결된다. 상기 두 그룹들은 서로 직렬로 연결된다. 상기 바이패스 다이오드들 또한 직렬로 연결된다.
도 13b의 개략적인 회로는 도 13a의 두 슈퍼 셀들의 각 열이 단일 슈퍼 셀로 대체되어 도 13a의 경우와 다르다. 이에 따라, 도 13b의 태양광 모듈의 물리적 레이아웃은 버스(605) 및 버스(620)가 생략되어 도 13c-1, 도 13c-2 및 도 13c-3에 도시한 바가 될 수 있다.
도 14a는 각기 상기 태양광 모듈의 짧은 측면들의 길이의 절반과 대략적으로 동일한 길이를 가지는 이십 사개의 직사각형의 슈퍼 셀들(100)을 포함하는 예시적인 직사각형의 태양광 모듈(700)을 도시한다. 슈퍼 셀들은 슈퍼 셀들의 열두 개의 열들을 형성하도록 쌍들로 단대반으로 배열되며, 상기 슈퍼 셀들의 열들과 긴 측면들은 상기 태양광 모듈의 짧은 측면들에 평행하게 배향된다.
도 14b는 도 14a에 예시한 바와 같은 태양광 모듈을 위한 예시적인 개략적 회로도를 도시한다. 도 14b에 도시한 회로에서, 상기 슈퍼 셀들은 세 그룹들로 배열된다. 제1 그룹에서 상부의 여덟 개의 열들의 제1 슈퍼 셀들은 서로에 대해서와 바이패스 다이오드(705)에 병렬로 연결되고, 제2 그룹에서 하부의 네 개의 열들의 슈퍼 셀들은 서로에 대해서와 바이패스 다이오드(710)에 병렬로 연결되며, 제3 그룹에서 상부의 여덟 개의 열들의 제2 슈퍼 셀들은 서로에 대해서와 바이패스 다이오드(715)에 병렬로 연결된다. 상기 슈퍼 셀들의 세 그룹들은 직렬로 연결된다. 상기 세 개의 바이패스 다이오드들 또한 직렬로 연결된다.
도 14c-1 및 도 14c-2는 도 14b의 태양광 모듈을 위한 예시적인 물리적 레이아웃을 도시한다. 이러한 레이아웃에서, 슈퍼 셀들의 제1 그룹은 상기 모듈의 제1 측면을 따라 그 전면(음의) 단부 콘택들 및 상기 모듈의 중심선을 따라 그 후면(양의) 단부 콘택들을 가진다. 상기 슈퍼 셀들의 제2 그룹에서, 각각의 하부의 네 개의 열들의 제1 슈퍼 셀은 상기 모듈의 제1 측면을 따라 그 후면(양의) 단부 콘택 및 상기 모듈의 중심선을 따라 그 전면(음의) 단부 콘택을 가지며, 각각의 하부의 네 개의 열들의 제2 슈퍼 셀은 상기 모듈의 중심선을 따라 그 전면(음의) 단부 콘택 및 상기 제1 측면에 대향하는 상기 모듈의 제2 측면을 따라 그 후면(양의) 단부 콘택을 가진다. 상기 태양 전지들의 제3 그룹은 상기 모듈의 중심선을 따라 그 후면(양의) 단부 콘택들 및 상기 모듈의 제2 측면을 따라 그 후면(음의) 단부 콘택들을 가진다.
버스(720N)는 상기 슈퍼 셀들의 제1 그룹의 전면(음의) 단부 콘택들을 서로에 대해서와 바이패스 다이오드(705)의 양극 단자에 연결한다. 버스(725)는 상기 슈퍼 셀들의 제1 그룹의 후면(양의) 단부 콘택들을 상기 슈퍼 셀들의 제2 그룹의 전면(음의) 단부 콘택들, 상기 바이패스 다이오드(705)의 음극 단자 및 바이패스 다이오드(710)의 양극 단자에 연결한다. 버스(730P)는 상기 슈퍼 셀들의 제3 그룹의 후면(양의) 단부 콘택들을 서로에 대해서와 바이패스 다이오드(715)의 음극 단자에 연결한다. 버스(735)는 상기 슈퍼 셀들의 제3 그룹의 전면(음의) 단부 콘택들을 서로에 대해서와 상기 슈퍼 셀들의 제2 그룹의 후면(양의) 단부 콘택들, 상기 바이패스 다이오드(710)의 음극 단자, 그리고 상기 바이패스 다이오드(715)의 양극 단자에 연결한다.
상기 슈퍼 셀들의 제1 그룹의 슈퍼 셀들에 연결되는 버스(725)의 일부, 버스(730P), 그리고 상기 슈퍼 셀들의 제2 그룹의 슈퍼 셀들에 연결되는 버스(735)의 일부는 전체적으로 상기 슈퍼 셀들 뒤에 놓일 수 있다. 버스(720N) 및 버스(725)의 나머지 부분과 버스(735) 및/또는 상기 슈퍼 셀들에 대한 이들의 상호 연결은 상기 모듈의 전면의 일부를 점유한다.
상술한 예들의 일부는 상기 바이패스 다이오드들을 상기 태양광 모듈의 후면 상의 하나 또는 그 이상의 접합 박스들 내에 수용한다. 그러나 이러한 점이 요구되는 것은 아니다. 예를 들면, 상기 바이패스 다이오드들의 일부 또는 모두는 상기 태양광 모듈의 둘레 주위에서 상기 슈퍼 셀들과 평면 내에 위치할 수 있거나, 슈퍼 셀들 사이의 갭들 내에 위치할 수 있거나, 상기 슈퍼 셀들 뒤에 위치할 수 있다. 이러한 경우들에서, 상기 바이패스 다이오드들은, 예를 들면 상기 슈퍼 셀들이 봉지되는 라미네이트 구조 내에 배치될 수 있다. 상기 바이패스 다이오드들의 위치들은 이에 따라 비집중화될 수 있고 상기 접합 박스들로부터 제거될 수 있으며, 예를 들면 상기 태양광 모듈의 외측 에지들 부근에서 상기 태양광 모듈의 후면 상에 위치할 수 있는 두 개의 분리된 단일-단자 접합 박스들로 양극 및 음극 모듈 단자들 모두를 구비하는 중심 접합 박스를 대체할 수 있다. 이러한 접근은 일반적으로 상기 태양광 모듈 내에서 및 태양광 모듈들 사이의 케이블링(cabling)에서 리본 컨덕터들 내의 전류 통로 길이를 감소시키며, 이는 모두 물질 비용을 감소시킬 수 있고 모듈 전력을 증가시킬 수 있다(저항성 전력 손실들을 감소시킴에 의해).
도 15를 참조하면, 예를 들면, 도 10a의 개략적인 회로도를 갖는 도 5b에 예시한 바와 같은 태양광 모듈을 위한 다양한 전기적 상호 연결들을 위한 물리적 레이아웃은 상기 슈퍼 셀 라미네이트 구조 내에 위치하는 바이패스 다이오드(480) 및 두 개의 단일 단자 접합 박스들(490P, 490N)을 채용할 수 있다. 도 15는 도 10b-1 및 도 10b-2와 비교하여 가장 우수한 것으로 이해될 수 있다. 상술한 다른 모듈 레이아웃들은 유사하게 변경될 수 있다.
앞서 설명한 바와 같은 라미네이트 내의 바이패스 다이오드들의 사용은 감소된 전류의 태양 전지들에 의해 순 바이어스된(forward-biased) 바이패스 다이오드 내에서 소실되는 전력이 종래 크기의 태양 전지들에서 있을 수 있었던 경우보다 적을 수 있기 때문에 상술한 바와 같은 감소된 전류(감소된 면적)의 직사각형의 태양 전지들의 사용에 의해 가능해 질 수 있다. 본 명세서에서 설명되는 태양광 모듈들 내의 바이패스 다이오드들은 이에 따라 종래보다 적은 열 흡수원(heat-sinking)을 요구할 수 있으며, 그 결과로 상기 모듈의 후면 상의 접합 박스에서 벗어나고 상기 라미네이트 내로 이동될 수 있다.
단일 태양광 모듈은 인터커넥트들, 다른 컨덕터들 및/또는 둘 또는 그 이상의 전기적 구성들을 지지하는, 예를 들면 상술한 전기적 구성들의 둘 또는 그 이상을 지지하는 바이패스 다이오드들을 포함할 수 있다. 이러한 경우들에서, 상기 태양광 모듈의 동작들 위한 특정한 구성은, 예를 들면 스위치들 및/또는 점퍼(jumper)들의 사용을 구비하는 둘 또는 그 이상의 선택 사항들로부터 선택될 수 있다. 다른 구성들은 상기 태양광 모듈로부터 전압 및 전류 출력들의 다른 결합들을 제공하도록 직렬로 및/또는 병렬로 다른 숫자의 슈퍼 셀들을 투입할 수 있다. 이와 같은 태양광 모듈은 이에 따라, 예를 들면 고전압 및 저전류 구성과 저전압 및 고전류 구성 사이에서 선택하기 위해 둘 또는 그 이상의 다른 전압 및 전류 결합들로부터 선택되도록 구성될 수 있는 공장이나 분야가 될 수 있다.
도 16은 상술한 바와 같이 두 태양광 모듈들 사이의 스마트 스위치 모듈 레벨 전원 관리 장치(750)의 예시적인 배치를 도시한다.
도 17을 이제 참조하면, 본 명세서에 개시되는 바와 같은 태양광 모듈들을 만들기 위한 예시적인 방법 800은 다음 단계들을 포함한다. 단계 810에서, 종래 크기의 태양 전지들(예를 들면, 156밀리미터×156밀리미터 또는 125밀리미터×125밀리미터)이 직사각형의 태양 전지 "스트립(strip)들"을 형성하도록 잘라지거나 및/또는 절단된다(또한, 예를 들면 도 3a-도 3e 및 관련 설명 참조). 결과적인 태양 전지 스트립들은 선택적으로 테스트될 수 있고, 이들의 전류-전압 성능에 따라 분류될 수 있다. 전류-전압 성능이 일치하거나 대략적으로 일치하는 셀들은 동일한 슈퍼 셀 또는 직렬 연결된 슈퍼 셀들의 동일한 열들에 유리하게 사용될 수 있다. 예를 들면, 슈퍼 셀 또는 슈퍼 셀들의 열 내에 직렬로 연결되는 셀들이 동일한 조명하에서 일치하거나 대략적으로 일치하는 전류를 생성하는 것이 유리할 수 있다.
단계 815에서, 슈퍼 셀들은 상기 슈퍼 셀들 내의 인접하는 태양 전지들의 중첩되는 부분들 사이에 배치되는 도전성 접착 결합 물질로 상기 스트립 태양 전지들로부터 조립된다. 상기 도전성 접착 결합 물질은, 예를 들면, 잉크젯 프린팅(ink jet printing) 또는 스크린 프린팅에 의해 적용될 수 있다.
단계 820에서, 열과 압력이 상기 슈퍼 셀들 내의 태양 전지들 사이의 상기 도전성 접착 결합 물질을 큐어링하거나 부분적으로 큐어링하기 위해 적용된다. 일 변형예에서, 각각의 추가적인 태양 전지가 슈퍼 셀에 추가되면서, 새롭게 추가된 태양 전지와 그 인접하고 중첩되는 태양 전지(이미 상기 슈퍼 셀의 일부) 사이의 상기 도전성 접착 결합 물질은 다음의 태양 전지가 상기 슈퍼 셀에 추가되기 전에 큐어링되거나 부분적으로 큐어링된다. 다른 변형예에서, 슈퍼 셀 내의 둘 이상의 태양 전지들 또는 모든 태양 전지들이 상기 도전성 접착 결합 물질이 큐어링되거나 부분적으로 큐어링되기 전에 원하는 중첩되는 방식으로 위치할 수 있다. 이러한 단계로부터 야기되는 상기 슈퍼 셀들은 선택적으로 테스트될 수 있고, 이들의 전류-전압 성능에 따라 분류될 수 있다. 일치하거나 대략적으로 일치하는 전류-전압 성능을 갖는 슈퍼 셀들은 슈퍼 셀들의 동일한 열 또는 동일한 태양광 모듈 내에 유리하게 사용될 수 있다. 예를 들면, 병렬로 전기적으로 연결된 슈퍼 셀들 또는 슈퍼 셀들의 열들이 동일한 조명하에서 일치하거나 대략적으로 일치하는 전압들을 생성하는 것이 유리할 수 있다.
단계 825에서, 상기 큐어링되거나 부분적으로 큐어링된 슈퍼 셀들은 봉지재 물질, 투명한 전면(태양측) 시트 및 (선택적으로 투명한)배면 시트를 포함하는 성층 구조(layered structure)로 원하는 모듈 구성 내에 배열되고 상호 연결된다. 상기 성층 구조는, 예를 들면, 유리 기판 상의 봉지재의 제1 층, 상기 봉지재의 제1 층의 태양측 아래에 배열되는 상호 연결된 슈퍼 셀들, 상기 슈퍼 셀들의 층상의 봉지재의 제2 층, 그리고 상기 봉지재의 제2 층상의 배면 시트를 포함할 수 있다. 임의의 다른 적합한 배치 또한 사용될 수 있다.
라미네이션 단계 830에서, 열과 압력이 큐어링된 라미네이트 구조를 형성하도록 상기 성층 구조에 인가된다.
도 17의 방법의 일 변형예에서, 상기 종래 크기의 태양 전지들은 태양 전지 스트립들로 분리되며, 이후에 상기 도전성 접착 결합 물질이 각 개개의 태양 전지 스트립에 적용된다. 선택적인 변형예에서, 상기 도전성 접착 결합 물질은 태양 전지 스트립들로의 상기 태양 전지들의 분리 이전에 상기 종래 크기의 태양 전지들에 적용된다.
큐어링 단계 820에서, 상기 도전성 접착 결합 물질이 전체적으로 큐어링될 수 있거나, 부분적으로 큐어링될 수 있다. 후자의 경우에서, 상기 도전성 접착 결합 물질은 상기 슈퍼 셀들의 취급과 상호 연결을 충분히 용이하게 하도록 단계 820에서 초기에 부분적으로 큐어링될 수 있고, 후속되는 라미네이션 단계 830 동안에 전체적으로 큐어링될 수 있다.
일부 변형예들에서, 방법(800)에서 중간 생성물로서 조립되는 슈퍼 셀(100)은 상술한 바와 같이 중첩되고 도전성으로 결합되는 인접하는 태양 전지들의 긴 측면들 및 상기 슈퍼 셀의 대향하는 단부들에서 단자 콘택들에 결합되는 인터커넥트들을 구비하여 배열되는 복수의 직사각형의 태양 전지들(10)을 포함한다.
도 30a는 그 전방 및 후면 단자 콘택들에 결합되는 전기적 인터커넥트들을 구비하는 예시적인 슈퍼 셀을 도시한다. 상기 전기적 인터커넥트들은 상기 슈퍼 셀의 단자 에지들에 평행하게 진행되고, 인접하는 슈퍼 셀과의 전기적 상호 연결이 가능하도록 상기 슈퍼 셀을 지나 측방으로 연장된다.
도 30b는 병렬로 연결된 두 개의 도 30a의 슈퍼 셀들을 도시한다. 그렇지 않으면 상기 모듈의 전방으로부터 보일 수 있는 상기 인터커넥트들의 일부들은 정상적인 색각을 가진 사람에게 인지되는 바와 같은 상기 인터커넥트와 상기 슈퍼 셀들 사이의 시각적인 대비를 감소시키도록 커버될 수 있거나 착색될 수(예를 들면, 어둡게) 있다. 도 30a에 예시한 예에서, 인터커넥트(850)는 상기 슈퍼 셀의 일측 단부(도면의 우측)에서 제1 극성(예를 들면, + 또는 -)의 전방측 단자 콘택에 도전성으로 결합되고, 다른 인터커넥트(850)는 상기 슈퍼 셀의 타측 단부(도면의 좌측)에서 대향하는 극성의 후방측 단자 콘택에 도전성으로 결합된다. 전술한 다른 인터커넥트들과 유사하게, 인터커넥트들(850)은 예를 들면, 태양 전지들 사이에 사용된 동일한 도전성 접착 결합 물질로 상기 슈퍼 셀에 도전성으로 결합될 수 있지만, 이러한 점이 요구되는 것은 아니다. 예시한 예에서, 각 인터커넥트(850)의 일부는 상기 슈퍼 셀의 긴 축에 직교하는(그리고 태양 전지들(10)의 긴 축들에 평행한) 방향으로 상기 슈퍼 셀(100)의 에지를 지나 연장된다. 도 30b에 도시한 바와 같이, 이는 둘 또는 그 이상의 슈퍼 셀들(100)이 나한하게 위치하게 하며, 하나의 슈퍼 셀의 인터커넥트들(850)은 상기 두 슈퍼 셀들을 병렬로 전기적으로 상호 연결하도록 인접하는 슈퍼 셀 상의 대응되는 인터커넥트들(850)에 중첩되고 도전성으로 결합된다. 앞서 설명한 바와 같이 직렬로 상호 연결된 몇몇의 이러한 인터커넥트들(850)은 상기 모듈을 위한 버스를 형성할 수 있다. 이러한 배치는, 예를 들면 개개의 슈퍼 셀이 상기 모듈의 전체 폭 또는 전체 길이로 연장될 때(예를 들면, 도 5b)에 적합할 수 있다. 또한, 인터커넥트들(850)도 슈퍼 셀들의 열들 내의 두 인접하는 슈퍼 셀들의 단자 콘택들을 직렬로 전기적으로 연결하는 데 사용될 수 있다. 열 내의 이러한 상호 연결된 슈퍼 셀들의 쌍들 또는 긴 스트링들은 도 30b에 도시한 바와 같이 하나의 열 내의 인터커넥트들(850)을 인접하는 열 내의 인터커넥트들(850)과 중첩시키고 도전성으로 결합시킴에 의해 인접하는 열 내의 유사하게 상호 연결된 슈퍼 셀들과 전기적으로 병렬로 연결될 수 있다.
인터커넥트(850)는, 예를 들면 도전성의 시트로부터 다이 절단(die cut)될 수 있고, 상기 인터커넥트의 CTE와 상기 슈퍼 셀의 CTE 사이의 불일치로부터 야기되는 상기 슈퍼 셀의 에지에 직교하고 평행한 스트레스를 감소시키거나 수용하기 위해 상기 슈퍼 셀의 에지에 모두 직교하고 평행한 그 기계적 컴플라이언스를 증가시키도록 선택적으로 패터닝될 수 있다. 이러한 패터닝은, 예를 들면, 슬릿들, 슬롯들, 또는 홀들(도시되지 않음)을 포함할 수 있다. 인터커넥트(850)의 기계적 컴플라이언스 및 상기 슈퍼 셀에 대한 이의 결합이나 결합들은 다음에 보다 상세하게 설명되는 라미네이션 공정 동안에 CTE 불일치로부터 야기되는 스트레스를 견디도록 상기 슈퍼 셀에 대한 연결들을 위해 충분하여야 한다. 인터커넥트(850)는, 예를 들면, 중첩되는 태양 전지들을 결합시키는 데 사용되기 위해 상술한 바와 같이 기계적으로 유연하고 전기적으로 도전성인 결합 물질로 상기 슈퍼 셀에 결합될 수 있다. 선택적으로, 상기 전기적으로 도전성인 결합 물질은 상기 전기적으로 도전성인 결합 물질 또는 상기 인터커넥트들의 열팽창 계수와 상기 슈퍼 셀의 열팽창 계수 사이의 불일치로부터 야기되는 상기 슈퍼 셀의 에지들에 평행한 스트레스를 감소시키거나 수용하기 위해 실질적으로 상기 슈퍼 셀의 에지의 길이로 연장되는 연속되는 라인으로 보다는 상기 슈퍼 셀의 에지들을 따라 별개의 위치들에만 위치할 수 있다.
인터커넥트(850)는, 예를 들면 얇은 구리 시트로부터 절단될 수 있고, 슈퍼 셀들(100)이 표준 실리콘 태양 전지들보다 작은 면적들을 갖는 태양 전지들로부터 형성되고, 이에 따라 종래의 경우 보다 낮은 전류들에서 동작할 때에 종래의 도전성 인터커넥트들보다 얇아질 수 있다. 예를 들면, 인터커넥트들(850)은 약 50미크론 내지 약 300미크론의 두께를 갖는 구리 시트로부터 형성될 수 있다. 인터커넥트들(850)은 충분히 얇을 수 있고, 상술한 인터커넥트들과 유사하게 이들이 결합되는 상기 슈퍼 셀의 에지 주위와 뒤에서 접히도록 유연할 수 있다.
도 19a-도 19d는 상기 슈퍼 셀들 내의 인접하는 태양 전지들 사이의 상기 도전성 접착 결합 물질을 큐어링하거나 부분적으로 큐어링하도록 방법 800 동안에 열과 압력이 인가될 수 있는 몇몇 예시적인 배치들을 도시한다. 임의의 다른 적합한 배치도 채용될 수 있다.
도 19a에서, 열과 국소적인 압력이 도전성 접착 결합 물질(12)을 큐어링하거나 부분적으로 큐어링하도록 한 번에 도전성 접착 결합 물질(12) 하나의 연결 부위(중첩되는 영역)에 인가될 수 있다. 상기 슈퍼 셀은 표면(1000)에 의해 지지될 수 있고, 압력은, 예를 들면 바(bar), 핀(pin) 또는 다른 기계적 접촉으로 위로부터 상기 연결 부위에 기계적으로 인가될 수 있다. 열은, 예를 들면 뜨거운 공기(또는 다른 뜨거운 기체)나 적외선 램프로 또는 상기 연결 부위에 국소적인 압력을 인가하는 상기 기계적인 접촉을 가열하여 상기 연결 부위에 인가될 수 있다.
도 19b에서, 도 19a의 배치가 슈퍼 셀 내의 다중 연결 부위들에 열과 국소적인 압력을 동시에 인가하는 배치 프로세스(batch process)로 확장될 수 있다.
도 19c에서, 큐어링되지 않은 슈퍼 셀은 릴리스 라이너(release liner)들(1015)과 재사용할 수 있는 열가소성 시트들(1020) 사이에 개재되며, 표면(1000)에 의해 지지되는 캐리어 플레이트(carrier plate)(1010) 상에 위치한다. 상기 시트들(1020)의 열가소성 물질은 상기 슈퍼 셀들이 큐어링되는 온도에서 녹도록 선택된다. 릴리스 라이너들(1015)은, 예를 들면 유리섬유와 PTFE로부터 형성될 수 있고, 상기 큐어링 공정 후에 상기 슈퍼 셀에 부착되지 않는다. 바람직하게는, 릴리스 라이너들(1015)은 상기 태양 전지들의 열팽창 계수(예를 들면, 실리콘의 CTE)와 일치되거나 실질적으로 일치되는 열팽창 계수를 가지는 물질들로부터 형성된다. 이러한 점은 상기 릴리스 라이너들의 CTE가 상기 태양 전지들의 CTE와 너무 많이 다를 경우, 그러면 상기 태양 전지들과 상기 릴리스 라이너들이 상기 큐어링 공정 동안에 다른 양으로 길어질 것이며, 이는 상기 슈퍼 셀을 상기 연결 부위에서 길이 방향으로 떨어지게 하는 경향이 있을 것이기 때문이다. 진공 블래더(vacuum bladder)(1005)가 이러한 배치 위에 놓인다. 상기 큐어링되지 않은 슈퍼 셀은, 예를 들면 표면(1000) 및 캐리어 플레이트(1010)를 통해 아래로부터 가열되고, 진공이 블래더(1005)와 지지 표면(1000) 사이에 생성된다. 그 결과, 블래더(1005)는 상기 용융된 열가소성 시트들(1020)을 통해 상기 슈퍼 셀에 정수압(hydrostatic pressure)을 인가한다.
도 19d에서, 큐어링되지 않은 슈퍼 셀은 상기 슈퍼 셀을 가열하는 오븐(1035)을 통해 천공된 이동 벨트(moving belt)(1025)에 의해 운반된다. 상기 벨트 내의 천공들을 통해 인가되는 진공은 상기 벨트를 향해 태양 전지들(10)을 끌어당기며, 이에 따라 이들 사이의 연결 부위들에 압력을 인가한다. 이들 연결 부위들 내의 상기 도전성 접착 결합 물질은 상기 슈퍼 셀이 상기 오븐을 통과하면서 큐어링된다. 바람직하게는, 천공된 벨트(1025)는 상기 태양 전지들의 CTE(예를 들면, 실리콘의 CTE)와 일치되거나 실질적으로 일치되는 CTE를 가지는 물질들로부터 형성된다. 이러한 점은 상기 벨트(1025)의 CTE가 상기 태양 전지들의 CTE와 지나치게 다를 경우, 그러면 상기 태양 전지들과 상기 벨트가 오븐(1035) 내에서 다른 양들로 길어질 것이며, 이는 상기 연결 부위들에서 상기 슈퍼 셀이 길이 방향으로 떨어지게 하는 경향이 있을 것이기 때문이다.
도 17의 방법 800은 구별되는 슈퍼 셀 큐어링 및 라미네이션 단계들을 포함하며, 중간 슈퍼 셀 생성물을 생산한다. 대조적으로, 도 18에 도시한 방법 900에서, 상기 슈퍼 셀 큐어링 및 라미네이션 단계들은 결합된다. 단계 910에서, 종래 크기의 태양 전지들(예를 들면, 156밀리미터×156밀리미터 또는 125밀리미터×125밀리미터)은 좁은 직사각형의 태양 전지 스트립들을 형성하도록 잘라지거나 및/또는 절단된다. 결과적인 태양 전지 스트립들은 선택적으로 테스트될 수 있고, 분류될 수 있다.
단계 915에서, 상기 태양 전지 스트립들은 봉지재 물질, 투명한 전면(태양측) 시트 및 배면 시트를 포함하는 성층 구조로 원하는 모듈 구성 내에 배열된다. 상기 태양 전지 스트립들은 슈퍼 셀들 내의 인접하는 태양 전지들의 중첩되는 부분들 사이에 배치되는 큐어링되지 않은 도전성 접착 결합 물질을 구비하는 슈퍼 셀들로서 배열된다(상기 도전성 접착 결합 물질은, 예를 들면, 잉크젯 프린팅 또는 스크린 프린팅에 의해 적용될 수 있다). 인터커넥트들은 원하는 구성으로 상기 큐어링되지 않은 슈퍼 셀들을 전기적으로 상호 연결하도록 배열된다. 상기 성층 구조는, 예를 들면, 유리 기판 상의 봉지재의 제1 층, 상기 봉지재의 제1 층상의 태양측 아래에 배열되는 상기 상호 연결된 슈퍼 셀들. 슈퍼 셀들의 층상의 봉지재의 제2 층, 그리고 상기 봉지재의 제2 층상의 배면 시트를 포함할 수 있다. 임의의 다른 적합한 배치 또한 사용될 수 있다.
라미네이션 단계 920에서, 열과 압력이 상기 슈퍼 셀들 내의 상기 도전성 접착 결합 물질을 큐어링하고, 큐어링된 라미네이트 구조를 형성하도록 상기 층상 구조에 적용된다. 인터커넥트들을 상기 슈퍼 셀들에 결합시키는 데 사용되는 도전성 접착 결합 물질 역시 이러한 단계에서 큐어링될 수 있다.
방법 900의 일 변형예에서, 상기 종래 크기의 태양 전지들은 태양 전지 스트립들로 분리되며, 이후에 상기 도전성 접착 결합 물질이 각 개개의 태양 전지 스트립들에 적용된다. 선택적인 변형예에서, 상기 도전성 접착 결합 물질은 태양 전지 스트립들로의 상기 태양 전지들의 분리 이전에 상기 종래 크기의 태양 전지들에 적용된다. 예를 들면, 복수의 종래 크기의 태양 전지들이 큰 템플레이트(template) 상에 놓일 수 있고, 도전성 접착 결합 물질이 이후에 상기 태양 전지들 상에 분산될 수 있으며, 상기 태양 전지들이 이후에 동시에 큰 고정물(fixture)로 태양 전지 스트립들로 분리될 수 있다. 결과적인 태양 전지 스트립들은 이후에 그룹으로서 이송될 수 있고, 상술한 바와 같은 원하는 모듈 구성으로 배열될 수 있다.
전술한 바와 같이, 방법 800 및 방법 900의 일부 변형예들에서, 상기 도전성 접착 결합 물질은 상기 태양 전지들을 태양 전지 스트립들로 분리하기 이전에 상기 종래 크기의 태양 전지들에 적용된다. 상기 도전성 접착 결합 물질은 상기 종래 크기의 태양 전지가 상기 태양 전지 스트립들을 형성하도록 분리될 때에 큐어링되지 않는다(즉, 여전히 "젖어 있다(wet)"). 이들 변형예들의 일부에서, 상기 도전성 접착 결합 물질은 종래 크기의 태양 전지에 적용되고(예를 들면, 잉크젯 또는 스크린 프린팅에 의해), 이후에 레이저가 상기 태양 전지 스트립들을 형성하도록 상기 태양 전지가 절단되는 위치들을 정의하는 상기 태양 전지 상의 스크라이브 라인(scribe line)들에 사용되며, 이후에 상기 태양 전지가 상기 스크라이브 라인들을 따라 절단된다. 이들 변형예들에서, 상기 스크라이브 라인들과 상기 접착 결합 물질 사이의 레이저 출력 및/또는 거리는 상기 레이저로부터의 열로 상기 도전성 접착 결합 물질을 부수적으로 큐어링하거나 부분적으로 큐어링하는 것을 회피하도록 선택될 수 있다. 다른 변형예들에서, 레이저가 상기 태양 전지 스트립들을 형성하도록 상기 태양 전지가 절단되는 위치들을 정의하는 종래 크기의 태양 전지 상의 스크라이브 라인들에 사용되고, 이후에 상기 도전성 접착 결합 물질이 상기 태양 전지에 적용되며(예를 들면, 잉크젯 또는 스크린 프린팅에 의해), 이후에 상기 태양 전지는 상기 스크라이브 라인들을 따라 절단된다. 후자의 변형예들에서, 이러한 단계 동안에 상기 스크라이브된 태양 전지를 부수적으로 절단하거나 파손하지 않고 상기 도전성 접착 결합 물질을 적용하는 단계를 구현하는 것이 바람직할 수 있다.
도 20a-도 20c를 다시 참조하면, 도 20a는 도전성 접착 결합 물질이 적용되었던 스크라이브된 태양 전지들을 절단하는 데 사용될 수 있는 예시적인 장치(1050)의 측면도를 개략적으로 예시한다(도전성 접착 결합 물질의 스크라이빙(scribing)과 적용은 모든 순서로 일어날 수 있었다). 이러한 장치에서, 도전성 접착 결합 물질이 적용되었던 스크라이브된 종래 크기의 태양 전지(45)는 진공 매니폴드(vacuum manifold)(1070)의 곡선의 부분 상부의 천공된 이동 벨트(1060)에 의해 이송된다. 태양 전지(45)가 상기 진공 매니폴드의 곡선의 부분 상부를 지나가면서, 상기 벨트 내의 천공들을 통해 적용된 진공은 상기 진공 매니폴드에 대해 태양 전지(45)의 저면을 끌어당기며, 이에 따라 상기 태양 전지를 구부린다. 상기 진공 매니폴드의 곡선의 부분의 곡률 반경 R은 이러한 방식으로 구부러지는 태양 전지(45)가 상기 스크라이브 라인들을 따라 상기 태양 전지를 절단하도록 선택될 수 있다. 유리하게는, 태양 전지(45)는 상기 도전성 접착 결합 물질이 적용되었던 태양 전지(45)의 상면에 접촉하지 않고 이러한 방법에 의해 절단될 수 있다.
절단이 스크라이브 라인의 일측 단부에서(즉, 태양 전지(45)의 하나의 에지에서) 시작되는 것이 바람직할 경우, 이는 예를 들면, 각 스크라이브 라인 일측 단부가 타측 단부 이전에 상기 진공 매니폴드의 곡선의 부분에 도달되도록 상기 스크라이브 라인들을 상기 진공 매니폴드에 대해 각도 θ로 배향되게 배열함에 의해 도 20a의 장치(1050)로 구현될 수 있다. 도 20b에 도시한 바와 같이, 예를 들면, 상기 태양 전지들은 상기 벨트의 진행의 방향에 비스듬한 이들의 스크라이브 라인들 및 상기 벨트의 진행의 방향에 직교하게 배향되는 매니폴드로 배향될 수 있다. 다른 예로서, 도 20c는 상기 벨트의 진행의 방향에 직교하는 이들의 스크라이브 라인들 및 비스듬한 매니폴드로 배향되는 셀들을 도시한다.
임의의 다른 적합한 장치 또한 미리 적용된 도전성 접착 결합 물질을 구비하는 스트립 태양 전지들을 형성하도록 도전성 접착 결합 물질이 적용되었던 스크라이브된 태양 전지들을 절단하는 데 사용될 수 있다. 이러한 장치는, 예를 들면, 상기 도전성 접착 결합 물질이 적용되었던 상기 태양 전지의 상면에 압력을 인가하도록 롤러들을 사용할 수 있다. 이러한 경우들에서, 상기 롤러들은 도전성 접착 결합 물질이 적용되지 않았던 영역들에서 상기 태양 전지의 상면에만 접촉되는 것이 바람직하다.
일부 변형예들에서, 태양광 모듈들은 백색 또는 그렇지 않으면 반사 배면 시트 상에 열들로 배열되는 슈퍼 셀들을 포함하므로, 상기 태양 전지들에 의해 초기에 흡수되지 않고 통과하는 태양 복사의 일부가 전기를 생성하도록 상기 배면 시트에 의해 상기 태양 전지들로 다시 반사될 수 있다. 상기 반사 배면 시트는 슈퍼 셀들의 열들 사이의 갭들을 통해 보이게 될 수 있으며, 이는 그 전면을 가로질러 진행되는 평행하고 밝은(예를 들면, 백색) 라인들의 열들을 가지는 것으로 나타나는 태양광 모듈을 가져올 될 수 있다. 도 5b를 참조하면, 예를 들면, 상기 슈퍼 셀들(100)의 열들 사이의 평행하고 다크 라인(dark line)들은 슈퍼 셀들(100)이 백색 배면 시트 상에 배열될 경우에 백색 라인들로 나타날 수 있다. 이러한 점은, 예를 들면 지붕 상단들 상의 상기 태양광 모듈들의 일부 사용들에 대해 미적으로 불만족스러울 수 있다.
도 21을 참조하면, 상기 태양광 모듈의 미적인 외양을 향상시키기 위해, 일부 변형예들은 상기 배면 시트 상에 배열되는 상기 슈퍼 셀들의 열들 사이의 갭에 대응되는 위치들에 위치하는 다크 스트라이프들(1105)을 포함하는 백색 배면 시트(1100)를 채용한다. 스트라이프들(1105)은 상기 배면 시트의 백색 부분들이 상기 조립된 모듈 내의 상기 슈퍼 셀들의 열들 사이의 갭들을 통해 보이지 않을 수 있도록 충분히 넓다. 이는 정상적인 색각을 가진 사람에 의해 인식되는 경우에 상기 슈퍼 셀들과 상기 배면 시트 사이의 시각적인 대조를 감소시킨다. 결과적인 모듈은 백색 배면 시트를 포함하지만, 예를 들면 도 5a-도 5b에 예시한 모듈들의 경우와 외양이 유사한 전면을 가질 수 있다. 다크 스트라이프들(1105)은, 예를 들면 다크 테이프의 길이들로 또는 임의의 다른 적합한 방식으로 생성될 수 있다.
앞서 언급한 바와 같이, 태양광 모듈들 내의 개개의 셀들의 쉐이딩은 '핫 스팟(hot spot)들'을 생성할 수 있으며, 이 경우에 차광되지 않은 셀들의 전력은 차광된 셀 내에서 소실된다. 이러한 소실된 전력은 상기 모듈들을 열화시킬 수 있는 국부적인 온도 스파이크들을 생성한다.
이들 핫 스팟들의 잠재적인 심각성을 최소화하기 위해, 바이패스 다이오드들은 종래에는 상기 모듈의 일부로 삽입되었다. 바이패스 다이오드들 사이의 최대의 숫자의 셀들은 상기 모듈의 최대 온도를 제한하고, 상기 모듈에 대한 회복될 수 없는 손상을 방지하도록 설정된다. 실리콘 셀들을 위한 표준 레이아웃들은 실리콘 셀들의 통상적인 항복 전압에 의해 숫자가 결정되는 모든 20개 또는 24개의 셀들에 바이패스 다이오드를 활용할 수 있다. 특정 실시예들에서, 상기 항복 전압은 약 10V-50V의 범위에 놓일 수 있다. 특정 실시예들에서, 상기 항복 전압은 약 10V, 약 15V, 약 20V, 약 25V, 약 30V, 또는 약 35V가 될 수 있다.
실시예들에 따르면, 얇은 열적으로 도전성인 접착제들로의 절단된 태양 전지들의 스트립들의 슁글링은 태양 전지들 사이의 열적 접촉을 향상시킨다. 이러한 향상된 열적 접촉은 전통적인 상호 연결 기술들보다 높은 열확산의 정도를 가능하게 한다. 슁글링에 기초하는 이와 같은 열적인 열확산 설계는 종래의 설계들에 제한되는 바이패스 다이오드 당 이십 사개(또는 보다 적은)의 태양 전지들보다 긴 태양 전지들의 스트링을 가능하게 한다. 실시예들에 따른 슁글링에 의해 가능해 지는 상기 열확산에 따른 빈번한 바이패스 다이오드들에 대한 요구 사항의 이러한 완화는 하나 또는 그 이상의 이점들을 제공할 수 있다. 예를 들면, 많은 숫자의 바이패스 다이오드들에 대해 제공되도록 필요에 의해 감춰지지 않는 다양한 태양 전지 스트링 길이들의 모듈 레이아웃들의 생성이 가능해 진다.
실시예들에 따르면, 열확산은 상기 인접하는 셀과의 물리적 및 열적 결합을 유지하여 구현된다. 이는 상기 결합된 연결 부위를 통한 충분한 열 방산을 가능하게 한다.
특정 실시예들에서, 이러한 연결 부위는 약 200마이크로미터 또는 그 이하의 두께로 유지되며, 세그먼트된 패턴으로 상기 태양 전지의 길이로 진행된다. 실시예에 따라, 상기 연결 부위는 약 200마이크로미터 또는 그 이하, 약 150마이크로미터 또는 그 이하, 약 125마이크로미터 또는 그 이하, 약 100마이크로미터 또는 그 이하, 약 90마이크로미터 또는 그 이하, 약 80마이크로미터 또는 그 이하, 약 70마이크로미터 또는 그 이하, 약 50마이크로미터 또는 그 이하, 혹은 약 25마이크로미터 또는 그 이하의 두께를 가질 수 있다.
정확한 접착제 큐어링 처리는 결합된 셀들 사이의 열확산을 증진시키기 위해 두께를 유지하면서 신뢰성 있는 연결 부위가 유지되도록 보장하는 점에 중요할 수 있다.
보다 긴 스트링들(예를 들면, 24개 이상의 셀들)이 진행되게 하는 것은 태양 전지들 및 모듈들의 설계에 유연성을 제공한다. 예를 들면, 특정 실시예들은 슁글드 방식으로 조립된 절단된 태양 전지들의 스트링들을 활용할 수 있다. 이러한 구성들은 종래의 모듈보다 모듈 당 상당히 많은 셀들을 활용할 수 있다.
상기 열확산 성질이 없다면, 바이패스 다이오드는 모든 24개의 셀들에 요구될 수 있다. 상기 태양 전지들이 1/6로 절단되는 경우, 상기 모듈 당 바이패스 다이오드들은 종래의 모듈(3개의 절단되지 않은 셀들을 포함하는)의 6배가 될 수 있고, 전체로 18개의 다이오드들까지 추가될 수 있다. 따라서 열확산은 상기 바이패스 다이오드들의 숫자의 상당한 감소를 제공한다.
더욱이 모든 바이패스 다이오드에 대하여, 우회적인 전기적 통로를 완성하도록 바이패스 회로부가 요구된다. 각 다이오드는 두 개의 상호 연결 지점들 및 이들을 이러한 상호 연결 지점들에 연결시키도록 라우팅되는 컨덕터를 요구한다. 이는 복잡한 회로를 야기하며, 태양광 모듈을 조립하는 것과 관련하여 표준 레이아웃 비용에 대한 상당한 비용의 원인이 된다.
대조적으로, 열확산 기술은 모듈 당 하나의 바이패스 다이오드만을 요구하거나 심지어 바이패스 다이오드들을 요구하지 않는다. 이와 같은 구성은 모듈 조립 공정을 간소화하며, 간단한 자동화 기구들이 상기 레이아웃 제조 단계들을 수행하게 할 수 있다.
바이패스에 대한 필요성을 회피하는 것은 모든 24개의 셀들을 보호하고, 이에 따라 상기 셀 모듈이 보다 용이하게 제조되게 한다. 상기 모듈의 중앙 내의 복잡한 탭-아웃(tap-out)들 및 바이패스 회로부를 위한 긴 평행한 연결들이 회피된다. 이러한 열확산은 상기 모듈의 폭 및/또는 길이로 진행되는 셀들의 긴 슁글드 스트립들을 생성함에 의해 이루어진다.
열적 열확산을 제공하는 것에 추가적으로, 실시예들에 따른 슁글링은 또한 태양 전지 내에서 소실되는 전류의 크기를 감소시켜 향상된 핫 스팟 성능을 가능하게 한다. 구체적으로, 핫 스팟 조건 동안에 태양 전지 내에서 소실되는 전류의 양은 셀 면적에 의존한다.
슁글링은 셀들을 보다 작은 면적들로 절단할 수 있기 때문에, 핫 스팟 조건에서 하나의 셀을 통과하는 전류의 양은 상기 절단된 치수들의 함수가 된다. 핫 스팟 조건 동안, 전류는 통상적으로는 셀 레벨의 결함 계면 또는 결정 입계인 가장 낮은 저항 경로를 통과한다. 이러한 전류를 감소시키는 것이 유리하고, 핫 스팟 조건들 하에서 신뢰성 실패를 최소화한다.
도 22a는 핫 스팟 조건들 하에서 전통적인 리본 연결들(2201)을 활용하는 종래의 모듈(2200)의 평면도를 도시한다. 여기서, 하나의 셀(2204) 상의 쉐이딩(shading)(2202)은 이러한 단일 셀로 국소화되는 열을 야기한다.
대조적으로, 도 22b는 또한 핫 스팟 조건들 하에서 열확산을 활용하는 모듈의 평면도를 도시한다. 여기서, 셀(2522) 상의 쉐이딩(2250)은 이러한 셀 내부에 열을 발생시킨다. 그러나 이러한 열은 상기 모듈(2256) 내의 다른 전기적 및 열적으로 결합된 셀들(2254)로 확산된다.
소실되는 전류의 감소의 이점이 다결정질 태양 전지들에 대해 크게 증가되는 점이 더 유의한다. 이러한 다결정질 셀들은 결함 계면들의 높은 레벨로 인해 핫 스팟 조건들 하에서 저조하게 동작되는 것으로 알려져 있다.
앞서 나타낸 바와 같이, 특정한 실시예들은 챔퍼 처리된 잘려진 셀들의 슁글링을 채용할 수 있다. 이러한 경우들에서, 상기 인접하는 셀과 각 셀 사이의 결합 라인을 따라 반영되는 열확산 이점이 존재한다.
이는 각 중첩되는 연결 부위의 결합 길이를 최대화한다. 상기 결합 연결 부위가 셀 대 셀의 열확산을 위한 주요한 계면이기 때문에, 이러한 길이를 최대화하는 것은 최적의 열확산이 얻어지는 점을 보장할 수 있다,
도 23a는 챔퍼 처리된 셀들(2302)을 구비하는 슈퍼 셀 스트링 레이아웃(2300)의 하나의 예를 도시한다. 이러한 구성에서, 상기 챔퍼 처리된 셀들은 동일한 방향으로 배향되며, 이에 따라 모든 결합된 연결 부위들의 전도 통로들은 동일(125㎜)하다.
하나의 셀(2304) 상의 쉐이딩(2306)은 이러한 셀의 역바이어싱(reverse biasing)의 결과로 된다. 열은 인접하는 셀들로 확산된다. 상기 챔퍼 처리된 셀의 결합되지 않은 단부들(2304a)은 다음의 셀까지의 보다 긴 전도 길이로 인하여 가장 뜨겁게 된다.
도 23b는 챔퍼 처리된 셀들(2352)을 구비하는 슈퍼 셀 스트링 레이아웃(2350)의 다른 예를 도시한다. 이러한 구성에서, 상기 챔퍼 처리된 셀들은 다른 방향들로 배향되며, 상기 챔퍼 처리된 셀들의 긴 에지들의 일부는 서로 마주한다. 이는 125㎜ 및 156㎜의 두 가지 길이들의 결합된 연결 부위의 전도 통로들을 가져온다.
셀(2354)이 쉐이딩(2356)을 겪을 경우, 도 23b의 구성은 보다 긴 결합 길이를 따라 개선된 열확산을 나타낸다. 도 23b는 이에 따라 서로 마주하는 챔퍼 처리된 셀들을 구비하는 상기 슈퍼 셀 내의 열확산을 도시한다.
앞서의 논의는 공통 기판 상에 슁글드 방식으로 복수의 태양 전지들(잘려진 태양 전지들이 될 수 있다)을 조립하는 것에 중점을 두었다. 이는 단일의 전기적 인터커넥트-접합 박스(또는 j-박스)를 갖는 모듈의 형성을 가져온다.
그러나 유용하게 되는 태양 에너지의 충분한 양을 모으기 위하여, 설비는 통상적으로 함께 조립되는 수많은 이러한 모듈들을 포함한다. 실시예들에 따르면, 복수의 태양 전지 모듈들 또한 어레이의 면적 효율을 증가시키도록 슁글드 방식으로 조립될 수 있다.
특정 실시예들에 있어서, 모듈은 태양 에너지의 방향을 마주하는 상단의 도전성 리본 및 상기 태양 에너지의 방향으로부터 떨어져 마주하는 하단의 도전성 리본을 특징으로 할 수 있다.
상기 하단 리본은 상기 셀들 아래에 매립된다. 따라서, 이는 입사되는 광을 차단하지 않으며, 상기 모듈의 면적 효율에 불리한 영향을 미치지 않는다. 대조적으로, 상기 상단 리본은 노출되며, 입사되는 광을 차단할 수 있고, 효율에 불리한 영향을 미친다.
실시예들에 따르면, 상기 모듈들 자체가 상기 상단 리본이 이웃하는 모듈에 의해 커버되도록 슁글드될 수 있다. 도 24는 이와 같은 배치(2400)의 단순화된 단면도를 도시하며, 여기서 인접하는 모듈(2402)의 단부 부분(2401)은 인스턴스(instant) 모듈(2406)의 상단 리본(2404)을 중첩시키는 데 기여한다. 각 모듈 자체는 복수의 슁글드 태양 전지들(2407)을 포함한다.
상기 인스턴트 모듈(2406)의 하단 리본(2408)은 매립된다. 이는 다음의 인접하는 슁글드 모듈을 중첩시키기 위해 인스턴트 슁글드 모듈의 상승된 측면 상에 위치한다.
이러한 슁글드 모듈 구성은 또한 상기 모듈 어레이의 최종적인 노출된 면적에 불리한 영향을 미치지 않고 다른 요소들을 위해 상기 모듈 상에 추가적인 면적을 제공할 수 있었다. 중첩되는 영역들 내에 위치할 수 있는 모듈 요소들의 예들은, 이에 한정되는 것은 아니지만, 접합 박스들(j-박스들)(2410) 및/또는 버스 리본들을 포함할 수 있다.
도 25는 슁글드 모듈 구성(2500)의 다른 실시예를 도시한다. 여기서, 각각의 인접하는 슁글드 모듈들(2506, 2508)의 j-박스들(2502, 2504)은 이들 사이에 전기적 연결을 구현하기 위해 일렬인 배치(2510)로 된다. 이는 배선들 제거함에 의해 슁글드 모듈들의 어레이의 구성을 단순하게 한다.
특정 실시예들에서, 상기 j-박스들은 강화될 수 있거나 및/또는 추가적인 구조 스탠드오프(standoff)들과 결합될 수 있었다. 이와 같은 구성은 통합된 기울어진 모듈 루프 마운트 랙 솔루션(module roof mount rack solution)을 생성할 수 있었으며, 여기서 상기 접합 박스의 치수는 기울기를 결정한다. 이와 같은 구현은 슁글드 모듈들의 어레이가 평탄한 지붕 상에 장착되는 경우에 특히 유용할 수 있다.
상기 모듈들이 유리 기판 및 유리 커버(유리-유리 모듈들)를 포함하는 경우, 상기 모듈들은 추가적인 프레임 부재(frame member)들이 없이 전체 모듈 길이(그리고 이에 따라 상기 슁글링으로부터 야기되는 노출된 길이 L)를 단축하여 사용될 수 있었다. 이러한 단축은 상기 기울어진 어레이의 모듈들이 상기 압력 하에서 부러지지 않고 예상되는 물리적인 하중들(예를 들면, 5400Pa의 눈 하중 한계)을 견디게 할 수 있었다.
슁글드 방식으로 조립된 복수의 개개의 태양 전지들을 포함하는 슈퍼 셀 구조들의 사용이 물리적인 하중 및 다른 요구 사항들에 의해 규정되는 특정한 길이를 만족시키도록 상기 모듈의 길이를 변화시키는 것을 쉽게 수용하는 점이 강조된다.
도 26은 모듈의 후방측 상의 접합 박스에 대한 슁글드 슈퍼 셀의 전면(태양측) 단자 전기적 콘택들의 예시적인 전기적 상호 연결을 예시하는 태양광 모듈의 후면(차광)의 도면을 도시한다. 상기 슁글드 슈퍼 셀의 전면 단자 콘택들은 상기 모듈의 에지에 인접하여 위치할 수 있다.
도 26은 슈퍼 셀(100)의 전면 단부 콘택에 전기적으로 접촉되는 유연한 인터커넥트(400)의 사용을 도시한다. 예시한 예에서, 유연한 인터커넥트(400)는 상기 슈퍼 셀(100)의 단부에 평행하게 진행되고 인접하는 리본 부분(9400A) 및 이들이 도전성으로 결합되는 상기 슈퍼 셀 내의 단부 태양 전지의 전면 금속화 패턴(도시되지 않음)에 접촉하도록 상기 리본 부분에 직교하게 연장되는 핑거들(9400B)을 포함한다. 인터커넥트(9400)에 도전성으로 결합되는 리본 컨덕터(9410)는 인터커넥트(9400)를 상기 슈퍼 셀이 일부인 상기 태양광 모듈의 후면 상의 전기적 구성 요소들(예를 들면, 접합 박스 내의 바이패스 다이오드들 및/또는 모듈 단자들)에 전기적으로 연결하도록 슈퍼 셀(100) 뒤를 통과한다. 절연막(9420)이 리본 컨덕터(9410)를 슈퍼 셀(100)로부터 전기적으로 절연시키도록 컨덕터(9410)와 슈퍼 셀(100)의 에지 및 후면 사이에 배치될 수 있다.
인터커넥트(400)는 리본 부분(9400A)이 상기 슈퍼 셀의 뒤에 놓이거나 상기 슈퍼 셀 뒤에 부분적으로 놓이도록 상기 슈퍼 셀의 에지 주위에서 선택적으로 접혀질 수 있다. 이러한 경우들에서, 전기적 절연층이 통상적으로 인터커넥트(400)와 슈퍼 셀(100)의 에지 및 후면들 사이에 제공된다.
인터커넥트(400)는, 예를 들면 도전성의 시트로부터 다이 절단될 수 있고, 상기 인터커넥트의 CTE와 상기 슈퍼 셀의 CTE 사이의 불일치로부터 야기되는 상기 슈퍼 셀의 에지에 직교하고 평행한 스트레스를 감소시키거나 수용하기 위하여 상기 슈퍼 셀의 에지에 모두 직교하고 평행한 그 기계적 컴플라이언스를 증가시키도록 선택적으로 패터닝될 수 있다. 이러한 패터닝은, 예를 들면, 슬릿들, 슬롯들, 또는 홀들(도시되지 않음)을 포함할 수 있다. 인터커넥트(400)의 기계적 컴플라이언스 및 상기 슈퍼 셀에 대한 이의 결합은 다음에 보다 상세하게 설명하는 라미네이션 공정 동안에 CTE 불일치로부터 야기되는 스트레스를 견디도록 상기 슈퍼 셀에 대한 연결을 위해 충분하여야 한다. 인터커넥트(400)는, 예를 들면, 중첩된 태양 전지들을 결합시키는 데 사용되기 위해 상술한 바와 같이 기계적으로 유연하고 전기적으로 도전성인 결합 물질로 슈퍼 셀에 결합될 수 있다. 선택적으로, 상기 전기적으로 도전성인 결합 물질은 상기 전기적으로 도전성인 결합 물질 또는 상기 인터커넥트의 열팽창 계수와 상기 슈퍼 셀의 열팽창 계수 사이의 불일치로부터 야기되는 상기 슈퍼 셀의 에지에 평행한 스트레스를 감소시키거나 수용하기 위하여, 실질적으로 상기 슈퍼 셀의 에지의 길이로 연장되는 연속되는 라인으로 보다는 상기 슈퍼 셀의 에지를 따른 별개의 위치들(예를 들면, 상기 단부 태양 전지 상의 별개의 콘택 패드들의 위치들에 대응되는)에만 위치할 수 있다.
인터커넥트(400)는 얇은 구리 시트, 예를 들면 얇은 구리 시트로부터 절단될 수 있고, 슈퍼 셀들(100)이 표준 실리콘 태양 전지들보다 작은 면적들을 갖는 태양 전지들로부터 형성되고, 이에 따라 종래의 경우보다 낮은 전류들에서 동작할 때에 종래의 도전성 인터커넥트들보다 얇아 질 수 있다. 예를 들면, 인터커넥트들(400)은 약 50미크론 내지 약 300미크론의 두께를 갖는 구리 시트로 형성될 수 있다. 인터커넥트(400)는 상술한 바와 같이 패터닝되지 않고도 상기 인터커넥트의 CTE와 상기 슈퍼 셀의 CTE 사이의 불일치로부터 야기되는 상기 슈퍼 셀의 에지에 직교하고 평행한 스트레스를 수용하도록 충분히 얇을 수 있다. 리본 컨덕터(9410)는, 예를 들면 구리로 형성될 수 있다.
도 27은 병렬로 둘 또는 그 이상의 슁글드 슈퍼 셀들의 예시적인 전기적 상호 연결을 예시하는 태양광 모듈의 후면(차광)의 도면들 도시하며, 상기 슈퍼 셀들의 전면(태양측) 단자 전기적 콘택들은 서로에 대해서와 상기 모듈의 후방측 상의 접합 박스에 연결된다. 상기 슁글드 슈퍼 셀들의 전면 단자 콘택들은 상기 모듈의 에지에 인접하여 위치할 수 있다.
도 27은 앞서 설명한 바와 같이 두 인접하는 슈퍼 셀들(100)의 전면 단자 콘택들에 전기적으로 접촉되는 두 개의 유연한 인터커넥트들(400)의 사용을 도시한다. 상기 슈퍼 셀들(100)의 단부들에 평행하게 진행되고 인접하는 버스(9430)는 상기 슈퍼 셀들을 전기적으로 병렬로 연결하도록 상기 두 개의 유연한 인터커넥트들에 도전성으로 결합된다. 이러한 계획은 원하는 경우에 추가적인 슈퍼 셀들(100)을 병렬로 상호 연결하는 것까지 확장될 수 있다. 버스(9430)는 구리 리본, 예를 들면 구리 리본으로 형성될 수 있다.
도 26에 대하여 상술한 바와 유사하게, 인터커넥트들(400)과 버스(9430)는 리본 부분들(9400A) 및 버스(9430)가 상기 슈퍼 셀들 뒤에 놓이거나 부분적으로 상기 슈퍼 셀들 뒤에 놓이도록 상기 슈퍼 셀들의 에지 주위에서 선택적으로 접혀질 수 있다. 이러한 경우들에서, 전기적인 절연층이 통상적으로 인터커넥트들(400)과 상기 슈퍼 셀들(100)의 에지 및 후면들 사이와 버스(9430)와 상기 슈퍼 셀들(100)의 에지 및 후면들 사이에 제공된다.
도 28은 병렬로 둘 또는 그 이상의 슁글드 슈퍼 셀들의 다른 예시적인 전기적 상호 연결을 예시하는 태양광 모듈의 후면(차광)의 도면을 도시하며, 상기 슈퍼 셀들의 전면(태양측) 단자 전기적 콘택들은 서로에 대해서와 상기 모듈의 후방측 상의 접합 박스에 연결된다. 슁글드 슈퍼 셀들의 전면 단자 콘택들은 상기 모듈의 에지에 인접하여 위치할 수 있다.
도 28은 슈퍼 셀(100)의 전면 단부 콘택에 전기적으로 접촉되는 다른 예시적인 유연한 인터커넥트(9440)의 사용을 도시한다. 이러한 예에서, 유연한 인터커넥트(9440)는 상기 슈퍼 셀(100)의 단부에 평행하게 진행되고 인접하는 리본 부분(9440A), 이들이 도전성으로 결합되는 상기 슈퍼 셀 내의 단부 태양 전지의 전면 금속화 패턴(도시되지 않음)에 접촉되도록 상기 리본 부분에 직교하게 연장되는 핑거들(9440B), 그리고 상기 리본 부분에 직교하고 상기 슈퍼 셀 뒤로 연장되는 핑거들(9440C)을 포함한다. 핑거들(9440C)은 버스(9450)에 도전성으로 결합된다. 버스(9450)는 상기 슈퍼 셀(100)의 후면을 따라 슈퍼 셀(100)의 단부에 평행하고 인접하게 진행되며, 유사하게 전기적으로 연결될 수 있고 이에 따라 상기 슈퍼 셀들을 병렬로 연결하도록 인접하는 슈퍼 셀들을 중첩시키도록 연장될 수 있다. 버스(9450)에 도전성으로 결합되는 리본 컨덕터(9410)는 상기 슈퍼 셀들을 상기 태양광 모듈의 후면 상의 전기적 구성 요소들(예를 들면, 접합 박스 내의 바이패스 다이오드들 및/또는 모듈 단자들)에 전기적으로 상호 연결한다. 전기적인 절연막들(9420)이 핑거들(9440C)과 상기 슈퍼 셀(100)의 에지 및 후면들 사이, 버스(9450)와 상기 슈퍼 셀(100)의 후면 사이, 그리고 리본 컨덕터(9410)와 상기 슈퍼 셀(100)의 후면 사이에 제공될 수 있다.
인터커넥트(9440)는, 예를 들면 도전성의 시트로 형성될 수 있고, 상기 인터커넥트의 CTE와 상기 슈퍼 셀의 CTE 사이의 불일치로부터 야기되는 상기 슈퍼 셀의 에지에 직교하고 평행한 스트레스를 감소시키거나 수용하기 위하여 상기 슈퍼 셀의 에지에 모두 직교하고 평행한 이의 기계적 컴플라이언스를 증가시키도록 선택적으로 패터닝될 수 있다. 이러한 패터닝은, 예를 들면, 슬릿들, 슬롯들, 또는 홀들(도시되지 않음)을 포함할 수 있다. 인터커넥트(9440)의 기계적 컴플라이언스 및 상기 슈퍼 셀에 대한 이의 결합은 다음에 보다 상세하게 설명되는 라미네이션 공정 동안에 CTE 불일치로부터 야기되는 스트레스를 견디도록 상기 슈퍼 셀에 대한 연결을 위해 충분하여야 한다. 인터커넥트(9440)는, 예를 들면 중첩되는 태양 전지들을 결합시키는 데 사용되기 위해 상술한 바와 같이 기계적으로 유연하고 전기적으로 도전성인 결합 물질로 상기 슈퍼 셀에 결합될 수 있다. 선택적으로, 상기 전기적으로 도전성인 결합 물질은 상기 전기적으로 도전성인 결합 물질 또는 상기 인터커넥트의 열팽창 계수와 상기 슈퍼 셀의 열팽창 계수의 불일치로부터 야기되는 상기 슈퍼 셀의 에지에 평행한 스트레스를 감소시키거나 수용하기 위해 실질적으로 상기 슈퍼 셀의 에지의 길이로 연장되는 연속되는 라인으로보다는 상기 슈퍼 셀의 에지를 따른 별개의 위치들(예를 들면, 단부 태양 전지 상의 별개의 콘택 패드들의 위치들에 대응되는)에만 위치할 수 있다.
인터커넥트(9440)는, 예를 들면 얇은 구리 시트로부터 절단될 수 있고, 슈퍼 셀들(100)이 표준 실리콘 태양 전지들보다 작은 면적들을 갖는 태양 전지들로부터 형성되고 이에 따라 종래의 경우보다 낮은 전류들로 동작할 때에 종래의 도전성 인터커넥트들보다 얇아질 수 있다. 예를 들면, 인터커넥트들(9440)은 약 50미크론 내지 약 300미크론의 두께를 갖는 구리 시트로 형성될 수 있다. 인터커넥트(9440)는 상술한 바와 같이 패터닝되지 않고도 상기 인터커넥트의 CTE와 상기 슈퍼 셀의 CTE 사이의 불일치로부터 야기되는 상기 슈퍼 셀의 에지에 직교하고 평행한 스트레스를 수용하도록 충분히 얇을 수 있다. 버스(9450)는, 예를 들면 구리 시트로 형성될 수 있다.
핑거들(9440C)은 핑거들(9440B)이 슈퍼 셀(100)의 전면에 결합된 후에 버스(9450)에 결합될 수 있다. 이러한 경우들에서, 핑거들(9440C)은 이들이 버스(9450)에 결합될 때에 상기 슈퍼 셀(100)의 후면으로부터 떨어져, 예를 들면 슈퍼 셀(100)에 직교하게 구부러질 수 있다. 이후에, 핑거들(9440C)이 도 28에 도시한 바와 같이 상기 슈퍼 셀(100)의 후면을 따라 진행되도록 구부러질 수 있다.
도 29는 슈퍼 셀들을 전기적으로 직렬로 연결하고 접합 박스에 대해 전기적인 연결을 제공하도록 인접하는 슈퍼 셀들의 중첩되는 단부들 사이에 유연한 인터커넥트의 사용을 예시하는 두 슈퍼 셀들의 부분 단면도 및 사시도를 도시한다. 도 29a는 도 29의 관심의 대상인 영역의 확대도를 도시한다.
도 29 및 도 29a는 상기 슈퍼 셀들의 하나의 전면 단부 콘택에 대해서와 다른 하나의 슈퍼 셀의 후면 단부 콘택에 대해서 전기적인 연결을 제공하여, 상기 슈퍼 셀들을 직렬로 연결하도록 두 슈퍼 셀들(100)의 중첩되는 단부들 사이에 부분적으로 개재되고 전기적으로 상호 연결하는 예시적인 유연한 인터커넥트(2960)의 사용을 도시한다. 예시된 예에서, 인터커넥트(2960)는 상기 두 중첩되는 태양 전지들의 상부에 의해 상기 태양광 모듈의 전방으로부터 시야에서 가려진다. 다른 변형예에서, 상기 두 슈퍼 셀들의 인접하는 단부들은 중첩되지 않으며, 상기 두 슈퍼 셀들의 하나의 전면 단부 콘택에 연결된 인터커넥트(2960)의 일부는 상기 태양광 모듈의 전면으로부터 보일 수 있다. 선택적으로, 이러한 변형예들에서 그렇지 않으면 상기 모듈의 전방으로부터 보일 수 있는 상기 인터커넥트의 일부는 정상적인 색각을 갖는 사람에 의해 인지될 경우에 상기 인터커넥트와 상기 슈퍼 셀들 사이의 시각적인 대비를 감소시키도록 커버되거나 착색될 수(예를 들면, 어둡게 될 수) 있다. 인터커넥트(2960)는 상기 슈퍼 셀들의 쌍을 인접하는 열 내의 유사하게 배열된 슈퍼 셀들의 쌍들과 병렬로 전기적으로 연결하도록 상기 슈퍼 셀들의 측면 에지들을 넘어서 상기 두 슈퍼 셀들의 인접하는 에지들에 평행하게 연장될 수 있다.
리본 컨덕터(2970)는 상기 두 슈퍼 셀들의 인접하는 단부들을 상기 태양광 모듈의 후면 상의 전기적 구성 요소들(예를 들면, 접합 박스 내의 바이패스 다이오드들 및/또는 모듈 단자들)에 전기적으로 연결하도록 도시한 바와 같이 인터커넥트(2960)에 도전성으로 결합될 수 있다. 다른 변형예(도시되지 않음)에서, 리본 컨덕터(2970)는 인터커넥트(2960)에 도전성으로 연결되는 대신에 이들의 중첩되는 단부들로부터 떨어진 상기 중첩되는 슈퍼 셀들의 하나의 후면 콘택에 전기적으로 연결될 수 있다. 이러한 구성은 또한 하나 또는 그 이상의 바이패스 다이오드들 또는 상기 태양광 모듈의 후면 상의 다른 전기적 구성 요소들에 대해 히든 탭(hidden tap)을 제공할 수 있다.
인터커넥트(2960)는, 예를 들면 도전성의 시트로부터 선택적으로 다이 절단될 수 있고, 상기 인터커넥트의 CTE와 상기 슈퍼 셀들의 CTE 사이의 불일치로부터 야기되는 상기 슈퍼 셀들의 에지들에 직교하고 평행한 스트레스를 감소시키거나 수용하기 위해 상기 슈퍼 셀들의 에지들에 모두 직교하고 평행한 이의 기계적 컴플라이언스를 증가시키도록 선택적으로 패터닝될 수 있다. 이러한 패터닝은, 예를 들면, 슬릿들, 슬롯들(도시한 바와 같이), 또는 홀들을 포함할 수 있다. 상기 유연한 인터커넥트의 기계적 컴플라이언스 및 상기 슈퍼 셀들에 대한 이의 결합들은 다음에 보당 상세하게 설명하는 라미네이션 공정 동안에 CTE 불일치로부터 야기되는 스트레스를 견디도록 상기 상호 연결된 슈퍼 셀들을 위해 충분하여야 한다. 상기 유연한 인터커넥트는, 예를 들면, 중첩되는 태양 전지들을 결합하는 데 사용되기 위해 상술한 바와 같이 기계적으로 유연하고 전기적으로 도전성인 결합 물질로 상기 슈퍼 셀들에 결합될 수 있다. 선택적으로, 상기 전기적으로 도전성인 결합 물질은 상기 전기적으로 도전성인 결합 물질 또는 상기 인터커넥트의 열팽창 계수와 상기 슈퍼 셀들의 열팽창 계수 사이의 불일치로부터 야기되는 상기 슈퍼 셀들의 에지에 평행한 스트레스를 감소시키거나 수용하기 위하여 실질적으로 상기 슈퍼 셀들의 에지의 길이로 연장되는 연속되는 라인으로보다는 상기 슈퍼 셀들의 에지들을 따른 별개의 위치들에만 위치할 수 있다. 인터커넥트(2960)는, 예를 들면 얇은 구리 시트로부터 절단될 수 있다.
실시예들은 모든 목적들을 위해 그 개시 사항들이 모두 여기에 참조로 포함되는 미국 공개 특허 문헌들인 미국 공개 특허 제2014/0124013호 및 미국 공개 특허 제2014/0124014호에 기재된 하나 또는 그 이상의 특징들을 포함할 수 있다.
본 명세서에는 슁글드 방식으로 배열되고 슈퍼 셀들을 형성하도록 전기적으로 직렬로 연결되는 실리콘 태양 전지들을 포함하는 고효율의 태양광 모듈들이 개시되며, 상기 슈퍼 셀들은 상기 태양광 모듈 내에 물리적으로 평행한 열들로 배열된다. 상기 슈퍼 셀들은, 예를 들면 기본적으로 상기 태양광 모듈의 전체 길이나 폭에 걸쳐 이어지는 길이들을 가질 수 있거나, 둘 또는 그 이상의 슈퍼 셀들이 열 내에 단대단으로 배열될 수 있다. 이러한 배치는 태양 전지 대 태양 전지의 전기적 상호 연결들을 감추며, 이에 따라 인접하는 직렬 연결된 태양 전지들 사이에 접촉이 없거나 적은 접촉을 구비하여 시각적으로 매력적인 태양광 모듈을 생성하는 데 사용될 수 있다.
슈퍼 셀은, 예를 들면 일부 실시예들에서는 적어도 열아홉 개의 태양 전지들이고, 특정 실시예들에서는 100개보다 크거나 같은 실리콘 태양 전지들을 포함하는 임의의 숫자의 태양 전지들을 구비할 수 있다. 슈퍼 셀을 따른 중간 위치들에서 전기적 콘택들은 물리적으로 연속적인 슈퍼 셀을 유지하면서 상기 슈퍼 셀을 둘 또는 그 이상의 직렬 연결된 세그먼트(segment)들로 전기적으로 분할하도록 원해질 수 있다. 본 명세서에는 상기 태양광 모듈의 전방으로부터 시야에서 감춰지고 이에 따라 여기서 "히든 탭(hidden tap)들"로 언급되는 전기적 태핑(tapping) 포인트들을 제공하기 위해 이러한 전기적 연결들이 상기 슈퍼 셀 내의 하나 또는 그 이상의 실리콘 태양 전지들의 후면 콘택 패드들에 대해 이루어지는 배치들이 개시된다. 상기 히든 탭은 상기 태양 전지의 후방과 도전성 인터커넥트 사이의 전기적 연결이다.
본 명세서에는 또한 전면 슈퍼 셀 단자 콘택 패드들, 후면 슈퍼 셀 단자 콘택 패드들, 또는 히든 탭 콘택 패드들을 다른 태양 전지들이나 상기 태양광 모듈 내의 다른 전기적 구성 요소들에 전기적으로 상호 연결하기 위한 유연한 인터커넥트들의 사용이 개시된다.
또한, 본 명세서에는 유연한 인터커넥트들과 상기 슈퍼 셀들 사이의 열팽창의 불일치를 수용하기 위해 상기 유연한 인터커넥트들을 강제하는 기계적으로 뻣뻣한 결합들로 유연한 인터커넥트들을 상기 슈퍼 셀들에 결합시키는 전기적으로 도전성인 접착제의 사용과 결합되어, 상기 슈퍼 셀들과 상기 태양광 모듈의 유리 전면 시트 사이의 열팽창의 불일치를 수용하는 기계적으로 유연하고 전기적으로 도전성인 결합들을 제공하기 위해 인접하는 태양 전지들을 슈퍼 셀 내에서 서로 직접 결합시키는 전기적으로 도전성인 접착제의 사용이 개시된다. 이는 그렇지 않으면 상기 태양광 모듈의 열 사이클의 결과로 일어날 수 있는 상기 태양광 모듈에 대한 손상을 회피할 수 있다.
다음에 더 설명하는 바와 같이, 히든 탭 콘택 패드들에 대한 전기적 연결들은 상기 슈퍼 셀의 세그먼트들을 인접하는 열들 내의 하나 또는 그 이상의 슈퍼 셀들의 대응되는 세그먼트들과 전기적으로 연결하거나 및/또는 이에 한정되는 것은 아니지만, 전력 최적화(예를 들면, 바이패스 다이오드들, AC/DC 마이크로인버터들, DC/DC 컨버터들) 및 신뢰성 적용들을 포함하는 다양한 적용들을 위해 태양광 모듈 회로에 전기적 연결들을 제공하도록 사용될 수 있다.
앞서 설명한 바와 같은 히든 탭들의 사용은 상기 감춰진 셀 대 셀 연결들과 결합되어 실질적으로 상기 태양광 모듈의 모든 후방 외양을 제공함에 의해 상기 태양광 모듈의 미학적인 외양을 보다 향상시킬 수 있으며, 또한 상기 모듈의 표면 면적의 보다 큰 부분이 상기 태양 전지들의 활성 영역들로 채워지게 하여 상기 태양광 모듈의 효율을 증가시킬 수 있다.
본 명세서에서 설명되는 태양광 모듈들의 보다 상세한 이해를 위해 이제 도면들을 다시 참조하면, 도 1은 슈퍼 셀(100)을 형성하도록 중첩되고 전기적으로 연결되는 인접하는 태양 전지들의 단부들을 구비하여 슁글드 방식으로 배열되는 직렬 연결된 태양 전지들(10)의 스트링의 단면도를 도시한다. 각 태양 전지(10)는 반도체 다이오드 구조 및 광에 의해 조명될 때에 태양 전지(10) 내에서 발생되는 전류가 외부 부하에 제공될 수 있는 상기 반도체 다이오드 구조에 대한 전기적 콘택들을 포함한다.
본 명세서에서 설명되는 예들에서, 각 태양 전지(10)는 n-p 접합의 대향하는 측면들에 전기적 콘택을 제공하는 전면(태양측) 및 후면(차광측) 금속화 패턴들을 갖는 직사각형의 결정질 실리콘 태양 전지이며, 상기 전면 금속화 패턴은 n-형 도전성의 반도체층 상에 배치되고, 상기 후면 금속화 패턴은 p-형 도전성의 반도체층 상에 배치된다. 그러나, 다른 물질 시스템들, 다이오드 구조들, 물리적 치수들, 또는 전기적 콘택 배치들이 적합할 경우에 사용될 수 있다. 예를 들면, 상기 전면(태양측) 금속화 패턴은 p-형 도전성의 반도체층 상에 배치될 수 있고, 상기 후면(차광측) 금속화 패턴은 n-형 도전성의 반도체층 상에 배치될 수 있다.
도 1을 다시 참조하면, 슈퍼 셀(100)에서 인접하는 태양 전지들(10)은 하나의 태양 전지의 전면 금속화 패턴을 인접하는 태양 전지의 후면 금속화 패턴에 전기적으로 연결하는 전기적으로 도전성인 결합 물질에 의해 이들이 중첩되는 영역 내에서 서로 직접 도전성으로 결합된다. 적합한 전기적으로 도전성인 결합 물질들은, 예를 들면, 전기적으로 도전성인 접착제들 및 전기적으로 도전성인 접착 필름들과 접착 테이프들, 그리고 종래의 땜납들을 포함할 수 있다.
도 31aA 및 도 31a는 상기 슈퍼 셀들의 하나의 전면 단부 콘택 및 다른 하나의 슈퍼 셀의 후면 단부 콘택에 전기적 연결을 제공하여 상기 슈퍼 셀들을 직렬로 상호 연결하도록 두 슈퍼 셀들(100)의 중첩되는 단부들 사이에 부분적으로 개재되고 전기적으로 상호 연결하는 예시적인 유연한 인터커넥트(3160)의 사용을 도시한다. 예시한 예에서, 인터커넥트(3160)는 상기 두 중첩되는 태양 전지들의 상부에 의해 상기 태양광 모듈의 전방으로부터 시야에서 감춰진다. 다른 변형예에서, 상기 두 슈퍼 셀들의 인접하는 단부들은 중첩되지 않으며, 상기 두 슈퍼 셀들의 하나의 전면 단부 콘택에 연결되는 인터커넥트(3160)의 일부는 상기 태양광 모듈의 전면으로부터 보일 수 있다. 선택적으로, 이러한 변형예들에서 그렇지 않으면 상기 모듈의 전방으로부터 보일 수 있는 상기 인터커넥트의 일부는 정상적인 색각을 갖는 사람에 의해 인지되는 경우에 상기 인터커넥트와 상기 슈퍼 셀들 사이의 가시적인 대비를 감소시키도록 커버될 수 있거나 착색될(예를 들면, 어두워 질) 수 있다. 인터커넥트(3160)는 상기 슈퍼 셀들의 쌍들을 인접하는 열 내의 슈퍼 셀들의 우사하게 배열되는 쌍과 전기적으로 병렬로 연결하도록 상기 슈퍼 셀들의 측면 에지들을 넘어서 상기 두 슈퍼 셀들의 인접하는 에지들에 평행하게 연장될 수 있다.
리본 컨덕터(3170)는 상기 두 슈퍼 셀들의 인접하는 단부들을 상기 태양광 모듈의 후면 상의 전기적 구성 요소들(예를 들면, 접합 박스 내의 바이패스 다이오드들 및/또는 모듈 단자들)에 전기적으로 연결하도록 도시한 바와 같이 인터커넥트(3160)에 도전성으로 연결될 수 있다. 다른 변형예(도시되지 않음)에서, 리본 컨덕터(3170)는 인터커넥트(3160)에 전기적으로 결합되는 것 대신에 이들의 중첩되는 단부들로부터 떨어진 상기 중첩되는 슈퍼 셀들의 하나의 후면 콘택에 전기적으로 연결될 수 있다. 이러한 구성은 또한 하나 또는 그 이상의 바이패스 다이오드들 또는 상기 태양광 모듈의 후면 상의 다른 전기적 구성 요소들에 대해 히든 탭을 제공할 수 있다.
도 2는 각기 상기 태양광 모듈의 긴 측면들의 길이와 대략적으로 동일한 길이를 가지는 여섯 개의 직사각형의 슈퍼 셀들(100)을 포함하는 예시적인 직사각형의 태양광 모듈(200)을 도시한다. 상기 슈퍼 셀들은 상기 모듈의 긴 측면들에 평행하게 배향된 이들의 긴 측면들을 구비하여 여섯 개의 평행한 열들로 배열된다. 유사하게 구성되는 태양광 모듈은 이러한 예에서 도시된 경우 보다 이러한 측면 길이의 슈퍼 셀들의 보다 많거나 보다 적은 열들을 포함할 수 있다. 다른 변형예들에서, 상기 슈퍼 셀들은 각기 직사각형의 태양광 모듈의 짧은 측면의 길이와 대략적으로 동일한 길이를 가질 수 있고, 상기 모듈의 짧은 측면들에 평행하게 배향된 이들의 긴 측면들을 구비하여 평행한 열들로 배열될 수 있다. 또 다른 배치들에서, 각 열은 전기적으로 직렬로 연결되는 둘 또는 그 이상의 슈퍼 셀들을 포함할 수 있다. 상기 모듈들은 예를 들면, 약 1미터의 길이를 갖는 짧은 측면들 및 예를 들면, 약 1.5미터 내지 약 2.0미터의 길이를 갖는 긴 측면들을 가질 수 있다. 상기 태양광 모듈들을 위한 임의의 다른 적합한 형상들(예를 들면, 정사각형)과 치수들도 사용될 수 있다.
이러한 예에서 각 슈퍼 셀은 각기 156㎜의 정사각형 또는 의사 정사각형의 웨이퍼의 폭의 1/6과 대략적으로 동일한 폭을 갖는 72개의 직사각형의 태양 전지들을 포함한다. 임의의 다른 적합한 치수들인 임의의 다른 적합한 숫자의 직사각형 태양 전지들 또한 사용될 수 있다.
길고 좁은 종횡비들과 표준 156㎜×156㎜ 태양 전지의 경우보다 작은 면적들을 갖는 태양 전지들은 예시한 바와 같이 본 명세서에 개시되는 태양 전지 모듈들 내에 I2R 저항성 전력 손실들을 감소시키도록 유리하게 채용될 수 있다. 특히, 표준 크기의 실리콘 태양 전지들에 비해 태양 전지들(10)의 감소된 면적은 상기 태양 전지 내에서 생성되는 전류를 감소시키고, 상기 태양 전지 및 이러한 태양 전지들의 직렬 연결된 스트링 내의 저항성 손실을 직접 감소시킨다.
슈퍼 셀의 후면에 대한 히든 탭은, 예를 들면, 상기 태양 전지의 후면 금속화 패턴의 에지 부분에 위치하는 하나 또는 그 이상의 히든 탭 콘택 패드들에 도전성으로 연결되는 전기적 인터커넥트를 사용하여 이루어질 수 있다. 선택적으로는, 히든 탭은 실질적으로 상기 태양 전지의 전체 길이(상기 슈퍼 셀의 긴 축에 직교하는)로 진행되고, 상기 후면 금속화 패턴 내에서 상기 태양 전지의 길이를 따라 분포되는 복수의 히든 탭 콘택 패드들에 도전성으로 결합되는 인터커넥트를 사용하여 구현될 수 있다.
도 31a는 에지-연결된 히든 탭들과의 사용을 위해 적합한 예시적인 태양 전지 후면 금속화 패턴(3300)을 예시한다. 상기 금속화 패턴은 연속되는 알루미늄 전기적 콘택(3310), 상기 태양 전지의 후면의 긴 측면의 인접하는 에지에 평행하게 배열되는 복수의 실버 콘택 패드들(3315), 그리고 각기 상기 태양 전지의 후면의 짧은 측면들의 하나의 인접하는 에지에 평행하게 배열되는 실버 히든 탭 콘택 패드들(3320)을 포함한다. 상기 태양 전지가 슈퍼 셀 내에 배치될 때, 콘택 패드들(3315)은 인접하는 직사각형의 태양 전지의 전면에 의해 중첩되고 이에 직접 결합된다. 인터커넥트는 상기 슈퍼 셀에 히든 탭을 제공하도록 히든 탭 콘택 패드들(3320)의 하나 또는 다른 하나에 도전성으로 결합될 수 있다(두 개의 이러한 인터커넥트들이 원하는 경우에 두 개의 히든 탭들을 제공하도록 채용될 수 있다).
도 31a에 도시한 배치에서, 상기 히든 탭에 대한 전류 흐름은 상기 후면 셀 금속화를 통하고 상기 인터커넥트 집합 지점(콘택(3320))까지 일반적으로 상기 태양 전지의 긴 측면들에 평행하다. 이러한 통로를 따른 전류 흐름이 가능하게 하기 위해, 상기 후면 금속화 시트 저항은 바람직하게는 평방 당 약 5옴보다 작거나 같거나, 평방 당 약 2.5옴보다 작거나 같다.
도 31b는 태양 전지의 후면의 길이를 따라 버스 같은 인터커넥트를 채용하는 히든 탭들을 구비하는 사용을 위해 적합한 다른 예시적인 태양 전지 후면 금속화 패턴(3301)을 도시한다. 상기 금속화 패턴은 연속되는 알루미늄 전기적 콘택(3310), 상기 태양 전지의 후면의 긴 측면의 에지에 평행하고 인접하게 배열되는 복수의 실버 콘택 패드들(3315), 그리고 상기 태양 전지의 긴 측면들에 평행한 열로 배열되고 상기 태양 전지의 후면 상에 대략적으로 중심을 두는 복수의 실버 히든 탭 콘택 패드들(3325)을 포함한다. 실질적으로 상기 태양 전지의 전체 길이로 진행되는 인터커넥트는 상기 슈퍼 셀에 대해 히든 탭을 제공하도록 히든 탭 콘택 패드들(3325)에 도전성으로 결합될 수 있다. 상기 히든 탭에 대한 전류 흐름은 주로 상기 버스 같은 인터커넥트를 통하며, 상기 후면 금속화 패턴의 전도율이 상기 히든 탭에 대해 덜 중요해지게 한다.
상기 히든 탭 인터커넥트가 태양 전지의 후면 상에서 결합되는 히든 탭 콘택 패드들의 위치와 숫자는 상기 태양 전지의 후면 금속화, 상기 히든 탭 콘택 패드들, 그리고 상기 인터커넥트를 통한 상기 전류 통로의 길이에 영향을 미친다. 이에 따라, 상기 히든 탭 콘택 패드들의 배치는 상기 전류 통로 내와 상기 히든 탭 인터커넥트를 통한 집전에 대한 저항을 최소화하도록 선택될 수 있다. 도 31a-도 31b(그리고 다음에 논의되는 도 31c)에 도시한 구성들 이외에도, 적합한 히든 탭 콘택 패드 배치들은, 예를 들면 2차원 어레이 및 상기 태양 전지의 긴 축에 직교하게 진행되는 열들 포함할 수 있다. 후자의 경우에서, 상기 히든 탭 콘택 패드들의 열은, 예를 들면 상기 제1 태양 전지의 짧은 에지에 인접하여 위치할 수 있다.
도 31c는 에지-연결된 히든 탭들 또는 상기 태양 전지의 후면의 길이를 따라 버스 같은 인터커넥트를 채용하는 히든 탭들을 구비하는 사용을 위해 적합한 다른 예시적인 태양 전지 후면 금속화 패턴(3303)을 도시한다. 상기 금속화 패턴은 상기 태양 전지의 후면의 긴 측면의 에지에 평행하고 인접하게 배열되는 연속되는 구리 콘택 패드(3315), 콘택 패드(3315)에 연결되고 그로부터 직교하게 연장되는 복수의 구리 핑거들(3317), 그리고 상기 태양 전지의 긴 측면들에 평행하게 진행되고 상기 태양 전지의 후면 상에 대략적으로 중심을 두는 연속되는 구리 버스 히든 탭 콘택 패드(3325)를 포함한다. 에지-연결된 인터커넥트는 상기 슈퍼 셀에 히든 탭을 제공하도록 구리 버스(3325)의 단부에 결합될 수 있다(두 개의 이러한 인터커넥트들이 원할 경우에 두 개의 히든 탭들을 제공하도록 구리 버스(3325)의 어느 하나의 단부에 채용될 수 있다). 선택적으로는, 실질적으로 상기 태양 전지의 전체 길이로 진행되는 인터커넥트는 상기 슈퍼 셀에 히든 탭을 제공하도록 구리 버스(3325)에 도전성으로 결합될 수 있다.
상기 히든 탭을 형성하도록 채용되는 상기 인터커넥트는 상기 후면 금속화 패턴 내의 히든 탭 콘택 패드에 납땜, 용접, 도전성 접착제, 또는 임의의 다른 적합한 방식에 의해 결합될 수 있다. 도 31a-도 31b에 예시한 바와 같은 실버 패드들을 채용하는 금속화 패턴들을 위해, 상기 인터커넥트는, 예를 들면 주석 코팅된 구리로 형성될 수 있다. 다른 접근은 상기 히든 탭을 알루미늄 대 알루미늄 결합을 형성하는 알루미늄 컨덕터로 알루미늄 후면 콘택(3310)에 직접 만드는 것이며, 이는 예를 들면 전기 또는 레이저 용접, 납땜, 또는 도전성 접착제로 형성될 수 있다. 특정 실시예들에서, 상기 콘택들은 주석을 포함할 수 있다. 앞서 설명한 경우들에서, 상기 태양 전지의 후면 금속화는 실버 콘택 패드들[(3320)(도 31a) 또는 (3325)(도 31b)]이 결핍될 수 있었지만, 에지-연결되거나 버스 같은 알루미늄 인터커넥트는 이들 콘택 패드들에 대응되는 위치들에서 알루미늄(또는 주석) 콘택(3310)에 결합될 수 있었다.
히든 탭 인터커넥트들(또는 전면 후면 슈퍼 셀 단자 콘택들에 대한 인터커넥트들)과 실리콘 태양 전지들 사이의 차등 열팽창 및 결과적인 상기 태양 전지와 상기 인터커넥트 상의 스트레스는, 상기 태양광 모듈의 성능을 저하시킬 수 있는 크래킹(cracking) 및 다른 고장 형태들을 가져올 수 있다. 이에 따라, 상기 히든 탭 및 다른 인터커넥트들이 중요한 스트레스 전개 없이 이러한 차등 팽창을 수용하도록 구성되는 것이 바람직하다. 상기 인터커넥트들은, 예를 들면, 높은 연성의 물질들(예를 들면, 연질의 구리, 매우 얇은 구리 시트)로 형성되거나, 낮은 열팽창 계수의 물질들(예를 들면, 코바르(Kovar), 인바(Invar) 또는 다른 낮은 열팽창의 철-니켈 합금들)로 형성되거나, 실리콘의 경우와 대략적으로 일치되는 열팽창 계수를 갖는 물질들로 형성되거나, 상기 인터커넥트와 상기 실리콘 태양 전지 사이의 차등 열팽창을 수용하는 슬릿들, 슬롯들, 홀들, 또는 트러스 구조(truss structure)들과 같은 평면 내의 기하학적 열팽창 특징들을 포함하거나 및/또는 킹크(kink)들, 조그(jog)들, 또는 딤플(dimple)들과 같은 이러한 차등 열팽창을 수용하는 평면 외의(out-of-plane) 기하학적 특징들을 채용하여 스트레스 및 열팽창 경감을 제공할 수 있다. 히든 탭 콘택 패드들에 결합되는(또는 다음에 설명하는 바와 같이 슈퍼 셀 전방 또는 후면 단자 콘택 패드들에 결합되는) 상기 인터커넥트들의 일부들은 상기 인터커넥트들의 유연성을 증가시키도록, 예를 들면, 약 100미크론 이하, 약 50미크론 이하, 약 30미크론 이하, 또는 약 25미크론 이하의 두께를 가질 수 있다.
도 7a, 도 7b-1 및 7B-2를 다시 참조하면, 이들 도면들은 참조 부호들 400A-400U로 나타내며, 스트레스-제거(stress-relieving) 기하학적 특징들을 채용하고 히든 탭들을 위한 인터커넥트들로서의 사용을 위하거나 전면이나 후면 슈퍼 셀 단자 콘택들에 대한 전기적 연결들을 위해 적합할 수 있는 몇몇 예시적인 인터커넥트 구성들을 도시한다. 이들 인터커넥트들은 통상적으로 이들이 결합되는 직사각형의 태양 전지의 긴 측면들의 길이와 대략적으로 동일한 길이를 가지지만, 이들은 임의의 다른 적합한 길이를 가질 수 있다. 도 7a에 도시한 예시적인 인터커넥트들(400A-400T)은 다양한 평면 내의 스트레스 제거 특징들을 채용한다. 도 7b-1의 평면 내의(x-y) 도면 및 도 7b-2의 평면 외의(x-z) 도면에 도시한 예시적인 인터커넥트(400U)는 평면 외의 스트레스-제거 특징들로서 얇은 금속 리본으로 벤드(bend)들(3705)을 채용한다. 벤드들(3705)은 상기 금속 리본의 분명한 인장 강성(tensile stiffness)을 감소시킨다. 상기 벤드들은 상기 리본 물질이 장력 하에 있을 때에 늘어나기만 하는 것 대신에 상기 리본 물질이 국부적으로 구부러지게 한다. 얇은 리본들에 대해서, 이는, 예를 들면 90% 또는 그 이상으로 상기 분명한 인장 강성을 상당히 감소시킬 수 있다. 분명한 인장 강성 감소의 정확한 양은 벤드들의 숫자, 상기 벤드들의 기하학적 구조 및 상기 리본의 두께를 포함하여 몇몇 인자들에 의존한다. 인터커넥트는 또한 평면 내의 및 평면 외의 스트레스 제거 특징들을 결합하여 채용할 수 있다.
도 37a-1 내지 도 38b-2는 다음에 더 논의되는 평면 내의 및/또는 평면 외의 스트레스를 제거하는 기하학적 특징들을 채용하고, 히든 탭들을 위한 에지-연결된 인터커넥트들로서 사용도기 위해 적합할 수 있는 몇몇 예시적인 인터커넥트 구성들을 도시한다.
각 히든 탭을 연결하는 데 필요한 컨덕터 진행들의 숫자를 감소시키거나 최소화하기 위하여, 히든 탭 인터커넥트 버스가 활용될 수 있다. 이러한 접근은 히든 탭 인터커넥트를 사용하여 인접하는 슈퍼 셀 히든 탭 콘택 패드들을 서로 연결한다(상기 전기적 연결은 통상적으로 양극 대 양극 또는 음극 대 음극, 즉, 각 단부에서 동일한 극성이다).
예를 들면, 도 32는 실질적으로 제1 슈퍼 셀(100) 내의 태양 전지(10)의 전체 길이로 진행되고, 도 31b에 도시한 바와 같이 배열되는 히든 탭 콘택 패드들(3325)에 도전성으로 결합되는 제1 히든 탭 인터커넥트(3400), 그리고 인접하는 열 내의 슈퍼 셀(100) 내의 대응되는 태양 전지의 전체 길이로 진행되고, 도 31b에 도시한 바와 같이 배열되는 히든 탭 콘택 패드들(3325)에 유사하게 도전성으로 결합되는 제2 히든 탭 인터커넥트(3400)를 도시한다. 상기 두 인터커넥트들(3400)은 서로 함께 배열되고 선택적으로 인접하거나 중첩되며, 서로 도전성으로 결합될 수 있거나, 그렇지 않으면 두 인접하는 슈퍼 셀들을 상호 연결하는 버스를 형성하도록 전기적으로 연결된다. 이러한 계획은 원하는 경우에 몇몇의 인접하는 슈퍼 셀들의 세그먼트들을 포함하는 태양광 모듈의 평행한 세그먼트를 형성하도록 슈퍼 셀들의 추가적인 열들(예를 들면, 모든 열들)에 걸쳐 연장될 수 있다. 도 33은 도 32로부터의 슈퍼 셀의 일부의 사시도를 도시한다.
도 35는 인접하는 열들 내의 슈퍼 셀들이 상기 슈퍼 셀들 사이의 갭을 가로지르고 하나의 슈퍼 셀 상의 히든 탭 콘택 패드(3320) 및 다른 하나의 슈퍼 셀 상의 다른 히든 탭 콘택 패드(3320)에 도전성으로 연결되는 짧은 인터커넥트(3400)에 의해 상호 연결되며, 도 32A에 도시한 바와 같이 배열되는 콘택 패드들을 구비하는 예를 도시한다. 도 36은 짧은 인터커넥트가 인접하는 열들 내의 두 슈퍼 셀들 사이의 갭을 가로지르고, 하나의 슈퍼 셀 상의 후면 금속화의 중심 구리 버스 부분의 단부 및 다른 하나의 슈퍼 셀의 후면 금속화의 중심 구리 버스 부분의 인접하는 단부에 도전성으로 결합되며, 도 31c에 도시한 바와 같이 구성되는 구리 후면 금속화를 구비하는 유사한 배치를 도시한다. 양 예들에서, 상기 상호 연결 계획들은 원하는 경우에 몇몇 인접하는 슈퍼 셀들의 세그먼트들을 포함하는 태양광 모듈의 평행한 세그먼트를 형성하도록 슈퍼 셀들의 추가적인 열들(예를 들면, 모든 열들)에 걸쳐 연장될 수 있다.
도 37a-1 내지 도 37f-3은 평면 애의 스트레스 제거 특징들(3405)을 포함하는 예시적인 짧은 히든 탭 인터커넥트들(3400)의 평면 내의(x-y) 및 평면 외의(x-z) 도면들을 도시한다(상기 x-y 평면은 상기 태양 전지 후면 금속화 패턴의 평면이다). 도 37a-1 내지 도 37e-2의 예들에서, 각 인터커넥트(3400)는 하나 또는 그 이상의 평면 내의 스트레스 제거 특징들의 대향하는 측면들에 위치하는 탭들(3400A, 3400B)을 포함한다. 예시적인 평면 내의 스트레스 제거 특징들은 하나, 둘 또는 그 이상의 중공형 다이아몬드 형상들의 배치들, 지그-재그(zig-zag)들 및 하나, 둘, 또는 그 이상의 슬롯들의 배치들을 포함한다.
여기에 사용되는 바와 같은 "평면 내의 스트레스 제거 특징(in plane stress relieving feature)"이라는 용어는 또한 상기 인터커넥트 또는 상기 인터커넥트의 일부의 두께나 연성을 언급할 수 있다. 예를 들면, 도 37f-1 내지 도 37f-3에 도시한 인터커넥트(3400)는 상기 인터커넥트의 유연성을 증가시키도록 직선형의 평탄한 길이의 얇은 구리 리본 또는 예를 들면, 약 100미크론보다 작거나 같거나, 약 50미크론보다 작거나 같거나, 약 30미크론보다 작거나 같거나, 약 25미크론보다 작거나 같은 상기 x-y 평면 내의 두께 T를 갖는 구리 포일(foil)로 형성된다. 상기 두께 T는, 예를 들면 약 50미크론이 될 수 있다. 상기 인터커넥트의 길이 L은 예를 들면, 약 8센티미터(㎝)가 될 수 있고, 상기 인터커넥트의 폭 W는 예를 들면, 약 0.5㎝가 될 수 있다. 도 37f-3 및 도 37f-1은 각기 상기 x-y 평면 내의 상기 인터커넥트의 전면도 및 후면도를 도시한다. 상기 인터커넥트의 전면은 상기 태양광 모듈의 후면을 마주한다. 상기 인터커넥트가 태양광 모듈 내의 슈퍼 셀들의 두 평행한 열들 사이의 갭을 가로지를 수 있기 때문에, 상기 인터커넥트의 일부가 상기 태양광 모듈의 전방으로부터 상기 갭을 통해 보일 수 있다. 선택적으로, 상기 인터커넥트의 이러한 보일 수 있는 부분은 그 가시성을 감소시키도록, 예를 들면 흑색 폴리머층으로 코팅되어 검게 만들어질 수 있다. 예시한 예에서, 약 0.5㎝의 길이 L2를 갖는 상기 인터커넥트의 전면의 중심 부분(3400C)은 얇은 흑색 폴리머층으로 코팅된다. 통상적으로, L2는 슈퍼 셀 열들 사이의 상기 갭의 폭보다 크거나 같다. 상기 흑색 폴리머층은, 예를 들면, 약 20미크론의 두께를 가질 수 있다. 이와 같은 얇은 구리 리본 인터커넥트는 또한 상술한 바와 같은 평면 내의 또는 평면 외의 스트레스 제거 특징들을 선택적으로 채용할 수 있다. 예를 들면, 상기 인터커넥트는 도 7b-1 및 도 7b-2에 대해 상술한 바와 같이 스트레스를 제거하는 평면 외의 벤드들을 포함할 수 있다.
도 38a-1 내지 도 38b-2는 평면 외의 스트레스 제거 특징들(3407)을 포함하는 예시적인 짧은 히든 탭 인터커넥트들(3400)의 평면 내의(x-y) 및 평면 외의(x-z) 도면들을 도시한다. 상기 예들에서, 각 인터커넥트(3400)는 하나 또는 그 이상의 평면 외의 스트레스 제거 특징들의 대향하는 측면들 상에 위치하는 탭들(3400A, 3400B)을 포함한다. 예시적인 평면 외의 스트레스 제거 특징들은 하나, 둘 또는 그이상의 벤드들, 킹크들, 딤플들, 조그들, 또는 리지(ridge)들의 배치들을 포함한다.
도 37a-1 내지 도 37e-2 및 도 38a-1 내지 도 38b-2에 예시한 스트레스 제거 특징들의 유형들과 배치들 및 도 37f-1 내지 도 37f-3에 대해 상술한 인터커넥트 리본 두께는 또한 적합한 경우에 상술한 바와 같은 긴 히든 탭 인터커넥트들 및 슈퍼 셀 후면 또는 전면 단자 콘택들에 결합되는 인터커넥트들 내에 채용될 수 있다. 인터커넥트는 평면 내의 및 평면 외의 스트레스 제거 특징들 모두를 결합하여 포함할 수 있다. 상기 평면 내의 및 평면 외의 스트레스 제거 특징들은 상기 태양 전지 연결 부위에 대한 변형 및 스트레스 효과들을 감소시키거나 최소화시키도록 설계되며, 이에 따라 매우 신뢰성 있고 탄성적인 전기적인 연결들을 생성한다.
도 39a-1 및 도 39a-2는 자동화, 제조의 용이성 및 배치 정확도가 가능하도록 셀 콘택 패드 정렬(alignment) 및 슈퍼 셀 에지 정렬 특징들을 구비하는 짧은 히든 탭 인터커넥트들을 위한 예시적인 구성들을 도시한다. 도 39b-1 및 도 39b-2는 비대칭의 탭 길이들을 가지는 짧은 히든 탭 인터커넥트들을 위한 예시적인 구성을 도시한다. 이러한 비대칭의 인터커넥트들은 상기 슈퍼 셀들의 긴 축에 평행하게 진행되는 컨덕터들의 중첩이 회피되도록 대향하는 배향들로 사용될 수 있다(다음의 도 42a-도 42b의 논의 참조).
여기서 설명되는 바와 같은 히든 탭들은 원하는 모듈 전기 회로를 제공하도록 모듈 레이아웃 내에 필요한 전기적 연결들을 형성할 수 있다. 히든 탭 연결들은, 예를 들면, 슈퍼 셀을 따라 12개, 24개, 36개 또는 48개의 태양 전지들의 간격들, 또는 임의의 다른 적합한 간격으로 이루어질 수 있다. 히든 탭들 사이의 간격은 적용에 기초하여 결정될 수 있다.
각 슈퍼 셀은 통상적으로 상기 슈퍼 셀의 일측 단부에서 전면 단자 콘택 및 상기 슈퍼 셀의 타측 단부에서 후면 단자 콘택을 포함할 수 있다. 슈퍼 셀이 상기 태양광 모듈의 길이 또는 폭을 가로지르는 변형예들에서, 이들 단자 콘택들은 상기 태양광 모듈의 대향하는 에지들에 인접하여 위치한다.
유연한 인터커넥트는 상기 슈퍼 셀을 다른 태양 전지들이나 상기 모듈 내의 전기적 구성 요소들에 전기적으로 연결하도록 슈퍼 셀의 전면 또는 후면 단자 콘택에 도전성으로 결합될 수 있다. 예를 들면, 도 34a는 상기 슈퍼 셀의 단부에서 후면 단자 콘택에 도전성으로 결합되는 인터커넥트(3410)를 구비하는 예시적인 태양광 모듈의 단면도를 도시한다. 후면 단자 콘택 인터커넥트(3410)는 상기 인터커넥트의 유연성을 증가시키도록, 예를 들면, 결합되는 상기 태양 전지의 표면에 직교하여 약 100미크론보다 작거나 같거나, 약 50미크론보다 작거나 같거나, 약 30미크론보다 작거나 같거나, 약 25미크론보다 작거나 같은 두께를 갖는 얇은 구리 리본 또는 포일이 될 수 있거나 이들을 포함할 수 있다. 상기 인터커넥트는 전도를 향상시키도록 상기 인터커넥트를 통한 전류의 흐름에 직교하는 방향으로 상기 태양 전지의 표면의 평면 내에서, 예를 들면, 약 10㎜보다 크거나 같은 폭을 가질 수 있다. 예시한 바와 같이, 후면 단자 콘택 인터커넥트(3410)는 상기 슈퍼 셀 열에 평행한 방향으로 상기 슈퍼 셀을 넘어 연장되는 상기 인터커넥트의 일부가 없이 상기 태양 전지들 뒤에 놓일 수 있다.
유사한 인터커넥트들이 전면 단자 콘택들을 연결하는 데 사용될 수 있다. 선택적으로는, 전면 단자 인터커넥트들에 의해 점유되는 상기 태양광 모듈의 전면의 면적을 감소시키기 위해, 전면 인터커넥트는 상기 슈퍼 셀에 직접 결합되는 얇고 유연한 부분 및 보다 높은 전도율을 제공하는 보다 두꺼운 부분을 포함할 수 있다. 이러한 배치는 원하는 전도율을 구현하는 데 필요한 상기 인터커넥트의 폭을 감소시킬 수 있다. 상기 인터커넥트의 보다 두꺼운 부분은, 예를 들면 상기 인터커넥트의 필수적인 부분이 될 수 있거나, 상기 인터커넥트의 보다 얇은 부분에 결합되는 별도의 조각이 될 수 있다. 예를 들면, 도 34b-도 34c는 각기 슈퍼 셀의 단부에서 전면 단자 콘택에 도전성으로 결합되는 예시적인 인터커넥트(3410)의 단면도를 도시한다. 양 예들에서, 상기 슈퍼 셀에 직접 결합되는 상기 인터커넥트의 얇고 유연한 부분(3410A)은 결합되는 상기 태양 전지의 표면에 직교하여 약 100미크론보다 작거나 같거나, 약 50미크론보다 작거나 같거나, 약 30미크론보다 작거나 같거나, 약 25미크론보다 작거나 같은 두께를 가지는 얇은 구리 리본 또는 포일을 포함한다. 상기 인터커넥트의 보다 두꺼운 구리 리본 부분(3410B)은 상기 인터커넥트의 전도율을 향상시키도록 얇은 부분(3410A)에 결합된다. 도 34b에서, 얇은 인터커넥트 부분(3410A)의 후면 상의 전기적으로 도전성인 테이프(3410C)는 상기 얇은 인터커넥트 부분을 상기 슈퍼 셀 및 두꺼운 인터커넥트 부분(3410B)에 결합시킨다. 도 34c에서, 얇은 인터커넥트 부분(3410A)은 전기적으로 도전성인 접착제(3410D)로 두꺼운 인터커넥트 부분(3410B)에 결합되고, 전기적으로 도전성인 접착제(3410E)로 상기 슈퍼 셀에 결합된다. 전기적으로 도전성인 접착제들(3410D, 3410E)은 동일하거나 다를 수 있다. 전기적으로 도전성인 접착제(3410E)는, 예를 들면, 땜납이 될 수 있다.
본 명세서에서 설명되는 태양광 모듈들은 슈퍼 셀들 및 투명한 전면 시트(3620)와 배면 시트(3630) 사이에 개재되는 하나 또는 그 이상의 봉지재 물질들(3610)을 구비하는 도 34a에 도시한 바와 같은 라미네이트 구조를 포함할 수 있다. 상기 투명한 전면 시트는, 예를 들면 유리가 될 수 있다. 상기 배면 시트 또한 유리 또는 임의의 다른 적합한 물질이 될 수 있다. 봉지재의 추가적인 스트립은 예시한 바와 같이 후면 단자 인터커넥트(3410)와 상기 슈퍼 셀의 후면 사이에 배치될 수 있다.
전술한 바와 같이, 히든 탭들은 "올 블랙(all black)"인 모듈 미적 특질을 제공한다. 이들 연결들이 통상적으로 매우 반사성인 컨덕터들로 만들어지기 때문에, 이들은 부착된 태양 전지들에 대해 정상적으로 높은 대비를 보일 수 있었다. 그러나, 상기 태양 전지들의 후면 상에 연결들을 형성하고, 또한 상기 태양 전지들 뒤에서 상기 태양광 모듈 회로 내에 다른 컨덕터들을 라우팅(routing)함에 의해, 다양한 컨덕터들이 시야에서 감춰진다. 이는 상기 "올 블랙" 외양을 여전히 유치하면서 다중의 연결 지점들(히든 탭 들)을 가능하게 한다.
히든 탭들은 다양한 모듈 레이아웃들을 형성하는 데 사용될 수 있다. 도 40(물리적 레이아웃) 및 도 41(전기 회로도)의 예에서, 태양광 모듈은 각기 상기 모듈의 길이들로 진행되는 여섯 개의 슈퍼 셀들을 포함한다. 히든 탭 콘택 패드들 및 짧은 인터커넥트들(3400)은 각 슈퍼 셀을 삼분의 일로 분할하고, 인접하는 슈퍼 셀 세그먼트들을 전기적으로 병렬로 연결하며, 이에 따라 병렬 연결된 슈퍼 셀 세그먼트들의 세 그룹들을 형성한다. 각 그룹은 상기 모듈의 라미네이트 구성에 통합되는(내장되는) 바이패스 다이오드들(1300A-1300C)의 다른 것에 병렬로 연결된다. 상기 바이패스 다이오드들은, 예를 들면, 직접 슈퍼 셀들의 뒤에 또는 슈퍼 셀들 사이에 위치할 수 있다. 상기 바이패스 다이오드들은, 예를 들면 대략적으로 상기 태양광 모듈의 긴 측면들에 평행한 상기 태양광 모듈의 중심선을 따라 위치할 수 있다.
도 42a-도 42b(도 41의 전기 회로도에도 대응되는)의 예에서, 태양광 모듈은 각기 상기 모듈의 길이로 진행되는 여섯 개의 슈퍼 셀들을 포함한다. 히든 탭 콘택 패드들 및 짧은 인터커넥트들(3400)은 각 슈퍼 셀을 삼분의 일로 분할하고, 인접하는 슈퍼 셀 세그먼트들을 전기적으로 병렬로 연결하며, 이에 따라 병렬 연결된 슈퍼 셀 세그먼트들의 세 그룹들을 형성한다. 각 그룹은 버스 연결들(1500A-1500C)을 통해 바이패스 다이오드들(1300A-1300C)의 다른 것에 병렬로 연결되며, 이들은 상기 슈퍼 셀들 뒤에 위치하고, 상기 히든 탭 콘택 패드들 및 짧은 인터커넥트들을 접합 박스 내의 상기 모듈의 후면에 위치하는 상기 바이패스 다이오드들에 연결한다.
도 42b는 짧은 히든 탭 인터커넥트들(3400) 및 컨덕터들(1500B, 1500C)의 연결의 상세도를 제공한다. 도시된 바와 같이 이들 컨덕터들은 서로 중첩되지 않는다. 예시한 예에서, 이는 대향하는 방향들로 배열되는 비대칭의 인터커넥트들(3400)의 사용을 가능하게 한다. 상기 컨덕터들의 중첩을 회피하는 선택적인 접근은 하나의 길이의 탭들을 갖는 제1 대칭 인터커넥트(3400) 및 다른 길이의 탭들을 갖는 제2 대칭 인터커넥트(3400)를 채용하는 것이다.
도 43(도 41의 전기 회로도에도 대응되는)의 예에서, 태양광 모듈은 히든 탭 인터커넥트들(3400)이 실질적으로 상기 태양광 모듈의 전체 폭으로 진행되는 연속되는 버스들을 형성하는 점을 제외하면 도 42a에 도시한 바와 유사하게 구성된다. 각 버스는 각 슈퍼 셀의 후면 금속화에 도전성으로 결합되는 단일의 긴 인터커넥트(3400)가 될 수 있다. 선택적으로는, 상기 버스는 각기 단일 슈퍼 셀을 가로지르고, 도 41에 대해 상술한 바와 같이 서로 도전성으로 결합되거나 그렇지 않으면 전기적으로 상호 연결되는 다중의 개별적인 인터커넥트들을 포함할 수 있다. 도 43은 또한 상기 슈퍼 셀들의 전면 단자 콘택들을 전기적으로 연결하도록 상기 태양광 모듈의 일측 단부를 따라 연속되는 버스를 형성하는 슈퍼 셀 단자 인터커넥트들(3410) 그리고 상기 슈퍼 셀들의 후면 단자 콘택들을 전기적으로 연결하도록 상기 태양광 모듈의 대향하는 단부를 따라 연속되는 버스를 형성하는 추가적인 슈퍼 셀 단자 인터커넥트들(3410)을 도시한다.
도 44a-도 44b의 예시적인 태양광 모듈은 또한 도 41의 전기 회로도에 대응된다. 이러한 예는 도 42a에서와 같은 짧은 히든 탭 인터커넥트들(3400) 및 도 43에서와 같이 상기 슈퍼 셀 전면 및 후면 단자 콘택들을 위한 연속되는 버스들을 형성하는 인터커넥트들(3410)을 채용한다.
도 47a(물리적 레이아웃) 및 도 47b(전기 회로도)의 예에서, 태양광 모듈은 각기 상기 태양광 모듈의 전체 길이로 진행되는 여섯 개의 슈퍼 셀들을 포함한다. 히든 탭 콘택 패드들 및 짧은 인터커넥트들(3400)은 각 슈퍼 셀을 2/3 길이의 부분 및 1/3 길이의 부분으로 분할한다. 상기 태양광 모듈의 하부 에지에서 인터커넥트들(3410)(도면에 나타낸 바와 같이)은 왼쪽의 세 개의 열들을 서로 병렬로 상호 연결하고, 오른쪽의 세 개의 열들을 서로 병렬로 상호 연결하며, 상기 왼쪽의 세 개의 열들을 상기 오른쪽의 세 개의 열들과 직렬로 상호 연결한다. 이러한 배치는 병렬 연결된 슈퍼 셀 세그먼트들의 세 그룹들을 형성하며, 각 슈퍼 셀 그룹은 상기 슈퍼 셀의 길이의 2/3인 길이를 가진다. 각 그룹은 바이패스 다이오드들(2000A-2000C)의 다른 것과 병렬로 연결된다. 이러한 배치는 이들이 대신에 도 41에 도시한 바와 같이 전기적으로 연결되었다면 동일한 슈퍼 셀들에 의해 제공될 수 있었던 경우보다 약 두 배의 전압 및 약 절반의 전류를 제공한다.
도 34a를 참조하여 전술한 바와 같이, 슈퍼 셀 후면 단자 콘택들에 결합되는 인터커넥트들은 전체적으로 상기 슈퍼 셀들 뒤에 놓일 수 있고, 상기 태양광 모듈의 전면(태양)측들로부터 시야에서 감춰질 수 있다. 슈퍼 셀 전면 단자 콘택들에 결합되는 인터커넥트들(3410)은 이들이 상기 슈퍼 셀들의 단부들(예를 들면, 도 44a에서와 같이)을 넘어 연장되기 때문이거나, 상기 슈퍼 셀들의 단부들 주위와 아래에서 접혀지기 때문에 상기 태양광 모듈(예를 들면, 도 43에서와 같이)의 배면도에서 보일 수 있다.
히든 탭들의 사용은 바이패스 다이오드 당 작은 숫자들의 태양 전지들의 그룹화를 가능하게 한다. 도 48a-도 48b의 예들(각기 물리적 레이아웃을 도시하는)에서, 태양광 모듈은 각기 상기 모듈의 길이로 진행되는 여섯 개의 슈퍼 셀들을 포함한다. 히든 탭 콘택 패드들 및 짧은 인터커넥트들(3400)은 각 슈퍼 셀을 오분의 일로 분할하고, 인접하는 슈퍼 셀 세그먼트들을 전기적으로 병렬로 연결하며, 이에 따라 병렬 연결된 슈퍼 셀 세그먼트들의 다섯 그룹들을 형성한다. 각 그룹은 상기 모듈의 라미네이트 구성 내로 통합되는(내장되는) 바이패스 다이오드들(2100A-2100E)의 다른 것과 병렬로 연결된다. 상기 바이패스 다이오드들은, 예를 들면, 직접 슈퍼 셀들 뒤에 또는 슈퍼 셀들 사이에 위치할 수 있다. 슈퍼 셀 단자 인터커넥트들(3410)은 상기 슈퍼 셀들의 전면 단자 콘택들을 전기적으로 연결하도록 상기 태양광 모듈의 일측 단부를 따라 연속되는 버스를 형성하며, 추가적인 슈퍼 셀 단자 인터커넥트들(3410)은 상기 슈퍼 셀들의 후면 단자 콘택들을 전기적으로 연결하도록 상기 태양광 모듈의 대향하는 단부를 따라 연속되는 버스를 형성한다. 도 48a의 예에서, 단일의 접합 박스(2110)는 컨덕터들(2115A, 2115B)에 의해 상기 전방 및 후면 단자 인터커넥트 버스들에 전기적으로 연결된다. 그러나 상기 접합 박스 내에 다이오드들이 존재하지 않으므로, 선택적으로는(도 48b) 상기 긴 복위 컨덕터들(2215A, 2115B)이 제거될 수 있으며, 상기 단일의 접합 박스(2110)는, 예를 들면 상기 모듈의 대향하는 에지들에 위치하는 두 개의 단일 극성(+ 또는 -)의 접합 박스들(2110A-2110B)로 대체될 수 있다. 이는 상기 긴 복귀 컨덕터들 내의 저항성 손실을 제거한다.
비록 여기에 설명되는 예들이 각 슈퍼 셀을 태양 전지들의 셋 또는 다섯 그룹들로 전기적으로 분할하도록 히든 탭들을 사용하지만, 이들 예들은 예시적이며 제한적이지 않은 것으로 의도된다. 보다 일반적으로, 히든 탭들은 슈퍼 셀을 예시된 경우보다 많거나 보다 적은 태양 전지들의 그룹들 및/또는 예시된 경우보다 많거나 보다 적은 그룹 당 태양 전지들로 전기적으로 분할하도록 사용될 수 있다.
순 바이어스되고 도전 상태로 바이패스 다이오드를 구비하지 않고 여기에 설명되는 태양광 모듈들의 정상 동작에서, 임의의 히든 탭 콘택 패드를 통재 적은 전류가 흐르거나 전류가 흐르지 않는다. 대신에, 전류는 각 슈퍼 셀의 길이에 걸쳐 인접하는 중첩되는 태양 전지들 사이에 형성되는 셀 대 셀의 도전성 결합들을 통해 흐른다. 대조적으로, 도 45는 상기 태양광 모듈의 일부가 순 바이어스된 바이패스 다이오드를 통해 바이패스되는 때에 전류 흐름을 도시한다. 화살표들로 나타낸 바와 같이, 이러한 예에서 가장 왼쪽의 슈퍼 셀 내의 전류는 상기 슈퍼 셀을 따라 상기 태브드(tapped) 태양 전지에 도달할 때까지 흐르며, 이후에 상기 태양 전지의 후면 금속화, 히든 탭 콘택 패드(도시되지 않음), 인터커넥트(3400)를 통해 상기 인접하는 슈퍼 셀 내의 제2 태양 전지, 상기 인터커넥트가 상기 제2 태양 전지 상에서 결합되는 다른 히든 탭 콘택 패드(도시되지 않음)까지, 상기 제2 태양 전지의 후면 금속화를 통하고, 추가적인 히든 탭 콘택 패드들을 통해, 인터커넥트들 및 태양 전지 후면 금속화를 통해 버스 연결(1500)에 도달되고 상기 바이패스 다이오드에 도달되도록 흐른다. 다른 슈퍼 셀들을 통한 전류 흐름도 유사하다. 예시로부터 명백한 바와 같이, 이러한 상황들 하에서 히든 탭 콘택 패드들은 슈퍼 셀들의 둘 또는 그 이상의 열들로부터 전류를 전도할 수 있으며, 이에 따라 상기 모듈 내의 임의의 단일 태양 전지 내에서 발생되는 전류보다 큰 전류를 전도할 수 있다.
통상적으로 히든 탭 콘택 패드와 대향하는 태양 전지의 전면 상에 버스 바, 콘택 패드, 또는 다른 광 차단 요소(light blocking element)(전면 금속화 핑거들 또는 인접하는 태양 전지의 중첩되는 부분이외에)가 존재하지 않는다. 이에 따라, 상기 히든 탭 콘택 패드가 실리콘 태양 전지 상에 실버로 형성될 경우, 상기 히든 탭 콘택 패드의 영역 내의 상기 태양 전지의 광 변환 효율이 상기 실버 콘택 패드가 후면 전하 재결합을 방지하는 후면 전계의 효과를 감소시키는 경우에 감소될 수 있다. 이러한 효율의 손실을 회피하기 위하여, 통상적으로 슈퍼 셀 내의 대부분의 태양 전지들은 히든 탭 콘택 패드들을 포함하지 않는다(예를 들면, 일부 변형예들에서 바이패스 다이오드 회로를 위해 히든 탭 콘택 패드가 필요한 이들 태양 전지들만이 이와 같은 히든 탭 콘택 패드를 포함할 것이다). 또한, 히든 탭 콘택 패드들을 포함하는 태양 전지들 내에서의 전류 생성을 히든 탭 콘택 패드들이 결핍되는 태양 전지들 내에서의 전류 생성과 일치시키기 위하여, 상기 히든 탭 콘택 패드들을 포함하는 태양 전지들은 상기 히든 탭 콘택 패드들이 결핍된 태양 전지들보다 큰 집광 면적을 가질 수 있다.
개개의 히든 탭 콘택 패드들은, 예를 들면 약 5㎜보다 작거나 같게 약 2㎜보다 작거나 같은 직사각형의 치수들을 가질 수 있다.
태양광 모듈들은 이들이 설치되는 환경, 동작 동안 및 시험 동안에 온도 변화들의 결과로서 온도 사이클을 겪는다. 도 46a에 도시한 바와 같이, 이러한 온도 사이클 동안에 상기 슈퍼 셀 내의 실리콘 태양 전지들과 상기 모듈의 다른 부분들, 예를 들면 상기 모듈의 유리 전면 시트 사이의 열팽창의 불일치는 상기 슈퍼 셀과 상기 모듈의 다른 부분들 사이에 상기 슈퍼 셀 열들의 긴 축들을 따라 상대적인 운동을 가져온다. 이러한 불일치는 상기 슈퍼 셀들을 신장시키거나 압축시키는 경향이 있으며, 상기 태양 전지들 또는 상기 슈퍼 셀들 내의 태양 전지들 사이의 도전성 결합들을 손상시킬 수 있다. 유사하게, 도 46b에 도시한 바와 같이, 온도 사이클 동안에 태양 전지에 결합된 인터커넥트와 상기 태양 전지 사이의 열팽창의 불일치는 상기 인터커넥트와 상기 태양 전지 사이에 상기 슈퍼 셀들의 열들에 직교하는 방향으로 상대적인 운동을 야기한다. 이러한 불일치는 상기 태양 전지들, 상기 인터커넥트, 그리고 이들 사이의 도전성 결합을 변형시키고 손상시킬 수 있다. 이러한 점은 히든 탭 콘택 패드들에 결합된 인터커넥트들에 대해서와 슈퍼 셀 전면 또는 후면 단자 콘택들에 결합된 인터커넥트들에 대해서 일어날 수 있다.
유사하게, 태양광 모듈의 주기적인 기계적 하중이, 예를 들면 운송 동안이나 기후(예를 들면 바람과 눈)로부터 슈퍼 셀 내의 셀간 결합들에서와 태양 전지와 인터커넥트 사이의 결합에 국소적인 전단력(shear force)들을 생성할 수 있다. 이들 전단력들 또한 상기 태양광 모듈을 손상시킬 수 있다.
상기 슈퍼 셀 열들의 긴 축을 따른 상기 슈퍼 셀들과 상기 태양광 모듈의 다른 부분들 사이의 상대적인 운동으로부터 야기되는 문제점들을 방지하기 위하여, 인접하고 중첩되는 태양 전지들을 서로 결합시키는 데 사용되는 상기 도전성 접착제가 중첩되는 태양 전지들 사이에 상기 슈퍼 셀들에 기계적 컴플라이언스를 제공하여 상기 태양광 모듈을 손상시키지 않고 약 -40℃ 내지 약 100℃의 온도 범위에 대해 상기 열들에 평행한 방향으로 상기 슈퍼 셀들과 상기 모듈의 유리 전면 시트 사이의 열팽창의 불일치를 수용하는 유연한 도전성 결합(3515)(도 46a)을 형성하도록 선택될 수 있다. 상기 도전성 접착제는 표준 테스트 조건들(즉, 25℃)에서, 예를 들면, 약 100메가파스칼(MPa)보다 작거나 같거나, 약 200MPa보다 작거나 같거나, 약 300MPa보다 작거나 같거나, 약 400MPa보다 작거나 같거나, 약 500MPa보다 작거나 같거나, 약 600MPa보다 작거나 같거나, 약 700MPa보다 작거나 같거나, 약 800MPa보다 작거나 같거나, 약 900MPa보다 작거나 같거나, 약 1000MPa보다 작거나 같은 전단 탄성 계수(shear modulus)를 갖는 도전성 결합들을 형성하도록 선택될 수 있다. 중첩되고 인접하는 태양 전지들 사이의 상기 유연한 도전성 결합들은, 예를 들면 각 셀과 상기 유리 전면 시트 사이에서 약 15미크론보다 크거나 같은 차등 운동을 수용할 수 있다. 적합한 도전성 접착제들은, 예를 들면, 엔지니어드 컨턱티브 머티어리얼즈(Engineered Conductive Materials LLC)로부터 입수 가능한 ECM 1541-S3을 포함할 수 있다.
상기 태양광 모듈의 동작 동안에 야기될 수 있는 핫 스팟들로부터 상기 태양광 모듈을 손상시키는 위험을 감소시키는 슈퍼 셀을 따른 열의 흐름을 증진시키기 위하여, 상기 모듈 내의 태양 전지가 쉐이딩이나 일부 다른 원인의 결과로 역 바이어스될 경우, 중첩되는 인접하는 태양 전지들 사이의 도전성 결합들은, 예를 들면, 상기 태양 전지들에 직교하여 약 50미크론보다 작거나 같은 두께 및 상기 태양 전지들에 직교하여 약 1.5 W/(미터-K)보다 크거나 같은 열전도율을 구비하여 형성될 수 있다.
인터커넥트와 그 부착되는 태양 전지 사이의 상대적인 운동으로부터 야기되는 문제점들을 방지하기 위하여, 상기 인터커넥트를 상기 태양 전지에 결합시키도록 사용되는 상기 도전성 접착제는 상기 인터커넥트가 상기 태양광 모듈의 손상 없이 약 -40℃ 내지 약 180℃의 온도 범위에 대해 상기 태양 전지와 상기 인터커넥트 사이의 열팽창의 불일치를 수용하게 하도록 충분히 뻣뻣한 상기 태양 전지와 상기 인터커넥트 사이의 도전성 결합을 형성하도록 선택될 수 있다. 이러한 도전성 접착제는 표준 테스트 조건들(즉, 25℃)에서, 예를 들면, 약 1800MPa보다 크거나 같거나, 약 1900MPa보다 크거나 같거나, 약 2000MPa보다 크거나 같거나, 약 2100MPa보다 크거나 같거나, 약 2200MPa보다 크거나 같거나, 약 2300MPa보다 크거나 같거나, 약 2400MPa보다 크거나 같거나, 약 2500MPa보다 크거나 같거나, 약 2600MPa보다 크거나 같거나, 약 2700MPa보다 크거나 같거나, 약 2800MPa보다 크거나 같거나, 약 2900MPa보다 크거나 같거나, 약 3000MPa보다 크거나 같거나, 약 3100MPa보다 크거나 같거나, 약 3200MPa보다 크거나 같거나, 약 3300MPa보다 크거나 같거나, 약 3400MPa보다 크거나 같거나, 약 3500MPa보다 크거나 같거나, 약 3600MPa보다 크거나 같거나, 약 3700MPa보다 크거나 같거나, 약 3800MPa보다 크거나 같거나, 약 3900MPa보다 크거나 같거나, 약 4000MPa보다 크거나 같은 전단 탄성 계수를 갖는 도전성 결합을 형성하도록 선택될 수 있다. 이러한 변형예들에서, 상기 인터커넥트는, 예를 들면 약 40미크론보다 크거나 같은 상기 인터커넥트의 열팽창이나 수축을 견딜 수 있다. 적합한 도전성 접착제들은, 예를 들면, 히타치(Hitachi) CP-450 및 땜납들을 포함할 수 있다.
이에 따라, 상기 슈퍼 셀 내의 중첩되고 인접하는 태양 전지들 사이의 도전성 결합들은 상기 슈퍼 셀과 상기 유연한 전기적 인터커넥트 사이의 상기 도전성 결합들과 다른 도전성 접착제를 활용할 수 있다. 예를 들면, 상기 슈퍼 셀과 상기 유연한 전기적 인터커넥트 사이의 도전성 결합은 땜납으로 형성될 수 있고, 상기 중첩되고 인접하는 태양 전지들 사이의 도전성 결합들은 땜납이 아닌 도전성 접착제로 형성될 수 있다. 일부 변형예들에서, 도전성 접착제들은 모두 단일 공정 단계에서, 예를 들면 약 150℃ 내지 약 180℃의 공정 윈도우(process window)에서 큐어링될 수 있다.
앞서의 논의는 공통 기판 상에 슁글드 방식으로 복수의 태양 전지들(절단된 태양 전지들이 될 수 있다)을 조립하는 것에 중점을 두었다. 이는 모듈의 형성을 가져온다.
그러나 유용하게 되는 충분한 양의 태양 에너지를 모으기 위하여, 설비는 통상적으로 이들 자체가 함께 조립되는 수많은 이러한 모듈들을 구비한다. 실시예들에 따르면, 어레이의 면적 효율을 증가시키도록 복수의 태양 전지 모듈들 또한 슁글드 방식으로 조립될 수 있다.
특정 실시예에서, 모듈은 태양 에너지의 방향을 마주하는 상단 도전성 리본 및 상기 태양 에너지의 방향으로부터 떨어져 마주하는 하단 도전성 리본으로 특징지어질 수 있다.
상기 하단 리본은 상기 셀들 아래에 매립된다. 따라서, 이는 유입되는 광을 차단하지 않으며, 상기 모듈의 면적 효율에 불리한 영향을 미치지 않는다. 대조적으로, 상기 상단 리본은 노출되며, 상기 유입되는 광을 차단할 수 있고 효율에 불리한 영향을 미칠 수 있다.
실시예들에 따르면, 상기 모듈들 자체가 상기 상단 리본이 이웃하는 모듈에 의해 덮이도록 슁글드될 수 있다. 이러한 슁글드 모듈 구성은 또한 상기 모듈 어레이의 최종적인 노출되는 면적에 불리한 영향을 미치지 않고 다른 요소들을 위해 상기 모듈 상에 추가적인 면적을 제공할 수 있었다. 중첩되는 영역들 내에 위치할 수 있는 모듈 요소들의 예들은, 이에 한정되는 것은 아니지만, 접합 박스들(j-박스들) 및/또는 버스 리본들을 포함할 수 있다.
특정 실시예들에서, 각각의 인접하는 슁글드 모듈들의 j-박스들은 이들 사이에 도전성 연결을 구현하기 위하여 일렬인 배치가 된다. 이는 배선을 제거하여 슁글드 모듈들의 어레이의 구성을 단순화한다.
특정 실시예들에서, 상기 j-박스들은 강화될 수 있었거나 및/또는 추가적인 구조 스탠드오프들과 결합될 수 있었다. 이와 같은 구성은 통합되고 기울어진 모듈 루프 마운트 랙 솔루션을 생성할 수 있었고, 여기서 상기 접합 박스의 치수가 기울기를 결정한다. 이와 같은 구현은 슁글드 모듈들의 어레이가 평탄한 지붕 상에 장착되는 경우에 특히 유용할 수 있다.
슁글드 슈퍼 셀들은 모듈 레벨 전원 관리 장치들(예를 들면, DC/AC 마이크로인버터들, DC/DC 모듈 파워 옵티마이저들, 전압 지능 및 스마트 스위치들, 그리고 관련 장치들)에 대해 모듈 레이아웃을 위한 특유한 기회들을 제공한다. 모듈 레벨 전원 관리 시스템들의 특징은 전력 최적화이다. 여기에 설명되고 채용되는 바와 같은 슈퍼 셀들은 전통적인 패널들보다 높은 전압들을 생성할 수 있다. 또한, 슈퍼 셀 모듈 레이아웃은 상기 모듈을 더 분할할 수 있다. 보다 높은 전압들 및 증가된 분할 모두는 전력 최적화를 위한 잠재적인 이점들을 생성한다.
본 명세서에는 슈퍼 셀들을 형성하도록 슁글드 방식으로 배열되고 전기적으로 직렬로 연결되는 좁은 직사각형의 실리콘 태양 전지들을 포함하는 고효율 태양광 모듈들(즉, 태양광 패널들)이 개시되며, 상기 슈퍼 셀들은 상기 태양광 모듈 내에 물리적으로 평행한 열들로 배열된다. 상기 슈퍼 셀들은, 예를 들면 기본적으로 상기 태양광 모듈의 전체 길이나 폭을 걸치는 길이들을 가질 수 있거나, 둘 또는 그 이상의 슈퍼 셀들이 열 내에 단대단으로 배열될 수 있다. 각 슈퍼 셀은, 예를 들면 일부 변형예들에서 적어도 열아홉 개의 태양 전지들 및 특정 변형예들에서 100개보다 크거나 같은 실리콘 태양 전지들을 포함하여 임의의 숫자의 태양 전지들을 포함할 수 있다. 각 태양광 모듈은 종래의 크기와 형상을 가질 수 있고, 여전히 수백 개의 실리콘 태양 전지들을 포함하며, 단일 태양광 모듈 내의 상기 슈퍼 셀들이, 예를 들면, 약 90볼트(V) 내지 약 450V 또는 그 이상의 직류(DC) 전압을 제공하도록 전기적으로 상호 연결되게 할 수 있다.
다음에 더 논의되는 바와 같이, 이러한 높은 DC 전압은 인버터(예를 들면, 상기 태양광 모듈 상에 위치하는 마이크로인버터)에 의해 상기 인버터에 의한 AC로의 변환 이전에 DC 대 DC 부스트(boost)(DC 전압의 스텝 업(step-up))에 대한 필요성을 제거하거나 감소시킴에 의하여 직류로부터 교류 전류(AC)로의 변환을 가능하게 한다. 또한, 다음에 더 논의되는 바와 같이, 상기 높은 DC 전압은 또한 DC/AC 변환이 서로 전기적으로 병렬로 연결되는 둘 또는 그 이상의 고전압 슁글드 태양 전지 모듈들로부터 고전압 DC 출력을 수신하는 중심 인버터에 의해 수행되는 배치들의 사용을 가능하게 한다.
본 명세서에 설명되는 태양광 모듈들의 보다 상세한 이해를 위해 도면들을 다시 참조하면, 도 1은 슈퍼 셀(100)을 형성하도록 중첩되고 전기적으로 연결되는 인접하는 태양 전지들의 단부들을 구비하여 슁글드 방식으로 배열되는 직렬 연결된 태양 전지들(10)의 스트링의 단면도를 도시한다. 각 태양 전지(10)는 반도체 다이오드 구조 및 태양 전지(10)에 의해 발생되는 전류가 광에 의해 조명될 때에 외부 부하에 제공될 수 있는 상기 반도체 다이오드 구조에 대한 전기적 콘택들을 포함한다.
본 명세서에서 설명되는 예들에서, 각 태양 전지(10)는 n-p 접합의 대향하는 측면들에 대해 전기적인 접촉을 제공하는 전면(태양측) 및 후면(차광측) 금속화 패턴들을 갖는 직사각형의 결정질 실리콘 태양 전지이고, 상기 전면 금속화 패턴은 n-형 도전성의 반도체층 상에 배치되며, 상기 후면 금속화 패턴은 p-형 도전성의 반도체층 상에 배치된다. 그러나, 다른 물질 시스템들, 다이오드 구조들, 물리적 치수들, 또는 전기적 콘택 배치들이 적합한 경우에 사용될 수 있다. 예를 들면, 상기 전면(태양측) 금속화 패턴은 p-형 도전성의 반도체층 상에 배치될 수 있고, 상기 후면(차광측) 금속화 패턴은 n-형 도전성의 반도체층 상에 배치될 수 있다.
도 1을 다시 참조하면, 슈퍼 셀(100)에서 인접하는 태양 전지들(10)은 이들이 하나의 태양 전지의 전면 금속화 패턴을 상기 인접하는 태양 전지의 후면 금속화 패턴에 전기적으로 연결하는 전기적으로 도전성인 결합 물질에 의해 중첩되는 영역 내에서 서로 도전성으로 결합된다. 적합한 전기적으로 도전성인 결합 물질들은, 예를 들면, 전기적으로 도전성인 접착제들 및 전기적으로 도전성인 접착 필름들과 접착 테이프들, 그리고 종래의 땜납들을 포함할 수 있다.
도 2는 각기 상기 태양광 모듈의 긴 측면들의 길이와 대략적으로 동일한 길이를 가지는 여섯 개의 직사각형의 슈퍼 셀들(100)을 포함하는 예시적인 직사각형의 태양광 모듈(200)을 도시한다. 상기 슈퍼 셀들은 상기 모듈의 긴 측면들에 평행하게 배향되는 이들의 긴 측면들을 구비하여 여섯 개의 평행한 열들로 배열된다. 유사하게 구성되는 태양광 모듈은 이러한 예에서 도시한 경우 보다 많거나 보다 적은 이러한 측면 길이의 슈퍼 셀들의 열들을 포함할 수 있다. 다른 변형예들에서, 상기 슈퍼 셀들은 각기 직사각형의 태양광 모듈의 짧은 측면의 길이와 대략적으로 동일한 길이를 가질 수 있고, 상기 모듈의 짧은 측면들에 평행하게 배향된 이들의 긴 측면들을 구비하여 열들 내에 평행하게 배열될 수 있다. 또 다른 배치에서, 각 열은 전기적으로 직렬로 연결되는 둘 또는 그 이상의 슈퍼 셀들을 포함할 수 있다. 상기 모듈들은 예를 들면, 약 1미터의 길이를 갖는 짧은 측면들 및 예를 들면, 약 1.5미터 내지 약 2.0미터의 길이를 갖는 긴 측면들을 가질 수 있다. 태양광 모듈들을 위한 임의의 다른 적합한 형상들(예를 들면, 정사각형) 및 치수들 또한 사용될 수 있다.
일부 변형예들에서, 상기 중첩되는 태양 전지들 사이의 도전성 결합들은 상기 슈퍼 셀들에 기계적 컴플라이언스를 제공하여, 상기 태양광 모듈을 손상시키지 않고 약 -40℃ 내지 약 100℃의 온도 범위에 대해 상기 열들에 평행한 방향으로 상기 슈퍼 셀들과 상기 태양광 모듈의 전면 시트 사이의 열팽창의 불일치를 수용한다.
예시한 예에서 각 슈퍼 셀은 각기 종래 크기의 156㎜ 정사각형 또는 의사 정사각형의 실리콘 웨이퍼의 폭의 1/6과 동일하거나 대략적으로 동일한 폭을 가지고, 상기 정사각형 또는 의사 정사각형의 웨이퍼의 폭과 동일하거나 대략적으로 동일한 길이를 가지는 72개의 직사각형의 태양 전지들을 포함한다. 보다 일반적으로, 여기서 설명되는 태양광 모듈들 내에 채용되는 직사각형의 실리콘 태양 전지들은 예를 들면, 종래 크기의 정사각형 또는 의사 정사각형의 실리콘 웨이퍼의 폭과 동일하거나 대략적으로 동일한 길이들 및 예를 들면, 종래 크기의 정사각형 또는 의사 정사각형의 웨이퍼의 폭의 1/M과 동일하거나 대략적으로 동일한 폭들을 가질 수 있으며, M은 ≤20의 임의의 정수이다. M은, 예를 들면 3, 4, 5, 6 또는 12가 될 수 있다. M은 또한 20 이상일 수 있다. 슈퍼 셀은 임의의 적절한 숫자의 이러한 직사각형의 태양 전지들을 포함할 수 있다.
앞서 설명한 슁글링 접근이 종래의 경우보다 많은 모듈 당 셀들을 포함하기 때문에, 태양광 모듈(200) 내의 슈퍼 셀들은 종래 크기의 태양광 모듈로부터 종래의 전압보다 높은 전압을 제공하도록 전기적 인터커넥트들(선택적으로, 유연한 전기적 인터커넥트들)에 의하거나 다음에 설명하는 바와 같은 모듈 레벨 파워 일렉트로닉스(power electronics)에 의해 직렬로 상호 연결될 수 있다. 예를 들면, 1/8로 절단된 실리콘 태양 전지들로부터 만들어지는 슈퍼 셀들을 포함하는 종래 크기의 태양광 모듈은 모듈 당 600개 이상의 태양 전지들을 포함할 수 있다. 이에 비하여, 종래 크기의 상호 연결된 실리콘 태양 전지들을 포함하는 종래 크기의 태양광 모듈은 통상적으로 모듈 당 약 60개의 태양 전지들을 포함한다. 종래의 실리콘 태양광 모듈들에서, 정사각형 또는 의사 정사각형의 태양 전지들은 통상적으로 구리 리본들에 의해 상호 연결되며, 상기 상호 연결들을 수용하도록 서로 이격된다. 이러한 경우들에서, 상기 종래 크기의 정사각형 또는 의사 정사각형의 웨이퍼들을 좁은 직사각형들로 자르는 것은 상기 모듈 내의 활성 태양 전지 영역의 전체적인 양을 감소시킬 수 있었으며, 이에 따라 요구되는 추가적인 셀 대 셀 인터커넥트들로 인해 모듈 전력을 감소시킬 수 있었다. 대조적으로, 여기에 개시되는 태양광 모듈들에서 상기 슁글드 배치는 활성 태양 전지 영역 아래에 셀 대 셀 전기적 상호 연결들을 감춘다. 이에 따라, 여기에 개시되는 태양광 모듈들은 상기 태양광 모듈 내의 모듈 전력과 태양 전지들의 숫자(및 요구되는 셀 대 셀 상호 연결들) 사이의 트레이드오프(tradeoff)가 적거나 존재하지 않기 때문에 모듈 출력 전력을 감소시키지 않고 높은 출력 전압들을 제공할 수 있다.
모든 태양 전지들이 직렬로 연결될 때, 여기에 설명되는 바와 같은 슁글드 태양 전지 모듈은, 예를 들면 약 90볼트 내지 약 450볼트 또는 그 이상의 범위 내의 DC 전압을 제공할 수 있다. 전술한 바와 같이, 이러한 높은 DC 전압이 유리할 수 있다.
예를 들면, 태양광 모듈 부근이나 상부에 배치되는 마이크로인버터는 모듈 레벨 전력 최적화 및 DC 대 AC 변환을 위해 사용될 수 있다. 도 49a-도 49b를 이제 참조하면, 종래의 마이크로인버터(4310)는 단일 태양광 모듈(4300)로부터의 25V 내지 40V의 DC 입력을 수신하고, 연결된 그리드(grid)를 일치시키도록 230V의 AC 출력을 출력한다. 상기 마이크로인버터는 통상적으로 두 주요 구성 요소들인 DC/DC 부스트 및 DC/AC 인버전(inversion)을 포함한다. 상기 DC/DC 부스트는 상기 DC/AC 변환을 위해 요구되는 DC 버스 전압을 증가시키는 데 활용되며, 통상적으로 가장 비싸고 손실되는(2%의 효율 손실) 구성 요소이다. 여기서 설명되는 태양광 모듈들이 고전압 전력을 제공하기 때문에, DC/DC 부스트에 대한 필요성이 감소될 수 있거나 소거될 수 있다(도 49b). 이는 비용을 감소시킬 수 있고, 상기 태양광 모듈(200)의 효율과 신뢰성을 증가시킬 수 있다.
마이크로인버터들보다는 중심("스트링(string)") 인버터를 사용하는 종래의 배치들에서, 종래의 낮은 DC 출력의 태양광 모듈들은 서로에 대해서와 상기 스트링 인버터에 전기적으로 직렬로 연결된다. 상기 태양광 모듈들의 스트링에 의해 생성된 전압은 상기 모듈들이 직렬로 연결되기 때문에 상기 개개의 모듈 전압들의 합계와 동일하다. 허용되는 전압 범위는 상기 스트링 내의 모듈들의 최대 및 최소의 숫자를 결정한다. 모듈들의 최대의 숫자는 상기 모듈 전압 및 코드 전압 한계(code voltage limit)들: 예를 들면 Nmax×Voc<600V(US 주거용 기준) 또는 Nmax×Voc<1,000V(상업용 기준)에 의해 설정된다. 직렬인 모듈들의 최소 숫자는 상기 모듈 전압 및 상기 스트링 인버터에 의해 요구되는 최소 동작 전압: Nmin×Vmp>VInvertermin에 의해 설정된다. 상기 스트링 인버터(예를 들면, 프로니우스(Fronius), 파워원(Powerone) 또는 SMA 인버터)에 의해 요구되는 상기 최소 동작 전압(VInvertermin)은 통상적으로 약 180V 내지 약 250V이다. 통상적으로, 상기 스트링 인버터를 위한 동작 전압은 약 400V이다.
여기에 설명되는 바와 같은 단일의 높은 DC 전압 슁글드 태양 전지 모듈은 상기 스트링 인버터에 의해 요구되는 최소 동작 전압보다 크고, 선택적으로 상기 스트링 인버터에 대한 최적 동작 전압에서 또는 부근인 전압을 생성할 수 있다. 그 결과, 여기에 설명되는 높은 DC 전압 슁글드 태양 전지 모듈들은 스트링 인버터에 대해 서로 전기적으로 병렬로 연결될 수 있다. 이는 시스템 설계 및 설치를 복잡하게 만들 수 있는 상기 직렬 연결된 모듈 스트링들의 스트링 길이 요구 사항들을 회피한다. 또한, 태양광 모듈들의 직렬 연결된 스트링에서, 가장 낮은 전류의 모듈이 가장 중요한 특징이 되며, 상기 시스템은 다른 지붕 기울기들 상의 모듈들에 대해서나 나무 그늘의 결과로 일어날 수 있는 바와 같이 상기 스트링 내의 다른 모듈들이 다른 조명을 수용할 경우에 효율적으로 동작하지 않을 수 있다. 여기에 설명되는 평행한 고전압 모듈 구성 역시 각 태양광 모듈을 통한 전류가 다른 태양광 모듈들을 통한 전류와 독립적이기 때문에 이들 문제점들을 회피할 수 있다. 또한, 이러한 배치들은 모듈 레벨 파워 일렉트로닉스를 요구할 필요가 없고, 이에 따라 상기 태양광 모듈들의 신뢰성을 향상시킬 수 있으며, 이는 상기 태양광 모듈들이 지붕 상단에 배치되는 변형예들에서 특히 중요할 수 있다.
도 50a-도 50b를 이제 참조하면, 상술한 바와 같이, 슈퍼 셀은 대략적으로 상기 태양광 모듈의 전체 길이 또는 폭으로 진행될 수 있다. 상기 슈퍼 셀의 길이를 따라 전기적 연결들이 가능해지기 위하여, 감춰진(전방 시야로부터) 전기적 태핑(tapping) 지점은 상기 태양광 모듈 구성 내로 통합될 수 있다. 이는 상기 슈퍼 셀의 단부 또는 중간 위치에서 전기적 컨덕터를 상기 태양 전지의 후면 금속화에 연결시킴에 의해 구현될 수 있다. 이러한 히든 탭들은 슈퍼 셀의 전기적 분할을 가능하게 하고, 바이패스 다이오드들, 모듈 레벨 파워 일렉트로닉스(예를 들면, 마이크로인버터, 파워 옵티마이저, 전압 지능 및 스마트 스위치들, 그리고 관련 장치들), 또는 다른 구성 요소들에 대한 슈퍼 셀들 또는 슈퍼 셀들의 세그먼트들의 상호 연결을 가능하게 한다. 히든 탭들의 사용은 각기 전체적으로 여기에 참조로 포함되는 미국 임시 특허 출원 제62/081,200호, 미국 임시 특허 출원 제62/133,205호 및 미국 특허 출원 제14/674,983호에 더 기재되어 있다.
도 50a(예시적인 물리적 레이아웃) 및 도 50b(예시적인 전기 회로도)의 예들에서, 예시한 태양광 모듈들(200)은 각기 높은 DC 전압을 제공하도록 전기적으로 직렬로 연결되는 여섯 개의 슈퍼 셀들(100)을 포함한다. 각 슈퍼 셀은 히든 탭들(4400)에 의해 태양 전지들의 몇몇 그룹들로 전기적으로 분할되며, 태양 전지들의 각 그룹은 다른 바이패스 다이오드(4410)와 전기적으로 병렬로 연결된다. 이들 예들에서, 상기 바이패스 다이오드들은, 즉 전면 투명 시트와 배면 시트(backing sheet) 사이의 봉지재 내에 상기 태양 전지들을 구비하는 상기 태양광 모듈 라미네이트 구조 내에 배치된다. 선택적으로는, 상기 바이패스 다이오드들은 상기 태양광 모듈의 후면 또는 에지 상에 위치하는 접합 박스 내에 배치될 수 있고, 컨덕터 진행들에 의해 상기 히든 탭들에 상호 연결될 수 있다.
도 51a(물리적 레이아웃) 및 도 51b(대응되는 전기 회로도)의 예들에서, 예시한 태양광 모듈(200) 또한 높은 DC 전압을 제공하도록 전기적으로 직렬로 연결되는 여섯 개의 슈퍼 셀들(100)을 포함한다. 이러한 예에서, 상기 태양광 모듈은 직렬 연결된 슈퍼 셀들의 세 쌍들로 전기적으로 분할되며, 슈퍼 셀들의 각 쌍은 다른 바이패스 다이오드와 전기적으로 병렬로 연결된다. 이러한 예에서, 상기 바이패스 다이오드들은 상기 태양광 모듈의 후면 상에 위치하는 접합 박스(4500) 내에 배치된다. 상기 바이패스 다이오드들은 대신에 상기 태양광 모듈 라미네이트 구조 또는 에지-장착 접합 박스 내에 위치할 수 있었다.
도 50a-도 51b의 예들에서, 상기 태양광 모듈의 정상 동작에서 각 태양 전지는 순 바이어스되고, 모든 바이패스 다이오드들은 이에 따라 역 바이어스되며 도전되지 않는다. 그러나 그룹 내의 하나 또는 그 이상의 태양 전지들이 충분히 높은 전압으로 역 바이어스될 경우, 이러한 그룹에 대응되는 상기 바이패스 다이오드가 턴 온(turn on)될 것이며, 상기 모듈을 통한 전류 흐름이 상기 역 바이어스된 태양 전지들을 우회할 것이다. 이는 차광되거나 오작동하는 태양 전지들에서 위험한 핫 스팟들의 형성을 방지한다.
선택적으로는, 상기 바이패스 다이오드 기능성은 모듈 레벨 파워 일렉트로닉스, 예를 들면 상기 태양광 모듈 상이나 근처에 배치되는 마이크로인버터 내에서 구현될 수 있다(모듈 레벨 파워 일렉트로닉스 및 이들의 사용 또한 여기서 모듈 레벨 전원 관리 장치들 또는 시스템들 및 모듈 레벨 전원 관리로 언급될 수 있다). 선택적으로 상기 태양광 모듈과 통합되는 이러한 모듈 레벨 파워 일렉트로닉스는 슈퍼 셀들의 그룹들로부터, 각 슈퍼 셀로부터, 또는 전기적으로 분할된 슈퍼 셀들 내의 각 개개의 슈퍼 셀 세그먼트로부터의 전력을 최적화시킬 수 있으며(예를 들면, 상기 슈퍼 셀들의 그룹, 슈퍼 셀, 또는 슈퍼 셀 세그먼트를 그 최대 전력점(power point)으로 동작시킴에 의해), 이에 따라 상기 모듈 내의 별개의 전력 최적화를 가능하게 한다. 상기 파워 일렉트로닉스가 전체 모듈, 슈퍼 셀들의 특정 그룹, 하나 또는 그 이상의 특정한 개개의 슈퍼 셀들 및/또는 하나 또는 그 이상의 특정한 슈퍼 셀 세그먼트들을 우회시키는 때를 결정할 수 있으므로, 상기 모듈 레벨 파워 일렉트로닉스는 상기 모듈 내의 임의의 바이패스 다이오드들에 대한 필요성을 소거할 수 있다.
이러한 점은, 예를 들면, 상기 모듈 레벨에서 전압 지능을 통합시켜 구현될 수 있다. 상기 태양광 모듈 내의 태양 전지 회로(예를 들면, 하나 또는 그 이상의 슈퍼 셀들 또는 슈퍼 셀 세그먼트들)의 전압 출력을 모니터링함에 의해, "스마트 스위치(smart switch)" 전원 관리 장치는 이러한 회로가 역 바이어스인 임의의 태양 전지들을 포함하는 지를 판단할 수 있다. 역 바이어스된 태양 전지가 검출될 경우, 상기 전원 관리 장치는, 예를 들면, 계전기 스위치 또는 다른 구성 요소를 이용하여 상기 전기 시스템으로부터 대응되는 회로의 연결을 해제할 수 있다. 예를 들면, 모니터된 태양 전지 회로의 전압이 소정의 임계 아래로 떨어질 경우, 그러면 상기 전원 관리 장치는 상기 회로를 차단(개방 회로)할 것이다. 상기 소정의 임계는, 예를 들면 상기 회로의 정상 동작과 비교하여 특정 퍼센티지 및 크기(예를 들면, 20% 또는 10V)가 될 수 있고. 이러한 전압 지능의 구현은 현존하는 모듈 레벨 파워 일렉트로닉스 제품들(예를 들면, 엔파스 에너지사, 솔라레지 테크놀로지스사, 티고 에너지사로부터) 내로 또는 주문 회로 설계를 통해 통합될 수 있다.
도 52a(물리적 레이아웃) 및 도 52b(대응되는 전기 회로도)는 슁글드 슈퍼 셀들을 포함하는 고전압 태양광 모듈의 모듈 레벨 전원 관리를 위한 예시적인 구성을 도시한다. 이러한 예에서, 직사각형의 태양광 모듈(200)은 상기 태양광 모듈의 긴 측면들의 길이로 연장되는 여섯 개의 열들로 배열되는 여섯 개의 직사각형의 슁글드 슈퍼 셀들(100)을 포함한다. 상기 여섯 개의 슈퍼 셀들은 높은 DC 전압을 제공하도록 전기적으로 직렬로 연결된다. 모듈 레벨 파워 일렉트로닉스(4600)는 상기 전체 모듈에 대한 전압 감지, 전원 관리 및/또는 DC/AC 변환을 수행할 수 있다.
도 53a(물리적 레이아웃) 및 도 53b(대응되는 전기 회로도)는 슁글드 슈퍼 셀들을 포함하는 고전압 태양광 모듈의 모듈 레벨 전원 관리를 위한 다른 예시적인 구성을 도시한다. 이러한 예에서, 직사각형의 태양광 모듈(200)은 상기 태양광 모듈의 긴 측면들의 길이로 연장되는 여섯 개의 열들로 배열되는 여섯 개의 직사각형의 슁글드 슈퍼 셀들(100)을 포함한다. 상기 여섯 개의 슈퍼 셀들은 직렬로 연결된 슈퍼 셀들의 세 쌍들로 전기적으로 그룹으로 된다. 슈퍼 셀들의 각 쌍은 상기 슈퍼 셀들의 개개의 쌍들에 대해 전압 감지와 전력 최적화를 수행할 수 있고, 높은 DC 전압을 제공하거나 및/또는 DC/AC 변환을 수행하도록 이들의 둘 또는 그 이상을 직렬로 연결하는 모듈 레벨 파워 일렉트로닉스(4600)와 개별적으로 연결된다.
도 54a(물리적 레이아웃) 및 도 54b(대응되는 전기 회로도)는 슁글드 슈퍼 셀들을 포함하는 고전압 태양광 모듈의 모듈 레벨 전원 관리를 위한 다른 예시적인 구성을 도시한다. 이러한 예에서, 직사각형의 태양광 모듈(200)은 상기 태양광 모듈의 긴 측면들의 길이로 연장되는 여섯 개의 열들로 배열되는 여섯 개의 직사각형의 슁글드 슈퍼 셀들(100)을 포함한다. 각 슈퍼 셀은 상기 슈퍼 셀에 대해 전압 감지와 전력 최적화를 수행할 수 있고, 높은 DC 전압을 제공하거나 및/또는 DC/AC 변환을 수행하도록 이들의 둘 또는 그 이상을 직렬로 연결하는 모듈 레벨 파워 일렉트로닉스(4600)와 개별적으로 연결된다.
도 55a(물리적 레이아웃) 및 도 55b(대응되는 전기 회로도)는 슁글드 슈퍼 셀들을 포함하는 고전압 태양광 모듈의 모듈 레벨 전원 관리를 위한 다른 예시적인 구성을 도시한다. 이러한 예에서, 직사각형의 태양광 모듈(200)은 상기 태양광 모듈의 긴 측면들의 길이로 연장되는 여섯 개의 열들로 배열되는 여섯 개의 직사각형의 슁글드 슈퍼 셀들(100)을 포함한다. 각 슈퍼 셀은 히든 탭들(4400)에 의해 태양 전지들의 둘 또는 그 이상의 그룹들로 전기적으로 분할된다. 태양 전지들의 각 결과적인 그룹은 각 태양 전지 그룹에 대해 전압 감지와 전력 최적화를 수행할 수 있고, 높은 DC 전압을 제공하거나 및/또는 DC/AC 변환을 수행하도록 복수의 그룹들 직렬로 연결하는 모듈 레벨 파워 일렉트로닉스(4600)와 개별적으로 연결된다.
일부 변형예들에서, 여기에 설명되는 바와 같은 둘 또는 그 이상의 고전압 DC 슁글드 태양 전지 모듈들은 by 인버터에 의해 AC로 변환되는 고전압 DC 출력을 제공하도록 전기적으로 직렬로 연결된다. 상기 인버터는, 예를 들면 상기 태양광 모듈들의 하나와 통합되는 마이크로인버터가 될 수 있다. 이러한 경우들에서 상기 마이크로인버터는 선택적으로 상술한 바와 같이 또한 추가적인 전압 감지를 수행하고 기능들을 연결하는 모듈 레벨 전원 관리 전자 장치의 구성 요소가 될 수 있다. 선택적으로는, 상기 인버터는 다음에 더 논의되는 바와 같이 중심 "스트링" 인버터가 될 수 있다.
도 56에 도시한 바와 같이, 슈퍼 셀들을 직렬로 슈퍼 셀들의 태양광 모듈 인접하는 열들 내에 스트링(string)하는 것이 엇갈린 방식(staggered manner)으로 이들의 긴 축들을 따라 약간 오프셋(offset)될 수 있을 때, 이러한 스태거링(staggering)은 모듈 면적(공간/길이)을 절감할 뿐만 아니라 제조를 간소화하면서 슈퍼 셀 열들의 인접하는 단부들이 하나의 슈퍼 셀의 상단 및 다른 하나의 하단에 결합되는 인터커넥트(4700)에 의해 전기적으로 직렬로 연결되게 한다. 슈퍼 셀들의 인접하는 열들은, 예를 들면 약 5밀리미터로 오프셋될 수 있다.
전기적 인터커넥트들(4700)과 실리콘 태양 전지들 사이의 차등 열팽창 및 상기 태양 전지와 상기 인터커넥트에 대한 결과적인 스트레스는 상기 태양광 모듈의 성능을 저하시킬 수 있는 크래킹 및 다른 고장 형태들을 가져올 수 있다. 이에 따라, 상기 인터커넥트가 유연하고, 중요한 스트레스 전개 없이 이러한 차등 팽창을 수용하도록 구성되는 것이 바람직하다. 상기 인터커넥트는, 예를 들면, 매우 연성인 물질들(예를 들면, 연질 구리, 얇은 구리 시트)로 형성되거나, 낮은 열팽창 계수 물질들(예를 들면, 코바르, 인바 또는 다른 낮은 열팽창 철-니켈 합금들)이나 실리콘의 경우와 대략적으로 일치하는 열팽창 계수를 갖는 물질들로부터 형성되거나, 상기 인터커넥트와 상기 실리콘 태양 전지 사이의 차등 열팽창을 수용하는 슬릿들, 슬롯들, 홀들, 또는 트러스 구조들과 같은 평면 내의 기하학적 팽창 특징들을 통합하거나 및/또는 이러한 차등 열팽창을 수용하는 킹크들, 조그들 또는 딤플들과 같은 평면 외의 기하학적 특징들을 채용함에 의해 스트레스 및 열팽창 경감을 제공할 수 있다. 상기 인터커넥트들의 도전성 부분들은 상기 인터커넥트들의 유연성을 증가시키기 위해 예를 들면, 약 100미크론 이하, 약 50미크론 이하, 약 30미크론 이하, 또는 약 25미크론 이하의 두께를 가질 수 있다(이들 태양광 모듈들 내의 일반적으로 낮은 전류는 상기 얇은 인터커넥트들의 전기 저항으로부터 야기되는 과도한 전력 손실 없이 얇고 유연한 도전성 리본들의 사용을 가능하게 한다).
일부 변형예들에서, 슈퍼 셀과 유연한 전기적 인터커넥트 사이의 도전성 결합들은 상기 유연한 전기적 인터커넥트가 상기 태양광 모듈을 손상시키지 않고 약 -40℃ 내지 약 180℃의 온도 범위에 대해 상기 슈퍼 셀과 상기 유연한 전기적 인터커넥트 사이의 열팽창의 불일치를 수용하게 한다.
도 7a(앞서 논의됨)는 참조 부호들 400A-400T로 나타내는 평면 내의 스트레스를 제거하는 기하학적 특징들을 채용하는 몇몇 예시적인 인터커넥트 구성들을 도시하며, 도 7b-1 및 도 7b-2(또한 앞서 논의됨)는 참조 부호들 400U 및 3705로 나타내는 평면 외의 스트레스를 제거하는 기하학적 특징들을 채용하는 예시적인 인터커넥트 구성들을 도시한다. 스트레스 제거 특징들을 채용하는 이들 인터커넥트 구성들의 임의의 것이나 임의의 결합은 여기서 원하는 바와 같이 높은 DC 전압을 제공하도록 슈퍼 셀들을 전기적으로 직렬로 상호 연결하기에 적합할 수 있다.
도 51a-도 55b에 대한 논의는 상기 모듈로부터 AC 출력을 제공하도록 모듈 레벨 파워 일렉트로닉스에 의한 높은 DC 모듈 전압의 가능한 DC/AC 변환을 구비하는 모듈 레벨 전원 관리에 중점을 두었다. 전술한 바와 같이, 여기에 설명하는 바와 같이 슁글드 태양 전지 모듈들로부터의 높은 DC 전압들의 DC/AC 변환은 중심 스트링 인버터에 의해 대신 수행될 수 있다. 예를 들면, 도 57a는 높은 DC 전압의 음의 버스(4820) 및 높은 DC 전압의 양의 버스(4810)를 거쳐 스트링 인버터(4815)에 대해 서로 전기적으로 병렬로 연결되는 복수의 높은 DC 전압의 슁글드 태양 전지 모듈들(200)을 포함하는 광발전 시스템(photovoltaic system)(4800)을 개략적으로 예시한다. 통상적으로, 각 태양광 모듈(200)은 상술한 바와 같이 높은 DC 전압을 제공하도록 전기적 인터커넥트들과 전기적으로 직렬로 연결되는 복수의 슁글드 슈퍼 셀들을 포함한다. 태양광 모듈들(200)은, 예를 들면 상술한 바와 같이 배열되는 바이패스 다이오드들을 선택적으로 포함할 수 있다. 도 57b는 지붕 상단 상의 광발전 시스템(4800)의 예시적인 배치를 도시한다.
광발전 시스템(4800)의 일부 변형예들에서, 높은 DC 전압 슁글드 태양 전지 모듈들의 둘 또는 그 이상의 짧은 직렬 연결된 스트링들은 스트링 인버터와 전기적으로 병렬로 연결될 수 있다. 도 57a를 다시 참조하면, 예를 들면, 각 태양광 모듈(200)은 둘 또는 그 이상의 높은 DC 전압 슁글드 태양 전지 모듈들(200)의 직렬 연결된 스트링으로 대체될 수 있다. 이는, 예를 들면, 규제 기준들을 따르면서 상기 인버터에 제공되는 전압을 최대화하여 이루어질 수 있었다.
종래의 태양광 모듈들은 통상적으로 약 8amps의 Isc(단락(short circuit) 전류), 약 50Voc(개방 회로 전압), 그리고 약 35Vmp(최대 전력점 전압)을 생성한다. 앞서 논의한 바와 같이, 각각의 상기 태양 전지들이 종래의 태양 전지의 면적의 약 1/M의 면적을 가지고 태양 전지들의 종래의 숫자의 M배를 갖는 여기에 설명되는 바와 같은 높은 DC 전압 슁글드 태양 전지 모듈들은 종래의 태양광 모듈의 대략 M배 높은 전압 및 1/M의 전류를 생성한다. 전술한 바와 같이, M은 임의의 적절한 정수가 될 수 있고, 통상적으로 ≤20이지만, 20 이상이 될 수 있다. M은, 예를 들면 3, 4, 5, 6, 또는 12가 될 수 있다.
M=6일 경우, 상기 높은 DC 전압 슁글드 태양 전지 모듈들에 대한 Voc는, 예를 들면 약 300V가 될 수 있다. 두 개의 이러한 모듈들을 직렬로 연결하는 것은 약 600V DC를 상기 버스에 제공할 수 있었고, US 주거용 기준들에 의한 최대 설정을 따른다. M=4일 경우, 상기 높은 DC 전압 슁글드 태양 전지 모듈들에 대한 Voc는, 예를 들면 약 200V가 될 수 있다. 세 개의 이러한 모듈들을 직렬로 연결하는 것은 약 600V DC를 상기 버스에 제공할 수 있었다. M=12일 경우, 상기 높은 DC 전압 슁글드 태양 전지 모듈들에 대한 Voc는, 예를 들면 약 600V가 될 수 있다. 또한 상기 시스템이 600V 이하의 버스 전압들을 가지도록 구성할 수 있었다. 이러한 변형예들에서, 상기 높은 DC 전압 슁글드 태양 전지 모듈들은 상기 인버터에 최적의 전압을 제공하도록, 예를 들면, 쌍들이나 삼중쌍(triplet)들 또는 결합기 박스(combiner box) 내의 임의의 다른 적합한 결합으로 연결될 수 있다.
전술한 높은 DC 전압의 슁글드 태양 전지 모듈들의 병렬 구성으로부터 야기되는 도전은 하나의 태양광 모듈이 단락될 경우에 다른 태양광 모듈들이 잠재적으로 이들의 전력을 상기 단락된 모듈에 넘기게(즉, 상기 단락된 모듈을 통해 전류를 구동시키고 그 내부에서 전력을 소실시키게) 될 수 있고, 위험을 야기할 수 있는 점이다. 이러한 문제점은, 예를 들면, 다른 모듈들이 단락된 모듈을 통해 전류를 구동시키는 것을 방지하기 위한 차단 다이오드(blocking diode)들의 사용, 한류 퓨즈(current limiting fuse)들의 사용, 또는 차단 다이오드들과 결합되는 한류 퓨즈들의 사용에 의해 방지될 수 있다. 도 57b는 높은 DC 전압의 슁글드 태양 전지 모듈(200)의 양극 및 음극 단자들 상의 두 한류 퓨즈들(4830)의 사용을 개략적으로 나타낸다.
차단 다이오드들 및/또는 퓨즈들의 보호 배치는 상기 인버터가 트랜스포머(transformer)를 포함하는 지 그렇지 않은 지에 의존할 수 있다. 트랜스포머를 포함하는 인버터를 사용하는 시스템들은 통상적으로 음극 컨덕터를 접지시킨다. 트랜스포머가 없는 인버터를 사용하는 시스템은 통상적으로 상기 음극 컨덕터를 접지시키지 않는다. 트랜스포머가 없는 인버터에 대하여, 상기 태양광 모듈의 양극 단자에 연결되는 한류 퓨즈를 및 상기 음극 단자에 연결되는 다른 한류 퓨즈를 가지는 것이 바람직할 수 있다.
차단 다이오드들 및/또는 한류 퓨즈들은, 예를 들면, 접합 박스 또는 상기 모듈 라미네이트 내의 각 모듈을 구비하여 배치될 수 있다. 적합한 접합 박스들, 차단 다이오드들(예를 들면, 인-라인(in-line) 차단 다이오드들), 그리고 퓨즈들(예를 들면, 인-라인 퓨즈들)은 숄스 테크놀로지 그룹(Shoals Technology Group)으로부터 입수 가능한 것들을 포함할 수 있다.
도 58a는 차단 다이오드(4850)가 상기 태양광 모듈의 양극 단자에 연결되는 접합 박스(4840)를 포함하는 예시적인 고전압 DC 슁글드 태양 전지 모듈을 도시한다. 상기 접합 박스는 한류 퓨즈를 포함하지 않는다. 이러한 구성은 바람직하게는 상기 태양광 모듈의 양극 및/또는 음극 단자들과 연결되게 다른 곳(예를 들면, 결합기 박스 내에)에 위치하는 하나 또는 그 이상의 한류 퓨즈들과 결합되어 사용될 수 있다(예를 들면, 다음의 도 58D 참조). 도 58b는 차단 다이오드가 상기 태양광 모듈의 양극 단자에 정렬되고, 한류 퓨즈(4830)가 상기 음극 단자에 정렬되는 접합 박스(4840)를 포함하는 예시적인 고전압 DC 슁글드 태양 전지 모듈을 도시한다. 도 58C는 한류 퓨즈(4830)가 상기 태양광 모듈의 양극 단자에 정렬되고, 다른 한류 퓨즈(4830)가 상기 음극 단자에 정렬되는 접합 박스(4840)를 포함하는 예시적인 고전압 DC 슁글드 태양 전지 모듈을 도시한다. 도 58D는 도 58a에서와 같이 구성되는 접합 박스(4840) 및 상기 태양광 모듈의 양극 및 음극 단자들에 정렬되는 상기 접합 박스의 외측에 위치하는 퓨즈들을 포함하는 예시적인 고전압 DC 슁글드 태양 전지 모듈을 도시한다.
도 59a-도 59b를 이제 참조하면, 상술한 구성들에 대한 선택적인 예로서, 모든 높은 DC 전압 슁글드 태양 전지 모듈들을 위한 차단 다이오드들 및/또는 한류 퓨즈들이 결합기 박스(combiner box)(4860) 내에 함께 배치될 수 있다. 이들 변형예들에서, 하나 또는 그 이상의 개개의 컨덕터들은 각 모듈로부터 상기 결합기 박스까지 분리되어 진행된다. 도 59a에 도시한 바와 같이, 하나의 옵션에서 하나의 극성(예를 들면, 예시한 바와 같이 음성)의 단일 컨덕터가 모든 모듈들 사이에 공유된다. 다른 옵션(도 59b)에서, 양 극성들은 각 모듈에 대한 개개의 컨덕터들을 가진다. 비록 도 59a-도 59b가 결합기 박스(4860) 내에 위치하는 퓨즈들만을 도시하지만, 퓨즈들 및/또는 차단 다이오드들의 임의의 적절한 결합이 상기 결합기 박스 내에 위치할 수 있다. 또한, 예를 들면 모니터링, 최대 전력점 추적 및/또는 개개의 모듈들 또는 모듈들의 그룹들의 연결 해제와 같은 다른 기능들을 수행하는 전자 장치들이 상기 결합기 박스 내에 구현될 수 있다.
태양광 모듈의 역 바이어스 동작은 상기 태양광 모듈 내의 하나 또는 그 이상의 태양 전지들이 차광되거나 그렇지 않으면 적은 전류를 발생시키고, 상기 태양광 모듈이 낮은 전류의 태양 전지를 통해 다루어질 수 있는 상기 낮은 전류의 태양 전지보다 큰 전류를 구동시키는 전압-전류 포인트에서 동작할 때에 발생될 수 있다. 역 바이어스된 태양 전지는 뜨거워질 수 있고, 위험 상태를 발생시킬 수 있다. 높은 DC 전압의 슁글드 태양 전지 모듈들의 병렬 배치는, 도 58a에 도시한 바와 같이, 예를 들면 상기 모듈들이 상기 인버터에 대한 적합한 동작 전압을 설정함에 의해 역 바이어스 동작으로부터 보호되게 할 수 있다. 이는, 예를 들면 도 60a-도 60b에 의해 예시된다.
도 60a는 약 열 개의 높은 DC 전압 슁글드 태양광 모듈들의 병렬 연결된 스트링에 대한 전류 대 전압의 도표(4870) 및 전력 대 전압의 도표(4880)를 도시한다. 이들 곡선들은 역 바이어스된 태양 전지를 포함하였던 태양광 모듈들이 없는 모델에 대해 계산되었다. 상기 태양광 모듈들이 병렬로 전기적으로 연결되기 때문에, 이들은 모두 동일한 동작 전압을 가지며, 이들의 전류가 더해진다. 통상적으로, 인버터는 상기 전력-전압 곡선을 겪도록 상기 회로 상의 부하를 변화시킬 것이고, 이러한 곡선 상의 최대점을 확인할 것이며, 이후에 출력 전력을 최대화하도록 상기 모듈 회로를 이러한 지점에서 동작시킬 것이다.
대조적으로, 도 60b는 상기 회로 내의 태양광 모듈들의 일부가 하나 또는 그 이상의 역 바이어스된 태양 전지를 포함하는 경우에 도 60a의 모델 시스템에 대한 전류 대 전압의 도표(4890) 및 전력 대 전압의 도표(4900)를 도시한다. 상기 역 바이어스된 모듈들은 약 210볼트까지의 전압들의 강하에서 약 10암페어(amp) 동작으로부터 약 200볼트 이하의 전압들에서 약 16amp 동작까지의 전이를 갖는 무릎 형상의 형성에 의해 예시적인 전류-전압 곡선 내에 이들 자체를 나타낸다. 약 210볼트 이하의 전압들에서 상기 차광된 모듈들은 역 바이어스된 태양 전지들을 포함한다. 상기 역 바이어스된 모듈들은 또한 약 200볼트에서의 절대 최대(absolute maximum) 및 약 240볼트에서의 극대(local maximum)의 두 가지 최대들의 존재에 의해 상기 전력-전압 곡선에서 이들 자체를 나타낸다. 상기 인버터는 역 바이어스된 태양광 모듈들의 이러한 신호들을 인식하도록 구성될 수 있고, 상기 태양광 모듈들을 역 바이어스되는 모듈들이 없는 절대 최대 또는 극대 전력점 전압에서 동작시킬 수 있다. 도 60b의 예에서, 상기 인버터는 역 바이어스되는 모듈들이 없는 점을 확보하도록 상기 모듈들을 상기 극대 전력점에서 동작시킬 수 있다. 추가적으로 또는 선택적으로는, 최소 동작 전압은 그 이하에서 임의의 모듈들이 역 바이어스될 것 같지 않게 상기 인버터에 대해 선택될 수 있다. 이러한 최소 동작 전압은 주위 온도, 상기 동작 전류 및 계산되거나 측정된 태양광 모듈 온도와 같은 다른 변수들뿐만 아니라, 예를 들면 복사 조도와 같은 외측 소스들로부터 수신되는 다른 정보에 기초하여 조정될 수 있다.
일부 실시예들에서, 상기 높은 DC 전압의 태양광 모듈들 자체가 슁글드될 수 있으며, 인접하는 태양광 모듈들은 부분적으로 중첩되는 방식으로 배열되고, 선택적으로 이들의 중첩되는 영역들에서 전기적으로 상호 연결된다. 이러한 슁글드 구성들은 스트링 인버터에 높은 DC 전압을 제공하는 전기적으로 병렬로 연결되는 고전압 태양광 모듈들, 또는 각기 상기 태양광 모듈의 높은 DC 전압을 AC 모듈 출력으로 변환시키는 마이크로인버터를 포함하는 고전압 태양광 모듈들에 대해 선택적으로 사용될 수 있다. 고전압 태양광 모듈들의 쌍이 앞서 설명한 바와 같이 슁글드될 수 있고, 예를 들면 원하는 DC 전압을 제공하도록 전기적으로 직렬로 연결될 수 있다.
종래의 스트링 인버터들은, 1) 이들이 다른 직렬 연결된 모듈 스트링 길이들과 호환되어야 하고, 2) 스트링 내의 일부 모듈들이 완전히 또는 부분적으로 차광될 수 있으며, 3) 주위 온도 및 복사의 변화들이 상기 모듈 전압을 변화시키기 때문에, 흔히 잠재적 입력 전압의 상당히 넓은 범위(또는 '다이나믹 레인지(dynamic range)')를 요구한다. 여기에 설명되는 바와 같은 병렬 구성을 채용하는 시스템들에서, 병렬 연결된 태양광 모듈들의 스트링의 길이는 전압에 영향을 미치지 않는다. 또한, 일부 모듈들이 부분적으로 차광되고, 일부가 그렇지 않은 경우들에 대해, 상기 시스템을 차광되지 않은 모듈들의 전압에서 동작시키는 것이 결정될 수 있다(예를 들면, 상술한 바와 같이). 그러므로 병렬 구성 시스템 내의 인버터의 입력 전압 범위는 인자 #3-온도 및 복사 변화들의 '다이나믹 레인지'를 수용하는 것만을 필요로 할 수 있다. 이는, 예를 들면 인버터들의 요구되는 종래의 다이나믹 레인지의 약 30%로 작기 때문에, 여기서 설명하는 바와 같은 병렬 구성 시스템들로 채용되는 인버터들은 좁은 폭, 예를 들면 표준 조건들에서 약 250볼트 및 높은 온도와 낮은 복사에서 약 175볼트 사이, 또는 예를 들면 표준 조건들에서 약 450볼트 및 높은 온도와 낮은 복사에서 약 350볼트 사이의 MPPT(최대 전력점 추적)을 가질 수 있다(이 경우 450볼트 MPPT 동작은 가장 낮은 온도 동작에서 600볼트 아래의 VOC에 대응될 수 있다). 또한, 상술한 바와 같이 상기 인버터들은 부스트 페이스(boost phase) 없이 AC로 직접 변환되도록 충분한 DC 전압을 수신할 수 있다. 이에 따라, 여기서 설명하는 바와 같은 병렬 구성 시스템들로 채용되는 스트링 인버터들은 보다 단순할 수 있고, 가장 낮은 비용이 둘 수 있으며, 종래의 시스템들에 채용되는 스트링 인버터들보다 높은 효율들로 동작할 수 있다.
여기에 설명되는 고전압 직류 슁글드 태양 전지 모듈들로 채용되는 마이크로인버터들 및 스트링 인버터들 모두에 대하여, 상기 인버터의 DC 부스트 요구 사항을 제거하기 위해 상기 AC의 피크-투-피크(peak-to-peak) 이상의 동작(예를 들면, 최대 전력점 Vmp) DC 전압을 제공하도록 상기 태양광 모듈(또는 태양광 모듈들의 짧은 직렬 연결된 스트링)을 구성하는 것이 바람직할 수 있다. 예를 들면, 120V AC에 대해, 피크-투-피크는 sqrt(2)*120V=170V이다. 따라서 상기 태양광 모듈들은, 예를 들면 약 175V의 최소 Vmp를 제공하도록 구성될 수 있다. 표준 조건들에서 Vmp는 그러면 약 212V(0.35%의 음의 전압 온도 계수 및 75℃의 최대의 동작 온도로 가정하여)가 될 수 있고, 가장 낮은 온도 동작 조건(예를 들면, -15℃)에서 Vmp는 그러면 약 242V가 될 수 있으며, 이에 따라 Voc는 약 300V 이하가 될 수 있다(모듈 충전율에 따라). 스플릿 페이스(split phase) 120V AC(또는 240V AC)에 대해 모든 이들 숫자들이 두 배로 되며, 이는 600V DC가 많은 주거용 적용들에 대해 미국(US)에서 허용되는 최대이기 때문에 편리하다. 보다 높은 전압들을 요구하고 허용하는 상업용 적용들에 대해, 이들 숫자들은 더 증가될 수 있다.
여기에 설명되는 바와 같은 고전압 슁글드 태양 전지 모듈은 >600 VOC 또는 >1000VOC에서 동작하도록 구성될 수 있으며, 이 경우에 상기 모듈은 상기 모듈에 의해 제공되는 외부 전압이 코드 요구 사항들을 초과하는 것을 방지하는 통합된 파워 일렉트로닉스를 포함할 수 있다. 이와 같은 배치는 600V를 초과하는 낮은 온도들에서의 VOC의 문제점 없이 상기 동작 Vmp가 스플릿 페이스 120V(240V, 약 350V를 요구하는)에 대해 충분하게 할 수 있다.
배전망에 대한 건물의 연결이, 예를 들면 소방관들에 의해 연결 해제될 때, 상기 건물에 전기를 제공하는 태양광 모듈들(예를 들면, 빌딩 지붕 상의)은 태양이 비추고 있는 경우에 여전히 전력을 생산할 수 있다. 이는 이러한 태양광 모듈들이 상기 망으로부터의 건물의 연결 해제 이후에 위험한 전압으로 지붕의 전기를 유지할 수 있는 우려를 야기한다. 이러한 우려를 처리하기 위해, 여기에 설명되는 고전압의 직류 슁글드 태양 전지 모듈들은 선택적으로, 예를 들면 모듈 접합 박스 내에 또는 인접하는 디스커넥트(disconnect)를 포함할 수 있다. 상기 디스커넥트는, 예를 들면 물리적 디스커넥트 또는 솔리드 스테이트(solid state) 디스커넥트가 될 수 있다. 상기 디스커넥트가 예를 들면 "정상적으로 오프(normally off)"되도록 구성될 수 있으므로, 특정 신호(예를 들면, 상기 인버터로부터)를 상실할 때에 상기 지붕 회로로부터 상기 태양광 모듈의 고전압 출력을 연결 해제한다. 상기 디스커넥트에 대한 통신은, 예를 들면, 별도의 유선 또는 무선을 통해 고전압 케이블들에 걸칠 수 있다.
고전압 태양광 모듈들을 위한 슁글링의 중요한 이점은 슁글드 슈퍼 셀 내의 태양 전지들 사이의 열 확산이다. 본 발명자들은 열이 인접하고 중첩되는 실리콘 태양 전지들 사이의 얇고 전기적 및 열적으로 도전성인 결합들을 통해 실리콘 슈퍼 셀을 따라 쉽게 전달될 수 있는 점을 발견하였다. 상기 태양 전지들의 전면 및 후면들에 직교하게 측정되고, 상기 전기적으로 도전성인 결합 물질에 의해 형성되는 인접하고 중첩되는 태양 전지들 사이의 상기 전기적으로 도전성인 결합의 두께는, 예를 들면 약 200미크론보다 작거나 같거나, 약 150미크론보다 작거나 같거나, 약 125미크론보다 작거나 같거나, 약 100미크론보다 작거나 같거나, 약 90미크론보다 작거나 같거나, 약 80미크론보다 작거나 같거나, 약 70미크론보다 작거나 같거나, 약 60미크론보다 작거나 같거나, 약 50미크론보다 작거나 같거나, 약 25미크론보다 작거나 같을 수 있다. 이러한 얇은 결합은 셀들 사이의 상호 연결에서 저항성 손실을 감소시키며, 또한 동작 동안에 진전될 수 있었던 상기 슈퍼 셀 내의 임의의 핫 스팟으로부터 상기 슈퍼 셀을 따라 열의 유동을 증진시킨다. 상기 태양 전지들 사이의 결합의 열전도율은, 예를 들면, ≥약 1.5와트/(미터-K)가 될 수 있다. 또한, 여기에 채용되는 태양 전지들의 직사각형의 종횡비는 통상적으로 인접하는 태양 전지들 사이의 열적 접촉의 확장된 영역들을 제공한다.
대조적으로, 인접하는 태양 전지들 사이에 리본 인터커넥트들을 채용하는 종래의 태양광 모듈들에서, 하나의 태양 전지 내에서 발생되는 열은 상기 리본 인터커넥트들을 통해 상기 모듈 내의 다른 태양 전지들로 쉽게 확산되지는 않는다. 이는 종래의 태양광 모듈들이 여기에 설명되는 태양광 모듈들보다 핫 스팟들을 진전시키기 쉽게 만든다.
더욱이, 여기에 설명되는 슈퍼 셀들이 통상적으로 각기 종래의 태양 전지의 경우보다 작은(예를 들면, 1/6) 활성 영역을 가지는 직사각형의 태양 전지들을 슁글링하여 형성되기 때문에, 여기에 설명되는 태양광 모듈들 내의 슈퍼 셀을 통한 전류는 통상적으로 종래의 태양 전지들의 스트링을 통한 경우보다 적다.
그 결과, 여기에 개시되는 태양광 모듈들에서 보다 적은 열이 상기 항복 전압에서 역 바이어스된 태양 전지 내에서 소실되며, 상기 열은 위험한 핫 스팟을 생성하지 않고 상기 슈퍼 셀 및 상기 태양광 모듈을 통해 쉽게 확산될 수 있다.
몇몇 추가적이고 선택적인 특징들은 여기서 설명되는 바와 같은 슈퍼 셀들을 채용하는 고전압 태양광 모듈들이 역 바이어스된 태양 전지 내에서 소실되는 열에 보다 더 견디도록 할 수 있다. 예를 들면, 상기 슈퍼 셀들은 열가소성 올레핀(TPO) 폴리머 내에 봉지될 수 있다. TPO 봉지재들은 표준 에틸렌-비닐 아세테이트(ethylene-vinyl acetate: EVA) 봉지재들보다 광-열적으로 안정하다. EVA는 온도 및 자외광에서 갈색일 것이며, 전류를 제한하는 셀들에 의해 생성되는 핫 스팟 문제들을 가져올 것이다. 또한, 상기 태양광 모듈들은 상기 봉지된 슈퍼 셀들이 유리 전면 시트 및 유리 배면 시트 사이에 개재되는 유리-유리 구조를 가질 수 있다. 이와 같은 유리-유리 구조는 종래의 폴리머 배면 시트에 의해 견뎌지는 경우보다 높은 온도들에서 안전하게 동작하게 한다. 더욱이, 접합 박스들은, 존재할 경우, 접합 박스가 열 절연의 추가적인 층을 그 상부의 상기 모듈 내의 태양 전지들에 추가할 수 있었던 상기 태양광 모듈의 뒤보다는 태양광 모듈의 하나 또는 그 이상의 에지들 상에 장착될 수 있다.
본 발명자들은 이에 따라 상기 슈퍼 셀들을 통한 열 유동이 하나 또는 그 이상의 역 바이어스된 태양 전지들을 갖는 상당한 위험이 없이 모듈을 동작하게 할 수 있기 때문에 여기에 설명되는 바와 같은 슈퍼 셀들로부터 형성되는 고전압 태양광 모듈들이 종래의 태양광 모듈들 내에서보다 훨씬 적은 바이패스 다이오드들을 채용할 수 있는 점을 인식하였다. 예를 들면, 일부 변형예들에서 여기에 설명되는 바와 같은 고전압 태양광 모듈들은 25개의 태양 전지들 당 하나보다 적은 바이패스 다이오드, 30개의 태양 전지들 당 하나보다 적은 바이패스 다이오드, 50개의 태양 전지들 당 하나보다 적은 바이패스 다이오드, 75개의 태양 전지들 당 하나보다 적은 바이패스 다이오드, 100개의 태양 전지들 당 하나보다 적은 바이패스 다이오드, 단일의 바이패스 다이오드만을 채용하거나, 또는 바이패스 다이오드를 채용하지 않는다.
도 61a-도 61c를 이제 참조하면, 바이패스 다이오드들을 활용하는 예시적인 고전압 태양광 모듈들이 제공된다. 태양광 모듈의 일부가 차광될 때, 상기 모듈에 대한 손상은 바이패스 다이오드들의 사용을 통해 방지되거나 감소될 수 있다. 도 61a에 도시한 예시적인 태양광 모듈(4700)을 위하여, 10개의 슈퍼 셀들(100)이 직렬로 연결된다. 예시한 바와 같이, 상기 10개의 슈퍼 셀들은 평행한 열들로 배열된다. 각 슈퍼 셀은 40개의 직렬 연결된 태양 전지들(10)을 포함하며, 여기서 각각의 상기 40개의 태양 전지들은 여기서 설명하는 바와 같이 대략적으로 정사각형 또는 의사-정사각형 1/6로 만들어진다. 정상적인 차광되지 않은 동작 하에서, 전류는 접합 박스(4716)로부터 커넥터들(4715)을 통해 직렬로 연결된 각각의 상기 슈퍼 셀들(100)을 통해 흘러 들어가며, 이후에 전류는 접합 박스(4717)를 통해 흘러나온다. 선택적으로, 단일의 접합 박스가 분리된 접합 박스들(4716, 4717) 대신에 사용될 수 있으므로, 전류는 하나의 접합 박스로 돌아간다. 도 61a에 도시한 예는 슈퍼 셀 당 대략적으로 하나의 바이패스 다이오드를 구비하는 구현을 도시한다. 도시한 바와 같이, 단일의 바이패스 다이오드는 상기 슈퍼 셀들을 따라 대략적으로 중간인 지점에서 이웃하는 슈퍼 셀들의 쌍 사이에 전기적으로 연결된다(예를 들면, 단일 바이패스 다이오드(4901A)는 상기 제1 슈퍼 셀의 22번째 태양 전지 및 상기 제2 슈퍼 셀 내의 그 이웃하는 태양 전지 사이에 전기적으로 연결되며, 제2의 바이패스 다이오드(4901B)는 상기 제2 슈퍼 셀과 상기 제3 슈퍼 셀 사이에 전기적으로 연결되는 등이 된다). 셀들의 첫 번째 및 마지막 스트링들은 바이패스 다이오드 당 슈퍼 셀 내에 태양 전지들의 숫자의 대략적으로 절반만을 가진다. 도 61a에 도시한 예에 대하여, 상기 셀들의 첫 번째 및 마지막 스트링들은 바이패스 다이오드 당 22개의 셀들만을 포함한다. 도 61a에 예시한 고전압 태양광 모듈의 변형예를 위한 바이패스 다이오드들(11)의 전체 숫자는 슈퍼 셀들의 숫자 더하기 1개의 추가 바이패스 다이오드와 같다.
각 바이패스 다이오드는, 예를 들면 플렉스 회로(flex circuit) 내로 통합될 수 있다. 도 61b를 이제 참조하면, 두 이웃하는 슈퍼 셀들의 바이패스 다이오드 연결된 영역의 확대도가 도시된다. 도 61b에 대한 시점은 비태양측으로부터 이다. 도시한 바와 같이, 이웃하는 슈퍼 셀들 상의 두 태양 전지들(10)은 바이패스 다이오드(4720)를 포함하는 플렉스 회로(4718)를 사용하여 전기적으로 연결된다. 플렉스 회로(4718) 및 바이패스 다이오드(4720)는 상기 태양 전지들의 후면들 상에 위치하는 콘택 패드들(4719)을 사용하여 상기 태양 전지들(10)에 전기적으로 연결된다(또한 히든 탭들을 바이패스 다이오드들에 제공하기 위한 히든 콘택 패드들의 사용에 대한 다음의 상세한 논의 참조). 추가적인 바이패스 다이오드 전기적 연결 계획들이 바이패스 다이오드 당 태양 전지들의 숫자를 감소시키기 위해 채용될 수 있다. 하나의 예가 도 61c에 예시된다. 도시한 바와 같이, 하나의 바이패스 다이오드가 상기 슈퍼 셀들을 따라 대략적으로 중간의 이웃하는 슈퍼 셀들의 각 쌍 사이에 전기적으로 연결된다. 바이패스 다이오드(4901A)는 상기 제1 및 제2 슈퍼 셀들 상의 이웃하는 태양 전지들 사이에 전기적으로 연결되고, 바이패스 다이오드(4901B) 상기 제2 및 제3 슈퍼 셀들 상의 이웃하는 태양 전지들 사이에 전기적으로 연결되며, 바이패스 다이오드(4901C)는 상기 제3 및 제4 슈퍼 셀들 상의 이웃하는 태양 전지들 사이에 전기적으로 연결되는 등이 된다. 바이패스 다이오드들의 제2의 세트가 부분적인 차광의 경우에 우회될 것인 태양 전지들의 숫자를 감소시키기 위해 포함될 수 있다. 예를 들면, 바이패스 다이오드(4902A)는 바이패스 다이오드들(4901A, 4901B) 사이의 중간 지점에서 상기 제1 및 제2 슈퍼 셀들 사이에 전기적으로 연결되고, 바이패스 다이오드(4902B)는 바이패스 다이오드들(4901B, 4901C) 사이의 중간 지점에서 상기 제2 및 제3 슈퍼 셀들 사이에 전기적으로 연결되는 등이 되며, 바이패스 다이오드 당 셀들의 숫자를 감소시킨다. 선택적으로, 바이패스 다이오드들의 또 다른 세트가 부분적인 차광의 경우에 우회되는 태양 전지들의 숫자의 더 감소시키도록 전기적으로 연결될 수 있다. 바이패스 다이오드(4903A)는 바이패스 다이오드들(4902A, 4901B) 사이의 중간 지점에서 상기 제1 및 제2 슈퍼 셀들 사이에 전기적으로 연결되고, 바이패스 다이오드(4903B)는 바이패스 다이오드들(4902B, 4901C) 사이의 중간 지점에서 제2 및 제3 슈퍼 셀들 사이에 전기적으로 연결되며, 바이패스 다이오드 당 셀들의 숫자를 더 감소시킨다. 이러한 구성은 셀들의 작은 그룹들이 부분적인 쉐이딩 동안에 우회되게 하는 바이패스 다이오드들의 내재 구성의 결과가 된다. 추가적인 다이오드들이 바이패스 다이오드 당 원하는 숫자, 예를 들면, 바이패스 다이오드 당 약 8개, 약 6개, 약 4개 또는 약 2개의 태양 전지들이 구현될 때까지 이러한 방식으로 전기적으로 연결될 수 있다. 일부 모듈들에서, 바이패스 다이오드 당 약 4개의 태양 전지들이 바람직하다. 원하는 경우, 도 61c에 예시한 바이패스 다이오드들의 하나 또는 그 이상이 도 61b에 예시한 바와 같은 감춰지고 유연한 인터커넥트 내로 통합될 수 있다.
본 명세서에는, 예를 들면, 종래 크기의 정사각형 또는 의사 정사각형의 태양 전지들을 복수의 좁은 직사각형 또는 실질적으로 직사각형의 태양 전지들로 절단하는 데 사용될 수 있는 태양 전지 절단 기구(cleaving tool)들 및 태양 전지 절단 방법들이 개시된다. 이들 절단 기구들 및 방법들은 상기 곡선의 지지면에 대해 상기 종래 크기의 태양 전지들을 구부리고, 이에 따라 미리 제조된 스크라이브 라인들을 따라 상기 태양 전지들을 절단하도록 상기 종래 크기의 태양 전지들의 저면들과 곡선의 지지면 사이에 진공을 인가한다. 이들 절단 기구들 및 방법들의 이점은 이들이 상기 태양 전지들의 상부 표면들과의 물리적 접촉을 요구하지 않는 것이다. 이에 따라, 이들 절단 기구들 및 방법들은 물리적 접촉에 의해 손상될 수 있었던 이들의 상부 표면들 상의 연질 및/또는 큐어링되지 않은 물질들을 포함하는 태양 전지들을 절단하도록 채용될 수 있다. 또한, 일부 변형예들에서, 이들 절단 기구들 및 절단 방법들은 단지 상기 태양 전지들의 저면들의 일부들에 대해 접촉을 요구할 수 있다. 이러한 변형예들에서, 이들 절단 기구들 및 방법들은 상기 절단 기구에 의해 접촉되지 않은 이들의 저면들의 일부들 상의 연질 및/또는 큐어링되지 않은 물질들을 포함하는 태양 전지들을 절단하도록 채용될 수 있다.
예를 들면, 여기에 개시되는 절단 기구들 및 방법들을 활용하는 하나의 태양 전지 제조 방법은 상기 실리콘 태양 전지들 상의 복수의 직사각형의 영역들을 정의하도록 각각의 하나 또는 그 이상의 종래 크기의 실리콘 태양 전지들 상에 하나 또는 그 이상의 스크라이브 라인들을 레이저 스크라이빙(laser scribing)하는 과정, 전기적으로 도전성인 접착 결합 물질을 상기 하나 또는 그 이상의 실리콘 태양 전지들의 상면들의 일부들에 적용하는 과정, 그리고 긴 측면에 인접하여 그 전면 상에 배치되는 상기 전기적으로 도전성인 접착 결합 물질의 일부를 각기 포함하는 복수의 직사각형의 실리콘 태양 전지들을 제공하기 위해 상기 곡선의 지지면에 대해 상기 하나 또는 그 이상의 실리콘 태양 전지들을 구부리고, 이에 따라 상기 스크라이브 라인들을 따라 상기 하나 또는 그 이상의 실리콘 태양 전지들을 절단하도록 상기 하나 또는 그 이상의 실리콘 태양 전지들의 저면들과 곡선의 지지면 사이에 진공을 인가하는 과정을 포함한다. 상기 도전성 접착 결합 물질은 상기 태양 전지들이 레이저 스크라이브되기 이전이나 이후에 상기 종래 크기의 실리콘 태양 전지들에 적용될 수 있다.
결과적인 복수의 직사각형의 실리콘 태양 전지들은 그 사이에 배치되는 상기 전기적으로 도전성인 접착 결합 물질로 슁글드 방식으로 중첩되는 인접하는 직사각형의 실리콘 태양 전지들의 긴 측면들과 일렬로 배열될 수 있다. 상기 전기적으로 도전성인 결합 물질은 이후에 큐어링될 수 있으며, 이에 따라 인접하고 중첩되는 직사각형의 실리콘 태양 전지들을 서로 결합시키고, 이들을 전기적으로 직렬로 연결한다. 이러한 공정은 "기술 분야의 관련 출원들에 대한 참조"에서 앞서 열거한 특허 출원들에 기재된 바와 같은 슁글드 "슈퍼 셀"을 형성한다.
여기에 개시되는 절단 기구들 및 방법들을 더 이해하기 위해 도면들을 다시 참조하면, 도 20a는 스크라이브된 태양 전지들을 절단하는 데 사용될 수 있는 예시적인 장치(1050)의 측면도를 개략적으로 예시한다. 이러한 장치에서, 스크라이브된 종래 크기의 태양 전지 웨이퍼(45)는 천공된 이동 벨트(1060)에 의해 진공 매니폴드(1070)의 곡선의 부분 상부로 운반된다. 태양 전지 웨이퍼(45)가 상기 진공 매니폴드의 곡선의 부분 상부를 지나가면서, 상기 벨트 내의 천공들을 통해 인가되는 진공이 상기 진공 매니폴드에 대해 상기 태양 전지 웨이퍼(45)의 저면을 당기며, 이에 따라 상기 태양 전지를 구부린다. 상기 진공 매니폴드의 곡선의 부분의 곡률 반경 R은 이러한 방식으로 태양 전지 웨이퍼(45)를 구부리는 것이 직사각형의 태양 전지들(10)을 형성하도록 상기 스크라이브 라인들을 따라 상기 태양 전지를 절단하도록 선택될 수 있다. 직사각형의 태양 전지들(10)은, 예를 들면, 도 1 및 도 2에 예시한 바와 같은 슈퍼 셀 내에 사용될 수 있다. 태양 전지 웨이퍼(45)는 이러한 방법에 의해 상기 도전성 접착 결합 물질이 적용되었던 태양 전지 웨이퍼(45)의 상면에 접촉하지 않고 절단될 수 있다.
절단은, 예를 들면, 각 스크라이브 라인에 대해 일측 단부가 타측 단부 이전에 상기 진공 매니폴드의 곡선의 부분에 도달하도록 상기 진공 매니폴드에 각도 θ로 배향되게 상기 스크라이브 라인들에 대해 배열함에 의해 스크라이브 라인의 일측 단부에서(즉, 태양 전지(45)의 하나의 에지에서) 우선적으로 개시될 수 있다. 도 20b에 도시한 바와 같이, 예를 들면, 상기 태양 전지들은 상기 벨트의 진행의 방향 및 상기 벨트의 진행의 방향에 직교하게 배향된 상기 매니폴드의 곡선의 절단하는 부분에 각도로 이들의 스크라이브 라인들과 배향될 수 있다. 다른 예로서, 도 20c는 상기 벨트의 진행의 방향 및 상기 벨트의 진행의 방향에 각도로 배향된 상기 매니폴드의 곡선의 절단하는 부분에 직교하는 이들의 스크라이브 라인들과 배향된 셀들을 도시한다.
절단 기구(1050)는, 예를 들면, 상기 태양 전지 웨이퍼(45)의 폭과 대략적으로 동일한 그 진행의 방향에 직교하는 폭을 갖는 단일의 천공된 이동 벨트(1060)를 활용할 수 있다. 선택적으로는, 기구(1050)는, 예를 들면 나란하게 함께 배열될 수 있고, 서로 선택적으로 이격될 수 있는 둘, 셋, 넷 또는 그 이상의 천공된 이동 벨트들(1060)을 포함할 수 있다. 절단 기구(1050)는, 예를 들면 태양 전지 웨이퍼(45)의 폭과 대략적으로 동일한 상기 태양 전지들의 진행의 방향에 직교하는 폭을 가길 수 있는 단일의 진공 매니폴드를 활용할 수 있다. 이와 같은 진공 매니폴드는, 예를 들면 단일의 전체 폭의 천공된 이동 벨트(1060)를 구비하거나, 예를 들면 나란하게 함께 배열되고 선택적으로 서로 이격되는 둘 또는 그 이상의 이러한 벨트들을 구비하여 채용될 수 있다.
절단 기구(1050)는 나란하게 함께 배열되고 서로 이격되는 둘 또는 그 이상의 곡선의 진공 매니폴드들을 포함할 수 있고, 각 진공 매니폴드는 동일한 곡률을 가진다. 이와 같은 배치는, 예를 들면, 단일의 전체 길이의 천공된 이동 벨트(1060)를 구비하거나, 나란하게 함께 배열되고 선택적으로 서로 이격되는 둘 또는 그 이상의 이러한 벨트들을 구비하여 채용될 수 있다. 예를 들면, 상기 기구는 각 진공 매니폴드에 대해 천공된 이동 벨트(1060)를 포함할 수 있다. 후자의 배치에서, 상기 진공 매니폴드들 및 이들의 대응되는 천공된 이동 벨트들은 상기 벨트들의 폭들에 의해 정의되는 두 개의 좁은 스트립들만을 따라 상기 태양 전지 웨이퍼의 바닥에 접촉하도록 배열될 수 있다. 이러한 경우들에서, 상기 태양 전지는 상기 절단 공정 동안에 연질의 물질들에 대한 손상의 위험이 없이 벨트들에 의해 접촉되지 않는 상기 태양 전지 웨이퍼의 저면의 영역 내에 상기 연질의 물질들을 포함할 수 있다.
천공된 이동 벨트들 및 진공 매니폴드들의 임의의 적합한 배치가 절단 기구(1050) 내에 이용될 수 있다.
일부 변형예들에서, 상기 스크라이브된 태양 전지 웨이퍼들(45)은 절단 기구(1050)를 사용하는 절단 이전에 이들의 상면 및/또는 저면들 상에 큐어링되지 않은 도전성 접착 결합 물질 및/또는 다른 연질의 물질들을 포함한다. 상기 태양 전지 웨이퍼의 스크라이빙 및 상기 연질의 물질의 적용은 어느 순서로도 일어날 수 있었다.
도 62a는 상술한 절단 기구(1050)와 유사한 다른 예시적인 절단 기구(5210)의 측면도를 예시하며, 도 62b는 상면도를 예시한다. 절단 기구(5210)의 사용에서, 종래 크기의 스크라이브된 태양 전지 웨이퍼(45)는 대응되고 평행하고 이격된 진공 매니폴드들(5235)의 쌍 상부로 일정한 속도로 이동하는 평행하게 이격되는 천공된 벨트들(5230)의 쌍 상에 위치한다. 진공 매니폴드들(5235)은 통상적으로 동일한 곡률을 가진다. 상기 웨이퍼가 절단 영역(5235C)을 통해 상기 진공 매니폴드들 상부로 상기 벨트들로 진행되면서, 상기 웨이퍼는 상기 웨이퍼의 바닥에 대해 당기는 상기 진공의 힘에 의해 상기 진공 매니폴드들의 곡선의 지지면들로 정의되는 절단 반경 주이에서 구부려진다. 상기 웨이퍼가 상기 절단 반경 주위로 구부려지면서, 상기 스크라이브 라인들이 상기 웨이퍼를 개개의 직사각형의 태양 전지들로 분리하는 크랙들로 된다. 다음에 더 설명하는 바와 같이, 상기 진공 매니폴드들의 곡률은 인접하는 절단된 직사각형의 태양 전지들이 동일 평면상에 있지 않으며, 인접하는 절단된 직사각형의 태양 전지들의 에지들이 이에 따라 상기 절단 공정이 일어난 후에 서로 접촉되지 않도록 배열된다. 상기 절단된 직사각형의 태양 전지들은 그 몇몇 예들이 다음에 설명되는 임의의 적절한 방법으로 상기 천공된 벨트들로부터 연속적으로 언로드(unload)될 수 있다. 통상적으로, 상기 언로드 방법은 이들이 후속하여 동일 평면상에 놓일 경우에 이들 사이의 접촉을 방지하도록 인접하는 절단된 태양 전지들을 서로로부터 더 분리한다.
도 62a-도 62b를 여전히 참조하면, 각 진공 매니폴드는, 예를 들면 진공을 제공하지 않거나, 저진공 또는 고진공을 제공하는 평탄한 영역(5235F); 저진공 또는 고진공을 제공하거나, 그 길이를 따라 저진공으로부터 고진공까지 전이되는 선택적인 곡선의 전이 영역(5235T); 고진공을 제공하는 절단 영역(5235C); 그리고 저진공을 제공하는 보다 급격한 반경의 후 절단(post cleave) 영역(5235PC)을 포함할 수 있다. 벨트들(5230)은 웨이퍼들(45)을 평탄한 영역(5235F)으로부터 전이 영역(5235T) 내로 및 이를 통해 이송하고, 이후에 절단 영역(5235C) 내로 이송하며, 여기서 상기 웨이퍼들이 절단되고, 이후에 상기 결과적인 절단된 태양 전지들(10)을 절단 영역(5235C) 외부로 및 상기 후 절단 영역(5235PC) 내로 이송한다.
평탄한 영역(5235F)은 통상적으로 웨이퍼들(45)을 상기 벨트들 및 진공 매니폴드들에 제한하도록 충분하게 낮은 진공에서 동작된다. 여기서 상기 진공은 마찰을 감소시키고 이에 따라 요구되는 벨트 장력을 감소시키며, 상기 웨이퍼들(45)을 곡선의 표면들보다는 평탄한 표면에 제한하는 것이 보다 용이하기 때문에 낮을 수 있다(또는 없을 수 있다). 상기 평탄한 영역(5235F) 내의 진공은, 예를 들면, 약 1인치 내지 약 6인치의 수은이 될 수 있다.
전이 영역(5235T)은 평탄한 영역(5235F)으로부터 절단 영역(5235C)까지 전이 곡선을 제공한다. 전이 영역(5235T) 내의 곡률 반경 또는 곡률 반경들은 절단 영역(5235C) 내의 곡률 반경보다 크다. 상기 전이 영역(5235T) 내의 곡선은, 예를 들면 타원의 일부가 될 수 있지만, 임의의 적합한 곡선도 이용될 수 있다. 영역(5235F) 내의 평탄한 배향으로부터 절단 영역(5235C) 내의 절단하는 반경까지 직접 전이되는 것보다는 곡률의 보다 얕은 변화에서 전이 영역(5235T)을 통해 절단 영역(5235C)에 접근하는 웨이퍼들(45)을 가지는 것은 상기 웨이퍼들(45)의 에지들이 들어 올리지 않고 진공을 파괴하는 점을 확보하는 데 기여하며, 이는 상기 웨이퍼들(45)의 에지들이 상기 웨이퍼들을 절단 영역(5235C) 내의 절단 반경에 제한하는 것을 어렵게 만들 수 있다. 상기 전이 영역(5235T) 내의 진공은, 예를 들면, 절단 영역(5235C) 내에서와 동일할 수 있거나, 영역(5235F, 5235C)의 경우 사이의 중간이 될 수 있거나, 영역(5235F) 내의 경우와 영역(5235C) 내의 경우 사이의 영역(5235T)의 길이를 따라 전이될 수 있다. 상기 전이 영역(5235T) 내의 진공은, 예를 들면, 약 2인치 내지 약 8인치의 수은이 될 수 있다.
절단 영역(5235C)은 변화되는 곡률 반경 또는 선택적으로 일정한 곡률 반경을 가질 수 있다. 이와 같은 일정한 곡률 반경은, 예를 들면, 약 11.5인치, 약 12.5인치, 또는 약 6인치 내지 약 18인치 사이가 될 수 있다. 곡률의 임의의 적절한 범위가 이용될 수 있고, 상기 웨이퍼(45)의 두께와 깊이 및 상기 웨이퍼(45) 내의 스크라이브 라인들의 기하학적 구조에 부분적으로 기초하여 선택될 수 있다. 통상적으로, 상기 웨이퍼가 얇아질수록 스크라이브 라인을 따라 이를 갈라지게 하기 위해 상기 웨이퍼를 충분히 구부리는 데 요구되는 곡률 반경이 짧아진다. 비록 임의의 다른 적합한 보다 얕거나 보다 깊은 스크라이브 라인 깊이도 이용될 수 있지만, 상기 스크라이브 라인들은, 예를 들면 약 60미크론 내지 약 140미크론의 깊이를 가질 수 있다. 통상적으로, 상기 스크라이브 라인이 얕아질수록 스크라이브 라인을 따라 이를 갈라지게 하기 위해 상기 웨이퍼를 충분히 구부리는 데 요구되는 곡률 반경이 짧아진다. 상기 스크라이브 라인의 단면 형상 또한 요구되는 곡률 반경에 영향을 미친다. 웨지(wedge) 형상 또는 웨지 형상의 바닥을 갖는 스크라이브 라인은 라운드진 형상 또는 라운드진 바닥을 갖는 스크라이브 라인보다 효과적으로 스트레스를 집중시킬 수 있다. 스트레스를 보다 효과적으로 집중시키는 스크라이브 라인들은 급격한 절단 영역 내의 곡률 반경만큼 스트레스를 덜 효과적으로 집중시키는 스크라이브 라인들을 요구하지 않을 수 있다.
적어도 상기 두 개의 평행한 진공 매니폴드들의 하나를 위한 상기 절단 영역(5235C) 내의 진공은 통상적으로 상기 웨이퍼가 일정한 굽힘 스트레스를 유지하기 위해 상기 절단하는 곡률 반경으로 적절하게 제한되는 점을 확보하도록 다른 영역들보다 높다. 선택적으로 및 다음에 더 설명하는 바와 같이, 이러한 영역에서 하나의 매니폴드는 상기 스크라이브 라인들을 따른 절단을 보다 우수하게 컨트롤하기 위해 다른 하나보다 높은 진공을 제공할 수 있다.
후 절단 영역(5235PC)은 통상적으로 절단 영역(5235C)보다 급격한 곡률 반경을 가진다. 이는 인접하는 절단된 태양 전지들의 갈라진 표면들이 문질러지거나 접촉되게(이는 크랙들이나 다른 고장 유형들로부터 태양 전지 불량들을 야기할 수 있었다) 하지 않고 상기 절단된 태양 전지들을 벨트들(5230)로부터 이송하는 것을 가능하게 한다. 특히, 보다 급격한 곡률 반경은 상기 벨트들 상의 인접하는 절단된 태양 전지들의 에지들 사이에 보다 큰 분리를 제공한다. 상기 후 절단 영역(5235PC) 내의 진공은 상기 웨이퍼들(45)이 이미 태양 전지들(10)로 절단되었으므로 상기 태양 전지들을 상기 진공 매니폴드들의 곡선의 반경에 제한하는 것이 더 이상 요구되지 않기 때문에 낮을(예를 들면, 평탄한 영역(5235F) 내의 경우와 유사하거나 동일하게) 수 있다. 상기 절단된 태양 전지들(10)의 에지들은, 예를 들면 벨트들(5230)로부터 들어 올려질 수 있다. 또한, 절단된 태양 전지들(10)이 과도한 스트레스를 갖지 않는 것이 바람직할 수 있다.
상기 진공 매니폴드들의 평탄한, 전이, 절단 및 후 절단 영역들은 정합되는 이들의 단부들을 구비하는 다른 곡선들의 별개의 부분들이 될 수 있다. 예를 들면, 각 매니폴드의 상부 표면은 평탄한 평면형의 부분, 상기 전이 영역을 위한 타원의 부분, 상기 절단 영역을 위한 원의 원호, 그리고 상기 후 절단 영역을 위한 원의 원호 또는 타원의 일부를 포함할 수 있다. 선택적으로는, 상기 매니폴드의 상부 표면의 곡선 부분의 일부 또는 모두가 증가되는 곡률들(접촉 원의 감소되는 직경)의 연속되는 기하학적 함수를 가질 수 있다. 적절한 이러한 기능들은, 이에 제한되는 것은 아니지만, 예를 들면 클로소이드(clothoid)들과 같은 나선형 함수들 및 자연 로그 함수를 포함할 수 있다. 클로소이드는 곡률이 곡선의 경로 길이를 따라 선형으로 증가되는 곡선이다. 예를 들면, 일부 변형예들에서, 상기 전이, 절단 및 후 절단 영역들은 상기 평탄한 영역에 연결되는 일측 단부를 갖는 단일의 클로소이드 곡선의 모든 부분이다. 일부 다른 변형예들에서, 상기 전이 영역은 상기 평탄한 영역에 연결되는 하나의 단부 및 원형의 곡률을 갖는 절단 영역에 연결되는 다른 단부를 가지는 클로소이드 곡선이다. 후자의 변형예들에서, 상기 후 절단 영역은, 예를 들면, 보다 급격한 반경의 원형 곡률 또는 보다 급격한 반경의 클로소이드 곡률을 가질 수 있다.
앞서 설명하고 도 62b 및 도 63a에 개략적으로 예시한 바와 같기, 일부 변형예들에서 하나의 매니폴드는 절단 영역(5235C) 내에 고진공을 제공하며, 다른 하나의 매니폴드는 절단 영역(5235C) 내에 저진공을 제공한다. 상기 고진공 매니폴드는 지지하는 상기 웨이퍼의 단부를 상기 매니폴드의 곡률로 완전히 제한하며, 이는 상기 스크라이브 라인을 따라 크랙이 시작되도록 상기 고진공 매니폴드 위에 놓이는 상기 스크라이브 라인의 단부에 충분한 스트레스를 제공한다. 상기 저진공 매니폴드는 지지하는 상기 웨이퍼의 단부를 상기 매니폴드의 곡률로 완전히 제한하지 않으므로, 이러한 측면 상의 상기 웨이퍼의 구부러진 반경은 상기 스크라이브 라인 내에 크랙이 시작되도록 하기 위하여 필요한 스트레스를 생성하기에 충분히 급격하지 않다. 그러나, 상기 스트레스는 상기 고진공 매니폴드 위에 놓인 상기 스크라이브 라인의 타측 단부에서 시작되는 크랙을 전파시키도록 충분히 높다. 상기 웨이퍼의 이러한 단부를 상기 매니폴드의 곡률로 부분적으로 및 충분히 제한하기 위한 상기 "저진공" 측면 상의 일부 진공이 없으면, 상기 웨이퍼의 대향하는 "고진공" 단부 상에서 시작되는 크랙이 상기 웨이퍼에 걸쳐 완전히 전파되지 않게 되는 위험이 있을 수 있다. 앞서 설명한 바와 같은 변형예들에서, 하나의 매니폴드가 평탄한 영역(5235F)으로부터 후 절단 영역(5235PC)을 통해 그 전체 길이를 따라 저진공을 선택적으로 제공할 수 있다.
앞서 설명한 바와 같이, 절단 영역(5235C) 내의 비대칭 진공 배치는 상기 스크라이브 라인들을 따른 크랙들의 생성 및 전파를 컨트롤하는 상기 스크라이브 라인들을 따라 비대칭 스트레스를 제공한다. 예를 들어 도 63b를 참조하면, 대신에 두 개의 진공 매니폴드들이 절단 영역(5235C) 내에 동일한(예를 들면, 높은) 진공들을 제공할 경우, 크랙들이 상기 웨이퍼의 양측 단부들에서 생성될 수 있고, 서로를 향해 전파될 수 있으며, 상기 웨이퍼의 중심 영역 내의 어딘가에서 만날 수 있다. 이들 환경들 하에서, 상기 크랙들이 서로 연결되지 않으며, 이에 따라 이들이 상기 크랙들이 만나는 결과적인 절단된 셀들 내에 잠재적인 기계적 파괴점을 생성하는 위험성이 있다.
전술한 비대칭 진공 배치에 대한 선택적이거나 추가적인 예로서, 절단은 타측 단부 이전에 스크라이브 라인의 일측 단부가 상기 매니폴드들의 절단 영역에 도달되도록 배열함에 의해 스크라이브 라인의 일측 단부에서 우선적으로 시작될 수 있다. 이는, 예를 들면, 상기 태양 전지 웨이퍼들을 도 20b에 대해 상술한 바와 같이 상기 진공 매니폴드들에 대해 각도를 가지게 배향함에 의해 이루어질 수 있다. 선택적으로는, 상기 진공 매니폴드들은 상기 두 매니폴드들의 하나의 절단 영역이 다른 하나의 진공 매니폴드의 절단 영역보다 더 상기 벨트 경로를 따르게 하도록 배열될 수 있다. 예를 들면, 동일한 곡률 반경을 갖는 두 진공 매니폴드들이 상기 이동 벨트의 진행의 방향으로 약간 오프셋될 수 있으므로, 상기 태양 전지 웨이퍼들이 다른 하나의 진공 매니폴드의 절단 영역에 도달하기 이전에 하나의 매니폴드의 절단 영역에 도달한다.
도 64를 이제 참조하면, 예시한 예에서 각 진공 매니폴드(5235)는 진공 채널(5245)의 중심 아래로 일렬로 배열되는 쓰루 홀(through hole)들(5240)을 포함한다. 도 65a-도 65b에 도시한 바와 같이, 진공 채널(5245)은 천공된 벨트(5230)를 지지하는 상기 매니폴드의 상부 표면 내로 리세스(recess)된다. 각 진공 매니폴드는 또한 쓰루 홀들(5240) 사이에 위치하고, 진공 채널(5245)의 중심 아래로 일렬로 배열되는 중심 필라(pillar)들(5250)을 포함한다. 중심 필라들(5250)은 진공 채널(5245)을 상기 중심 필라들의 열의 어느 하나의 측면 상의 두 개의 평행한 진공 채널들로 효과적으로 분리한다. 중심 필라들(5250)은 또한 벨트(5230)에 대한 지지를 제공한다. 중심 필라들(5250)이 없으면, 벨트(5230)는 보다 긴 지지되지 않은 영역에 노출될 수 있고, 쓰루 홀들(5240)을 향해 잠재적으로 빨려 들어갈 수 있다. 이는 상기 태양 전지들을 손상시키고 상기 절단 공정을 저해할 수 있는 웨이퍼들(45)의 삼차원적인 굽힘(상기 절단 반경으로 상기 절단 반경에 직교하는 굽힘)을 가져올 수 있다.
도 65a-도 65b 및 도 66-도 67에 도시한 바와 같이, 예시한 예에서 쓰루 홀들(5240)은 저진공 챔버(5260L)(도 62a의 평탄한 영역(5235F) 및 전이 영역(5235T)), 고진공 챔버(5260H)(도 62a의 절단 영역(5235C)), 그리고 다른 저진공 챔버(5260L)(도 62a의 후 절단 영역(5235PC))와 연통된다. 이러한 배치는 진공 채널(5245) 내의 저진공 및 고진공 영역들 사이에 매끄러운 전이를 제공한다. 쓰루 홀들(5240)이 충분한 흐름 저항을 제공하므로. 홀에 대응되는 영역이 완전히 개방되게 남을 경우에 공기 흐름이 이러한 하나의 홀에 완전하게 편향되지 않을 것이며, 다음 영역들이 진공을 유지하게 할 것이다. 진공 채널(5245)은 상기 진공 벨트 홀들(5255)이 항상 진공을 가질 것이며, 상기 쓰루 홀들(5240) 사이에 위치할 때에 데드 스팟(dead spot) 내에 있지 않을 것인 점을 확보하는 데 기여한다.
도 65a-도 65b를 다시 참조하고, 도 67 또한 참조하면, 천공된 벨트들(5230)은, 예를 들면, 웨이퍼(45) 또는 절단된 태양 전지(10)의 리딩(leading) 및 트레일링(trailing) 에지들(527)이 상기 벨트가 상기 매니폴드를 따라 진행하면서 항상 진공 하에 있도록 선택적으로 배열되는 홀들(5255)의 두 개의 열들을 포함할 수 있다. 특히, 예시한 예에서 홀들(5255)의 엇갈린 배치는 웨이퍼(45) 또는 절단된 태양 전지(10)의 에지들이 각 벨트(5230) 내의 적어도 하나의 홀(5255)과 항상 중첩되는 것을 확보한다. 이는 웨이퍼(45)의 에지들 또는 절단된 태양 전지(10)가 벨트(5230) 및 매니폴드(5235)로부터 들어 올려지는 것을 방지하는 데 기여한다. 홀들(5255)의 임의의 다른 적합한 배치도 이용될 수 있다. 일부 변형예들에서, 상기 홀들(5255)의 배치는 웨이퍼(45) 또는 절단된 태양 전지(10)의 에지들이 항상 진공 하에 있는 점을 보장하지는 않는다.
절단 기구(5210)의 예시한 예에서 천공된 이동 벨트들(5230)은 상기 태양 전지 웨이퍼의 측방 에지를 따른 상기 벨트들의 폭들에 의해 한정되는 두 개의 좁은 스트립들을 따라 태양 전지 웨이퍼(45)의 바닥에만 접촉된다. 이에 따라, 상기 태양 전지 웨이퍼는, 예를 들면, 상기 절단 공정 동안에 연질의 물질에 대한 손상의 위험이 없이 벨트들(5230)에 의해 접촉되지 않는 상기 태양 전지 웨이퍼의 저면의 영역 내에 큐어링되지 않은 접착제들과 같은 연질의 물질들을 포함할 수 있다.
선택적인 변형예들에서, 절단 기구(5210)는, 예를 들면, 앞서 설명한 바와 같은 두 개의 천공된 이동 벨트들보다는 그 진행의 방향에 직교하여 상기 태양 전지 웨이퍼(45)의 폭과 대략적으로 동일한 폭을 갖는 단일의 천공된 이동 벨트(5230)를 활용할 수 있다. 선택적으로는, 절단 기구(5210)는 나란히 병렬로 배열될 수 있고, 선택적으로 서로 이격될 수 있는 셋, 넷 또는 그 이상의 천공된 이동 벨트들(5230)을 포함할 수 있다. 절단 기구(5210)는, 예를 들면 상기 태양 전지들의 진행의 방향에 직교하여 상기 태양 전지 웨이퍼(45)의 폭과 대략적으로 동일한 폭을 가질 수 있는 단일의 진공 매니폴드(5235)를 활용할 수 있다. 이와 같은 진공 매니폴드는, 예를 들면, 단일의 전체 폭의 천공된 이동 벨트(5230), 또는 나란히 병렬로 배열되고 선택적으로 서로 이격되는 둘 또는 그 이상의 이러한 벨트들을 구비하여 채용될 수 있다. 절단 기구(5210)는, 예를 들면, 각 진공 매니폴드가 동일한 곡률을 가지며, 나란히 병렬로 배열되고 서로 이격되는 두 개의 곡선의 진공 매니폴드들(5235)에 의해 대향하는 측방 에지들을 따라 지지되는 단일의 천공된 이동 벨트(5230)를 포함할 수 있다. 절단 기구(5210)는 나란히 병렬로 배열되고 서로 이격되는 셋 또는 그 이상의 곡선의 진공 매니폴드들(5235)을 포함할 수 있고, 각 진공 매니폴드는 동일한 곡률을 가진다. 이와 같은 배치는, 예를 들면, 단일의 전체 폭의 천공된 이동 벨트(5230), 또는 나란히 병렬로 배열되고 선택적으로 서로 이격되는 셋 또는 그 이상의 이러한 벨트들을 구비하여 채용될 수 있다. 상기 절단 기구는, 예를 들면 각 진공 매니폴드에 대한 천공된 이동 벨트(5230)를 포함할 수 있다.
천공된 이동 벨트들 및 진공 매니폴드들의 임의의 적합한 배치가 절단 기구(5210) 내에 이용될 수 있다.
전술한 바와 같이, 일부 변형예들에서, 상기 절단 기구(5210)로 절단된 스크라이브된 태양 전지 웨이퍼들(45)은 절단 이전에 이들의 상면 및/또는 저면들 상에 큐어링되지 않은 도전성 접착 결합 물질 및/또는 다른 연질의 물질들을 포함한다. 태양 전지 웨이퍼의 스크라이빙 및 상기 연질의 물질의 적용은 임의의 순서로 일어날 수 있었다.
절단 기구(5210) 내의 천공된 벨트들(5230)(및 절단 기구(1050) 내의 천공된 벨트들(1060))은 태양 전지 웨이퍼들(45)을 예를 들면, 약 40밀리미터/초(㎜/s) 내지 약 2000㎜/s 또는 그 이상, 혹은 약 40㎜/s 내지 약 500㎜/s 또는 그 이상, 혹은 약 80㎜/s 또는 그 이상의 속도로 이송할 수 있다. 태양 전지 웨이퍼들(45)의 절단은 낮은 속도들에서보다 높은 속도에서 용이해질 수 있다.
도 68을 이제 참조하면, 절단되면 곡선 주위의 굽힘의 기하학적 구조로 인하여 인접하는 절단된 셀들(10)의 리딩 및 트레일링 에지들(527) 사이의 일부 분리가 존재할 것이며, 이는 인접하는 절단된 태양 전지들 사이에 웨지 형상의 갭을 생성한다. 상기 절단된 셀들이 절단된 셀들 사이의 분리를 처음에 증가시키지 않고 평탄한 동일 평면 내의 배향으로 돌아가게 될 경우, 인접하는 절단된 셀들의 에지들이 접촉될 수 있고 서로 손상시킬 수 있었던 가능성이 존재한다. 그러므로 상기 절단된 셀들을 이들이 곡선의 표면에 의해 여전히 지지되면서 벨트들(5230)(또는 벨트들(1060))로부터 제거하는 것이 유리하다.
도 69a-도 69g는 절단된 태양 전지들이 벨트들(5230)(또는 벨트들(1060))로부터 제거될 수 있고, 상기 절단된 태양 전지들 사이의 향상된 분리를 구비하여 하나 또는 그 이상의 추가적인 이동 벨트들 또는 이동 표면들로 전달될 수 있는 몇몇 장치 및 방법들을 예시한다. 도 69a의 예에서, 절단된 태양 전지들(10)은 벨트들(5230)보다 빠르게 이동하고, 이에 따라 절단된 태양 전지들(10) 사이의 분리를 증가시키는 하나 또는 그 이상의 이송 벨트들(5265)에 의해 벨트들(5230)로부터 수집된다. 이송 벨트들(5265)은, 예를 들면 상기 두 벨트들(5230) 사이에 위치할 수 있다. 도 69b의 예에서, 절단된 웨이퍼들(10)은 상기 두 벨트들(5230) 사이에 위치하는 아래로 미끄러지는 슬라이드(slide)(5270)에 의해 분리된다. 이러한 예에서, 벨트들(5230)은 상기 웨이퍼(45)의 절단되지 않은 부분이 여전히 벨트들(5230)에 의해 유지되면서 상기 절단된 셀을 슬라이드(5270)로 방출하도록 각 절단된 셀(10)을 매니폴드들(5235)의 저진공(예를 들면, 진공이 아닌) 영역 내로 진행시킨다. 상기 절단된 전지(10)와 상기 슬라이드(5270) 사이에 에어쿠션(air cushion)을 제공하는 것은 상기 셀 및 상기 슬라이드 모두가 동작 동안에 마모되지 않는 점을 확보하도록 보조하며, 또한 절단된 전지들(10)이 웨이퍼(45)로부터 보다 빠르게 미끄러지게 하고 이에 따라 보다 빠른 절단 벨트 동작 속도들을 가능하게 한다.
도 69c의 예에서, 회전하는 "페리스 휠(Ferris Wheel)" 배치(5275) 내의 캐리지들(5275A)은 절단된 태양 전지들(10)을 벨트들(5230)로부터 하나 또는 그 이상의 벨트들(5280)로 이송한다.
도 69d의 예에서, 회전하는 롤러(5285)가 절단된 태양 전지들(10)을 벨트들(5230)로부터 집어 들고 이들을 벨트들(5280) 상에 위치시키도록 액츄에이터(actuator)들(5285A)을 통해 진공을 인가한다.
도 69e의 예에서, 캐리지 액츄에이터(5290)는 캐리지(5290A) 및 상기 캐리지 상에 장착되는 연장될 수 있고 신축될 수 있는 액츄에이터(5290B)를 포함한다. 캐리지(5290A)는 절단된 태양 전지(10)를 벨트들(5230)로부터 제거하기 위해 액츄에이터(5290B)를 위치시키고, 이후에 벨트들(5280) 상에 절단된 태양 전지를 배치하기 위해 액츄에이터(5290B)를 위치시키도록 전후로 이동한다.
도 69f의 예에서, 캐리지 트랙 배치는(5295) 절단된 태양 전지들(10)을 벨트들(5230)로부터 제거하기 위해 캐리지들(5295A)을 위치시키고, 이후에 절단된 태양 전지들(10)을 벨트들(5280) 상에 배치하기 위해 캐리지들(5295A)을 위치시키는 이동 벨트(5300)에 부착되는 캐리지들(5295A)을 포함하며, 후자는 상기 캐리지들이 상기 벨트(5230)의 경로로 인해 벨트(5280)로부터 떨어지거나 당겨지면서 일어난다.
도 69g의 예에서, 반전된 진공 벨트 배치(5305)는 벨트들(5230)로부터 벨트들(5280)까지 절단된 태양 전지들(10)을 이송하도록 하나 또는 그 이상의 이동하는 천공된 벨트들을 통해 진공을 인가한다.
도 70a-도 70c는 도 62a-도 62b 및 후속하는 도면들을 참조하여 전술한 예시적인 기구의 추가 변형예의 직교 투영도들을 제공한다. 이러한 변형예(5310)는 절단된 태양 전지들(10)을 절단되지 않은 웨이퍼(45)를 상기 기구의 절단 영역 내로 이송하는 상기 천공된 벨트들(5230)로부터 제거하도록 도 69a의 예에서와 같이 이송 벨트들(5265)을 사용한다. 도 71a-도 71b의 사시도들은 동작의 두 가지 다른 단계들에서 상기 절단 기구의 이러한 변형예를 도시한다. 도 71a에서, 절단되지 않은 웨이퍼(45)는 상기 기구의 절단 영역에 접근하고 있으며, 도 71b에서 상기 웨이퍼(45)는 상기 절단 영역으로 진입하였고, 두 개의 절단된 태양 전지들(10)은 상기 웨이퍼로부터 분리되었으며, 이후에 이들이 이송 벨트들(5265)에 의해 이송되면서 서로 더 분리된다.
앞서 설명한 특징들 이외에도, 도 70a-도 71b는 각 매니폴드 상의 다중 진공 포트들(5315)을 도시한다. 매니폴드 당 다중 포트들의 사용은 상기 매니폴드의 상부 표면의 길이를 따른 진공의 변형예에 대해 보다 많은 컨트롤을 가능하게 할 수 있다. 예를 들면, 다른 진공 포트들(5315)이 매니폴드를 따라 다른 진공 압력을 제공하도록 다른 진공 챔버들(예를 들면, 도 66 및 도 72b의 5260L 및 5260H)과 선택적으로 연통될 수 있거나 및/또는 다른 진공 펌프들에 선택적으로 연결될 수 있다. 도 70a-도 70b는 또한 휠들(5325), 진공 매니폴드들(5235)의 상부 표면들, 그리고 휠들(5320)을 순환하는 천공된 벨트들(5230)의 완전한 경로들을 도시한다. 벨트들(5230)은, 예를 들면 휠들(5320) 또는 휠들(5325)에 의해 구동될 수 있다.
도 72a 및 도 72b는 도 70a-도 71b의 변형예에 대해 천공된 벨트(5230)의 일부로 오버레이되는 진공 매니폴드(5235)의 일부의 사시도들을 도시하며, 도 72a는 도 72b의 일부의 근접도를 제공한다. 도 73a는 천공된 벨트(5230)로 오버레이되는 진공 매니폴드(5235)의 일부의 상면도를 도시하며, 도 73b는 도 73a에 나타낸 C-C 라인을 따라 취한 동일한 진공 매니폴드 및 천공된 벨트 배치의 단면도를 도시한다. 도 73b에 도시한 바와 같이, 쓰루 홀들(5240)의 상대적인 배향들이 진공 매니폴드의 길이를 따라 변화될 수 있으므로, 각 쓰루 홀은 상기 쓰루 홀 바로 위의 상기 매니폴드의 상부 표면의 일부에 직교하게 배열된다. 도 74a는 천공된 벨트(5230)로 오버레이되는 진공 매니폴드(5235의 일부)의 다른 상면도를 도시하며, 진공 챔버들(5260L, 5260H)은 부분 투시도들에 도시된다. 도 74b는 도 74a의 일부의 근접도를 도시한다.
도 75a-도 75g는 천공된 진공 벨트들(5230)에 대해 선택적으로 사용될 수 있는 몇몇 예시적인 홀 패턴들을 도시한다. 이들 패턴들의 공통적인 특성은 상기 벨트 상의 임의의 위치에서 상기 벨트의 긴 축에 직교하는 패턴과 교차되는 웨이퍼(45) 또는 절단된 태양 전지(10)의 직선 에지가 항상 각 벨트 내의 적어도 하나의 홀(5255)과 중첩될 것인 점이다. 상기 패턴들은, 예를 들면, 엇갈린 정사각형 또는 직사각형의 홀들의 둘 또는 그 이상의 열들(도 75a, 도 75d), 엇갈린 원형의 홀들의 둘 또는 그 이상의 열들(도 75b, 도 75e, 도 75g), 경사진 슬롯들의 둘 또는 그 이상의 열들(도 75c, 도 75f), 또는 홀들의 임의의 다른 적합한 배치를 포함할 수 있다.
본 명세서에는 슈퍼 셀들을 형성하도록 중첩되는 슁글드 방식으로 배열되고, 인접하고 중첩되는 태양 전지들 사이의 도전성 결합들에 의해 전기적으로 연결되는 실리콘 태양 전지들을 포함하는 고효율 태양광 모듈들이 개시되며, 상기 슈퍼 셀들은 상기 태양광 모듈 내에 물리적으로 평행한 열들로 배열된다. 슈퍼 셀은 임의의 적절한 숫자의 태양 전지들을 포함할 수 있다. 상기 슈퍼 셀들은, 예를 들면 상기 태양광 모듈의 전체 길이 또는 폭에 실질적으로 걸치는 길이를 가질 수 있거나, 둘 또는 그 이상의 슈퍼 셀들이 열 내에 단대단으로 배열될 수 있다. 이러한 배치는 태양 전지 대 태양 전지의 전기적 상호 연결들을 감추며, 이에 따라 인접하는 직렬로 연결된 태양 전지들 사이의 대비가 적거나 없이 시각적으로 매력적인 태양광 모듈을 생성하는 데 사용될 수 있다.
본 명세서에는 상기 태양 전지들의 전면 (및 선택적으로)후면들 상으로 금속화의 스텐실 프린팅을 가능하게 하는 셀 금속화 패턴들이 더 개시된다. 여기에 사용되는 바에서, 셀 금속화의 "스텐실 프린팅(stencil printing)"은 금속화 물질(예를 들면, 실버 페이스트)을 그렇지 않으면 물질의 불투과성 시트 내의 패터닝된 개구들을 통해 태양 전지 표면상으로 적용하는 것을 언급한다. 상기 스텐실은, 예를 들면 패터닝된 스테인리스 스틸 시트가 될 수 있다. 상기 스텐실 내의 패터닝된 개구들은 전체적으로 스텐실 물질이 없으며, 예를 들면 임의의 메쉬(mesh) 또는 스크린을 포함하지 않는다. 상기 패터닝된 스텐실 개구들 내의 메쉬 또는 스크린 물질의 부존재는 여기에 사용되는 바와 같은 "스텐실 프린팅"을 "스크린 프린팅"과 구별한다. 대조적으로, 스크린 프린팅에서 상기 금속화 물질은 패터닝된 불투과성 물질을 지지하는 스크린(예를 들면, 메쉬)을 통해 태양 전지 표면상으로 적용된다. 상기 패턴은 상기 금속화 물질이 이들을 통해 상기 태양 전지에 적용되는 상기 불투과성 물질 내의 개구들을 포함한다. 상기 지지 스크린은 상기 불투과성 물질 내의 개구들에 걸쳐 연장된다.
스크린 프린팅과 비교하여, 셀 금속화 패턴들의 스텐실 프린팅은 스크린에 비해 보다 좁은 라인 폭들, 보다 큰 종횡비(라인 폭에 대한 높이), 보다 우수한 라인 균일성 및 정의, 그리고 스텐실의 보다 긴 지속성 스텐실을 포함하여 수많은 이점들을 제공한다. 그러나 스텐실 프린팅은 종래의 3 버스 바 금속화 설계들에서 요구될 수 있는 바와 같은 하나의 경로로 '섬(island)들'을 프린트하지 못할 수 있다. 또한, 스텐실 프린팅은 프린팅 동안에 상기 스텐실의 평면 내에 제한되지 않으며, 상기 스텐실의 배치와 사용을 간섭할 수 있는 지지되지 않은 구조들을 포함하도록 상기 스텐실을 요구할 수 있었던 금속화 패턴을 하나의 경로로 프린트하지 못할 수 있다. 예를 들면, 스텐실 프린팅은 이와 같은 설계를 위한 단일의 스텐실이 상기 버스 바를 위한 개구들 및 상기 핑거들을 위한 개구들에 의해 정의되는 시트 물질의 지지되지 않은 텅(tongue)들을 포함할 수 있었기 때문에, 평행하게 배열되는 금속화 핑거들이 상기 핑거들에 직교하게 진행되는 버스 바 또는 다른 금속화 특징에 의해 상호 연결되는 금속화 패턴을 하나의 경로로 프린트하지 못할 수 있다. 상기 텅들은 물리적 연결들에 의해 프린팅 동안에 상기 스텐실의 평면 내에 놓이도록 상기 스텐실의 다른 부분들에 제한되지 않을 수 있으며, 평면 외로 이동할 수 있었고, 상기 스텐실의 배치와 사용을 바꿀 수 있었다.
이에 따라, 전통적인 태양 전지들을 프린팅하기 위해 스텐실들을 사용하는 것에서의 시도들은 두 다른 스텐실들 또는 스크린 프린팅 단계와 결합되는 스텐실 프린팅 단계로 전면측 금속화를 위한 두 통로를 요구하며, 이는 셀 당 프린트 단계들의 전체 숫자들을 증가시키고, 또한 두 프린트들이 중첩되고 이중의 높이를 가져오는 '스트칭(stitching)' 문제를 발생시킨다. 상기 스티칭은 공정들을 더 복잡하게 하고, 추가적인 프린팅 및 관련 단계들은 비용을 증가시킨다. 스텐실 프린팅은 이에 따라 태양 전지들에 대해 공통적이지 않다.
다음에 더 설명되는 바와 같이, 여기에 설명되는 전면 금속화 패턴들은 상기 전면 금속화 패턴에 의해 서로 연결되지 않는 핑거들의 어레이(예를 들면, 평행한 라인들)를 포함할 수 있다. 이들 패턴들은 요구되는 스텐실이 지지되지 않은 부분들 또는 구조들(예를 들면, 텅(tongue)들)을 포함할 필요가 없기 때문에 단일 스텐실로 하나의 통로로 스텐실-프린트될 수 있다. 이러한 전면 금속화 패턴들은 상기 금속화 패턴 자체가 상기 핑거들에 직교하는 실질적인 전류 확산 또는 전기적 전도를 제공하지 않기 때문에 표준 크기의 태양 전지들에 대해서와 이격된 태양 전지들이 구리 리본들에 의해 상호 연결되는 태양 전지들의 스트링들에 대해서 불리할 수 있다. 그러나, 여기에 설명되는 전면 금속화 패턴들은 태양 전지의 전면 금속화 패턴의 일부가 인접하는 태양 전지의 후면 금속화 패턴과 중첩되고 도전성으로 결합되는 여기에 설명되는 바와 같은 직사각형의 태양 전지들의 슁글드 배치들 내에서 장 동작할 수 있다. 이는 상기 인접하는 태양 전지의 중첩되는 후면 금속화가 상기 전면 금속화 패턴 내의 핑거들에 직교하는 전류 확산 또는 전기적 전도를 제공할 수 있기 때문이다.
본 명세서에서 설명되는 태양광 모듈들의 보다 상세한 이해를 위해 이제 도면들을 참조하면, 도 1은 슈퍼 셀(100)을 형성하도록 중첩되고 전기적으로 연결되는 인접하는 태양 전지들의 단부들을 구비하여 슁글드 방식으로 배열되는 직렬 연결된 태양 전지들(10)의 스트링의 단면도를 도시한다. 각 태양 전지(10)는 반도체 다이오드 구조 및 태양 전지(10) 내에서 발생되는 전류가 광에 의해 조명될 때에 외부 부하에 제공될 수 있는 상기 반도체 다이오드 구조에 대한 전기적 콘택들을 포함한다.
본 명세서에 설명되는 예들에서, 각 태양 전지(10)는 n-p 접합의 대향하는 측면들에 대한 전기적 접촉을 제공하는 전면(태양측) 및 후면(차광측) 금속화 패턴들을 갖는 직사각형의 결정질 실리콘 태양 전지이며, 상기 전면 금속화 패턴은 n-형 도전성의 반도체층 상에 배치되고, 상기 후면 금속화 패턴은 p-형 도전성의 반도체층 상에 배치된다. 그러나, 다른 물질 시스템, 다이오드 구조들, 물리적 치수들, 또는 전기적 콘택 배치들이 적합할 경우에 사용될 수 있다. 예를 들면, 상기 전면(태양측) 금속화 패턴은 p-형 도전성의 반도체층 상에 배치될 수 있고, 상기 후면(차광측) 금속화 패턴은 n-형 도전성의 반도체층 상에 배치될 수 있다.
도 1을 다시 참조하면, 슈퍼 셀(100)에서 인접하는 태양 전지들(10)은 이들이 하나의 전면 태양 전지의 금속화 패턴을 인접하는 태양 전지의 후면 금속화 패턴에 전기적으로 연결하는 전기적으로 도전성인 결합 물질에 의해 중첩되는 영역에서 서로 직접 도전성으로 결합된다. 적합한 전기적으로 도전성인 결합 물질들은, 예를 들면, 전기적으로 도전성인 접착제들 및 전기적으로 도전성인 접착 필름들과 접착 테이프들, 그리고 종래의 땜납들을 포함할 수 있다.
도 2를 다시 참조하면, 도 2는 각기 상기 태양광 모듈의 긴 측면들의 길이와 대략적으로 동일한 길이를 가지는 여섯 개의 직사각형의 슈퍼 셀들(100)을 포함하는 예시적인 직사각형의 태양광 모듈(200)을 도시한다. 상기 슈퍼 셀들은 상기 모듈의 긴 측면들에 평행하게 배향되는 이들의 긴 측면들을 구비하여 여섯 개의 평행한 열들로서 배열된다. 유사하게 구성되는 태양광 모듈은 이러한 예에서 도시된 경우보다 많거나 보다 적은 이러한 측면 길이의 슈퍼 셀들의 열들을 포함할 수 있다. 다른 변형예들에서, 상기 슈퍼 셀들은 각기 직사각형의 태양광 모듈의 짧은 측면의 길이와 대략적으로 동일한 길이를 가질 수 있고, 상기 모듈의 짧은 측면들에 평행하게 배향되는 이들의 긴 측면들과 평행한 열들로 배열될 수 있다. 또 다른 배치에서, 각 열은 예를 들면 전기적으로 직렬로 상호 연결될 수 있는 둘 또는 그 이상의 슈퍼 셀들을 포함할 수 있다. 상기 모듈들은 예를 들면, 약 1미터의 길이를 갖는 짧은 측면들 및 예를 들면, 약 1.5미터 내지 약 2.0미터의 길이를 갖는 긴 측면들을 가질 수 있다. 상기 태양광 모듈들을 위해 임의의 다른 적합한 형상들(예를 들면, 정사각형) 및 치수들 또한 사용될 수 있다. 이러한 예에서 각 슈퍼 셀은 각기 156밀리미터(㎜) 정사각형 또는 의사 정사각형의 웨이퍼의 폭의 1/6과 대략적으로 동일한 폭 및 약 156㎜의 길이를 갖는 72개의 직사각형의 태양 전지들을 포함한다. 임의의 다른 적합한의 임의의 다른 적합한 숫자의 직사각형의 태양 전지들 또한 사용될 수 있다.
도 76은 상술한 바와 같이 스텐실 프린팅을 가능하게 하는 직사각형의 태양 전지(10) 상의 예시적인 전면 금속화 패턴을 도시한다. 상기 전면 금속화 패턴은, 예를 들면 실버 페이스트로 형성될 수 있다. 도 76의 예에서, 상기 전면 금속화 패턴은 서로 평행하게 진행되고, 상기 태양 전지의 짧은 측면들에 평행하며, 상기 태양 전지의 긴 측면들에 직교하는 복수의 핑거들(6015)을 포함한다. 상기 전면 금속화 패턴은 또한 상기 핑거(6015)의 단부에 위치하는 각 콘택 패드(6020)를 구비하여 상기 태양 전지의 긴 측면의 에지에 평행하게 진행되고 인접하는 선택적인 콘택 패드들(6020)의 열을 포함한다. 존재할 경우, 각 콘택 패드(6020)는 예시한 태양 전지의 전면을 인접하는 태양 전지의 후면의 중첩되는 부분과 도전성으로 결합시키는 데 사용되는 전기적으로 도전성인 접착제(ECA), 땜납, 또는 다른 전기적으로 도전성인 결합 물질의 개개의 비드(bead)를 위한 영역을 생성한다. 상기 패드들은, 예를 들면 원형, 정사각형, 또는 직사각형의 형상들을 가질 수 있지만, 임의의 적합한 패드 형상이 사용될 수 있다. 전기적으로 도전성인 결합 물질의 개개의 비드들을 사용하는 것에 대한 선택적인 예로서, 상기 태양 전지의 긴 측면의 에지를 따라 배치되는 ECA, 땜납, 도전성 테이프, 또는 다른 전기적으로 도전성인 결합 물질의 연속되는 라인이나 파선이 상기 핑거들의 일부 또는 모두를 상호 연결할 수 있을 뿐만 아니라 상기 태양 전지를 인접하고 중첩되는 태양 전지에 결합시킬 수 있다. 전기적으로 도전성인 결합 물질의 이와 같은 파선이나 연속되는 라인은 상기 핑거들의 단부들에서 도전성 패드들과 결합되거나, 이러한 도전성 패드들이 없이 사용될 수 있다.
태양 전지(10)는, 예를 들면, 약 156㎜의 길이, 약 26㎜의 폭 및 이에 따른 약 1:6의 종횡비(짧은 측면의 길이/긴 측면의 길이)를 가질 수 있다. 여섯 개의 이러한 태양 전지들은 표준 156㎜×156㎜ 치수의 실리콘 웨이퍼 상에 제조될 수 있고, 이후에 예시한 바와 같은 태양 전지들을 제공하도록 분리(다이스)된다. 다른 변형예들에서, 19.5㎜×156㎜의 치수들과 이에 따른 약 1:8의 종횡비를 갖는 여덟 개의 태양 전지들(10)이 표준 실리콘 웨이퍼로부터 제조될 수 있다. 보다 일반적으로, 태양 전지들(10)은, 예를 들면, 약 1:2 내지 약 1:20의 종횡비들을 가질 수 있으며, 표준 크기 웨이퍼들 또는 임의의 다른 적합한 치수들의 웨이퍼들로부터 제조될 수 있다.
도 76을 다시 참조하면, 상기 전면 금속화 패턴은, 예를 들면, 156㎜ 폭의 셀당 약 60개 내지 약 120개의 핑거들, 예를 들면 약 90개의 핑거들을 포함할 수 있다. 핑거들(6015)은, 예를 들면, 약 10미크론 내지 약 90미크론, 예를 들면 약 30미크론의 폭들을 가질 수 있다. 핑거들(6015)은 상기 태양 전지의 표면에 직교하는, 예를 들면, 약 10미크론 내지 약 50미크론의 높이들을 가질 수 있다. 상기 핑거 높이들은, 예를 들면, 약 10미크론 또는 그 이상, 약 20미크론 또는 그 이상, 약 30미크론 또는 그 이상, 약 40미크론 또는 그 이상, 혹은 약 50미크론 또는 그 이상이 될 수 있다. 패드들(6020)은, 예를 들면, 약 0.1㎜ 내지 약 1㎜, 예를 들면 약 0.5㎜의 직경들(원들) 또는 측면 길이들(정사각형들 또는 직사각형들)을 가질 수 있다.
직사각형의 태양 전지(10)를 위한 후면 금속화 패턴은, 예를 들면, 별개의 콘택 패드들의 열, 상호 연결된 콘택 패드들의 열, 또는 상기 태양 전지의 긴 측면의 에지에 평행하게 진행되고 인접하는 연속되는 버스 바를 포함할 수 있다. 그러나 이러한 콘택 패드들 또는 버스 바가 요구되지는 않는다. 상기 전면 금속화 패턴이 상기 태양 전지의 긴 측면들의 하나의 에지를 따라 배열되는 콘택 패드들(6020)을 포함할 경우, 그러면 상기 후면 금속화 패턴 내의 콘택 패드들의 열 또는 버스 바(존재할 경우)는 상기 태양 전지의 다른 하나의 긴 측면의 에지를 따라 배열된다. 상기 후면 금속화 패턴은 상기 태양 전지의 나머지 후면의 모두를 실질적으로 덮는 금속 후면 콘택을 더 포함할 수 있다. 도 77a의 예시적인 후면 금속화 패턴은 앞서 설명한 바와 같은 금속 후방 콘택(6030)과 결합하여 별개의 콘택 패드들(6025)의 열을 포함하며, 도 77b의 예시적인 후면 금속화 패턴은 앞서 설명한 바와 같은 금속 후면 콘택(6030)과 결합하여 연속되는 버스 바(35)를 포함한다.
슁글드 슈퍼 셀에서, 태양 전지의 전면 금속화 패턴은 인접하는 태양 전지의 후면 금속화 패턴의 중첩되는 부분에 도전성으로 결합된다. 예를 들면, 상기 태양 전지들이 전면 금속화 콘택 패드들(6020)을 포함할 경우, 각 콘택 패드(6020)는 대응되는 후면 금속화 콘택 패드(6025)(존재할 경우)와 정렬되고 결합될 수 있거나, 후면 금속화 버스 바(35)(존재할 경우)와 정렬되고 결합될 수 있거나, 상기 인접하는 태양 전지 상의 금속 후면 콘택(6030)(존재할 경우)에 결합될 수 있다. 이는, 예를 들면 각 콘택 패드(6020) 상에 배치되는 전기적으로 도전성인 결합 물질의 별개의 부분들(예를 들면, 비드들), 또는 상기 태양 전지의 에지에 평행하게 진행되고 선택적으로 상기 콘택 패드들(6020)의 둘 또는 그 이상을 전기적으로 상호 연결하는 전기적으로 도전성인 결합 물질의 파선이나 연속되는 라인으로 구현될 수 있다.
상기 태양 전지들이 전면 금속화 콘택 패드들(6020)이 결핍될 경우, 그러면 예를 들면 각 전면 금속화 패턴 핑거(6015)는 대응되는 후면 금속화 콘택 패드(6025)(존재할 경우)와 정렬되고 결합될 수 있거나, 후면 금속화 버스 바(35)(존재할 경우)와 결합될 수 있거나, 상기 인접하는 태양 전지 상의 금속 후면 콘택(6030)(존재할 경우)과 결합될 수 있다. 이는, 예를 들면 각 핑거(6015)의 중첩된 단부 상에 배치되는 전기적으로 도전성인 결합 물질의 별개의 부분들(예를 들면, 비드들), 또는 상기 태양 전지의 에지에 평행하게 진행되고 선택적으로 핑거들(6015)의 둘 또는 그 이상을 전기적으로 상호 연결하는 전기적으로 도전성인 결합 물질의 파선이나 연속되는 라인으로 구현될 수 있다.
전술한 바와 같이, 상기 인접하는 태양 전지의 중첩되는 후면 금속화의 일부들, 예를 들면 존재할 경우에 후면 버스 바(35) 및/또는 후면 금속 콘택(6030)은 상기 전면 금속화 패턴 내의 상기 핑거들에 직교하는 전류 확산 및 전기적인 도전을 제공할 수 있다. 상술한 바와 같이 전기적으로 도전성인 결합 물질의 파선이나 연속되는 라인들을 활용하는 변형예들에서, 상기 전기적으로 도전성인 결합 물질은 상기 전면 금속화 패턴 내의 상기 핑거들에 직교하는 전류 확산 및 전기적인 도전을 제공할 수 있다. 상기 중첩되는 후방 금속화 및/또는 상기 전기적으로 도전성인 결합 물질은, 예를 들면 상기 전면 금속화 패턴 내의 파손된 핑거들 또는 다른 핑거 파손들을 우회하도록 전류를 운반할 수 있다.
후면 금속화 콘택 패드들(6025) 및 버스 바(35)는, 존재할 경우, 예를 들면 스텐실 프린팅, 스크린 프린팅 또는 임의의 다른 적합한 방법으로 적용될 수 있는 실버 페이스트로 형성될 수 있다. 금속 후면 콘택(6030)은, 예를 들면, 알루미늄으로 형성될 수 있다.
임의의 다른 적합한 후면 금속화 패턴들 및 물질들 또한 사용될 수 있다.
도 78은 각기 도 76에 도시한 전면 금속화 패턴을 갖는 복수의 직사각형의 태양 전지들을 형성하도록 다이스될 수 있는 정사각형의 태양 전지(6300) 상의 예시적인 전면 금속화 패턴을 도시한다.
도 79는 각기 도 77a에 도시한 후면 금속화 패턴을 갖는 복수의 직사각형의 태양 전지들을 형성하도록 다이스될 수 있는 정사각형의 태양 전지(6300) 상의 예시적인 후면 금속화 패턴을 도시한다.
여기에 설명되는 전면 금속화 패턴들은 표준의 세 개의 프린터 태양 전지 생산 라인 상에서 전면 금속화의 스텐실 프린팅을 가능하게 할 수 있다. 예를 들면, 상기 생산 공정은 제1 프린터를 사용하여 후면 콘택 패드들 또는 후면 실버 버스 바를 형성하도록 정사각형의 태양 전지의 후면 상으로 실버 페이스트를 스텐실 또는 스크린 프린팅하는 과정, 이후에 상기 후면 실버 페이스트를 건조시키는 과정, 이후에 제2 프린터를 사용하여 상기 태양 전지의 후면 상에 알루미늄 콘택을 스텐실 또는 스크린 프린팅하는 과정, 이후에 상기 알루미늄 콘택을 건조시키는 과정, 이후에 제3 프린터로의 단일 스텐실 단계에서 단일 스텐실을 이용하여 완전한 전면 금속화 패턴을 형성하도록 상기 태양 전지의 전면 상으로 실버 페이스트를 스텐실 프린팅하는 과정, 이후에 상기 실버 페이스트를 건조시키는 과정, 이후에 상기 태양 전지를 소성(firing)하는 과정을 포함할 수 있다. 이들 프린팅 및 관련 단계들은 적합한 경우에 임의의 다른 순서로 발생될 수 있거나, 생략될 수 있다.
상기 전면 금속화 패턴을 프린트하는 스텐실의 사용은 스크린 프린팅으로 가능한 경우보다 좁은 핑거들의 생산을 가능하게 하며, 이는 태양 전지 효율을 향상시킬 수 있고 실버의 사용 및 이에 따른 생산 비용을 감소시킬 수 있다. 단일 스텐실로의 단일 스텐실 프린팅 단계에서 상기 전면 금속화 패턴을 스텐실 프린팅하는 것은, 예를 들면, 스크린 프린팅과 결합되어 다중의 스텐실들 또는 스텐실 프린팅이 다른 방향들로 연장되는 특징들을 정의하도록 중첩되는 프린트들을 위해 사용될 경우에 일어날 수 있는 스티칭을 나타내지 않고 균일한 높이를 갖는 전면 금속화 패턴의 생산을 가능하게 한다.
전면 및 후면 금속화 패턴들이 상기 정사각형의 태양 전지들 상에 형성된 후, 각 정사각형의 태양 전지는 둘 또는 그 이상의 직사각형의 태양 전지들로 분리될 수 있다. 이는, 예를 들면 절단 또는 임의의 다른 적합한 방법에 뒤이은 레이저 스크라이빙에 의해 이루어질 수 있다. 상기 직사각형의 태양 전지들은 이후에 중첩되는 슁글드 방식으로 배열될 수 있고, 슈퍼 셀을 형성하도록 상술한 바와 같이 서로 도전성으로 결합될 수 있다. 본 명세서에는, 예를 들면 전하 재결합을 증진시키는 절단된 에지들이 없이 상기 태양 전지의 에지들에서 감소된 전하 재결합 손실들을 갖는 태양 전지들을 제조하기 위한 방법들이 개시된다. 상기 태양 전지들은, 예를 들면 실리콘 태양 전지들이 될 수 있고, 보다 상세하게는 HIT 실리콘 태양 전지들이 될 수 있다. 본 명세서에는 또한 이러한 태양 전지들의 슁글드(중첩되는) 슈퍼 셀 배치들이 개시된다. 이와 같은 슈퍼 셀 내의 상기 개개의 태양 전지들은 중첩되도록 배열되는 인접하는 태양 전지들의 긴 측면들을 구비하는 좁은 직사각형의 기하학적 구조들(예를 들면, 스트립과 같은 형상들)을 가질 수 있다.
HIT 태양 전지들과 같은 고효율 태양 전지들의 비용 효율이 높은 구현에 대한 주요한 도전은 종래에는 하나의 이러한 고효율 태양 전지로부터 인접하는 직렬 연결된 고효율 태양 전지로 큰 전류를 운반하기 위해 많은 양의 금속에 대한 필요성을 인식하는 것이다. 이러한 고효율 태양 전지들을 좁은 직사각형의 태양 전지 스트립들로 다이싱하는 과정 및 이후에 슈퍼 셀 내의 태양 전지들의 직렬 연결된 스트링을 형성하도록 인접하는 태양 전지들의 중첩되는 부분들 사이의 도전성 결합들을 구비하는 중첩되는(슁글드) 패턴으로 결과적인 태양 전지들을 배열하는 과정은 공정 단순화를 통해 모듈 비용을 감소시키는 기회를 제공한다. 이는 종래에 인접하는 태양 전지들을 금속 리본들로 상호 연결하기 위해 요구되는 태빙(tabbing) 공정 단계들이 제거될 수 있기 때문이다. 이러한 슁글링 접근은 또한 상기 태양 전지들을 통한 전류를 감소시키고(상기 개개의 태양 전지 스트립들이 종래보다 작은 활성 영역들을 가질 수 있기 때문에), 인접하는 태양 전지들 사이의 전류 통로 길이를 감소시킴에 의해 모듈 효율을 향상시킬 수 있으며, 이들 모두는 저항성 손실을 감소시키는 경향이 있다. 상기 감소된 전류는 또한 성능의 상당한 손실 없이 보다 비싸고 덜 저항성의 컨덕터들(예를 들면, 실버)을 덜 비싸지만 보다 저항성의 컨덕터들(예를 들면, 구리)로의 대체를 가능하게 할 수 있다. 또한, 이러한 슁글링 접근은 상기 태양 전지들의 전면들로부터 인터커넥트 리본들 및 관련 콘택들을 제거하여 비활성 모듈 영역을 감소시킬 수 있다.
종래 크기의 태양 전지들은, 예를 들면, 약 156밀리미터(㎜)×약 156㎜의 치수들을 갖는 실질적으로 정사각형의 전면 및 후면들을 가질 수 있다. 앞서 설명한 슁글링 계획에서, 이와 같은 태양 전지는 두 개 또는 그 이상의(예를 들면, 두 개 내지 이십 개) 156㎜ 길이의 태양 전지 스트립들로 다이스된다. 이러한 슁글링 접근으로의 잠재적인 어려움은 종래 크기의 태양 전지를 얇은 스트립들로 다이싱하는 것이 종래 크기의 태양 전지와 비교하여 태양 전지의 활성 영역 당 셀 에지 길이를 증가시키는 점이며, 이는 상기 에지들에서의 전하 재결합으로 인해 성능을 저하시킬 수 있다.
예를 들면, 도 80은 약 156㎜×약 156㎜의 전방 및 후면 치수들을 갖는 HIT 태양 전지(7100)를 각기 약 156㎜×약 40㎜의 치수들의 좁은 직사각형의 전방 및 후면들을 가지는 몇몇 태양 전지 스트립들(7100a, 7100b, 7100c, 7100d)로 다이싱하는 과정을 개략적으로 예시한다(상기 태양 전지 스트립들의 156㎜의 긴 측면들은 도면 내부로 연장된다). 예시한 예에서, HIT 셀(7100)은 n-형의 미세결정질 베이스(5105)를 포함하며, 이는 예를 들면 약 180미크론의 두께 및 약 156㎜×약 156㎜의 치수들을 갖는 정사각형의 전면과 후면을 가질 수 있다. 진성 비정질 Si:H(a-Si:H)의 약 5나노미터(㎚) 두께의 층 및 n+ 도핑된 a-Si:H의 약 5㎚ 두께의 층(양 층들을 함께 참조 부호 7110로 나타냄)이 상기 결정질 실리콘 베이스(7105)의 전면 상에 증착된다. 투명 도선성 산화물(TCO)의 약 65㎚ 두께의 두꺼운 막(5120)이 a-Si:H 층들(7110) 상에 증착된다. TCO 층(7120) 상에 배치되는 도전성의 금속 그리드 라인(grid line)들(7130)은 상기 태양 전지의 전면에 대해 전기적인 접촉을 제공한다. 진성 a-Si:H의 약 5㎚ 두께의 층 및 p+ 도핑된 a-Si:H의 약 5㎚ 두께의 층(양 층들을 함께 참조 부호 7115로 나타냄)이 상기 결정질 실리콘 베이스(7105)의 후면 상에 배치된다. 투명 도전성 산화물(TCO)의 약 65㎚ 두께의 막(7125)이 a-Si:H 층들(7115) 상에 배치되고, TCO 층(7125) 상에 배치되는 도전성 금속 그리드 라인들(7135)이 상기 태양 전지의 후면에 대한 전기적인 접촉을 제공한다(앞서 언급한 치수들과 물질들은 제한적이기 보다는 예시적인 것으로 의도되며, 적합한 경우에 변화될 수 있다).
도 80을 여전히 참조하면, HIT 태양 전지(7100)가 스트립 태양 전지들(7100a, 7100b, 7100c, 7100d)을 형성하도록 종래의 방법들에 의해 절단될 경우, 새롭게 형성되는 절단된 에지들(7140)은 패시베이트되지 않는다. 이들 패시베이트되지 않은 에지들은 높은 밀도의 댕글링(dangling) 화학 결합들을 함유하며, 이는 전하 재결합을 증진시키고 상기 태양 전지들의 성능을 감소시킨다. 특히, n-p 접합을 노출시키는 상기 절단된 표면(7145) 및 고농도로 도핑된 전면 전계(층들(7110) 내)를 노출시키는 상기 절단된 표면이 패시베이트되지 않고, 전하 재결합을 상당히 증진시킬 수 있다. 또한, 종래의 레이저 절단 또는 레이저 스크라이빙 공정들이 태양 전지(7100)를 다이싱하는 데 이용될 경우, 비정질 실리콘의 재결정화(7150)와 같은 열적 손상이 상기 새롭게 형성되는 에지들에 발생될 수 있다. 상기 패시베이트되지 않은 에지들 및 상기 열적 손상의 결과로, 종래의 제조 공정들이 이용되는 경우에 절단된 태양 전지들(7100a, 7100b, 7100c, 7100d) 상에 형성되는 새로운 에지들은 상기 단락(short-circuit) 전류, 상기 개방 회로 전압 및 상기 태양 전지들의 의사 충전율을 감소시키는 것으로 예상될 수 있다. 이는 상기 태양 전지들의 성능의 상당한 감소에 이른다.
보다 좁은 태양 전지 스트립들로의 종래 크기의 HIT 태양 전지의 다이싱 동안에 상기 재결합을 증진시키는 에지들의 형성은 도 85A-도 85J에 예시한 방법으로 회피될 수 있다. 이러한 방법은 상기 p-n 접합 및 상기 고농도로 도핑된 전면 전계를 그렇지 않으면 소수 캐리어들에 대한 재결합 부위들로 작용할 수 있었던 상기 절단된 에지들과 전기적으로 분리시키기 위해 상기 종래 크기의 태양 전지(7100)의 전방 및 후면들 상의 소자 분리 트렌치(isolation trench)들을 이용한다. 상기 트렌치 에지들은 종래의 절단에 의해 정의되지 않지만, 대신에 화학적 식각 또는 레이저 패터닝에 의해서 정의되고, 전방 및 후방 트렌치들 모두를 패시베이트하는 TCO와 같은 패시베이션층의 증착이 수반된다. 상기 고농도로 도핑된 영역들과 비교하여, 상기 베이스 도핑은 상기 베이스의 패시베이트되지 않은 절단된 에지들에 도달되는 상기 접합 내의 전자들의 가능성이 적어지도록 충분히 낮다. 또한, 커프(kerf)가 없는 웨이퍼 다이싱 기술, 열 레이저 분리(TLS)이 상기 웨이퍼들을 절단하는 데 이용될 수 있고, 잠재적인 열적 손상을 회피할 수 있다.
도 85A-도 85J에 예시한 예에서, 상기 출발 물질은 약 156㎜ 정사각형의 n-형 단결정질 실리콘의 절단된 대로의 웨이퍼이며, 이는 예를 들면 약 1옴-센티미터 내지 약 3옴-센티미터의 벌크 비저항(bulk resistivity)을 가질 수 있고, 예를 들면 약 180미크론 두께가 될 수 있다(웨이퍼(7105)는 상기 태양 전지들의 베이스를 형성한다).
도 81a를 참조하면, 절단된 대로의 웨이퍼(7105)는 통상적으로 텍스처(texture) 식각되고, 산(acid) 세척되며, 세정되고, 건조된다.
다음에, 도 81b에서 약 5㎚ 두께의 진성 a-Si:H 층 및 약 5㎚ 두께의 도핑된 n+ a-Si:H 층(양 층들을 함께 참조 부호 7110으로 나타냄)이, 예를 들면, 약 150℃ 내지 약 200℃의 온도에서, 예를 들면 플라즈마 증대 화학 기상 증착(PECVD)에 의해 상기 웨이퍼(7105)의 전면 상에 증착된다.
다음에, 도 81c에서 약 5㎚ 두께의 진성 a-Si:H 층 및 약 5㎚ 두께의 도핑된 p+ a-Si:H 층(양 층들을 함께 참조 부호 7115로 나타냄)이, 예를 들면, 약 150℃ 내지 약 200℃의 온도에서, 예를 들면 PECVD에 의해 상기 웨이퍼(7105)의 후면 상에 증착된다.
다음에, 도 81d에서 상기 전방 a-Si:H 층들(7110)은 소자분리 트렌치들(7112)을 형성하도록 패터닝된다. 소자분리 트렌치들(7112)은 통상적으로 웨이퍼(7105)에 도달되도록 층들(7110)을 관통하며, 예를 들면 약 100미크론 내지 약 1000미크론, 예를 들면 약 200미크론의 폭들을 가질 수 있다. 통상적으로, 상기 트렌치들은 상기 패터닝 기술 및 후속하여 적용되는 절단 기술들의 정확도에 따라 사용될 수 있는 가장 작은 폭을 가진다. 트렌치들(7112)의 패터닝은, 예를 들면, 레이저 패터닝 또는 화학적 식각(예를 들면, 잉크젯 습식 패터닝)을 이용하여 이루어질 수 있다.
다음에, 도 81e에서 상기 후방 a-Si:H 층들(7115)이 소자분리 트렌치들(7117)을 형성하도록 패터닝된다. 소자분리 트렌치들(7112)과 유사하게, 소자분리 트렌치들(7117)은 통상적으로 웨이퍼(7105)에 도달하도록 층들(7115)을 관통하며, 예를 들면 약 100미크론 내지 약 1000미크론, 예를 들면 약 200미크론의 폭들을 가질 수 있다. 트렌치들(7117)의 패터닝은, 예를 들면, 레이저 패터닝 또는 화학적 식각(예를 들면, 잉크젯 습식 패터닝)을 이용하여 구현될 수 있다. 각 트렌치(7117)는 상기 구조의 전면 상의 대응되는 트렌치(7112)와 일렬로 된다.
다음에, 도 81f에서 약 65㎚ 두께의 TCO 층(7120)이 상기 패터닝된 전면 a-Si:H 층들(7110) 상에 증착된다. 이는, 예를 들면 물리 기상 증착(PVD)에 의하거나 이온 도금에 의해 이루어질 수 있다. TCO 층(7120)은 a-Si:H 층들(7110) 내의 트렌치들(7112)을 채우고, 층들(7110)의 외측 에지들을 코팅하며, 이에 따라 상기 층들(7110)의 표면들을 패시베이트한다. TCO 층(7120)은 또한 반사 방지 코팅으로 기능한다.
다음에, 도 81g에서 약 65㎚의 두꺼운 TCO 층(7125)이 상기 패터닝된 후면 a-Si:H 층들(7115) 상에 증착된다. 이는, 예를 들면 PVD에 의하거나 이온 도금에 의해 이루어질 수 있다. TCO 층(7125)은 a-Si:H 층들(7115) 내의 트렌치들(7117)을 채우고, 층들(115)의 외측 에지들을 코팅하며, 이에 따라 상기 층들(7115)의 표면들을 패시베이트한다. TCO 층(7125)은 또한 반사 방지 코팅으로 기능한다.
다음에, 도 81h에서 도전성(예를 들면, 금속) 전면 그리드 라인들(7130)이 TCO 층(7120) 상으로 스크린 프린트된다. 그리드 라인들(7130)은, 예를 들면 저온 실버 페이스트들로 형성될 수 있다.
다음에, 도 81i에서 도전성(예를 들면, 금속) 후면 그리드 라인들(7135)이 TCO 층(7125) 상으로 스크린 프린트된다. 그리드 라인들(7135)은, 예를 들면 저온 실버 페이스트들로 형성될 수 있다.
다음에, 그리드 라인들(7130) 및 그리드 라인들(7135)의 증착 후, 상기 태양 전지는, 예를 들면 약 200℃의 온도에서 약 30분 동안 큐어링된다.
다음에, 도 81j에서 상기 태양 전지는 상기 트렌치들의 중심에서 상기 태양 전지를 다이싱하여 태양 전지 스트립들(7155a, 7155b, 7155c, 7155d)로 분리된다. 다이싱은 상기 트렌치들과 일치되게 상기 태양 전지를 절단하도록 상기 트렌치들의 중심들에서 종래의 레이저 스크라이빙 및 기계적 절단을 이용하여 이루어질 수 있다. 선택적으로는, 다이싱은 상기 트렌치들의 중심들에서의 레이저 유도 가열이 상기 트렌치들과 일치되게 상기 태양 전지의 절단을 가져오는 기계적인 스트레스를 유도하는 열 레이저 분리 공정(예를 들면, 제놉틱사(Jenoptik AG)에 의해 개발된 바와 같은)을 이용하여 이루어질 수 있다. 후자의 접근은 상기 태양 전지들의 에지들에 대한 열적 손상을 회피할 수 있다.
결과적인 스트립 태양 전지들(7155a-7155d)은 도 80에 도시한 스트립 태양 전지들(7100a-7100d)과 다르다. 특히, 태양 전지들(7140a-7140d) 내의 a-Si:H 층들(7110) 및 a-Si:H 층들(7115)의 에지들은 기계적 절단에 의해서가 아니라 식각 또는 레이저 패터닝에 의해 형성된다. 또한, 태양 전지들(7155a-7155d) 내의 상기 층들(7110) 및 층들(7115)의 에지들은 TCO 층에 의해 패시베이트된다. 그 결과, 태양 전지들(7140a-7140d)은 태양 전지들(7100a-7100d) 내에 존재하는 상기 전하 재결합을 증진시키는 절단된 에지들이 결핍된다.
도 81a-도 81j에 관하여 설명되는 방법은 제한하기 보다는 예시적인 것으로 의도된다. 특정한 순서들로 수행되는 것으로 설명되는 단계들은 적합한 경우에 다른 순서들이나 나란히 수행될 수 있다. 단계들과 물질층들은 적합한 경우에 생략될 수 있거나, 추가될 수 있거나, 치환될 수 있다. 예를 들면, 구리 도금된 금속화가 사용될 경우, 그러면 추가적인 패터닝과 시드층(seed layer) 증착 단계들이 상기 공정에 포함될 수 있다. 또한, 일부 변형예들에서 상기 전면 a-Si:H 층들(7110)만이 소자분리 트렌치들을 형성하도록 패터닝되고, 소자분리 트렌치들은 상기 후면 a-Si:H 층들(7115) 내에 형성되지 않는다. 다른 변형예들에서, 상기 후면 a-Si:H 층들(7115)만이 소자분리 트렌치들을 형성하도록 패터닝되고, 소자분리 트렌치들이 상기 전면 a-Si:H 층들(7115) 내에 형성되지 않는다. 도 81a-도 81j의 예들에서와 같이, 이들 변형예들에서도 다이싱이 상기 트렌치들의 중심들에서 일어난다.
좁은 태양 전지 스트립들로의 종래 크기의 HIT 태양 전지의 다이싱 동안에 상기 재결합을 증진시키는 에지들의 형성 또한 도 81a-도 81j에 대해 설명한 방법에 채용되는 바와 유사하게 소자분리 트렌치들도 이용하는 도 82a-도 82j에 예시한 방법으로 회피될 수 있다.
도 82a를 참조하면, 이러한 예에서 상기 출발 물질은 다시 약 156㎜ 정사각형의 n-형 단결정질 실리콘인 절단된 대로의 웨이퍼(7105)이며, 이는 예를 들면 약 1옴-센티미터 내지 약 3옴-센티미터의 벌크 비저항을 가질 수 있고, 예를 들면 약 180미크론의 두께가 될 수 있다.
도 82b를 참조하면, 트렌치들(7160)이 상기 웨이퍼(7105)의 전면 내에 형성된다. 이들 트렌치들은, 예를 들면 약 80미크론 내지 약 150미크론, 예를 들면 약 90미크론의 깊이들을 가질 수 있고, 예를 들면 약 10미크론 내지 약 100미크론의 폭들을 가질 수 있다. 소자분리 트렌치들(7160)은 웨이퍼(7105)로부터 형성되는 상기 태양 전지 스트립들의 기하학적 구조를 한정한다. 다음에 설명하는 바와 같이, 웨이퍼(7105)는 이들 트렌치들과 일치되게 절단될 것이다. 트렌치들(7160)은, 예를 들면 종래의 레이저 웨이퍼 스크라이빙에 의해 형성될 수 있다.
다음에, 도 82c에서 웨이퍼(7105)는 통상적으로 텍스처 식각되고, 산 세척되며, 세정되고, 건조된다. 상기 식각은 통상적으로 절단된 대로의 웨이퍼(7105) 표면들 내에 초기에 존재하거나 트렌치들(7160)의 형성 동안에 야기되는 손상을 제거한다. 상기 식각은 또한 트렌치들(7160)을 넓어지게 할 수 있고 깊어지게 할 수 있다.
다음에, 도 82d에서 약 5㎚ 두께의 진성 a-Si:H 층 및 약 5㎚ 두께의 도핑된 n+ a-Si:H 층(양 층들을 함께 참조 부호 7110로 나타냄)이, 예를 들면 약 150℃ 내지 약 200℃의 온도에서, 예를 들면 PECVD에 의해 상기 웨이퍼(7105)의 전면 상에 증착된다.
다음에, 도 82e에서 약 5㎚ 두께의 진성 a-Si:H 층 및 약 5㎚ 두께의 도핑된 p+ a-Si:H 층(양 층들을 함께 참조 부호 7115로 나타냄)이, 예를 들면, 약 150℃ 내지 약 200℃의 온도에서, 예를 들면 PECVD에 의해 상기 웨이퍼(7105)의 후면 상에 증착된다.
다음에, 도 82f에서 약 65㎚ 두께의 TCO 층(7120)이 전면 a-Si:H 층들(7110) 상에 증착된다. 이는, 예를 들면 물리 기상 증착(PVD)에 의하거나 이온 도금에 의해 이루어질 수 있다. TCO 층(7120)은 트렌치들(7160)을 채울 수 있고, 통상적으로 트렌치들(7160)의 벽들과 바닥들 및 층들(7110)의 외측 에지들을 코팅하며, 이에 따라 상기 코팅된 표면들을 패시베이트한다. TCO 층(7120)은 또한 반사 방지 코팅으로 기능한다.
다음에, 도 82g에서 약 65㎚의 두꺼운 TCO 층(7125)이 상기 후면 a-Si:H 층들(7115) 상에 증착된다. 이는, 예를 들면 PVD에 의하거나 이온 도금에 의해 이루어질 수 있다. TCO 층(7125)은 상기 층들(7115)의 표면들(예를 들면, 상기 외측 에지들을 포함하여)을 패시베이트하며, 또한 반사 방지 코팅으로 기능한다.
다음에, 도 82h에서 도전성(예를 들면, 금속) 전면 그리드 라인들(7130)이 TCO 층(7120) 상으로 스크린 프린트된다. 그리드 라인들(7130)은, 예를 들면 저온 실버 페이스트들로 형성될 수 있다.
다음에, 도 82i에서 도전성(예를 들면, 금속) 후면 그리드 라인들(7135)이 TCO 층(7125) 상으로 스크린 프린트된다. 그리드 라인들(7135)은, 예를 들면 저온 실버 페이스트들로 형성될 수 있다.
다음에, 그리드 라인들(7130) 및 그리드 라인들(7135)의 증착 후, 상기 태양 전지는, 예를 들면 약 200℃의 온도에서 약 30분 동안 큐어링된다.
다음에, 도 82j에서 상기 태양 전지는 상기 태양 전지를 상기 트렌치들에서 다이싱함에 의해 태양 전지 스트립들(7165a, 7165b, 7165c, 7165d)로 분리된다. 다이싱은 상기 태양 전지를 상기 트렌치들과 일치되게 절단하도록 상기 트렌치들의 중심에서 종래의 기계적 절단을 이용하여 이루어질 수 있다. 선택적으로는, 다이싱은, 예를 들면 상술한 바와 같이 열 레이저 분리 공정을 이용하여 구현될 수 있다.
결과적인 스트립 태양 전지들(7165a-7165d)은 도 80에 도시한 스트립 태양 전지들(7100a-7100d)과 다르다. 특히, 태양 전지들(7165a-7165d) 내의 a-Si:H 층들(7110)의 에지들이 기계적 절단에 의해서가 아니라 식각에 의해 형성된다. 또한, 상기 태양 전지들(7165a-7165d) 내의 층들(7110)의 에지들은 TCO 층에 의해 패시베이트된다. 그 결과, 태양 전지들(7165a-7165d)은 태양 전지들(7100a-7100d) 내에 존재하는 전하 재결합을 증진시키는 절단된 에지들이 결핍된다.
도 82a-도 82j에 관하여 설명되는 방법은 제한적이기 보다는 예시적으로 의도된 것이다. 특정한 순서로 수행되는 것으로 설명되는 단계들은 적합한 경우에 다른 순서들이나 나란히 수행될 수 있다. 단계들과 물질들 및 층들은 적합한 경우에 생략될 수 있거나, 추가될 수 있거나, 치환될 수 있다. 예를 들면, 구리 도금된 금속화가 사용될 경우, 그러면 추가적인 패터닝 및 시드층 증착 단계들이 상기 공정에 포함될 수 있다. 또한, 일부 변형예들에서 트렌치들(7160)은 상기 웨이퍼(7105)의 전면에 보다는 웨이퍼(7105)의 후면에 형성될 수 있다.
도 81a-도 81j 및 도 86A-도 86J에 관하여 설명되는 방법들은 n-형 및 p-형의 HIT 태양 전지들 모두에 적용 가능하다. 상기 태양 전지들은 전면 에미터(emitter) 또는 후면 에미터가 될 수 있다. 상기 에미터 없이 상기 측면에 대해 분리 공정을 적용하는 것이 바람직할 수 있다. 또한, 절단된 웨이퍼 에지들 상의 재결합을 감소시키기 위한 상술한 바와 같은 소자분리 트렌치들 및 패시베이션 층들의 사용은 다른 태양 전지 설계들 및 실리콘 이외의 물질계를 사용하는 태양 전지들에 적용될 수 있다.
도 1을 다시 참조하면, 상술한 방법들에 의해 형성되는 직렬 연결된 태양 전지들(10)의 스트링은 슈퍼 셀(100)을 형성하도록 중첩되고 전기적으로 연결되는 인접하는 태양 전지들의 단부들을 구비하여 슁글드 방식으로 유리하게 배열될 수 있다. 슈퍼 셀(100)에서, 인접하는 태양 전지들(10)은 하나의 태양 전지의 전면 금속화 패턴을 상기 인접하는 태양 전지의 후면 금속화 패턴에 전기적으로 연결하는 전기적으로 도전성인 결합 물질에 의해 이들이 중첩되는 영역에서 서로 도전성으로 결합된다. 적합한 전기적으로 도전성인 결합 물질들은, 예를 들면, 전기적으로 도전성인 접착제들 및 전기적으로 도전성인 접착 필름들과 접착 테이프들, 그리고 종래의 땜납들을 포함할 수 있다.
도 5a-도 5b를 다시 참조하면, 도 5a는 각기 상기 태양광 모듈의 짧은 측면들의 길이의 절반과 대략적으로 동일한 길이를 갖는 이십 개의 직사각형의 슈퍼 셀들(100)을 포함하는 예시적인 직사각형의 태양광 모듈(200)을 도시한다. 슈퍼 셀들은 슈퍼 셀들의 열 개의 열들을 형성하도록 쌍들로 단대단으로 배열되며, 상기 슈퍼 셀들의 열들과 긴 측면들은 상기 태양광 모듈의 짧은 측면들에 평행하게 배향된다. 다른 변형예들에서, 슈퍼 셀들의 각 열은 셋 또는 그 이상의 슈퍼 셀들을 포함할 수 있다. 또한, 다른 변형예들에서, 슈퍼 셀들은 열들로 단대단으로 배열될 수 있고, 상기 슈퍼 셀들의 열들과 긴 측면들은 직사각형의 태양광 모듈의 긴 측면들에 평행하게 배향될 수 있거나, 정사각형의 태양광 모듈의 측면에 평행하게 배향될 수 있다. 더욱이, 태양광 모듈은 이러한 예에서 도시한 경우보다 많거나 보다 적은 슈퍼 셀들 및 슈퍼 셀들의 보다 많거나 보다 적은 열들을 포함할 수 있다.
각 열 내의 슈퍼 셀들이 이들의 적어도 하나가 상기 열 내의 다른 하나의 슈퍼 셀에 인접하는 상기 슈퍼 셀의 단부 상의 전면 단부 콘택을 가지도록 배열되는 변형예들에서, 도 5a에 도시한 선택적인 갭(210)은 상기 태양광 모듈의 중심선을 따라 슈퍼 셀들(100)의 전면 단부 콘택들에 대한 전기적인 접촉을 가능하게 하도록 존재할 수 있다. 슈퍼 셀들의 각 열이 셋 또는 그 이상의 슈퍼 셀들을 포함하는 변형예들에서, 슈퍼 셀들 사이의 추가적인 선택적 갭들은 유사하게 상기 태양광 모듈의 측면들로부터 떨어져 위치하는 전면 단부 콘택들에 대한 전기적인 접촉을 가능하게 하도록 존재할 수 있다.
도 5b는 각기 상기 태양광 모듈의 짧은 측면들의 길이와 대략적으로 동일한 길이를 가지는 열 개의 직사각형의 슈퍼 셀들(100)을 포함하는 다른 예시적인 직사각형의 태양광 모듈(300)을 도시한다. 상기 슈퍼 셀들은 상기 모듈의 짧은 측면들에 평행하게 배향된 이들의 긴 측면들을 구비하여 배열된다. 다른 변형예들에서, 상기 슈퍼 셀들은 직사각형의 태양광 모듈의 긴 측면들의 길이에 대략적으로 동일한 길이들을 가질 수 있고, 상기 태양광 모듈의 긴 측면들에 평행한 이들의 긴 측면들을 구비하여 배향될 수 있다. 상기 슈퍼 셀들은 또한 정사각형의 태양광 모듈의 측면들의 길이와 대략적으로 동일한 길이들을 가질 수 있고, 상기 태양광 모듈의 측면에 평행하게 배향되는 이들의 긴 측면들을 구비하여 배열될 수 있다. 또한, 태양광 모듈은 이러한 예에서 도시한 경우보다 많거나 보다 적은 이러한 측면 길이의 슈퍼 셀들을 포함할 수 있다.
도 5b는 또한 태양광 모듈(200) 내의 슈퍼 셀들을 열들 내에서 인접하는 슈퍼 셀들 사이에 갭이 존재하지 않을 때에 도 5a의 태양광 모듈(200)이 어떻게 보이는 가를 도시한다. 태양광 모듈 내에서 슈퍼 셀들(100)의 임의의 다른 적합한 배치도 사용될 수 있다.
다음에 열거되는 단락들은 본 발명의 추가적이고 제한적이지 않은 측면들을 제공한다.
1. 태양광 모듈은,
N≥25의 약 10볼트 이상의 평균 항복 전압을 갖는 직사각형 또는 실질적으로 직사각형의 태양 전지들의 직렬 연결된 스트링을 구비하고, 상기 태양 전지들은 중첩되고 전기적 및 열적으로 도전성인 접착제로 서로 도전성으로 결합되는 인접하는 태양 전지들의 긴 측면들과 일렬로 배열되는 상기 태양 전지들의 둘 또는 그 이상을 포함하는 하나 또는 그 이상의 슈퍼 셀들로 그룹화되며;
상기 태양 전지들의 스트링 내의 <N의 태양 전지들의 단일의 태양 전지 또는 그룹은 바이패스 다이오드와 개별적으로 전기적으로 병렬로 연결되지 않는다.
2. 사항 1의 태양광 모듈에서, N은 30보다 크거나 같은 정수이다.
3. 사항 1의 태양광 모듈에서, N은 50보다 크거나 같은 정수이다.
4. 사항 1의 태양광 모듈에서, N은 100보다 크거나 같은 정수이다.
5. 사항 1의 태양광 모듈에서, 상기 접착제는 인접하는 태양 전지들 사이에 상기 태양 전지들에 직교하여 약 0.1㎜보다 작거나 같은 두께 및 상기 태양 전지들에 직교하여 약 1.5w/m/k보다 크거나 같은 열전도율을 갖는 결합들을 형성한다.
6. 사항 1의 태양광 모듈에서, 상기 N의 태양 전지들은 단일 슈퍼 셀로 그룹화된다.
7. 사항 1의 태양광 모듈에서, 상기 슈퍼 셀들은 폴리머로 봉지된다.
7A. 사항 7의 태양광 모듈에서, 상기 폴리머는 열가소성 올레핀 폴리머를 포함한다.
7B. 사항 7의 태양광 모듈에서, 상기 폴리머는 유리 전면 시트 및 배면 시트 사이에 개재된다.
7C. 사항 7B의 태양광 모듈에서, 상기 배면 시트는 유리를 포함한다.
8. 사항 1의 태양광 모듈에서, 상기 태양 전지들은 실리콘 태양 전지들이다.
9. 태양광 모듈은,
상기 태양광 모듈의 에지에 평행한 상기 태양광 모듈의 전체 길이 또는 폭을 실질적으로 가로지르는 슈퍼 셀을 구비하고, 상기 슈퍼 셀은 중첩되고 전기적 및 열적으로 도전성인 접착제로 서로 도전성으로 결합되는 인접하는 태양 전지들의 긴 측면들과 일렬로 배열되는 약 10볼트 이상의 항복 전압을 갖는 N의 직사각형 또는 실질적으로 직사각형의 태양 전지들의 직렬 연결된 스트링을 포함하며;
상기 슈퍼 셀 내의 <N의 태양 전지들의 단일의 태양 전지 또는 그룹은 바이패스 다이오드와 개별적으로 전기적으로 병렬로 연결되지 않는다.
10. 사항 9의 태양광 모듈에서, N>24이다.
11. 사항 9의 태양광 모듈에서, 상기 슈퍼 셀은 적어도 약 500㎜의 전류 흐름의 방향으로의 길이를 가진다.
12. 사항 9의 태양광 모듈에서, 상기 슈퍼 셀들은 유리 전면 및 배면 시트들 사이에 개재되는 열가소성 올레핀 폴리머 내에 봉지된다.
13. 슈퍼 셀은,
복수의 실리콘 태양 전지들을 구비하고, 각각의 실리콘 태양 전지는:
제1 및 제2 대향하게 위치하는 평행한 긴 측면들 및 두 개의 대향하게 위치하는 짧은 측면들에 의해 정의되는 형상들을 갖는 직사각형 또는 실질적으로 직사각형의 전면 및 후면을 포함하며, 상기 전면들의 적어도 일부들은 상기 태양 전지들의 스트링의 동작 동안에 태양 복사에 노출되고;
상기 전면 상에 배치되고, 상기 제1 긴 측면에 인접하게 위치하는 적어도 하나의 전면 콘택 패드를 포함하는 전기적으로 도전성인 전면 금속화 패턴을 포함하고;
상기 후면 상에 배치되고, 상기 제2 긴 측면에 인접하여 위치하는 적어도 하나의 후면 콘택 패드를 포함하는 전기적으로 도전성인 후면 금속화 패턴을 포함하며;
상기 실리콘 태양 전지들은 중첩되는 인접하는 실리콘 태양 전지들의 제1 및 제2 긴 측면들과 일렬로 되고, 상기 실리콘 태양 전지들을 전기적으로 직렬로 연결하도록 중첩되고, 도전성 접착 결합 물질로 도전성으로 결합되는 인접하는 실리콘 태양 전지들 상의 전면 및 후면 콘택 패드들과 일렬로 배치되며;
각 실리콘 태양 전지의 상기 전면 금속화 패턴은 상기 슈퍼 셀의 제조 동안에 상기 도전성 접착 결합 물질의 큐어링 이전에 상기 도전성 접착 결합 물질을 적어도 하나의 전면 콘택 패드에 실질적으로 제한하도록 구성되는 배리어를 포함한다.
14. 사항 13의 슈퍼 셀에서, 인접하고 중첩되는 실리콘 태양 전지들의 각 쌍에 대해, 상기 실리콘 태양 전지들의 하나의 전면 상의 배리어가 다른 하나의 실리콘 태양 전지의 일부에 의해 중첩되고 감춰지며, 이에 따라 상기 도전성 접착 결합 물질을 슈퍼 셀의 제조 동안에 상기 도전성 접착 결합 물질의 큐어링 이전에 상기 실리콘 태양 전지의 전면의 중첩되는 영역들에 실질적으로 제한한다.
15. 사항 13의 슈퍼 셀에서, 상기 배리어는 상기 연속되는 도전성 라인과 상기 태양 전지의 제1 긴 측면 사이에 위치하는 적어도 하나의 전면 콘택 패드를 구비하여, 상기 제1 긴 측면의 실질적으로 전체 길이에 평행하게 진행되는 연속되는 도전성 라인을 포함한다.
16. 사항 15의 슈퍼 셀에서, 상기 전면 금속화 패턴은 상기 적어도 하나의 전면 콘택 패드들에 전기적으로 연결되고, 상기 제1 긴 측면에 직교하게 진행되는 핑거들을 포함하고, 상기 연속되는 도전성 라인은 각 핑거로부터 적어도 하나의 전면 콘택 패드까지 다중의 전도 통로들을 제공하도록 상기 핑거들을 전기적으로 상호 연결한다.
17. 사항 13의 슈퍼 셀에서, 상기 전면 금속화 패턴은 상기 제1 긴 측면에 인접하고 평행한 열들 내에 배열되는 복수의 별개의 콘택 패드들을 포함하고, 상기 배리어는 상기 슈퍼 셀의 제조 동안에 상기 도전성 접착 결합 물질의 큐어링 이전에 상기 도전성 접착 결합 물질을 상기 별개의 콘택 패드들에 실질적으로 제한하는 각각의 별개의 콘택 패드에 대한 분리된 배리어들을 형성하는 복수의 특징들을 포함한다.
18. 사항 17의 슈퍼 셀에서, 상기 분리된 배리어들은 이들의 대응되는 별개의 콘택 패드들에 인접하며, 그 보다 크다.
19. 슈퍼 셀은,
복수의 실리콘 태양 전지들을 포함하고, 각 실리콘 태양 전지는,
제1 및 제2 대항되게 위치하는 평행한 긴 측면들 및 두 개의 대향되게 위치하는 짧은 측면들에 의해 정의되는 형상들을 갖는 직사각형 또는 실질적으로 직사각형의 전면 및 후면들을 구비하고, 상기 전면들의 적어도 일부들은 상기 태양 전지들의 스트링의 동작 동안에 태양 복사에 노출되며;
상기 전면 상에 배치되고, 상기 제1 긴 측면에 인접하게 위치하는 적어도 하나의 전면 콘택 패드를 포함하는 전기적으로 도전성인 전면 금속화 패턴을 구비하고;
상기 후면 상에 배치되고, 상기 제2 긴 측면에 인접하게 위치하는 적어도 하나의 후면 콘택 패드를 포함하는 전기적으로 도전성인 후면 금속화 패턴을 구비하며;
상기 실리콘 태양 전지들은 상기 실리콘 태양 전지들을 전기적으로 직렬로 연결하도록 중첩되고 도전성 접착 결합 물질로 서로 도전성으로 결합되는 인접하는 실리콘 태양 전지들 상의 전면 및 후면 콘택 패드들을 구비하여 중첩되고 인접하는 실리콘 태양 전지들의 제1 및 제2 긴 측면들과 일렬로 배열되고;
각 실리콘 태양 전지의 상기 후면 금속화 패턴은 상기 슈퍼 셀의 제조 동안에 상기 도전성 접착 결합 물질의 큐어링 이전에 상기 도전성 접착 결합 물질을 상기 적어도 하나의 후면 콘택 패드들에 실질적으로 제한하도록 구성되는 배리어를 포함한다.
20. 사항 19의 슈퍼 셀에서, 상기 후면 금속화 패턴은 상기 제2 긴 측면에 인접하고 평행한 열로 배열되는 하나 또는 그 이상의 별개의 콘택 패드들을 포함하고, 상기 배리어는 상기 슈퍼 셀의 제조 동안에 상기 도전성 접착 결합 물질의 큐어링 이전에 상기 도전성 접착 결합 물질을 상기 별개의 콘택 패드들에 실질적으로 제한하는 각 별개의 콘택 패드에 대해 분리된 배리어들을 형성하는 복수의 특징들을 포함한다.
21. 사항 20의 슈퍼 셀에서, 상기 분리되는 배리어들은 이들의 대응되는 별개의 콘택 패드들에 인접하며. 그 보다 크다.
22. 태양 전지들의 스트링을 만드는 방법에 있어서, 상기 방법은,
각기 그 긴 축을 따라 실질적으로 동일한 길이를 갖는 복수의 직사각형의 실리콘 태양 전지들을 형성하도록 각 웨이퍼의 긴 에지에 평행한 복수의 라인들을 따라 하나 또는 그 이상의 의사 정사각형의 실리콘 웨이퍼들을 다이싱하는 단계; 및
상기 태양 전지들을 전기적으로 직렬로 연결하도록 중첩되고 서로 도전성으로 결합되는 인접하는 태양 전지들의 긴 측면들과 일렬로 상기 직사각형의 실리콘 태양 전지들을 배열하는 단계를 포함하며;
상기 복수의 직사각형의 실리콘 태양 전지들은 상기 의사 정사각형의 웨이퍼의 모서리들 또는 모서리들의 일부들에 대응되는 두 개의 챔퍼 처리된 모서리들을 갖는 적어도 하나의 직사각형의 태양 전지를 포함하고, 하나 또는 그 이상의 직사각형의 실리콘 태양 전지들은 각기 챔퍼 처리된 모서리들이 결핍되며;
상기 의사 정사각형의 웨이퍼가 따라서 다이스되는 상기 평행한 라인들 사이의 간격은 챔퍼 처리된 모서리들을 포함하는 상기 직사각형의 실리콘 태양 전지들의 긴 축에 직교하는 폭을 챔퍼 처리된 모서리들이 결핍된 상기 직사각형의 실리콘 태양 전지들의 긴 축에 직교하는 폭보다 크게 만들어 상기 챔퍼 처리된 모서리들을 보상하여, 상기 태양 전지들의 스트링 내의 각각의 상기 복수의 직사각형의 실리콘 태양 전지들이 상기 태양 전지들의 스트링의 동작에서 광에 노출되는 실질적으로 동일한 면적으로 전면을 가지도록 선택된다.
23. 태양 전지들의 스트링은,
상기 태양 전지들을 전기적으로 직렬로 연결하도록 중첩되고 서로 도전성으로 결합되는 인접하는 태양 전지들의 단부들과 일렬로 배열되는 복수의 실리콘 태양 전지들을 포함하며;
상기 실리콘 태양 전지들의 적어도 하나는 그로부터 다이스되었던 의사 정사각형의 실리콘 웨이퍼의 모서리들 또는 모서리들의 일부들에 대응되는 챔퍼 처리된 모서리들을 가지고, 상기 실리콘 태양 전지들의 적어도 하나는 챔퍼 처리된 모서리들이 결핍되며, 각각의 상기 실리콘 태양 전지들은 상기 태양 전지들의 스트링의 동작 동안에 광에 노출되는 실질적으로 동일한 면적의 전면을 가진다.
24. 태양 전지들의 둘 또는 그 이상의 스트링들을 만드는 방법에 있어서, 상기 방법은,
의사 정사각형의 실리콘 웨이퍼들의 모서리들 또는 모서리들의 일부들에 대응되는 챔퍼 처리된 모서리들을 포함하는 제1 복수의 직사각형의 실리콘 태양 전지들 그리고 각각의 제1 길이가 상기 의사 정사각형의 실리콘 웨이퍼들의 전체 폭에 걸치고 챔퍼 처리된 모서리들이 결핍되는 제2 복수의 직사각형의 실리콘 태양 전지들을 형성하도록 각 웨이퍼의 긴 에지에 평행한 복수의 라인들을 따라 하나 또는 그 이상의 의사 정사각형의 실리콘 웨이퍼들을 다이싱하는 단계;
각각의 제2 길이가 상기 제1 길이보다 짧고 챔퍼 처리된 모서리들이 결핍되는 제3 복수의 직사각형의 실리콘 태양 전지들을 형성하도록 각각의 상기 제1 복수의 직사각형의 실리콘 태양 전지들로부터 상기 챔퍼 처리된 모서리들을 제거하는 단계;
상기 제1 길이와 동일한 폭을 갖는 태양 전지 스트링을 형성하기 위해 상기 제2 복수의 직사각형의 실리콘 태양 전지들을 전기적으로 직렬로 연결하도록 중첩되고 서로 도전성으로 결합되는 인접하는 직사각형의 실리콘 태양 전지들의 긴 측면들과 일렬로 상기 제2 복수의 직사각형의 실리콘 태양 전지들을 배열하는 단계; 및
상기 제2 길이와 동일한 폭을 갖는 태양 전지 스트링을 형성하기 위해 상기 제3 복수의 직사각형의 실리콘 태양 전지들을 전기적으로 직렬로 연결하도록 중첩되고 서로 도전성으로 결합되는 인접하는 직사각형의 실리콘 태양 전지들의 긴 측면들과 일렬로 상기 제3 복수의 직사각형의 실리콘 태양 전지들을 배열하는 단계를 포함한다.
25. 태양 전지들의 둘 또는 그 이상의 스트링들을 만드는 방법에 있어서, 상기 방법은,
의사 정사각형의 실리콘 웨이퍼들의 모서리들 또는 모서리들의 일부들에 대응되는 챔퍼 처리된 모서리들을 포함하는 제1 복수의 직사각형의 실리콘 태양 전지들 및 챔퍼 처리된 모서리들이 결핍된 제2 복수의 직사각형의 실리콘 태양 전지들을 형성하도록 각 웨이퍼의 긴 에지에 평행한 복수의 라인들을 따라 하나 또는 그 이상의 의사 정사각형의 실리콘 웨이퍼들을 다이싱하는 단계;
상기 제1 복수의 직사각형의 실리콘 태양 전지들을 전기적으로 직렬로 연결하도록 중첩되고 서로 도전성으로 결합되는 인접하는 직사각형의 실리콘 태양 전지들의 긴 측면들과 일렬로 상기 제1 복수의 직사각형의 실리콘 태양 전지들을 배열하는 단계; 및
상기 제2 복수의 직사각형의 실리콘 태양 전지들을 전기적으로 직렬로 연결하도록 중첩되고 서로 도전성으로 결합되는 인접하는 직사각형의 실리콘 태양 전지들의 긴 측면들과 일렬로 상기 제2 복수의 직사각형의 실리콘 태양 전지들을 배열하는 단계를 포함한다.
26. 태양광 모듈을 만드는 방법에 있어서, 상기 방법은,
복수의 의사 정사각형의 실리콘 웨이퍼들로부터 상기 의사 정사각형의 실리콘 웨이퍼들의 모서리들에 대응되는 챔퍼 처리된 모서리들을 포함하는 복수의 직사각형의 실리콘 태양 전지들 및 챔퍼 처리된 모서리들이 결핍된 복수의 직사각형의 실리콘 태양 전지들을 형성하도록 상기 웨이퍼의 긴 에지에 평행한 복수의 라인들을 따라 각각의 복수의 의사 정사각형의 실리콘 웨이퍼들을 다이싱하는 단계;
상기 실리콘 태양 전지들을 전기적으로 직렬로 연결하기 위해 중첩되고 서로 도전성으로 결합되는 상기 실리콘 태양 전지들의 긴 측면들과 일렬로 배열되는 챔퍼 처리된 모서리들이 결핍된 직사각형의 실리콘 태양 전지들만을 각기 포함하는 제1 복수의 슈퍼 셀들을 형성하도록 챔퍼 처리된 모서리들이 결핍된 상기 직사각형의 실리콘 태양 전지들의 적어도 일부를 배열하는 단계;
상기 실리콘 태양 전지들을 전기적으로 직렬로 연결하기 위해 중첩되고 서로 도전성으로 결합되는 상기 실리콘 태양 전지들의 긴 측면들과 일렬로 배열되는 챔퍼 처리된 모서리들을 포함하는 직사각형의 실리콘 태양 전지들만을 각기 포함하는 제2 복수의 슈퍼 셀들을 형성하도록 챔퍼 처리된 모서리들을 포함하는 상기 직사각형의 실리콘 태양 전지들의 적어도 일부를 배열하는 단계; 및
상기 태양광 모듈의 전면을 형성하도록 실질적으로 같은 길이의 슈퍼 셀들의 평행한 열들로 상기 슈퍼 셀들을 배열하는 단계를 포함한다.
27. 사항 26의 태양광 모듈에 있어서, 상기 태양광 모듈의 평행한 대향되는 에지들에 인접하는 슈퍼 셀들의 열들의 둘은 상기 제2 복수의 슈퍼 셀들로부터의 슈퍼 셀들만을 포함하고, 슈퍼 셀들의 모든 다른 열들은 상기 제1 복수의 슈퍼 셀들로부터의 슈퍼 셀들만을 포함한다.
28. 사항 27의 태양광 모듈에 있어서, 상기 태양광 모듈은 슈퍼 셀들의 전체 여섯 개의 열들을 포함한다.
29. 슈퍼 셀은,
실리콘 태양 전지들을 전기적으로 직렬로 연결하도록 중첩되고 서로 도전성으로 결합되는 인접하는 실리콘 태양 전지들의 단부들과 제1 방향으로 일렬로 배열되는 복수의 실리콘 태양 전지들; 및
상기 제1 방향에 직교하는 제2 방향에 평행하게 배향되는 그 긴 축을 가지며, 상기 제2 방향을 따라 배열되는 셋 또는 그 이상의 별개의 위치들에서 상기 실리콘 태양 전지들의 단부의 것의 전면 또는 후면에 도전성으로 결합되고, 상기 제2 방향으로 상기 단부 태양 전지의 적어도 전체 폭으로 진행되며, 상기 단부 실리콘 태양 전지의 전면 또는 후면에 직교하게 측정되는 약 100미크론보다 작거나 같은 컨덕터 두께를 가지고, 약 0.012옴보다 작거나 같은 상기 제2 방향으로의 전류 흐름에 대한 저항을 제공하며, 약 -40℃ 내지 약 85℃의 온도 범위에 대해 상기 제2 방향으로의 상기 단부 실리콘 태양 전지와 인터커넥트 사이의 차등 팽창을 수용하는 유연성을 제공하도록 구성되는 연장되고 유연한 전기적 인터커넥트를 포함한다.
30. 사항 29의 슈퍼 셀에서, 상기 유전한 전기적 인터커넥트는 상기 단부 실리콘 태양 전지의 전면 및 후면에 직교하게 측정되는 약 30미크론보다 작거나 같은 컨덕터 두께를 가진다.
31. 사항 29의 슈퍼 셀에서, 상기 유연한 전기적 인터커넥트는 태양광 모듈 내의 상기 슈퍼 셀에 평행하고 인접하게 위치하는 적어도 제2 슈퍼 셀에 대한 전기적 상호 연결을 제공하도록 상기 슈퍼 셀을 지나 상기 제2 방향으로 연장된다.
32. 사항 29의 슈퍼 셀에서, 상기 유연한 전기적 인터커넥트는,
태양광 모듈 내의 상기 슈퍼 셀에 평행하고 일렬로 위치하는 적어도 제2 슈퍼 셀에 대한 전기적 상호 연결을 제공하도록 상기 슈퍼 셀을 지나 상기 제1 방향으로 연장된다.
33. 태양광 모듈은,
상기 모듈의 전면을 형성하도록 상기 모듈의 폭에 걸치는 둘 또는 그 이상의 평행한 열들로 배열되는 복수의 슈퍼 셀들을 포함하고, 각 슈퍼 셀은 실리콘 태양 전지들을 전기적으로 직렬로 연결하도록 중첩되고 서로 도전성으로 결합되는 인접하는 실리콘 태양 전지들의 단부들과 일렬로 배열되는 복수의 실리콘 태양 전지들을 구비하며;
제1 열 내의 상기 모듈의 에지에 인접하는 제1 슈퍼 셀의 적어도 단부는, 전기적으로 도전성인 접착 결합 물질로 복수의 별개의 위치들에서 상기 제1 슈퍼 셀 의 전면에 결합되고, 상기 모듈의 에지에 평행하게 진행되며, 상기 제1 슈퍼 셀의 단부 주위에서 적어도 일부가 접히고, 상기 모듈의 전방으로부터 시야에서 감춰지는 유연한 전기적 인터커넥트를 통해 제2 열 내의 상기 모듈의 동일한 에지에 인접하는 제2 슈퍼 셀의 단부에 전기적으로 연결된다.
34. 사항 33의 태양광 모듈에서, 상기 모듈의 전면 상의 상기 유연한 전기적 인터커넥트의 표면들은 상기 슈퍼 셀들과 시각적인 대비를 감소시키도록 커버되거나 착색된다.
35. 사항 33의 태양광 모듈에서, 상기 슈퍼 셀들의 둘 또는 그 이상의 평행한 열들은 상기 태양광 모듈의 동작 동안에 태양 복사에 의해 조명되는 상기 태양광 모듈의 전면을 형성하도록 백색 배면 시트 상에 배열되며, 상기 백색 배면 시트는 상기 슈퍼 셀들의 평행한 열들 사이의 갭들의 폭 및 위치들에 대응되는 위치들 및 폭들을 갖는 어둡게 된 스트라이프들을 포함하고, 상기 배면 시트들의 백색 부분들은 상기 열들 사이의 갭들을 통해 보이지 않는다.
36. 태양 전지들의 스트링을 만드는 방법에 있어서, 상기 방법은,
실리콘 태양 전지들 상에 복수의 직사각형의 영역들을 정의하도록 각각의 하나 또는 그 이상의 실리콘 태양 전지들 상에 하나 또는 그 이상의 스크라이브 라인들을 레이저 스크라이빙하는 단계;
각 직사각형의 영역의 긴 측면에 인접하는 하나 또는 그 이상의 위치들에서 전기적으로 도전성인 접착 결합 물질을 상기 하나 또는 그 이상의 스크라이브된 실리콘 태양 전지들을 적용하는 단계;
각기 긴 측면에 인접하는 그 전면 상에 배치되는 상기 전기적으로 도전성인 접착 결합 물질의 일부를 포함하는 복수의 직사각형의 실리콘 태양 전지들을 제공하도록 상기 스크라이브 라인들을 따라 상기 실리콘 태양 전지들을 분리하는 단계;
그 사이에 배치되는 상기 전기적으로 도전성인 접착 결합 물질의 일부를 구비하여 슁글드 방식으로 중첩되는 인접하는 직사각형의 실리콘 태양 전지들의 긴 측면들과 일렬로 상기 복수의 직사각형의 실리콘 태양 전지들을 배열하는 단계; 및
상기 전기적으로 도전성인 결합 물질을 큐어링하여, 인접하고 중첩되는 직사각형의 실리콘 태양 전지들을 서로 결합하고 이들을 전기적으로 직렬로 연결하는 단계를 포함한다.
37. 태양 전지들의 스트링을 만드는 방법에 있어서, 상기 방법은,
실리콘 태양 전지들 상에 복수의 직사각형의 영역들을 한정하도록 각각의 하나 또는 그 이상의 실리콘 태양 전지들 상에 하나 또는 그 이상의 스크라이브 라인들을 레이저 스크라이빙하는 단계를 포함하고, 각 태양 전지는 상면 및 대향되게 위치하는 저면을 구비하며;
전기적으로 도전성인 접착 결합 물질을 상기 하나 또는 그 이상의 실리콘 태양 전지들의 상면들의 일부들에 적용하는 단계를 포함하고;
곡선의 지지 표면에 대해 상기 하나 또는 그 이상의 실리콘 태양 전지들을 구부리도록 상기 하나 또는 그 이상의 실리콘 태양 전지들의 저면들과 곡선의 지지면 사이에 진공을 인가하여, 각기 긴 측면을 따라 그 전면 상에 배치되는 상기 전기적으로 도전성인 접착 결합 물질의 일부를 구비하는 복수의 직사각형의 실리콘 태양 전지들을 제공하도록 상기 스크라이브 라인들을 따라 상기 하나 또는 그 이상의 실리콘 태양 전지들을 절단하는 단계를 포함하며;
그 사이에 배치되는 상기 전기적으로 도전성인 접착 결합 물질의 일부를 구비하여 슁글드 방식으로 중첩되는 인접하는 직사각형의 실리콘 태양 전지들의 긴 측면들과 일렬로 상기 복수의 직사각형의 실리콘 태양 전지들을 배열하는 단계를 포함하고;
상기 전기적으로 도전성인 결합 물질을 큐어링하여, 인접하고 중첩되는 직사각형의 실리콘 태양 전지들을 서로 결합시키고, 이들을 전기적으로 직렬로 연결하는 단계를 포함한다.
38. 사항 37의 방법에서, 상기 전기적으로 도전성인 접착 결합 물질을 상기 하나 또는 그 이상의 실리콘 태양 전지들에 적용하고, 이후에 각각의 상기 하나 또는 그 이상의 실리콘 태양 전지들 상에 하나 또는 그 이상의 스크라이브 라인들을 레이저 스크라이빙하는 단계를 포함한다.
9. 사항 37의 방법에서, 각각의 상기 하나 또는 그 이상의 실리콘 태양 전지들 상에 상기 하나 또는 그 이상의 스크라이브 라인들을 레이저 스크라이빙하고, 이후에 상기 전기적으로 도전성인 접착 결합 물질을 상기 하나 또는 그 이상의 실리콘 태양 전지들에 적용하는 단계를 포함한다.
40. 태양광 모듈은,
상기 태양광 모듈의 전면을 형성하도록 둘 또는 그 이상의 평행한 열들로 배열되는 복수의 슈퍼 셀들을 구비하고, 각 슈퍼 셀은 실리콘 태양 전지들을 전기적으로 직렬로 연결하도록 중첩되고 서로 도전성으로 결합되는 인접하는 실리콘 태양 전지들의 단부들과 일렬로 배열되는 복수의 실리콘 태양 전지들을 포함하며, 각 슈퍼 셀은 상기 슈퍼 셀의 일측 단부에서의 전면 단부 콘택 및 상기 슈퍼 셀의 대향하는 단부에서 대향하는 극성의 후면 단부 콘택을 포함하고;
슈퍼 셀들의 제1 열은 상기 태양광 모듈의 제1 에지에 인접하고 평행한 그 전면 단부 콘택을 구비하여 배열되는 제1 슈퍼 셀을 포함하며, 상기 태양광 모듈은, 연장되고 상기 태양광 모듈의 제1 에지에 평행하게 진행되며, 상기 제1 슈퍼 셀의 전면 단부 콘택에 도전성으로 결합되고, 상기 태양광 모듈의 제1 에지에 인접하는 상기 태양광 모듈의 전면의 좁은 부분만을 점유하며, 상기 태양광 모듈의 제1 에지에 직교하여 측정되는 약 1센티미터보다 넓지 않은 제1 유연한 전기적 인터커넥트를 포함한다.
41. 사항 40의 태양광 모듈에서, 상기 제1 유연한 전기적 인터커넥트의 일부는 상기 태양광 모듈의 제1 에지에 가장 가까운 상기 제1 슈퍼 셀의 단부 주위 및 제1 슈퍼 셀의 뒤로 연장된다.
42. 사항 40의 태양광 모듈에서, 상기 제1 유연한 인터커넥트는 상기 제1 슈퍼 셀의 전면 단부 콘택에 도전성으로 결합되는 얇은 리본 부분 및 상기 태양광 모듈의 제1 에지에 평행하게 진행되는 두꺼운 부분을 포함한다.
43. 사항 40의 태양광 모듈에서, 상기 제1 유연한 인터커넥트는 상기 제1 슈퍼 셀의 전면 단부 콘택에 도전성으로 결합되는 얇은 리본 부분 및 상기 태양광 모듈의 제1 에지에 평행하게 진행되는 코일형(colied) 리본 부분을 포함한다.
44. 사항 40의 태양광 모듈에서, 슈퍼 셀들의 제2 열은 상기 태양광 모듈의 제1 에지에 인접하고 평행한 그 전면 단부 콘택을 구비하여 배열되는 제2 슈퍼 셀을 포함하고, 상기 제1 슈퍼 셀의 전면 단부 콘택은 상기 제1 유연한 전기적 인터커넥트를 거쳐 상기 제2 슈퍼 셀의 전면 단부 콘택에 전기적으로 연결된다.
45. 사항 40의 태양광 모듈에서, 상기 제1 슈퍼 셀의 후면 단부 콘택은 상기 태양광 모듈의 제1 에지로부터 대향되는 상기 태양광 모듈의 제2 에지에 인접하고 평행하게 위치하며, 연장되고 상기 태양광 모듈의 제2 에지에 평행하게 진행되며, 상기 제1 슈퍼 셀의 후면 단부 콘택에 도전성으로 결합되고, 상기 슈퍼 셀들 뒤에 전체적으로 놓이는 제2 유연한 전기적 인터커넥트를 포함한다.
46. 사항 45의 태양광 모듈에서,
슈퍼 셀들의 제2 열은 상기 태양광 모듈의 제1 에지에 인접하고 평행한 그 전면 단부 콘택 및 상기 태양광 모듈의 제2 에지에 인접하고 평행하게 위치하는 그 후면 단부 콘택을 구비하여 배열되는 제2 슈퍼 셀을 포함하며;
상기 제1 슈퍼 셀의 전면 단부 콘택은 상기 제1 유연한 전기적 인터커넥트를 거쳐 상기 제2 슈퍼 셀의 전면 단부 콘택에 전기적으로 연결되고;
상기 제1 슈퍼 셀의 후면 단부 콘택은 상기 제2 유연한 전기적 인터커넥트를 거쳐 상기 제2 슈퍼 셀의 후면 단부 콘택에 전기적으로 연결된다.
47. 사항 40의 태양광 모듈에서,
상기 제1 슈퍼 셀과 직렬로 상기 슈퍼 셀들의 제1 열 내에 배열되고, 상기 태양광 모듈의 제1 에지와 대향하는 상기 태양광 모듈의 제2 에지에 인접하는 그 후면 단부 콘택을 구비하는 제2 슈퍼 셀; 및
연장되고 상기 태양광 모듈의 제2 에지에 평행하게 진행되며, 상기 제1 슈퍼 셀의 후면 단부 콘택에 도전성으로 결합되고, 상기 슈퍼 셀들 뒤에 전체적으로 놓이는 제2 유연한 전기적 인터커넥트를 포함한다.
48. 사항 47의 태양광 모듈에서,
슈퍼 셀들의 제2 열은 직렬로 배열되는 제3 슈퍼 셀 및 제4 슈퍼 셀을 포함하며, 상기 제3 슈퍼 셀의 전면 단부 콘택은 상기 태양광 모듈의 제1 에지에 인접하고, 상기 제4 슈퍼 셀의 후면 단부 콘택은 상기 태양광 모듈의 제2 에지에 인접하며;
상기 제1 슈퍼 셀의 전면 단부 콘택은 상기 제1 유연한 전기적 인터커넥트를 통해 상기 제3 슈퍼 셀의 전면 단부 콘택에 전기적으로 연결되고, 상기 제2 슈퍼 셀의 후면 단부 콘택은 상기 제2 유연한 전기적 인터커넥트를 통해 상기 제4 슈퍼 셀의 후면 단부 콘택에 전기적으로 연결된다.
49. 사항 40의 태양광 모듈에서, 상기 슈퍼 셀들은 상기 슈퍼 셀들의 평행한 열들 사이의 갭들의 위치들 및 폭들에 대응되는 위치들 및 폭들을 갖는 어둡게 된(darkened) 스트라이프들을 포함하는 백색 배면 시트 상에 배열되며, 상기 배면 시트들의 백색 부분들은 상기 열들 사이의 갭들을 통해 보이지 않는다.
50. 사항 40의 태양광 모듈에서, 상기 태양광 모듈의 전면 상에 위치하는 상기 제1 유연한 전기적 인터커넥트의 모든 부분들은 상기 슈퍼 셀들과의 가시적인 대비를 감소시키도록 커버되거나 색상을 가진다.
51. 사항 40의 태양광 모듈에서,
각 실리콘 태양 전지는,
제1 및 제2의 대향되게 위치하는 평행한 긴 측면들 및 두 개의 대향되게 위치하는 짧은 측면들에 의해 정의되는 형상들을 갖는 직사각형 또는 실질적으로 직사각형의 전방 및 후면들을 포함하며, 상기 전면들의 적어도 일부들은 상기 태양 전지들의 스트링의 동작 동안에 태양 복사에 노출되고;
상기 전면 상에 배치되고, 상기 긴 측면들에 직교하게 진행되는 복수의 핑거들 및 상기 제1 긴 측면에 인접하여 열 내에 위치하는 복수의 별개의 전면 콘택 패드들을 포함하는 전기적으로 도전성인 전면 금속화 패턴을 포함하며, 각 전면 콘택 패드는 상기 핑거들의 적어도 하나에 전기적으로 연결되고;
상기 후면 상에 배치되고, 상기 제2 긴 측면에 인접하여 열 내에 위치하는 복수의 별개의 후면 콘택 패드들을 포함하는 전기적으로 도전성인 후면 금속화 패턴을 포함하며;
각 슈퍼 셀 내에서 상기 실리콘 태양 전지들은 상기 실리콘 태양 전지들을 직렬로 전기적으로 연결하도록 중첩되고 인접하는 실리콘 태양 전지들의 제1 및 제2 긴 측면들과 대응되는 별개의 전면 콘택 패드들, 그리고 정렬되고 중첩되며 도전성 접착 결합 물질로 서로 도전성으로 결합되는 인접하는 실리콘 태양 전지들 상의 별개의 후면 콘택 패드들을 구비하여 일렬로 배열된다.
52. 사항 51의 태양광 모듈에서, 상기 실리콘 태양 전지의 전면 금속화 패턴은 인접하는 별개의 전면 콘택 패드들을 전기적으로 상호 연결하는 복수의 얇은 컨덕터들을 포함하며, 각각의 얇은 컨덕터는 상기 태양 전지들의 긴 측면들에 직교하여 측정되는 상기 별개의 콘택 패드들의 폭보다 얇다.
53. 사항 51의 태양광 모듈에서, 상기 도전성 접착 결합 물질은 상기 별개의 전면 콘택 패드들에 인접하여 하나 또는 그 이상의 배리어들을 형성하는 상기 전면 금속화 패턴의 특징들에 의해 상기 별개의 전면 콘택 패드들의 위치들에 실질적으로 제한된다.
54. 사항 51의 태양광 모듈에서, 상기 도전성 접착 결합 물질은 상기 별개의 후면 콘택 패드에 인접하여 하나 또는 그 이상의 배리어들을 형성하는 상기 후면 금속화 패턴 특징들에 의해 상기 별개의 후면 콘택 패드들의 위치들에 실질적으로 제한된다.
55. 태양광 모듈을 만드는 방법에 있어서, 상기 방법은,
복수의 슈퍼 셀들을 조립하는 단계를 포함하고, 각 슈퍼 셀은 슁글드 방식으로 중첩되는 인접하는 직사각형의 실리콘 태양 전지들의 긴 측면들 상의 단부들에 일렬로 배열되는 복수의 직사각형의 실리콘 태양 전지들을 구비하며;
상기 인접하는 직사각형의 실리콘 태양 전지들의 중첩되는 단부들 사이에 배치되는 전기적으로 도전성인 결합 물질을 열 및 압력을 상기 슈퍼 셀들에 인가함에 의해 큐어링하여, 인접하고 중첩되는 직사각형의 실리콘 태양 전지들을 서로 결합시키고, 이들을 전기적으로 직렬로 연결하는 단계를 포함하고;
상기 슈퍼 셀들을 봉지재를 포함하는 층들의 스택(stcak)으로 원하는 태양광 모듈 구성 내에 배열하고 상호 연결하는 단계를 포함하며;
라미네이트된 구조를 형성하도록 상기 층들의 스택에 열 및 압력을 인가하는 단계를 포함한다.
56. 사항 55의 방법에서, 상기 라미네이트된 구조를 형성하도록 상기 층들의 스택에 열 및 압력을 인가하지 이전에 열 및 압력을 상기 슈퍼 셀들에 인가하여 상기 전기적으로 도전성인 결합 물질을 큐어링하거나 부분적으로 큐어링하여, 상기 라미네이트된 구조를 형성하기 전에 증간 생성물로서 큐어링되거나 부분적으로 큐어링된 슈퍼 셀들을 형성하는 단계를 포함한다.
57. 사항 56의 방법에서, 각 추가적인 직사각형의 실리콘 태양 전지가 슈퍼 셀의 조립 동안에 상기 슈퍼 셀에 추가되면서, 새롭게 추가된 태양 전지 및 그 인접하고 중첩되는 태양 전지 사이의 상기 전기적으로 도전성인 접착 결합 물질이 다른 직사각형의 실리콘 태양 전지가 상기 슈퍼 셀에 추가되기 전에 큐어링되거나 부분적으로 큐어링된다.
58. 사항 56의 방법에서, 동일한 단계에서 슈퍼 셀 내의 모든 상기 전기적으로 도전성인 결합 물질을 큐어링하거나 부분적으로 큐어링하는 단계를 포함한다.
59. 사항 56의 방법에서,
라미네이트된 구조를 형성하도록 층들의 스택에 열 및 압력을 인가하기 이전에 상기 슈퍼 셀들에 열 및 압력을 인가하여 상기 전기적으로 도전성인 결합 물질을 부분적으로 큐어링하여, 상기 라미네이트된 구조를 형성하기 전에 중간 생성물로서 부분적으로 큐어링된 슈퍼 셀들을 형성하는 단계; 및
상기 라미네이트된 구조를 형성하도록 상기 층들의 스택에 열 및 압력을 인가하면서 상기 전기적으로 도전성인 결합 물질의 큐어링을 완료하는 단계를 포함한다.
60. 사항 55의 방법에서, 라미네이트된 구조를 형성하기 전에 중간 생성물로서 큐어링되거나 부분적으로 큐어링된 슈퍼 셀들을 형성하지 않고, 상기 라미네이트된 구조를 형성하도록 상기 층들의 스택에 열 및 압력을 인가하면서, 상기 전기적으로 도전성인 결합 물질을 큐어링하는 단계를 포함한다.
61. 사항 55의 방법에서, 상기 직사각형의 실리콘 태양 전지들을 제공하도록 하나 또는 그 이상의 실리콘 태양 전지들을 직사각형의 형상들로 다이싱하는 단계를 포함한다.
62. 사항 61의 방법에서, 미리 적용된 전기적으로 도전성인 접착 결합 물질을 갖는 직사각형의 실리콘 태양 전지들을 제공하도록 상기 하나 또는 그 이상의 실리콘 태양 전지들을 다이싱하기 전에 상기 전기적으로 도전성인 접착 결합 물질을 상기 하나 또는 그 이상의 실리콘 태양 전지들에 적용하는 단계를 포함한다.
63. 사항 62의 방법에서, 상기 전기적으로 도전성인 접착 결합 물질을 상기 하나 또는 그 이상의 실리콘 태양 전지들에 적용하고, 이후에 각각의 상기 하나 또는 그 이상의 실리콘 태양 전지들 상에 하나 또는 그 이상의 라인들을 스크라이브하도록 레이저를 사용하며, 이후에 상기 스크라이브 라인들을 따라 상기 하나 또는 그 이상의 실리콘 태양 전지들을 절단하는 단계를 포함한다.
64. 사항 62의 방법에서, 각각의 상기 하나 또는 그 이상의 실리콘 태양 전지들 상에 하나 또는 그 이상의 라인들을 스크라이브하도록 레이저를 사용하고, 이후에 상기 전기적으로 도전성인 접착 결합 물질을 상기 하나 또는 그 이상의 실리콘 태양 전지들에 적용하며, 이후에 상기 스크라이브 라인들을 따라 상기 하나 또는 그 이상의 실리콘 태양 전지들을 절단하는 단계를 포함한다.
65. 사항 62의 방법에서, 상기 전기적으로 도전성인 접착 결합 물질은 각각의 상기 하나 또는 그 이상의 실리콘 태양 전지들의 상면에 적용되고, 각각의 상기 하나 또는 그 이상의 실리콘 태양 전지들의 대향되게 위치하는 저면에 적용되지 않으며, 상기 하나 또는 그 이상의 실리콘 태양 전지들을 상기 곡선의 지지면에 대해 구부리도록 상기 하나 또는 그 이상의 실리콘 태양 전지들의 저면들과 곡선의 지지면 사이에 진공을 적용하고, 이에 따라 스크라이브 라인들을 따라 상기 하나 또는 그 이상의 실리콘 태양 전지들을 절단하는 단계를 포함한다.
66. 사항 61의 방법에서, 상기 직사각형의 실리콘 태양 전지들을 제공하도록 상기 하나 또는 그 이상의 실리콘 태양 전지들을 다이싱한 후 상기 전기적으로 도전성인 접착 결합 물질을 상기 직사각형의 실리콘 태양 전지들에 적용하는 단계를 포함한다.
67. 사항 55의 방법에서, 상기 도전성 접착 결합 물질은 약 0℃보다 작거나 같은 유리 전이 온도를 가진다.
1A. 태양광 모듈은,
상기 태양광 모듈의 전면을 형성하도록 둘 또는 그 이상의 평행한 열들로 배열되는 복수의 슈퍼 셀들을 포함하고, 각 슈퍼 셀은 실리콘 태양 전지들을 전기적으로 직렬로 연결하도록 중첩되고 서로 도전성으로 결합되는 인접하는 실리콘 태양 전지들의 단부들과 일렬로 배열되는 복수의 실리콘 태양 전지들을 구비하며, 각 슈퍼 셀은 상기 슈퍼 셀의 하나의 단부에서 전면 단부 콘택 및 상기 슈퍼 셀의 대향하는 단부에서 대향하는 극성의 후면 단부 콘택을 구비하고;
상기 슈퍼 셀들의 제1 열은 상기 태양광 모듈의 제1 에지에 인접하고 평행한 전면 단부 콘택을 구비하여 배열되는 제1 슈퍼 셀을 구비하며, 상기 태양광 모듈은
연장되고 상기 태양광 모듈의 제1 에지에 평행하게 진행되며, 상기 제1 슈퍼 셀의 전면 단부 콘택에 도전성으로 결합되고, 상기 태양광 모듈의 제1 에지에 인접하는 상기 태양광 모듈의 전면의 좁은 부분만을 차지하며, 상기 태양광 모듈의 제1 에지에 직교하게 측정되는 약 1센티미터 보다 넓지 않은 제1 유연한 전기적 인터커넥트를 포함한다.
2A. 사항 1A의 태양광 모듈에서, 상기 제1 유연한 전기적 인터커넥트의 일부는 상기 태양광 모듈의 제1 에지에 가장 가까운 상기 제1 슈퍼 셀의 단부 주위로 및 상기 제1 슈퍼 셀 뒤로 연장된다.
3A. 사항 1A의 태양광 모듈에서, 상기 제1 유연한 인터커넥트는 상기 제1 슈퍼 셀의 전면 단부 콘택에 도전성으로 결합되는 얇은 리본 부분 및 상기 태양광 모듈의 제1 에지에 평행하게 진행되는 보다 두꺼운 부분을 포함한다.
4A. 사항 1A의 태양광 모듈에서, 상기 제1 유연한 인터커넥트는 상기 제1 슈퍼 셀의 전면 단부 콘택에 도전성으로 결합되는 얇은 리본 부분 및 상기 태양광 모듈의 제1 에지에 평행하게 진행되는 코일형 리본 부분을 포함한다.
5A. 사항 1A의 태양광 모듈에서, 슈퍼 셀들의 제2 열은 상기 태양광 모듈의 제1 에지에 인접하고 평행한 그 전면 단부 콘택을 구비하여 배열되는 제2 슈퍼 셀을 포함하며, 상기 제1 슈퍼 셀의 전면 단부 콘택은 상기 제1 유연한 전기적 인터커넥트를 통해 상기 제2 슈퍼 셀의 전면 단부 콘택에 전기적으로 연결된다.
6A. 사항 1A의 태양광 모듈에서, 상기 제1 슈퍼 셀의 후면 단부 콘택은 상기 태양광 모듈의 제1 에지와 대향하는 상기 태양광 모듈의 제2 에지에 인접하고 평행하게 위치하며, 상기 태양광 모듈의 제2 에지에 평행하게 연장되고 진행되며, 상기 제1 슈퍼 셀의 후면 단부 콘택에 도전성으로 결합되고, 상기 슈퍼 셀들 뒤에 전체적으로 놓이는 제2 유연한 전기적 인터커넥트를 포함한다.
7A. 사항 6A의 태양광 모듈에서,
슈퍼 셀들의 제2 열은 상기 태양광 모듈의 제1 에지에 인접하고 평행한 그 전면 단부 콘택 및 상기 태양광 모듈의 제2 에지에 인접하고 평행하게 위치하는 그 후면 단부 콘택을 구비하여 배열되는 제2 슈퍼 셀을 포함하며;
상기 제1 슈퍼 셀의 전면 단부 콘택은 상기 제1 유연한 전기적 인터커넥트를 거쳐 상기 제2 슈퍼 셀의 전면 단부 콘택에 전기적으로 연결되고;
상기 제1 슈퍼 셀의 후면 단부 콘택은 상기 제2 유연한 전기적 인터커넥트를 통해 상기 제2 슈퍼 셀의 후면 단부 콘택에 전기적으로 연결된다.
8A. 사항 1A의 태양광 모듈에서,
상기 제1 슈퍼 셀과 직렬로 슈퍼 셀들의 제1 열로 배열되고, 상기 태양광 모듈의 제1 에지와 대향하는 상기 태양광 모듈의 제2 에지에 인접하는 후면 단부 콘택을 구비하는 제2 슈퍼 셀; 및
상기 태양광 모듈의 제2 에지에 평행하게 연장되고 진행되며, 상기 제1 슈퍼 셀의 후면 단부 콘택에 도전성으로 결합되고, 상기 슈퍼 셀들 뒤에 전체적으로 놓이는 제2 유연한 전기적 인터커넥트를 포함한다.
9A. 사항 8A의 태양광 모듈에서,
슈퍼 셀들의 제2 열은 상기 태양광 모듈의 제1 에지에 인접하는 제3 슈퍼 셀의 전면 단부 콘택 및 상기 태양광 모듈의 제2 에지에 인접하는 제4 슈퍼 셀의 후면 단부 콘택을 구비하여 직렬로 배열되는 상기 제3 슈퍼 셀 및 제4 슈퍼 셀을 포함하며;
상기 제1 슈퍼 셀의 전면 단부 콘택은 상기 제1 유연한 전기적 인터커넥트를 통해 상기 제3 슈퍼 셀의 전면 단부 콘택에 전기적으로 연결되고, 상기 제2 슈퍼 셀의 후면 단부 콘택은 상기 제2 유연한 전기적 인터커넥트를 거쳐 상기 제4 슈퍼 셀의 후면 단부 콘택에 전기적으로 연결된다.
10A. 사항 1A의 태양광 모듈에서, 상기 태양광 모듈의 외측 에지들로부터 떨어져 상기 모듈의 전면의 활성 영역들 감소시키는 상기 슈퍼 셀들 사이의 전기적 상호 연결들은 존재하지 않는다.
11A. 사항 1A의 태양광 모듈에서, 슈퍼 셀들의 적어도 하나의 쌍은 상기 슈퍼 셀들의 쌍의 다른 하나의 후면 단부 콘택에 인접하는 상기 슈퍼 셀들의 쌍의 하나의 후면 단부 콘택을 구비하여 열 내에 일렬로 배열된다.
12A. 사항 1A의 태양광 모듈에서,
슈퍼 셀들의 적어도 하나의 쌍은 대향하는 극성의 단부 콘택들을 갖는 상기 두 슈퍼 셀들의 인접하는 단부들을 구비하여 열 내에 일렬로 배열되고;
상기 슈퍼 셀들의 쌍의 인접하는 단부들은 중첩되며;
상기 슈퍼 셀들의 쌍 내의 슈퍼 셀들은 이들의 중첩되는 단부들 사이에 개재되고 상기 전면을 차광하지 않는 유연한 전기적 인터커넥트에 의해 전기적으로 직렬로 연결된다.
13A. 사항 1A의 태양광 모듈에서, 상기 슈퍼 셀들은 상기 슈퍼 셀들의 평행한 열들 사이의 갭들의 위치들 및 폭들에 대응되는 위치들 및 폭들을 갖는 평행한 어둡게 된 스트라이프들을 구비하는 백색 배면 시트 상에 배열되며, 상기 배면 시트들의 백색 부분들은 상기 열들 사이의 상기 갭들을 통해 보이지 않는다.
14A. 사항 1A의 태양광 모듈에서, 상기 태양광 모듈의 전면 상에 위치하는 상기 제1 유연한 전기적 인터커넥트의 모든 부분들은 상기 슈퍼 셀들과 가시적인 대비를 감소시키도록 커버되거나 착색된다.
15A. 사항 1A의 태양광 모듈에서,
각 실리콘 태양 전지는,
제1 및 제2 대항되게 위치하는 평행한 긴 측면들 및 두 개의 대향되게 위치하는 짧은 측면들에 의해 정의되는 형상들을 갖는 직사각형 또는 실질적으로 직사각형의 전방 및 후면들을 포함하고, 상기 전면들의 적어도 일부들은 상기 태양 전지들의 스트링의 동작 동안에 태양 복사에 노출되며;
상기 전면 상에 배치되고, 상기 긴 측면들에 직교하게 진행되는 복수의 핑거들 및 상기 제1 긴 측면에 인접하는 열로 위치하는 복수의 별개의 전면 콘택 패드들을 구비하는 전기적으로 도전성인 전면 금속화 패턴을 포함하고, 각 전면 콘택 패드는 상기 핑거들의 적어도 하나에 전기적으로 연결되며;
상기 후면 상에 배치되고, 상기 제2 긴 측면에 인접하는 열로 위치하는 복수의 별개의 후면 콘택 패드들을 구비하는 전기적으로 도전성인 후면 금속화 패턴을 포함하고;
각 슈퍼 셀 내에서 상기 실리콘 태양 전지들은, 중첩되는 인접하는 실리콘 태양 전지들의 제1 및 제2 긴 측면들 그리고 정렬되고, 중첩되며, 상기 실리콘 태양 전지들을 전기적으로 직렬로 연결하도록 도전성 접착 결합 물질로 서로 도전성으로 결합되는 인접하는 실리콘 태양 전지들 상의 대응되는 별개의 전면 콘택 패드들 및 별개의 후면 콘택 패드들과 일렬로 배열된다.
16A. 사항 15A의 태양광 모듈에서, 각 실리콘 태양 전지의 상기 전면 금속화 패턴은 인접하는 별개의 전면 콘택 패드들을 전기적으로 상호 연결하는 복수의 얇은 컨덕터들을 포함하며, 각각의 얇은 컨덕터는 상기 태양 전지들의 긴 측면들에 직교하게 측정되는 상기 별개의 콘택 패드들의 폭보다 얇다.
17A. 사항 15A의 태양광 모듈에서, 상기 도전성 접착 결합 물질은 각각의 별개의 전면 콘택 패드 주위에 배리어들을 형성하는 상기 전면 금속화 패턴의 특징들에 의해 상기 별개의 전면 콘택 패드들의 위치들에 실질적으로 제한된다.
18A. 사항 15A의 태양광 모듈에서, 상기 도전성 접착 결합 물질은 각각의 별개의 후면 콘택 패드 주위에 배리어들을 형성하는 상기 후면 금속화 패턴의 특징들에 의해 상기 별개의 후면 콘택 패드들의 위치들에 실질적으로 제한된다.
19A. 사항 15A의 태양광 모듈에서, 상기 별개의 후면 콘택 패드들은 별개의 실버 후면 콘택 패드들이며, 상기 별개의 실버 후면 콘택 패드들을 제외하면 각 실리콘 태양 전지의 상기 후면 금속화 패턴은 인접하는 실리콘 태양 전지에 의해 중첩되지 않는 상기 태양 전지의 전면의 일부 아래에 놓인 임의의 위치에서 실버 콘택들 포함하지 않는다.
20A. 태양광 모듈은,
복수의 슈퍼 셀들을 포함하고, 각 슈퍼 셀은 실리콘 태양 전지들을 전기적으로 직렬로 연결하도록 중첩되고 서로 도전성으로 결합되는 인접하는 실리콘 태양 전지들의 단부들과 일렬로 배열되는 복수의 실리콘 태양 전지들을 구비하며;
각 실리콘 태양 전지는,
제1 및 제2 대향되게 위치하는 평행한 긴 측면들 및 두 개의 대향되게 위치하는 짧은 측면들에 의해 한정되는 형상들을 갖는 직사각형 또는 실질적으로 직사각형의 전방 및 후면들을 포함하고, 상기 전면들의 적어도 일부들은 상기 태양 전지들의 스트링의 동작 동안에 태양 복사에 노출되며;
상기 전면 상에 배치되고, 상기 긴 측면들에 직교하게 진행되는 복수의 핑거들 및 상기 제1 긴 측면에 인접하여 열로 위치하는 복수의 별개의 전면 콘택 패드들을 구비하는 전기적으로 도전성인 전면 금속화 패턴을 포함하고,
각 전면 콘택 패드는 상기 핑거들의 적어도 하나에 전기적으로 연결되며;
상기 후면 상에 배치되고, 상기 제2 긴 측면에 인접하여 열로 위치하는 복수의 별개의 후면 콘택 패드들을 구비하는 전기적으로 도전성인 후면 금속화 패턴을 포함하고;
각 슈퍼 셀 내의 상기 실리콘 태양 전지들은 중첩되고 인접하는 실리콘 태양 전지들의 제1 및 제2 긴 측면들 그리고 정렬되고, 중첩되며, 상기 실리콘 태양 전지들을 전기적으로 직렬로 연결하도록 도전성 접착 결합 물질로 서로 도전성으로 결합되는 인접하는 실리콘 태양 전지들 상의 대응되는 별개의 전면 콘택 패드들 및 별개의 후면 콘택 패드들과 일렬로 배열되며;
상기 슈퍼 셀들은 상기 태양광 모듈의 동작 동안에 태양 복사에 의해 조명되는 상기 태양광 모듈의 전면을 형성하도록 상기 태양광 모듈의 길이 또는 폭을 실질적으로 가로지르는 단일의 열 또는 둘 또는 그 이상의 평행한 열들로 배열된다.
21A. 사항 20A의 태양광 모듈에서, 상기 별개의 후면 콘택 패드들은 별개의 실버 후면 콘택 패드들이며, 상기 별개의 실버 후면 콘택 패드들을 제외하면 각 실리콘 태양 전지의 상기 후면 금속화 패턴은 인접하는 실리콘 태양 전지에 의해 중첩되지 않는 상기 태양 전지의 전면의 일부 아래에 놓인 임의의 위치에서 실버 콘택을 포함하지 않는다.
22A. 사항 20A의 태양광 모듈에서, 각 실리콘 태양 전지의 상기 전면 금속화 패턴은 인접하는 별개의 전면 콘택 패드들을 전기적으로 상호 연결하는 복수의 얇은 컨덕터들을 포함하며, 각각의 얇은 컨덕터는 상기 태양 전지들의 긴 측면들에 직교하게 측정되는 상기 별개의 콘택 패드들의 폭보다 얇다.
23A. 사항 20A의 태양광 모듈에서, 상기 도전성 접착 결합 물질은 각각의 별개의 전면 콘택 패드 주위에 배리어들을 형성하는 상기 전면 금속화 패턴의 특징들에 의해 상기 별개의 전면 콘택 패드들의 위치들에 실질적으로 제한된다.
24A. 사항 20A의 태양광 모듈에서, 상기 도전성 접착 결합 물질은 각각의 별개의 후면 콘택 패드 주위에 배리어들을 형성하는 상기 후면 금속화 패턴의 특징들에 의해 상기 별개의 후면 콘택 패드들의 위치들에 실질적으로 제한된다.
25A. 슈퍼 셀은,
복수의 실리콘 태양 전지들을 포함하고, 각 실리콘 태양 전지는,
제1 및 제2 대향되게 위치하는 평행한 긴 측면들 및 두 개의 대향되게 위치하는 짧은 측면들에 의해 한정되는 형상들을 갖는 직사각형 또는 실질적으로 직사각형의 전방 및 후면들을 포함하며, 상기 전면들의 적어도 일부들은 상기 태양 전지들의 스트링의 동작 동안에 태양 복사에 노출되고;
상기 전면 상에 배치되고, 상기 긴 측면들에 직교하게 진행되는 복수의 핑거들 및 상기 제1 긴 측면에 인접하여 열로 위치하는 복수의 별개의 전면 콘택 패드들을 구비하는 전기적으로 도전성인 전면 금속화 패턴을 포함하고, 각 전면 콘택 패드는 상기 핑거들의 적어도 하나에 전기적으로 연결되며;
상기 후면 상에 배치되고, 상기 제2 긴 측면에 인접하여 열로 위치하는 복수의 별개의 실버 후면 콘택 패드들을 구비하는 전기적으로 도전성인 후면 금속화 패턴을 포함하며;
상기 실리콘 태양 전지들은 중첩되고 인접하는 실리콘 태양 전지들의 제1 및 제2 긴 측면들 그리고 상기 실리콘 태양 전지들을 전기적으로 직렬로 연결하도록 정렬되고, 중첩되며, 도전성 접착 결합 물질로 서로 도전성으로 결합되는 인접하는 실리콘 태양 전지들 상의 별개의 전면 콘택 패드들 및 별개의 후면 콘택 패드들과 일렬로 배열된다.
26A. 사항 25A의 태양광 모듈에서, 상기 별개의 후면 콘택 패드들은 별개의 실버 후면 콘택 패드들이며, 상기 별개의 실버 후면 콘택 패드들을 제외하면 각 실리콘 태양 전지의 상기 후면 금속화 패턴은 인접하는 실리콘 태양 전지에 의해 중첩되지 않는 상기 태양 전지의 전면의 일부 아래에 놓인 임의의 위치에서 실버 콘택을 포함하지 않는다.
27A. 사항 25A의 태양 전지들의 스트링에서, 상기 전면 금속화 패턴은 인접하는 별개의 전면 콘택 패드들을 전기적으로 상호 연결하는 복수의 얇은 컨덕터들을 포함하며, 각각의 얇은 컨덕터는 상기 태양 전지들의 긴 측면들에 직교하게 측정되는 상기 별개의 콘택 패드들의 폭보다 얇다.
28A. 사항 25A의 태양 전지들의 스트링에서, 상기 도전성 접착 결합 물질은 각 별개의 전면 콘택 패드 주위에 배리어들을 형성하는 상기 전면 금속화 패턴의 특징들에 의해 상기 별개의 전면 콘택 패드들의 위치들에 실질적으로 제한된다.
29A. 사항 25A의 태양 전지들의 스트링에서, 상기 도전성 접착 결합 물질은 각 별개의 후면 콘택 패드 주위에 배리어들을 형성하는 상기 후면 금속화 패턴의 특징들에 의해 상기 별개의 후면 콘택 패드들의 위치들에 실질적으로 제한된다.
30A. 사항 25A의 태양 전지들의 스트링에서, 상기 도전성 접착 결합 물질은 약 0℃보다 작거나 같은 유리 전이를 가진다.
31A. 태양광 모듈을 만드는 방법에 있어서, 상기 방법은,
복수의 슈퍼 셀들을 조립하는 단계를 포함하고, 각 슈퍼 셀은 슁글드 방식으로 중첩되는 인접하는 직사각형의 실리콘 태양 전지들의 긴 측면들 상의 단부들과 일렬로 배열되는 복수의 직사각형의 실리콘 태양 전지들을 구비하며;
상기 슈퍼 셀들에 열 및 압력을 인가하여 상기 인접하는 직사각형의 실리콘 태양 전지들의 중첩되는 단부들 사이에 배치되는 전기적으로 도전성인 결합 물질을 큐어링하여, 인접하고 중첩되는 직사각형의 실리콘 태양 전지들을 서로 결합시키고 이들을 전기적으로 직렬로 연결하는 단계를 포함하고;
봉지재를 포함하는 층들의 스택으로 원하는 태양광 모듈 구성 내에 상기 슈퍼 셀들을 배열하고 상호 연결하는 단계를 포함하며;
라미네이트된 구조를 형성하도록 상기 층들의 스택에 열 및 압력을 인가하는 단계를 포함한다.
32A. 사항 31A의 방법에서, 상기 라미네이트된 구조를 형성하도록 상기 층들의 스택에 열 및 압력을 인가하는 단계 이전에 상기 슈퍼 셀들에 열 및 압력을 인가하여 상기 전기적으로 도전성인 결합 물질을 큐어링하거나 부분적으로 큐어링하여, 상기 라미네이트된 구조를 형성하기 전에 중간 생성물로서 큐어링되거나 부분적으로 큐어링된 슈퍼 셀들을 형성하는 단계를 포함한다.
33A. 사항 32A의 방법에서, 각각의 추가 직사각형의 실리콘 태양 전지가 상기 슈퍼 셀의 조립 동안에 상기 슈퍼 셀에 추가되면서, 새롭게 추가되는 태양 전지 및 그 인접하고 중첩되는 태양 전지 사이의 상기 전기적으로 도전성인 접착 결합 물질이 다른 직사각형의 실리콘 태양 전지가 상기 슈퍼 셀에 추가되기 전에 큐어링되거나 부분적으로 큐어링된다.
34A. 사항 32A의 방법에서, 동일한 단계에서 슈퍼 셀 내의 상기 전기적으로 도전성인 결합 물질 모두를 큐어링하거나 부분적으로 큐어링하는 단계를 포함한다.
35A. 사항 32A의 방법에서,
라미네이트된 구조를 형성하도록 상기 층들의 스택에 열 및 압력을 인가하는 단계 이전에 상기 슈퍼 셀들에 열 및 압력을 인가하여 상기 전기적으로 도전성인 결합 물질을 부분적으로 큐어링하여, 상기 라미네이트된 구조를 형성하기 전에 중간 생성물로서 부분적으로 큐어링된 슈퍼 셀들을 형성하는 단계; 및
상기 라미네이트된 구조를 형성하도록 상기 층들의 스택에 열 및 압력을 인가하면서 상기 전기적으로 도전성인 결합 물질을 완전히 큐어링하는 단계를 포함한다.
36A. 사항 31A의 방법에서, 상기 라미네이트된 구조를 형성하기 전에 중간 생성물로서 부분적으로 큐어링된 슈퍼 셀들을 형성하지 않고 상기 라미네이트된 구조를 형성하도록 상기 층들의 스택에 열 및 압력을 인가하면서 상기 전기적으로 도전성인 결합 물질을 큐어링하는 단계를 포함한다.
37A. 사항 31A의 방법에서, 상기 직사각형의 실리콘 태양 전지들을 제공하도록 하나 또는 그 이상의 실리콘 태양 전지들을 직사각형의 형상들로 다이싱하는 단계를 포함한다.
38A. 사항 37A의 방법에서, 미리 적용된 전기적으로 도전성인 접착 결합 물질을 갖는 직사각형의 실리콘 태양 전지들을 제공하도록 상기 하나 또는 그 이상의 실리콘 태양 전지들을 다이싱하기 전에 상기 전기적으로 도전성인 접착 결합 물질을 상기 하나 또는 그 이상의 실리콘 태양 전지들에 적용하는 단계를 포함한다.
39A. 사항 38A의 방법에서, 상기 전기적으로 도전성인 접착 결합 물질을 상기 하나 또는 그 이상의 실리콘 태양 전지들에 적용하고, 이후에 각각의 상기 하나 또는 그 이상의 실리콘 태양 전지들 상에 하나 또는 그 이상의 라인들을 스크라이브하도록 레이저를 사용하며, 이후에 상기 스크라이브 라인들을 따라 상기 하나 또는 그 이상의 실리콘 태양 전지들을 절단하는 단계를 포함한다.
40A. 사항 38A의 방법에서, 상기 하나 또는 그 이상의 실리콘 태양 전지들 상에 하나 또는 그 이상의 라인들을 스크라이브하도록 레이저를 사용하고, 이후에 상기 전기적으로 도전성인 접착 결합 물질을 상기 하나 또는 그 이상의 실리콘 태양 전지들에 적용하며, 이후에 상기 스크라이브 라인들을 따라 상기 하나 또는 그 이상의 실리콘 태양 전지들을 절단하는 단계를 포함한다.
41A. 사항 38A의 방법에서, 상기 전기적으로 도전성인 접착 결합 물질은 각각의 상기 하나 또는 그 이상의 실리콘 태양 전지들의 상면에 적용되고, 각각의 상기 하나 또는 그 이상의 실리콘 태양 전지들의 대향되게 위치하는 저면에 적용되지 않으며, 상기 하나 또는 그 이상의 실리콘 태양 전지들을 곡선의 지지면에 대해 구부리도록 상기 하나 또는 그 이상의 실리콘 태양 전지들의 저면들과 상기 곡선의 지지면 사이에 진공을 인가하고, 이에 따라 스크라이브 라인들을 따라 상기 하나 또는 그 이상의 실리콘 태양 전지들을 절단하는 단계를 포함한다.
42A. 사항 37A의 방법에서, 상기 직사각형의 실리콘 태양 전지들을 제공하도록 상기 하나 또는 그 이상의 실리콘 태양 전지들을 다이싱한 후에 상기 전기적으로 도전성인 접착 결합 물질을 상기 직사각형의 실리콘 태양 전지들에 적용하는 단계를 포함한다.
43A. 사항 31A의 방법에서, 상기 도전성 접착 결합 물질은 약 0℃보다 작거나 같은 유리 전이 온도를 가진다.
44A. 슈퍼 셀을 만드는 방법에 있어서, 상기 방법은,
실리콘 태양 전지들 상에 복수의 직사각형의 영역들을 정의하도록 각각의 하나 또는 그 이상의 실리콘 태양 전지들 상에 하나 또는 그 이상의 스크라이브 라인들을 레이저 스크라이빙하는 단계를 포함하고, 각 직사각형의 영역의 긴 측면에 인접하는 하나 또는 그 이상의 위치들에서 전기적으로 도전성인 접착 결합 물질을 상기 하나 또는 그 이상의 스크라이브된 실리콘 태양 전지들에 적용하는 단계를 포함하며;
각기 긴 측면에 인접하는 그 전면 상에 배치되는 상기 전기적으로 도전성인 접착 결합 물질의 일부를 포함하는 복수의 직사각형의 실리콘 태양 전지들을 제공하도록 상기 스크라이브 라인들을 따라 상기 실리콘 태양 전지들을 분리하는 단계를 포함하고;
그 사이에 배치되는 상기 전기적으로 도전성인 접착 결합 물질의 일부를 구비하여 슁글드 방식으로 중첩되는 인접하는 직사각형의 실리콘 태양 전지들의 긴 측면들과 일렬로 상기 복수의 직사각형의 실리콘 태양 전지들을 배열하는 단계를 포함하며;
상기 전기적으로 도전성인 결합 물질을 큐어링하여, 인접하고 중첩되는 직사각형의 실리콘 태양 전지들을 서료 결합시키고, 이들을 전기적으로 직렬로 연결하는 단계를 포함한다.
45A. 슈퍼 셀을 만드는 방법에 있어서, 상기 방법은,
실리콘 태양 전지들 상에 복수의 직사각형의 영역들을 정의하도록 각각의 하나 또는 그 이상의 실리콘 태양 전지들 상에 하나 또는 그 이상의 스크라이브 라인들을 레이저 스크라이빙하는 단계를 포함하고, 각 태양 전지는 상면 및 대향되게 위치하는 저면을 구비하며;
전기적으로 도전성인 접착 결합 물질을 상기 하나 또는 그 이상의 실리콘 태양 전지들의 상면들의 일부들에 적용하는 단계를 포함하고;
상기 하나 또는 그 이상의 실리콘 태양 전지들을 곡선의 지지면에 대해 구부리도록 상기 하나 또는 그 이상의 실리콘 태양 전지들의 저면들과 상기 곡선의 지지면 사이에 진공을 인가하며, 이에 따라 각기 긴 측면에 인접하는 그 전면 상에 배치되는 상기 전기적으로 도전성인 접착 결합 물질의 일부를 포함하는 복수의 직사각형의 실리콘 태양 전지들을 제공하도록 상기 스크라이브 라인들을 따라 상기 하나 또는 그 이상의 실리콘 태양 전지들을 절단하는 단계를 포함하고;
그 사이에 배치되는 상기 전기적으로 도전성인 접착 결합 물질의 일부를 구비하여 슁글드 방식으로 중첩되는 인접하는 직사각형의 실리콘 태양 전지들의 긴 측면들에 상기 복수의 직사각형의 실리콘 태양 전지들을 일렬로 배열하는 단계를 포함하며;
상기 전기적으로 도전성인 결합 물질을 큐어링하여, 인접하고 중첩되는 직사각형의 실리콘 태양 전지들을 서로 결합시키고, 이들을 전기적으로 직렬로 연결하는 단계를 포함한다.
46A. 슈퍼 셀을 만드는 방법에 있어서, 상기 방법은,
각기 그 긴 축을 따라 실질적으로 동일한 길이를 갖는 복수의 직사각형의 실리콘 태양 전지들을 형성하도록 각 웨이퍼의 긴 에지에 평행한 복수의 라인들을 따라 하나 또는 그 이상의 의사 정사각형의 실리콘 웨이퍼들을 다이싱하는 단계; 및
상기 태양 전지들을 전기적으로 직렬로 연결하도록 중첩되고 서로 도전성으로 결합되는 인접하는 태양 전지들의 긴 측면들과 일렬로 상기 직사각형의 실리콘 태양 전지들을 배열하는 단계를 포함하며;
상기 복수의 직사각형의 실리콘 태양 전지들은 상기 의사 정사각형의 웨이퍼의 모서리들 또는 모서리들의 일부들에 대응되는 두 개의 챔퍼 처리된 모서리들을 갖는 적어도 하나의 직사각형의 태양 전지 그리고 챔퍼 처리된 모서리들이 결핍된 하나 또는 그 이상의 직사각형의 실리콘 태양 전지들을 구비하고;
상기 의사 정사각형의 웨이퍼가 따라서 다이스되는 평행한 라인들 사이의 간격은 상기 챔퍼 처리된 모서리들을 구비하는 직사각형의 실리콘 태양 전지들의 진 축에 직교하는 폭을 상기 챔퍼 처리된 모서리들이 결핍된 직사각형의 실리콘 태양 전지들의 긴축에 직교하는 폭보다 크게 만들어, 상기 태양 전지들의 스트링 내의 각각의 상기 복수의 직사각형의 실리콘 태양 전지들이 상기 태양 전지들의 스트링의 동작 동안에 광에 노출되는 실질적으로 동일한 면적의 전면을 가지도록 선택된다.
47A. 슈퍼 셀은,
태양 전지들을 전기적으로 직렬로 연결하도록 중첩되고 서로 도전성으로 결합되는 인접하는 태양 전지들의 딘부들과 일렬로 배열되는 복수의 실리콘 태양 전지들을 포함하고;
상기 실리콘 태양 전지들의 적어도 하나는 그가 다이스되는 의사 정사각형의 실리콘 웨이퍼의 모서리들 또는 모서리들의 일부들에 대응되는 챔퍼 처리된 모서리들을 가지며, 상기 실리콘 태양 전지들의 적어도 하나는 챔퍼 처리된 모서리들이 결핍되고, 각각의 상기 실리콘 태양 전지들은 상기 태양 전지들의 스트링의 동작 동안에 광에 노출되는 실질적으로 동일한 면적의 전면을 가진다.
48A. 둘 또는 그 이상의 슈퍼 셀들을 만드는 방법에 있어서, 상기 방법은,
의사 정사각형의 실리콘 웨이퍼들의 모서리들 또는 모서리들의 일부들에 대응되는 챔퍼 처리된 모서리들을 구비하는 제1 복수의 직사각형의 실리콘 태양 전지들 및 각기 상기 의사 정사각형의 실리콘 웨이퍼들의 전체 길이에 걸치는 제2 길이를 가지며 챔퍼 처리된 모서리들이 결핍된 제2 복수의 직사각형의 실리콘 태양 전지들을 형성하도록 각 웨이퍼의 긴 에지에 평행한 복수의 라인들을 따라 하나 또는 그 이상의 의사 정사각형의 실리콘 웨이퍼들을 다이싱하는 단계;
각기 상기 제2 길이보다 짧은 제2 길이를 가지며 챔퍼 처리된 모서리들이 결핍된 제3 복수의 직사각형의 실리콘 태양 전지들을 형성하도록 각각의 상기 제1 복수의 직사각형의 실리콘 태양 전지들로부터 상기 챔퍼 처리된 모서리들을 제거하는 단계;
상기 제1 길이와 같은 폭을 갖는 태양 전지 스트링을 형성하기 위해 상기 제2 복수의 직사각형의 실리콘 태양 전지들을 전기적으로 직렬로 연결하도록 중첩되고 서로 도전성으로 결합되는 인접하는 직사각형의 실리콘 태양 전지들의 긴 측면들과 일렬로 상기 제2 복수의 직사각형의 실리콘 태양 전지들을 배열하는 단계; 및
상기 제2 길이와 같은 폭을 갖는 태양 전지 스트링을 형성하기 위해 상기 제3 복수의 직사각형의 실리콘 태양 전지들을 전기적으로 직렬로 연결하도록 중첩되고 서로 도전성으로 결합되는 인접하는 직사각형의 실리콘 태양 전지들의 긴 측면들과 일렬로 상기 제3 복수의 직사각형의 실리콘 태양 전지들을 배열하는 단계를 포함한다.
49A. 둘 또는 그 이상의 슈퍼 셀들을 만드는 방법에 있어서, 상기 방법은,
의사 정사각형의 실리콘 웨이퍼들의 모서리들 또는 모서리들의 일부들에 대응되는 챔퍼 처리된 모서리들을 구비하는 제1 복수의 직사각형의 실리콘 태양 전지들 및 챔퍼 처리된 모서리들이 결핍된 제2 복수의 직사각형의 실리콘 태양 전지들을 형성하도록 각 웨이퍼의 긴 에지에 평행한 복수의 라인들을 따라 하나 또는 그 이상의 의사 정사각형의 실리콘 웨이퍼들을 다이싱하는 단계;
상기 제1 복수의 직사각형의 실리콘 태양 전지들을 전기적으로 직렬로 연결하도록 중첩되고 서로 도전성으로 결합되는 인접하는 직사각형의 실리콘 태양 전지들의 긴 측면들과 일렬로 상기 제1 복수의 직사각형의 실리콘 태양 전지들을 배열하는 단계; 및
상기 제2 복수의 직사각형의 실리콘 태양 전지들을 전기적으로 직렬로 연결하도록 중첩되고 서로 도전성으로 결합되는 인접하는 직사각형의 실리콘 태양 전지들의 긴 측면들과 일렬로 상기 제2 복수의 직사각형의 실리콘 태양 전지들을 배열하는 단계를 포함한다.
50A. 태양광 모듈은,
약 10볼트보다 큰 평균적인 항복 전압을 갖는 N≥25의 직사각형 또는 실질적으로 직사각형의 태양 전지들의 직렬 연결된 스트링을 포함하고, 상기태양 전지들은 중첩되고 전기적 및 열적으로 도전성인 접착제로 서로 도전성으로 결합되는 인접하는 태양 전지들의 긴 측면들과 일렬로 배열되는 상기 태양 전지들의 둘 또는 그 이상을 각기 구비하는 하나 또는 그 이상의 슈퍼 셀들 내로 그룹화되며;
상기 태양 전지들의 스트링 내의 <N의 태양 전지들의 단일의 태양 전지 또는 그룹은 바이패스 다이오드와 개별적으로 전기적으로 병렬로 연결되지 않는다.
51A. 사항 50A의 태양광 모듈에서, N은 30보다 크거나 같은 정수이다.
52A. 사항 50A의 태양광 모듈에서, N은 50보다 거나 같은 정수이다.
53A. 사항 50A의 태양광 모듈에서, N은 100보다 크거나 같은 정수이다.
54A. 사항 50A의 태양광 모듈에서, 상기 접착제는 약 O.1㎜보다 작거나 같은 상기 태양 전지들에 직교하는 두께 및 약 1.5w/m/k보다 크거나 같은 상기 태양 전지들에 직교하는 열전도율을 갖는 인접하는 태양 전지들 사이의 결합을 형성한다.
55A. 사항 50A의 태양광 모듈에서, 상기 N의 태양 전지들은 단일의 슈퍼 셀 내로 그룹화된다.
56A. 사항 50A의 태양광 모듈에서, 상기 태양 전지들은 실리콘 태양 전지들이다.
57A. 태양광 모듈은,
상기 태양광 모듈의 에지에 평행한 상기 태양광 모듈의 전체 길이 또는 폭에 실질적으로 걸치는 슈퍼 셀을 포함하고, 상기 슈퍼 셀은 중첩되고 전기적 및 열적으로 도전성인 접착제로 서로 도전성으로 결합되는 인접하는 태양 전지들의 긴 측면들과 일렬로 배열되는 약 10볼트보다 큰 평균적인 항복 전압을 갖는 N의 직사각형 또는 실질적으로 직사각형의 태양 전지들의 직렬 연결된 스트링을 구비하며;
상기 슈퍼 셀 내의 <N의 태양 전지들의 단일의 태양 전지 또는 그룹은 바이패스 다이오드와 개별적으로 전기적으로 병렬로 연결되지 않는다.
58A. 사항 57A의 태양광 모듈에서, N>24이다.
59A. 사항 57A의 태양광 모듈에서, 상기 슈퍼 셀은 적어도 약 500㎜의 전류 흐름의 방향으로의 길이를 가진다.
60A. 슈퍼 셀은,
복수의 실리콘 태양 전지들을 포함하고, 각 실리콘 태양 전지는,
제1 및 제2 대향되게 위치하는 평행한 긴 측면들 및 두 개의 대향되게 위치하는 짧은 측면들에 의해 한정되는 형상들을 갖는 직사각형 또는 실질적으로 직사각형의 전면 및 후면들을 포함하며, 상기 전면들의 적어도 일부들은 상기 태양 전지들의 스트링의 동작 동안에 태양 복사에 노출되고;
상기 전면 상에 배치되고, 상기 제1 긴 측면에 인접하여 위치하는 적어도 하나의 전면 콘택 패드를 구비하는 전기적으로 도전성인 전면 금속화 패턴을 포함하며;
상기 후면 상에 배치되고, 상기 제2 긴 측면에 인접하여 위치하는 적어도 하나의 후면 콘택 패드를 구비하는 전기적으로 도전성인 후면 금속화 패턴을 포함하고;
상기 실리콘 태양 전지들은 중첩되고 인접하는 실리콘 태양 전지들의 제1 및 제2 긴 측면들 그리고 상기 실리콘 태양 전지들을 전기적으로 직렬로 연결하도록 중첩되고 도전성 접착 결합 물질로 서로 도전성으로 결합되는 인접하는 실리콘 태양 전지들 상의 전면 및 후면 콘택 패드들과 일렬로 배열되며;
각 실리콘 태양 전지의 상기 전면 금속화 패턴은 상기 슈퍼 셀의 제조 동안에 상기 도전성 접착 결합 물질의 큐어링 이전에 상기 도전성 접착 결합 물질을 상기 적어도 하나의 전면 콘택 패드들에 실질적으로 제한하는 배리어를 구비한다.
61A. 사항 60A의 슈퍼 셀에서, 인접하고 중첩되는 실리콘 태양 전지들의 각 쌍에 대해, 상기 실리콘 태양 전지들의 하나의 전면 상의 배리어가 다른 하나의 실리콘 태양 전지의 일부와 중첩되고 감춰짐에 따라, 상기 슈퍼 셀의 제조 동안에 상기 도전성 접착 결합 물질의 큐어링 이전에 상기 도전성 접착 결합 물질을 상기 실리콘 태양 전지의 전면의 중첩되는 영역들에 실질적으로 제한한다.
62A. 사항 60A의 슈퍼 셀에서, 상기 배리어는 상기 제1 긴 측면의 실질적인 전체 길이에 평행하거나 이에 대해 진행되는 연속되는 도전성 라인을 포함하며, 상기 적어도 하나의 전면 콘택 패드들은 상기 연속되는 도전성 라인과 상기 태양 전지의 제1 긴 측면 사이에 위치한다.
63A. 사항 62A의 슈퍼 셀에서, 상기 전면 금속화 패턴은 상기 적어도 하나의 전면 콘택 패드들에 전기적으로 연결되고, 상기 제1 긴 측면에 직교하게 진행되는 핑거들을 포함하며, 상기 연속되는 도전성 라인은 각 핑거로부터 상기 적어도 하나의 전면 콘택 패드들까지 다중의 도전성 통로들을 제공하도록 상기 핑거들을 전기적으로 상호 연결한다.
64A. 사항 60A의 슈퍼 셀에서, 상기 전면 금속화 패턴은 상기 제1 긴 측면에 인접하고 평행한 열로 배열되는 복수의 별개의 콘택 패드들을 포함하고, 상기 배리어는 상기 슈퍼 셀의 제조 동안에 상기 도전성 접착 결합 물질의 큐어링 이전에 상기 도전성 접착 결합 물질을 별개의 콘택 패드들에 실질적으로 제한하도록 각각의 별개의 콘택 패드에 대해 분리된 배리어들을 형성하는 복수의 특징들을 포함한다.
65A. 사항 64A의 슈퍼 셀에서, 상기 분리된 배리어들은 이들의 대응되는 별개의 콘택 패드들에 인접하며, 보다 크다.
66A. 슈퍼 셀은,
복수의 실리콘 태양 전지들을 포함하고, 각 실리콘 태양 전지는,
제1 및 제2 대향되게 위치하는 평행한 긴 측면들 및 두 개의 대향되게 위치하는 짧은 측면들에 의해 한정되는 형상들을 갖는 직사각형 또는 실질적으로 직사각형의 전면 및 후면들을 포함하며, 상기 전면들의 적어도 일부들은상기 태양 전지들의 스트링의 동작 동안에 태양 복사에 노출되고;
상기 전면 상에 배치되고, 상기 제1 긴 측면에 인접하여 위치하는 적어도 하나의 전면 콘택 패드를 구비하는 전기적으로 도전성인 전면 금속화 패턴을 포함하며;
상기 후면 상에 배치되고, 상기 제2 긴 측면에 인접하여 위치하는 적어도 하나의 후면 콘택 패드를 구비하는 전기적으로 도전성인 후면 금속화 패턴을 포함하고;
상기 실리콘 태양 전지들은 중첩되고 인접하는 실리콘 태양 전지들의 제1 및 제2 측면들 그리고 상기 실리콘 태양 전지들을 전기적으로 직렬로 연결하도록 중첩되고 서로 도전성으로 결합되는 인접하는 실리콘 태양 전지들 상의 전면 및 후면 콘택 패드들과 일렬로 배열되며;
각 실리콘 태양 전지의 상기 후면 금속화 패턴은
상기 슈퍼 셀의 제조 동안에 상기 도전성 접착 결합 물질의 큐어링 이전에 상기 도전성 접착 결합 물질을 상기 적어도 하나의 후면 콘택 패드들에 실질적으로 제한하도록 구성되는 배리어를 포함한다.
67A. 사항 66A의 슈퍼 셀에서, 상기 후면 금속화 패턴은 상기 제2 긴 측면들에 인접하고 평행한 열로 배열되는 하나 또는 그 이상의 별개의 콘택 패드들을 포함하며, 상기 배리어는 상기 슈퍼 셀의 제조 동안에 상기 도전성 접착 결합 물질의 큐어링 이전에 상기 도전성 접착 결합 물질을 별개의 콘택 패드들에 실질적으로 제한하는 각각의 별개의 콘택 패드들에 대한 분리된 배리어들을 형성하는 복수의 특징들을 포함한다.
68A. 사항 67A의 슈퍼 셀에서, 상기 분리되는 배리어들은 이들의 대응되는 별개의 콘택 패드들에 인접하며, 보다 크다.
69A. 태양 전지들의 스트링을 만드는 방법에 있어서, 상기 방법은,
각기 그 긴 축을 따라 실질적으로 동일한 길이를 갖는 복수의 직사각형의 실리콘 태양 전지들을 형성하도록 각 웨이퍼의 긴 에지에 평행한 복수의 라인들을 따라 하나 또는 그 이상의 의사 정사각형의 실리콘 웨이퍼들을 다이싱하는 단계; 및
태양 전지들을 전기적으로 직렬로 연결하도록 중첩되고 서로 도전성으로 결합되는 인접하는 태양 전지들의 긴 측면들과 일렬로 상기 직사각형의 실리콘 태양 전지들을 배열하는 단계를 포함하며;
상기 복수의 직사각형의 실리콘 태양 전지들은 상기 의사 정사각형의 웨이퍼의 모서리들 또는 모서리들의 일부들에 대응하는 두 개의 챔퍼 처리된 모서리들을 갖는 적어도 하나의 직사각형의 태양 전지 및 각기 챔퍼 처리된 모서리들이 결핍된 하나 또는 그 이상의 직사각형의 실리콘 태양 전지들을 구비하고;
상기 의사 정사각형의 웨이퍼가 따라서 다이스되는 평행한 라인들 사이의 간격은 상기 챔퍼 처리된 모서리들을 구비하는 직사각형의 실리콘 태양 전지들 의 진 축에 직교하는 폭을 상기 챔퍼 처리된 모서리들이 결핍된 직사각형의 실리콘 태양 전지들의 긴 축에 직교하는 폭보다 크게 만들어, 상기 태양 전지들의 스트링 내의 각각의 상기 복수의 직사각형의 실리콘 태양 전지들이 상기 태양 전지들의 스트링의 동작 동안에 광에 노출되는 실질적으로 동일한 면적의 전면을 가지도록 상기 챔퍼 처리된 모서리들을 보상하기 위해 선택된다.
70A. 태양 전지들의 스트링은,
태양 전지들을 전기적으로 직렬로 연결하도록 중첩되고 서로 도전성으로 결합되는 인접하는 태양 전지들의 단부들과 일렬로 배열되는 복수의 실리콘 태양 전지들을 포함하고;
상기 실리콘 태양 전지들의 적어도 하나는 그가 다이스되었던 의사 정사각형의 실리콘 웨이퍼의 모서리들 또는 모서리들의 일부들에 대응되는 챔퍼 처리된 모서리들을 가지며, 상기 실리콘 태양 전지들의 적어도 하나는 챔퍼 처리된 모서리들이 결핍되고, 각각의 상기 실리콘 태양 전지들은 상기 태양 전지들의 스트링의 동작 동안에 광에 노출되는 실질적으로 동일한 면적의 전면을 가진다.
71A. 태양 전지들의 둘 또는 그 이상의 스트링들을 만드는 방법에 있어서, 상기 방법은,
의사 정사각형의 실리콘 웨이퍼들의 모서리들 또는 모서리들의 일부들에 대응되는 챔퍼 처리된 모서리들을 구비하는 제1 복수의 직사각형의 실리콘 태양 전지들 및 각기 상기 의사 정사각형의 실리콘 웨이퍼들의 전체 길이에 걸치는 제1 길이를 가지며 챔퍼 처리된 모서리들이 결핍된 제2 복수의 직사각형의 실리콘 태양 전지들 형성하도록 각 웨이퍼의 긴 에지에 평행한 복수의 라인들을 따라 하나 또는 그 이상의 의사 정사각형의 실리콘 웨이퍼들을 다이싱하는 단계;
각기 상기 제1 길이보다 짧은 제2 길이를 가지며 챔퍼 처리된 모서리들이 결핍된 제3 복수의 직사각형의 실리콘 태양 전지들을 형성하도록 각각의 상기 제1 복수의 직사각형의 실리콘 태양 전지들로부터 상기 챔퍼 처리된 모서리들을 제거하는 단계;
상기 제1 길이와 같은 폭을 갖는 태양 전지 스트링을 형성하기 위해 상기 제2 복수의 직사각형의 실리콘 태양 전지들을 전기적으로 직렬로 연결하도록 중첩되고 서로 도전성으로 결합되는 인접하는 직사각형의 실리콘 태양 전지들의 긴 측면들과 일렬로 상기 제2 복수의 직사각형의 실리콘 태양 전지들을 배열하는 단계; 및
상기 제2 길이와 같은 폭을 갖는 태양 전지 스트링을 형성하기 위해 상기 제3 복수의 직사각형의 실리콘 태양 전지들을 전기적으로 직렬로 연결하도록 중첩되고 서로 도전성으로 결합되는 인접하는 직사각형의 실리콘 태양 전지들의 긴 측면들과 일렬로 상기 제3 복수의 직사각형의 실리콘 태양 전지들을 배열하는 단계를 포함한다.
72A. 태양 전지들의 둘 또는 그 이상의 스트링들을 만드는 방법에 있어서, 상기 방법은,
의사 정사각형의 실리콘 웨이퍼들의 모서리들 또는 모서리들의 일부들에 대응되는 챔퍼 처리된 모서리들을 구비하는 제1 복수의 직사각형의 실리콘 태양 전지들 및 챔퍼 처리된 모서리들이 결핍된 제2 복수의 직사각형의 실리콘 태양 전지들 형성하도록 각 웨이퍼의 긴 에지에 평행한 복수의 라인들을 따라 하나 또는 그 이상의 의사 정사각형의 실리콘 웨이퍼들을 다이싱하는 단계;
상기 제1 복수의 직사각형의 실리콘 태양 전지들을 전기적으로 직렬로 연결하도록 중첩되고 서로 도전성으로 결합되는 인접하는 직사각형의 실리콘 태양 전지들의 긴 측면들과 일렬로 상기 제1 복수의 직사각형의 실리콘 태양 전지들을 배열하는 단계; 및
상기 제2 복수의 직사각형의 실리콘 태양 전지들을 전기적으로 직렬로 연결하도록 중첩되고 서로 도전성으로 결합되는 인접하는 직사각형의 실리콘 태양 전지들의 긴 측면들과 일렬로 상기 제2 복수의 직사각형의 실리콘 태양 전지들을 배열하는 단계를 포함한다.
73A. 태양광 모듈을 만드는 방법에 있어서, 상기 방법은,
복수의 의사 정사각형의 실리콘 웨이퍼들로부터 상기 의사 정사각형의 실리콘 웨이퍼들의 모서리들에 대응되는 챔퍼 처리된 모서리들을 구비하는 복수의 직사각형의 실리콘 태양 전지들 및 챔퍼 처리된 모서리들이 결핍된 복수의 직사각형의 실리콘 태양 전지들을 형성하도록 각 웨이퍼의 긴 에지에 평행한 복수의 라인들을 따라 복수의 의사 정사각형의 실리콘 웨이퍼들을 다이싱하는 단계;
상기 챔퍼 처리된 모서리들이 결핍된 직사각형의 실리콘 태양 전지들만을 각기 구비하는 제1 복수의 슈퍼 셀들을 형성하기 위해 상기 실리콘 태양 전지들을 전기적으로 직렬로 연결하도록 상기 챔퍼 처리된 모서리들이 결핍된 직사각형의 실리콘 태양 전지들의 적어도 일부를 중첩되고 서로 도전성으로 결합되는 실리콘 태양 전지들의 긴 측면들과 일렬로 배열하는 단계;
상기 챔퍼 처리된 모서리들을 구비하는 직사각형의 실리콘 태양 전지들만을 각기 구비하는 제2 복수의 슈퍼 셀들을 형성하기 위해 상기 실리콘 태양 전지들을 전기적으로 직렬로 연결하도록 상기 챔퍼 처리된 모서리들을 구비하는 직사각형의 실리콘 태양 전지들의 적어도 일부를 중첩되고 서로 도전성으로 결합되는 실리콘 태양 전지들의 긴 측면들과 일렬로 배열하는 단계; 및
상기 태양광 모듈의 전면을 형성하도록 실질적으로 같은 길이의 슈퍼 셀들의 평행한 열들로 상기 슈퍼 셀들을 배열하는 단계를 포함하며, 각 열은 상기 제1 복수의 슈퍼 셀들로부터의 슈퍼 셀들만 또는 상기 제2 복수의 슈퍼 셀들로부터의 슈퍼 셀들만을 구비한다.
74A. 사항 73A의 태양광 모듈에서, 상기 태양광 모듈의 평행하고 대향하는 에지들에 인접하는 상기 슈퍼 셀들의 열들의 두 개는 상기 제2 복수의 슈퍼 셀들로부터의 슈퍼 셀들만을 포함하고, 상기 슈퍼 셀들의 모든 다른 열들은 상기 제1 복수의 슈퍼 셀들로부터의 슈퍼 셀들만을 포함한다.
75A. 사항 74A의 태양광 모듈에서, 상기 태양광 모듈은 슈퍼 셀들의 전체 여섯 개의 열들을 포함한다.
76A. 슈퍼 셀은,
실리콘 태양 전지들을 전기적으로 직렬로 연결하도록 중첩되고 서로 도전성으로 결합되는 인접하는 실리콘 태양 전지들의 단부들과 제1 방향으로 일렬로 배열되는 복수의 실리콘 태양 전지들; 및
상기 제1 방향에 직교하는 제2 방향에 평행하게 배향되는 그 긴 축을 가지며, 상기 제2 방향을 따라 배열되는 셋 또는 그 이상의 별개의 위치들에서 상기 실리콘 태양 전지들의 단부의 것의 전면 또는 후면에 도전성으로 결합되고, 상기 제2 방향으로 상기 단부 태양 전지의 적어도 전체 폭으로 진행되며, 상기 단부 실리콘 태양 전지의 전면 또는 후면에 직교하게 측정되는 약 100미크론보다 작거나 같은 컨덕터 두께를 가지고, 약 0.012옴보다 작거나 같은 상기 제2 방향으로의 전류 흐름에 대한 저항을 제공하며, 약 -40℃ 내지 약 85℃의 온도에 대해 상기 단부 실리콘 태양 전지 및 인터커넥트 사이의 상기 제2 방향으로의 차등 팽창을 수용하는 유연성을 제공하는 연장된 유연한 전기적 인터커넥트를 포함한다.
77A. 사항 76A의 슈퍼 셀에서, 상기 유연한 전기적 인터커넥트는 상기 단부 실리콘 태양 전지의 전면 또는 후면에 직교하게 측정되는 약 30미크론보다 작거나 같은 컨덕터 두께를 가진다.
78A. 사항 76A의 슈퍼 셀에서, 상기 유연한 전기적 인터커넥트는 태양광 모듈 내의 상기 슈퍼 셀에 평행하고 인접하여 위치하는 적어도 제2 슈퍼 셀에 대한 전기적 상호 연결을 위해 상기 슈퍼 셀을 넘어 상기 제2 방향으로 연장된다.
79A. 사항 76A의 슈퍼 셀에서, 상기 유연한 전기적 인터커넥트는 태양광 모듈 내의 상기 슈퍼 셀에 평행하고 일렬로 위치하는 적어도 제2 슈퍼 셀에 대한 전기적 상호 연결을 위해 상기 슈퍼 셀을 지나 상기 제1 방향으로 연장된다.
80A. 태양광 모듈은,
상기 모듈의 전면을 형성하도록 상기 모듈의 폭을 가로지르는 둘 또는 그 이상의 평행한 열들로 배열되는 복수의 슈퍼 셀들을 포함하고, 각 슈퍼 셀은 실리콘 태양 전지들을 전기적으로 직렬로 연결하도록 중첩되고 서로 도전성으로 결합되는 인접하는 실리콘 태양 전지들의 단부들과 일렬로 배열되는 복수의 실리콘 태양 전지들을 구비하며;
제1 열 내의 상기 모듈의 에지에 인접하는 제1 슈퍼 셀의 적어도 단부가 전기적으로 도전성인 접착 결합 물질로 복수의 별개의 위치들에서 상기 제1 슈퍼 셀 의 전면에 결합되고, 상기 모듈의 에지에 평행하게 진행되며, 그 적어도 일부가 상기 제1 슈퍼 셀의 단부 주위에서 접히고, 상기 모듈의 전방으로부터 시야에서 감춰지는 유연한 전기적 인터커넥트를 통해 제2 열 내의 상기 모듈의 동일한 에지에 인접하는 제2 슈퍼 셀의 단부에 전기적으로 연결된다.
81A. 사항 80A의 태양광 모듈에서, 상기 모듈의 전면 상의 상기 유연한 전기적 인터커넥트의 표면들은 상기 슈퍼 셀들과의 가시적인 대비를 감소시키도록 커버되거나 착색된다.
82A. 사항 80A의 태양광 모듈에서, 상기 태양광 모듈의 동작 동안에 태양 복사에 의해 조명되는 상기 태양광 모듈의 전면을 형성하도록 상기 슈퍼 셀들의 둘 또는 그 이상의 평행한 열들이 백색 배면 시트 상에 배열되며, 상기 백색 배면 시트는 상기 슈퍼 셀들의 평행한 열들 사이의 갭들의 위치들 및 폭들에 대응되는 위치들 및 폭들을 갖는 평행한 어둡게 된 스트라이프들을 포함하고, 상기 배면 시트들의 백색 부분들은 상기 열들 사이의 갭들을 통해 보이지 않는다.
83A. 태양 전지들의 스트링을 만드는 방법에 있어서, 상기 방법은,
실리콘 태양 전지들 상에 복수의 직사각형의 영역들을 정의하도록 각각의 하나 또는 그 이상의 실리콘 태양 전지들 상에 하나 또는 그 이상의 스크라이브 라인들을 레이저 스크라이빙하는 단계;
각 직사각형의 영역의 긴 측면에 인접하는 하나 또는 그 이상의 위치들에서 전기적으로 도전성인 접착 결합 물질을 상기 하나 또는 그 이상의 스크라이브된 실리콘 태양 전지들에 적용하는 단계;
각기 긴 측면들 따라 그 전면 상에 배치되는 상기 전기적으로 도전성인 접착 결합 물질의 일부를 구비하는 복수의 직사각형의 실리콘 태양 전지들을 제공하도록 상기 실리콘 태양 전지들을 상기 스크라이브 라인들을 따라 분리하는 단계;
그 사이에 배치되는 상기 전기적으로 도전성인 접착 결합 물질의 일부를 구비하여 슁글드 방식으로 중첩되는 인접하는 직사각형의 실리콘 태양 전지들의 긴 측면들과 일렬로 상기 복수의 직사각형의 실리콘 태양 전지들을 배열하는 단계; 및
상기 전기적으로 도전성인 결합 물질을 큐어링하여, 인접하고 중첩되는 직사각형의 실리콘 태양 전지들을 서로 결합시키고, 이들을 전기적으로 직렬로 연결하는 단계를 포함한다.
84A. 태양 전지들의 스트링을 만드는 방법에 있어서, 상기 방법은,
실리콘 태양 전지들 상에 복수의 직사각형의 영역들을 정의하도록 각각의 하나 또는 그 이상의 실리콘 태양 전지들 상에 하나 또는 그 이상의 스크라이브 라인들을 레이저 스크라이빙하는 단계를 포함하고, 각 태양 전지는 상면 및 대향되게 위치하는 저면을 구비하며;
전기적으로 도전성인 접착 결합 물질을 상기 하나 또는 그 이상의 실리콘 태양 전지들의 상면들의 일부들에 적용하는 단계를 포함하고;
상기 하나 또는 그 이상의 실리콘 태양 전지들을 곡선의 지지면에 대해 구부리도록 상기 하나 또는 그 이상의 실리콘 태양 전지들의 저면들과 상기 곡선의 지지면 사이에 진공을 인가하며, 이에 따라 각기 긴 측면에 인접하는 그 전면 상에 배치되는 상기 전기적으로 도전성인 접착 결합 물질의 일부를 구비하는 복수의 직사각형의 실리콘 태양 전지들을 제공하도록 상기 하나 또는 그 이상의 실리콘 태양 전지들을 상기 스크라이브 라인들을 따라 절단하는 단계를 포함하며;
그 사이에 배치되는 상기 전기적으로 도전성인 접착 결합 물질의 일부를 구비하여 슁글드 방식으로 중첩되는 인접하는 직사각형의 실리콘 태양 전지들의 긴 측면들과 일렬로 상기 복수의 직사각형의 실리콘 태양 전지들을 배열하는 단계를 포함하고;
상기 전기적으로 도전성인 결합 물질을 큐어링하여, 인접하고 중첩되는 직사각형의 실리콘 태양 전지들을 서로 결합시키고, 이들을 전기적으로 직렬로 연결하는 단계를 포함한다.
85A. 사항 84A의 방법에서, 상기 전기적으로 도전성인 접착 결합 물질을 상기 하나 또는 그 이상의 실리콘 태양 전지들에 적용하고, 이후에 각각의 상기 하나 또는 그 이상의 실리콘 태양 전지들 상에 상기 하나 또는 그 이상의 스크라이브 라인들을 레이저 스크라이빙하는 단계를 포함한다.
86A. 사항 84A의 방법에서, 각각의 상기 하나 또는 그 이상의 실리콘 태양 전지들 상에 상기 하나 또는 그 이상의 스크라이브 라인들을 레이저 스크라이빙하고, 이후에 상기 전기적으로 도전성인 접착 결합 물질을 상기 하나 또는 그 이상의 실리콘 태양 전지들에 적용하는 단계를 포함한다.
1B. 장치는,
공통 바이패스 다이오드와 병렬로 연결되는 적어도 25개의 태양 전지들의 직렬 결된 스트링을 포함하고, 각 태양 전지는 약 10볼트보다 큰 항복 전압을 가지며, 중첩되고 접착제로 도전성으로 결합되는 인접하는 태양 전지들의 긴 측면들과 배열되는 상기 태양 전지들을 구비하는 슈퍼 셀 내로 그룹화된다.
2B. 사항 1B에서와 같은 장치에서, N은 30보다 크거나 같은 정수이다.
3B. 사항 1B에서와 같은 장치에서, N은 50보다 크거나 같은 정수이다.
4B. 사항 1B에서와 같은 장치에서, N은 100보다 크거나 같은 정수이다.
5B. 사항 1B에서와 같은 장치에서, 상기 접착제는 약 0.1㎜보다 작거나 같은 두께를 가지며, 약 1.5W/m/K보다 크거나 같은 열전도율을 가진다.
6B. 사항 1B에서와 같은 장치에서, 상기 N의 태양 전지들은 단일의 슈퍼 셀 내로 그룹화된다.
7B. 사항 1B에서와 같은 장치에서, 상기 N의 태양 전지들은 동일한 백킹(backing) 상의 복수의 슈퍼 셀들 내로 그룹화된다.
8B. 사항 1B에서와 같은 장치에서, 상기 태양 전지들은 실리콘 태양 전지들이다.
9B. 사항 1B에서와 같은 장치에서, 상기 슈퍼 셀은 적어도 약 500㎜의 전류 흐름의 방향으로의 길이를 가진다.
10B. 사항 1B에서와 같은 장치에서, 상기 태양 전지들은 상기 접착제의 확산을 제한하도록 구성되는 특징을 포함한다.
11B. 사항 1B에서와 같은 장치에서, 상기 특징은 돌출된(raised) 특징을 포함한다.
12B. 사항 10B에서와 같은 장치에서, 상기 특징은 금속화를 포함한다.
13B. 사항 12B에서와 같은 장치에서, 상기 금속화는 상기 제1 긴 측면의 전체 길이로 진행되는 라인을 포함하며, 상기 장치는 상기 라인과 상기 제1 긴 측면 사이에 위치하는 적어도 하나의 콘택 패드를 더 포함한다.
14B. 사항 13B에서와 같은 장치에서,
상기 금속화는 상기 적어도 하나의 콘택 패드에 전기적으로 연결되고, 상기 제1 긴 측면에 직교하게 진행되는 핑거들을 더 포함하며;
상기 도전성 라인은 상기 핑거들을 상호 연결한다.
15B. 사항 10B에서와 같은 장치에서, 상기 특징은 상기 태양 전지의 전방측 상에 있다.
16B. 사항 10B에서와 같은 장치에서, 상기 특징은 상기 태양 전지의 후방측 상에 있다.
17B. 사항 10B에서와 같은 장치에서, 상기 특징은 리세스된(recessed) 특징을 포함한다.
18B. 사항 10B에서와 같은 장치에서, 상기 특징은 상기 슈퍼 셀의 인접하는 태양 전지에 의해 감춰진다.
19B. 사항 1B에서와 같은 장치에서, 상기 슈퍼 셀의 제1 태양 전지는 챔퍼 처리된 모서리들을 가지며, 상기 슈퍼 셀의 제2 태양 전지는 챔퍼 처리된 모서리들이 결핍되고, 상기 제1 태양 전지 및 상기 제2 태양 전지는 광에 노출되는 동일한 면적을 가진다.
20B. 사항 1B에서와 같은 장치에서, 상기 제1 방향에 직교하는 제2 방향에 평행한 긴 축을 갖는 유연한 전기적 인터커넥트를 더 포함하며, 상기 유연한 전기적 인터커넥트는 상기 태양 전지의 표면에 도전성으로 결합되고, 두 치수들로 태양 전지의 열팽창을 수용한다.
21B. 사항 20B에서와 같은 장치에서, 상기 유연한 전기적 인터커넥트는 약 0.012옴보다 작거나 같은 저항을 제공하도록 약 100미크론보다 작거나 같은 두께를 가진다.
22B. 사항 20B에서와 같은 장치에서, 상기 표면은 후면을 포함한다.
23B. 사항 20B에서와 같은 장치에서, 상기 유연한 전기적 인터커넥트는 다른 슈퍼 셀에 접촉된다.
24B. 사항 23B에서와 같은 장치에서, 상기 다른 슈퍼 셀은 상기 슈퍼 셀과 일렬로 된다.
25B. 사항 23B에서와 같은 장치에서, 상기 다른 슈퍼 셀은 상기 슈퍼 셀에 인접한다.
26B. 사항 20B에서와 같은 장치에서, 상기 인터커넥트의 제1 부분은 나머지 제2 인터커넥트 부분이 상기 슈퍼 셀의 후면측 상에 있도록 상기 슈퍼 셀의 에지 주위에서 접힌다.
27B. 사항 20B에서와 같은 장치에서, 상기 유연한 전기적 인터커넥트는 바이패스 다이오드에 전기적으로 연결된다.
28B. 사항 1B에서와 같은 장치에서, 복수의 슈퍼 셀들은 태양광 모듈 전면을 형성하도록 배면 시트 상에 둘 또는 그 이상의 평행한 열들로 배열되며, 상기 배면 시트는 백색이고, 상기 슈퍼 셀들 사이의 갭들에 대응되는 위치 및 폭의 어둡게 된 스트라이프들을 포함한다.
29B. 사항 1B에서와 같은 장치에서, 상기 슈퍼 셀은 전원 관리 시스템에 연결되는 적어도 한 쌍의 셀 스트링들을 포함한다.
30B. 사항 1B에서와 같은 장치에서,
상기 슈퍼 셀과 전기적으로 통신하고,
상기 슈퍼 셀의 전압 출력을 수신하며;
상기 전압에 기초하여 태양 전지가 역 바이어스인 지를 결정하고;
상기 역 바이어스인 태양 전지를 슈퍼 셀 모듈 회로로부터 연결 해제하도록 구성되는 전원 관리 장치를 더 포함한다.
31B. 사항 1B에서와 같은 장치에서, 상기 슈퍼 셀은 태양 에너지의 방향과 마주하는 제1 측면 상의 상단 도전성 리본을 갖는 제1 모듈을 형성하도록 제1 백킹 상에 배치되며, 상기 장치는,
상기 태양 에너지의 방향으로부터 멀어지는 방향과 마주하는 제2 측면 상의 하단 리본을 갖는 제2 모듈을 형성하도록 제2 백킹 상에 배치되는 다른 슈퍼 셀을 더 포함하고,
상기 제2 모듈은 상기 상단 리본을 포함하는 상기 제1 모듈의 일부와 중첩되고 결합된다.
32B. 사항 31B에서와 같은 장치에서, 상기 제2 모듈은 접착제에 의해 상기 제1 모듈에 결합된다.
33B. 사항 31B에서와 같은 장치에서, 상기 제2 모듈은 일치하는 배치에 의해 상기 제1 모듈과 결합된다.
34B. 사항 31B에서와 같은 장치에서, 상기 제2 모듈에 의해 중첩되는 접합 박스를 더 포함한다.
35B. 사항 34B에서와 같은 장치에서, 상기 제2 모듈은 일치하는 배치에 의해 상기 제1 모듈과 결합된다.
36B. 사항 35B에서와 같은 장치에서, 상기 일치하는 배치는 상기 제2 모듈 상의 상기 접합 박스와 다른 접합 박스 사이에 있다.
37B. 사항 31B에서와 같은 장치에서, 상기 제1 백킹은 유리를 포함한다.
38B. 사항 31B에서와 같은 장치에서, 상기 제1 백킹은 유리와 다른 것을 포함한다.
39B. 사항 1B에서와 같은 장치에서, 상기 태양 전지는 보다 큰 조각(piece)로부터 절단되는 챔퍼 처리된 부분을 포함한다.
40B. 사항 39B에서와 같은 장치에서, 상기 슈퍼 셀은 챔퍼 처리된 부분을 갖는 다른 태양 전지를 더 포함하며, 상기 태양 전지의 긴 측면은 유사한 길이를 가지는 다른 태양 전지의 긴 측면과 전기적으로 접촉된다.
1C1. 방법은,
동일한 백킹 상에 적어도 N≥25 태양 전지들의 직렬 연결된 스트링을 포함하는 슈퍼 셀을 형성하는 단계를 포함하고, 각 태양 전지는 약 10볼트보다 큰 항복 전압을 가지며, 중첩되고 접착제로 도전성으로 결합되는 인접하는 태양 전지들의 긴 측면들과 배열되며;
각 슈퍼 셀을 최대한 단일의 바이패스 다이오드와 연결하는 단계를 포함한다.
2C1. 사항 1C1에서와 같은 방법에서, N은 30보다 크거나 같은 정수이다.
3C1. 사항 1C1에서와 같은 방법에서, N은 50보다 크거나 같은 정수이다.
4C1. 사항 1C1에서와 같은 방법에서, N은 100보다 크거나 같은 정수이다.
5C1. 사항 1C1에서와 같은 방법에서, 상기 접착제는 약 0.1㎜보다 작거나 같은 두께를 가지며, 약 1.5w/m/k보다 크거나 같은 열전도율을 가진다.
6C1. 사항 1C1에서와 같은 방법에서, 상기 태양 전지들은 실리콘 태양 전지들이다.
7C1. 사항 1C1에서와 같은 방법에서, 상기 슈퍼 셀은 적어도 약 500㎜의 전류 흐름의 방향으로의 길이를 가진다.
8C1. 사항 1C1에서와 같은 방법에서, 상기 슈퍼 셀의 제1 태양 전지는 챔퍼 처리된 모서리들을 가지며, 상기 슈퍼 셀의 제2 태양 전지는 챔퍼 처리된 모서리들이 결핍되고, 상기 제1 태양 전지 및 상기 제2 태양 전지는 광에 노출되는 동일한 면적을 가진다.
9C1. 사항 1C1에서와 같은 방법에서, 태양 전지 표면상의 특징을 활용하여 상기 접착제의 확산을 제한하는 단계를 더 포함한다.
10C1. 사항 9C1에서와 같은 방법에서, 상기 특징은 돌출된 특징을 포함한다.
11C1. 사항 9C1에서와 같은 방법에서, 상기 특징은 금속화를 포함한다.
12C1. 사항 11C1에서와 같은 방법에서, 상기 금속화는 상기 제1 긴 측면의 전체 길이로 진행되는 라인을 포함하며, 적어도 하나의 콘택 패드가 상기 라인과 상기 제1 긴 측면 사이에 위치한다.
13C1. 사항 12C1에서와 같은 방법에서,
상기 금속화는 상기 적어도 하나의 콘택 패드에 전기적으로 연결되고, 상기 제1 긴 측면에 직교하게 진행되는 핑거들을 더 포함하며;
상기 도전성 라인은 상기 핑거들을 상호 연결한다.
14C1. 사항 9C1에서와 같은 방법에서, 상기 특징은 상기 태양 전지의 전방측 상에 있다.
15C1. 사항 9C1에서와 같은 방법에서, 상기 특징은 상기 태양 전지의 후방측 상에 있다.
16C1. 사항 9C1에서와 같은 방법에서, 상기 특징은 리세스된 특징을 포함한다.
17C1. 사항 9C1에서와 같은 방법에서, 상기 특징은 상기 슈퍼 셀의 인접하는 태양 전지에 의해 감춰진다.
18C1. 사항 1C1에서와 같은 방법에서, 동일한 백킹 상에 다른 슈퍼 셀을 형성하는 단계를 더 포함한다.
19C1. 사항 1C1에서와 같은 방법에서,
태양 전지의 표면에 상기 제1 방향에 직교하는 제2 방향에 평행한 긴 축을 갖는 유연한 전기적 인터커넥트를 도전성으로 결합시키는 단계; 및
두 치수들로 상기 태양 전지의 열팽창을 수용하도록 상기 유연한 전기적 인터커넥트를 야기하는 단계를 더 포함한다.
20C1. 사항 19C1에서와 같은 방법에서, 상기 유연한 전기적 인터커넥트는 약 0.012옴보다 작거나 같은 저항을 제공하도록 약 100미크론보다 작거나 같은 두께를 가진다.
21C1. 사항 19C1에서와 같은 방법에서, 상기 표면은 후면을 포함한다.
22C1. 사항 19C1에서와 같은 방법에서, 다른 슈퍼 셀을 상기 유연한 전기적 인터커넥트와 접촉시키는 단계를 더 포함한다.
23C1. 사항 22C1에서와 같은 방법에서, 상기 다른 슈퍼 셀은 상기 슈퍼 셀과 일렬로 배열된다.
24C1. 사항 22C1에서와 같은 방법에서, 상기 다른 슈퍼 셀은 상기 슈퍼 셀에 인접한다.
25C1. 사항 19C1에서와 같은 방법에서, 나머지 제2 인터커넥트 부분이 상기 슈퍼 셀의 후방측 상에 있도록 상기 인터커넥트의 제1 부분을 상기 슈퍼 셀의 에지 주위에서 접는 단계를 더 포함한다.
26C1. 사항 19C1에서와 같은 방법에서, 상기 유연한 전기적 인터커넥트를 바이패스 다이오드에 전기적으로 연결하는 단계를 더 포함한다.
27C1. 사항 1C1에서와 같은 방법에서,
태양광 모듈 전면을 형성하도록 동일한 백킹 상에 둘 또는 그 이상의 평행한 열들로 복수의 슈퍼 셀들을 배열하는 단계를 더 포함하며, 상기 배면 시트는 백색이고, 슈퍼 셀들 사이의 갭들에 대응되는 위치 및 폭의 어둡게 된 스트라이프들을 포함한다.
28C1. 사항 1C1에서와 같은 방법에서, 적어도 한 쌍의 셀 스트링들을 전원 관리 시스템에 연결하는 단계를 더 포함한다.
29C1. 사항 1C1에서와 같은 방법에서,
전원 관리 장치를 상기 슈퍼 셀과 전기적으로 연결하는 단계;
상기 슈퍼 셀의 전압 출력을 수신하도록 상기 전원 관리를 야기하는 단계;
상기 전압에 기초하여, 태양 전지가 역 바이어스에 있는 지를 결정하도록 상기 전원 관리 장치를 야기하는 단계; 및
상기 역 바이어스인 태양 전지를 슈퍼 셀 모듈 회로로부터 연결 해제하도록 상기 전원 관리 장치를 야기하는 단계를 더 포함한다.
30C1. 사항 1C1에서와 같은 방법에서, 상기 슈퍼 셀은 태양 에너지의 방향을 마주하는 제1 측면 상에 상단 도전성 리본을 갖는 제1 모듈을 형성하도록 상기 백킹 상에 배치되며, 상기 방법은,
상기 태양 에너지의 방향으로부터 멀어지는 방향을 마주하는 제2 측면 상에 바닥 리본을 갖는 제2 모듈을 형성하도록 다른 백킹 상에 다른 슈퍼 셀을 배치하는 단계를 더 포함하고,
상기 제2 모듈은 상기 상단 리본을 포함하는 상기 제1 모듈의 일부와 중첩되고 결합된다.
31C1. 사항 30C1에서와 같은 방법에서, 상기 제2 모듈은 접착제에 의해 상기 제1 모듈에 결합된다.
32C1. 사항 30C1에서와 같은 방법에서, 상기 제2 모듈은 일치하는 배치에 의해 상기 제1 모듈에 결합된다.
33C1. 사항 30C1에서와 같은 방법에서, 접합 박스를 상기 제2 모듈과 중첩시키는 단계를 더 포함한다.
34C1. 사항 33C1에서와 같은 방법에서, 상기 제2 모듈은 일치하는 배치에 의해 상기 제1 모듈에 결합된다.
35C1. 사항 34C1에서와 같은 방법에서, 상기 일치하는 배치는 상기 제2 모듈 상의 상기 접합 박스와 다른 접합 박스 사이에 있다.
36C1. 사항 30C1에서와 같은 방법에서, 상기 백킹은 유리를 포함한다.
37C1. 사항 30C1에서와 같은 방법에서, 상기 백킹은 유리 이외의 것을 포함한다.
38C1. 사항 30C1에서와 같은 방법에서,
상기 제1 모듈과 상기 제2 모듈 사이에 계전기 스위치를 전기적으로 직렬로 연결하는 단계;
컨트롤러에 의해 상기 제1 모듈의 전압 출력을 감지하는 단계; 및
상기 계전기 스위치를 상기 컨트롤러로 활성화시키는 단계를 더 포함하며, 상기 출력 전압은 한계 아래로 떨어진다.
39C1. 사항 1C1에서와 같은 방법에서, 상기 태양 전지는 보다 큰 조각으로부터 절단된 챔퍼 처리된 부분을 포함한다.
40C1. 사항 39C1에서와 같은 방법에서, 상기 슈퍼 셀을 형성하는 단계는 상기 태양 전지의 긴 측면을 챔퍼 처리된 부분을 갖는 다른 태양 전지의 유사한 길이의 긴 측면과 전기적으로 접촉되도록 배치하는 단계를 포함한다.
1C2. 장치는,
중첩되고 접착제로 도전성으로 결합되는 인접하는 태양 전지들의 긴 측면들을 구비하여 배열되는 제1 슈퍼 셀 내로 그룹화되는 적어도 19개의 태양 전지들의 제1 직렬 연결된 스트링을 포함하는 전면을 구비하는 태양광 모듈; 및
전기적 구성 요소에 히든 탭을 제공하도록 상기 제1 슈퍼 셀의 후면 콘택에 전기적으로 연결되는 리본 컨덕터를 포함한다.
2C2. 사항 1C2에서와 같은 장치에서, 상기 전기적 구성 요소는 바이패스 다이오드를 포함한다.
3C2. 사항 2C2에서와 같은 장치에서, 상기 바이패스 다이오드는 상기 태양광 모듈의 후면 상에 위치한다.
4C2. 사항 3C2에서와 같은 장치에서, 상기 바이패스 다이오드는 접합 박스의 외측에 위치한다.
5C2. 사항 4C2에서와 같은 장치에서, 상기 접합 박스는 단일의 단자를 포함한다.
6C2. 사항 3C2에서와 같은 장치에서, 상기 바이패스 다이오드는 상기 태양광 모듈의 에지 근처에 위치한다.
7C2. 사항 2C2에서와 같은 장치에서, 바이패스 다이오드는 라미네이트 구조 내에 위치한다.
8C2. 사항 7C2에서와 같은 장치에서, 상기 제1 슈퍼 셀은 상기 라미네이트 구조 내에 봉지된다.
9C2. 사항 2C2에서와 같은 장치에서, 상기 바이패스 다이오드는 상기 태양광 모듈의 둘레 주위에 위치한다.
10C2. 사항 1C2에서와 같은 장치에서, 상기 전기적 구성 요소는 모듈 단자, 접합 박스, 전원 관리 시스템, 스마트 스위치, 계전기, 전압 센싱 컨트롤러, 중심 인버터, DC/AC 마이크로인버터, 또는 DC/DC 모듈 파워 옵티마이저를 포함한다.
11C2. 사항 1C1에서와 같은 장치에서, 상기 전기적 구성 요소는 상기 태양광 모듈의 후면 상에 위치한다.
12C2. 사항 1C1에서와 같은 장치에서, 상기 태양광 모듈은 상기 제1 슈퍼 셀에 전기적으로 직렬로 연결되는 제1 단부를 갖는 제2 슈퍼 셀 내로 그룹화되는 적어도 19개의 태양 전지들의 제2 직렬 연결된 스트링을 더 포함한다.
13C2. 사항 12C2에서와 같은 장치에서, 상기 제2 슈퍼 셀은 상기 제1 슈퍼 셀과 중첩되고 도전성 접착제로 전기적으로 직렬로 연결된다.
14C2. 사항 12C2에서와 같은 장치에서, 상기 후면 콘택은 상기 제1 단부로부터 떨어져 위치한다.
15C2. 사항 12C2에서와 같은 장치에서, 상기 제1 단부 및 상기 제1 슈퍼 셀 사이의 유연한 인터커넥트를 더 포함한다.
16C2. 사항 15C2에서와 같은 장치에서, 상기 유연한 인터커넥트는 상기 제1 및 제2 슈퍼 셀들을 다른 슈퍼 셀과 전기적으로 병렬로 연결하도록 상기 제1 및 제2 슈퍼 셀들의 측면 에지들을 지나 연장된다.
17C2. 사항 1C2에서와 같은 장치에서, 상기 접착제는 약 0.1㎜보다 작거나 같은 두께를 가지며, 약 1.5w/m/k보다 크거나 같은 열전도율을 가진다.
18C2. 사항 1C2에서와 같은 장치에서, 상기 태양 전지들은 약 10V보다 큰 항복 전압을 갖는 실리콘 태양 전지들이다.
19C2. 사항 1C2에서와 같은 장치에서, 상기 제1 슈퍼 셀은 적어도 약 500㎜의 전류 흐름의 방향으로의 길이를 가진다.
20C2. 사항 1C2에서와 같은 장치에서, 상기 제1 슈퍼 셀의 태양 전지는 상기 접착제의 확산을 제한하도록 구성되는 특징을 포함한다.
21C2. 사항 20C2에서와 같은 장치에서, 상기 특징은 돌출된 특징을 포함한다.
22C2. 사항 21C2에서와 같은 장치에서, 상기 특징은 금속화를 포함한다.
23C2. 사항 22C2에서와 같은 장치에서, 상기 금속화는 상기 제1 긴 측면의 전체 길이로 진행되는 도전성 라인을 포함하며, 상기 장치는 상기 라인 및 상기 제1 긴 측면 사이에 위치하는 적어도 하나의 콘택 패드를 더 포함한다.
24C2. 사항 23C2에서와 같은 장치에서,
상기 금속화는 상기 적어도 하나의 콘택 패드에 전기적으로 연결되고, 상기 제1 긴 측면에 직교하게 진행되는 핑거들을 더 포함하며;
상기 도전성 라인은 상기 핑거들을 상호 연결한다.
25C2. 사항 20C2에서와 같은 장치에서, 상기 특징은 상기 태양 전지의 전방측 상에 있다.
26C2. 사항 20C2에서와 같은 장치에서, 상기 특징은 상기 태양 전지의 후방측 상에 있다.
27C2. 사항 20C2에서와 같은 장치에서, 상기 특징은 리세스된 특징을 포함한다.
28C2. 사항 20C2에서와 같은 장치에서, 상기 특징은 상기 제1 슈퍼 셀의 인접하는 태양 전지에 의해 숨겨진다.
29C2. 사항 1C2에서와 같은 장치에서, 상기 제1 슈퍼 셀의 태양 전지는 챔퍼 처리된 부분을 포함한다.
30C2. 사항 29C2에서와 같은 장치에서, 상기 제1 슈퍼 셀은 챔퍼 처리된 부분을 포함하는 다른 태양 전지를 더 포함하며, 상기 태양 전지의 긴 측면은 유사한 길이를 가지는 다른 태양 전지의 긴 측면에 전기적으로 접촉된다.
31C2. 사항 29C2에서와 같은 장치에서, 상기 제1 슈퍼 셀은 챔퍼 처리된 모서리들이 결핍된 태양 전지를 더 포함하며, 상기 태양 전지와 상기 다른 태양 전지는 광에 노출되는 동일한 면적을 가진다.
32C2. 사항 1C2에서와 같은 장치에서,
상기 제1 슈퍼 셀은 백킹 시트(backing sheet) 전면 상에 평행한 열들로 제2 슈퍼 셀과 정렬되며;
상기 백킹 시트는 백색이고, 상기 제1 슈퍼 셀 및 상기 제2 슈퍼 셀 사이의 갭들에 대응되는 위치 및 폭의 어둡게 된 스프라이프들을 포함한다.
33C2. 사항 1C2에서와 같은 장치에서, 상기 제1 슈퍼 셀은 전원 관리 시스템에 연결되는 스트링들의 적어도 하나의 쌍을 포함한다.
34C2. 사항 1C2에서와 같은 장치에서, 상기 제1 슈퍼 셀과 전기적으로 통신하고,
상기 제1 슈퍼 셀의 전압 출력을 수신하며;
상기 전압에 기초하여, 상기 제1 슈퍼 셀의 태양 전지가 역 바이어스인 지를 결정하고;
상기 역 바이어스인 태양 전지를 슈퍼 셀 모듈 회로로부터 연결 해제하도록 구성되는 전원 관리 장치를 더 포함한다.
35C2. 사항 34C2에서와 같은 장치에서, 상기 전원 관리 장치는 계전기를 포함한다.
36C2. 사항 1C2에서와 같은 장치에서, 상기 제1 슈퍼 셀은 태양 에너지의 방향과 마주하는 제1 측면 상에 상단 도전성 리본을 가지는 모듈을 형성하도록 제1 백킹 상에 배치되고, 상기 장치는,
상기 태양 에너지의 방향으로부터 멀어지는 방향과 마주하는 제2 측면 상에 하단 리본을 갖는 다른 모듈을 형성하도록 제2 백킹 상에 배치되는 다른 슈퍼 셀을 더 포함하며,
상기 다른 모듈은 상기 상단 리본을 포함하는 모듈의 일부와 중첩되고 결합된다.
37C2. 사항 36C2에서와 같은 장치에서, 상기 다른 모듈은 접착제에 의해 상기 모듈에 결합된다.
38C2. 사항 36C2에서와 같은 장치에서, 상기 다른 모듈은 일치하는 배치에 의해 상기 모듈에 결합된다.
39C2. 사항 36C2에서와 같은 장치에서, 상기 다른 모듈에 의해 중첩되는 접합 박스를 더 포함한다.
40C2. 사항 39C2에서와 같은 장치에서, 상기 다른 모듈은 다른 태양광 모듈 상의 상기 접합 박스와 다른 접합 박스 사이에 위치하는 일치하는 배치에 의해 상기 모듈과 결합된다.
1C3. 장치는,
태양광 모듈 전면 상에 배치되고, 각기 약 10V보다 큰 항복 전압을 갖는 복수의 태양 전지들을 구비하는 제1 슈퍼 셀;
전기적 구성 요소에 제1 히든 탭을 제공하도록 상기 제1 슈퍼 셀의 후면 콘택과 전기적으로 연결되는 제1 리본 컨덕터;
상기 태양광 모듈 전면 상에 배치되고, 각기 약 10V보다 큰 항복 전압을 갖는 복수의 태양 전지들을 구비하는 제2 슈퍼 셀; 및
제2 히든 탭을 제공하도록 상기 제2 슈퍼 셀의 후면 콘택과 전기적으로 연결되는 제2 리본 컨덕터를 포함한다.
2C3. 사항 1C3에서와 같은 장치에서, 상기 전기적 구성 요소는 바이패스 다이오드를 포함한다.
3C3. 사항 2C3에서와 같은 장치에서, 상기 바이패스 다이오드는 태양광 모듈 후면 상에 위치한다.
4C3. 사항 3C3에서와 같은 장치에서, 상기 바이패스 다이오드는 접합 박스의 외측에 위치한다.
5C3. 사항 4C3에서와 같은 장치에서, 상기 접합 박스는 단일의 단자를 포함한다.
6C3. 사항 3C3에서와 같은 장치에서, 상기 바이패스 다이오드는 태양광 모듈 에지 부근에 위치한다.
7C3. 사항 2C3에서와 같은 장치에서, 상기 바이패스 다이오드는 라미네이트 구조 내에 위치한다.
8C3. 사항 7C3에서와 같은 장치에서, 상기 제1 슈퍼 셀은 상기 라미네이트 구조 내에 봉지된다.
9C3. 사항 8C3에서와 같은 장치에서, 상기 바이패스 다이오드는 태양광 모듈 둘레 주위에 위치한다.
10C3. 사항 1C3에서와 같은 장치에서, 상기 제1 슈퍼 셀은 상기 제2 슈퍼 셀과 직렬로 연결된다.
11C3. 사항 10C3에서와 같은 장치에서,
상기 제1 슈퍼 셀 및 상기 제2 슈퍼 셀은 제1 쌍을 형성하며;
상기 장치는 상기 제1 쌍과 병렬로 연결되는 제2 쌍으로 두 개의 추가적인 슈퍼 셀들을 더 포함한다.
12C3. 사항 10C3에서와 같은 장치에서, 상기 제2 히든 탭은 상기 전기적 구성 요소에 연결된다.
13C3. 사항 12C3에서와 같은 장치에서, 상기 전기적 구성 요소는 바이패스 다이오드를 포함한다.
14C3. 사항 13C3에서와 같은 장치에서, 상기 제1 슈퍼 셀은 19개 보다 적지 않은 태양 전지들을 포함한다.
15C3. 사항 12C3에서와 같은 장치에서, 상기 전기적 구성 요소는 전원 관리 시스템을 포함한다.
16C3. 사항 1C3에서와 같은 장치에서, 상기 전기적 구성 요소는 스위치를 포함한다.
17C3. 사항 16C3에서와 같은 장치에서, 상기 스위치와 통신하는 전압 센싱 컨트롤러를 더 포함한다.
18C3. 사항 16C3에서와 같은 장치에서, 상기 스위치는 중심 인버터와 통신한다.
19C3. 사항 1C3에서와 같은 장치에서, 상기 전기적 구성 요소는,
상기 제1 슈퍼 셀의 전압 출력을 수신하고;
상기 전압에 기초하여, 상기 제1 슈퍼 셀의 태양 전지가 역 바이어스인지를 결정하며;
상기 역 바이어스인 태양 전지를 슈퍼 셀 모듈 회로와 연결 해제하도록 구성되는 전원 관리 장치를 포함한다.
20C3. 사항 1에서와 같은 장치에서, 상기 전기적 구성 요소는 인버터를 포함한다.
21C3. 사항 20C3에서와 같은 장치에서, 상기 인버터는 DC/AC 마이크로인버터를 포함한다.
22C3. 사항 1C3에서와 같은 장치에서, 상기 전기적 구성 요소는 태양광 모듈 단자를 포함한다.
23C3. 사항 22C3에서와 같은 장치에서, 상기 태양광 모듈 단자는 접합 박스 내의 단일의 태양광 모듈 단자이다.
24C3. 사항 1C3에서와 같은 장치에서, 상기 전기적 구성 요소는 태양광 모듈 후면 상에 위치한다.
25C3. 사항 1C3에서와 같은 장치에서, 상기 후면 콘택은 상기 제2 슈퍼 셀과 중첩되는 상기 제1 슈퍼 셀의 단부로부터 떨어져 위치한다.
26C3. 사항 1C3에서와 같은 장치에서, 상기 제1 슈퍼 셀은 적어도 약 500㎜의 전류 흐름의 방향으로의 길이를 가진다.
27C3. 사항 1C3에서와 같은 장치에서, 상기 제1 슈퍼 셀의 태양 전지는 상기 접착제의 확산을 제한하도록 구성되는 특징을 포함한다.
28C3. 사항 27C3에서와 같은 장치에서, 상기 특징은 돌출된 특징을 포함한다.
29C3. 사항 28C3에서와 같은 장치에서, 상기 특징은 금속화를 포함한다.
30C3. 사항 27C3에서와 같은 장치에서, 상기 특징은 리세스된 특징을 포함한다.
31C3. 사항 27C3에서와 같은 장치에서, 상기 특징은 상기 태양 전지의 후방측 상에 있다.
32C3. 사항 27C3에서와 같은 장치에서, 상기 특징은 상기 제1 슈퍼 셀의 인접하는 태양 전지에 의해 감춰진다.
33C3. 사항 1C3에서와 같은 장치에서, 상기 제1 슈퍼 셀의 태양 전지는 챔퍼 처리된 부분을 포함한다.
34C3. 사항 33C3에서와 같은 장치에서, 상기 제1 슈퍼 셀은 챔퍼 처리된 부분을 갖는 다른 태양 전지를 더 포함하며, 상기 태양 전지의 긴 측면은 유사한 길이를 갖는 다른 태양 전지의 긴 측면과 전기적으로 접촉된다.
35C3. 사항 33C3에서와 같은 장치에서, 상기 제1 슈퍼 셀은 챔퍼 처리된 모서리들이 결핍된 다른 태양 전지를 더 포함하며, 상기 태양 전지 및 상기 다른 태양 전지는 광에 노출되는 동일한 면적을 가진다.
36C3. 사항 1C3에서와 같은 장치에서,
상기 제1 슈퍼 셀은 백킹 시트 전면 상에 평행한 열들로 상기 제2 슈퍼 셀과 배열되며;
상기 백킹 시트는 백색이고, 상기 제1 슈퍼 셀 및 상기 제2 슈퍼 셀 사이의 갭들에 대응되는 위치 및 폭의 어둡게 된 스트라이프들을 포함한다.
37C3. 사항 1C3에서와 같은 장치에서, 상기 제1 슈퍼 셀은 태양 에너지의 방향과 마주하는 상기 모듈 전면 상에 상단 도전성 리본을 갖는 모듈을 형성하도록 제1 백킹 상에 배치되고, 상기 장치는,
상기 태냔 에너지의 방향으로부터 멀어지는 방향과 마주하는 제2 측면 상의 바닥 리본을 갖는 다른 모듈을 형성하도록 제2 백킹 상에 배치되는 제3 슈퍼 셀을 더 포함하며,
상기 다른 모듈은 상기 상단 리본을 포함하는 모듈의 일부와 중첩되고 결합된다.
38C3. 사항 37C3에서와 같은 장치에서, 상기 다른 모듈은 상기 모듈과 접착제에 의해 결합된다.
39C3. 사항 37C3에서와 같은 장치에서, 상기 다른 모듈에 의해 중첩되는 접합 박스를 더 포함한다.
40C3. 사항 39C3에서와 같은 장치에서, 상기 다른 모듈은 상기 다른 모듈 상의 상기 접합 박스와 다른 접합 박스 사이의 일치하는 배치에 의해 상기 다른 모듈과 결합된다.
1C4. 장치는,
중첩되고 접착제도 도전성으로 결합되는 인접하는 태양 전지들의 측면들과 배열되는 제1 슈퍼 셀 내로 그룹화되는 태양 전지들의 제1 직렬 연결된 스트링을 포함하는 전면을 구비하는 태양광 모듈; 및
상기 접착제를 한정하도록 구성되는 태양 전지 표면 특징을 포함한다.
2C4. 사항 1C4에서와 같은 장치에서, 상기 태양 전지 표면 특징은 리세스된 특징을 포함한다.
3C4. 사항 1C4에서와 같은 장치에서, 상기 태양 전지 표면 특징은 돌출된 특징을 포함한다.
4C4. 사항 3C4에서와 같은 장치에서, 상기 돌출된 특징은 태양 전지의 전면 상에 있다.
5C4. 사항 4C4에서와 같은 장치에서, 상기 돌출된 특징은 금속화 패턴을 포함한다.
6C4. 사항 5C4에서와 같은 장치에서, 상기 금속화 패턴은 상기 태양 전지의 긴 측면에 평행하고 실질적으로 이를 따라 진행되는 도전성 라인을 포함한다.
7C4. 사항 6C4에서와 같은 장치에서, 상기 도전성 라인과 상기 긴 측면 사이의 콘택 패드를 더 포함한다.
8C4. 사항 7C4에서와 같은 장치에서,
상기 금속화 패턴은 복수의 핑거들을 더 포함하며;
상기 도전성 라인은 각 핑거로부터 상기 콘택 패드까지 다중의 도전성 통로들을 제공하도록 상기 핑거들을 전기적으로 상호 연결한다.
9C4. 사항 7C4에서와 같은 장치에서, 상기 긴 측면에 인접하고 평행하한 열로 배열되는 복수의 별개의 콘택 패드들을 더 포함하며, 상기 금속화 패턴은 상기 접착제를 상기 별개의 콘택 패드들로 제한하는 복수의 분리된 배리어들을 형성한다.
10C4. 사항 8C4에서와 같은 장치에서, 상기 복수의 분리된 배리어들은 대응되는 별개의 콘택 패드들에 인접한다.
11C4. 사항 8C4에서와 같은 장치에서, 상기 복수의 분리된 배리어들은 대응되는 별개의 콘택 패드들보다 크다.
12C4. 사항 1C4에서와 같은 장치에서, 상기 태양 전지 표면 특징은 다른 태양 전지의 중첩되는 측면에 의해 숨겨진다.
13C4. 사항 12C4에서와 같은 장치에서, 상기 다른 태양 전지는 상기 슈퍼 셀의 일부이다.
14C4. 사항 12C4에서와 같은 장치에서, 상기 다른 태양 전지는 다른 슈퍼 셀의 일부이다.
15C4. 사항 3C4에서와 같은 장치에서, 상기 돌출된 특징은 태양 전지의 후면 상에 있다.
16C4. 사항 15C4에서와 같은 장치에서, 상기 돌출된 특징은 금속화 패턴을 포함한다.
17C4. 사항 16C4에서와 같은 장치에서, 상기 금속화 패턴은 상기 접착제를 상기 태양 전지에 의해 중첩되는 다른 태양 전지의 전면 상에 위치하는 복수의 별개의 콘택 패드들에 제한하도록 복수의 분리된 배리어들을 형성한다.
18C4. 사항 17C4에서와 같은 장치에서, 상기 복수의 분리된 배리어들은 대응되는 별개의 콘택 패드들에 인접한다.
19C4. 사항 17C4에서와 같은 장치에서, 상기 복수의 분리된 배리어들은 대응되는 별개의 콘택 패드들보다 크다.
20C4. 사항 1C1에서와 같은 장치에서, 상기 슈퍼 셀의 각 태양 전지는 10V 또는 그 이상의 항복 전압을 가진다.
21C4. 사항 1C1에서와 같은 장치에서, 상기 슈퍼 셀은 적어도 약 500㎜의 전류 흐름의 방향으로의 길이를 가진다.
22C4. 사항 1C1에서와 같은 장치에서, 상기 슈퍼 셀의 태양 전지는 챔퍼 처리된 부분을 포함한다.
23C4. 사항 22C4에서와 같은 장치에서, 상기 슈퍼 셀은 챔퍼 처리된 부분을 갖는 다른 태양 전지를 더 포함하며, 상기 태양 전지의 긴 측면은 유사한 길이를 가지는 상기 다른 태양 전지의 긴 측면과 전기적으로 접촉된다.
24C4. 사항 22C4에서와 같은 장치에서, 상기 슈퍼 셀은 챔퍼 처리된 모서리들이 결핍된 다른 태양 전지를 더 포함하며, 상기 태양 전지 및 상기 다른 태양 전지는 광에 노출되는 동일한 면적을 가진다.
25C4. 사항 1C4에서와 같은 장치에서, 상기 슈퍼 셀은 제1 모듈을 형성하도록 제1 백킹 시트 전면 상에 제2 슈퍼 셀과 배열된다.
26C4. 사항 25C4에서와 같은 장치에서, 상기 백킹 시트는 백색이고, 상기 제1 슈퍼 셀 및 상기 제2 슈퍼 셀 사이의 갭들에 대응되는 위치와 폭의 어둡게 된 스트라이프들을 포함한다.
27C4. 사항 25C4에서와 같은 장치에서, 상기 제1 모듈은 태양 에너지의 방향과 마주하는 제1 모듈 전면 상에 상당 도전성 리본을 가지며, 상기 장치는,
상기 태양 에너지로부터 멀어져 마주하는 제2 모듈 측면 상의 바닥 리본을 갖는 제2 모듈을 형성하도록 제2 백킹 상에 배치되는 제3 슈퍼 셀을 더 포함하고,
상기 제2 모듈은 상기 상단 리본을 포함하는 제1 모듈의 일부와 중첩되고 결합된다.
28C4. 사항 27C4에서와 같은 장치에서, 상기 제2 모듈은 상기 제1 모듈과 접착제에 의해 결합된다.
29C4. 사항 27C4에서와 같은 장치에서, 상기 제2 모듈에 의해 중첩되는 접합 박스를 더 포함한다.
30C4. 사항 29C4에서와 같은 장치에서, 상기 제2 모듈은 상기 제2 모듈 상의 상기 접합 박스와 다른 접합 박스 사이의 일치하는 배치에 의해 상기 제1 모듈과 결합된다.
31C4. 사항 29C4에서와 같은 장치에서, 상기 접합 박스는 단일의 모듈 단자를 수용한다.
32C4. 사항 27C4에서와 같은 장치에서, 상기 제1 모듈과 상기 제2 모듈 사이의 스위치를 더 포함한다.
33C4. 사항 32C4에서와 같은 장치에서, 상기 스위치와 통신하는 전압 센싱 컨트롤러를 더 포함한다.
34C4. 사항 27C4에서와 같은 장치에서, 상기 슈퍼 셀은 단일의 바이패스 다이오드와 개별적으로 전기적으로 병렬로 연결되는 열아홉 개보다 적지 않은 태양 전지들을 포함한다.
35C4. 사항 34C4에서와 같은 장치에서, 상기 단일의 바이패스 다이오드는 제1 모듈 에지 근처에 위치한다.
36C4. 사항 34C4에서와 같은 장치에서, 상기 단일의 바이패스 다이오드는 라미네이트 구조 내에 위치한다.
37C4. 사항 36C4에서와 같은 장치에서, 상기 슈퍼 셀은 상기 라미네이트 구조 내에 봉지된다.
38C4. 사항 34C4에서와 같은 장치에서, 상기 단일의 바이패스 다이오드는 제1 모듈 둘레 주위에 위치한다.
39C4. 사항 25C4에서와 같은 장치에서, 상기 슈퍼 셀 및 상기 제2 슈퍼 셀은 전원 관리 장치에 개별적으로 연결되는 쌍을 포함한다.
40C4. 사항 25C4에서와 같은 장치에서,
상기 슈퍼 셀의 전압 출력을 수신하고;
상기 전압에 기초하여, 상기 슈퍼 셀의 태양 전지가 역 바이어스인지를 결정하고;
상기 역 바이어스인 태양 전지를 슈퍼 셀 모듈 회로와 연결 해제하도록 구성되는 전원 관리 장치를 더 포함한다.
1C5. 장치는,
챔퍼 처리된 모서리들을 갖고, 제2 실리콘 태양 전지와 중첩되고 접착제로 도전성으로 결합되는 측면을 구비하여 배열되는 제1 실리콘 태양 전지를 포함하는 제1 슈퍼 셀 내로 그룹화되는 실리콘 태양 전지들의 제1 직렬 연결된 스트링을 포함하는 전면을 구비하는 태양광 모듈을 포함한다.
2C5. 사항 1C5에서와 같은 장치에서, 상기 제2 실리콘 태양 전지는 챔퍼 처리된 모서리들이 결핍되며, 상기 제1 슈퍼 셀의 각 실리콘 태양 전지는 광에 노출되는 실질적으로 동일한 전면 면적을 가진다.
3C5. 사항 2C5에서와 같은 장치에서,
상기 제1 실리콘 태양 전지 및 상기 제2 실리콘 태양 전지는 동일한 길이를 가지며;
상기 제1 실리콘 태양 전지의 폭은 상기 제2 실리콘 태양 전지의 폭보다 크다.
4C5. 사항 3C5에서와 같은 장치에서, 상기 길이는 의사 정사각형의 웨이퍼의 형상을 재생한다.
5C5. 사항 3C5에서와 같은 장치에서, 상기 길이는 156㎜이다.
6C5. 사항 3C5에서와 같은 장치에서, 상기 길이는 125㎜이다.
7C5. 사항 3C5에서와 같은 장치에서, 상기 제1 태양 전지의 폭 및 길이 사이의 종횡비는 약 1:2 내지 약 1:20이다.
8C5. 사항 3C5에서와 같은 장치에서, 상기 제1 실리콘 태양 전지는 상기 제2 실리콘 태양 전지와 약 1㎜ 내지 약 5㎜로 중첩된다.
9C5. 사항 3C5에서와 같은 장치에서, 상기 제1 슈퍼 셀은 각기 약 10볼트보다 큰 항복 전압을 갖는 적어도 열아홉 개의 실리콘 태양 전지들을 포함한다.
10C5. 사항 3C5에서와 같은 장치에서, 상기 제1 슈퍼 셀은 적어도 약 500㎜의 전류 흐름의 방향으로의 길이를 가진다.
11C5. 사항 3C5에서와 같은 장치에서,
상기 제1 슈퍼 셀은 상기 전면 상에서 제2 슈퍼 셀과 병렬로 연결되며;
상기 전면은 상기 제1 슈퍼 셀 및 상기 제2 슈퍼 셀 사이의 갭들에 대응되는 위치와 폭의 어둡게 된 스트라이프들을 특징짓는 백색 백킹을 포함한다.
12C5. 사항 1C5에서와 같은 장치에서, 상기 제2 실리콘 태양 전지는 챔퍼 처리된 모서리들을 포함한다.
13C5. 사항 12C5에서와 같은 장치에서, 상기 제1 실리콘 태양 전지의 긴 측면은 상기 제2 실리콘 태양 전지의 긴 측면과 중첩된다.
14C5. 사항 12C5에서와 같은 장치에서, 상기 제1 실리콘 태양 전지의 긴 측면은 상기 제2 실리콘 태양 전지의 짧은 측면과 중첩된다.
15C5. 사항 1C5에서와 같은 장치에서, 상기 전면은,
챔퍼 처리된 모서리들을 갖는 태양 전지들로 구성되는 상기 제1 슈퍼 셀을 구비하는 제1 열; 및
상기 제1 슈퍼 셀과 병렬로 연결되고, 챔퍼 처리된 모서리들이 결핍된 태양 전지들로 구성되는 제2 슈퍼 셀 내로 그룹화되는 실리콘 태양 전지들의 제2 직렬 연결된 스트링을 구비하는 제2 열을 포함하며, 상기 제2 열의 길이는 상기 제1 열의 길이와 실질적으로 동일하다.
16C5. 사항 15C5에서와 같은 장치에서, 상기 제1 열은 모듈 에지에 인접하며, 상기 제2 열은 상기 모듈 에지에 인접하지 않는다.
17C5. 사항 15C5에서와 같은 장치에서, 상기 제1 슈퍼 셀은 각기 약 10볼트보다 큰 항복 전압을 갖는 적어도 열아홉 개의 태양 전지들을 포함하며, 상기 제1 슈퍼 셀은 적어도 약 500㎜의 전류 흐름의 방향으로의 길이를 가진다.
18C5. 사항 15C5에서와 같은 장치에서, 상기 전면은 상기 제1 슈퍼 셀 및 상기 제2 슈퍼 셀 사이의 갭들에 대응되는 위치와 폭의 어둡게 된 스트라이프들을 특징짓는 백색 백킹을 포함한다.
19C5. 사항 1C5에서와 같은 장치에서, 상기 제2 태양 전지의 전방측 상의 금속화 패턴을 더 포함한다.
20C5. 사항 19C5에서와 같은 장치에서, 상기 금속화 패턴은 챔퍼 처리된 모서리 주위로 연장되는 테이퍼진(tapered) 부분을 포함한다.
21C5. 사항 19C5에서와 같은 장치에서, 상기 금속화 패턴은 상기 접착제의 확산을 제한하도록 돌출된 특징을 포함한다.
22C5. 사항 19C5에서와 같은 장치에서, 상기 금속화 패턴은,
복수의 별개의 콘택 패드들;
상기 복수의 별개의 콘택 패드들에 전기적으로 연결되는 핑거들; 및
상기 핑거들을 상호 연결하는 도전성 라인을 포함한다.
23C5. 사항 22C5에서와 같은 장치에서, 상기 금속화 패턴은 상기 접착제를 상기 별개의 콘택 패드들에 제한하는 복수의 분리된 배리어들을 형성한다.
24C5. 사항 23C5에서와 같은 장치에서, 상기 복수의 분리된 배리어들은 대응되는 별개의 콘택 패드들에 인접하며, 보다 크다.
25C5. 사항 1C5에서와 같은 장치에서, 상기 제1 태양 전지의 표면에 도전성으로 결합되고, 두 치수들로 상기 제1 태양 전지의 열팽창을 수용하는 유연한 전기적 인터커넥트를 더 포함한다.
26C5. 사항 25C5에서와 같은 장치에서, 상기 인터커넥트의 제1 부분은 나머지 제2 인터커넥트가 상기 제1 슈퍼 셀의 후면측 상에 있도록 상기 제1 슈퍼 셀의 에지 주위에서 접힌다.
27C5. 사항 1C5에서와 같은 장치에서, 상기 모듈은 태양 에너지의 방향을 마주하는 상기 전면 상의 상단 도전성 리본을 가지며, 상기 장치는,
전면 상에 배치되는 제2 슈퍼 셀, 상기 태양 에너지로부터 멀어져 마주하는 다른 모듈 상의 바닥 리본을 더 구비하는 상기 다른 모듈을 더 포함하고,
상기 제2 모듈은 상기 상단 리본을 포함하는 제1 모듈의 일부와 중첩되고 결합된다.
28C5. 사항 27C5에서와 같은 장치에서, 상기 다른 모듈은 접착제에 의해 상기 모듈에 결합된다.
29C5. 사항 27C5에서와 같은 장치에서, 상기 다른 모듈에 의해 중첩되는 접합 박스를 더 포함한다.
30C5. 사항 29C5에서와 같은 장치에서, 상기 다른 모듈은 상기 다른 모듈 상의 상기 접합 박스와 다른 접합 박스 사이의 일치하는 배치에 의해 상기 다른 모듈에 결합된다.
31C5. 사항 29C5에서와 같은 장치에서, 상기 접합 박스는 단일의 모듈 단자를 수용한다.
32C5. 사항 27C5에서와 같은 장치에서, 상기 모듈 및 상기 다른 모듈 사이의 스위치를 더 포함한다.
33C5. 사항 32C5에서와 같은 장치에서, 상기 스위치와 통신하는 전압 센싱 컨트롤러를 더 포함한다.
34C5. 사항 27C5에서와 같은 장치에서, 상기 제1 슈퍼 셀은 단일의 바이패스 다이오드와 전기적으로 연결되는 열아홉 개보다 적지 않은 태양 전지들을 포함한다.
35C5. 사항 34C5에서와 같은 장치에서, 상기 단일의 바이패스 다이오드는 제1 모듈 에지 부근에 위치한다.
36C5. 사항 34C5에서와 같은 장치에서, 상기 단일의 바이패스 다이오드는 라미네이트 구조 내에 위치한다.
37C5. 사항 36C5에서와 같은 장치에서, 상기 슈퍼 셀은 상기 라미네이트 구조 내에 봉지된다.
38C5. 사항 34C5에서와 같은 장치에서, 상기 단일의 바이패스 다이오드 제1 모듈 둘레 주위에 위치한다.
39C5. 사항 27C5에서와 같은 장치에서, 상기 제1 슈퍼 셀 및 상기 제2 슈퍼 셀은 전원 관리 장치에 연결되는 쌍을 포함한다.
40C5. 사항 27C5에서와 같은 장치에서,
상기 제1 슈퍼 셀의 전압 출력을 수신하고;
상기 전압에 기초하여, 상기 제1 슈퍼 셀의 태양 전지가 역 바이어스인지를 결정하며;
상기 역 바이어스인 태양 전지를 슈퍼 셀 모듈 회로와 연결 해제하도록 구성되는 전원 관리 장치를 더 포함한다.
1C6. 장치는,
챔퍼 처리된 모서리들을 가지고, 제2 실리콘 태양 전지와 중첩되며 접착제로 도전성으로 결합되는 측면을 구비하여 배열되는 제1 실리콘 태양 전지를 포함하는 제1 슈퍼 셀 내로 그룹화되는 실리콘 태양 전지들의 제1 직렬 연결된 스트링을 포함하는 전면을 구비하는 태양광 모듈을 포함한다.
2C6. 사항 1C6에서와 같은 장치에서, 상기 제2 실리콘 태양 전지는 챔퍼 처리된 모서리들이 결핍되며, 상기 제1 슈퍼 셀의 각 실리콘 태양 전지는 광에 노출되는 실질적으로 동일한 전면 면적을 가진다.
3C6. 사항 2C6에서와 같은 장치에서,
상기 제1 실리콘 태양 전지 및 상기 제2 실리콘 태양 전지는 동일한 길이를 가지며;
상기 제1 실리콘 태양 전지의 폭은 상기 제2 실리콘 태양 전지의 폭보다 크다.
4C6. 사항 3C6에서와 같은 장치에서, 상기 길이는 의사 정사각형의 웨이퍼의 형상을 재생한다.
5C6. 사항 3C6에서와 같은 장치에서, 상기 길이는 156㎜이다.
6C6. 사항 3C6에서와 같은 장치에서, 상기 길이는 125㎜이다.
7C6. 사항 3C6에서와 같은 장치에서, 상기 제1 태양 전지의 폭과 길이 사이의 종횡비는 약 1:2 내지 약 1:20이다.
8C6. 사항 3C6에서와 같은 장치에서, 상기 제1 실리콘 태양 전지는 상기 제2 실리콘 태양 전지와 약 1㎜ 내지 약 5㎜로 중첩된다.
9C6. 사항 3C6에서와 같은 장치에서, 상기 제1 슈퍼 셀은 각기 약 10볼트보다 큰 항복 전압을 갖는 적어도 열아홉 개의 실리콘 태양 전지들을 포함한다.
10C6. 사항 3C6에서와 같은 장치에서, 상기 제1 슈퍼 셀은 적어도 약 500㎜의 전류 흐름의 방향으로의 길이를 가진다.
11C6. 사항 3C6에서와 같은 장치에서,
상기 제1 슈퍼 셀은 상기 전면 상에서 제2 슈퍼 셀과 병렬로 연결되며;
상기 전면은 상기 제1 슈퍼 셀 및 상기 제2 슈퍼 셀 사이의 갭들에 대응되는 위치 및 폭의 어둡게 된 스트라이프들을 특징짓는 백색 백킹을 포함한다.
12C6. 사항 1C6에서와 같은 장치에서, 상기 제2 실리콘 태양 전지는 챔퍼 처리된 모서리들을 포함한다.
13C6. 사항 12C6에서와 같은 장치에서, 상기 제1 실리콘 태양 전지의 긴 측면은 상기 제2 실리콘 태양 전지의 긴 측면과 중첩된다.
14C6. 사항 12C6에서와 같은 장치에서, 상기 제1 실리콘 태양 전지의 의 긴 측면은 상기 제2 실리콘 태양 전지의 짧은 측면과 중첩된다.
15C6. 사항 1C6에서와 같은 장치에서, 상기 전면은,
챔퍼 처리된 모서리들을 갖는 태양 전지들로 구성되는 상기 제1 슈퍼 셀을 구비하는 제1 열; 및
상기 슈퍼 셀과 병렬로 연결되고, 챔퍼 처리된 모서리들이 결핍된 태양 전지들로 구성되는 제2 슈퍼 셀 내로 그룹화되는 실리콘 태양 전지들의 제2 직렬 연결된 스트링을 구비하는 제2 열을 포함하며, 상기 제2 열의 길이는 상기 제1 열의 길이와 실질적으로 동일하다.
16C6. 사항 15C6에서와 같은 장치에서, 상기 제1 열은 모듈 에지에 인접하며, 상기 제2 열은 상기 모듈 에지에 인접하지 않는다.
17C6. 사항 15C6에서와 같은 장치에서, 상기 제1 슈퍼 셀은 각기 약 10볼트보다 큰 항복 전압을 갖는 적어도 열아홉 개의 태양 전지들을 포함하며, 상기 제1 슈퍼 셀은 적어도 약 500㎜의 전류 흐름의 방향으로의 길이를 가진다.
18C6. 사항 1C6에서와 같은 장치에서, 상기 전면은 상기 제1 슈퍼 셀 및 상기 제2 슈퍼 셀 사이의 갭들에 대응되는 위치와 폭의 어둡게 된 스트라이프들을 특징짓는 백색 백킹을 포함한다.
19C6. 사항 1C6에서와 같은 장치에서, 상기 제2 태양 전지의 전방측 상의 금속화 패턴을 더 포함한다.
20C6. 사항 19C6에서와 같은 장치에서, 상기 금속화 패턴은 챔퍼 처리된 모서리 주위로 연장되는 테이퍼진 부분을 포함한다.
21C6. 사항 19C6에서와 같은 장치에서, 상기 금속화 패턴은 상기 접착제의 확산을 제한하도록 돌출된 특징을 포함한다.
22C6. 사항 19C6에서와 같은 장치에서, 상기 금속화 패턴은,
복수의 별개의 콘택 패드들;
복수의 별개의 콘택 패드들에 전기적으로 연결되는 핑거들; 및
상기 핑거들을 상호 연결하는 도전성 라인을 포함한다.
23C6. 사항 22C6에서와 같은 장치에서, 상기 금속화 패턴은 상기 접착제를 상기 별개의 콘택 패드들에 제한하도록 복수의 분리된 배리어들을 형성한다.
24C6. 사항 23C6에서와 같은 장치에서, 상기 복수의 분리된 배리어들은 대응되는 별개의 콘택 패드들에 인접하며, 보다 크다.
25C6. 사항 1C6에서와 같은 장치에서, 상기 제1 태양 전지의 표면에 도전성으로 결합되고, 두 치수들로 상기 제1 태양 전지의 열팽창을 수용하는 유연한 전기적 인터커넥트를 더 포함한다.
26C6. 사항 25C6에서와 같은 장치에서, 상기 인터커넥트의 제1 부분은 나머지 제2 인터커넥트가 상기 제1 슈퍼 셀의 후면 상에 있도록 상기 제1 슈퍼 셀의 에지 주위에서 접힌다.
27C6. 사항 1C6에서와 같은 장치에서, 상기 모듈은 태양 에너지의 방향과 마주하는 전면 상에 상단 도전성 리본을 가지며, 상기 장치는,
전면 상에 배치되는 제2 슈퍼 셀, 상기 태양 에너지로부터 멀어져 마주하는 다른 모듈 상의 바닥 리본을 가지는 상기 다른 모듈을 더 포함하고,
상기 제2 모듈은 상기 상단 리본을 포함하는 제1 모듈의 일부와 중첩되고 도전성으로 결합된다.
28C6. 사항 27C6에서와 같은 장치에서, 상기 다른 모듈은 접착제에 의해 상기 모듈에 결합된다.
29C6. 사항 27C6에서와 같은 장치에서, 상기 다른 모듈에 의해 중첩되는 접합 박스를 더 포함한다.
30C6. 사항 29C6에서와 같은 장치에서, 상기 다른 모듈은 상기 다른 모듈 상의 상기 접합 박스와 다른 접합 박스 사이의 일치하는 배치에 의해 상기 모듈과 결합된다.
31C6. 사항 29C6에서와 같은 장치에서, 상기 접합 박스는 단일의 모듈 단자를 수용한다.
32C6. 사항 27C6에서와 같은 장치에서, 상기 모듈 및 상기 다른 모듈 사이에 스위치를 더 포함한다.
33C6. 사항 32C6에서와 같은 장치에서, 상기 스위치와 통신하는 전압 센싱 컨트롤러를 더 포함한다.
34C6. 사항 27C6에서와 같은 장치에서, 상기 제1 슈퍼 셀은 단일의 바이패스 다이오드와 전기적으로 연결되는 열아홉 개보다 적지 않은 태양 전지들을 포함한다.
35C6. 사항 34C6에서와 같은 장치에서, 상기 단일의 바이패스 다이오드는 제1 모듈 에지 근처에 위치한다.
36C6. 사항 34C6에서와 같은 장치에서, 상기 단일의 바이패스 다이오드는 라미네이트 구조 내에 위치한다.
37C6. 사항 36C6에서와 같은 장치에서, 상기 슈퍼 셀은 상기 라미네이트 구조 내에 봉지된다.
38C6. 사항 34C6에서와 같은 장치에서, 상기 단일의 바이패스 다이오드는 제1 모듈 둘레 주위에 위치한다.
39C6. 사항 27C6에서와 같은 장치에서, 상기 제1 슈퍼 셀 및 상기 제2 슈퍼 셀은 전원 관리 장치에 연결되는 쌍을 포함한다.
40C6. 사항 27C6에서와 같은 장치에서,
상기 제1 슈퍼 셀의 전압 출력을 수신하고;
상기 전압에 기초하여, 상기 제1 슈퍼 셀의 태양 전지가 역 바이어스인지를 결정하며;
상기 역 바이어스인 태양 전지를 슈퍼 셀 모듈 회로와 연결 해제하도록 구성되는 전원 관리 장치를 더 포함한다.
1C7. 장치는,
각기 약 10V보다 큰 항복 전압을 가지며, 제2 실리콘 태양 전지와 중첩되고 접착제로 도전성으로 결합되는 단부를 구비하여 배열되는 제1 실리콘 태양 전지를 포함하는 슈퍼 셀 내로 그룹화되는 적어도 열아홉 개의 태양 전지들의 제1 직렬 연결된 스트링을 포함하는 전면을 구비하는 태양광 모듈; 및
태양 전지 표면에 도전성으로 결합되는 인터커넥트를 포함한다.
2C7. 사항 1C7에서와 같은 장치에서, 상기 태양 전지 표면은 상기 제1 실리콘 태양 전지의 후면들 포함한다.
3C7. 사항 2C7에서와 같은 장치에서, 상기 슈퍼 셀을 전기적 구성 요소에 전기적으로 연결하는 리본 컨덕터를 더 포함한다.
4C7. 사항 3C7에서와 같은 장치에서, 상기 리본 컨덕터는 상기 중첩되는 단부로부터 떨어져 상기 태양 전지 표면에 도전성으로 결합된다.
5C7. 사항 4C7에서와 같은 장치에서, 상기 전기적 구성 요소는 태양광 모듈 후면 상에 있다.
6C7. 사항 4C7에서와 같은 장치에서, 상기 전기적 구성 요소는 접합 박스를 포함한다.
7C7. 사항 6C7에서와 같은 장치에서, 상기 접합 박스는 상기 모듈에 의해 중첩되는 다른 모듈 상의 다른 접합 박스와 일치되는 배치이다.
8C7. 사항 4C7에서와 같은 장치에서, 상기 전기적 구성 요소는 바이패스 다이오드를 포함한다.
9C7. 사항 4C7에서와 같은 장치에서, 상기 전기적 구성 요소는 모듈 단자를 포함한다.
10C7. 사항 4C7에서와 같은 장치에서, 상기 전기적 구성 요소는 인버터를 포함한다.
11C7. 사항 10C7에서와 같은 장치에서, 상기 인버터는 DC/AC 마이크로인버터를 포함한다.
12C7. 사항 11C7에서와 같은 장치에서, 상기 DC/AC 마이크로인버터는 태양광 모듈 후면 상에 있다.
13C7. 사항 4C7에서와 같은 장치에서, 상기 전기적 구성 요소는 전원 관리 장치를 포함한다.
14C7. 사항 13C7에서와 같은 장치에서, 상기 전원 관리 장치는 스위치를 포함한다.
15C7. 사항 14C7에서와 같은 장치에서, 상기 스위치와 통신하는 전압 센싱 컨트롤러를 더 포함한다.
16C7. 사항 13C7에서와 같은 장치에서, 상기 전원 관리 장치는,
상기 슈퍼 셀의 전압 출력을 수신하고;
상기 전압에 기초하여, 상기 슈퍼 셀의 태양 전지가 역 바이어스인지를 결정하며;
상기 역 바이어스인 태양 전지를 슈퍼 셀 모듈 회로로부터 연결 해제하도록 구성된다.
17C7. 사항 16C7에서와 같은 장치에서, 상기 전원 관리 장치는 중심 인버터와 전기적으로 통신한다.
18C7. 사항 13C7에서와 같은 장치에서, 상기 전원 관리 장치는 DC/DC 모듈 파워 옵티마이저를 포함한다.
19C7. 사항 3C7에서와 같은 장치에서, 상기 인터커넥트는 상기 전면 상의 상기 슈퍼 셀과 다른 슈퍼 셀 사이에 개재된다.
20C7. 사항 3C7에서와 같은 장치에서, 상기 리본 컨덕터는 상기 인터커넥트에 도전성으로 결합된다.
21C7. 사항 3C7에서와 같은 장치에서, 상기 인터커넥트는 약 0.012옴보다 작거나 같은 전류 흐름에 대한 저항을 제공한다.
22C7. 사항 3C7에서와 같은 장치에서, 상기 인터커넥트는 약 -40℃ 내지 약 85℃의 온도 범위에 대해 상기 제1 실리콘 태양 전지 및 상기 인터커넥트 사이의 차등 열팽창을 수용하도록 구성된다.
23C7. 사항 3C7에서와 같은 장치에서, 상기 인터커넥트의 두께는 약 100미크론보다 작거나 같다.
24C7. 사항 3C7에서와 같은 장치에서, 상기 인터커넥트의 두께는 약 30미크론보다 작거나 같다.
25C7. 사항 3C7에서와 같은 장치에서, 상기 슈퍼 셀은 적어도 약 500㎜의 전류 흐름의 방향으로의 길이를 가진다.
26C7. 사항 3C7에서와 같은 장치에서, 상기 모듈 전면 상에 다른 슈퍼 셀을 더 포함한다.
27C7. 사항 26C7에서와 같은 장치에서, 상기 인터커넥트는 상기 다른 슈퍼 셀을 상기 슈퍼 셀과 직렬로 연결한다.
28C7. 사항 26C7에서와 같은 장치에서, 상기 인터커넥트는 상기 다른 슈퍼 셀을 상기 슈퍼 셀과 병렬로 연결한다.
29C7. 사항 26C7에서와 같은 장치에서, 상기 전면은 상기 슈퍼 셀 및 상기 다른 슈퍼 셀 사이의 갭들에 대응되는 위치 및 폭의 어둡게 된 스트라이프들을 특징짓는 백색 백킹을 포함한다.
30C7. 사항 3C7에서와 같은 장치에서, 상기 인터커넥트는 패턴을 포함한다.
31C7. 사항 3C7에서와 같은 장치에서, 상기 패턴은 슬릿들, 슬롯들 및/또는 홀들을 포함한다.
32C7. 사항 3C7에서와 같은 장치에서, 상기 인터커넥트의 일부는 다크(dark)이다.
33C7. 사항 3C7에서와 같은 장치에서,
상기 제1 실리콘 태양 전지는 챔퍼 처리된 모서리들을 포함하고;
상기 제2 실리콘 태양 전지는 챔퍼 처리된 모서리들이 결핍되며;
상기 슈퍼 셀의 각 실리콘 태양 전지는 광에 노출되는 실질적으로 동일한 전면 면적을 가진다.
34C7. 사항 3C7에서와 같은 장치에서,
상기 제1 실리콘 태양 전지는 챔퍼 처리된 모서리들을 포함하고;
상기 제2 실리콘 태양 전지는 챔퍼 처리된 모서리들을 포함하며;
상기 제2 실리콘 태양 전지의 긴 측면과 중첩되는 긴 측면을 구비하는 측면을 포함한다.
35C7. 사항 3C7에서와 같은 장치에서, 상기 인터커넥트는 버스를 형성한다.
36C7. 사항 3C7에서와 같은 장치에서, 상기 인터커넥트는 접착되는 연결 부위에서 상기 태양 전지 표면에 도전성으로 결합된다.
37C7. 사항 3C7에서와 같은 장치에서, 상기 인터커넥트의 제1 부분은 나머지 제2 부분이 상기 슈퍼 셀의 후면 상에 위치하도록 상기 슈퍼 셀의 에지 주위에서 접힌다.
38C7. 사항 3C7에서와 같은 장치에서, 긴 측면을 따라 진행하는 라인을 구비하는 상기 전면 상의 금속화 패턴을 더 포함하며, 상기 장치는 상기 라인과 상기 긴 측면 사이에 위치하는 복수의 별개의 콘택 패드들을 더 포함한다.
39C7. 사항 38C7에서와 같은 장치에서,
상기 금속화는 각각의 별개의 콘택 패드들에 전기적으로 연결되고, 상기 긴 측면에 직교하게 진행되는 핑거들을 더 포함하며;
상기 도전성 라인은 상기 핑거들을 상호 연결한다.
40C7. 사항 38C7에서와 같은 장치에서, 상기 금속화 패턴은 상기 접착제의 확산을 제한하도록 돌출된 특징을 포함한다.
1C8. 장치는,
태양광 모듈 전면 상에 열들로 배열되는 복수의 슈퍼 셀들을 포함하며, 각 슈퍼 셀은 적어도 10V의 항복 전압을 가지고, 실리콘 태양 전지들을 전기적으로 직렬로 연결하도록 중첩되고 도전성으로 결합되는 인접하는 실리콘 태양 전지들의 단부들과 일렬로 배열되는 적어도 열아홉 개의 실리콘 태양 전지들을 구비하며;
제1 열 내의 모듈 에지에 인접하는 제1 슈퍼 셀의 단부는 상기 제1 슈퍼 셀의 전면에 결합되는 유연한 전기적 인터커넥트를 통해 제2 열 내의 상기 모듈 에지에 인접하는 제2 슈퍼 셀의 단부에 전기적으로 연결된다.
2C8. 사항 1C8에서와 같은 장치에서, 상기 유연한 전기적 인터커넥트의 일부는 다크 필름(dark film)에 의해 덮인다.
3C8. 사항 2C8에서와 같은 장치에서, 상기 태양광 모듈 전면은 상기 유연한 전기적 인터커넥트와 감소된 가시적인 대비를 나타내는 백킹 시트를 포함한다.
4C98. 사항 1C8에서와 같은 장치에서, 상기 유연한 전기적 인터커넥트의 일부는 착색된다.
5C8. 사항 4C8에서와 같은 장치에서, 상기 태양광 모듈 전면은 상기 유연한 전기적 인터커넥트와 감소된 가시적인 대비를 나타내는 백킹 시트를 포함한다.
6C8. 사항 1C8에서와 같은 장치에서, 상기 태양광 모듈 전면은 백색 백킹 시트를 포함한다.
7C8. 사항 6C8에서와 같은 장치에서, 상기 열들 사이의 갭들에 대응되는 어둡게 된 스트라이프들을 더 포함한다.
8C8. 사항 6C8에서와 같은 장치에서, 상기 실리콘 태양 전지의 n-형 반도체층은 상기 백킹 시트와 마주한다.
9C8. 사항 1C8에서와 같은 장치에서,
상기 태양광 모듈 전면은 배면 시트를 포함하며;
상기 배면 시트, 상기 유연한 전기적 인터커넥트, 상기 제1 슈퍼 셀 및 봉지재는 라미네이트된 구조를 포함한다.
10C8. 사항 9C8에서와 같은 장치에서, 상기 봉지재는 열가소성 폴리머를 포함한다.
11C8. 사항 10C8에서와 같은 장치에서, 상기 열가소성 폴리머는 열가소성 올레핀 폴리머를 포함한다.
12C8. 사항 9C8에서와 같은 장치에서, 전면 유리 시트를 더 포함한다.
13C8. 사항 12C8에서와 같은 장치에서, 상기 배면 시트는 유리를 포함한다.
14C8. 사항 1C8에서와 같은 장치에서, 상기 유연한 전기적 인터커넥트는 복수의 별개의 위치들에서 결합된다.
15C8. 사항 1C8에서와 같은 장치에서, 상기 유연한 전기적 인터커넥트는 전기적으로 도전성인 접착 결합 물질로 결합된다.
16C8. 사항 1C8에서와 같은 장치에서, 접착되는 연결 부위를 더 포함한다.
17C8. 사항 1C8에서와 같은 장치에서, 상기 유연한 전기적 인터커넥트는 상기 모듈 에지에 평행하게 진행된다.
18C8. 사항 1C8에서와 같은 장치에서, 상기 유연한 전기적 인터커넥트의 일부는 상기 제1 슈퍼 셀 주위에서 접히고, 감춰진다.
19C8. 사항 1C8에서와 같은 장치에서, 상기 제1 슈퍼 셀을 전기적 구성 요소에 전기적으로 연결하는 리본 컨덕터를 더 포함한다.
20C8. 사항 19C8에서와 같은 장치에서, 상기 리본 컨덕터는 상기 유연한 전기적 인터커넥트에 도전성으로 연결된다.
21C8. 사항 19C8에서와 같은 장치에서, 상기 리본 컨덕터는 중첩되는 단부로부터 멀어져 태양 전지 표면에 도전성으로 결합된다.
22C8. 사항 19C8에서와 같은 장치에서, 상기 전기적 구성 요소는 태양광 모듈 후면 상에 있다.
23C8. 사항 19C8에서와 같은 장치에서, 상기 전기적 구성 요소는 접합 박스를 포함한다.
24C8. 사항 23C8에서와 같은 장치에서, 상기 접합 박스는 다른 태양광 모듈 전면 상의 다른 접합 박스와 일치하는 배치된다.
25C8. 사항 23C8에서와 같은 장치에서, 상기 접합 박스는 단일의 단자 접합 박스를 포함한다.
26C8. 사항 19C8에서와 같은 장치에서, 상기 전기적 구성 요소는 바이패스 다이오드를 포함한다.
27C8. 사항 19C8에서와 같은 장치에서, 상기 전기적 구성 요소는 스위치를 포함한다.
28C8. 사항 27C8에서와 같은 장치에서,
상기 제1 슈퍼 셀의 전압 출력을 수신하고;
상기 전압에 기초하여, 상기 제1 슈퍼 셀의 태양 전지가 역 바이어스인지를 결정하며;
상기 역 바이어스인 태양 전지를 슈퍼 셀 모듈 회로로부터 연결 해제하기 위해 상기 스위치와 통신하도록 구성되는 전압 센싱 컨트롤러를 더 포함한다.
29C8. 사항 1C8에서와 같은 장치에서, 상기 제1 슈퍼 셀은 상기 제2 슈퍼 셀과 직렬이다.
30C8. 사항 1C8에서와 같은 장치에서,
상기 제1 슈퍼 셀의 제1 실리콘 태양 전지는 챔퍼 처리된 모서리들을 포함하고;
상기 제1 슈퍼 셀의 제2 실리콘 태양 전지는 챔퍼 처리된 모서리들이 결핍되며;
상기 제1 슈퍼 셀의 각 실리콘 태양 전지는 광에 노출되는 실질적으로 동일한 전면 면적을 가진다.
31C8. 사항 1C8에서와 같은 장치에서,
상기 제1 슈퍼 셀의 제1 실리콘 태양 전지는 챔퍼 처리된 모서리들을 포함하고;
상기 제1 슈퍼 셀의 제2 실리콘 태양 전지는 챔퍼 처리된 모서리들을 포함하며;
상기 제1 실리콘 태양 전지의 긴 측면은 상기 제2 실리콘 태양 전지의 긴 측면과 중첩된다.
32C8. 사항 1C8에서와 같은 장치에서, 상기 제1 슈퍼 셀의 실리콘 태양 전지는 약 156㎜의 길이를 갖는 스트립을 포함한다.
33C8. 사항 1C8에서와 같은 장치에서, 상기 제1 슈퍼 셀의 실리콘 태양 전지는 약 125㎜의 길이를 갖는 스트립을 포함한다.
34C8. 사항 1C8에서와 같은 장치에서, 상기 제1 슈퍼 셀의 실리콘 태양 전지는 약 1:2 내지 약 1:20의 폭 및 길이 사이의 종횡비를 갖는 스트립을 포함한다.
35C8. 사항 1C8에서와 같은 장치에서, 상기 제1 슈퍼 셀의 중첩되고 인접하는 실리콘 태양 전지들은 접착제로 도전성으로 결합되며, 상기 장치는 상기 접착제의 확산을 제한하도록 구성되는 특징을 더 포함한다.
36C8. 사항 35C8에서와 같은 장치에서, 상기 특징은 모우트(moat)를 포함한다.
37C8. 사항 36C8에서와 같은 장치에서, 상기 모우트는 금속화 패턴에 의해 형성된다.
38C8. 사항 37C8에서와 같은 장치에서, 상기 금속화 패턴은 상기 실리콘 태양 전지의 긴 측면을 따라 진행되는 라인을 포함하며, 상기 장치는 상기 라인 및 상기 긴 측면 사이에 위치하는 복수의 별개의 콘택 패드들을 더 포함한다.
39C8. 사항 37C8에서와 같은 장치에서, 상기 금속화 패턴은 상기 제1 슈퍼 셀의 실리콘 태양 전지의 전면 상에 위치한다.
40C8. 사항 37C8에서와 같은 장치에서, 상기 금속화 패턴은 상기 제2 슈퍼 셀의 실리콘 태양 전지의 후면 상에 위치한다.
1C9. 장치는,
제2 절단된 스트립에 의해 중첩되는 제1 외측 에지를 따라 전면 금속화 패턴을 갖는 제1 절단된 스트립을 포함하는 제1 슈퍼 셀 내로 그룹화되는 직렬 연결된 실리콘 태양 전지들을 포함하는 전면을 구비하는 태양광 모듈을 포함한다.
2C9. 사항 1C9에서와 같은 장치에서, 상기 제1 절단된 스트립 및 상기 제2 절단된 스트립은 상기 제1 절단된 스트립이 나누어지는 웨이퍼의 형상을 재생하는 길이를 가진다.
3C9. 사항 2C9에서와 같은 장치에서, 상기 길이는 156㎜이다.
4C9. 사항 2C9에서와 같은 장치에서, 상기 길이는 125㎜이다.
5C9. 사항 2C9에서와 같은 장치에서, 상기 제1 절단된 스트립의 폭 및 상기 길이 사이의 종횡비는 약 1:2 내지 약 1:20이다.
6C9. 사항 2C9에서와 같은 장치에서, 상기 제1 절단된 스트립은 제1 챔퍼 처리된 모서리를 포함한다.
7C9. 사항 6C9에서와 같은 장치에서, 상기 제1 챔퍼 처리된 모서리는 상기 제1 외측 에지를 따른다.
8C9. 사항 6C9에서와 같은 장치에서, 상기 제1 챔퍼 처리된 모서리는 상기 제1 외측 에지를 따르지 않는다.
9C9. 사항 6C9에서와 같은 장치에서, 상기 제2 절단된 스트립은 제2 챔퍼 처리된 모서리를 포함한다.
10C9. 사항 9C9에서와 같은 장치에서, 상기 제2 절단된 스트립의 중첩되는 에지는 상기 제2 챔퍼 처리된 모서리를 포함한다.
11C9. 사항 9C9에서와 같은 장치에서, 상기 제2 절단된 스트립의 중첩되는 에지는 상기 제2 챔퍼 처리된 모서리를 포함하지 않는다.
12C9. 사항 6C9에서와 같은 장치에서, 상기 길이는 상기 제1 절단된 스트립이 나누어지는 의사 정사각형의 웨이퍼의 형상을 재생한다.
13C9. 사항 6C9에서와 같은 장치에서, 상기 제1 절단된 스트립의 폭은 상기 제1 절단된 스트립 및 상기 제2 절단된 스트립이 대략적으로 동일한 면적을 가지도록 상기 제2 절단된 스트립의 폭과 다르다.
14C9. 사항 1C9에서와 같은 장치에서, 상기 제2 절단된 스트립은 상기 제1 절단된 스트립과 약 1㎜-5㎜로 중첩된다.
15C9. 사항 1C9에서와 같은 장치에서, 상기 전면 금속화 패턴은 버스 바를 포함한다.
16C9. 사항 15C9에서와 같은 장치에서, 상기 버스 바는 테이퍼진 부분을 포함한다.
17C9. 사항 1C9에서와 같은 장치에서, 상기 전면 금속화 패턴은 별개의 콘택 패드를 포함한다.
18C9. 사항 17C9에서와 같은 장치에서,
제2 절단된 스트립은 상기 제1 절단된 스트립과 접착제에 의해 접착되고;
상기 별개의 콘택 패드는 접착제 확산을 제한하는 특징을 더 포함한다.
19C9. 사항 18C9에서와 같은 장치에서, 상기 특징은 모우트를 포함한다.
20C9. 사항 1C9에서와 같은 장치에서, 상기 전면 금속화 패턴은 바이패스 컨덕터를 포함한다.
21C9. 사항 1C9에서와 같은 장치에서, 상기 전면 금속화 패턴은 핑거를 포함한다.
22C9. 사항 1C9에서와 같은 장치에서, 상기 제1 절단된 스트립은 상기 제1 외측 에지에 대향하는 제2 외측 에지를 따라 후면 금속화 패턴을 더 포함한다.
23C9. 사항 22C9에서와 같은 장치에서, 상기 후면 금속화 패턴은 콘택 패드를 포함한다.
24C9. 사항 22C9에서와 같은 장치에서, 상기 후면 금속화 패턴은 버스 바를 포함한다.
25C9. 사항 1C9에서와 같은 장치에서, 상기 슈퍼 셀은 각기 약 10볼트보다 큰 항복 전압을 갖는 적어도 열아홉 개의 실리콘 절단된 스트립들을 포함한다.
26C9. 사항 1C9에서와 같은 장치에서, 상기 슈퍼 셀은 상기 모듈 전면 상의 다른 슈퍼 셀과 연결된다.
27C9. 사항 26C9에서와 같은 장치에서, 상기 모듈 전면은 상기 슈퍼 셀 및 상기 다른 슈퍼 셀 사이의 갭들에 대응되는 어둡게 된 스트라이프들을 특징짓는 백색 백킹을 포함한다.
28C9. 사항 26C9에서와 같은 장치에서,
상기 태양광 모듈 전면은 배면 시트를 포함하며;
상기 배면 시트, 상기 인터커넥트, 상기 슈퍼 셀 및 봉지재는 라미네이트된 구조를 포함한다.
29C9. 사항 28C9에서와 같은 장치에서, 상기 봉지재는 열가소성 폴리머를 포함한다.
30C9. 사항 26C9에서와 같은 장치에서, 상기 열가소성 폴리머는 열가소성 올레핀 폴리머를 포함한다.
31C9. 사항 26C9에서와 같은 장치에서, 상기 슈퍼 셀과 상기 다른 슈퍼 셀 사이에 인터커넥트를 더 포함한다.
32C9. 사항 31C9에서와 같은 장치에서, 상기 인터커넥트의 일부는 다크 필름에 의해 커버된다.
33C9. 사항 31C9에서와 같은 장치에서, 상기 인터커넥트의 일부는 착색된다.
34C9. 사항 31C9에서와 같은 장치에서, 상기 슈퍼 셀을 전기적 구성 요소에 전기적으로 연결하는 리본 컨덕터를 더 포함한다.
35C9. 사항 34C9에서와 같은 장치에서, 상기 리본 컨덕터는 상기 제1 절단된 스트립의 후면에 도전성으로 결합된다.
36C9. 사항 34C9에서와 같은 장치에서, 상기 전기적 구성 요소는 바이패스 다이오드를 포함한다.
37C9. 사항 34C9에서와 같은 장치에서, 상기 전기적 구성 요소는 스위치를 포함한다.
38C9. 사항 34C9에서와 같은 장치에서, 상기 전기적 구성 요소는 접합 박스를 포함한다.
39C9. 사항 38C9에서와 같은 장치에서, 상기 접합 박스는 다른 접합 박스와 중첩되고 일치하는 배치로 된다.
40C9. 사항 26C9에서와 같은 장치에서, 상기 슈퍼 셀 및 상기 다른 슈퍼 셀은 직렬로 연결된다.
1C10. 방법은,
태양 전지 영역을 한정하도록 실리콘 웨이퍼 상에 스크라이브 라인을 레이저 스크라이빙하는 단계;
전기적으로 도전성인 접착 결합 물질을 상기 태양 전지 영역의 긴 측면에 인접하는 스크라이브된 실리콘 웨이퍼의 상면에 적용하는 단계; 및
상기 태양 전지 스트립의 긴 측면에 인접하여 배치되는 상기 전기적으로 도전성인 접착 결합 물질의 일부를 포함하는 태양 전지 스트립을 제공하도록 상기 스크라이브 라인을 따라 실리콘 웨이퍼를 분리하는 단계를 포함한다.
2C10. 사항 1C10에서와 같은 방법에서, 상기 분리하는 단계가 상기 긴 측면을 따라 금속화 패턴을 갖는 상기 태양 전지 스트립을 생성하도록 상기 실리콘 웨이퍼에 상기 금속화 패턴을 제공하는 단계를 더 포함한다.
3C10. 사항 2C10에서와 같은 방법에서, 상기 금속화 패턴은 버스 바 또는 별개의 콘택 패드를 포함한다.
4C10. 사항 2C10에서와 같은 방법에서, 상기 제공하는 단계는 상기 금속화 패턴을 프린팅하는 단계를 포함한다.
5C10. 사항 2C10에서와 같은 방법에서, 상기 제공하는 단계는 상기 금속화 패턴을 전기 도금하는 단계를 포함한다.
6C10. 사항 2C10에서와 같은 방법에서, 상기 금속화 패턴은 상기 전기적으로 도전성인 접착 결합 물질의 확산을 제한하도록 구성되는 특징을 포함한다.
7C10. 사항 6C10에서와 같은 방법에서, 상기 특징은 모우트를 포함한다.
8C10. 사항 1C10에서와 같은 방법에서, 상기 적용하는 단계는 프린팅을 포함한다.
9C10. 사항 1C10에서와 같은 방법에서, 상기 적용하는 단계는 마스크를 이용하여 증착하는 단계를 포함한다.
10C10. 사항 1C10에서와 같은 방법에서, 상기 태양 전지 스트립의 긴 측면의 길이는 상기 웨이퍼의 형상을 재생한다.
11C10. 사항 10C10에서와 같은 방법에서, 상기 길이는 156㎜ 또는 125㎜이다.
12C10. 사항 10C10에서와 같은 방법에서, 상기 태양 전지 스트립의 폭 및 상기 길이 사이의 종횡비는 약 1:2 내지 약 1:20이다.
13C10. 사항 1C10에서와 같은 방법에서, 상기 분리하는 단계는,
곡선의 지지 표면에 대해 상기 태양 전지 영역을 구부리도록 상기 웨이퍼의 저면 및 상기 곡선의 지지면 사이에 진공을 인가하며, 이에 따라 상기 스크라이브 라인을 따라 상기 실리콘 웨이퍼를 절단하는 단계를 포함한다.
14C10. 사항 1C10에서와 같은 방법에서,
중첩되고 인접하는 태양 전지 스트립들의 긴 측면들 및 이들 사이에 배치되는 상기 전기적으로 도전성인 접착 결합 물질의 일부와 일렬로 복수의 태양 전지 스트립들을 배열하는 단계; 및
상기 전기적으로 도전성인 결합 물질을 큐어링하여, 인접하고 중첩되는 태양 전지 스트립들을 서로 결합하고 이들을 전기적으로 직렬로 연결하는 단계를 포함한다.
15C10. 사항 14C10에서와 같은 방법에서, 상기 큐어링하는 단계는 열을 인가하는 단계를 포함한다.
16C10. 사항 14C10에서와 같은 방법에서, 상기 큐어링하는 단계는 압력을 인가하는 단계를 포함한다.
17C10. 사항 14C10에서와 같은 방법에서, 상기 배열하는 단계는 성층 구조를 형성하는 단계를 포함한다.
18C10. 사항 17C10에서와 같은 방법에서, 상기 큐어링하는 단계는 상기 성층 구조에 대해 열 및 압력을 인가하는 단계를 포함한다.
19C10. 사항 17C10에서와 같은 방법에서, 상기 성층 구조는 봉지재를 포함한다.
20C10. 사항 19C10에서와 같은 방법에서, 상기 봉지재는 열가소성 폴리머를 포함한다.
21C10. 사항 20C10에서와 같은 방법에서, 상기 열가소성 폴리머는 열가소성 올레핀 폴리머를 포함한다.
22C10. 사항 17C10에서와 같은 방법에서, 상기 성층 구조는 백킹 시트를 포함한다.
23C10. 사항 22C10에서와 같은 방법에서,
상기 백킹 시트는 백색이며;
상기 성층 구조는 어둡게 된 스트라이프들을 더 포함한다.
24C10. 사항 14C10에서와 같은 방법에서, 상기 배열하는 단계는 적어도 열아홉 개의 태양 전지 스트립들을 일렬로 배열하는 단계를 포함한다.
25C10. 사항 24C10에서와 같은 방법에서, 각각의 상기 적어도 열아홉 개의 태양 전지 스트립들은 적어도 10V의 항복 전압을 가진다.
26C10. 사항 24C10에서와 같은 방법에서, 단일의 바이패스 다이오드와 통신하는 적어도 열아홉 개의 태양 전지 스트립들을 배치하는 단계를 더 포함한다.
27C10. 사항 26C10에서와 같은 방법에서, 상기 적어도 열아홉 개의 태양 전지 스트립들의 하나 및 상기 단일의 바이패스 다이오드 사이에 리본 컨덕터를 형성하는 단계를 더 포함한다.
28C10. 사항 27C10에서와 같은 방법에서, 상기 단일의 바이패스 다이오드는 접합 박스 내에 위치한다.
29C10. 사항 28C10에서와 같은 방법에서, 상기 접합 박스는 다른 태양광 모듈의 다른 접합 박스와 일치하는 배치로 태양광 모듈의 후면 상에 있다.
30C10. 사항 14C10에서와 같은 방법에서, 상기 복수의 태양 전지 스트립들의 중첩되는 셀 스트립은 상기 태양 전지 스트립과 약 1㎜-5㎜로 중첩된다.
31C10. 사항 14C10에서와 같은 방법에서, 상기 태양 전지 스트립은 제1 챔퍼 처리된 모서리를 포함한다.
32C10. 사항 31C10에서와 같은 방법에서, 상기 복수의 태양 전지 스트립들의 중첩되는 태양 전지 스트립의 긴 측면은 제2 챔퍼 처리된 모서리를 포함하지 않는다.
33C10. 사항 32C10에서와 같은 방법에서, 상기 태양 전지 스트립의 폭은 상기 태양 전지 스트립 및 상기 중첩되는 태양 전지 스트립이 대략적으로 동일한 면적을 가지도록 상기 중첩되는 태양 전지 스트립의 폭보다 크다.
34C10. 사항 31C10에서와 같은 방법에서, 상기 복수의 태양 전지 스트립들의 중첩되는 태양 전지 스트립의 긴 측면은 제2 챔퍼 처리된 모서리를 포함한다.
35C10. 사항 34C10에서와 같은 방법에서, 상기 복수의 태양 전지 스트립들의 중첩되는 태양 전지 스트립의 긴 측면은 상기 제1 챔퍼 처리된 모서리를 포함하는 셀 스트립의 긴 측면과 중첩된다.
36C10. 사항 34C10에서와 같은 방법에서, 상기 복수의 태양 전지 스트립들의 중첩되는 태양 전지 스트립의 긴 측면은 상기 제1 챔퍼 처리된 모서리를 포함하지 않는 셀 스트립의 긴 측면과 중첩된다.
37C10. 사항 14C10에서와 같은 방법에서, 상기 복수의 태양 전지 스트립들을 인터커넥트를 활용하여 다른 복수의 태양 전지 스트립들과 연결하는 단계를 더 포함한다.
38C10. 사항 37C10에서와 같은 방법에서, 상기 인터커넥트의 일부는 다크 필름으로 덮인다.
39C10. 사항 37C10에서와 같은 방법에서, 상기 인터커넥트의 일부는 착색된다.
40C10. 사항 37C10에서와 같은 방법에서, 상기 복수의 태양 전지 스트립들은 상기 다른 복수의 태양 전지 스트립들과 직렬로 연결된다.
1C11. 방법은,
길이를 갖는 실리콘 웨이퍼를 제공하는 단계;
태양 전지 영역을 한정하도록 상기 실리콘 웨이퍼 상에 스크라이브 라인을 스크라이빙하는 단계;
전기적으로 도전성인 접착 결합 물질을 상기 실리콘 웨이퍼의 표면에 적용하는 단계; 및
상기 태양 전지 스트립의 긴 측면에 인접하여 배치되는 상기 전기적으로 도전성인 접착 결합 물질의 일부를 포함하는 태양 전지 스트립을 제공하도록 상기 스크라이브 라인을 따라 상기 실리콘 웨이퍼를 분리하는 단계를 포함한다.
2C11. 사항 1C11에서와 같은 방법에서, 상기 스크라이빙하는 단계는 레이저 스크라이빙을 포함한다.
3C11. 사항 1C11에서와 같은 방법에서, 상기 스크라이브 라인을 레이저 스크라이빙하고, 이후에 상기 전기적으로 도전성인 접착 결합 물질을 적용하는 단계를 포함한다.
4C11. 사항 2C11에서와 같은 방법에서, 상기 전기적으로 도전성인 접착 결합 물질을 상기 웨이퍼에 적용하고, 이후에 상기 스크라이브 라인을 레이저 스크라이빙하는 단계를 포함한다.
5C11. 사항 4C11에서와 같은 방법에서,
상기 적용하는 단계는 큐어링되지 않은 전기적으로 도전성인 접착 결합 물질을 적용하는 단계를 포함하며;
상기 레이저 스크라이빙하는 단계는 상기 레이저로부터의 열로 상기 큐어링되지 않은 도전성 접착 결합 물질을 큐어링하는 단계를 회피하는 단계를 포함한다.
6C11. 사항 5C11에서와 같은 방법에서, 상기 회피하는 단계는 레이저 출력 및/또는 상기 스크라이브 라인 및 상기 큐어링되지 않은 도전성 접착 결합 물질 사이의 거리를 선택하는 단계를 포함한다.
7C11. 사항 1C11에서와 같은 방법에서, 상기 적용하는 단계는 프린팅하는 단계를 포함한다.
8C11. 사항 1C11에서와 같은 방법에서, 상기 적용하는 단계는 마스크를 이용하여 증착하는 단계를 포함한다.
9C11. 사항 1C11에서와 같은 방법에서, 상기 스크라이브 라인 및 상기 전기적으로 도전성인 접착 결합 물질은 상기 표면 상에 있다.
10C11. 사항 1C11에서와 같은 방법에서, 상기 분리하는 단계는,
곡선의 지지면에 대해 상기 태양 전지 영역을 구부리도록 상기 웨이퍼의 표면과 상기 곡선의 지지면 사이에 진공을 인가하며, 이에 따라 상기 스크라이브 라인을 따라 상기 실리콘 웨이퍼를 절단하는 단계를 포함한다.
11C11. 사항 10C11에서와 같은 방법에서, 상기 분리하는 단계는 진공 매니폴드에 대해 각도로 상기 스크라이브 라인을 배열하는 단계를 포함한다.
12C11. 사항 1C11에서와 같은 방법에서, 상기 분리하는 단계는 상기 웨이퍼에 압력을 인가하도록 롤러를 사용하는 단계를 포함한다.
13C11. 사항 1C11에서와 같은 방법에서, 상기 제공하는 단계는 상기 분리하는 단계가 상기 긴 측면을 따른 금속화 패턴을 갖는 태양 전지 스트립을 생성하도록 상기 실리콘 웨이퍼에 상기 금속화 패턴을 제공하는 단계를 더 포함한다.
14C11. 사항 13C11에서와 같은 방법에서, 상기 금속화 패턴은 버스 바 또는 별개의 콘택 패드를 포함한다.
15C11. 사항 13C11에서와 같은 방법에서, 상기 제공하는 단계는 상기 금속화 패턴을 프린팅하는 단계를 포함한다.
16C11. 사항 13C11에서와 같은 방법에서, 상기 제공하는 단계는 상기 금속화 패턴을 전기 도금하는 단계를 포함한다.
17C11. 사항 13C11에서와 같은 방법에서, 상기 금속화 패턴은 상기 전기적으로 도전성인 접착 결합 물질의 확산을 제한하도록 구성되는 특징을 포함한다.
18C11. 사항 1C11에서와 같은 방법에서, 상기 태양 전지 스트립의 긴 측면의 길이는 상기 웨이퍼의 형상을 재생한다.
19C11. 사항 18C11에서와 같은 방법에서, 상기 길이는 156㎜ 또는 125㎜이다.
20C11. 사항 18C11에서와 같은 방법에서, 상기 태양 전지 스트립의 폭 및 상기 길이 시아의 종횡비는 약 1:2 내지 약 1:20이다.
21C11. 사항 1C11에서와 같은 방법에서,
중첩되고 인접하는 태양 전지 스트립들의 긴 측면들 및 그 사이에 배치되는 상기 전기적으로 도전성인 접착 결합 물질의 일부와 일렬로 복수의 태양 전지 스트립들을 배열하는 단계; 및
상기 전기적으로 도전성인 결합 물질을 큐어링하여, 인접하고 중첩되는 태양 전지 스트립들을 서로 결합하고 이들을 전기적으로 직렬로 연결하는 단계를 더 포함한다.
22C11. 사항 21C11에서와 같은 방법에서,
상기 배열하는 단계는 성층 구조를 형성하는 단계를 포함하며;
상기 큐어링하는 단계는 상기 성층 구조에 대한 열 및/또는 압력의 적용을 포함한다.
23C11. 사항 22C11에서와 같은 방법에서, 상기 성층 구조는 열가소성 올레핀 폴리머 봉지재를 포함한다.
24C11. 사항 22C11에서와 같은 방법에서, 상기 성층 구조는,
백색 백킹 시트; 및
상기 백색 백킹 시트 상의 어둡게 된 스트라이프들을 포함한다.
25C11. 사항 22C11에서와 같은 방법에서,
복수의 웨이퍼들이 템플레이트(template) 상에 제공되고;
상기 도전성 접착 결합 물질은 상기 복수의 웨이퍼들 상에 분배되며;
상기 복수의 웨이퍼들은 픽스처(fixture)로 복수의 태양 전지 스트립들로 동시에 분리되는 셀들이다.
26C11. 사항 25C11에서와 같은 방법에서, 상기 복수의 태양 전지 스트립들을 그룹으로서 이송하는 단계를 더 포함하며, 상기 배열하는 단계는 상기 복수의 태양 전지 스트립들을 모듈 내로 배열하는 단계를 포함한다.
27C11. 사항 21C11에서와 같은 방법에서, 상기 배열하는 단계는 단일의 바이패스 다이오드만과 일렬로 적어도 10V의 항복 전압을 갖는 적어도 열아홉 개의 태양 전지 스트립들을 배열하는 단계를 포함한다.
28C11. 사항 27C11에서와 같은 방법에서, 상기 적어도 열아홉 개의 태양 전지 스트립들의 하나 및 상기 단일의 바이패스 다이오드 사이에 리본 컨덕터를 형성하는 단계를 더 포함한다.
29C11. 사항 28C11에서와 같은 방법에서, 상기 단일의 바이패스 다이오드는 제2 태양광 모듈의 제2 접합 박스와 일치하는 배치인 제1 태양광 모듈의 제1 접합 박스 내에 위치한다.
30C11. 사항 27C11에서와 같은 방법에서, 상기 적어도 열아홉 개의 태양 전지 스트립들의 하나 및 스마트 스위치 사이에 리본 컨덕터를 형성하는 단계를 더 포함한다.
31C11. 사항 21C11에서와 같은 방법에서, 상기 복수의 태양 전지 스트립들의 중첩되는 셀 스트립은 상기 태양 전지 스트립과 약 1㎜-5㎜로 중첩된다.
32C11. 사항 21C11에서와 같은 방법에서, 상기 태양 전지 스트립은 제1 챔퍼 처리된 모서리를 포함한다.
33C11. 사항 32C11에서와 같은 방법에서, 상기 복수의 태양 전지 스트립들의 중첩되는 태양 전지 스트립의 긴 측면은 제2 챔퍼 처리된 모서리를 포함하지 않는다.
34C11. 사항 33C11에서와 같은 방법에서, 상기 태양 전지 스트립의 폭은 상기 태양 전지 스트립 및 상기 중첩되는 태양 전지 스트립이 대략적으로 동일한 면적을 가지도록 상기 중첩되는 태양 전지 스트립보다 크다.
35C11. 사항 32C11에서와 같은 방법에서, 상기 복수의 태양 전지 스트립들의 중첩되는 태양 전지 스트립의 긴 측면은 제2 챔퍼 처리된 모서리를 포함한다.
36C11. 사항 35C11에서와 같은 방법에서, 상기 복수의 태양 전지 스트립들의 중첩되는 태양 전지 스트립의 긴 측면은 상기 제1 챔퍼 처리된 모서리를 포함하는 셀 스트립의 긴 측면과 중첩된다.
37C11. 사항 35C11에서와 같은 방법에서, 상기 복수의 태양 전지 스트립들의 중첩되는 태양 전지 스트립의 긴 측면은 상기 제1 챔퍼 처리된 모서리를 포함하지 않는 셀 스트립의 긴 측면과 중첩된다.
38C11. 사항 21C11에서와 같은 방법에서, 상기 복수의 태양 전지 스트립들을 인터커넥트를 활용하여 다른 복수의 태양 전지 스트립들과 연결하는 단계를 더 포함한다.
39C11. 사항 38C11에서와 같은 방법에서, 상기 인터커넥트의 일부는 다크 필름에 의해 덮이거나 착색된다.
40C11. 사항 38C11에서와 같은 방법에서, 상기 복수의 태양 전지 스트립들은 상기 다른 복수의 태양 전지 스트립들과 직렬로 연결된다.
1C12. 방법은,
길이를 갖는 실리콘 웨이퍼를 제공하는 단계;
태양 전지 영역을 한정하도록 실리콘 웨이퍼 상에 스크라이브 라인을 스크라이빙하는 단계;
태양 전지 스트립을 제공하도록 상기 스크라이브 라인을 따라 상기 실리콘 웨이퍼를 분리하는 단계; 및
상기 태양 전지 스트립의 긴 측면에 인접하게 배치되는
전기적으로 도전성인 접착 결합 물질을 적용하는 단계를 포함한다.
2C12. 사항 1C12에서와 같은 방법에서, 상기 스크라이빙하는 단계는 레이저 스크라이빙을 포함한다.
3C12. 사항 1C12에서와 같은 방법에서, 상기 적용하는 단계는 스크린 프린팅을 포함한다.
4C12. 사항 1C12에서와 같은 방법에서, 상기 적용하는 단계는 잉크젯 프린팅을 포함한다.
5C12. 사항 1C12에서와 같은 방법에서, 상기 적용하는 단계는 마스크를 이용하여 증착하는 단계를 포함한다.
6C12. 사항 1C12에서와 같은 방법에서, 상기 분리하는 단계는 상기 웨이퍼의 표면 및 곡선의 표면 사이에 진공을 인가하는 단계를 포함한다.
7C12. 사항 6C12에서와 같은 방법에서, 상기 곡선의 표면은 진공 매니폴드를 포함하며, 상기 분리하는 단계는 상기 진공 매니폴드에 대해 각도로 상기 스크라이브 라인을 배향하는 단계를 포함한다.
8C12. 사항 7C12에서와 같은 방법에서, 상기 각도는 직각이다.
9C12. 사항 7C12에서와 같은 방법에서, 상기 각도는 직각이외의 각도이다.
10C12. 사항 6C12에서와 같은 방법에서, 상기 진공은 이동 벨트를 통해 인가된다.
11C12. 사항 1C12에서와 같은 방법에서,
그 사이에 배치되는 상기 전기적으로 도전성인 접착 결합 물질과 중첩되고 인접하는 태양 전지 스트립들과 일렬로 배열하는 단계; 및
전기적으로 직렬로 연결되는 인접하고 중첩되는 태양 전지 스트립들을 결합하도록 상기 전기적으로 도전성인 결합 물질을 큐어링하는 단계를 더 포함한다.
12C12. 사항 11C12에서와 같은 방법에서, 상기 배열하는 단계는 봉지재를 포함하는 성층 구조를 형성하는 단계를 포함하며, 상기 방법은 상기 성층 구조를 라미네이팅하는 단계를 더 포함한다.
13C12. 사항 12C12에서와 같은 방법에서, 상기 큐어링하는 단계는 상기 라미네이팅하는 단계 동안에 적어도 부분적으로 발생된다.
14C12. 사항 12C12에서와 같은 방법에서, 상기 큐어링하는 단계는 상기 라미네이팅하는 단계와 구별되어 발생된다.
15C12. 사항 12C12에서와 같은 방법에서, 상기 라미네이팅하는 단계는 진공을 인가하는 단계를 포함한다.
16C12. 사항 15C12에서와 같은 방법에서, 상기 진공은 블래더(bladder)에 인가된다.
17C12. 사항 15C12에서와 같은 방법에서, 상기 진공은 벨트에 인가된다.
18C12. 사항 12C12에서와 같은 방법에서, 상기 봉지재는 열가소성 올레핀 폴리머를 포함한다.
19C12. 사항 12C12에서와 같은 방법에서, 상기 성층 구조는,
백색 백킹 시트; 및
상기 백색 백킹 시트 상의 어둡게 된 스트라이프들을 포함한다.
20C12. 사항 11C12에서와 같은 방법에서, 상기 제공하는 단계는 상기 분리하는 단계가 상기 긴 측면을 따라 금속화 패턴을 갖는 태양 전지 스트립을 생성하도록 상기 실리콘 웨이퍼에 상기 금속화 패턴을 제공하는 단계를 포함한다.
21C12. 사항 20C12에서와 같은 방법에서, 상기 금속화 패턴은 버스 바 또는 별개의 콘택 패드를 포함한다.
22C12. 사항 20C12에서와 같은 방법에서, 상기 제공하는 단계는 상기 금속화 패턴을 프린팅하거나 전기 도금하는 단계를 포함한다.
23C12. 사항 20C12에서와 같은 방법에서, 상기 배열하는 단계는 상기 금속화 패턴의 특징을 이용하여 상기 전기적으로 도전성인 접착 결합 물질의 확산을 제한하는 단계를 포함한다.
24C12. 사항 23C12에서와 같은 방법에서, 상기 특징은 상기 태양 전지 스트립의 전면 상에 있다.
25C12. 사항 23C12에서와 같은 방법에서, 상기 특징은 상기 태양 전지 스트립의 후면 상에 있다.
26C12. 사항 11C12에서와 같은 방법에서, 상기 태양 전지 스트립의 긴 측면의 길이는 상기 웨이퍼의 형상을 재생한다.
27C12. 사항 26C12에서와 같은 방법에서, 상기 길이는 156㎜ 또는 125㎜이다.
28C12. 사항 26C12에서와 같은 방법에서, 상기 태양 전지 스트립의 폭 및 상기 길이 사이의 종횡비는 약 1:2 내지 약 1:20이다.
29C12. 사항 11C12에서와 같은 방법에서, 상기 배열하는 단계는 적어도 10V의 항복 전압을 갖는 적어도 열아홉 개의 태양 전지 스트립들을 제1 슈퍼 셀로서 단일의 바이패스 다이오드만과 일렬로 배열하는 단계를 포함한다.
30C12. 사항 29C12에서와 같은 방법에서, 상기 제1 슈퍼 셀 및 인터커넥트 사이에 상기 전기적으로 도전성인 접착 결합 물질을 적용하는 단계를 더 포함한다.
31C12. 사항 30C12에서와 같은 방법에서, 상기 인터커넥트는 상기 제1 슈퍼 셀을 제2 슈퍼 셀과 병렬로 연결한다.
32C12. 사항 30C12에서와 같은 방법에서, 상기 인터커넥트는 상기 제1 슈퍼 셀을 제2 슈퍼 셀과 직렬로 연결한다.
33C12. 사항 29C12에서와 같은 방법에서, 상기 제1 슈퍼 셀 및 상기 단일의 바이패스 다이오드 사이에 리본 컨덕터를 형성하는 단계를 더 포함한다.
34C12. 사항 33C12에서와 같은 방법에서, 상기 단일의 바이패스 다이오드는 제2 태양광 모듈의 제2 접합 박스와 일치하는 배치인 제1 태양광 모듈의 제1 접합 박스 내에 위치한다.
35C12. 사항 11C12에서와 같은 방법에서, 상기 태양 전지 스트립은 제1 챔퍼 처리된 모서리를 포함한다.
36C12. 사항 35C12에서와 같은 방법에서, 상기 복수의 태양 전지 스트립들의 중첩되는 태양 전지 스트립의 긴 측면은 제2 챔퍼 처리된 모서리를 포함하지 않는다.
37C12. 사항 36C12에서와 같은 방법에서, 상기 태양 전지 스트립의 폭은 상기 태양 전지 스트립 및 상기 중첩되는 태양 전지 스트립이 대략적으로 동일한 면적을 가지도록 상기 중첩되는 태양 전지 스트립의 폭보다 크다.
38C12. 사항 35C12에서와 같은 방법에서, 상기 복수의 태양 전지 스트립들의 중첩되는 태양 전지 스트립의 긴 측면은 제2 챔퍼 처리된 모서리를 포함한다.
39C12. 사항 38C12에서와 같은 방법에서, 상기 복수의 태양 전지 스트립들의 중첩되는 태양 전지 스트립의 긴 측면은 상기 제1 챔퍼 처리된 모서리를 포함하는 셀 스트립의 긴 측면과 중첩된다.
40C12. 사항 38C12에서와 같은 방법에서, 상기 복수의 태양 전지 스트립들의 중첩되는 태양 전지 스트립의 긴 측면은 상기 제1 챔퍼 처리된 모서리를 포함하지 않는 셀 스트립의 긴 측면과 중첩된다.
1C13. 장치는,
제1 외측 에지를 따라 제1 금속화 패턴 및 상기 제1 외측 에지에 대향하는 제2 외측 에지를 따라 제2 금속화 패턴을 구비하는 제1 표면을 갖는 반도체 웨이퍼를 포함하며, 상기 반도체 웨이퍼는 상기 제1 금속화 패턴 및 상기 제2 금속화 패턴 사이의 제1 스크라이브 라인을 더 구비한다.
2C13. 사항 1C13에서와 같은 장치에서, 상기 제1 금속화 패턴은 별개의 콘택 패드를 포함한다.
3C13. 사항 1C13에서와 같은 장치에서, 상기 제1 금속화 패턴은 상기 제2 금속화 패턴을 향해 상기 제1 외측 에지로부터 멀어지게 향하는 제1 핑거를 포함한다.
4C13. 사항 3C13에서와 같은 장치에서, 상기 제1 금속화 패턴은 상기 제1 외측 에지를 따라 진행되고, 상기 제1 핑거와 교차되는 버스 바를 더 포함한다.
5C13. 사항 4C13에서와 같은 장치에서, 상기 제2 금속화 패턴은,
상기 제1 금속화 패턴을 향해 상기 제2 외측 에지로부터 멀어지게 향하는 제2 핑거; 및
상기 제2 외측 에지를 따라 진행되고, 상기 제2 핑거와 교차되는 제2 버스 바를 포함한다.
6C13. 사항 3C13에서와 같은 장치에서, 상기 제1 외측 에지를 따라 진행되고, 상기 제1 핑거와 접촉되는 전기적으로 도전성인 접착제를 더 포함한다.
7C13. 사항 3C13에서와 같은 장치에서, 상기 제1 금속화 패턴은 제1 바이패스 컨덕터를 더 포함한다.
8C13. 사항 3C13에서와 같은 장치에서, 상기 제1 금속화 패턴은 제1 단부 컨덕터를 더 포함한다.
9C13. 사항 1C13에서와 같은 장치에서, 상기 제1 금속화 패턴은 실버를 포함한다.
10C13. 사항 9C13에서와 같은 장치에서, 상기 제1 금속화 패턴은 실버 페이스트를 포함한다.
11C13. 사항 9C13에서와 같은 장치에서, 상기 제1 금속화 패턴은 별개의 콘택들을 포함한다.
12C13. 사항 1C13에서와 같은 장치에서, 상기 제1 금속화 패턴은 실버보다 덜 비싼 주석, 알루미늄, 또는 다른 컨덕터를 포함한다.
13C13. 사항 1C13에서와 같은 장치에서, 상기 제1 금속화 패턴은 구리를 포함한다.
14C13. 사항 13C13에서와 같은 장치에서, 상기 제1 금속화 패턴은 전기 도금된 구리를 포함한다.
15C13. 사항 13C13에서와 같은 장치에서, 재결합을 감소시키기 위한 패시베이션 계획을 더 포함한다.
16C13. 사항 1C13에서와 같은 장치에서,
상기 제1 외측 에지 또는 상기 제2 외측 에지에 근접하지 않은 상기 반도체 웨이퍼의 제1 표면 상의 제3 금속화 패턴; 및
상기 제3 금속화 패턴 및 상기 제2 금속화 패턴 사이의 제2 스크라이브 라인을 더 포함하며, 상기 제1 스크라이브 라인은 상기 제1 금속화 패턴 및 상기 제3 금속화 패턴 사이에 있다.
17C13. 사항 16C13에서와 같은 장치에서, 상기 반도체 웨이퍼의 길이에 의해 나누어지는 상기 제1 스크라이브 라인 및 상기 제2 스크라이브 라인 사이에 한정되는 제1 폭의 비율은 약 1:2 내지 약 1:20이다.
18C13. 사항 17C13에서와 같은 장치에서, 상기 길이는 약 156㎜ 또는 약 125㎜이다.
19C13. 사항 17C13에서와 같은 장치에서, 상기 반도체 웨이퍼는 챔퍼 처리된 모서리들을 포함한다.
20C13. 사항 19C13에서와 같은 장치에서,
상기 제1 스크라이브 라인은 상기 제1 외측 에지로 한정되고, 제1 직사각형의 영역은 두 챔퍼 처리된 모서리들 및 상기 제1 금속화 패턴을 포함하며, 상기 제1 직사각형의 영역은 상기 길이의 생성물에 대응되는 면적 및 상기 제1 폭 마이너스 상기 두 챔퍼 처리된 모서리들의 결합된 면적보다 큰 제2 폭을 가지고;
상기 제2 스크라이브 라인은 상기 제1 스크라이브 라인으로 한정되며, 제2 직사각형의 영역은 챔퍼 처리된 모서리들을 포함하지 않고 상기 제3 금속화 패턴을 포함하며, 상기 제2 직사각형의 영역은 상기 길이의 생성물 및 상기 제1 폭에 대응되는 면적을 가진다.
21C13. 사항 16C13에서와 같은 장치에서, 상기 제3 금속화 패턴은 상기 제2 금속화 패턴을 향하는 핑거를 포함한다.
22C13. 사항 1C13에서와 같은 장치에서, 상기 제1 표면에 대향하는 상기 반도체 웨이퍼의 제2 표면상의 제3 금속화 패턴을 더 포함한다.
23C13. 사항 22C13에서와 같은 장치에서, 상기 제3 금속화 패턴은 상기 제1 스크라이브 라인의 위치에 근접하는 콘택 패드를 포함한다.
24C13. 사항 1C13에서와 같은 장치에서, 상기 제1 스크라이브 라인은 레이저에 의해 형성된다.
25C13. 사항 1C13에서와 같은 장치에서, 상기 제1 스크라이브 라인은 상기 제1 표면 내에 있다.
26C13. 사항 1C13에서와 같은 장치에서, 제1 금속화 패턴은 전기적으로 도전성인 접착제의 확산을 제한하도록 구성되는 특징을 포함한다.
27C13. 사항 26C13에서와 같은 장치에서, 상기 특징은 돌출된 특징을 포함한다.
28C13. 사항 27C13에서와 같은 장치에서, 상기 제1 금속화 패턴은 콘택 패드를 포함하고, 상기 특징은 상기 콘택 패드에 인접하며 보다 큰 댐(dam)을 포함한다.
29C13. 사항 26C13에서와 같은 장치에서, 상기 특징은 리세스된 특징을 포함한다.
30C13. 사항 29C13에서와 같은 장치에서, 상기 리세스된 특징은 모우트를 포함한다.
31C13. 사항 26C13에서와 같은 장치에서, 상기 제1 금속화 패턴과 접촉되는 상기 전기적으로 도전성인 접착제를 더 포함한다.
32C13. 사항 31C13에서와 같은 장치에서, 상기 전기적으로 도전성인 접착제는 프린트된다.
33C13. 사항 1C13에서와 같은 장치에서, 상기 반도체 웨이퍼는 실리콘을 포함한다.
34C13. 사항 33C13에서와 같은 장치에서, 상기 반도체 웨이퍼는 결정질 실리콘을 포함한다.
35C13. 사항 33C13에서와 같은 장치에서, 상기 제1 표면은 n-형 도전형이다.
36C13. 사항 33C13에서와 같은 장치에서, 상기 제1 표면은 p-형 도전형이다.
37C13. 사항 1C13에서와 같은 장치에서,
상기 제1 금속화 패턴은 상기 제1 외측 에지로부터 5㎜ 또는 그 이하이며;
상기 제2 금속화 패턴은 상기 제2 외측 에지로부터 5㎜ 또는 그 이하이다.
38C13. 사항 1C13에서와 같은 장치에서, 상기 반도체 웨이퍼는 챔퍼 처리된 모서리들을 포함하며, 상기 제1 금속화 패턴은 챔퍼 처리된 모서리 주위로 연장되는 테이퍼진 부분을 포함한다.
39C13. 사항 38C13에서와 같은 장치에서, 상기 테이퍼진 부분은 버스 바를 포함한다.
40C13. 사항 38C13에서와 같은 장치에서, 상기 테이퍼진 부분은 별개의 콘택 패드를 연결하는 컨덕터를 포함한다.
1C14. 방법은,
웨이퍼 상에 제1 스크라이브 라인을 스크라이빙하는 단계; 및
태양 전지 스트립을 제공하도록 진공을 활용하여 상기 웨이퍼를 상기 제1 스크라이브 라인을 따라 분리하는 단계를 포함한다.
2C14. 사항 1C14에서와 같은 방법에서, 상기 스크라이빙하는 단계는 레이저 스크라이빙을 포함한다.
3C14. 사항 2C14에서와 같은 방법에서, 상기 분리하는 단계는 상기 웨이퍼의 표면 및 곡선의 표면 사이에 상기 진공을 인가하는 단계를 포함한다.
4C14. 사항 3C14에서와 같은 방법에서, 상기 곡선의 표면은 진공 매니폴드를 포함한다.
5C14. 사항 4C14에서와 같은 방법에서, 상기 웨이퍼는 상기 진공 매니폴드까지 이동 벨트 상에 지지되며, 상기 진공은 상기 벨트를 통해 인가된다.
6C14. 사항 5C14에서와 같은 방법에서, 상기 분리하는 단계는,
상기 진공 매니폴드에 대해 각도로 상기 제1 스크라이브 라인을 배향하는 단계; 및
상기 제1 스크라이브 라인의 일측 단부에서 절단을 시작하는 단계를 포함한다.
7C14. 사항 6C14에서와 같은 방법에서, 상기 각도는 실질적으로 직각이다.
8C14. 사항 6C14에서와 같은 방법에서, 상기 각도는 실질적으로 직각 이외의 각도이다.
9C14. 사항 3C14에서와 같은 방법에서, 큐어링되지 않은 전기적으로 도전성인 접착 결합 물질을 적용하는 단계를 더 포함한다.
10C14. 사항 9C14에서와 같은 방법에서, 상기 제1 스크라이브 라인 및 상기 큐어링되지 않은 전기적으로 도전성인 접착 결합 물질은 상기 웨이퍼의 동일한 표면상에 있다.
11C14. 사항 10C14에서와 같은 방법에서, 상기 레이저 스크라이빙은 레이저 출력 및/또는 상기 제1 스크라이브 라인과 상기 큐어링되지 않은 도전성 접착 결합 물질 사이의 거리를 선택함에 의해 상기 큐어링되지 않은 도전성 접착 결합 물질을 큐어링하는 것을 회피한다.
12C14. 사항 10C14에서와 같은 방법에서, 상기 동일한 표면은 상기 웨이퍼를 상기 곡선의 표면까지 이동시키는 벨트에 의해 지지되는 웨이퍼 표면에 대향된다.
13C14. 사항 12C14에서와 같은 방법에서, 상기 곡선의 표면은 진공 매니폴드를 포함한다.
14C14. 사항 9C14에서와 같은 방법에서, 상기 적용하는 단계는 상기 스크라이빙하는 단계 후에 발생된다.
15C14. 사항 9C14에서와 같은 방법에서, 상기 적용하는 단계는 상기 분리하는 단계 후에 발생된다.
16C14. 사항 9C14에서와 같은 방법에서, 상기 적용하는 단계는 스크린 프린팅을 포함한다.
17C14. 사항 9C14에서와 같은 방법에서, 상기 적용하는 단계는 잉크젯 프린팅을 포함한다.
18C14. 사항 9C14에서와 같은 방법에서, 상기 적용하는 단계는 마스크를 이용하여 증착하는 단계를 포함한다.
19C14. 사항 3C14에서와 같은 방법에서, 상기 제1 스크라이브 라인은,
제1 외측 에지를 따른 상기 웨이퍼의 표면상의 제1 금속화 패턴 및
제2 외측 에지를 따른 상기 웨이퍼의 표면상의 제2 금속화 패턴 사이에 있다.
20C14. 사항 19C14에서와 같은 방법에서, 상기 웨이퍼는 상기 제1 외측 에지 및 상기 제2 외측 에지에 근접하지 않은 상기 반도체 웨이퍼의 표면상에 제3 금속화 패턴을 더 포함하며, 상기 방법은,
상기 제1 스크라이브 라인이 상기 제1 금속화 패턴 및 제3 금속화 패턴 사이에 있도록 상기 제3 금속화 패턴 및 상기 제2 금속화 패턴 사이에 제2 스크라이브 라인을 스크라이빙하는 단계; 및
다른 태양 전지 스트립을 제공하도록 상기 웨이퍼를 상기 제2 스크라이브 라인을 따라 분리하는 단계를 더 포함한다.
21C14. 사항 20C14에서와 같은 방법에서, 상기 제1 스크라이브 라인 및 상기 제2 스크라이브 라인 사이의 거리는 약 125㎜ 또는 약 156㎜를 갖는 상기 웨이퍼의 길이로 약 1:2 내지 약 1:20의 종횡비를 한정하는 폭을 형성한다.
22C14. 사항 19C14에서와 같은 방법에서, 상기 제1 금속화 패턴은 상기 제2 금속화 패턴을 향하는 핑거를 포함한다.
23C14. 사항 22C14에서와 같은 방법에서, 상기 제1 금속화 패턴은 상기 핑거와 교차되는 버스 바를 더 포함한다.
24C14. 사항 23C14에서와 같은 방법에서, 상기 버스 바는 상기 제1 외측 에지의 5㎜ 이내에 있다.
25C14. 사항 22C14에서와 같은 방법에서, 상기 핑거와 접촉되는 큐어링되지 않은 전기적으로 도전성인 접착 결합 물질을 더 포함한다.
26C14. 사항 19C14에서와 같은 방법에서, 상기 제1 금속화 패턴은 별개의 콘택 패드를 포함한다.
27C14. 사항 19C14에서와 같은 방법에서, 상기 웨이퍼 상에 상기 제1 금속화 패턴을 프린팅하거나 전기 도금하는 단계를 더 포함한다.
28C14. 사항 3에서와 같은 방법에서,
각기 적어도 10V의 항복 전압을 갖는 적어도 열아홉 개의 태양 전지 스트립들을 포함하는 제1 슈퍼 셀 내에 상기 태양 전지 스트립을 배열하는 단계를 더 포함하고, 인접하는 태양 전지 스트립들의 긴 측면들은 그 사이의 상기 전기적으로 도전성인 접착 결합 물질과 중첩되며;
전기적으로 직렬로 연결되며 인접하고 중첩되는 태양 전지 스트립들을 결합하도록 상기 전기적으로 도전성인 결합 물질을 큐어링하는 단계를 더 포함한다.
29C14. 사항 28C14에서와 같은 방법에서, 상기 배열하는 단계는 봉지재를 포함하는 성층 구조를 형성하는 단계를 포함하며, 상기 방법은 상기 성층 구조를 라미네이팅하는 단계를 더 포함한다.
30C14. 사항 29C14에서와 같은 방법에서, 상기 큐어링은 상기 라미네이팅하는 단계 동안에 적어도 부분적으로 일어난다.
31C14. 사항 29C14에서와 같은 방법에서, 상기 큐어링은 상기 라미네이팅하는 단계와 구분되어 일어난다.
32C14. 사항 29C14에서와 같은 방법에서, 상기 봉지재는 열가소성 올레핀 폴리머를 포함한다.
33C14. 사항 29C14에서와 같은 방법에서, 상기 성층 구조는,
백색 백킹 시트; 및
상기 백색 백킹 시트 상의 어둡게 된 스트라이프들을 포함한다.
34C14. 사항 28C14에서와 같은 방법에서, 상기 배열하는 단계는 금속화 패턴 특징을 사용하여 상기 전기적으로 도전성인 접착 결합 물질의 확산을 제한하는 단계를 포함한다.
35C14. 사항 34C14에서와 같은 방법에서, 금속화 패턴 특징은 상기 태양 전지 스트립의 전면 상에 있다.
36C14. 사항 34C14에서와 같은 방법에서, 금속화 패턴 특징은 상기 태양 전지 스트립의 후면 상에 있다.
37C14. 사항 28C14에서와 같은 방법에서, 상기 제1 슈퍼 셀 및 제2 슈퍼 셀을 직결로 연결하는 인터커넥트 사이에 전기적으로 도전성인 접착 결합 물질을 적용하는 단계를 더 포함한다.
38C14. 사항 28C14에서와 같은 방법에서, 상기 제1 슈퍼 셀과 단일의 바이패스 다이오드 사이에 리본 컨덕터를 형성하는 단계를 더 포함하며, 상기 단일의 바이패스 다이오드는 제2 태양광 모듈의 제2 접합 박스와 일치하는 배치인 제1 태양광 모듈의 제1 접합 박스 내에 위치한다.
39C14. 사항 28C14에서와 같은 방법에서,
상기 태양 전지 스트립은 제1 챔퍼 처리된 모서리를 포함하고;
상기 복수의 태양 전지 스트립들의 중첩되는 태양 전지 스트립의 긴 측면은 제2 챔퍼 처리된 모서리를 포함하지 않으며;
상기 태양 전지 스트립의 폭은 상기 태양 전지 스트립 및 상기 중첩되는 태양 전지 스트립이 대략적으로 동일한 면적을 가지도록 상기 중첩되는 태양 전지 스트립의 폭보다 크다.
40C14. 사항 28C14에서와 같은 방법에서,
상기 태양 전지 스트립은 제1 챔퍼 처리된 모서리를 포함하고;
상기 복수의 태양 전지 스트립들의 중첩되는 태양 전지 스트립의 긴 측면은 제2 챔퍼 처리된 모서리를 포함하며;
상기 복수의 태양 전지 스트립들의 중첩되는 태양 전지 스트립의 긴 측면은 상기 제1 챔퍼 처리된 모서리를 포함하지 않는 태양 전지 스트립의 긴 측면과 중첩된다.
1C15. 방법은,
반도체 웨이퍼의 제1 표면의 제1 외측 에지를 따라 제1 금속화 패턴을 형성하는 단계를 포함하고;
상기 제1 표면의 제2 외측 에지를 따라 제2 금속화 패턴을 형성하는 단계를 포함하며, 상기 제2 외측 에지는 상기 제1 외측 에지에 대향되고;
상기 제1 금속화 패턴 및 상기 제2 금속화 패턴 사이에 제1 스크라이브 라인을 형성하는 단계를 포함한다.
2C15. 사항 1C15에서와 같은 방법에서,
상기 제1 금속화 패턴은 상기 제2 금속화 패턴을 향하는 제1 핑거를 포함하며;
상기 제2 금속화 패턴은 상기 제1 금속화 패턴을 향하는 제2 핑거를 포함한다.
3C15. 사항 2C15에서와 같은 방법에서,
상기 제1 금속화 패턴은 상기 제1 핑거와 교차되고, 상기 제1 외측 에지의 5㎜ 이내에 위치하는 제1 버스 바를 더 포함하며;
상기 제2 금속화 패턴은 상기 제2 핑거와 교차되고, 상기 제2 외측 에지의 5㎜ 이내에 위치하는 제2 버스 바를 포함한다.
4C15. 사항 3C15에서와 같은 방법에서,
상기 제1 표면상에, 상기 제1 외측 에지를 따르지 않거나 상기 제2 외측 에지를 따르지 않는 제3 금속화 패턴을 형성하는 단계를 더 포함하며, 상기 제3 금속화 패턴은,
상기 제1 버스 바에 평행한 제3 버스 바 및
상기 제2 금속화 패턴을 향하는 제3 핑거를 포함하고;
상기 제3 금속화 패턴 및 상기 제2 금속화 패턴 사이에 제2 스크라이브 라인을 형성하는 단계를 더 포함하며, 상기 제1 스크라이브 라인은 상기 제1 금속화 패턴 및 상기 제3 금속화 패턴 사이에 있다.
5C15. 사항 4C15에서와 같은 방법에서, 상기 제1 스크라이브 라인 및 상기 제2 스크라이브 라인은 약 1:2 내지 약 1:20의 상기 반도체 웨이퍼의 길이에 대한 비율을 갖는 폭에 의해 분리된다.
6C15. 사항 5C15에서와 같은 방법에서, 상기 반도체 웨이퍼의 길이는 약 156㎜ 또는 약 125㎜이다.
7C15. 사항 4C15에서와 같은 방법에서, 상기 반도체 웨이퍼는 챔퍼 처리된 모서리들을 포함한다.
8C15. 사항 7C15에서와 같은 방법에서,
상기 제1 스크라이브 라인은 제1 외측 에지로 한정되고, 제1 태양 전지 영역은 두 챔퍼 처리된 모서리들 및 상기 제1 금속화 패턴을 포함하며, 상기 제1 태양 전지 영역은 상기 반도체 웨이퍼의 길이의 생성물에 대응되는 제1 면적 및 제1 폭 마이너스 상기 두 챔퍼 처리된 모서리들의 결합된 면적을 가지고;
상기 제2 스크라이브 라인은 상기 제1 스크라이브 라인으로 한정되며, 제2 태양 전지 영역은 챔퍼 처리된 모서리들을 포함하지 않고 상기 제3 금속화 패턴을 포함하며, 상기 제2 태양 전지 영역은 상기 길이의 생성물에 대응되는 제2 면적 및 상기 제1 폭보다 좁은 제2 폭을 가져, 상기 제1 면적 및 상기 제2 면적이 대략적으로 동일하다.
9C15. 사항 8C15에서와 같은 방법에서, 상기 길이는 약 156㎜ 또는 약 125㎜이다.
10C15. 사항 4C15에서와 같은 방법에서, 상기 제1 스크라이브 라인을 형성하는 단계 및 상기 제2 스크라이브 라인을 형성하는 단계는 레이저 스크라이빙을 포함한다.
11C15. 사항 4C15에서와 같은 방법에서, 상기 제1 금속화 패턴을 형성하는 단계, 상기 제2 금속화 패턴을 형성하는 단계 및 상기 제3 금속화 패턴을 형성하는 단계는 프린팅을 포함한다.
12C15. 사항 11C15에서와 같은 방법에서, 상기 제1 금속화 패턴을 형성하는 단계, 상기 제2 금속화 패턴을 형성하는 단계 및 상기 제3 금속화 패턴을 형성하는 단계는 스크린 프린팅을 포함한다.
13C15. 사항 11C15에서와 같은 방법에서, 상기 제1 금속화 패턴을 형성하는 단계는 실버를 포함하는 복수의 콘택 패드들을 형성하는 단계를 포함한다.
14C15. 사항 4C15에서와 같은 방법에서, 상기 제1 금속화 패턴을 형성하는 단계, 상기 제2 금속화 패턴을 형성하는 단계 및 상기 제3 금속화 패턴을 형성하는 단계는 전기 도금을 포함한다.
15C15. 사항 14C15에서와 같은 방법에서, 상기 제1 금속화 패턴, 상기 제2 금속화 패턴 및 상기 제3 금속화 패턴은 구리를 포함한다.
16C15. 사항 4C15에서와 같은 방법에서, 상기 제1 금속화 패턴은 실버보다 덜 비싼 알루미늄, 주석, 은, 구리 및/또는 컨덕터를 포함한다.
17C15. 사항 4C15에서와 같은 방법에서, 상기 반도체 웨이퍼는 실리콘을 포함한다.
18C15. 사항 17C15에서와 같은 방법에서, 상기 반도체 웨이퍼는 결정질 실리콘을 포함한다.
19C15. 사항 4C15에서와 같은 방법에서, 상기 제1 외측 에지 및 상기 제2 스크라이브 라인의 위치의 5㎜ 사이의 상기 반도체 웨이퍼의 제2 표면상에 제4 금속화 패턴을 형성하는 단계를 더 포함한다.
20C15. 사항 4C15에서와 같은 방법에서, 상기 제1 표면은 제1 도전형을 가지며, 상기 제2 표면은 상기 제1 도전형에 대향하는 제2 도전형을 가진다.
21C15. 사항 4C15에서와 같은 방법에서, 상기 제4 금속화 패턴은 콘택 패드를 포함한다.
22C15. 사항 3C15에서와 같은 방법에서, 도전성 접착제를 상기 반도체 웨이퍼에 적용하는 단계를 더 포함한다.
23C15. 사항 22C15에서와 같은 방법에서, 상기 제1 핑거와 접촉되는 상기 도전성 접착제를 적용하는 단계를 더 포함한다.
24C15. 사항 23C15에서와 같은 방법에서, 상기 도전성 접착제를 적용하는 단계는 스크린 프린팅 또는 마스크를 이용하여 증착하는 단계를 포함한다.
25C15. 사항 3C15에서와 같은 방법에서, 상기 제1 금속화 패턴을 포함하는 제1 태양 전지 스트립을 형성하도록 상기 제1 스크라이브 라인을 따라 상기 반도체 웨이퍼를 분리하는 단계를 더 포함한다.
26C15. 사항 25C15에서와 같은 방법에서, 상기 분리하는 단계는 상기 제1 스크라이브 라인에 진공을 인가하는 단계를 포함한다.
27C15. 사항 26C15에서와 같은 방법에서, 상기 반도체 웨이퍼를 상기 진공까지 이동하는 벨트 상에 배치하는 단계를 더 포함한다.
28C15. 사항 25C15에서와 같은 방법에서, 도전성 접착제를 상기 제1 태양 전지 스트립에 적용하는 단계를 더 포함한다.
29C15. 사항 25C15에서와 같은 방법에서,
각기 적어도 10V의 항복 전압을 갖는 적어도 열아홉 개의 태양 전지 스트립들을 포함하는 제1 슈퍼 셀 내에 상기 제1 태양 전지 스트립을 배열하는 단계를 더 포함하고, 인접하는 태양 전지 스트립들의 긴 측면들은 그 사이에 배치되는 도전성 접착제와 중첩되며;
전기적으로 직렬로 연결되는 인접하고 중첩되는 태양 전지 스트립들을 결합하도록 상기 도전성 접착제를 큐어링하는 단계를 더 포함한다.
30C15. 사항 29C15에서와 같은 방법에서, 상기 배열하는 단계는 봉지재를 포함하는 성층 구조를 형성하는 단계를 포함하며, 상기 방법은 상기 성층 구조를 라미네이팅하는 단계를 더 포함한다.
31C15. 사항 30C15에서와 같은 방법에서, 상기 큐어링하는 단계는 상기 라미네이팅하는 단계 동안에 적어도 부분적으로 일어난다.
32C15. 사항 30C15에서와 같은 방법에서, 상기 큐어링하는 단계는 상기 라미네이팅하는 단계와 구분되어 일어난다.
33C15. 사항 30C15에서와 같은 방법에서, 상기 봉지재는 열가소성 올레핀 폴리머를 포함한다.
34C15. 사항 30C15에서와 같은 방법에서, 상기 성층 구조는,
백색 백킹 시트; 및
상기 백색 백킹 시트 상의 어둡게 된 스트라이프들을 포함한다.
35C15. 사항 29C15에서와 같은 방법에서, 상기 배열하는 단계는 금속화 패턴 특징으로 상기 도전성 접착제의 확산을 제한하는 단계를 포함한다.
36C15. 사항 35C15에서와 같은 방법에서, 상기 금속화 패턴 특징은 상기 제1 태양 전지 스트립의 전면 상에 있다.
37C15. 사항 29C15에서와 같은 방법에서, 상기 제1 슈퍼 셀 및 제2 슈퍼 셀을 직렬로 연결하는 인터커넥트 사이에 상기 도전성 접착제를 적용하는 단계를 더 포함한다.
38C15. 사항 29C15에서와 같은 방법에서, 단일의 바이패스 다이오드 및 상기 제1 슈퍼 셀 사이에 리본 컨덕터를 형성하는 단계를 더 포함하며, 상기 단일의 바이패스 다이오드는 제2 태양광 모듈의 제2 접합 박스와 일치하는 배치인 제1 태양광 모듈의 제1 접합 박스 내에 위치한다.
39C15. 사항 29C15에서와 같은 방법에서,
상기 제1 태양 전지 스트립은 제1 챔퍼 처리된 모서리를 포함하고;
상기 제1 슈퍼 셀의 중첩되는 태양 전지 스트립의 긴 측면은 제2 챔퍼 처리된 모서리를 포함하지 않으며;
상기 제1 태양 전지 스트립의 폭은 상기 제1 태양 전지 스트립 및 상기 중첩되는 태양 전지 스트립이 대략적으로 동일한 면적을 가지도록 상기 중첩되는 태양 전지 스트립의 폭보다 크다.
40C15. 사항 29C15에서와 같은 방법에서,
상기 제1 태양 전지 스트립은 제1 챔퍼 처리된 모서리를 포함하고;
상기 제1 슈퍼 셀의 중첩되는 태양 전지 스트립의 긴 측면은 제2 챔퍼 처리된 모서리를 포함하며;
상기 중첩되는 태양 전지 스트립의 긴 측면은 상기 제1 챔퍼 처리된 모서리를 포함하지 않는 상기 제1 태양 전지 스트립의 긴 측면과 중첩된다.
1C16. 방법은,
웨이퍼의 제1 외측 에지에 평행하고 인접하게 배열되는 제1 버스 바 또는 콘택 패드들의 열 및 상기 웨이퍼의 제1 에지에 대향하고 평행한 상기 웨이퍼의 제2 외측 에지에 평행하고 인접하게 배열되는 제2 버스 바 또는 콘택 패드들의 열 포함하는 전면 금속화 패턴을 구비하는 실리콘 웨이퍼를 수죽하거나 제공하는 단계를 포함하고;
복수의 직사각형의 태양 전지들을 형성하도록 상기 실리콘 웨이퍼를 상기 웨이퍼의 제1 및 제2 외측 에지들에 평행한 하나 또는 그 이상의 스크라이브 라인들을 따라 분리하는 단계를 포함하며, 상기 제1 버스 바 또는 콘택 패드들의 열은 상기 직사각형의 태양 전지들의 제1의 것의 긴 외측 에지에 평행하고 인접하게 배열되고, 상기 제2 버스 바 또는 콘택 패드들의 열은 상기 직사각형의 태양 전지들의 제2의 것의 긴 외측 에지에 평행하고 인접하게 배열되며;
슈퍼 셀을 형성하기 위해 상기 태양 전지들을 전기적으로 직렬로 연결하도록 상기 직사각형의 태양 전지들을 중첩되고 서로 도전성으로 결합되는 인접하는 태양 전지들의 긴 측면들과 일렬로 배열하는 단계를 포함하고;
상기 직사각형의 태양 전지들의 제1의 것 상의 상기 제1 버스 바 또는 콘택 패드들의 열은 상기 슈퍼 셀 내에서 인접하는 직사각형의 태양 전지의 저면에 의해 중첩되고 도전성으로 결합된다.
2C16. 사항 1C16에서와 같은 방법에서, 상기 직사각형의 태양 전지들의 제2의 것 상의 상기 제2 버스 바 또는 콘택 패드들의 열은 상기 슈퍼 셀 내에서 인접하는 직사각형의 태양 전지의 저면에 의해 중첩되고 도전성으로 결합된다.
3C16. 사항 1C16에서와 같은 방법에서, 상기 실리콘 웨이퍼는 정사각형 또는 의사 정사각형의 실리콘 웨이퍼이다.
4C16. 사항 3C16에서와 같은 방법에서, 상기 실리콘 웨이퍼는 약 125㎜의 길이 또는 약 156㎜의 길이의 측면들을 포함한다.
5C16. 사항 3C16에서와 같은 방법에서, 각 직사각형의 태양 전지의 폭에 대한 길이의 비율은 약 2:1 내지 약 20:1이다.
6C16. 사항 1C16에서와 같은 방법에서, 상기 실리콘 웨이퍼는 결정질 실리콘 웨이퍼이다.
7C16. 사항 1C16에서와 같은 방법에서, 상기 제1 버스 바 또는 콘택 패드들의 열 및 상기 제2 버스 바 또는 콘택 패드들의 열은 상기 실리콘 웨이퍼의 중심 영역들보다 덜 효율적으로 광을 전기로 변환하는 상기 실리콘 웨이퍼의 에지 영역들 내에 위치한다.
8C16. 사항 1C16에서와 같은 방법에서, 상기 전면 금속화 패턴은 상기 제1 버스 바 또는 콘택 패드들의 열에 전기적으로 연결되고 상기 웨이퍼의 제1 외측 에지로부터 내측으로 연장되는 제1 복수의 평행한 핑거들, 그리고 상기 제2 버스 바 또는 콘택 패드들의 열에 전기적으로 연결되고 상기 웨이퍼의 제2 외측 에지로부터 내측으로 연장되는 제2 복수의 평행한 핑거들을 포함한다.
9C16. 사항 1C16에서와 같은 방법에서, 상기 전면 금속화 패턴은 상기 제1 버스 바 또는 콘택 패드들의 열 및 상기 제2 버스 바 또는 콘택 패드들의 열 사이에 위치하고 평행하게 배향되는 적어도 제3 버스 바 또는 콘택 패드들의 열 그리고 상기 제3 버스 바 또는 콘택 패드들의 열에 직교하게 배향되고 전기적으로 연결되는 제3 복수의 평행한 핑거들을 포함하며, 상기 제3 버스 바 또는 콘택 패드들의 열은 상기 복수의 직사각형의 태양 전지들을 형성하도록 상기 실리콘 웨이퍼가 분리된 후에 상기 직사각형의 태양 전지들의 제3의 것의 긴 외측 에지에 평행하고 인접하게 배열된다.
10C16. 사항 1C16에서와 같은 방법에서, 상기 제1 직사각형의 태양 전지를 인접하는 태양 전지에 도전성으로 결합하도록 상기 제1 버스 바 또는 콘택 패드들의 열에 도전성 접착제를 적용하는 단계를 포함한다.
11C16. 사항 10C16에서와 같은 방법에서, 상기 금속화 패턴은 상기 도전성 접착제의 확산을 제한하도록 구성되는 배리어를 포함한다.
12C16. 사항 10C16에서와 같은 방법에서, 상기 도전성 접착제를 스크린 프린팅에 의해 적용하는 단계를 포함한다.
13C16. 사항 10C16에서와 같은 방법에서, 상기 도전성 접착제를 잉크젯 프린팅에 의해 적용하는 단계를 포함한다.
14C16. 사항 10C16에서와 같은 방법에서, 상기 도전성 접착제는 상기 실리콘 웨이퍼 내의 상기 스크라이브 라인들의 형성 전에 적용된다.
15C16. 사항 1C16에서와 같은 방법에서, 상기 실리콘 웨이퍼를 상기 하나 또는 그 이상의 스크라이브 라인들을 따라 분리하는 단계는 상기 실리콘 웨이퍼를 곡선의 지지면에 대해 구부리도록 상기 실리콘 웨이퍼의 저면과 상기 곡선의 지지면 사이에 진공을 인가하고, 이에 따라 상기 실리콘 웨이퍼를 상기 하나 또는 그 이상의 스크라이브 라인들을 따라 절단하는 단계를 포함한다.
16C16. 사항 1C16에서와 같은 방법에서,
상기 실리콘 웨이퍼는 챔퍼 처리된 모서리들을 포함하는 의사 정사각형의 실리콘 웨이퍼이며, 복수의 직사각형의 태양 전지들을 형성하도록 상기 실리콘 웨이퍼의 분리 후에 상기 직사각형의 태양 전지들의 하나 또는 그 이상은 챔퍼 처리된 모서리들의 하나 또는 그 이상을 포함하고;
스크라이브 라인들 사이의 간격은 챔퍼 처리된 모서리들을 포함하는 직사각형의 태양 전지들의 긴 축에 직교하는 폭이 챔퍼 처리된 모서리들이 결핍된 직사각형의 태양 전지들의 긴 축에 직교하는 폭보다 크게 만들어, 상기 챔퍼 처리된 모서리들을 보상하도록 선택되므로, 상기 슈퍼 셀 내의 각각의 상기 복수의 직사각형의 태양 전지들이 상기 슈퍼 셀의 동작에서 광에 노출되는 실질적으로 동일한 면적의 전면을 가진다.
17C16. 사항 1C16에서와 같은 방법에서, 투명한 전면 시트 및 후면 시트 사이에 성층 구조로 상기 슈퍼 셀을 배열하는 단계 및 상기 성층 구조를 라미네이팅하는 단계를 포함한다.
18C16. 사항 17C16에서와 같은 방법에서, 상기 성층 구조를 라미네이팅하는 단계는 인접하는 직사각형의 태양 전지들을 서로 도전성으로 연결하도록 상기 슈퍼 셀 내의 상기 인접하는 직사각형의 태양 전지들 사이에 배치되는 도전성 접착제의 큐어링을 완료한다.
19C16. 사항 17C16에서와 같은 방법에서, 상기 슈퍼 셀은 슈퍼 셀들의 둘 또는 그 이상의 평행한 열들의 하나 내의 상기 성층 구조 내에 배열되고, 상기 후면 시트는 상기 슈퍼 셀들의 둘 또는 그 이상의 열들 사이의 갭들의 위치들과 폭들에 대응되는 위치들과 폭들을 갖는 평행하고 어둡게 된 스트라이프들을 포함하는 백색 시트이므로, 상기 후면 시트의 백색 부분들이 조립된 모듈 내의 슈퍼 셀들의 열들 사이의 갭들을 통해 보이지 않는다.
20C16. 사항 17C16에서와 같은 방법에서, 상기 전면 시트 및 상기 후면 시트는 유리 시트들이며, 상기 슈퍼 셀은 상기 유리 시트들 사이에 개재되는 열가소성 올레핀층 내에 봉지된다.
21C16. 사항 1C16에서와 같은 방법에서, 제2 태양광 모듈의 제2 접합 박스와 일치하는 배치로 접합 박스를 포함하는 제1 모듈 내에 상기 슈퍼 셀을 배열하는 단계를 포함한다.
1D. 태양광 모듈은,
둘 또는 그 이상의 평행한 열들로 배열되는 복수의 슈퍼 셀들을 포함하고, 각 슈퍼 셀은 실리콘 태양 전지들을 전기적으로 직렬로 연결하도록 중첩되고 서로 도전성으로 결합되는 인접하는 실리콘 태양 전지들 의 긴 측면들과 일렬로 배열되는 복수의 직사각형 또는 실질적으로 직사각형의 실리콘 태양 전지들을 구비하며;
상기 슈퍼 셀들의 제1의 것을 따라 중간 위치에 위치하는 제1 태양 전지의 후면 상에 위치하는 제1 히든 탭 콘택 패드를 포함하고;
상기 제1 히든 탭 콘택 패드에 도전성으로 결합되는 제1 전기적 인터커넥트를 포함하며;
상기 제1 전기적 인터커넥트는 상기 인터커넥트 및 그가 결합되는 상기 실리콘 태양 전지 사이의 차등 열팽창을 수용하는 스트레스 제거 특징을 구비한다.
2D. 사항 1D에서와 태양광 모듈에서, 상기 슈퍼 셀들의 제2의 것을 따라 중간 위치에 상기 제1 태양 전지에 인접하여 위치하는 제2 태양 전지의 후면 상에 위치하는 제2 히든 탭 콘택 패드를 포함하며, 상기 제1 히든 탭 콘택 패드는 상기 제1 전기적 인터커넥트를 통해 상기 제2 히든 탭 콘택 패드에 전기적으로 연결된다.
3D. 사항 2D에서와 태양광 모듈에서, 상기 제1 전기적 인터커넥트는 상기 제1 슈퍼 셀 및 상기 제2 슈퍼 셀 사이의 갭을 가로질러 연장되고, 상기 제2 히든 탭 콘택 패드에 도전성으로 결합된다.
4D. 사항 1D에서와 태양광 모듈에서, 상기 슈퍼 셀들의 제1의 것을 따라 다른 중간 위치에 위치하는 제2 태양 전지의 후면 상에 위치하는 제2 히든 탭 콘택 패드, 상기 제2 히든 탭 콘택 패드에 도전성으로 결합되는 제2 전기적 인터커넥트, 그리고 상기 제1 히든 탭 콘택 패드 및 상기 제2 히든 탭 콘택 패드 사이에 위치하는 상기 태양 전지들에 평행한 상기 제1 및 제2 전기적 인터커넥트들에 의해 전기적으로 연결되는 바이패스 다이오드를 포함한다.
5D. 사항 1D에서와 태양광 모듈에서, 상기 제1 히든 탭 콘택 패드는 상기 제1 태양 전지의 긴 축에 평행하게 진행되는 열 내의 상기 제1 태양 전지의 후면 상에 배열되는 복수의 히든 탭 콘택 패드들의 하나이고, 상기 제1 전기적 인터커넥트는 각각의 상기 복수의 히든 콘택들에 도전성으로 결합되고, 상기 긴 축을 따라 상기 제1 태양 전지의 길이를 실질적으로 가로지른다.
6D. 사항 1D에서와 태양광 모듈에서, 상기 제1 히든 탭 콘택 패드는 상기 제1 태양 전지의 후면의 짧은 측면에 인접하여 위치하고, 상기 제1 전기적 인터커넥트는 상기 태양 전지의 긴 축을 따라 상기 히든 탭 콘택 패드로부터 실질적으로 내측으로 연장되지 않으며, 상기 제1 태양 전지 상의 후면 금속화 패턴은 평방 당 약 5옴보다 작거나 같은 시트 저항을 갖는 상기 인터커넥트에 대해 전도 통로를 제공한다.
7D. 사항 6D에서와 태양광 모듈에서, 상기 시트 저항은 평방 당 약 2.5옴보다 작거나 같다.
8D. 사항 6D에서와 태양광 모듈에서, 상기 제1 인터커넥트는 상기 스트레스 제거 특징의 대향하는 측면들 상에 위치하는 두 개의 탭(tab)들을 포함하며, 상기 탭들의 하나는 상기 제1 히든 탭 콘택 패드에 도전성으로 결합된다.
9D. 사항 8D에서와 태양광 모듈에서, 상기 두 개의 탭들은 다른 길이들이다.
10D. 사항 1D에서와 태양광 모듈에서, 상기 제1 전기적 인터커넥트는 상기 제1 히든 탭 콘택 패드와의 원하는 정렬을 식별하는 정렬 특징(alignment feature)들을 포함한다.
11D. 사항 1D에서와 태양광 모듈에서, 상기 제1 전기적 인터커넥트는 상기 제1 슈퍼 셀의 에지의 원하는 정렬을 식별하는 정렬 특징들을 포함한다.
12D. 사항 1D에서와 태양광 모듈에서, 상기 태양광 모듈은 중첩되는 영역에서 전기적으로 연결되는 다른 태양광 모듈과 중첩되는 슁글드 방식으로 배열된다.
13D. 태양광 모듈은,
유리 전면 시트를 포함하고;
후면 시트를 포함하며;
상기 유리 전면 시트 및 상기 후면 시트 사이에 둘 또는 그 이상의 평행한 열들로 배열되는 복수의 슈퍼 셀들을 포함하고, 각 슈퍼 셀은 실리콘 태양 전지들을 전기적으로 직렬로 연결하도록 중첩되고 서로 유연하게 도전성으로 결합되는 인접하는 실리콘 태양 전지들의 긴 측면들과 일렬로 배열되는 복수의 직사각형 또는 실질적으로 직사각형의 실리콘 태양 전지들을 구비하며;
제1 유연한 전기적 인터커넥트는 상기 슈퍼 셀들의 제1의 것에 단단하게 도전성으로 결합되고;
중첩되는 태양 전지들 사이의 상기 유연한 도전성 결합들은 상기 슈퍼 셀들에 상기 태양광 모듈의 손상 없이 약 -40℃ 내지 약 100℃의 온도 범위에 대해 상기 열들에 평행한 방향으로 상기 슈퍼 셀들 및 상기 유리 전면 시트 사이의 열팽창의 불일치를 수용하는 기계적 컴플라이언스를 제공하며;
상기 제1 슈퍼 셀 및 상기 제1 유연한 전기적 인터커넥트 사이의 단단한 도전성 결합은 상기 제1 유연한 전기적 인터커넥트가 상기 태양광 모듈의 손상 없이 약 -40℃ 내지 약 180℃의 온도 범위에 대해 상기 열들에 직교하는 방향으로 상기 제1 슈퍼 셀 및 상기 제1 유연한 인터커넥트 사이의 열팽창의 불일치를 수용하게 한다.
14D. 사항 13D에서와 태양광 모듈에서, 슈퍼 셀 내의 상기 중첩되고 인접하는 태양 전지들 사이의 도전성 결합들은 상기 슈퍼 셀 및 상기 유연한 전기적 인터커넥트 사이의 도전성 결합들과 다른 도전성 접착제를 사용한다.
15D. 사항 14D에서와 태양광 모듈에서, 도전성 접착제들은 모두 동일한 처리 단계에서 큐어링될 수 있다.
16D. 사항 13D에서와 태양광 모듈에서, 슈퍼 셀 내의 적어도 하나의 태양 전지의 일 측면에서의 상기 도전성 결합은 그 타 측면에서의 상기 도전성 결합과 다른 도전성 접착제를 사용한다.
17D. 사항 16D에서와 태양광 모듈에서, 도전성 접착제들은 모두 동일한 처리 단계에서 큐어링될 수 있다.
18D. 사항 13D에서와 태양광 모듈에서, 상기 중첩되고 인접하는 태양 전지들 사이의 도전성 결합들은 약 15미크론보다 크거나 같은 각 셀 및 상기 유리 전면 시트 사이의 차등 운동을 수용한다.
19D. 사항 13D에서와 태양광 모듈에서, 상기 중첩되고 인접하는 태양 전지들 사이의 도전성 결합들은 약 50미크론보다 작거나 같은 상기 태양 전지들에 직교하는 두께 및 약 1.5W/(미터r-K)보다 크거나 같은 상기 태양 전지들에 직교하는 열전도율을 가진다.
20D. 사항 13D에서와 태양광 모듈에서, 상기 제1 유연한 전기적 인터커넥트는 약 40미크론보다 크거나 같은 상기 제1 유연한 인터커넥트의 열팽창 또는 수축에 견딘다.
21D. 사항 13D에서와 태양광 모듈에서, 상기 슈퍼 셀에 도전성으로 결합되는 상기 제1 유연한 전기적 인터커넥트의 일부는 구리로 형성되는 리본과 같으며, 약 50 미크론보다 작거나 같은 그가 결합되는 상기 태양 전지의 표면에 직교하는 두께를 가진다.
22D. 사항 21D에서와 태양광 모듈에서, 상기 슈퍼 셀에 도전성으로 결합되는 상기 제1 유연한 전기적 인터커넥트의 일부는 구리로 형성되는 리본과 같으며, 약 30미크론보다 작거나 같은 그가 결합되는 상기 태양 전지의 표면에 직교하는 두께를 가진다.
23D. 사항 21D에서와 태양광 모듈에서, 상기 제1 유연한 전기적 인터커넥트는 상기 태양 전지에 결합되지 않고, 상기 태양 전지에 도전성으로 결합되는 상기 제1 유연한 전기적 인터커넥트의 일부보다 높은 전도율을 제공하는 필요한 도전성의 구리 부분을 포함한다.
24D. 사항 21D에서와 태양광 모듈에서, 상기 제1 유연한 전기적 인터커넥트는 상기 인터커넥트를 통한 전류의 흐름에 직교하는 방향으로 상기 태양 전지의 표면의 평면 내에서 약 10㎜보다 크거나 같은 폭을 가진다.
25D. 사항 21D에서와 태양광 모듈에서, 상기 제1 유연한 전기적 인터커넥트는 상기 제1 전기적 인터커넥트보다 높은 전도율을 제공하는 상기 태양 전지에 근접하는 컨덕터에 도전성으로 결합된다.
26D. 사항 13D에서와 태양광 모듈에서, 상기 태양광 모듈은 중첩되는 영역에서 전기적으로 연결되는 다른 태양광 모듈과 중첩되는 슁글드 방식으로 배열된다.
27D. 태양광 모듈은,
둘 또는 그 이상의 평행한 열들로 배열되는 복수의 슈퍼 셀들을 포함하고, 각 슈퍼 셀은 실리콘 태양 전지들을 전기적으로 직렬로 연결하도록 중첩되고 서로 도전성으로 직접 결합되는 인접하는 실리콘 태양 전지들 의 긴 측면들과 일렬로 배열되는 복수의 직사각형 또는 실질적으로 직사각형의 실리콘 태양 전지들을 구비하며;
제1 태양 전지의 후면 상에 위치하는 정상 동작에서 유효한 전류를 전도하지 않는 히든 탭 콘택 패드를 포함하고;
상기 제1 태양 전지는 상기 슈퍼 셀들의 열들의 제1의 것 내의 상기 슈퍼 셀들의 제1의 것을 따라 중간 위치에 위치하며, 상기 히든 탭 콘택 패드는 상기 슈퍼 셀들의 열들의 제2의 것 내의 적어도 제2 태양 전지와 전기적으로 병렬로 연결된다.
28D. 사항 27D에서와 태양광 모듈에서, 상기 히든 탭 콘택 패드에 결합되고 상기 히든 탭 콘택 패드를 상기 제2 태양 전지에 전기적으로 상호 연결하는 전기적 인터커넥트를 포함하고, 상기 전기적 인터커넥트는 상기 제1 태양 전지의 길이에 실질적으로 걸치지 않으며, 상기 제1 태양 전지의 후면 금속화 패턴은 평방 당 약 5옴보다 작거나 같은 시트 저항을 갖는 상기 히든 탭 콘택 패드에 도전성 통로를 제공한다.
29D. 사항 27D에서와 태양광 모듈에서, 상기 복수의 슈퍼 셀들은 상기 열들에 직교하는 상기 태양광 모듈의 폭에 걸치는 셋 또는 그 이상의 열들로 배열되고, 상기 히든 탭 콘택 패드는 상기 슈퍼 셀들의 열들을 전기적으로 병렬로 연결하도록 상기 슈퍼 셀들의 각각의 열들 내의 적어도 하나의 태양 전지 상의 히든 콘택 패드에 전기적으로 연결되며, 상기 히든 탭 콘택 패드들의 적어도 하나 또는 히든 탭 콘택 패드들 사이의 인터커넥트에 대한 적어도 하나의 버스 연결은 바이패스 다이오드 또는 다른 전자 장치에 연결된다.
30D. 사항 27D에서와 태양광 모듈에서, 상기 제2 태양 전지에 전기적으로 연결되게 하도록 상기 히든 탭 콘택 패드에 도전성으로 결합되는 유연한 전기적 인터커넥트를 포함하며,
상기 히든 탭 콘택 패드에 도전성으로 결합되는 상기 유연한 전기적 인터커넥트의 일부는 구리로 형성되는 리본과 같으며, 약 50미크론보다 작거나 같은 그가 결합되는 상기 태양 전지의 표면에 직교하는 두께를 가지고;
상기 히든 탭 콘택 패드 및 상기 유연한 전기적 인터커넥트 사이의 상기 도전성 결합은 상기 유연한 전기적 인터커넥트가 상기 제1 태양 전지 및 상기 유연한 인터커넥트 사이의 열팽창의 불일치에 견디고, 상기 태양광 모듈의 손상 없이 약 -40℃ 내지 약 180℃의 온도 범위에 대해 열팽창으로부터 야기되는 상기 제1 태양 전지 및 상기 제2 태양 전지 사이의 상대적인 운동을 수용하게 한다.
31D. 사항 27D에서와 태양광 모듈에서, 상기 태양광 모듈의 동작에서 상기 제1 히든 탭 콘택 패드는 상기 태양 전지들의 임의의 단일의 것 내에서 발생되는 전류보다 큰 전류를 전도할 수 있다.
32D. 사항 27D에서와 태양광 모듈에서, 상기 제1 히든 탭 콘택 패드 상부에 놓이는 상기 제1 태양 전지의 전면은 콘택 패드들 또는 임의의 다른 인터커넥트 특징들에 의해 점유되지 않는다.
33D. 사항 27D에서와 태양광 모듈에서, 상기 제1 슈퍼 셀 내의 인접하는 태양 전지의 일부에 의해 중첩되지 않는 상기 제1 태양 전지의 전면의 임의의 면적은 콘택 패드들에 의하거나 임의의 다른 인터커넥트 특징들에 의해 점유되지 않는다.
34D. 사항 27D에서와 태양광 모듈에서, 각 슈퍼 셀 내에서 대부분의 상기 셀들은 히든 탭 콘택 패드들을 가지지 않는다.
35D. 사항 34D에서와 태양광 모듈에서, 상기 히든 탭 콘택 패드들을 가지는 셀들은 히든 탭 콘택 패드들을 가지지 않는 셀들보다 큰 집광 면적을 가진다.
36D. 사항 27D에서와 태양광 모듈에서, 상기 태양광 모듈은 중첩되는 영역에서 전기적으로 연결되는 다른 태양광 모듈과 중첩되는 슁글드 방식으로 배열된다.
37D. 태양광 모듈은,
유리 전면 시트를 포함하고;
후면 시트를 포함하며;
상기 유리 전면 시트 및 상기 후면 시트 사이에 둘 또는 그 이상의 평행한 열들로 배열되는 복수의 슈퍼 셀들을 포함하고, 각 슈퍼 셀은 실리콘 태양 전지들을 전기적으로 직렬로 연결하도록 중첩되고 서로 유연하게 도전성으로 직접 결합되는 인접하는 실리콘 태양 전지들의 긴 측면들과 일렬로 배열되는 복수의 직사각형 또는 실질적으로 직사각형의 실리콘 태양 전지들을 구비하며;
상기 슈퍼 셀들의 제1의 것에 단단하게 도전성으로 결합되는 제1 유연한 전기적 인터커넥트를 포함하고;
상기 중첩되는 태양 전지들 사이의 유연한 도전성 결합들은 제1 도전성 접착제로 형성되며, 약 800메가파스칼보다 작거나 같은 전단 탄성 계수를 가지고;
상기 제1 슈퍼 셀 및 상기 제1 유연한 전기적 인터커넥트 사이의 단단한 도전성 결합은 제2 도전성 접착제로 형성되며, 약 2000메가파스칼보다 크거나 같은 전단 탄성 계수를 가진다.
38D. 사항 37D에서와 같은 태양광 모듈에서, 상기 제1 도전성 접착제 및 상기 제2 도전성 접착제는 다르며, 도전성 접착제들은 모두 동일한 처리 단계에서 큐어링될 수 있다.
39D. 사항 37D에서와 같은 태양광 모듈에서, 상기 중첩되고 인접하는 태양 전지들 사이의 도전성 결합들은 약 50미크론보다 작거나 같은 상기 태양 전지들에 직교하는 두께 및 약 1.5W/(미터-K)보다 크거나 같은 상기 태양 전지들에 직교하는 열전도율을 가진다.
40D. 사항 37D에서와 같은 태양광 모듈에서, 상기 태양광 모듈은 중첩되는 영역에서 전기적으로 연결되는 다른 태양광 모듈과 중첩되는 슁글드 방식으로 배열된다.
1E. 태양광 모듈은, 둘 또는 그 이상의 평행한 열들 내의 복수의 슈퍼 셀들로서 배열되는 약 150보다 크거나 같은 숫자 N의 직사각형 또는 실질적으로 직사각형의 실리콘 태양 전지들을 포함하고, 각 슈퍼 셀은 실리콘 태양 전지들을 전기적으로 직렬로 연결하도록 중첩되고 도전성으로 결합되는 인접하는 실리콘 태양 전지들의 긴 측면들과 일렬로 배열되는 복수의 실리콘 태양 전지들을 구비하며; 상기 슈퍼 셀들은 약 90볼트보다 크거나 같은 높은 직류 전압을 제공하도록 전기적으로 연결된다.
2E. 사항 1E에서와 같은 태양광 모듈에서, 상기 높은 직류 전압을 제공하기 위해 상기 복수의 슈퍼 셀들을 전기적으로 직렬로 연결하도록 배열되는 하나 또는 그 이상의 유연한 전기적 인터커넥트들을 포함한다.
3E. 사항 2E에서와 같은 태양광 모듈에서, 상기 높은 직류 전압을 교류 전압으로 변환하는 인버터를 구비하는 모듈 레벨 파워 일렉트로닉스를 포함한다.
4E. 사항 3E에서와 같은 태양광 모듈에서, 상기 모듈 레벨 파워 일렉트로닉스는 상기 높은 직류 전압을 감지하며, 최적의 전류-전압 전력점에서 상기 모듈을 동작시킨다.
5E. 사항 1E에서와 같은 태양광 모듈에서, 슈퍼 셀들의 인접하는 직렬 연결된 열들의 개개의 쌍들에 전기적으로 연결되고, 상기 높은 직류 전압을 제공하도록 상기 슈퍼 셀들의 열들의 쌍들의 하나 또는 그 이상을 전기적으로 직렬로 연결하며, 상기 높은 직류 전압을 교류 전압으로 변환하는 인버터를 구비하는 모듈 레벨 파워 일렉트로닉스를 포함한다.
6E. 사항 5E에서와 같은 태양광 모듈에서, 상기 모듈 레벨 파워 일렉트로닉스는 슈퍼 셀들의 열들의 각 개개의 쌍에 걸친 전압을 감지하며, 최적의 전류-전압 전력점에서 상기 슈퍼 셀들의 열들의 각 개개의 쌍을 동작시킨다.
7E. 사항 6E에서와 같은 태양광 모듈에서, 상기 모듈 레벨 파워 일렉트로닉스는 상기 열들의 쌍에 걸친 전압이 문턱값 아래일 경우에 상기 높은 직류 전압을 제공하는 회로로부터 상기 슈퍼 셀들의 열들의 개개의 쌍을 스위치한다.
8E. 사항 1E에서와 같은 태양광 모듈에서, 슈퍼 셀들의 각 개개의 열에 전기적으로 연결되고, 상기 높은 직류 전압을 제공하도록 상기 슈퍼 셀들의 열들의 둘 또는 그 이상을 전기적으로 직렬로 연결하며, 상기 높은 직류 전압을 교류 전압으로 변환하는 인버터를 구비하는 모듈 레벨 파워 일렉트로닉스를 포함한다.
9E. 사항 8E에서와 같은 태양광 모듈에서, 상기 모듈 레벨 파워 일렉트로닉스는 슈퍼 셀들의 각 개개의 열에 걸친 전압을 감지하며, 최적의 전류-전압 전력점에서 슈퍼 셀들의 각 개개의 열들을 동작시킨다.
10E. 사항 9E에서와 같은 태양광 모듈에서, 상기 모듈 레벨 파워 일렉트로닉스는 상기 열들의 쌍에 걸친 전압이 문턱값 아래일 경우에 상기 높은 직류 전압을 제공하는 회로로부터 상기 슈퍼 셀들의 열들의 개개의 쌍을 스위치한다.
11E. 사항 1E에서와 같은 태양광 모듈에서, 각 개개의 슈퍼 셀에 전기적으로 연결되고, 상기 높은 직류 전압을 제공하도록 상기 슈퍼 셀들의 둘 또는 그 이상을 전기적으로 직렬로 연결하며, 상기 높은 직류 전압을 교류 전압으로 변환하는 인버터를 구비하는 모듈 레벨 파워 일렉트로닉스를 포함한다.
12E. 사항 11E에서와 같은 태양광 모듈에서, 상기 모듈 레벨 파워 일렉트로닉스는 각 개개의 슈퍼 셀에 걸친 전압을 감지하며, 최적의 전류-전압 전력점에서 각 개개의 슈퍼 셀을 동작시킨다.
13E. 사항 12E에서와 같은 태양광 모듈에서, 상기 모듈 레벨 파워 일렉트로닉스는 상기 슈퍼 셀에 걸친 전압이 문턱값 아래일 경우에 상기 높은 직류 전압을 제공하는 회로로부터 개개의 슈퍼 셀을 스위치한다.
14E. 사항 1E에서와 같은 태양광 모듈에서, 각 슈퍼 셀은 히든 탭들에 의해 복수의 세그먼트(segment)들로 전기적으로 분할되며, 상기 태양광 모듈은, 상기 히든 탭들을 통해 각 슈퍼 셀의 각 세그먼트에 전기적으로 연결되고, 상기 높은 직류 전압을 제공하도록 둘 또는 그 이상의 세그먼트들을 전기적으로 직렬로 연결하며, 상기 높은 직류 전압을 교류 전압으로 변환하는 인버터를 구비하는 모듈 레벨 파워 일렉트로닉스를 포함한다.
15E. 사항 14E에서와 같은 태양광 모듈에서, 상기 모듈 레벨 파워 일렉트로닉스는 각 슈퍼 셀의 각 개개의 세그먼트에 걸친 전압을 감지하며, 각 개개의 세그먼트를 최적의 전류-전압 전력점에서 동작시킨다.
16E. 사항 15E에서와 같은 태양광 모듈에서, 상기 모듈 레벨 파워 일렉트로닉스는 상기 세그먼트에 걸친 전압이 문턱값 아래일 경우에 상기 높은 직류 전압을 제공하는 회로로부터 개개의 세그먼트를 스위치한다.
17E. 사항 4E, 사항 6E, 사항 9E, 사항 12E 또는 사항 15E와 같은 태양광 모듈에서, 상기 최적의 전류-전압 전력점은 최대 전류-전압 전력점이다.
18E. 사항 3E-사항 17E 중의 임의의 것에서와 같은 태양광 모듈에서, 상기 모듈 레벨 파워 일렉트로닉스는 직류 대 직류 부스트 구성 요소가 결핍된다.
19E. 사항 1E-사항 18E 중의 임의의 것에서와 같은 태양광 모듈에서, N은 약 200보다 크거나 같거나, 약 250보다 크거나 같거나, 약 300보다 크거나 같거나, 약 350보다 크거나 같거나, 약 400보다 크거나 같거나, 약 450보다 크거나 같거나, 약 500보다 크거나 같거나, 약 550보다 크거나 같거나, 약 600보다 크거나 같거나, 약 650보다 크거나 같거나, 약 700보다 크거나 같다.
20E. 사항 1E-사항 19E 중의 임의의 것에서와 같은 태양광 모듈에서, 상기 높은 직류 전압은 약 120볼트보다 크거나 같거나, 약 180볼트보다 크거나 같거나, 약 240볼트보다 크거나 같거나, 약 300볼트보다 크거나 같거나, 약 360볼트보다 크거나 같거나, 약 420볼트보다 크거나 같거나, 약 480볼트보다 크거나 같거나, 약 540볼트보다 크거나 같거나, 약 600볼트보다 크거나 같다.
21E. 태양광 발전 시스템(solar photovoltaic system)은,
전기적으로 병렬로 연결되는 둘 또는 그 이상의 태양광 모듈들; 및
인버터를 포함하고;
각 태양광 모듈은 둘 또는 그 이상의 평행한 열들 내의 복수의 슈퍼 셀들로서 배열되는 약 150보다 크거나 같은 숫자 N의 직사각형 또는 실질적으로 직사각형의 실리콘 태양 전지들을 구비하며, 각 모듈 내의 각 슈퍼 셀은 실리콘 태양 전지들을 전기적으로 직렬로 연결하도록 중첩되고 서로 도전성으로 결합되는 인접하는 실리콘 태양 전지들의 긴 측면들과 일렬로 배열되는 상기 모듈 내의 상기 실리콘 태양 전지들의 둘 또는 그 이상을 구비하고, 각 모듈 내에서 상기 슈퍼 셀들은 약 90볼트보다 크거나 같은 고전압 직류 모듈 출력을 제공하도록 전기적으로 연결되며;
상기 인버터는 이들의 고전압 직류 출력을 교류로 변환시키도록 상기 둘 또는 그 이상의 태양광 모듈들에 전기적으로 연결된다.
22E. 사항 21E의 태양광 발전 시스템에서, 각 태양광 모듈은 상기 태양광 모듈의 고전압 직류 출력을 제공하기 위해 상기 태양광 모듈 내의 슈퍼 셀들을 전기적으로 직렬로 연결하도록 배열되는 하나 또는 그 이상의 유연한 전기적 인터커넥트들을 포함한다.
23E. 사항 21E의 태양광 발전 시스템에서, 전기적으로 병렬로 연결된 상기 둘 또는 그 이상의 태양광 모듈들의 제1의 것과 전기적으로 직렬로 연결되는 적어도 제3 태양광 모듈을 포함하고, 상기 제3 태양광 모듈은 둘 또는 그 이상의 평행한 열들 내의 복수의 슈퍼 셀들로서 배열되는 약 150보다 크거나 같은 숫자 N'의 직사각형 또는 실질적으로 직사각형의 실리콘 태양 전지들을 구비하며, 상기 제3 태양광 모듈 내의 각 슈퍼 셀은 상기 실리콘 태양 전지들을 전기적으로 직렬로 연결하도록 중첩되고 서로 도전성으로 결합되는 인접하는 실리콘 태양 전지들의 긴 측면들과 일렬로 배열되는 상기 모듈 내의 실리콘 태양 전지들의 둘 또는 그 이상을 구비하고, 상기 제3 태양광 모듈 내에서 상기 슈퍼 셀들은 약 90볼트보다 크거나 같은 고전압 직류 모듈 출력을 제공하도록 전기적으로 연결된다.
24E. 사항 23E의 태양광 발전 시스템에서, 전기적으로 병렬로 연결된 상기 둘 또는 그 이상의 태양광 모듈들의 제2의 것과 전기적으로 직렬로 연결되는 적어도 제4 태양광 모듈을 포함하고, 상기 제4 태양광 모듈은 둘 또는 그 이상의 평행한 열들 내의 복수의 슈퍼 셀들로서 배열되는 약 150보다 크거나 같은 숫자 N"의 직사각형 또는 실질적으로 직사각형의 실리콘 태양 전지들을 구비하며, 상기 제4 태양광 모듈 내의 각 슈퍼 셀은 상기 실리콘 태양 전지들을 전기적으로 직렬로 연결하도록 중첩되고 서로 도전성으로 결합되는 인접하는 실리콘 태양 전지들의 긴 측면들과 일렬로 배열되는 상기 모듈 내의 실리콘 태양 전지들의 둘 또는 그 이상을 구비하고, 상기 제4 태양광 모듈 내에서 상기 슈퍼 셀들은 약 90볼트보다 크거나 같은 고전압 직류 모듈 출력을 제공하도록 전기적으로 연결된다.
25E. 사항 21E-사항 24E의 태양광 발전 시스템에서, 상기 태양광 모듈들의 임의의 것 내에서 일어나는 단락이 다른 태양광 모듈들 내에서 발생되는 전력을 소실키는 것을 방지하도록 배열되는 퓨즈들을 포함한다.
26E. 사항 21E-사항 25E 중의 임의의 것의 태양광 발전 시스템에서, 상기 태양광 모듈들의 임의의 것 내에서 일어나는 단락이 상기 태양광 모듈들의 다른 것들 내에서 발생되는 전력을 소실키는 것을 방지하도록 배열되는 차단 다이오드들을 포함한다.
27E. 사항 21E-사항 26E 중의 임의의 것의 태양광 발전 시스템에서, 둘 또는 그 이상의 태양광 모듈들이 전기적으로 병렬로 연결되고, 상기 인버터가 전기적으로 연결되는 양의 및 음의 버스들을 포함한다.
28E. 사항 21E-사항 26E 중의 임의의 것의 태양광 발전 시스템에서, 분리된 컨덕터에 의해 상기 둘 또는 그 이상의 태양광 모듈들이 전기적으로 연결되는 결합기 박스를 포함하며, 상기 결합기 박스는 상기 태양광 모듈들에 전기적으로 병렬로 연결된다.
29E. 사항 28E의 태양광 발전 시스템에서, 상기 결합기 박스는 상기 태양광 모듈들의 임의의 것 내에서 일어나는 단락이 다른 태양광 모듈들 내에서 발생되는 전력을 소실키는 것을 방지하도록 배열되는 퓨즈들을 포함한다.
30E. 사항 28E 또는 사항 29E의 태양광 발전 시스템에서, 상기 결합기 박스는 상기 태양광 모듈들의 임의의 것 내에서 일어나는 단락이 상기 태양광 모듈들의 다른 것들 내에서 발생되는 전력을 소실키는 것을 방지하도록 배열되는 차단 다이오드들을 포함한다.
31E. 사항 21E-사항 30E 중의 임의의 것의 태양광 발전 시스템에서, 상기 인버터는 모듈을 역 바이어싱하는 것을 회피하도록 설정되는 최소값 이상의 직류 전압에서 상기 태양광 모듈들을 동작시키도록 구성된다.
32E. 사항 21E-사항 30E 중의 임의의 것의 태양광 발전 시스템에서, 상기 인버터는 역 바이어스 조건을 인식하며, 상기 역 바이어스 조건을 회피하는 전압에서 상기 태양광 모듈들을 동작시키도록 구성된다.
33E. 사항 21E-사항 32E 중의 임의의 것의 태양광 모듈에서, N은 약 200보다 크거나 같거나, 약 250보다 크거나 같거나, 약 300보다 크거나 같거나, 약 350보다 크거나 같거나, 약 400보다 크거나 같거나, 약 450보다 크거나 같거나, 약 500보다 크거나 같거나, 약 550보다 크거나 같거나, 약 600보다 크거나 같거나, 약 650보다 크거나 같거나, 약 700보다 크거나 같다.
34E. 사항 21E-사항 33E 중의 임의의 것의 태양광 모듈에서, 상기 높은 직류 전압은 약 120볼트보다 크거나 같거나, 약 180볼트보다 크거나 같거나, 약 240볼트보다 크거나 같거나, 약 300볼트보다 크거나 같거나, 약 360볼트보다 크거나 같거나, 약 420볼트보다 크거나 같거나, 약 480볼트보다 크거나 같거나, 약 540볼트보다 크거나 같거나, 약 600볼트보다 크거나 같다.
35E. 사항 21E-사항 34E 중의 임의의 것의 태양광 발전 시스템에서, 지붕 상단에 위치한다.
36E. 태양광 발전 시스템은,
둘 또는 그 이상의 평행한 열들 내의 복수의 슈퍼 셀들로서 배열되는 약 150보다 크거나 같은 숫자 N의 직사각형 또는 실질적으로 직사각형의 실리콘 태양 전지들을 구비하는 제1 태양광 모듈을 포함하고, 각 슈퍼 셀은 상기 실리콘 태양 전지들을 전기적으로 직렬로 연결하도록 중첩되고 서로 도전성으로 결합되는 인접하는 실리콘 태양 전지들의 긴 측면들과 일렬로 배열되는 복수의 실리콘 태양 전지들을 구비하며;
인버터를 포함하고;
상기 슈퍼 셀들은 직류를 교류로 변환하는 상기 인버터에 대해 약 90볼트보다 크거나 같은 높은 직류 전압을 제공하도록 전기적으로 연결된다.
37E. 사항 36E의 태양광 발전 시스템에서, 상기 인버터는 상기 제1 태양광 모듈과 통합되는 마이크로인버터이다.
38E. 사항 36E의 태양광 발전 시스템에서, 상기 제1 태양광 모듈은 상기 태양광 모듈의 고전압 직류 출력을 제공하기 위해 상기 태양광 모듈 내의 슈퍼 셀들에 전기적으로 직렬로 연결되도록 배열되는 하나 또는 그 이상의 유연한 전기적 인터커넥트들을 구비한다.
39E. 사항 36E-사항 38E 중의 임의의 것의 태양광 발전 시스템에서, 상기 제1 태양광 모듈에 전기적으로 직렬로 연결되는 적어도 제2 태양광 모듈을 포함하고, 상기 제2 태양광 모듈은 둘 또는 그 이상의 평행한 열들 내의 복수의 슈퍼 셀들로서 배열되는 약 150보다 크거나 같은 숫자 N'의 직사각형 또는 실질적으로 직사각형의 실리콘 태양 전지들을 구비하며, 상기 제2 태양광 모듈 내의 각 슈퍼 셀은 상기 실리콘 태양 전지들을 전기적으로 직렬로 연결하도록 중첩되고 서로 도전성으로 결합되는 인접하는 실리콘 태양 전지들의 긴 측면들과 일렬로 배열되는 상기 모듈 내의 실리콘 태양 전지들의 둘 또는 그 이상을 구비하고, 상기 제2 태양광 모듈 내에서 상기 슈퍼 셀들은 약 90볼트보다 크거나 같은 고전압 직류 모듈 출력을 제공하도록 전기적으로 연결된다.
40E. 사항 36E-사항 39E 중의 임의의 것의 태양광 모듈에서, 상기 인버터는 직류 대 직류 부스트 구성 요소가 결핍된다.
41E. 사항 36E-사항 40E 중의 임의의 것의 태양광 모듈에서, N은 약 200보다 크거나 같거나, 약 250보다 크거나 같거나, 약 300보다 크거나 같거나, 약 350보다 크거나 같거나, 약 400보다 크거나 같거나, 약 450보다 크거나 같거나, 약 500보다 크거나 같거나, 약 550보다 크거나 같거나, 약 600보다 크거나 같거나, 약 650보다 크거나 같거나, 약 700보다 크거나 같다.
42E. 사항 36E-사항 41E 중의 임의의 것의 태양광 모듈에서, 높은 직류 전압은 약 120볼트보다 크거나 같거나, 약 180볼트보다 크거나 같거나, 약 240볼트보다 크거나 같거나, 약 300볼트보다 크거나 같거나, 약 360볼트보다 크거나 같거나, 약 420볼트보다 크거나 같거나, 약 480볼트보다 크거나 같거나, 약 540볼트보다 크거나 같거나, 약 600볼트보다 크거나 같다.
43E. 태양광 모듈은,
둘 또는 그 이상의 평행한 열들 내의 복수의 직렬 연결된 슈퍼 셀들로서 배열되는 약 250보다 크거나 같은 숫자 N의 직사각형 또는 실질적으로 직사각형의 실리콘 태양 전지들을 포함하고, 각 슈퍼 셀은 상기 슈퍼 셀 내의 실리콘 태양 전지들을 전기적으로 직렬로 연결하도록 중첩되고 전기적 및 열적으로 도전성인 접착제로 서로 도전성으로 결합되는 인접하는 실리콘 태양 전지들의 긴 측면들과 일렬로 배열되는 복수의 실리콘 태양 전지들을 구비하며;
25개의 태양 전지들 당 하나 이하의 바이패스 다이오드를 포함하고;
상기 전기적 및 열적으로 도전성인 접착제는 인접하는 태양 전지들 사이에 약 50미크론보다 작거나 같은 상기 태양 전지들에 직교하는 두께 및 약 1.5W/(미터-K)보다 크거나 같은 상기 태양 전지들에 직교하는 열전도율을 갖는 결합들을 형성한다.
44E. 사항 43E의 태양광 모듈에서, 상기 슈퍼 셀들은 상기 전면 및 후면 시트들 사이의 열가소성 올레핀층 내에 봉지된다.
45E. 사항 43E의 태양광 모듈에서, 상기 슈퍼 셀들은 상기 전면 및 후면 시트들 사이에 봉지된다.
46E. 사항 43E의 태양광 모듈에서, 30개의 태양 전지들 당 하나 이하의 바이패스 다이오드, 또는 50개의 태양 전지들 당 하나 이하의 바이패스 다이오드, 또는 100개의 태양 전지들 당 하나 이하의 바이패스 다이오드, 또는 단일의 바이패스 다이오드만을 포함하거나, 바이패스 다이오드를 포함하지 않는다.
47E. 사항 43E의 태양광 모듈에서, 바이패스 다이오드들을 포함하지 않거나, 단일의 바이패스 다이오드만, 또는 셋을 넘지 않는 바이패스 다이오드들, 또는 여섯을 넘지 않는 바이패스 다이오드들, 또는 열을 넘지 않는 바이패스 다이오드들을 포함한다.
48E. 사항 43E의 태양광 모듈에서, 상기 중첩되는 태양 전지들 사이의 도전성 결합들은 상기 슈퍼 셀들에 상기 태양광 모듈의 손상 없이 약 -40℃ 내지 약 100℃의 온도 범위에 대해 상기 열들에 평행한 방향으로 상기 슈퍼 셀들 및 상기 유리 전면 시트 사이의 열팽창의 불일치를 수용하는 기계적 컴플라이언스를 제공한다.
49E. 사항 43E-사항 48E 중의 임의의 것의 태양광 모듈에서, N은 약 300보다 크거나 같거나, 약 350보다 크거나 같거나, 약 400보다 크거나 같거나, 약 450보다 크거나 같거나, 약 500보다 크거나 같거나, 약 550보다 크거나 같거나, 약 600보다 크거나 같거나, 약 650보다 크거나 같거나, 약 700보다 크거나 같다.
50E. 사항 43E-사항 49E 중의 임의의 것의 태양광 모듈에서, 상기 슈퍼 셀들은 약 120볼트보다 크거나 같거나, 약 180볼트보다 크거나 같거나, 약 240볼트보다 크거나 같거나, 약 300볼트보다 크거나 같거나, 약 360볼트보다 크거나 같거나, 약 420볼트보다 크거나 같거나, 약 480볼트보다 크거나 같거나, 약 540볼트보다 크거나 같거나, 약 600볼트보다 크거나 같은 높은 직류 전압을 제공하도록 전기적으로 연결된다.
51E. 태양 에너지 시스템은,
사항 43E의 태양광 모듈; 및
상기 태양광 모듈에 전기적으로 연결되고, AC 출력을 제공하기 위해 상기 태양광 모듈로부터의 DC 출력을 변환시키도록 구성되는 인버터를 포함한다.
52E. 사항 51E의 태양 에너지 시스템에서, 상기 인버터는 DC 대 DC 부스트 구성 요소가 결핍된다.
53E. 사항 51E의 태양 에너지 시스템에서, 상기 인버터는 태양 전지를 역 바이어싱하는 것을 회피하도록 설정된 최소값 이상의 직류 전압에서 상기 태양광 모듈을 동작시키도록 구성된다.
54E. 사항 53E의 태양 에너지 시스템에서, 상기 최소 전압값은 온도에 의존한다.
55E. 사항 51E의 태양 에너지 시스템에서, 상기 인버터는 역 바이어스 조건을 인식하고, 상기 역 바이어스 조건을 회피하는 전압에서 상기 태양광 모듈을 동작시키도록 구성된다.
56E. 사항 55E의 태양 에너지 시스템에서, 상기 인버터는 상기 역 바이어스 조건을 회피하도록 상기 태양광 모듈의 전압-전류 출력 곡선의 극대 영역에서 상기 태양광 모듈을 동작시키도록 구성된다.
57E. 사항 51E-사항 56E 중의 임의의 것의 태양 에너지 시스템에서, 상기 인버터는 상기 태양광 모듈과 통합되는 마이크로인버터이다.
1F. 태양 전지들을 제조하는 방법에 있어서, 상기 방법은,
태양 전지 웨이퍼를 곡선의 표면을 따라 진행시키는 단계; 및
상기 곡선의 표면에 대해 상기 태양 전지 웨이퍼를 구부리도록 상기 곡선의 표면과 상기 태양 전지 웨이퍼의 저면 사이에 진공을 인가하고, 이에 따라 상기 태양 전지 웨이퍼로부터 복수의 태양 전지들을 분리하도록 하나 또는 그 이상의 미리 준비된 스크라이브 라인들을 따라 상기 태양 전지 웨이퍼를 절단하는 단계를 포함한다.
2F. 사항 1F의 방법에서, 상기 태양 전지 웨이퍼의 저면에 상기 진공을 인가하는 진공 매니폴드의 상부 표면의 곡선 부분이다.
3F. 사항 2F의 방법에서, 상기 진공 매니폴드에 의해 상기 태양 전지 웨이퍼의 저면에 인가되는 진공은 상기 태양 전지 웨이퍼의 진행의 방향을 따라 변화되며, 태양 전지 웨이퍼가 절단되는 상기 진공 매니폴드의 영역에서 가장 강하게 된다.
4F. 사항 2F 또는 사항 3F의 방법에서, 상기 태양 전지 웨이퍼를 천공된 벨트로 상기 진공 매니폴드의 곡선의 상부 표면을 따라 이송하는 단계를 포함하며, 상기 진공은 상기 천공된 벨트 내의 천공들을 통해 상기 태양 전지 웨이퍼의 저면에 인가된다.
5F. 사항 4F의 방법에서, 상기 벨트 내의 천공들은 상기 태양 전지 웨이퍼의 리딩 및 트레일링 에지들이 상기 태양 전지 웨이퍼의 진행을 방향을 따라 상기 벨트 내의 적어도 하나의 천공 상부에 놓여야 하도록 배열된다.
6F. 사항 2F-사항 5F 중의 임의의 것의 방법에서, 제1 곡률을 갖는 상기 진공 매니폴드의 상부 표면의 곡선의 전이 영역에 도달하도록 상기 태양 전지 웨이퍼를 상기 진공 매니폴드의 상부 표면의 평탄한 영역을 따라 진행시키고, 이후에 상기 태양 전지 웨이퍼를 상기 태양 전지 웨이퍼가 절단되는 상기 진공 매니폴드의 상부 표면의 절단 영역 내로 진행시키는 단계를 포함하며, 상기 진공 매니폴드의 절단 영역은 상기 제1 곡률보다 급격한 제2 곡률을 가진다.
7F. 사항 6F의 방법에서, 상기 전이 영역의 곡률은 증가하는 곡률의 연속되는 기하학적 함수에 의해 정의된다.
8F. 사항 7F의 방법에서, 상기 절단 영역의 곡률은 증가하는 곡률의 연속되는 기하학적 함수에 의해 정의된다.
9F. 사항 6F의 방법에서, 상기 제2 곡률보다 급격한 제3 곡률을 갖는 상기 진공 매니폴드의 후 절단 영역 내로 진행시키는 단계를 포함한다.
10F. 사항 9F의 방법에서, 상기 곡선의 전이 영역, 상기 절단 영역 및 상기 후 절단 영역의 곡률들은 증가하는 곡률의 연속되는 기하학적 함수에 의해 정의된다.
11F. 사항 7F, 사항 8F, 또는 사항 10F의 방법에서, 상기 증가하는 곡률의 연속되는 기하학적 함수는 클로소이드(clothoid)이다.
12F. 사항 1F-사항 11F 중의 임의의 것의 방법에서, 각 스크라이브 라인을 따라 단일의 절단하는 크랙의 생성 및 전파를 증진시키는 각 스크라이브 라인을 따라서 비대칭의 스트레스 분포를 제공하도록 각 스크라이브 라인의 대향하는 단부보다는 각 스크라이브 라인의 일측 단부에서 상기 태양 전지 웨이퍼 및 상기 곡선의 표면 사이에 보다 강한 진공을 인가하는 단계를 포함한다.
13F. 사항 1F-사항 12F 중의 임의의 것의 방법에서, 상기 곡선의 표면으로부터 상기 절단된 태양 전지들을 제거하는 단계를 포함하며, 상기 절단된 태양 전지들의 에지들은 상기 곡선의 표면으로부터의 상기 태양 전지들의 제거 이전에 접촉되지 않는다.
14F. 사항 1F-사항 13F 중의 임의의 것의 방법에서,
상기 태양 전지 웨이퍼 상으로 레이저 스크라이빙하는 단계; 및
상기 태양 전지 웨이퍼를 상기 스크라이브 라인들을 따라 절단하는 단계 이전에 상기 태양 전지 웨이퍼의 상면의 일부들에 전기적으로 도전성인 접착 결합 물질을 적용하는 단계를 포함하며;
각 절단된 태양 전지는 그 상면의 절단된 에지를 따라 배치되는 상기 전기적으로 도전성인 접착 결합 물질의 일부를 포함한다.
15F. 사항 14F의 방법에서, 상기 스크라이브 라인들을 레이저 스크라이빙하고, 이후에 상기 전기적으로 도전성인 접착 결합 물질을 적용하는 단계를 포함한다.
16F. 사항 14F의 방법에서, 상기 전기적으로 도전성인 접착 결합 물질을 적용하고, 이후에 상기 스크라이브 라인들을 레이저 스크라이빙하는 단계를 포함한다.
17F. 사항 14F-사항 16F 중의 임의의 것의 방법에 의해 제조되는 절단된 태양 전지들로부터 태양 전지들의 스트링을 만드는 방법에 있어서, 상기 절단된 태양 전지들은 직사각형이며, 상기 방법은,
상기 복수의 직사각형의 태양 전지들을 그 사이에 배치되는 상기 전기적으로 도전성인 접착 결합 물질의 일부로 슁글드 방식으로 중첩되는 인접하는 직사각형의 태양 전지들의 긴 측면들과 일렬로 배열하는 단계; 및
상기 전기적으로 도전성인 결합 물질을 큐어링하여, 인접하고 중첩되는 직사각형의 태양 전지들을 결합하고, 이들을 전기적으로 직렬로 연결하는 단계를 포함한다.
18F. 사항 1F-사항 17F 중의 임의의 것의 방법에서, 상기 태양 전지 웨이퍼는 정사각형 또는 의사 정사각형의 실리콘 태양 전지 웨이퍼이다.
1G. 전지들의 스트링을 만드는 방법에 있어서, 상기 방법은,
각각의 하나 또는 그 이상의 정사각형의 태양 전지들 상에 후면 금속화 패턴을 형성하는 단계;
각각의 상기 하나 또는 그 이상의 정사각형의 태양 전지들 상에 단일 스텐실 프린팅 단계에서 단일 스텐실을 사용하여 완전한 전면 금속화 패턴을 스텐실 프린팅하는 단계;
상기 하나 또는 그 이상의 정사각형의 태양 전지들로부터 각기 완전한 전면 금속화 패턴 및 후면 금속화 패턴을 구비하는 복수의 직사각형의 태양 전지들을 형성하도록 각 정사각형의 태양 전지를 둘 또는 그 이상의 직사각형의 태양 전지들로 분리하는 단계;
상기 복수의 직사각형의 태양 전지들을 슁글드 방식으로 중첩되고 인접하는 직사각형의 태양 전지들의 긴 측면들과 일렬로 배열하는 단계; 및
인접하고 중첩되는 직사각형의 태양 전지들의 각 쌍 내의 상기 직사각형의 태양 전지들을 상기 쌍 내의 직사각형의 태양 전지들의 하나의 전면 금속화 패턴을 상기 쌍 내의 직사각형의 태양 전지들의 다른 하나의 후면 금속화 패턴과 전기적으로 연결하도록 이들 사이에 배치되는 전기적으로 도전성인 결합 물질로 서로 도전성으로 결합하여, 상기 복수의 직사각형의 태양 전지들을 전기적으로 직렬로 연결하는 단계를 포함한다.
2G. 사항 1G의 방법에서, 상기 하나 또는 그 이상의 정사각형의 태양 전지들 상의 전면 금속화 패턴의 하나 또는 그 이상의 특징들을 한정하는 상기 스텐실의 모든 부분들은 스텐실 프린팅 동안에 상기 스텐실의 평면 내에 놓이도록 상기 스텐실 의 다른 부분들에 대한 물리적 연결들에 의해 제한된다.
3G. 사항 1G의 방법에서, 각 직사각형의 태양 전지 상의 상기 전면 금속화 패턴은 상기 직사각형의 태양 전지의 긴 측면들에 직교하게 배향되는 복수의 핑거들을 포함하며, 상기 전면 금속화 패턴 내의 상기 핑거들은 상기 전면 금속화 패턴에 의해 서로 물리적으로 연결되지 않는다.
4G. 사항 3G의 방법에서, 상기 핑거들은 약 10미크론 내지 약 90미크론의 폭들을 가진다.
5G. 사항 3G의 방법에서, 상기 핑거들은 약 10미크론 내지 약 50미크론의 폭들을 가진다.
6G. 사항 3G의 방법에서, 상기 핑거들은 약 10미크론 내지 약 30미크론의 폭들을 가진다.
7G. 사항 3G의 방법에서, 상기 핑거들은 약 10미크론 내지 약 50미크론의 상기 직사각형의 태양 전지의 전면에 직교하는 높이들을 가진다.
8G. 사항 3G의 방법에서, 상기 핑거들은 약 30 미크론 또는 그 이상의 상기 직사각형의 태양 전지의 전면에 직교하는 높이들을 가진다.
9G. 사항 3G의 방법에서, 각 직사각형의 태양 전지 상의 상기 전면 금속화 패턴은 상기 직사각형의 태양 전지의 긴 측면의 에지에 평행하고 인접하는 복수의 콘택 패드들을 포함하며, 각 콘택 패드는 대응되는 핑거의 단부에 위치한다.
10G. 사항 3G의 방법에서, 각 직사각형의 태양 전지 상의 상기 후면 금속화 패턴은 상기 직사각형의 태양 전지의 긴 측면의 에지에 평행하고 인접하여 열로 배열되는 복수의 콘택 패드들을 포함하며, 인접하고 중첩되는 직사각형의 태양 전지들의 각 쌍은 상기 쌍 내의 직사각형의 태양 전지들의 다른 것 상의 전면 금속화 패턴 내의 대응되는 핑거들과 정렬되고 전기적으로 연결되는 상기 직사각형의 태양 전지들의 쌍의 하나 상의 각각의 상기 후면 콘택 패드들과 배열된다.
11G. 사항 3G의 방법에서, 각 직사각형의 태양 전지 상의 상기 후면 금속화 패턴은 상기 직사각형의 태양 전지의 긴 측면의 에지에 평행하고 인접하여 진행되는 버스 바를 포함하며, 인접하고 중첩되는 직사각형의 태양 전지들의 각 쌍은 상기 쌍 내의 직사각형의 태양 전지들의 다른 것 상의 전면 금속화 패턴 내의 핑거들과 중첩되고 전기적으로 연결되는 직사각형의 태양 전지들의 쌍의 하나 상의 버스 바와 배열된다.
12G. 사항 3G의 방법에서,
각 직사각형의 태양 전지 상의 상기 전면 금속화 패턴은 상기 직사각형의 태양 전지의 긴 측면의 에지에 평행하고 인접하게 배열되는 복수의 콘택 패드들을 포함하고, 각 콘택 패드는 대응되는 핑거의 단부에 위치하며;
각 직사각형의 태양 전지 상의 상기 후면 금속화 패턴은 상기 직사각형의 태양 전지의 긴 측면의 에지에 평행하고 인접한 열로 배열되는 복수의 콘택 패드들을 포함하고;
인접하고 중첩되는 직사각형의 태양 전지들의 각 쌍은 상기 쌍 내의 다른 직사각형의 태양 전지들 상의 전면 금속화 패턴 내의 콘택 패드와 중첩되고 전기적으로 연결되고 상기 직사각형의 태양 전지들의 쌍의 하나 상의 각각의 상기 후면 콘택 패드들을 구비하여 배열된다.
13G. 사항 12G의 방법에서, 인접하고 중첩되는 직사각형의 태양 전지들의 각 쌍 내의 상기 직사각형의 태양 전지들은 상기 중첩되는 전면 및 후면 콘택 패드들 사이에 배치되는 전기적으로 도전성인 결합 물질의 별개의 부분들에 의해 서로 도전성으로 결합된다.
14G. 사항 3G의 방법에서, 인접하고 중첩되는 직사각형의 태양 전지들의 각 쌍 내의 상기 직사각형의 태양 전지들은 상기 직사각형의 태양 전지들의 쌍의 하나의 전면 금속화 패턴 및 상기 직사각형의 태양 전지들의 쌍의 다른 하나의 후면 금속화 패턴 내의 핑거들의 중첩된 단부들 사이의 전기적으로 도전성인 결합 물질의 별개의 부분들에 의해 서로 도전성으로 결합된다.
15G. 사항 3G의 방법에서, 인접하고 중첩되는 직사각형의 태양 전지들의 각 쌍 내의 상기 직사각형의 태양 전지들은 상기 직사각형의 태양 전지들의 쌍의 하나의 전면 금속화 패턴 및 상기 직사각형의 태양 전지들의 쌍의 다른 하나의 후면 금속화 패턴 내의 핑거들의 중첩된 단부들 사이의 전기적으로 도전성인 결합 물질의 파선 또는 연속되는 라인들에 의해 서로 도전성으로 결합되며, 상기 전기적으로 도전성인 결합 물질의 파선 또는 연속되는 라인은 상기 핑거들의 하나 또는 그 이상을 전기적으로 상호 연결한다.
16G. 사항 3G의 방법에서,
각 직사각형의 태양 전지 상의 상기 전면 금속화 패턴은 상기 직사각형의 태양 전지의 긴 측면의 에지에 평행하고 인접하게 배열되는 복수의 콘택 패드들을 포함하고, 각 콘택 패드는 대응되는 핑거의 단부에 위치하며;
인접하고 중첩되는 직사각형의 태양 전지들의 각 쌍 내의 상기 직사각형의 태양 전지들은 상기 직사각형의 태양 전지들의 쌍의 하나의 전면 금속화 패턴 및 상기 직사각형의 태양 전지들의 쌍의 다른 하나의 후면 금속화 패턴 내의 상기 콘택 패드들 사이에 배치되는 전기적으로 도전성인 결합 물질의 별개의 부분들에 의해 서로 도전성으로 결합된다.
17G. 사항 3G의 방법에서,
각 직사각형의 태양 전지 상의 상기 전면 금속화 패턴은 상기 직사각형의 태양 전지의 긴 측면의 에지에 평행하고 인접하게 배열되는 복수의 콘택 패드들을 포함하고, 각 콘택 패드는 대응되는 핑거의 단부에 위치하며;
인접하고 중첩되는 직사각형의 태양 전지들의 각 쌍 내의 상기 직사각형의 태양 전지들은 상기 직사각형의 태양 전지들의 쌍의 하나의 전면 금속화 패턴 및 상기 직사각형의 태양 전지들의 쌍의 다른 하나의 후면 금속화 패턴 내의 콘택 패드들 사이의 전기적으로 도전성인 결합 물질의 파선 또는 연속되는 라인들에 의해 서로 도전성으로 결합되며, 상기 전기적으로 도전성인 결합 물질의 파선 또는 연속되는 라인은 상기 핑거들의 하나 또는 그 이상을 전기적으로 상호 연결한다.
18G. 사항 1G-사항 17G 중의 임의의 것의 방법에서, 상기 전면 금속화 패턴은 실버 페이스트로 형성된다.
1H. 복수의 태양 전지들을 제조하는 방법에 있어서, 상기 방법은,
하나 또는 그 이상의 전면 비정질 실리콘층들을 결정질 실리콘 웨이퍼의 전면 상에 증착하는 단계를 포함하고, 상기 전면 비정질 실리콘층들은 상기 태양 전지들의 동작에서 광에 의해 조명되며;
하나 또는 그 이상의 후면 비정질 실리콘층들을 상기 전면으로부터 상기 결정질 실리콘 웨이퍼의 대향하는 측면 상의 상기 결정질 실리콘 웨이퍼의 후면 상에 증착하는 단계를 포함하고;
상기 하나 또는 그 이상의 전면 비정질 실리콘층들 내에 하나 또는 그 이상의 전면 트렌치들을 형성하도록 상기 하나 또는 그 이상의 전면 비정질 실리콘층들을 패터닝하는 단계를 포함하며;
상기 하나 또는 그 이상의 전면 비정질 실리콘층들 상부 및 상기 전면 트렌치들 내에 전면 패시베이션층을 증착하는 단계를 포함하고;
상기 하나 또는 그 이상의 후면 비정질 실리콘층들 내에 하나 또는 그 이상의 후면 트렌치들을 형성하도록 상기 하나 또는 그 이상의 후면 비정질 실리콘층들을 패터닝하는 단계를 포함하며, 각각의 상기 하나 또는 그 이상의 후면 트렌치들은 상기 전면 트렌치들의 대응되는 것과 일렬로 형성되고;
상기 하나 또는 그 이상의 후면 비정질 실리콘층들 상부 및 상기 후면 트렌치들 내에 후면 패시베이션층을 증착하는 단계를 포함하며;
하나 또는 그 이상의 절단 평면(cleavage plane)들에서 상기 결정질 실리콘 웨이퍼를 절단하는 단계를 포함하고, 각 절단 평면은 대응되는 전면 및 후면 트렌치들의 다른 쌍에 중심을 두거나 실질적으로 중심을 둔다.
2H. 사항 1H의 방법에서, 상기 결정질 실리콘 웨이퍼의 전면에 도달되도록 상기 전면 비정질 실리콘층들을 관통하는 상기 하나 또는 그 이상의 전면 트렌치들을 형성하는 단계를 포함한다.
3H. 사항 1H의 방법에서, 상기 결정질 실리콘 웨이퍼의 후면에 도달되도록 상기 하나 또는 그 이상의 후면 비정질 실리콘층들을 관통하는 상기 하나 또는 그 이상의 후면 트렌치들을 형성하는 단계를 포함한다.
4H. 사항 1H의 방법에서, 투명 도전성 산화물로 상기 전면 패시베이션층 및 상기 후면 패시베이션층을 형성하는 단계를 포함한다.
5H. 사항 1H의 방법에서, 상기 하나 또는 그 이상의 절단 평면들에서 상기 결정질 실리콘 웨이퍼를 절단하도록 상기 결정질 실리콘 웨이퍼 내에 열 스트레스를 유도하도록 레이저를 사용하는 단계를 포함한다.
6H. 사항 1H의 방법에서, 상기 하나 또는 그 이상의 절단 평면들에서 상기 결정질 실리콘 웨이퍼를 기계적으로 절단하는 단계를 포함한다.
7H. 사항 1H의 방법에서, 상기 하나 또는 그 이상의 전면 비정질 결정질 실리콘층들은 상기 결정질 실리콘 웨이퍼와 n-p 접합을 형성한다.
8H. 사항 7H의 방법에서, 그 후면측으로부터 상기 결정질 실리콘 웨이퍼를 절단하는 단계를 포함한다.
9H. 사항 1H의 방법에서, 상기 하나 또는 그 이상의 후면 비정질 결정질 실리콘층들은 상기 결정질 실리콘 웨이퍼와 n-p 접합을 형성한다.
10H. 사항 9H의 방법에서, 그 전면측으로부터 상기 결정질 실리콘 웨이퍼를 절단하는 단계를 포함한다.
11H. 복수의 태양 전지들을 제조하는 방법에 있어서, 상기 방법은,
결정질 실리콘 웨이퍼의 제1 표면 내에 하나 또는 그 이상의 트렌치들을 형성하는 단계;
상기 결정질 실리콘 웨이퍼의 제1 표면상에 하나 또는 그 이상의 비정질 실리콘층들을 증착하는 단계;
상기 트렌치들 내에 및 상기 결정질 실리콘 웨이퍼의 제1 표면상의 하나 또는 그 이상의 비정질 실리콘층들 상에 패시베이션층을 증착하는 단계;
상기 제1 표면으로부터 상기 결정질 실리콘 웨이퍼의 대향하는 에지 상의 상기 결정질 실리콘 웨이퍼의 제2 표면상에 하나 또는 그 이상의 비정질 실리콘층들을 증착하는 단계; 및
하나 또는 그 이상의 절단 평면들에서 상기 결정질 실리콘 웨이퍼를 절단하는 단계를 포함하며, 각 절단 평면은 상기 하나 또는 그 이상의 트렌치들의 다른 것에 중심을 두거나 실질적으로 중심을 둔다.
12H. 사항 11H의 방법에서, 투명 도전성 물질로 상기 패시베이션층을 형성하는 단계를 포함한다.
13H. 사항 11H의 방법에서, 상기 하나 또는 그 이상의 절단 평면들에서 상기 결정질 실리콘 웨이퍼를 절단하기 위해 상기 결정질 실리콘 웨이퍼 내에 열 스트레스를 유도하도록 레이저를 사용하는 단계를 포함한다.
14H. 사항 11H의 방법에서, 상기 하나 또는 그 이상의 절단 평면들에서 상기 결정질 실리콘 웨이퍼를 기계적으로 절단하는 단계를 포함한다.
15H. 사항 11H의 방법에서, 상기 하나 또는 그 이상의 제1 표면 비정질 결정질 실리콘층들은 상기 결정질 실리콘 웨이퍼와 n-p 접합을 형성한다.
16H. 사항 11H의 방법에서, 상기 하나 또는 그 이상의 제2 표면 비정질 결정질 실리콘층들은 상기 결정질 실리콘 웨이퍼와 n-p 접합을 형성한다.
17H. 사항 11H의 방법에서, 상기 결정질 실리콘 웨이퍼의 제1 표면은 상기 태양 전지들의 동작에서 광에 의해 조명된다.
18H. 사항 11H의 방법에서, 상기 결정질 실리콘 웨이퍼의 제2 표면은 상기 태양 전지들의 동작에서 광에 의해 조명된다.
19H. 태양 전지 패널(solar panel)은,
복수의 슈퍼 셀들을 포함하고, 각 슈퍼 셀은 태양 전지들을 전기적으로 직렬로 연결하도록 슁글드 방식으로 중첩되고 서로 도전성으로 결합되는 인접하는 태양 전지들의 당부들과 일렬로 배열되는 복수의 태양 전지들을 구비하며;
각 태양 전지는 결정질 실리콘 베이스(base), n-p 접합을 형성하도록 상기 결정질 실리콘 베이스의 제1 표면상에 배치되는 하나 또는 그 이상의 제1 표면 비정질 실리콘층들, 상기 제1 표면으로부터 상기 결정질 실리콘 베이스의 대향하는 측면 상의 상기 결정질 실리콘 베이스의 제2 표면상에 배치되는 하나 또는 그 이상의 제2 표면 비정질 실리콘층들, 그리고 상기 제1 표면 비정질 실리콘층들의 에지들, 상기 제2 표면 비정질 실리콘층들의 에지들, 또는 상기 제1 표면 비정질 실리콘층들의 에지들 및 상기 제2 표면 비정질 실리콘층들의 에지들에서 전하 재결합을 방지하는 패시베이션층들을 포함한다.
20H. 사항 19H의 태양 전지 패널에서, 상기 패시베이션층들은 투명 도전성 산화물을 포함한다.
21H. 사항 19H의 태양 전지 패널에서, 상기 슈퍼 셀들은 상기 태양 전지 패널의 동작 동안에 태양 복사에 의해 조명되는 상기 태양 전지 패널의 전면을 형성하도록 단일의 열, 또는 둘 또는 그 이상의 평행한 열들로 배열된다.
Z1. 태양광 모듈은,
둘 또는 그 이상의 평행한 열들 내의 복수의 직렬 연결된 슈퍼 셀들로서 배열되는 약 250보다 크거나 같은 숫자 N의 직사각형 또는 실질적으로 직사각형의 실리콘 태양 전지들을 포함하고, 각 슈퍼 셀은 상기 슈퍼 셀 내의 실리콘 태양 전지들을 전기적으로 직렬로 연결하도록 중첩되고 전기적 및 열적으로 도전성인 접착제로 서로 도전성으로 직접 결합되는 인접하는 실리콘 태양 전지들의 긴 측면들과 일렬로 배열되는 복수의 실리콘 태양 전지들을 구비하며;
하나 또는 그 이상의 바이패스 다이오드들을 포함하고;
상기 태양광 모듈 내의 인접하는 평행한 열들의 각 쌍은 상기 쌍의 하나의 열 내의 중심으로 위치하는 태양 전지 상의 후면 전기적 콘택에 도전성으로 결합되고, 상기 쌍의 다른 하나의 열 내의 인접하는 태양 전지 상의 후면 전기적 콘택에 도전성으로 결합되는 바이패스 다이오드에 의해 전기적으로 연결된다.
Z2. 사항 Z1의 태양광 모듈에서, 인접하는 평행한 열들의 각 쌍은 상기 쌍의 다른 하나의 열 내의 태양 전지 상의 후면 전기적 콘택에 도전성으로 결합되고, 상기 쌍의 다른 하나의 열 내의 인접하는 태양 전지 상의 후면 전기적 콘택에 도전성으로 결합되는 적어도 하나의 다른 바이패스 다이오드에 의해 전기적으로 연결된다.
Z3. 사항 Z2의 태양광 모듈에서, 인접하는 평행한 열들의 각 쌍은 상기 쌍의 다른 하나의 열 내의 태양 전지 상의 후면 전기적 콘택에 도전성으로 결합되고, 상기 쌍의 다른 하나의 열 내의 인접하는 태양 전지 상의 후면 전기적 콘택에 도전성으로 결합되는 적어도 하나의 다른 바이패스 다이오드에 의해 전기적으로 연결된다.
Z4. 사항 Z1의 태양광 모듈에서, 상기 전기적 및 열적으로 도전성인 접착제는 인접하는 태양 전지들 사이에 약 50미크론보다 작거나 같은 상기 태양 전지들에 직교하는 두께 및 약 1.5W/(미터-K)보다 크거나 같은 상기 태양 전지들에 직교하는 열전도율을 갖는 결합들을 형성한다.
Z5. 사항 Z1의 태양광 모듈에서, 상기 슈퍼 셀들은 전면 및 후면 유리 시트들 사이의 열가소성 올레핀층 내에 봉지된다.
Z6. 사항 Z1의 태양광 모듈에서, 상기 중첩되는 태양 전지들 사이의 도전성 결합들은 상기 슈퍼 셀들에 상기 태양광 모듈의 손상 없이 약 -40℃ 내지 약 100℃의 온도 범위에 대해 상기 열들에 평행한 방향으로 상기 슈퍼 셀들 및 상기 유리 전면 시트 사이의 열팽창의 불일치를 수용하는 기계적 컴플라이언스를 제공한다.
Z7. 사항 Z1-사항 Z6 중의 임의의 것의 태양광 모듈에서, N은 약 300보다 크거나 같거나, 약 350보다 크거나 같거나, 약 400보다 크거나 같거나, 약 450보다 크거나 같거나, 약 500보다 크거나 같거나, 약 550보다 크거나 같거나, 약 600보다 크거나 같거나, 약 650보다 크거나 같거나, 약 700보다 크거나 같다.
Z8. 사항 Z1-사항 Z7 중의 임의의 것의 태양광 모듈에서, 상기 슈퍼 셀들은 약 120볼트보다 크거나 같거나, 약 180볼트보다 크거나 같거나, 약 240볼트보다 크거나 같거나, 약 300볼트보다 크거나 같거나, 약 360볼트보다 크거나 같거나, 약 420볼트보다 크거나 같거나, 약 480볼트, 약 540볼트보다 크거나 같거나, 약 600볼트보다 크거나 같은 높은 직류 전압을 제공하도록 전기적으로 연결된다.
Z9. 태양 에너지 시스템은,
사항 Z1의 태양광 모듈; 및
상기 태양광 모듈에 전기적으로 연결되고, AC 출력을 제공하도록 상기 태양광 모듈로부터의 DC 출력을 변환시키도록 구성되는 인버터를 포함한다.
Z10. 사항 Z9의 태양 에너지 시스템에서, 상기 인버터는 DC 대 DC 부스트 구성 요소가 결핍된다.
Z11. 사항 Z9의 태양 에너지 시스템에서, 상기 인버터는 태양 전지를 역 바이어싱하는 것을 회피하도록 설정되는 최소 전압 이상의 직류 전압에서 상기 태양광 모듈을 동작시키도록 구성된다.
Z12. 사항 Z11의 태양 에너지 시스템에서, 상기 최소 전압값은 온도에 의존한다.
Z13. 사항 Z9의 태양 에너지 시스템에서, 상기 인버터는 역 바이어스 조건을 인식하며, 상기 역 바이어스 조건을 회피하는 전압에서 상기 태양광 모듈을 동작시키도록 구성된다.
Z14. 사항 Z13의 태양 에너지 시스템에서, 상기 인버터는 상기 역 바이어스 조건을 회피하도록 상기 태양광 모듈의 전압-전류 출력 곡선의 극대 영역에서 상기 태양광 모듈을 동작시키도록 구성된다.
Z15. 사항 Z9-사항 Z14 중의 임의의 것의 태양 에너지 시스템에서, 상기 인버터는 상기 태양광 모듈과 통합되는 마이크로인버터이다.
본 명세서에서 개시되는 발명은 예시적이며, 제한적인 것은 아니다. 다른 변형들이 본 발명의 관점에서 해당 기술 분야의 숙련자에게 분명할 것이며, 첨부된 특허청구범위의 범주 내에 포함되도록 의도된 것이다.

Claims (130)

  1. 태양광 모듈(solar module)에 있어서,
    둘 또는 그 이상의 평행한 열들로 배열되는 복수의 슈퍼 셀(super cell)들을 포함하고, 각 슈퍼 셀은 실리콘 태양 전지(solar cell)들을 전기적으로 직렬로 연결하도록 중첩되고 서로 도전성으로 결합되는 인접하는 실리콘 태양 전지들의 긴 측면들과 일렬로 배열되는 복수의 직사각형 또는 실질적으로 직사각형의 실리콘 태양 전지들을 구비하며;
    제1 태양 전지의 후면 상에 위치하는 정상 동작에서 유효한 전류를 전도하지 않는 히든 탭(hidden tap) 콘택 패드를 포함하고;
    상기 제1 태양 전지는 상기 슈퍼 셀들의 열들의 제1의 것 내의 상기 슈퍼 셀들 의 제1의 것을 따라 중간 위치에 위치하며, 상기 히든 탭 콘택 패드는 상기 슈퍼 셀들의 열들의 제2의 것 내의 적어도 제2 태양 전지에 전기적으로 병렬로 연결되는 것을 특징으로 하는 태양광 모듈.
  2. 제 1 항에 있어서, 상기 히든 탭 콘택 패드에 결합되고, 상기 히든 탭 콘택 패드를 상기 제2 태양 전지와 전기적으로 상호 연결하는 전기적 인터커넥트(interconnect)를 포함하고, 상기 전기적 인터커넥트는 상기 제1 태양 전지의 길이에 실질적으로 걸치지 않으며, 상기 제1 태양 전지 상의 후면 금속화(metallization) 패턴은 평방 당 약 5옴(Ohm)보다 작거나 같은 시트 저항을 갖는 상기 히든 탭 콘택 패드에 전도성 통로를 제공하는 것을 특징으로 하는 태양광 모듈.
  3. 제 1 항에 있어서, 상기 복수의 슈퍼 셀들은 상기 열들에 직교하는 상기 태양광 모듈의 폭에 걸치는 셋 또는 그 이상의 평행한 열들로 배열되고, 상기 히든 탭 콘택 패드는 상기 슈퍼 셀들의 열을 전기적으로 병렬로 연결하도록 상기 슈퍼 셀들의 각각의 열들 내의 적어도 하나의 태양 전지 상의 히든 콘택 패드에 전기적으로 연결되며, 상기 히든 탭 콘택 패드들의 적어도 하나 또는 상기 히든 탭 콘택 패드들 사이의 인터커넥트에 대한 적어도 하나의 버스 연결(bus connection)은 바이패스 다이오드(bypass diode) 또는 다른 전자 장치에 연결되는 것을 특징으로 하는 태양광 모듈.
  4. 제 1 항에 있어서, 상기 히든 탭 콘택 패드를 상기 제2 태양 전지에 전기적으로 연결하도록 상기 히든 탭 콘택 패드에 도전성으로 결합되는 유연한 전기적 인터커넥트를 포함하고,
    상기 히든 탭 콘택 패드에 도전성으로 결합되는 상기 유연한 전기적 인터커넥트의 일부는 구리로 형성되는 리본(ribbon)과 같으며, 약 50미크론보다 작거나 같은 그가 결합되는 상기 태양 전지의 표면에 직교하는 두께를 가지고;
    상기 히든 탭 콘택 패드 및 상기 유연한 전기적 인터커넥트 사이의 도전성 결합은 상기 유연한 전기적 인터커넥트가 상기 제1 태양 전지 및 상기 유연한 인터커넥트 사이의 열팽창의 불일치에 견디게 하며, 상기 태양광 모듈을 손상시키지 않고 약 -40℃ 내지 약 180℃의 온도 범위에 대해 열팽창으로부터 야기되는 상기 제1 태양 전지 및 상기 제2 태양 전지 사이의 상대적인 운동을 수용하게 하는 것을 특징으로 하는 태양광 모듈.
  5. 제 1 항에 있어서, 상기 태양광 모듈의 동작에서 상기 제1 히든 콘택 패드는 상기 태양 전지들의 임의의 단일의 것 내에서 발생되는 전류보다 큰 전류를 전도할 수 있는 것을 특징으로 하는 태양광 모듈.
  6. 제 1 항에 있어서, 상기 제1 히든 탭 콘택 패드 웨에 놓인 상기 제1 태양 전지의 전면은 콘택 패드들에 의하거나 임의의 다른 인터커넥트 특징(feature)들에 의해 점유되지 않는 것을 특징으로 하는 태양광 모듈.
  7. 제 1 항에 있어서, 상기 제1 슈퍼 셀 내의 인접하는 태양 전지의 일부에 의해 중첩되지 않는 상기 제1 태양 전지의 전면의 임의의 면적은 콘택 패드들에 의하거나 임의의 다른 인터커넥트 특징들에 의해 점유되지 않는 것을 특징으로 하는 태양광 모듈.
  8. 제 1 항에 있어서, 각 슈퍼 셀 내에서 상기 셀들의 대부분은 히든 탭 콘택 패드들을 가지지 않는 것을 특징으로 하는 태양광 모듈.
  9. 제 8 항에 있어서, 상기 히든 탭 콘택 패드들을 가지는 셀들은 상기 히든 탭 콘택 패드들을 가지지 않는 셀들보다 큰 집광 면적을 가지는 것을 특징으로 하는 태양광 모듈.
  10. 제 1 항에 있어서, 상기 태양광 모듈이 중첩되는 영역에서 전기적으로 연결되는 다른 태양광 모듈과 중첩되는 슁글드 방식(shingled manner)으로 배열되는 것을 특징으로 하는 태양광 모듈.
  11. 태양광 모듈에 있어서,
    유리 전면 시트를 포함하고;
    후면 시트를 포함하며;
    상기 유리 전면 시트 및 상기 후면 시트 사이에 둘 또는 그 이상의 평행한 열들로 배열되는 복수의 슈퍼 셀들을 포함하고, 각 슈퍼 셀은 상기 실리콘 태양 전지들을 전기적으로 직렬로 연결하도록 중첩되고 서로 유연하게 도전성으로 결합되는 인접하는 실리콘 태양 전지들 의 긴 측면들과 일렬로 배열되는 복수의 직사각형 또는 실질적으로 직사각형의 실리콘 태양 전지들을 구비하며;
    상기 슈퍼 셀들의 제1의 것에 단단하게 도전성으로 결합되는 제1 유연한 전기적 인터커넥트를 포함하고;
    중첩되는 태양 전지들 사이의 상기 유연하고 도전성인 결합들은 상기 태양광 모듈을 손상시키지 않고 약 -40℃ 내지 약 100℃의 온도 범위에 대해 상기 열들에 평행한 방향으로 상기 슈퍼 셀들 및 상기 유리 전면 시트 사이의 열팽창을 수용하는 상기 슈퍼 셀들에 기계적인 컴플라이언스(mechanical compliance)를 제공하며;
    상기 제1 슈퍼 셀 및 상기 제1 유연한 전기적 인터커넥트 사이의 단단한 도전성 결합은 상기 제1 유연한 전기적 인터커넥트가 상기 태양광 모듈의 손상 없이 약 -40℃ 내지 약 180℃의 온도 범위에 대해 상기 열들에 직교하는 방향으로 상기 제1 슈퍼 셀 및 상기 제1 유연한 인터커넥트 사이의 열팽창의 불일치를 수용하게 하는 것을 특징으로 하는 태양광 모듈.
  12. 제 11 항에 있어서, 슈퍼 셀 내의 상기 중첩되고 인접하는 태양 전지들 사이의 도전성 결합들은 상기 슈퍼 셀 및 상기 유연한 전기적 인터커넥트 사이의 상기 도전성 결합들과 다른 도전성 접착제를 사용하는 것을 특징으로 하는 태양광 모듈.
  13. 제 12 항에 있어서, 모든 도전성 접착제들은 동일한 처리 단계에서 큐어링될 수 있는 것을 특징으로 하는 태양광 모듈.
  14. 제 11 항에 있어서, 슈퍼 셀 내의 적어도 하나의 태양 전지의 일 측면에서의 상기 도전성 결합은 그 다른 측면에서의 상기 도전성 결합과 다른 도전성 접착제를 사용하는 것을 특징으로 하는 태양광 모듈.
  15. 제 14 항에 있어서, 모든 도전성 접착제들은 동일한 처리 단계에서 큐어링될 수 있는 것을 특징으로 하는 태양광 모듈.
  16. 제 11 항에 있어서, 상기 중첩되고 인접하는 태양 전지들 사이의 도전성 결합들은 약 15미크론보다 크거나 같은 상기 셀 및 상기 유리 전면 시트 사이의 차등 운동을 수용하는 것을 특징으로 하는 태양광 모듈.
  17. 제 11 항에 있어서, 상기 중첩되고 인접하는 태양 전지들 사이의 도전성 결합들은 약 50미크론보다 작거나 같은 상기 태양 전지들에 직교하는 두께 및 약 1.5W/(미터-K)보다 크거나 같은 상기 태양 전지들에 직교하는 열전도율을 가지는 것을 특징으로 하는 태양광 모듈.
  18. 제 11 항에 있어서, 상기 제1 유연한 전기적 인터커넥트는 약 40미크론보다 크거나 같은 상기 제1 유연한 인터커넥트의 열팽창 또는 수축을 견디는 것을 특징으로 하는 태양광 모듈.
  19. 제 11 항에 있어서, 상기 슈퍼 셀에 도전성으로 결합되는 상기 제1 유연한 전기적 인터커넥트의 일부는 구리로 형성되는 리본과 같으며, 약 50미크론보다 작거나 같은 그가 결합되는 상기 태양 전지의 표면에 직교하는 두께를 가지는 것을 특징으로 하는 태양광 모듈.
  20. 제 19 항에 있어서, 상기 슈퍼 셀에 도전성으로 결합되는 상기 제1 유연한 전기적 인터커넥트의 일부는 구리로 형성되는 리본과 같으며, 약 30미크론보다 작거나 같은 그가 결합되는 상기 태양 전지의 표면에 직교하는 두께를 가지는 것을 특징으로 하는 태양광 모듈.
  21. 제 19 항에 있어서, 상기 제1 유연한 전기적 인터커넥트는 상기 태양 전지에 결합되지 않으며, 상기 태양 전지에 도전성으로 결합되는 상기 제1 유연한 전기적 인터커넥트의 일부보다 높은 전도율을 제공하는 필수적인 도전성의 구리 부분을 포함하는 것을 특징으로 하는 태양광 모듈.
  22. 제 19 항에 있어서, 상기 제1 유연한 전기적 인터커넥트는 상기 인터커넥트를 통한 전류의 흐름에 직교하는 방향으로 상기 태양 전지의 표면의 평면 내에서 약 10㎜보다 크거나 같은 폭을 가지는 것을 특징으로 하는 태양광 모듈.
  23. 제 19 항에 있어서, 상기 제1 유연한 전기적 인터커넥트는 상기 제1 전기적 인터커넥트보다 높은 전도율을 제공하는 상기 태양 전지에 근접하는 컨덕터(conductor)에 도전성으로 결합되는 것을 특징으로 하는 태양광 모듈.
  24. 제 11 항에 있어서, 상기 태양광 모듈은 중첩되는 영역에서 전기적으로 연결되는 다른 태양광 모듈과 중첩되는 슁글드 방식으로 배열되는 것을 특징으로 하는 태양광 모듈.
  25. 태양광 모듈에 있어서,
    유리 전면 시트를 포함하고;
    후면 시트를 포함하며;
    상기 유리 전면 시트 및 상기 후면 시트 사이에 둘 또는 그 이상의 평행한 열들로 배열되는 복수의 슈퍼 셀들을 포함하고, 각 슈퍼 셀은 실리콘 태양 전지들을 전기적으로 직렬로 연결하도록 중첩되고 서로 유연하게 도전성으로 결합되는 인접하는 실리콘 태양 전지들의 긴 측면들과 일렬로 배열되는 복수의 직사각형 또는 실질적으로 직사각형의 실리콘 태양 전지들을 구비하며;
    상기 슈퍼 셀들의 제1의 것에 단단하게 도전성으로 결합되는 제1 유연한 전기적 인터커넥트를 포함하고;
    중첩되는 태양 전지들 사이의 상기 유연한 도전성 결합들은 제1 도전성 접착제로 형성되고, 약 800메가파스칼(megapascal)보다 작거나 같은 전단 탄성 계수(shear modulus)를 가지며;
    상기 제1 슈퍼 셀 및 상기 제1 유연한 전기적 인터커넥트 사이의 상기 단단한 도전성 결합은 제2 도전성 접착제로 형성되고, 약 2000메가파스칼보다 크거나 같은 전단 탄성 계수를 가지는 것을 특징으로 하는 태양광 모듈.
  26. 제 25 항에 있어서, 상기 제1 도전성 접착제 및 상기 제2 도전성 접착제는 다르며, 상기 도전성 접착제들 모두는 동일한 처리 공정에서 큐어링될 수 있는 것을 특징으로 하는 태양광 모듈.
  27. 제 25 항에 있어서, 중첩되고 인접하는 태양 전지들 사이의 상기 도전성 결합들은 약 50미크론보다 작거나 같은 상기 태양 전지들에 직교하는 두께 및 약 1.5W/(미터-K)보다 크거나 같은 상기 태양 전지들에 직교하는 열전도율을 가지는 것을 특징으로 하는 태양광 모듈.
  28. 제 25 항에 있어서, 상기 태양광 모듈은 중첩되는 영역에서 전기적으로 연결되는 다른 태양광 모듈과 중첩되는 슁글드 방식으로 배열되는 것을 특징으로 하는 태양광 모듈.
  29. 웨이퍼의 제1 외측 에지에 평행하고 인접하게 배열되는 제1 버스 바(bus bar) 또는 콘택 패드들의 열 및 상기 웨이퍼의 제1 에지에 대향되고 평행한 상기 웨이퍼의 제2 외측 에지에 평행하고 인접하게 배열되는 제2 버스 바 또는 콘택 패드들의 열을 포함하는 전면 금속화 패턴을 구비하는 실리콘 웨이퍼를 수득하거나 제공하는 단계를 포함하고;
    복수의 직사각형의 태양 전지들을 형성하도록 상기 웨이퍼의 제1 및 제2 외측 에지들에 평행한 하나 또는 그 이상의 스크라이브 라인(scribe line)들을 따라 상기 실리콘 웨이퍼를 분리하는 단계를 포함하며, 상기 제1 버스 바 또는 콘택 패드들의 열은 상기 직사각형의 태양 전지들의 제1의 것의 긴 외측 에지에 평행하고 인접하게 배열되고, 상기 제2 버스 바 또는 콘택 패드들의 열은 상기 직사각형의 태양 전지들의 제2의 것의 긴 외측 에지에 평행하고 인접하게 배열되며;
    슈퍼 셀을 형성하기 위해 상기 태양 전지들을 전기적으로 직렬로 연결하도록 중첩되고 서로 도전성으로 결합되는 인접하는 태양 전지들의 긴 측면들과 일렬로 상기 직사각형의 태양 전지들을 배열하는 단계를 포함하고;
    상기 직사각형의 태양 전지들의 제1의 것 상의 상기 제1 버스 바 또는 콘택 패드들의 열은 상기 슈퍼 셀 내의 인접하는 직사각형의 태양 전지의 저면과 중첩되고 도전성으로 결합되는 것을 특징으로 하는 방법.
  30. 제 29 항에 있어서, 상기 직사각형의 태양 전지들의 제2의 것 상의 제2 버스 바 또는 콘택 패드들의 열은 상기 슈퍼 셀 내의 인접하는 직사각형의 태양 전지의 저면과 중첩되고 도전성으로 결합되는 것을 특징으로 하는 방법.
  31. 제 29 항에 있어서, 상기 실리콘 웨이퍼 정사각형 또는 의사(pseudo) 정사각형의 실리콘 웨이퍼인 것을 특징으로 하는 방법.
  32. 제 31 항에 있어서, 상기 실리콘 웨이퍼는 약 125㎜의 길이 또는 약 156㎜의 길이의 측면들을 포함하는 것을 특징으로 하는 방법.
  33. 제 31 항에 있어서, 상기 각 직사각형의 태양 전지의 폭에 대한 길이의 비율은 약 2:1 내지 약 20:1인 것을 특징으로 하는 방법.
  34. 제 29 항에 있어서, 상기 실리콘 웨이퍼는 결정질 실리콘 웨이퍼인 것을 특징으로 하는 방법.
  35. 제 29 항에 있어서, 상기 제1 버스 바 또는 콘택 패드들의 열 및 상기 제2 버스 바 또는 콘택 패드들의 열은 상기 실리콘 웨이퍼의 중심 영역들보다 덜 효율적으로 광을 전기로 변환하는 상기 실리콘 웨이퍼의 에지 영역들에 위치하는 것을 특징으로 하는 방법.
  36. 제 29 항에 있어서, 상기 전면 금속화 패턴은 상기 제1 버스 바 또는 콘택 패드들의 열에 전기적으로 연결되고, 상기 웨이퍼의 제1 외측 에지로부터 내측으로 연장되는 제1 복수의 평행한 핑거(finger)들 및 상기 제2 버스 바 또는 콘택 패드들의 열에 전기적으로 연결되고, 상기 웨이퍼의 제2 외측 에지로부터 내측으로 연장되는 제2 복수의 평행한 핑거들을 포함하는 것을 특징으로 하는 방법.
  37. 제 29 항에 있어서, 상기 전면 금속화 패턴은 상기 제1 버스 바 또는 콘택 패드들의 열 및 상기 제2 버스 바 또는 콘택 패드들의 열 사이에 위치하고 평행하게 배향되는 적어도 제3 버스 바 또는 콘택 패드들의 열 그리고 상기 제3 버스 바 또는 콘택 패드들의 열에 직교하게 배향되고 전기적으로 연결되는 제3 복수의 평행한 핑거들을 포함하며, 상기 제3 버스 바 또는 콘택 패드들의 열은 상기 복수의 직사각형의 태양 전지들을 형성하도록 상기 실리콘 웨이퍼가 분리된 후에 상기 직사각형의 태양 전지들의 제3의 것의 긴 외측 에지에 평행하고 인접하게 배열되는 것을 특징으로 하는 방법.
  38. 제 29 항에 있어서, 상기 제1 직사각형의 태양 전지를 인접하는 태양 전지에 도전성으로 결합하도록 도전성 접착제를 상기 제1 버스 바 또는 콘택 패드들의 열에 적용하는 단계를 포함하는 것을 특징으로 하는 방법.
  39. 제 38 항에 있어서, 상기 금속화 패턴은 상기 도전성 접착제의 확산을 제한하도록 구성되는 배리어(barrier)를 포함하는 것을 특징으로 하는 방법.
  40. 제 38 항에 있어서, 스크린 프린팅(screen printing)에 의해 상기 도전성 접착제를 적용하는 단계를 포함하는 것을 특징으로 하는 방법.
  41. 제 38 항에 있어서, 잉크젯 프린팅(ink jet printing)에 의해 상기 도전성 접착제를 적용하는 단계를 포함하는 것을 특징으로 하는 방법.
  42. 제 38 항에 있어서, 상기 도전성 접착제는 상기 실리콘 웨이퍼 내에 상기 스크라이브 라인들의 형성 전에 적용되는 것을 특징으로 하는 방법.
  43. 제 29 항에 있어서, 상기 실리콘 웨이퍼를 상기 하나 또는 그 이상의 스크라이브 라인들을 따라 분리하는 단계는 상기 실리콘 웨이퍼를 곡선의 지지면에 대해 구부리도록 상기 실리콘 웨이퍼의 저면 및 상기 곡선의 지지면 사이에 진공을 인가하여, 상기 실리콘 웨이퍼를 상기 하나 또는 그 이상의 스크라이브 라인들을 따라 절단하는 단계를 포함하는 것을 특징으로 하는 방법.
  44. 제 29 항에 있어서,
    상기 실리콘 웨이퍼는 챔퍼 처리된(chamfered) 모서리들을 구비하는 의사 정사각형의 실리콘 웨이퍼이고, 복수의 직사각형의 태양 전지들을 형성하도록 상기 실리콘 웨이퍼의 분리 후에 상기 직사각형의 태양 전지들의 하나 또는 그 이상은 상기 챔퍼 처리된 모서리들의 하나 또는 그 이상을 구비하며;
    상기 스크라이브 라인들 사이의 간격은 상기 챔퍼 처리된 모서리들을 구비하는 직사각형의 태양 전지들의 긴 축들에 직교하는 폭을 상기 챔퍼 처리된 모서리들이 결핍된 직사각형의 태양 전지들의 긴 축에 직교하는 폭보다 크게 만들어, 상기 챔퍼 처리된 모서리들을 보상하도록 선택됨으로써, 상기 슈퍼 셀 내의 각각의 상기 복수의 직사각형의 태양 전지들이 상기 슈퍼 셀의 동작에서 광에 노출되는 실질적으로 동일한 면적의 전면을 가지는 것을 특징으로 하는 방법.
  45. 제 29 항에 있어서, 상기 슈퍼 셀을 투명한 전면 시트 및 후면 시트 사이에 성층 구조(layered structure)로 배열하고, 상기 성층 구조를 라미네이팅하는 단계를 포함하는 것을 특징으로 하는 방법.
  46. 제 45 항에 있어서, 상기 성층 구조를 라미네이팅하는 단계는 상기 인접하는 직사각형의 태양 전지들을 서로 도전성으로 결합하도록 상기 슈퍼 셀 내의 인접하는 직사각형의 태양 전지들 사이에 배치되는 도전성 접착제의 큐어링을 완료하는 것을 특징으로 하는 방법.
  47. 제 45 항에 있어서, 상기 슈퍼 셀은 슈퍼 셀들의 둘 또는 그 이상의 평행한 열의 하나 내에 상기 성층 구조로 배열되며, 상기 후면 시트가 상기 슈퍼 셀들의 둘 또는 그 이상의 열들 사이의 갭(gap)들의 위치들 및 폭들에 대응되는 위치들 및 폭들을 갖는 평행하고 어둡게 된(darkened) 스트라이프(stripe)들을 포함하는 백색 시트이므로, 상기 후면 시트의 백색 부분들이 조립된 모듈 내의 상기 슈퍼 셀들 의 열들 사이의 캡들을 통해 보이지 않는 것을 특징으로 하는 방법.
  48. 제 45 항에 있어서, 상기 전면 시트 및 상기 후면 시트는 유리 시트들이며, 상기 슈퍼 셀은 상기 유리 시트들 사이에 개재되는 열가소성 올레핀층 내에 봉지되는 것을 특징으로 하는 방법.
  49. 제 29 항에 있어서, 상기 슈퍼 셀을 제2 태양광 모듈의 제2 접합 박스(junction box)와 일치하는 배치로 접합 박스를 포함하는 제1 모듈 내에 배열하는 단계를 포함하는 것을 특징으로 하는 방법.
  50. 태양 전지들을 제조하는 방법에 있어서,
    태양 전지 웨이퍼를 곡선의 표면을 따라 진행시키는 단계; 및
    상기 곡선의 표면에 대해 상기 태양 전지 웨이퍼를 구부리도록 상기 곡선의 표면과 상기 태양 전지 웨이퍼의 저면 사이에 진공을 인가하고, 이에 따라 상기 태양 전지 웨이퍼로부터 복수의 태양 전지들을 분리하도록 하나 또는 그 이상의 미리 마련된 스크라이브 라인들을 따라 상기 태양 전지 웨이퍼를 절단하는 단계를 포함하는 것을 특징으로 하는 방법.
  51. 제 50 항에 있어서, 상기 곡선의 표면은 상기 태양 전지 웨이퍼의 저면에 상기 진공을 인가하는 진공 매니폴드(vacuum manifold)의 상부 표면의 곡선의 부분인 것을 특징으로 하는 방법.
  52. 제 50 항에 있어서, 상기 진공 매니폴드에 의해 상기 태양 전지 웨이퍼의 저면에 인가되는 상기 진공은 상기 태양 전지 웨이퍼의 진행의 방향을 따라 변화되며, 상기 태양 전지 웨이퍼가 절단되는 상기 진공 매니폴드의 영역에서 가장 강한 것을 특징으로 하는 방법.
  53. 제 51 항 또는 제 52 항에 있어서, 상기 태양 전지 웨이퍼를 천공된 벨트로 상기 진공 매니폴드의 곡선의 상부 표면을 따라 이송하는 단계를 포함하며, 상기 진공은 상기 천공된 벨트 내의 천공들을 통해 상기 태양 전지 웨이퍼의 저면에 인가되는 것을 특징으로 하는 방법.
  54. 제 53 항에 있어서, 상기 벨트 내의 천공들은 상기 태양 전지 웨이퍼의 리딩(leading) 및 트레일링(trailing) 에지들이 상기 태양 전지 웨이퍼의 진행의 방향을 따라 상기 벨트 내의 적어도 하나의 천공 위에 놓여야 하도록 배열되는 것을 특징으로 하는 방법.
  55. 제 50 항 내지 제 54 항 중 어느 한 항에 있어서, 상기 태양 전지 웨이퍼를 제1 곡률을 갖는 상기 진공 매니폴드의 상부 표면의 곡선의 전이 영역에 도달되도록 상기 진공 매니폴드의 상부 표면의 평탄한 영역을 따라 진행시키고, 이후에 상기 태양 전지 웨이퍼를 상기 태양 전지 웨이퍼가 절단되는 상기 진공 매니폴드의 상부 표면의 절단 영역 내로 진행시키는 단계를 포함하며, 상기 진공 매니폴드의 절단 영역은 상기 제1 곡률보다 급격한 제2 곡률을 가지는 것을 특징으로 하는 방법.
  56. 제 55 항에 있어서, 상기 전이 영역의 곡률은 증가하는 곡률의 연속되는 기하학적 함수에 의해 정의되는 것을 특징으로 하는 방법.
  57. 제 56 항에 있어서, 상기 절단 영역의 곡률은 증가하는 곡률의 연속되는 기하학적 함수에 의해 정의되는 것을 특징으로 하는 방법.
  58. 제 57 항에 있어서, 상기 절단된 태양 전지들을 상기 제2 곡률보다 급격한 제3 곡률을 갖는 상기 진공 매니폴드의 후-절단 영역 내로 진행시키는 단계를 더 포함하는 것을 특징으로 하는 방법.
  59. 제 57 항에 있어서, 상기 곡선의 전이 영역, 상기 절단 영역 및 상기 후 절단 영역의 곡률들은 증가하는 곡률의 연속되는 기하학적 함수에 의해 정의되는 것을 특징으로 하는 방법.
  60. 제 57 항, 제 58 항 또는 제 59 항에 있어서, 상기 증가하는 곡률의 연속되는 기하학적 함수는 클로소이드(clothoid)인 것을 특징으로 하는 방법.
  61. 제 50 항 내지 제 60 항 중 어느 한 항에 있어서, 각 스크라이브 라인을 따라 단일의 절단하는 크랙(cleaving crack)의 생성 및 전파를 증진시키는 비대칭의 스트레스 분포를 제공하도록 각 스크라이브 라인의 대향하는 단부에서보다 각 스크라이브 라인의 일측 단부에서 상기 태양 전지 웨이퍼 및 상기 곡선의 표면 사이에 강한 진공을 인가하는 단계를 포함하는 것을 특징으로 하는 방법.
  62. 제 50 항 내지 제 61 항 중 어느 한 항에 있어서, 상기 곡선의 표면으로부터 상기 절단된 태양 전지들을 제거하는 단계를 포함하며, 상기 절단된 태양 전지들의 에지들은 상기 곡선의 표면으로부터의 상기 태양 전지들의 제거 이전에 접촉되지 않는 것을 특징으로 하는 방법.
  63. 제 50 항 내지 제 62 항 중 어느 한 항에 있어서,
    상기 스크라이브 라인들을 상기 태양 전지 웨이퍼 상으로 레이저 스크라이빙하는 단계; 및
    상기 태양 전지 웨이퍼를 상기 스크라이브 라인들을 따라 절단하기 이전에 전기적으로 도전성인 접착 결합 물질을 상기 태양 전지 웨이퍼의 상면의 일부들에 적용하는 단계를 포함하고;
    각 절단된 태양 전지는 그 상면의 절단된 에지를 따라 배치되는 상기 전기적으로 도전성인 접착 결합 물질의 일부를 포함하는 것을 특징으로 하는 방법.
  64. 제 63 항에 있어서, 상기 스크라이브 라인들을 레이저 스크라이빙하고, 이후에 상기 전기적으로 도전성인 접착 결합 물질을 적용하는 단계를 포함하는 것을 특징으로 하는 방법.
  65. 제 64 항에 있어서, 상기 전기적으로 도전성인 접착 결합 물질을 적용하고, 이후에 상기 스크라이브 라인들을 레이저 스크라이빙하는 단계를 포함하는 것을 특징으로 하는 방법.
  66. 제 63 항 내지 제 65 항 중 어느 한 항에 따른 방법에 의해 제조되는 절단된 태양 전지들로부터 태양 전지들의 스트링(string)을 만드는 방법에 있어서, 상기 절단된 태양 전지들은 직사각형이며,
    슁글드 방식으로 중첩되고 그 사이에 배치되는 상기 전기적으로 도전성인 접착 결합 물질로 도전성으로 결합되는 인접하는 직사각형의 태양 전지들의 긴 측면들과 일렬로 상기 복수의 직사각형의 태양 전지들을 배열하는 단계; 및
    상기 전기적으로 도전성인 결합 물질을 큐어링하여, 인접하고 중첩되는 직사각형의 태양 전지들을 서로 결합하고 이들을 전기적으로 직렬로 연결하는 단계를 포함하는 것을 특징으로 하는 방법.
  67. 제 50 항 내지 제 66 항 중 어느 한 항에 있어서, 상기 태양 전지 웨이퍼는 정사각형 또는 의사 정사각형의 실리콘 태양 전지 웨이퍼인 것을 특징으로 하는 방법.
  68. 태양 전지들의 스트링을 만드는 방법에 있어서,
    각각의 하나 또는 그 이상의 정사각형의 태양 전지들 상에 후면 금속화 패턴을 형성하는 단계;
    단일의 스텐실 프린팅 단계에서 단일의 스텐실을 사용하여 각각의 상기 하나 또는 그 이상의 정사각형의 태양 전지들 상에 완전한 전면 금속화 패턴을 스텐실 프린팅(stencil printing)하는 단계;
    상기 하나 또는 그 이상의 정사각형의 태양 전지들로부터 각기 완전한 전면 금속화 패턴 및 후면 금속화 패턴을 구비하는 복수의 직사각형의 태양 전지들을 형성하도록 각 정사각형의 태양 전지를 둘 또는 그 이상의 직사각형의 태양 전지들로 분리하는 단계;
    상기 복수의 직사각형의 태양 전지들을 슁글드 방식으로 중첩되는 인접하는 직사각형의 태양 전지들의 긴 측면들과 일렬로 배열하는 단계; 및
    인접하고 중첩되는 직사각형의 태양 전지들의 각 쌍 내의 상기 직사각형의 태양 전지들을 이들 사이에 배치되는 전기적으로 도전성인 결합 물질로 서로 도전성으로 결합하여, 상기 쌍 내의 직사각형의 태양 전지들의 하나의 전면 금속화 패턴을 상기 쌍 내의 직사각형의 태양 전지들의 다른 하나의 후면 금속화 패턴에 전기적으로 연결함으로써, 상기 복수의 직사각형의 태양 전지들을 전기적으로 직렬로 연결하는 단계를 포함하는 것을 특징으로 하는 방법.
  69. 제 68 항에 있어서, 상기 하나 또는 그 이상의 정사각형의 태양 전지들 상의 전면 금속화 패턴의 하나 또는 그 이상의 특징들을 한정하는 상기 스텐실의 모든 부분들은 스텐실 프린팅 동안에 상기 스텐실의 평면 내에 놓이는 상기 스텐실의 다른 부분들에 대한 물리적 연결들에 의해 제한되는 것을 특징으로 하는 방법.
  70. 제 68 항에 있어서, 각 직사각형의 태양 전지 상의 상기 전면 금속화 패턴은 상기 직사각형의 태양 전지의 긴 측면들에 직교하게 배향되는 복수의 핑거들을 포함하며, 상기 전면 금속화 패턴 내의 상기 핑거들은 상기 전면 금속화 패턴에 의해 서로 물리적으로 연결되지 않는 것을 특징으로 하는 방법.
  71. 제 68 항에 있어서, 상기 핑거들은 약 10미크론 내지 약 90미크론의 폭들을 가지는 것을 특징으로 하는 방법.
  72. 제 68 항에 있어서, 상기 핑거들은 약 10미크론 내지 약 50미크론의 폭들을 가지는 것을 특징으로 하는 방법.
  73. 제 68 항에 있어서, 상기 핑거들은 약 10미크론 내지 약 30미크론의 폭들을 가지는 것을 특징으로 하는 방법.
  74. 제 68 항에 있어서, 상기 핑거들은 약 10미크론 내지 약 50미크론의 상기 직사각형의 태양 전지의 전면에 직교하는 높이들을 가지는 것을 특징으로 하는 방법.
  75. 제 68 항에 있어서, 상기 핑거들은 약 30미크론 또는 그 이상의 상기 직사각형의 태양 전지의 전면에 직교하는 높이들을 가지는 것을 특징으로 하는 방법.
  76. 제 68 항에 있어서, 각 직사각형의 태양 전지 상의 상기 전면 금속화 패턴은 상기 직사각형의 태양 전지의 긴 측면의 에지에 평행하고 인접하게 배열되는 복수의 콘택 패드들을 포함하며, 각 콘택 패드는 대응되는 핑거의 단부에 위치하는 것을 특징으로 하는 방법.
  77. 제 68 항에 있어서, 각 직사각형의 태양 전지 상의 상기 후면 금속화 패턴은 상기 직사각형의 태양 전지의 긴 측면의 에지에 평행하고 인접하는 열로 배열되는 복수의 콘택 패드들을 포함하고, 인접하고 중첩되는 직사각형의 태양 전지들의 각 쌍은 상기 쌍 내의 상기 직사각형의 태양 전지들의 다른 하나 상의 상기 전면 금속화 패턴 내의 대응되는 핑거들과 정렬되고 전기적으로 연결되는 상기 직사각형의 태양 전지들의 쌍의 하나 상의 각각의 상기 후면 콘택 패드들을 구비하여 배열되는 것을 특징으로 하는 방법.
  78. 제 68 항에 있어서, 각 직사각형의 태양 전지 상의 상기 후면 금속화 패턴은 상기 직사각형의 태양 전지의 긴 측면의 에지에 평행하고 인접하게 진행되는 버스 바를 포함하며, 인접하고 중첩되는 직사각형의 태양 전지들의 각 쌍은 상기 쌍 내의 직사각형의 태양 전지들의 다른 하나 상의 전면 금속화 패턴 내의 상기 핑거들과 중첩되고 전기적으로 연결되는 상기 직사각형의 태양 전지들의 쌍의 하나 상의 상기 버스 바를 구비하여 배열되는 것을 특징으로 하는 방법.
  79. 제 68 항에 있어서,
    각 직사각형의 태양 전지 상의 상기 전면 금속화 패턴은 상기 직사각형의 태양 전지의 긴 측면의 에지에 평행하고 인접하게 배열되는 복수의 콘택 패드들을 포함하고, 각 콘택 패드는 대응되는 핑거의 단부에 위치하며;
    각 직사각형의 태양 전지 상의 상기 후면 금속화 패턴은 상기직사각형의 태양 전지의 긴 측면의 에지에 평행하고 인접하는 열로 배열되는 복수의 콘택 패드들을 포함하고;
    인접하고 중첩되는 직사각형의 태양 전지들의 각 쌍은 상기 쌍 내의 직사각형의 태양 전지들의 다른 하나 상의 상기 전면 금속화 패턴 내의 대응되는 콘택 패드와 중첩되고 전기적으로 연결되는 상기 직사각형의 태양 전지들의 쌍의 하나 상의 각각의 상기 후면 콘택 패드들을 구비하여 배열되는 것을 특징으로 하는 방법.
  80. 제 68 항에 있어서, 인접하고 중첩되는 직사각형의 태양 전지들의 각 쌍 내의 상기 직사각형의 태양 전지들은 상기 중첩되는 전면 및 후면 콘택 패드들 사이에 배치되는 전기적으로 도전성인 결합 물질의 별개의 부분들에 의해 서로 도전성으로 결합되는 것을 특징으로 하는 방법.
  81. 제 68 항에 있어서, 인접하고 중첩되는 직사각형의 태양 전지들의 각 쌍 내의 상기 직사각형의 태양 전지들은 상기 직사각형의 태양 전지들의 쌍의 하나의 상기 전면 금속화 패턴 및 상기 직사각형의 태양 전지들의 쌍의 다른 하나의 상기 후면 금속화 패턴 내의 핑거들의 중첩된 단부들 사이에 배치되는 전기적으로 도전성인 결합 물질의 별개의 부분들에 의해 서로 도전성으로 결합되는 것을 특징으로 하는 방법.
  82. 제 68 항에 있어서, 인접하고 중첩되는 직사각형의 태양 전지들의 각 쌍 내의 상기 직사각형의 태양 전지들은 상기 직사각형의 태양 전지들의 쌍의 하나의 상기 전면 금속화 패턴 및 상기 직사각형의 태양 전지들의 쌍의 다른 하나의 상기 후면 금속화 패턴 내의 핑거들의 중첩된 단부들 사이에 배치되는 전기적으로 도전성인 결합 물질의 파선 또는 연속되는 라인에 의해 서로 도전성으로 결합되며, 상기 전기적으로 도전성인 결합 물질의 파선 또는 연속되는 라인은 상기 핑거들의 하나 또는 그 이상을 전기적으로 상호 연결하는 것을 특징으로 하는 방법.
  83. 제 68 항에 있어서,
    각 직사각형의 태양 전지 상의 상기 전면 금속화 패턴은 상기 직사각형의 태양 전지의 긴 측면의 에지에 평행하고 인접하게 배열되는 복수의 콘택 패드들을 포함하고, 각 콘택 패드는 대응되는 핑거의 단부에 위치하며;
    인접하고 중첩되는 직사각형의 태양 전지들의 각 쌍 내의 상기 직사각형의 태양 전지들은 상기 직사각형의 태양 전지들의 쌍의 하나의 전면 금속화 패턴 및 상기 직사각형의 태양 전지들의 쌍의 다른 하나의 후면 금속화 패턴 내의 콘택 패드들 사이에 배치되는 전기적으로 도전성인 결합 물질의 별개의 부분들에 의해 서로 도전성으로 결합되는 것을 특징으로 하는 방법.
  84. 제 68 항에 있어서,
    각 직사각형의 태양 전지 상의 상기 전면 금속화 패턴은 상기 직사각형의 태양 전지의 긴 측면의 에지에 평행하고 인접하게 배열되는 복수의 콘택 패드들을 포함하고, 각 콘택 패드는 대응되는 핑거의 단부에 위치하며;
    인접하고 중첩되는 직사각형의 태양 전지들의 각 쌍 내의 상기 직사각형의 태양 전지들은 상기 직사각형의 태양 전지들의 쌍의 하나의 전면 금속화 패턴 및 상기 직사각형의 태양 전지들의 쌍의 다른 하나의 후면 금속화 패턴 내의 상기 콘택 패드들 사이에 배치되는 전기적으로 도전성인 결합 물질의 파선 또는 연속되는 라인에 의해 서로 도전성으로 결합되고, 상기 전기적으로 도전성인 결합 물질의 파선 또는 연속되는 라인은 상기 핑거들의 하나 또는 그 이상을 전기적으로 상호 연결하는 것을 특징으로 하는 방법.
  85. 제 68 항 내지 제 84 항 중 어느 한 항에 있어서, 상기 전면 금속화 패턴은 실버 페이스트(silver paste)로 형성되는 것을 특징으로 하는 방법.
  86. 태양광 모듈에 있어서,
    둘 또는 그 이상의 평행한 열들 내의 복수의 직렬 연결된 슈퍼 셀들로서 배열되는 약 250보다 크거나 같은 숫자 N의 직사각형 또는 실질적으로 직사각형의 실리콘 태양 전지들을 포함하고, 각 슈퍼 셀은 상기 슈퍼 셀 내의 실리콘 태양 전지들을 전기적으로 직렬로 연결하도록 중첩되고 전기적 및 열적으로 도전성인 접착제로 서로 도전성으로 결합되는 인접하는 실리콘 태양 전지들의 긴 측면들과 일렬로 배열되는 복수의 실리콘 태양 전지들을 구비하며;
    25개의 태양 전지들 당 하나 이하의 바이패스 다이오드를 포함하고;
    상기 전기적 및 열적으로 도전성인 접착제는 인접하는 태양 전지들 사이에 약 50미크론보다 작거나 같은 상기 태양 전지들에 직교하는 두께 및 약 1.5W/(미터-K)보다 크거나 같은 상기 태양 전지들에 직교하는 열전도율을 갖는 결합들을 형성하는 것을 특징으로 하는 태양광 모듈.
  87. 제 86 항에 있어서, 상기 슈퍼 셀들은 전면 및 후면 시트들 사이의 열가소성 올레핀층(thermoplastic olefin layer) 내에 봉지되는 것을 특징으로 하는 태양광 모듈.
  88. 제 86 항에 있어서, 상기 슈퍼 셀들은 상기 유리 전면 및 후면 시트들 사이에 봉지되는 것을 특징으로 하는 태양광 모듈.
  89. 제 86 항에 있어서, 30개의 태양 전지들 당 하나 이하의 바이패스 다이오드, 또는 50개의 태양 전지들 당 하나 이하의 바이패스 다이오드, 또는 100개의 태양 전지들 당 하나 이하의 바이패스 다이오드, 또는 단일의 바이패스 다이오드만을 포함하거나, 바이패스 다이오드를 포함하지 않는 것을 특징으로 하는 태양광 모듈.
  90. 제 86 항에 있어서, 바이패스 다이오드들을 포함하지 않거나, 단일의 바이패스 다이오드만, 또는 셋보다 적은 바이패스 다이오드들, 또는 여섯보다 적은 바이패스 다이오드들, 또는 열보다 적은 바이패스 다이오드들을 포함하는 것을 특징으로 하는 태양광 모듈.
  91. 제 86 항에 있어서, 상기 중첩되는 태양 전지들 사이의 도전성 결합들은 상기 슈퍼 셀들에 상기 태양광 모듈을 손상시키지 않고 약 -40℃ 내지 약 100℃의 온도 범위에 대해 상기 열들에 평행한 방향으로 상기 슈퍼 셀들 및 상기 유리 전면 시트 사이의 열팽창의 불일치를 수용하는 기계적 컴플라이언스를 제공하는 것을 특징으로 하는 태양광 모듈.
  92. 제 86 항 내지 제 91 항 중 어느 한 항에 있어서, N은 약 300보다 크거나 같거나, 약 350보다 크거나 같거나, 약 400보다 크거나 같거나, 약 450보다 크거나 같거나, 약 500보다 크거나 같거나, 약 550보다 크거나 같거나, 약 600보다 크거나 같거나, 약 650보다 크거나 같거나, 약 700보다 크거나 같은 것을 특징으로 하는 태양광 모듈.
  93. 제 86 항 내지 제 92 항 중 어느 한 항에 있어서, 상기 슈퍼 셀들은 약 120볼트보다 크거나 같거나, 약 180볼트보다 크거나 같거나, 약 240볼트보다 크거나 같거나, 약 300볼트보다 크거나 같거나, 약 360볼트보다 크거나 같거나, 약 420볼트보다 크거나 같거나, 약 480볼트보다 크거나 같거나, 약 540볼트보다 크거나 같거나, 약 600볼트보다 크거나 같은 높은 직류 전압을 제공하도록 전기적으로 연결되는 것을 특징으로 하는 태양광 모듈.
  94. 태양 에너지 시스템(solar energy system)에 있어서,
    제 86 항에 따른 태양광 모듈; 및
    상기 태양광 모듈에 전기적으로 연결되고, AC 출력을 제공하도록 상기 태양광 모듈로부터의 DC 출력을 변환시키도록 구성되는 인버터(inverter)를 포함하는 것을 특징으로 하는 태양 에너지 시스템.
  95. 제 94 항에 있어서, 상기 인버터는 DC 대 DC 부스트 구성 요소(boost component)가 결핍되는 것을 특징으로 하는 태양 에너지 시스템.
  96. 제 94 항에 있어서, 상기 인버터는 태양 전지를 역 바이어싱하는 것을 회피하도록 설정된 최소 전압 이상의 직류 전압에서 상기 태양광 모듈을 동작시키도록 구성되는 것을 특징으로 하는 태양 에너지 시스템.
  97. 제 96 항에 있어서, 상기 최소 전압값은 온도에 의존하는 것을 특징으로 하는 태양 에너지 시스템.
  98. 제 94 항에 있어서, 상기 인버터는 역 바이어스 조건을 인식하고, 상기 역 바이어스 조건을 회피하는 전압에서 상기 태양광 모듈을 동작시키도록 구성되는 것을 특징으로 하는 태양 에너지 시스템.
  99. 제 98 항에 있어서, 상기 인버터는 상기 역 바이어스 조건을 회피하도록 상기 태양광 모듈의 전압-전류 출력 곡선의 극대(local maximum) 영역에서 상기 태양광 모듈을 동작시키도록 구성되는 것을 특징으로 하는 태양 에너지 시스템.
  100. 제 94 항 내지 제 99 항 중 어느 한 항에 있어서, 상기 인버터는 상기 태양광 모듈과 통합되는 마이크로인버터(microinverter)인 것을 특징으로 하는 태양 에너지 시스템.
  101. 태양광 모듈에 있어서,
    약 10볼트보다 큰 평균적인 항복 전압(breakdown voltage)을 갖는 N≥25의 직사각형 또는 실질적으로 직사각형의 태양 전지들의 직렬 연결된 스트링을 포함하고, 상기 태양 전지들은 중첩되고 전기적 및 열적으로 도전성인 접착제로 서로 도전성으로 결합되는 인접하는 태양 전지들의 긴 측면들과 일렬로 배열되는 상기 태양 전지들의 둘 또는 그 이상을 구비하는 하나 또는 그 이상의 슈퍼 셀들 내로 그룹화되며;
    상기 태양 전지들의 스트링 내의 <N의 태양 전지들의 단일의 태양 전지 또는 그룹은 바이패스 다이오드와 개별적으로 전기적으로 병렬로 연결되지 않는 것을 특징으로 하는 태양광 모듈.
  102. 제 101 항에 있어서, N은 30보다 크거나 같은 것을 특징으로 하는 태양광 모듈.
  103. 제 101 항에 있어서, N은 50보다 크거나 같은 것을 특징으로 하는 태양광 모듈.
  104. 제 101 항에 있어서, N은 100보다 크거나 같은 것을 특징으로 하는 태양광 모듈.
  105. 제 101 항에 있어서, 상기 접착제는 인접하는 태양 전지들 사이에 약 0.1㎜보다 작거나 같은 상기 태양 전지들에 직교하는 두께 및 약 1.5W/m/K보다 크거나 같은 상기 태양 전지들에 직교하는 열전도율을 가지는 결합들을 형성하는 것을 특징으로 하는 태양광 모듈.
  106. 제 101 항에 있어서, 상기 N의 태양 전지들은 단일의 슈퍼 셀 내로 그룹화되는 것을 특징으로 하는 태양광 모듈.
  107. 제 101 항에 있어서, 상기 슈퍼 셀들은 폴리머 내에 봉지되는 것을 특징으로 하는 태양광 모듈.
  108. 제 107 항에 있어서, 상기 폴리머는 열가소성 올레핀 폴리머를 포함하는 것을 특징으로 하는 태양광 모듈.
  109. 제 107 항에 있어서, 상기 폴리머는 유리 전면 시트 및 후면 시트 사이에 개재되는 것을 특징으로 하는 태양광 모듈.
  110. 제 109 항에 있어서, 상기 후면 시트는 유리를 포함하는 것을 특징으로 하는 태양광 모듈.
  111. 제 101 항에 있어서, 상기 태양 전지들은 실리콘 태양 전지들인 것을 특징으로 하는 태양광 모듈.
  112. 태양광 모듈에 있어서,
    상기 태양광 모듈의 에지에 평행한 상기 태양광 모듈의 전체 길이 또는 폭에 실질적으로 걸치는 슈퍼 셀을 포함하고, 상기 슈퍼 셀은 중첩되고 전기적 및 열적으로 도전성인 접착제로 서로 도전성으로 결합되는 인접하는 태양 전지들의 긴 측면들과 일렬로 배열되는 약 10볼트보다 큰 평균적인 항복 전압을 갖는 N의 직사각형 또는 실질적으로 직사각형의 태양 전지들의 직렬 연결된 스트링을 구비하며;
    상기 슈퍼 셀 내의 <N의 태양 전지들의 단일의 태양 전지 또는 그룹은 바이패스 다이오드와 개별적으로 전기적으로 병렬로 연결되지 않는 것을 특징으로 하는 태양광 모듈.
  113. 제 112 항에 있어서, N>24인 것을 특징으로 하는 태양광 모듈.
  114. 제 112 항에 있어서, 상기 슈퍼 셀은 적어도 약 500㎜의 전류 흐름의 방향으로의 길이를 가지는 것을 특징으로 하는 태양광 모듈.
  115. 제 112 항에 있어서, 상기 슈퍼 셀들은 유리 전면 및 후면 시트들 사이에 개재되는 열가소성 올레핀 폴리머 내에 봉지되는 것을 특징으로 하는 태양광 모듈.
  116. 태양광 모듈에 있어서,
    둘 또는 그 이상의 평행한 열들 내의 복수의 직렬 연결된 슈퍼 셀들로서 배열되는 약 250보다 크거나 같은 숫자 N의 직사각형 또는 실질적으로 직사각형의 실리콘 태양 전지들을 포함하고, 각 슈퍼 셀은 상기 슈퍼 셀 내의 실리콘 태양 전지들을 전기적으로 직렬로 연결하도록 중첩되고 전기적 및 열적으로 도전성인 접착제로 서로 도전성으로 결합되는 인접하는 실리콘 태양 전지들의 긴 측면들과 일렬로 배열되는 복수의 실리콘 태양 전지들을 구비하며;
    하나 또는 그 이상의 바이패스 다이오드들을 포함하고;
    상기 태양광 모듈 내의 인접하는 열들의 각 쌍은 상기 쌍의 하나의 열 내의 중심으로 위치하는 태양 전지 상의 후면 전기적 콘택에 도전성으로 결합되고, 상기 쌍의 다른 하나의 열 내의 인접하는 태양 전지 상의 후면 전기적 콘택에 도전성으로 결합되는 바이패스 다이오드에 의해 전기적으로 연결되는 것을 특징으로 하는 태양광 모듈.
  117. 제 116 항에 있어서, 인접하는 평행한 열들의 각 쌍은 상기 쌍의 하나의 열 내의 태양 전지 상의 후면 전기적 콘택에 도전성으로 결합되고, 상기 쌍의 다른 하나의 열 내의 인접하는 태양 전지 상의 후면 전기적 콘택에 도전성으로 결합되는 적어도 하나의 다른 바이패스 다이오드에 의해 전기적으로 연결되는 것을 특징으로 하는 태양광 모듈.
  118. 제 117 항에 있어서, 인접하는 평행한 열들의 각 쌍은 상기 쌍의 하나의 열 내의 태양 전지 상의 후면 전기적 콘택에 도전성으로 결합되고, 상기 쌍의 다른 하나의 열 내의 인접하는 태양 전지 상의 후면 전기적 콘택에 도전성으로 결합되는 적어도 하나의 다른 바이패스 다이오드에 의해 전기적으로 연결되는 것을 특징으로 하는 태양광 모듈.
  119. 제 116 항에 있어서, 상기 전기적 및 열적으로 도전성인 접착제는 인접하는 태양 전지들 사이에 약 50미크론보다 작거나 같은 상기 태양 전지들에 직교하는 두께 및 약 1.5 W/(미터-K)보다 크거나 같은 상기 태양 전지들에 직교하는 열전도율을 가지는 결합들을 형성하는 것을 특징으로 하는 태양광 모듈.
  120. 제 116 항에 있어서, 상기 슈퍼 셀들은 전면 및 후면 유리 시트들 사이의 열가소성 올레핀층 내에 봉지되는 것을 특징으로 하는 태양광 모듈.
  121. 제 116 항에 있어서, 상기 중첩되는 태양 전지들 사이의 도전성 결합들은 상기 슈퍼 셀들에 상기 태양광 모듈을 손상시키지 않고 약 -40℃ 내지 약 100℃의 온도 범위에 대해 상기 열들에 평행한 방향으로 상기 슈퍼 셀들 및 상기 유리 전면 시트 사이의 열팽창의 불일치를 수용하는 기계적 컴플라이언스를 제공하는 것을 특징으로 하는 태양광 모듈.
  122. 제 116 항 내지 제 121 항 중 어느 한 항에 있어서, N은 약 300보다 크거나 같거나, 약 350보다 크거나 같거나, 약 400보다 크거나 같거나, 약 450보다 크거나 같거나, 약 500보다 크거나 같거나, 약 550보다 크거나 같거나, 약 600보다 크거나 같거나, 약 650보다 크거나 같거나, 약 700보다 크거나 같은 것을 특징으로 하는 태양광 모듈.
  123. 제 116 항 내지 제 122 항 중 어느 한 항에 있어서, 상기 슈퍼 셀들은 약 120볼트보다 크거나 같거나, 약 180볼트보다 크거나 같거나, 약 240볼트보다 크거나 같거나, 약 300볼트보다 크거나 같거나, 약 360볼트보다 크거나 같거나, 약 420볼트보다 크거나 같거나, 약 480볼트보다 크거나 같거나, 약 540볼트보다 크거나 같거나, 약 600볼트보다 크거나 같은 높은 직류 전압을 제공하도록 전기적으로 연결되는 것을 특징으로 하는 태양광 모듈.
  124. 태양 에너지 시스템에 있어서,
    제 116 항에 따른 태양광 모듈; 및
    상기 태양광 모듈에 전기적으로 연결되고, AC 출력을 제공하도록 상기 태양광 모듈로부터의 DC 출력을 변환시키도록 구성되는 인버터를 포함하는 것을 특징으로 하는 태양 에너지 시스템.
  125. 제 124 항에 있어서, 상기 인버터는 DC 대 DC 부스트 구성 요소가 결핍되는 것을 특징으로 하는 태양 에너지 시스템.
  126. 제 124 항에 있어서, 상기 인버터는 태양 전지를 역 바이어싱하는 것을 회피하도록 설정되는 최소 전압 이상의 직류 전압에서 상기 태양광 모듈을 동작시키도록 구성되는 것을 특징으로 하는 태양 에너지 시스템.
  127. 제 126 항에 있어서, 상기 최소 전압값은 온도에 의존하는 것을 특징으로 하는 태양 에너지 시스템.
  128. 제 124 항에 있어서, 상기 인버터는 역 바이어스 조건을 인식하고, 상기 역 바이어스 조건을 회피하는 전압에서 상기 태양광 모듈을 동작시키도록 구성되는 것을 특징으로 하는 태양 에너지 시스템.
  129. 제 128 항에 있어서, 상기 인버터는 상기 역 바이어스 조건을 회피하도록 상기 태양광 모듈의 전압-전류 출력 곡선의 극대 영역에서 상기 태양광 모듈을 동작시키도록 구성되는 것을 특징으로 하는 태양 에너지 시스템.
  130. 제 124 항 내지 제 129 항 중 어느 한 항에 있어서, 상기 인버터는 상기 태양광 모듈과 통합되는 마이크로인버터인 것을 특징으로 하는 태양 에너지 시스템.
KR1020167036325A 2014-05-27 2015-05-26 슁글드 태양 전지 모듈 KR102054420B1 (ko)

Applications Claiming Priority (75)

Application Number Priority Date Filing Date Title
US201462003223P 2014-05-27 2014-05-27
US62/003,223 2014-05-27
US201462035624P 2014-08-11 2014-08-11
US62/035,624 2014-08-11
US201462036215P 2014-08-12 2014-08-12
US62/036,215 2014-08-12
US201462042615P 2014-08-27 2014-08-27
US62/042,615 2014-08-27
US201462048858P 2014-09-11 2014-09-11
US62/048,858 2014-09-11
US201462064260P 2014-10-15 2014-10-15
US29/506,415 2014-10-15
US62/064,260 2014-10-15
US29506415 2014-10-15
US201462064834P 2014-10-16 2014-10-16
US62/064,834 2014-10-16
US29506755 2014-10-20
US29/506,755 2014-10-20
US14/530,405 US9780253B2 (en) 2014-05-27 2014-10-31 Shingled solar cell module
US14/530,405 2014-10-31
US14/532,293 2014-11-04
US14/532,293 US20150349193A1 (en) 2014-05-27 2014-11-04 Shingled solar cell module
US29/508,323 2014-11-05
US29508323 2014-11-05
US14/536,486 2014-11-07
US14/536,486 US20150349168A1 (en) 2014-05-27 2014-11-07 Shingled solar cell module
US14/539,546 US20150349169A1 (en) 2014-05-27 2014-11-12 Shingled solar cell module
US14/539,546 2014-11-12
US14/543,580 2014-11-17
US14/543,580 US9882077B2 (en) 2014-05-27 2014-11-17 Shingled solar cell module
US201462081200P 2014-11-18 2014-11-18
US62/081,200 2014-11-18
US29/509,588 2014-11-19
US29/509,586 2014-11-19
US29/509,586 USD750556S1 (en) 2014-11-19 2014-11-19 Solar panel
US14/548,081 US20150349701A1 (en) 2014-05-27 2014-11-19 Shingled solar cell module
US14/548,081 2014-11-19
US29/509,588 USD767484S1 (en) 2014-11-19 2014-11-19 Solar panel
US201462082904P 2014-11-21 2014-11-21
US14/550,676 2014-11-21
US14/550,676 US20150349171A1 (en) 2014-05-27 2014-11-21 Shingled solar cell module
US62/082,904 2014-11-21
US14/552,761 US20150349172A1 (en) 2014-05-27 2014-11-25 Shingled solar cell module
US14/552,761 2014-11-25
US14/560,577 2014-12-04
US14/560,577 US9876132B2 (en) 2014-05-27 2014-12-04 Shingled solar cell module
US14/566,278 US20150349703A1 (en) 2014-05-27 2014-12-10 Shingled solar cell module
US14/566,278 2014-12-10
US14/565,820 US20150349145A1 (en) 2014-05-27 2014-12-10 Shingled solar cell module
US14/565,820 2014-12-10
US14/572,206 2014-12-16
US14/572,206 US9401451B2 (en) 2014-05-27 2014-12-16 Shingled solar cell module
US14/577,593 US9356184B2 (en) 2014-05-27 2014-12-19 Shingled solar cell module
US14/577,593 2014-12-19
US14/585,917 US20150349162A1 (en) 2014-05-27 2014-12-30 Shingled solar cell module
US14/586,025 US20150349153A1 (en) 2014-05-27 2014-12-30 Shingled solar cell module
US14/586,025 2014-12-30
US14/585,917 2014-12-30
US14/594,439 2015-01-12
US14/594,439 US9397252B2 (en) 2014-05-27 2015-01-12 Shingled solar cell module
US201562103816P 2015-01-15 2015-01-15
US62/103,816 2015-01-15
US14/605,695 2015-01-26
US14/605,695 US9484484B2 (en) 2014-05-27 2015-01-26 Shingled solar cell module
US201562111757P 2015-02-04 2015-02-04
US62/111,757 2015-02-04
US201562113250P 2015-02-06 2015-02-06
US62/113,250 2015-02-06
US201562134176P 2015-03-17 2015-03-17
US62/134,176 2015-03-17
US14/674,983 US9947820B2 (en) 2014-05-27 2015-03-31 Shingled solar cell panel employing hidden taps
US14/674,983 2015-03-31
US201562150426P 2015-04-21 2015-04-21
US62/150,426 2015-04-21
PCT/US2015/032472 WO2015183827A2 (en) 2014-05-27 2015-05-26 Shingled solar cell module

Related Child Applications (3)

Application Number Title Priority Date Filing Date
KR1020187036830A Division KR102034888B1 (ko) 2014-05-27 2015-05-26 슁글드 태양 전지 모듈
KR1020187036832A Division KR102126790B1 (ko) 2014-05-27 2015-05-26 슁글드 태양 전지 모듈
KR1020187036831A Division KR20190000366A (ko) 2014-05-27 2015-05-26 슁글드 태양 전지 모듈

Publications (2)

Publication Number Publication Date
KR20170057177A true KR20170057177A (ko) 2017-05-24
KR102054420B1 KR102054420B1 (ko) 2020-01-22

Family

ID=57321491

Family Applications (3)

Application Number Title Priority Date Filing Date
KR1020167036325A KR102054420B1 (ko) 2014-05-27 2015-05-26 슁글드 태양 전지 모듈
KR1020217002464A KR102368110B1 (ko) 2014-05-27 2015-05-26 슁글드 태양 전지 모듈
KR1020227005958A KR102482566B1 (ko) 2014-05-27 2015-05-26 슁글드 태양 전지 모듈

Family Applications After (2)

Application Number Title Priority Date Filing Date
KR1020217002464A KR102368110B1 (ko) 2014-05-27 2015-05-26 슁글드 태양 전지 모듈
KR1020227005958A KR102482566B1 (ko) 2014-05-27 2015-05-26 슁글드 태양 전지 모듈

Country Status (6)

Country Link
JP (5) JP6554703B2 (ko)
KR (3) KR102054420B1 (ko)
CN (4) CN109346538B (ko)
AU (10) AU2015267239B2 (ko)
MX (2) MX2016015573A (ko)
SA (3) SA520420653B1 (ko)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101852606B1 (ko) * 2017-08-28 2018-04-30 주식회사 탑선 분할 태양전지 모듈
WO2019009532A1 (ko) * 2017-07-03 2019-01-10 엘지전자(주) 화합물 태양전지 모듈
KR20190016491A (ko) * 2016-06-08 2019-02-18 선파워 코포레이션 슁글드 태양 전지 모듈의 리워킹을 위한 시스템 및 방법
KR20190020509A (ko) * 2017-08-21 2019-03-04 엘지전자 주식회사 태양 전지 패널 및 이의 제조 방법
KR20190021890A (ko) * 2017-08-24 2019-03-06 엘지전자 주식회사 태양 전지 및 이를 포함하는 태양 전지 패널
KR20190032864A (ko) * 2017-09-20 2019-03-28 엘지전자 주식회사 화합물 태양전지 모듈 및 그 제조 방법
KR20190034968A (ko) * 2017-09-25 2019-04-03 엘지전자 주식회사 태양 전지 및 이를 포함하는 태양 전지 패널
KR20190058060A (ko) * 2017-11-21 2019-05-29 한국생산기술연구원 슁글드 어레이유닛, 슁글드 어레이유닛을 갖는 태양광모듈 및 슁글드 어레이유닛의 제조방법
KR20190067463A (ko) * 2017-12-07 2019-06-17 엘지전자 주식회사 태양 전지 패널
WO2019140605A1 (en) 2018-01-18 2019-07-25 Flex, Ltd. Busbar-less shingled array solar cells and methods of manufacturing solar modules
KR20190097991A (ko) * 2018-02-13 2019-08-21 엘지전자 주식회사 태양 전지 패널
WO2019164117A1 (ko) * 2018-02-23 2019-08-29 엘지전자 주식회사 화합물 태양전지 모듈
KR20190112457A (ko) * 2018-03-26 2019-10-07 엘지전자 주식회사 태양전지 및 이를 이용한 태양전지 모듈과 이의 제조 방법
KR20190120599A (ko) * 2018-04-16 2019-10-24 엘지전자 주식회사 태양전지 모듈
KR20200010791A (ko) 2018-07-23 2020-01-31 한국생산기술연구원 스트링 어레이를 이용한 태양광 모듈 및 그의 제조방법
KR20200013407A (ko) * 2018-07-30 2020-02-07 엘지전자 주식회사 태양 전지 모듈 및 이의 제조 방법
KR20200048867A (ko) * 2018-10-31 2020-05-08 한국생산기술연구원 도로 블록용 태양전지 모듈 및 그 제조방법
KR20200098937A (ko) * 2019-02-13 2020-08-21 ㈜에이치엔에스 중첩된 태양전지 모듈에 리본을 부착하는 방법
KR20200103612A (ko) 2020-08-27 2020-09-02 한국생산기술연구원 스트링 어레이를 이용한 태양광 모듈의 제조방법
US10825742B2 (en) 2018-11-23 2020-11-03 Chengdu Yefan Science And Technology Co., Ltd. Method and system for manufacturing solar cells and shingled solar cell modules
KR20200126711A (ko) * 2019-04-30 2020-11-09 엘지전자 주식회사 버스 리본 부재 및 이를 포함하는 태양 전지 패널
KR20210013950A (ko) 2019-07-29 2021-02-08 한국생산기술연구원 슁글드 태양광 패널용 태양전지 셀의 제조방법 및 이를 이용한 태양광 패널
KR20210082389A (ko) * 2018-11-23 2021-07-05 청두 예판 사이언스 앤드 테크놀로지 컴퍼니 리미티드 슁글 셀 및 슁글드 광발전 모듈의 제조 방법 및 시스템
KR20210123251A (ko) * 2018-10-31 2021-10-13 한국생산기술연구원 고출력 슁글드 어레이 구조의 태양전지 모듈 및 그 제조방법
KR102354015B1 (ko) * 2021-03-31 2022-01-21 주식회사 신성이엔지 슁글드 스트링 및 이를 포함하는 태양전지 모듈의 제조 방법

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018161286A1 (en) * 2017-03-09 2018-09-13 Flex, Ltd. Shingled array solar cells and methods of manufacturing solar modules including the same
CN109494266B (zh) * 2017-09-11 2022-04-12 Lg电子株式会社 太阳能电池板
JP6967436B2 (ja) * 2017-11-30 2021-11-17 株式会社カネカ 太陽電池モジュール
KR20200104211A (ko) * 2018-01-18 2020-09-03 플렉스 엘티디 슁글드 태양광 모듈을 제조하는 방법
US10862420B2 (en) 2018-02-20 2020-12-08 Tesla, Inc. Inter-tile support for solar roof tiles
CN117040435A (zh) * 2018-03-01 2023-11-10 特斯拉公司 用于封装光伏屋顶瓦片的系统和方法
US10872991B2 (en) 2018-04-11 2020-12-22 Sunpower Corporation Method and apparatus of fabricating a solar cell device
JP6467549B1 (ja) * 2018-06-01 2019-02-13 株式会社カネカ 太陽電池セル
US11245354B2 (en) 2018-07-31 2022-02-08 Tesla, Inc. Solar roof tile spacer with embedded circuitry
CN109192792A (zh) * 2018-08-08 2019-01-11 连云港神舟新能源有限公司 一种提高电池片光电转换效率的方法
CN109216502A (zh) * 2018-08-09 2019-01-15 伟创力有限公司 制造叠瓦式太阳能电池组件的方法
US11245355B2 (en) 2018-09-04 2022-02-08 Tesla, Inc. Solar roof tile module
EP3852150A4 (en) 2018-10-02 2021-10-06 Kaneka Corporation PHOTOVOLTAIC DEVICE AND PHOTOVOLTAIC MODULE
CN109285905A (zh) * 2018-10-31 2019-01-29 浙江正泰太阳能科技有限公司 双发电单元叠瓦光伏组件
CN111276549B (zh) * 2018-11-20 2021-03-09 成都晔凡科技有限公司 用于叠瓦组件的电池片、叠瓦组件及制备电池片的方法
JPWO2020121694A1 (ja) 2018-12-12 2021-10-21 株式会社カネカ 太陽電池デバイスおよび太陽電池モジュール
CN109698253B (zh) * 2018-12-25 2023-12-08 无锡先导智能装备股份有限公司 放片装置及其方法
WO2020184301A1 (ja) * 2019-03-11 2020-09-17 株式会社カネカ 太陽電池デバイスおよび太陽電池モジュール、並びに太陽電池デバイスの製造方法
JP2020181905A (ja) * 2019-04-25 2020-11-05 シャープ株式会社 太陽電池モジュール
CN110379891B (zh) * 2019-08-02 2021-03-30 浙江晶科能源有限公司 一种光伏组件的制备方法
JP2021082722A (ja) * 2019-11-20 2021-05-27 株式会社カネカ 太陽電池モジュール
JPWO2021106417A1 (ko) * 2019-11-29 2021-06-03
WO2021162009A1 (ja) * 2020-02-12 2021-08-19 株式会社カネカ 太陽電池モジュール
JP2021136280A (ja) * 2020-02-25 2021-09-13 シャープ株式会社 配線シート、配線シート付き太陽電池セル、および太陽電池モジュール
WO2022075308A1 (ja) * 2020-10-05 2022-04-14 株式会社カネカ 太陽電池セル
KR20220123819A (ko) * 2021-03-02 2022-09-13 엘지전자 주식회사 태양 전지 및 그를 포함하는 태양 전지 모듈
US11527665B2 (en) * 2021-05-06 2022-12-13 GAF Energy LLC Photovoltaic module with transparent perimeter edges
KR102628295B1 (ko) * 2021-07-06 2024-01-23 고려대학교 산학협력단 태양광 모듈의 제조 방법
CN113594281B (zh) * 2021-07-30 2023-07-28 成都中建材光电材料有限公司 一种抗热斑光伏发电玻璃及制作方法
WO2023214600A1 (ko) * 2022-05-04 2023-11-09 주식회사 에스제이이노테크 솔라 셀 절단장치
CN115472428A (zh) * 2022-08-12 2022-12-13 安徽省宁国市海伟电子有限公司 一种薄膜电容器用金属化薄膜及薄膜电容器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5979728A (en) * 1995-01-03 1999-11-09 Texas Instruments Incorporated Apparatus for breaking and separating dies from a wafer
KR101226578B1 (ko) * 2005-06-10 2013-01-28 하마마츠 포토닉스 가부시키가이샤 웨이퍼 절단 방법
US20130139871A1 (en) * 2010-09-29 2013-06-06 Kyocera Corporation Solar cell module and method of manufacturing solar cell module
US20140124014A1 (en) * 2012-11-08 2014-05-08 Cogenra Solar, Inc. High efficiency configuration for solar cell string

Family Cites Families (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0457998B1 (en) * 1990-05-25 1994-01-26 International Business Machines Corporation Method and apparatus for batch cleaving semiconductor wafers and for coating the cleaved facets
JP2912496B2 (ja) * 1991-09-30 1999-06-28 シャープ株式会社 太陽電池モジュール
JPH10116801A (ja) * 1996-10-09 1998-05-06 Rohm Co Ltd 基板分割方法及びその基板分割を用いた発光素子製造 方法
US6262358B1 (en) * 1999-02-18 2001-07-17 Sharp Kabushiki Kaisha Solar cell module and solar cell panel using the same
DE19916071B4 (de) * 1999-04-09 2005-10-13 Infineon Technologies Ag Verfahren zum Vereinzeln von Halbleiterbauelementen und Trennvorrichtung
JP3888860B2 (ja) * 2000-05-24 2007-03-07 シャープ株式会社 太陽電池セルの保護方法
JP2001352089A (ja) * 2000-06-08 2001-12-21 Showa Shell Sekiyu Kk 熱膨張歪み防止型太陽電池モジュール
JP2002110588A (ja) * 2000-09-27 2002-04-12 Nec Kansai Ltd チップ製造装置
US20030121228A1 (en) * 2001-12-31 2003-07-03 Stoehr Robert P. System and method for dendritic web solar cell shingling
AU2003902270A0 (en) * 2003-05-09 2003-05-29 Origin Energy Solar Pty Ltd Separating and assembling semiconductor strips
CA2576868A1 (en) * 2004-08-09 2006-02-16 The Australian National University Solar cell (sliver) sub-module formation
US20080223429A1 (en) * 2004-08-09 2008-09-18 The Australian National University Solar Cell (Sliver) Sub-Module Formation
DE102004050463B3 (de) * 2004-10-16 2006-04-20 Manz Automation Ag Testsystem für Solarzellen
US7759158B2 (en) * 2005-03-22 2010-07-20 Applied Materials, Inc. Scalable photovoltaic cell and solar panel manufacturing with improved wiring
US20090308430A1 (en) * 2005-06-17 2009-12-17 The Australian National University Solar Cell Interconnection Process
WO2006137746A1 (en) * 2005-06-24 2006-12-28 Renewable Energy Corporation Asa Stress relieving ribbons
CN101675531B (zh) * 2007-02-16 2013-03-06 纳克公司 太阳能电池结构、光生伏打模块及对应的工艺
JP4942518B2 (ja) * 2007-03-12 2012-05-30 シャープ株式会社 インターコネクタ
JP2009130193A (ja) * 2007-11-26 2009-06-11 Toyota Motor Corp 太陽電池モジュール
JP5676280B2 (ja) * 2008-03-11 2015-02-25 サン−ゴバン グラス フランス エス アー ソーラモジュール
GB2459274A (en) * 2008-04-15 2009-10-21 Renewable Energy Corp Asa Wafer based solar panels
US20090283137A1 (en) * 2008-05-15 2009-11-19 Steven Thomas Croft Solar-cell module with in-laminate diodes and external-connection mechanisms mounted to respective edge regions
US20100139754A1 (en) * 2008-12-09 2010-06-10 Palo Alto Research Center Incorporated Solar Cell With Co-Planar Backside Metallization
AU2008365516B2 (en) * 2008-12-19 2012-07-26 Sphelar Power Corporation Solar cell module and method for producing the same
MX2011012633A (es) * 2009-05-25 2012-03-07 Day4 Energy Inc Disposicion de sarta de modulo fotovoltaico y proteccion de sombreado para la misma.
CN101908578A (zh) * 2009-06-02 2010-12-08 江西天能电力股份有限公司 一片硅片制造一个以上太阳电池的方法
JP2012533905A (ja) * 2009-07-22 2012-12-27 アプライド マテリアルズ インコーポレイテッド バック接点太陽電池及び金属リボンを使用するモノリシックモジュールアセンブリ
KR101097252B1 (ko) * 2009-11-17 2011-12-21 삼성에스디아이 주식회사 광전변환소자
US8691694B2 (en) * 2009-12-22 2014-04-08 Henry Hieslmair Solderless back contact solar cell module assembly process
US20110271999A1 (en) * 2010-05-05 2011-11-10 Cogenra Solar, Inc. Receiver for concentrating photovoltaic-thermal system
JP5562762B2 (ja) * 2010-08-20 2014-07-30 株式会社東芝 開放電圧制御システム
US20120080078A1 (en) * 2010-10-02 2012-04-05 Applied Solar, Llc Photovoltaic modules and methods of manufacturing
US20120318319A1 (en) * 2011-06-17 2012-12-20 Solopower, Inc. Methods of interconnecting thin film solar cells
JP5732332B2 (ja) * 2011-06-29 2015-06-10 東レエンジニアリング株式会社 太陽電池モジュールの製造システム及びその製造方法
JP2013089659A (ja) * 2011-10-14 2013-05-13 Nitto Denko Corp 太陽電池セルの製造方法、及び太陽電池モジュール
JPWO2013105472A1 (ja) 2012-01-13 2015-05-11 三洋電機株式会社 車載用太陽電池モジュール
JP2013253317A (ja) * 2012-05-08 2013-12-19 Fujifilm Corp 半導体装置用基板、半導体装置、調光型照明装置、自己発光表示装置、太陽電池および反射型液晶表示装置
DE102012019097A1 (de) * 2012-09-28 2014-04-03 Michael Pashley Photovoltaikanlage mit wellenförmiger Oberfläche
AU2013331304C1 (en) * 2012-10-16 2015-11-26 Solexel, Inc. Systems and methods for monolithically integrated bypass switches in photovoltaic solar cells and modules
AU2013337262A1 (en) * 2012-11-05 2015-05-21 Solexel, Inc. Systems and methods for monolithically isled solar photovoltaic cells and modules
US20140124013A1 (en) * 2012-11-08 2014-05-08 Cogenra Solar, Inc. High efficiency configuration for solar cell string

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5979728A (en) * 1995-01-03 1999-11-09 Texas Instruments Incorporated Apparatus for breaking and separating dies from a wafer
KR101226578B1 (ko) * 2005-06-10 2013-01-28 하마마츠 포토닉스 가부시키가이샤 웨이퍼 절단 방법
US20130139871A1 (en) * 2010-09-29 2013-06-06 Kyocera Corporation Solar cell module and method of manufacturing solar cell module
US20140124014A1 (en) * 2012-11-08 2014-05-08 Cogenra Solar, Inc. High efficiency configuration for solar cell string

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190016491A (ko) * 2016-06-08 2019-02-18 선파워 코포레이션 슁글드 태양 전지 모듈의 리워킹을 위한 시스템 및 방법
WO2019009532A1 (ko) * 2017-07-03 2019-01-10 엘지전자(주) 화합물 태양전지 모듈
KR20190020509A (ko) * 2017-08-21 2019-03-04 엘지전자 주식회사 태양 전지 패널 및 이의 제조 방법
KR20190021890A (ko) * 2017-08-24 2019-03-06 엘지전자 주식회사 태양 전지 및 이를 포함하는 태양 전지 패널
KR101852606B1 (ko) * 2017-08-28 2018-04-30 주식회사 탑선 분할 태양전지 모듈
KR20190032864A (ko) * 2017-09-20 2019-03-28 엘지전자 주식회사 화합물 태양전지 모듈 및 그 제조 방법
KR20190034968A (ko) * 2017-09-25 2019-04-03 엘지전자 주식회사 태양 전지 및 이를 포함하는 태양 전지 패널
KR20190058060A (ko) * 2017-11-21 2019-05-29 한국생산기술연구원 슁글드 어레이유닛, 슁글드 어레이유닛을 갖는 태양광모듈 및 슁글드 어레이유닛의 제조방법
KR20190067463A (ko) * 2017-12-07 2019-06-17 엘지전자 주식회사 태양 전지 패널
WO2019140605A1 (en) 2018-01-18 2019-07-25 Flex, Ltd. Busbar-less shingled array solar cells and methods of manufacturing solar modules
EP3552246A4 (en) * 2018-01-18 2020-08-26 Flex Ltd. SOLAR CELLS WITH SHINGLE NETWORK WITHOUT DISTRIBUTION BAR AND PROCESSES FOR MANUFACTURING SOLAR MODULES
KR20190097991A (ko) * 2018-02-13 2019-08-21 엘지전자 주식회사 태양 전지 패널
WO2019164117A1 (ko) * 2018-02-23 2019-08-29 엘지전자 주식회사 화합물 태양전지 모듈
KR20190112457A (ko) * 2018-03-26 2019-10-07 엘지전자 주식회사 태양전지 및 이를 이용한 태양전지 모듈과 이의 제조 방법
KR20190120599A (ko) * 2018-04-16 2019-10-24 엘지전자 주식회사 태양전지 모듈
KR20200010791A (ko) 2018-07-23 2020-01-31 한국생산기술연구원 스트링 어레이를 이용한 태양광 모듈 및 그의 제조방법
KR20200013407A (ko) * 2018-07-30 2020-02-07 엘지전자 주식회사 태양 전지 모듈 및 이의 제조 방법
KR20210123251A (ko) * 2018-10-31 2021-10-13 한국생산기술연구원 고출력 슁글드 어레이 구조의 태양전지 모듈 및 그 제조방법
KR20200048867A (ko) * 2018-10-31 2020-05-08 한국생산기술연구원 도로 블록용 태양전지 모듈 및 그 제조방법
KR20210082389A (ko) * 2018-11-23 2021-07-05 청두 예판 사이언스 앤드 테크놀로지 컴퍼니 리미티드 슁글 셀 및 슁글드 광발전 모듈의 제조 방법 및 시스템
US10825742B2 (en) 2018-11-23 2020-11-03 Chengdu Yefan Science And Technology Co., Ltd. Method and system for manufacturing solar cells and shingled solar cell modules
US10991634B2 (en) 2018-11-23 2021-04-27 Chengdu Yefan Science And Technology Co., Ltd. Method and system for manufacturing solar cells and shingled solar cell modules
US10991633B2 (en) 2018-11-23 2021-04-27 Chengdu Yefan Science And Technology Co., Ltd. Method and system for manufacturing solar cells and shingled solar cell modules
KR20200098937A (ko) * 2019-02-13 2020-08-21 ㈜에이치엔에스 중첩된 태양전지 모듈에 리본을 부착하는 방법
KR20200126711A (ko) * 2019-04-30 2020-11-09 엘지전자 주식회사 버스 리본 부재 및 이를 포함하는 태양 전지 패널
KR20210013950A (ko) 2019-07-29 2021-02-08 한국생산기술연구원 슁글드 태양광 패널용 태양전지 셀의 제조방법 및 이를 이용한 태양광 패널
KR20210133195A (ko) 2019-07-29 2021-11-05 한국생산기술연구원 슁글드 태양광 패널용 태양전지 셀의 제조방법 및 이를 이용한 태양광 패널
KR20200103612A (ko) 2020-08-27 2020-09-02 한국생산기술연구원 스트링 어레이를 이용한 태양광 모듈의 제조방법
KR102354015B1 (ko) * 2021-03-31 2022-01-21 주식회사 신성이엔지 슁글드 스트링 및 이를 포함하는 태양전지 모듈의 제조 방법

Also Published As

Publication number Publication date
AU2019101207A4 (en) 2019-11-07
SA516380384B1 (ar) 2021-07-17
MX2020012189A (es) 2021-01-29
MX2016015573A (es) 2017-07-13
CN109768095B (zh) 2023-04-04
KR102482566B1 (ko) 2022-12-29
SA520420653B1 (ar) 2023-01-02
CN114582986A (zh) 2022-06-03
KR102054420B1 (ko) 2020-01-22
KR20210013311A (ko) 2021-02-03
JP2022000916A (ja) 2022-01-04
CN108305904A (zh) 2018-07-20
AU2018279033A1 (en) 2019-01-17
AU2023251472A1 (en) 2023-11-09
AU2021261854A1 (en) 2021-12-02
AU2018279035B2 (en) 2019-07-11
AU2015267239A1 (en) 2016-11-24
JP1661435S (ko) 2020-06-08
JP1676513S (ko) 2021-01-12
JP2023171674A (ja) 2023-12-01
AU2019101206A4 (en) 2019-11-07
KR102368110B1 (ko) 2022-02-25
CN109346538B (zh) 2022-11-29
SA520420601B1 (ar) 2022-11-16
AU2018279033B2 (en) 2019-07-11
AU2019101205B4 (en) 2020-07-30
KR20220028170A (ko) 2022-03-08
JP7369746B2 (ja) 2023-10-26
CN109768095A (zh) 2019-05-17
JP6554703B2 (ja) 2019-08-07
JP2017517145A (ja) 2017-06-22
CN108305904B (zh) 2022-08-05
AU2019101206B4 (en) 2020-09-24
AU2019101205A4 (en) 2019-11-07
AU2015267239B2 (en) 2019-07-04
AU2018279035A1 (en) 2019-01-17
AU2019101207B4 (en) 2020-05-14
AU2018279029B2 (en) 2019-07-11
CN109346538A (zh) 2019-02-15
AU2019222952A1 (en) 2019-12-05
AU2018279029A1 (en) 2019-01-17

Similar Documents

Publication Publication Date Title
JP7369746B2 (ja) こけら葺き状太陽電池モジュール
US11038072B2 (en) Shingled solar cell module
KR102034888B1 (ko) 슁글드 태양 전지 모듈
US10861999B2 (en) Shingled solar cell module comprising hidden tap interconnects
US11482639B2 (en) Shingled solar cell module
JP6663616B2 (ja) こけら葺き状太陽電池モジュール
TWI737989B (zh) 蓄板太陽能電池模組
US20220367735A1 (en) Shingled solar cell module

Legal Events

Date Code Title Description
AMND Amendment
A107 Divisional application of patent
E902 Notification of reason for refusal
AMND Amendment
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
X091 Application refused [patent]
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant