WO2020184301A1 - 太陽電池デバイスおよび太陽電池モジュール、並びに太陽電池デバイスの製造方法 - Google Patents

太陽電池デバイスおよび太陽電池モジュール、並びに太陽電池デバイスの製造方法 Download PDF

Info

Publication number
WO2020184301A1
WO2020184301A1 PCT/JP2020/008933 JP2020008933W WO2020184301A1 WO 2020184301 A1 WO2020184301 A1 WO 2020184301A1 JP 2020008933 W JP2020008933 W JP 2020008933W WO 2020184301 A1 WO2020184301 A1 WO 2020184301A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
electrode layer
surface side
main surface
hole
Prior art date
Application number
PCT/JP2020/008933
Other languages
English (en)
French (fr)
Inventor
徹 寺下
足立 大輔
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to JP2021504954A priority Critical patent/JPWO2020184301A1/ja
Publication of WO2020184301A1 publication Critical patent/WO2020184301A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a solar cell device, a solar cell module including the solar cell device, and a method for manufacturing the solar cell device.
  • the solar cell string (solar cell device)
  • more solar cells can be mounted in the limited solar cell mounting area in the solar cell module, the light receiving area for photoelectric conversion is increased, and the solar cell module Output is improved.
  • the solar cell string (solar cell device)
  • no gap is generated between the solar cell cells, and the design of the solar cell module is improved.
  • Patent Document 2 From the viewpoint of improving output and design, even when modularizing a back electrode type solar cell, it is being studied to superimpose and connect a part of the solar cells by using a single ring method. (See, for example, Patent Document 2).
  • the present invention relates to a solar cell device capable of suppressing a decrease in productivity when a part of back electrode type solar cell cells are overlapped and connected by using a single ring method, a solar cell module including the same, and a solar cell module provided with the same. It is an object of the present invention to provide a method for manufacturing a solar cell device.
  • the solar cell device is a solar cell device including a plurality of electrically connected solar cells, and is a solar cell of one of adjacent solar cells in the plurality of solar cells.
  • a part of one main surface side on one end side is the other main surface opposite to the one main surface side on the other end side opposite to the one end side of the other solar cell among the adjacent solar cells.
  • each of the plurality of solar cells includes a semiconductor substrate, a first conductive semiconductor layer and a first conductive semiconductor layer formed on a portion of the semiconductor substrate on the other main surface side.
  • a back surface electrode type solar cell including an electrode layer and a second conductive type semiconductor layer and a second electrode layer formed on another part of the other main surface side of the semiconductor substrate, and the adjacent solar cells.
  • the first electrode layer is formed in the overlapping region on the other main surface side of the one end side of the one solar cell, which is an overlapping region in which a part of the battery cells overlaps with each other.
  • the second electrode layer is formed in the overlapping region on the other main surface side of the other end side of the solar cell, and the overlapping region on the one end side of the solar cell A through hole is formed, the through hole is filled with a conductive member, and the first electrode layer of the one solar cell is formed through the conductive member in the through hole and the other. It is connected to the second electrode layer of the solar cell of.
  • the solar cell module according to the present invention includes the above-mentioned solar cell device.
  • the method for manufacturing a solar cell device is the above-mentioned method for manufacturing a solar cell device, wherein in each of the plurality of solar cell cells, the first portion of the semiconductor substrate on the other main surface side is used.
  • the conductive semiconductor layer is formed, the second conductive semiconductor layer is formed on the other part of the semiconductor substrate on the other main surface side, and in each of the plurality of solar cell cells, the said solar cell.
  • the through hole is formed in the overlapping region on one end side, and in each of the plurality of solar cell cells, the first electrode layer is formed on a part of the semiconductor substrate on the other main surface side, and the semiconductor is formed.
  • the first electrode layer is formed in the overlapping region on the other main surface side of the one end side of the one solar cell.
  • An electrode layer is formed, and the second electrode layer is formed in the overlapping region on the other main surface side of the other end side of the other solar cell, and one of the adjacent solar cells is formed.
  • a part of the one main surface side of the one end side of the solar cell is below a part of the other main surface side of the other solar cell of the adjacent solar cells.
  • the plurality of solar cell cells are arranged so as to be overlapped with each other via the conductive adhesive member, and pressure is applied to the plurality of solar cell cells to form the material of the first electrode layer and the material of the conductive adhesive member.
  • the decrease in productivity can be suppressed.
  • FIG. 2 is a sectional view taken along line II-II of the solar cell module shown in FIG. It is a figure which looked at the solar cell in the solar cell device shown in FIG. 1 and FIG. 2 from the back side.
  • FIG. 3 is a sectional view taken along line IVA-IVA of the solar cell shown in FIG.
  • FIG. 3 is a sectional view taken along line IVB-IVB of the solar cell shown in FIG. It is an enlarged cross-sectional view of the vicinity of the superposition area of the solar cell device shown in FIG. It is an enlarged cross-sectional view near the superposition area of the solar cell device shown in FIG. 2, and is the cross-sectional view corresponding to the IVB-IVB line shown in FIG.
  • FIG. 1 is a view of a solar cell module including the solar cell device according to the present embodiment as viewed from the back surface side
  • FIG. 2 is a sectional view taken along line II-II of the solar cell module shown in FIG.
  • the solar cell module 100 is a solar cell device (also referred to as a solar cell string) in which a plurality of rectangular back electrode type solar cell cells 2 are electrically connected by a single ring method. Includes 1).
  • the solar cell device 1 is sandwiched between the light receiving side protective member 3 and the back side protective member 4.
  • a liquid or solid sealing material 5 is filled between the light receiving side protective member 3 and the back side protective member 4, whereby the solar cell device 1 is sealed.
  • the sealing material 5 seals and protects the solar cell device 1, that is, the solar cell 2, and is between the surface of the solar cell 2 on the light receiving side and the light receiving side protective member 3 and the solar cell. It is interposed between the back surface of 2 and the back protection member 4.
  • the shape of the sealing material 5 is not particularly limited, and examples thereof include a sheet shape. This is because if it is in the form of a sheet, it is easy to cover the front surface and the back surface of the planar solar cell 2.
  • the material of the sealing material 5 is not particularly limited, but it is preferable that it has a property of transmitting light (translucency). Further, the material of the sealing material 5 preferably has adhesiveness for adhering the solar cell 2, the light receiving side protective member 3, and the back side protective member 4.
  • Examples of such materials include ethylene / vinyl acetate copolymer (EVA), ethylene / ⁇ -olefin copolymer, ethylene / vinyl acetate / triallyl isocyanurate (EVAT), polyvinyl butyral (PVB), and acrylic.
  • EVA ethylene / vinyl acetate copolymer
  • EVAT ethylene / vinyl acetate copolymer
  • PVB polyvinyl butyral
  • acrylic examples thereof include a translucent resin such as a resin, a urethane resin, or a silicone resin.
  • the light receiving side protective member 3 covers the surface (light receiving surface) of the solar cell device 1, that is, the solar cell 2 via the sealing material 5 to protect the solar cell 2.
  • the shape of the light receiving side protective member 3 is not particularly limited, but a plate shape or a sheet shape is preferable from the viewpoint of indirectly covering the planar light receiving surface.
  • the material of the light receiving side protective member 3 is not particularly limited, but like the sealing material 5, a material having translucency and resistance to ultraviolet light is preferable, and for example, glass or glass or Examples thereof include transparent resins such as acrylic resin and polycarbonate resin.
  • the surface of the light receiving side protective member 3 may be processed into an uneven shape, or may be coated with an antireflection coating layer. This is because the light receiving side protective member 3 makes it difficult to reflect the received light and can guide more light to the solar cell device 1.
  • the back side protective member 4 covers the back surface of the solar cell device 1, that is, the solar cell 2 via the sealing material 5, and protects the solar cell 2.
  • the shape of the back side protective member 4 is not particularly limited, but like the light receiving side protective member 3, a plate shape or a sheet shape is preferable from the viewpoint of indirectly covering the surface back surface.
  • the material of the back side protective member 4 is not particularly limited, but a material that prevents the ingress of water or the like (highly water-impervious) is preferable.
  • a resin film such as polyethylene terephthalate (PET), polyethylene (PE), an olefin resin, a fluorine-containing resin, or a silicone-containing resin, or a plate-shaped resin member having translucency such as glass, polycarbonate, or acrylic.
  • PET polyethylene terephthalate
  • PE polyethylene
  • olefin resin a fluorine-containing resin
  • silicone-containing resin a plate-shaped resin member having translucency
  • a plate-shaped resin member having translucency such as glass, polycarbonate, or acrylic.
  • a laminate with a metal foil such as an aluminum foil.
  • the solar cell 2 is connected in series by overlapping a part of the end portions of the solar cell 2.
  • the portion is the other main surface side (opposite to the above-mentioned one main surface side) of the other end side (the other end side opposite to the above-mentioned one end side, for example, the right end side in FIG. 2) in the X direction of the other solar cell 2. It overlaps a part of the other main surface side (for example, the back surface side).
  • the solar cells 2 are electrically connected in this way.
  • the method is referred to as a single ring method.
  • a plurality of solar cell cells 2 connected in a string shape are referred to as solar cell strings (solar cell devices).
  • the area where adjacent solar cells 2 and 2 overlap is referred to as an overlapping area Ro.
  • Adjacent solar cell cells 2 and 2 are adhered to each other via the conductive adhesive member 6 in the overlapping region Ro.
  • the material of the conductive adhesive member 6 includes a conductive film formed of metal particles, low melting point metal particles, or a thermosetting resin film containing metal fine particles, metal particles, low melting point metal fine particles, or metal fine particles and a binder. A formed conductive adhesive, a solder paste containing solder particles, or the like is used.
  • FIG. 3 is a view of the solar cell 2 in the solar cell device 1 shown in FIGS. 1 and 2 as viewed from the back surface side.
  • the solar cell 2 shown in FIG. 3 is a rectangular back electrode type solar cell.
  • the solar cell 2 includes a semiconductor substrate 11 having two main surfaces, one main surface side (for example, the light receiving surface side) and the other main surface side (for example, the back surface side), and the other main surface of the semiconductor substrate 11. It has a first region 7 and a second region 8.
  • the first region 7 has a so-called comb-shaped shape, and has a plurality of tooth portions 7f corresponding to comb teeth and a comb back portion 7b corresponding to a support portion of the comb teeth.
  • the comb back portion 7b extends in the Y direction (second direction) along the side portion on one end side of the semiconductor substrate 11, and the tooth portion 7f extends from the comb back portion 7b in the X direction (first direction) intersecting the Y direction. Extends in the direction).
  • the second region 8 has a so-called comb-shaped shape, and has a plurality of tooth portions 8f corresponding to comb teeth and a comb back portion 8b corresponding to a support portion of the comb teeth.
  • the comb back portion 8b extends in the Y direction along the side portion on the other end side facing the side portion on one end side of the semiconductor substrate 11, and the tooth portion 8f extends in the X direction from the comb back portion 8b.
  • the tooth portions 7f and the tooth portions 8f are provided alternately in the Y direction.
  • the first region 7 and the second region 8 may be formed in a striped shape.
  • FIG. 4A is a sectional view taken along line IVA-IVA of the solar cell 2 shown in FIG. 3, and FIG. 4B is a sectional view taken along line IVB-IVB of the solar cell 2 shown in FIG.
  • the solar cell 2 is an intrinsic semiconductor layer 13 laminated in order on the light receiving surface side, which is the main surface (one main surface) on the light receiving side of the main surface of the semiconductor substrate 11.
  • an antireflection layer (insulating layer) 15 is provided.
  • the solar cell 2 is sequentially laminated on a part of the back surface side (mainly, the first region 7) which is the main surface (the other main surface) on the opposite side of the light receiving surface of the main surface of the semiconductor substrate 11.
  • the solar cell 2 includes an intrinsic semiconductor layer 23, a first conductive semiconductor layer 25, a transparent electrode layer 27, and a first electrode layer 28. Further, the solar cell 2 includes an intrinsic semiconductor layer 33, a second conductive semiconductor layer 35, and a transparent electrode layer 37, which are sequentially laminated on another part (mainly, the second region 8) on the back surface side of the semiconductor substrate 11. And a second electrode layer 38 is provided.
  • the semiconductor substrate 11 is formed of a crystalline silicon material such as single crystal silicon or polycrystalline silicon.
  • the semiconductor substrate 11 is, for example, an n-type semiconductor substrate in which a crystalline silicon material is doped with an n-type dopant. Examples of the n-type dopant include phosphorus (P).
  • the semiconductor substrate 11 functions as a photoelectric conversion substrate that absorbs incident light from the light receiving surface side to generate optical carriers (electrons and holes). By using crystalline silicon as the material of the semiconductor substrate 11, a relatively high output (stable output regardless of the illuminance) can be obtained even when the dark current is relatively small and the intensity of the incident light is low.
  • the intrinsic semiconductor layer 13 is formed on the light receiving surface side of the semiconductor substrate 11.
  • the intrinsic semiconductor layer 23 is formed in the first region 7 on the back surface side of the semiconductor substrate 11.
  • the intrinsic semiconductor layer 33 is formed in the second region 8 on the back surface side of the semiconductor substrate 11.
  • the intrinsic semiconductor layers 13, 23, 33 are formed of, for example, an intrinsic (i-type) amorphous silicon material.
  • the intrinsic semiconductor layers 13, 23, 33 function as passivation layers, suppress the recombination of carriers generated in the semiconductor substrate 11, and improve the carrier recovery efficiency.
  • An antireflection layer 15 may be formed on the intrinsic semiconductor layer 13 on the light receiving surface side of the semiconductor substrate 11.
  • the antireflection layer 15 is formed of an insulating material such as SiO, SiN, or SiON.
  • the first conductive semiconductor layer 25 is formed on the intrinsic semiconductor layer 23, that is, in the first region 7 on the back surface side of the semiconductor substrate 11. That is, the first conductive semiconductor layer 25 has a so-called comb shape, and a plurality of tooth portions 25f corresponding to comb teeth and one ends of the plurality of tooth portions 25f corresponding to support portions of comb teeth are connected. It has a toothed comb back 25b.
  • the comb back portion 25b extends in the Y direction along the side portion on one end side of the semiconductor substrate 11, and the tooth portion 25f extends in the X direction from the comb back portion 25b.
  • the second conductive semiconductor layer 35 is formed on the intrinsic semiconductor layer 33, that is, in the second region 8 on the back surface side of the semiconductor substrate 11. That is, the second conductive semiconductor layer 35 has a so-called comb shape, and a plurality of tooth portions 35f corresponding to the comb teeth and one ends of the plurality of tooth portions 35f corresponding to the support portions of the comb teeth are connected. It has a toothed comb back 35b.
  • the comb back portion 35b extends in the Y direction along the other side portion of the semiconductor substrate 11, and the tooth portion 35f extends in the X direction from the comb back portion 35b.
  • the first conductive semiconductor layer 25 is formed of, for example, an amorphous silicon material.
  • the first conductive semiconductor layer 25 is, for example, a p-type semiconductor layer in which an amorphous silicon material is doped with a p-type dopant.
  • Examples of the p-type dopant include boron (B).
  • the second conductive semiconductor layer 35 is formed of, for example, an amorphous silicon material.
  • the second conductive semiconductor layer 35 is, for example, an n-type semiconductor layer in which an amorphous silicon material is doped with an n-type dopant (for example, phosphorus (P) described above).
  • P phosphorus
  • the first conductive semiconductor layer 25 may be an n-type semiconductor layer
  • the second conductive semiconductor layer 35 may be a p-type semiconductor layer
  • the semiconductor substrate 11 may be a p-type semiconductor substrate in which a crystalline silicon material is doped with a p-type dopant (for example, the above-mentioned boron (B)).
  • the transparent electrode layer 27 is formed on the first conductive semiconductor layer 25, that is, in the first region 7 on the back surface side of the semiconductor substrate 11.
  • the transparent electrode layer 37 is formed on the second conductive semiconductor layer 35, that is, in the second region 8 on the back surface side of the semiconductor substrate 11.
  • the transparent electrode layers 27 and 37 are formed of a transparent conductive material. Examples of the transparent conductive material include ITO (Indium Tin Oxide: a composite oxide of indium oxide and tin oxide).
  • the first electrode layer 28 is formed on the transparent electrode layer 27, that is, in the first region 7 on the back surface side of the semiconductor substrate 11. That is, as shown in FIG. 3 (and FIG. 1), the first electrode layer 28 has a so-called comb-shaped shape, and corresponds to a plurality of finger electrode portions 28f corresponding to comb teeth and a support portion of the comb teeth. , Has a bus bar electrode portion 28b to which one end of a plurality of finger electrode portions 28f is connected.
  • the bus bar electrode portion 28b corresponds to the comb back portion 25b of the first conductive semiconductor layer 25, and extends in the Y direction along the side portion on one end side of the semiconductor substrate 11 in the X direction.
  • the finger electrode portion 28f corresponds to the tooth portion 25f of the first conductive semiconductor layer 25 and extends in the X direction from the bus bar electrode portion 28b.
  • the second electrode layer 38 is formed on the transparent electrode layer 37, that is, in the second region 8 on the back surface side of the semiconductor substrate 11. That is, as shown in FIG. 3 (and FIG. 1), the second electrode layer 38 has a so-called comb-shaped shape, and corresponds to a plurality of finger electrode portions 38f corresponding to comb teeth and a support portion of the comb teeth. , Has a bus bar electrode portion 38b to which one end of a plurality of finger electrode portions 38f is connected.
  • the bus bar electrode portion 38b corresponds to the comb back portion 35b of the second conductive semiconductor layer 35 and extends in the Y direction along the side portion of the semiconductor substrate 11 on the other end side in the X direction.
  • the finger electrode portion 38f corresponds to the tooth portion 35f of the second conductive semiconductor layer 35 and extends in the X direction from the bus bar electrode portion 38b.
  • the first electrode layer 28 and the second electrode layer 38 are made of a metal material.
  • the metal material for example, Cu, Ag, Al and alloys thereof are used.
  • the first electrode layer 28 and the second electrode layer 38 are formed of, for example, a conductive paste material containing a metal powder such as silver.
  • FIG. 5A is an enlarged cross-sectional view of the vicinity of the superposition region Ro of the solar cell device 1 shown in FIG. 2, and is a cross-sectional view corresponding to the IVA-IVA line shown in FIG.
  • FIG. 5B is an enlarged cross-sectional view of the vicinity of the superposition region Ro of the solar cell device 1 shown in FIG. 2, and is a cross-sectional view corresponding to the IVB-IVB line shown in FIG.
  • the first conductive semiconductor layer 25 is located in the overlapping region Ro on the back surface side of the solar cell 2 on one end side in the X direction (for example, the left end side in FIGS. 3, 4A, 4B, 5A and 5B). A part or all of the bus bar electrode portion 28b of the comb back portion 25b and the first electrode layer 28 is arranged.
  • the second conductive semiconductor layer 35 is located in the overlapping region Ro on the back surface side of the solar cell 2 on the other end side in the X direction (for example, the right end side in FIGS. 3, 4A, 4B, 5A and 5B). A part or all of the bus bar electrode portion 38b of the comb back portion 35b and the second electrode layer 38 is arranged.
  • a plurality of through holes 40 arranged in the Y direction are formed in the overlapping region Ro on one end side of the solar cell 2.
  • the through hole 40 is filled with a conductive member.
  • the through hole 40 may be filled with the material of the first electrode layer 28 (for example, the above-mentioned conductive paste), or the material of the conductive adhesive member 6 (for example, the above-mentioned conductivity). Adhesive) may be filled, or both the material of the first electrode layer 28 and the material of the conductive adhesive member 6 may be filled.
  • the first electrode layer 28 of one solar cell 2 is connected to the second electrode layer 38 of the other solar cell 2 via the conductive member in the through hole 40.
  • An insulating film 16 containing the material of the antireflection layer (insulating layer) 15 may be formed on the inner surface of the through hole 40. As a result, the leakage current on the inner surface of the through hole 40 is reduced.
  • the intrinsic semiconductor layer 23, the first conductive semiconductor layer 25, and the transparent electrode layer 27 are formed on a part of the back surface side of the semiconductor substrate 11 (mainly, the first region 7), and the other back surface side of the semiconductor substrate 11 is formed.
  • the intrinsic semiconductor layer 33, the second conductive semiconductor layer 35, and the transparent electrode layer 37 are formed in a part (mainly, the second region 8). Further, the intrinsic semiconductor layer 13 is formed on the light receiving surface side of the semiconductor substrate 11.
  • a CVD method chemical vapor deposition method
  • PVD method physical vapor deposition method
  • a laser is used to form a plurality of through holes 40 arranged in the Y direction.
  • the antireflection layer (insulating layer) 15 is formed on the light receiving surface side of the solar cell 2.
  • an insulating film 16 containing the material of the antireflection layer 15 is formed on the inner surface of the through hole 40.
  • a CVD method chemical vapor deposition method
  • a PVD method physical vapor deposition method
  • the through hole 40 may be formed after the antireflection layer 15 is formed. In this case, the insulating film 16 is not formed on the inner surface of the through hole 40.
  • the first electrode layer 28 is formed on a part of the back surface side of the semiconductor substrate 11 (mainly the first region 7), and the other part of the back surface side of the semiconductor substrate 11 (mainly the second region 8). ), The second electrode layer 38 is formed.
  • the first electrode layer 28 is formed in the overlap region Ro on the back surface side of one end side of the solar cell 2
  • the second electrode layer is formed in the overlap region Ro on the back surface side of the other end side of the solar cell 2.
  • 38 is formed.
  • a method for forming the first electrode layer 28 and the second electrode layer 38 for example, a pattern printing method using a conductive paste, a dispenser method, or a coating method is used.
  • a plurality of solar cells 2 are connected in a single ring to manufacture a solar cell device 1.
  • a part of the light receiving surface side of one end side of one of the adjacent solar cell cells 2 and 2 is conductive under a part of the back surface side of the other end side of the other solar cell 2.
  • a plurality of solar cells 2 are arranged, for example, on a conveyor so as to overlap each other via the sex-adhesive member 6.
  • a method for forming the conductive adhesive member 6 for example, a pattern printing method using a conductive adhesive, a dispenser method, or a coating method is used.
  • pressure is applied to the plurality of solar cells 2.
  • pressure is applied to the solar cell 2 by adsorbing the back surface side of the solar cell 2 from the conveyor.
  • it penetrates at least one of the material of the first electrode layer 28 (for example, the above-mentioned conductive paste) and the material of the conductive adhesive member 6 (for example, the above-mentioned conductive adhesive).
  • the hole 40 is filled.
  • the first electrode layer 28 of one solar cell 2 is connected to the second electrode layer 38 of the other solar cell 2 via the conductive members 28 and 6 in the through holes 40.
  • FIGS. 1, 2, 5A and 5B a solar cell device 1 in which a plurality of solar cells 2 are connected in a single ring is obtained.
  • one end side of one of the adjacent solar cell cells 2 and 2 in the X direction is the other end side of the other solar cell 2 in the X direction (for example, the right end side in FIGS. 2, 5A and 5B).
  • a plurality of solar cells 2 are electrically connected by using a single ring method so as to overlap a part of the back surface side.
  • the solar cell device 1 and the solar cell module 100 of the present embodiment since the back electrode type solar cell is used, the electrodes and wiring are not visible, and the design of the solar cell device 1 and the solar cell module 100 Is further improved.
  • a through hole 40 is formed in the overlapping region Ro on one end side of the solar cell 2, and the through hole 40 has a first through hole 40. At least one of the material of the electrode layer 28 and the material of the conductive adhesive member 6 (conductive member) is filled, and the first electrode layer 28 of one solar cell 2 is conductive in the through hole 40. It is connected to the second electrode layer 38 of the other solar cell 2 via the sex members 28 and 6.
  • a manufacturing device for connecting double-sided electrode type solar cells in a single ring can be used, and no special capital investment is required for connecting a back electrode type solar cell in a single ring, resulting in a large equipment cost. Can be suppressed.
  • FIG. 3B of Patent Document 2 described above discloses a technique for connecting back electrode type solar cells to each other by using a connecting wire rod bent in a substantially U shape.
  • the connecting wire may come off due to thermal stress or the like, and there is a concern about reliability and stability problems.
  • new equipment development will be required, and there is concern that the cost will increase significantly.
  • the solar cell device 1 and the solar cell module 100 of the present embodiment since a conductive connecting wire or the like is not used, the reliability and stability are excellent. Further, since a manufacturing apparatus for connecting a double-sided electrode type solar cell to a single ring can be used, the equipment cost can be significantly suppressed.
  • the through hole 40 is formed in the overlapping region Ro, it is not visible and the design of the solar cell device 1 and the solar cell module 100 is improved. There is no loss.
  • the solar cell module 100 includes a single solar cell device 1, but the solar cell module 100 includes, for example, a plurality of solar cell devices 1 arranged in the Y direction. May be good.
  • the solar cell device 1 including the heterojunction type solar cell 2 is illustrated as shown in FIGS. 4A and 4B.
  • the present invention is not limited to this, and can be applied to solar cell devices including various solar cells such as homozygous solar cells.
  • the solar cell 2 using the crystalline silicon material has been exemplified, but the present invention is not limited to this.
  • various materials such as gallium arsenide (GaAs) may be used.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

シングリング方式を用いて裏面電極型の太陽電池セルの一部同士を重ね合わせて接続する場合に、生産性の低下を抑制できる太陽電池デバイスを提供する。太陽電池デバイス1は、隣り合う太陽電池セルのうちの一方の太陽電池セル2の一方端側の一部は、他方の太陽電池セル2の他方端側の一部の下に重なっており、太陽電池セル2は裏面電極型であり、一方の太陽電池セル2の一方端側の他方主面側の重ね合わせ領域Roには第1電極層28が形成され、他方の太陽電池セル2の他方端側の他方主面側の重ね合わせ領域Roには第2電極層38が形成されており、太陽電池セル2の一方端側の重ね合わせ領域Roには貫通孔40が形成されており、貫通孔40には導電性部材28,6が充填されており、一方の太陽電池セル2の第1電極層28は、貫通孔40の導電性部材28,6を介して、他方の太陽電池セル2の第2電極層38と接続されている。

Description

太陽電池デバイスおよび太陽電池モジュール、並びに太陽電池デバイスの製造方法
 本発明は、太陽電池デバイス、およびそれを備える太陽電池モジュール、並びに太陽電池デバイスの製造方法に関する。
 昨今、両面電極型の太陽電池セルをモジュール化する場合、導電性の接続線を用いることなく、太陽電池セルの一部同士を重ね合わせることで、直接、電気的かつ物理的に接続を行う方式が存在する。このような接続方式はシングリング方式と称され、シングリング方式で電気的に接続された複数の太陽電池セルは太陽電池ストリング(太陽電池デバイス)と称される(例えば、特許文献1参照)。
 太陽電池ストリング(太陽電池デバイス)では、太陽電池モジュールにおける限られた太陽電池セル実装面積に、より多くの太陽電池セルが実装可能になり、光電変換のための受光面積が増え、太陽電池モジュールの出力が向上する。また、太陽電池ストリング(太陽電池デバイス)では、太陽電池セル間に隙間が生じず、太陽電池モジュールの意匠性が向上する。
 出力向上および意匠性向上の観点から、裏面電極型の太陽電池セルをモジュール化する場合にも、シングリング方式を用いて太陽電池セルの一部同士を重ね合わせて接続することが検討されている(例えば、特許文献2参照)。
特開2017-517145号公報 特表2015-534288号公報
 裏面電極型の太陽電池セルをシングリング方式を用いて接続する場合、段差を有する裏面電極同士を接続するために導電性の接続線等を用いる必要があるため、両面電極型の太陽電池セルをシングリング方式を用いて接続する場合と比較して生産性が低下する。
 本発明は、シングリング方式を用いて裏面電極型の太陽電池セルの一部同士を重ね合わせて接続する場合に、生産性の低下を抑制できる太陽電池デバイス、およびそれを備える太陽電池モジュール、並びに太陽電池デバイスの製造方法を提供することを目的とする。
 本発明に係る太陽電池デバイスは、電気的に接続された複数の太陽電池セルを備える太陽電池デバイスであって、前記複数の太陽電池セルにおける隣り合う太陽電池セルのうちの一方の太陽電池セルの一方端側の一方主面側の一部は、前記隣り合う太陽電池セルのうちの他方の太陽電池セルの前記一方端側と反対の他方端側の前記一方主面側と反対の他方主面側の一部の下に重なっており、前記複数の太陽電池セルの各々は、半導体基板と、前記半導体基板の前記他方主面側の一部に形成された第1導電型半導体層および第1電極層と、前記半導体基板の前記他方主面側の他の一部に形成された第2導電型半導体層および第2電極層とを含む裏面電極型の太陽電池セルであり、前記隣り合う太陽電池セルの一部同士が重なり合う重ね合わせ領域であって、前記一方の太陽電池セルの前記一方端側の前記他方主面側における前記重ね合わせ領域には前記第1電極層が形成され、前記他方の太陽電池セルの前記他方端側の前記他方主面側における前記重ね合わせ領域には前記第2電極層が形成されており、前記太陽電池セルの前記一方端側における前記重ね合わせ領域には、貫通孔が形成されており、前記貫通孔には導電性部材が充填されており、前記一方の太陽電池セルの前記第1電極層は、前記貫通孔における前記導電性部材を介して、前記他方の太陽電池セルの前記第2電極層と接続されている。
 本発明に係る太陽電池モジュールは、上記した太陽電池デバイスを備える。
 本発明に係る太陽電池デバイスの製造方法は、上記した太陽電池デバイスの製造方法であって、前記複数の太陽電池セルの各々において、前記半導体基板の前記他方主面側の一部に前記第1導電型半導体層を形成し、前記半導体基板の前記他方主面側の他の一部に前記第2導電型半導体層を形成し、前記複数の太陽電池セルの各々において、前記太陽電池セルの前記一方端側における前記重ね合わせ領域に前記貫通孔を形成し、前記複数の太陽電池セルの各々において、前記半導体基板の前記他方主面側の一部に前記第1電極層を形成し、前記半導体基板の前記他方主面側の他の一部に前記第2電極層を形成することによって、前記一方の太陽電池セルの前記一方端側の前記他方主面側における前記重ね合わせ領域に前記第1電極層を形成し、前記他方の太陽電池セルの前記他方端側の前記他方主面側における前記重ね合わせ領域に前記第2電極層を形成し、前記隣り合う太陽電池セルのうちの前記一方の太陽電池セルの前記一方端側の前記一方主面側の一部が、前記隣り合う太陽電池セルのうちの前記他方の太陽電池セルの前記他方端側の前記他方主面側の一部の下に導電性接着部材を介して重なるように、前記複数の太陽電池セルを配置し、前記複数の太陽電池セルに圧力を加えて、前記第1電極層の材料および前記導電性接着部材の材料のうちの少なくともいずれか一方の導電性部材を前記貫通孔に充填することにより、前記一方の太陽電池セルの前記第1電極層を、前記貫通孔における前記導電性部材を介して、前記他方の太陽電池セルの前記第2電極層と接続する。
 本発明によれば、シングリング方式を用いて裏面電極型の太陽電池セルの一部同士を重ね合わせて接続する場合に、生産性の低下を抑制できる。
本実施形態に係る太陽電池デバイスを備える太陽電池モジュールを裏面側からみた図である。 図1に示す太陽電池モジュールのII-II線断面図である。 図1および図2に示す太陽電池デバイスにおける太陽電池セルを裏面側からみた図である。 図3に示す太陽電池セルのIVA-IVA線断面図である。 図3に示す太陽電池セルのIVB-IVB線断面図である。 図2に示す太陽電池デバイスの重ね合わせ領域付近の拡大断面図であって、図3に示すIVA-IVA線に相当する断面図である。 図2に示す太陽電池デバイスの重ね合わせ領域付近の拡大断面図であって、図3に示すIVB-IVB線に相当する断面図である。
 以下、添付の図面を参照して本発明の実施形態の一例について説明する。なお、各図面において同一または相当の部分に対しては同一の符号を附すこととする。また、便宜上、ハッチングや部材符号等を省略する場合もあるが、かかる場合、他の図面を参照するものとする。
(太陽電池モジュール)
 図1は、本実施形態に係る太陽電池デバイスを備える太陽電池モジュールを裏面側からみた図であり、図2は、図1に示す太陽電池モジュールのII-II線断面図である。図1では、後述する受光側保護部材3、裏側保護部材4および封止材5が省略されている。図1および図2に示すように、太陽電池モジュール100は、複数の長方形状の裏面電極型の太陽電池セル2をシングリング方式を用いて電気的に接続する太陽電池デバイス(太陽電池ストリングとも称される)1を含む。
 太陽電池デバイス1は、受光側保護部材3と裏側保護部材4とによって挟み込まれている。受光側保護部材3と裏側保護部材4との間には、液体状または固体状の封止材5が充填されており、これにより、太陽電池デバイス1は封止される。
 封止材5は、太陽電池デバイス1、すなわち太陽電池セル2を封止して保護するもので、太陽電池セル2の受光側の面と受光側保護部材3との間、および、太陽電池セル2の裏側の面と裏側保護部材4との間に介在する。
 封止材5の形状としては、特に限定されるものではなく、例えばシート状が挙げられる。シート状であれば、面状の太陽電池セル2の表面および裏面を被覆しやすいためである。
 封止材5の材料としては、特に限定されるものではないが、光を透過する特性(透光性)を有すると好ましい。また、封止材5の材料は、太陽電池セル2と受光側保護部材3と裏側保護部材4とを接着させる接着性を有すると好ましい。
 このような材料としては、例えば、エチレン/酢酸ビニル共重合体(EVA)、エチレン/α-オレフィン共重合体、エチレン/酢酸ビニル/トリアリルイソシアヌレート(EVAT)、ポリビニルブチラート(PVB)、アクリル樹脂、ウレタン樹脂、または、シリコーン樹脂等の透光性樹脂が挙げられる。
 受光側保護部材3は、封止材5を介して、太陽電池デバイス1、すなわち太陽電池セル2の表面(受光面)を覆って、その太陽電池セル2を保護する。
 受光側保護部材3の形状としては、特に限定されるものではないが、面状の受光面を間接的に覆う点から、板状またはシート状が好ましい。
 受光側保護部材3の材料としては、特に限定されるものではないが、封止材5同様に、透光性を有しつつも紫外光に耐性の有る材料が好ましく、例えば、ガラス、または、アクリル樹脂若しくはポリカーボネート樹脂等の透明樹脂が挙げられる。また、受光側保護部材3の表面は、凹凸状に加工されていても構わないし、反射防止コーティング層で被覆されていても構わない。これらのようになっていると、受光側保護部材3は、受けた光を反射させ難くして、より多くの光を太陽電池デバイス1に導けるためである。
 裏側保護部材4は、封止材5を介して、太陽電池デバイス1、すなわち太陽電池セル2の裏面を覆って、その太陽電池セル2を保護する。
 裏側保護部材4の形状としては、特に限定されるものではないが、受光側保護部材3同様に、面状の裏面を間接的に覆う点から、板状またはシート状が好ましい。
 裏側保護部材4の材料としては、特に限定されるものではないが、水等の浸入を防止する(遮水性の高い)材料が好ましい。例えば、ポリエチレンテレフタレート(PET)、ポリエチレン(PE)、オレフィン系樹脂、含フッ素樹脂、若しくは含シリコーン樹脂等の樹脂フィルム、またはガラス、ポリカーボネート、アクリル等の透光性を有する板状の樹脂部材と、アルミニウム箔等の金属箔との積層体が挙げられる。
(太陽電池デバイス)
 太陽電池デバイス1では、太陽電池セル2の端部の一部が重なり合うことにより、太陽電池セル2が直列に接続される。具体的には、隣り合う太陽電池セル2,2のうちの一方の太陽電池セル2のX方向における一方端側(例えば図2において左端側)の一方主面側(例えば受光面側)の一部は、他方の太陽電池セル2のX方向における他方端側(上述の一方端側と反対の他方端側、例えば図2において右端側)の他方主面側(上述の一方主面側と反対の他方主面側、例えば裏面側)の一部の下に重なる。
 このように、瓦を屋根に葺いたように、複数の太陽電池セル2が一様にある方向にそろって傾く堆積構造となることから、このようにして太陽電池セル2を電気的に接続する方式を、シングリング方式と称する。また、ひも状につながった複数の太陽電池セル2を、太陽電池ストリング(太陽電池デバイス)と称する。
 以下では、隣り合う太陽電池セル2,2が重なり合う領域を、重ね合わせ領域Roという。
 隣り合う太陽電池セル2,2は、重ね合わせ領域Roにおいて、導電性接着部材6を介して接着される。導電性接着部材6の材料としては、金属粒子、低融点金属粒子または金属微粒子を内包した熱硬化性樹脂フィルムで形成された導電性フィルム、金属粒子、低融点金属微粒子若しくは金属微粒子とバインダーとで形成された導電性接着剤、または、はんだ粒子を含有するはんだペースト等が用いられる。
 太陽電池デバイス1の詳細は後述する。以下、太陽電池デバイス1における太陽電池セル2について説明する。
(太陽電池セル)
 図3は、図1および図2に示す太陽電池デバイス1における太陽電池セル2を裏面側からみた図である。図3に示す太陽電池セル2は、長方形状の裏面電極型の太陽電池セルである。太陽電池セル2は、一方主面側(例えば受光面側)と、その反対の他方主面側(例えば裏面側)の2つの主面を有する半導体基板11を備え、半導体基板11の他方主面において第1領域7と第2領域8とを有する。
 第1領域7は、いわゆる櫛型の形状をなし、櫛歯に相当する複数の歯部7fと、櫛歯の支持部に相当する櫛背部7bとを有する。櫛背部7bは、半導体基板11の一方端側の辺部に沿ってY方向(第2方向)に延在し、歯部7fは、櫛背部7bから、Y方向に交差するX方向(第1方向)に延在する。
 同様に、第2領域8は、いわゆる櫛型の形状であり、櫛歯に相当する複数の歯部8fと、櫛歯の支持部に相当する櫛背部8bとを有する。櫛背部8bは、半導体基板11の一方端側の辺部に対向する他方端側の辺部に沿ってY方向に延在し、歯部8fは、櫛背部8bからX方向に延在する。
 歯部7fと歯部8fとは、Y方向に交互に設けられている。
 なお、第1領域7および第2領域8は、ストライプ状に形成されてもよい。
 図4Aは、図3に示す太陽電池セル2のIVA-IVA線断面図であり、図4Bは、図3に示す太陽電池セル2のIVB-IVB線断面図である。図4Aおよび図4Bに示すように、太陽電池セル2は、半導体基板11の主面のうちの受光する側の主面(一方主面)である受光面側に順に積層された真性半導体層13および反射防止層(絶縁層)15を備える。また、太陽電池セル2は、半導体基板11の主面のうちの受光面の反対側の主面(他方主面)である裏面側の一部(主に、第1領域7)に順に積層された真性半導体層23、第1導電型半導体層25、透明電極層27および第1電極層28を備える。また、太陽電池セル2は、半導体基板11の裏面側の他の一部(主に、第2領域8)に順に積層された真性半導体層33、第2導電型半導体層35、透明電極層37および第2電極層38を備える。
 半導体基板11は、単結晶シリコンまたは多結晶シリコン等の結晶シリコン材料で形成される。半導体基板11は、例えば結晶シリコン材料にn型ドーパントがドープされたn型の半導体基板である。n型ドーパントとしては、例えばリン(P)が挙げられる。
 半導体基板11は、受光面側からの入射光を吸収して光キャリア(電子および正孔)を生成する光電変換基板として機能する。
 半導体基板11の材料として結晶シリコンが用いられることにより、暗電流が比較的に小さく、入射光の強度が低い場合であっても比較的高出力(照度によらず安定した出力)が得られる。
 真性半導体層13は、半導体基板11の受光面側に形成されている。真性半導体層23は、半導体基板11の裏面側の第1領域7に形成されている。真性半導体層33は、半導体基板11の裏面側の第2領域8に形成されている。
 真性半導体層13,23,33は、例えば真性(i型)アモルファスシリコン材料で形成される。
 真性半導体層13,23,33は、パッシベーション層として機能し、半導体基板11で生成されたキャリアの再結合を抑制し、キャリアの回収効率を高める。
 半導体基板11の受光面側の真性半導体層13上には、反射防止層15が形成されてもよい。反射防止層15は、例えばSiO、SiN、またはSiON等の絶縁性を有する材料で形成される。
 第1導電型半導体層25は、真性半導体層23上に、すなわち半導体基板11の裏面側の第1領域7に形成されている。すなわち、第1導電型半導体層25は、いわゆる櫛型の形状をなし、櫛歯に相当する複数の歯部25fと、櫛歯の支持部に相当し、複数の歯部25fの一端が接続された櫛背部25bとを有する。櫛背部25bは、半導体基板11の一方端側の辺部に沿ってY方向に延在し、歯部25fは、櫛背部25bからX方向に延在する。
 第2導電型半導体層35は、真性半導体層33上に、すなわち半導体基板11の裏面側の第2領域8に形成されている。すなわち、第2導電型半導体層35は、いわゆる櫛型の形状であり、櫛歯に相当する複数の歯部35fと、櫛歯の支持部に相当し、複数の歯部35fの一端が接続された櫛背部35bとを有する。櫛背部35bは、半導体基板11の他方の辺部に沿ってY方向に延在し、歯部35fは、櫛背部35bからX方向に延在する。
 第1導電型半導体層25は、例えばアモルファスシリコン材料で形成される。第1導電型半導体層25は、例えばアモルファスシリコン材料にp型ドーパントがドープされたp型半導体層である。p型ドーパントとしては、例えばホウ素(B)が挙げられる。
 第2導電型半導体層35は、例えばアモルファスシリコン材料で形成される。第2導電型半導体層35は、例えばアモルファスシリコン材料にn型ドーパント(例えば、上述したリン(P))がドープされたn型の半導体層である。
 なお、第1導電型半導体層25がn型半導体層であり、第2導電型半導体層35がp型半導体層であってもよい。
 また、半導体基板11は、結晶シリコン材料にp型ドーパント(例えば、上述したホウ素(B))がドープされたp型半導体基板であってもよい。
 透明電極層27は、第1導電型半導体層25上に、すなわち半導体基板11の裏面側の第1領域7に形成されている。透明電極層37は、第2導電型半導体層35上に、すなわち半導体基板11の裏面側の第2領域8に形成されている。透明電極層27,37は、透明な導電性材料で形成される。透明導電性材料としては、ITO(Indium Tin Oxide:酸化インジウムおよび酸化スズの複合酸化物)等が挙げられる。
 第1電極層28は、透明電極層27上に、すなわち半導体基板11の裏面側の第1領域7に形成される。すなわち、第1電極層28は、図3(および図1)に示すように、いわゆる櫛型の形状をなし、櫛歯に相当する複数のフィンガー電極部28fと、櫛歯の支持部に相当し、複数のフィンガー電極部28fの一端が接続されたバスバー電極部28bとを有する。バスバー電極部28bは、第1導電型半導体層25の櫛背部25bに対応し、半導体基板11のX方向の一方端側の辺部に沿ってY方向に延在する。フィンガー電極部28fは、第1導電型半導体層25の歯部25fに対応し、バスバー電極部28bからX方向に延在する。
 第2電極層38は、透明電極層37上に、すなわち半導体基板11の裏面側の第2領域8に形成される。すなわち、第2電極層38は、図3(および図1)に示すように、いわゆる櫛型の形状をなし、櫛歯に相当する複数のフィンガー電極部38fと、櫛歯の支持部に相当し、複数のフィンガー電極部38fの一端が接続されたバスバー電極部38bとを有する。バスバー電極部38bは、第2導電型半導体層35の櫛背部35bに対応し、半導体基板11のX方向の他方端側の辺部に沿ってY方向に延在する。フィンガー電極部38fは、第2導電型半導体層35の歯部35fに対応し、バスバー電極部38bからX方向に延在する。
 第1電極層28および第2電極層38は、金属材料で形成される。金属材料としては、例えば、Cu、Ag、Alおよびこれらの合金が用いられる。第1電極層28および第2電極層38は、例えば、銀等の金属粉末を含有する導電性ペースト材料で形成される。
 以下、太陽電池デバイス1および太陽電池セル2の詳細について説明する。
(太陽電池デバイスおよび太陽電池セルの詳細)
 図5Aは、図2に示す太陽電池デバイス1の重ね合わせ領域Ro付近の拡大断面図であって、図3に示すIVA-IVA線に相当する断面図である。図5Bは、図2に示す太陽電池デバイス1の重ね合わせ領域Ro付近の拡大断面図であって、図3に示すIVB-IVB線に相当する断面図である。
 太陽電池セル2のX方向の一方端側(例えば、図3、図4A、図4B、図5Aおよび図5Bにおいて左端側)の裏面側における重ね合わせ領域Roには、第1導電型半導体層25の櫛背部25bおよび第1電極層28のバスバー電極部28bの一部または全部が配置される。
 太陽電池セル2のX方向の他方端側(例えば、図3、図4A、図4B、図5Aおよび図5Bにおいて右端側)の裏面側における重ね合わせ領域Roには、第2導電型半導体層35の櫛背部35bおよび第2電極層38のバスバー電極部38bの一部または全部が配置される。
 太陽電池セル2の一方端側における重ね合わせ領域Roには、Y方向に配列された複数の貫通孔40が形成されている。貫通孔40には、導電性部材が充填されている。具体的には、貫通孔40には、第1電極層28の材料(例えば、上述した導電性ペースト)が充填されていてもよいし、導電性接着部材6の材料(例えば、上述した導電性接着剤)が充填されていてもよいし、第1電極層28の材料および導電性接着部材6の材料の両方が充填されていてもよい。これにより、一方の太陽電池セル2の第1電極層28は、貫通孔40における導電性部材を介して、他方の太陽電池セル2の第2電極層38と接続される。
 なお、貫通孔40に充填する材料として安価な材料を選択することにより、太陽電池デバイス1および太陽電池モジュール100の低価格化が可能となる。
 貫通孔40の内面には、反射防止層(絶縁層)15の材料を含む絶縁膜16が形成されていてもよい。これにより、貫通孔40の内面におけるリーク電流が低減される。
(太陽電池デバイスの製造方法)
 次に、本実施形態に係る太陽電池デバイスの製造方法について説明する。まず、図3,図4Aおよび図4Bに示すように、複数の太陽電池セル2を作製する。
 半導体基板11の裏面側の一部(主に、第1領域7)に、真性半導体層23、第1導電型半導体層25および透明電極層27を形成し、半導体基板11の裏面側の他の一部(主に、第2領域8)に、真性半導体層33、第2導電型半導体層35および透明電極層37を形成する。また、半導体基板11の受光面側に、真性半導体層13を形成する。
 各層の形成方法としては、CVD法(化学気相堆積法)またはPVD法(物理気相成長法)等が用いられる。
 次に、太陽電池セル2の一方端側における重ね合わせ領域Roに、例えばレーザを用いて、Y方向に配列された複数の貫通孔40を形成する。
 次に、太陽電池セル2の受光面側に反射防止層(絶縁層)15を形成する。これにより、貫通孔40の内面に、反射防止層15の材料を含む絶縁膜16を形成する。
 反射防止層15および絶縁膜16の形成方法としては、CVD法(化学気相堆積法)またはPVD法(物理気相成長法)等が用いられる。
 なお、反射防止層15を形成した後に、貫通孔40を形成してもよい。この場合、貫通孔40の内面に絶縁膜16が形成されない。
 次に、半導体基板11の裏面側の一部(主に、第1領域7)に第1電極層28を形成し、半導体基板11の裏面側の他の一部(主に、第2領域8)に第2電極層38を形成する。これにより、太陽電池セル2の一方端側の裏面側における重ね合わせ領域Roに第1電極層28を形成し、太陽電池セル2の他方端側の裏面側における重ね合わせ領域Roに第2電極層38を形成する。
 第1電極層28および第2電極層38の形成方法としては、例えば導電性ペーストを用いたパターン印刷法、ディスペンサー法または塗布法が用いられる。
 次に、図1,図2,図5Aおよび図5Bに示すように、複数の太陽電池セル2をシングリング接続して太陽電池デバイス1を作製する。隣り合う太陽電池セル2,2のうちの一方の太陽電池セル2の一方端側の受光面側の一部が、他方の太陽電池セル2の他方端側の裏面側の一部の下に導電性接着部材6を介して重なるように、複数の太陽電池セル2を例えばコンベア上に配置する。
 導電性接着部材6の形成方法としては、例えば導電性接着剤を用いたパターン印刷法、ディスペンサー法または塗布法が用いられる。
 次に、複数の太陽電池セル2に圧力を加える。例えば、太陽電池セル2の裏面側をコンベアから吸着することによって、太陽電池セル2に圧力を加える。これにより、第1電極層28の材料(例えば、上述した導電性ペースト)および導電性接着部材6の材料(例えば、上述した導電性接着剤)のうちの少なくともいずれか一方の導電性部材を貫通孔40に充填する。これにより、一方の太陽電池セル2の第1電極層28を、貫通孔40における導電性部材28,6を介して、他方の太陽電池セル2の第2電極層38と接続する。
 その後、太陽電池セル2の裏面側もしくは受光面側から例えばIRランプで加熱することによって、焼成する。これにより、図1,図2,図5Aおよび図5Bに示すように、複数の太陽電池セル2がシングリング接続された太陽電池デバイス1が得られる。
 以上説明したように、本実施形態の太陽電池デバイス1および太陽電池モジュール100によれば、隣り合う太陽電池セル2,2のうちの一方の太陽電池セル2のX方向の一方端側(例えば、図2、図5Aおよび図5Bにおいて左端側)の受光面側の一部が、他方の太陽電池セル2のX方向の他方端側(例えば、図2、図5Aおよび図5Bにおいて右端側)の裏面側の一部の下に重なるように、シングリング方式を用いて複数の太陽電池セル2が電気的に接続される。これにより、太陽電池デバイス1および太陽電池モジュール100における限られた太陽電池セル実装面積に、より多くの太陽電池セル2が実装可能になり、光電変換のための受光面積が増え、太陽電池デバイス1および太陽電池モジュール100の出力が向上する。また、太陽電池セル2間に隙間が生じることがなく、太陽電池デバイス1および太陽電池モジュール100の意匠性が向上する。
 また、本実施形態の太陽電池デバイス1および太陽電池モジュール100によれば、裏面電極型の太陽電池セルを用いるので、電極や配線が視認されず、太陽電池デバイス1および太陽電池モジュール100の意匠性が更に向上する。
 また、本実施形態の太陽電池デバイス1および太陽電池モジュール100によれば、太陽電池セル2の一方端側における重ね合わせ領域Roには貫通孔40が形成されており、貫通孔40には第1電極層28の材料および導電性接着部材6の材料のうちの少なくともいずれか一方(導電性部材)が充填されており、一方の太陽電池セル2の第1電極層28は、貫通孔40における導電性部材28,6を介して、他方の太陽電池セル2の第2電極層38と接続されている。これにより、導電性の接続線等を用いる必要がなく、両面電極型の太陽電池セルをシングリング接続する場合に対する生産性の低下を抑制できる。
 更に、両面電極型の太陽電池セルをシングリング接続するための製造装置を用いることができ、裏面電極型の太陽電池セルをシングリング接続するための特別な設備投資が必要なく、設備コストを大幅に抑制できる。
 ここで、上述した特許文献2の図3Bには、略U字状に折り曲げられた接続線材を用いて、裏面電極型の太陽電池セル同士を接続する技術が開示されている。この技術では、接続線材が熱応力等によって外れる恐れがあり、信頼性、安定性の問題が懸念される。また、新たな設備開発が必要となり、大幅なコスト増加が懸念される。
 これに対して、本実施形態の太陽電池デバイス1および太陽電池モジュール100によれば、導電性の接続線等を用いないので、信頼性、安定性に優れる。また、両面電極型の太陽電池セルをシングリング接続するための製造装置を用いることができるため、設備コストを大幅に抑制できる。
 また、本実施形態の太陽電池デバイス1および太陽電池モジュール100によれば、貫通孔40は重ね合わせ領域Roに形成されるので、視認されず、太陽電池デバイス1および太陽電池モジュール100の意匠性を損なうことがない。
 以上、本発明の実施形態について説明したが、本発明は上述した実施形態に限定されることなく、種々の変更および変形が可能である。例えば、上述した実施形態では、太陽電池モジュール100は、単数の太陽電池デバイス1を備える形態を例示したが、太陽電池モジュール100は、例えばY方向に配列された複数の太陽電池デバイス1を備えてもよい。
 また、上述した実施形態では、図4Aおよび図4Bに示すようにヘテロ接合型の太陽電池セル2を含む太陽電池デバイス1を例示した。しかし、本発明はこれに限定されず、ホモ接合型の太陽電池セル等の種々の太陽電池セルを含む太陽電池デバイスにも適用可能である。
 また、上述した実施形態では、結晶シリコン材料を用いた太陽電池セル2を例示したが、これに限定されない。例えば、太陽電池セルの材料としては、ガリウムヒ素(GaAs)等の種々の材料が用いられてもよい。
 1 太陽電池デバイス(太陽電池ストリング)
 2 太陽電池セル
 3 受光側保護部材
 4 裏側保護部材
 5 封止材
 6 導電性接着部材
 7 第1領域
 7f,8f 歯部
 7b,8b 櫛背部
 8 第2領域
 11 半導体基板11
 13,23,33 真性半導体層
 15 反射防止層(絶縁層)
 16 絶縁膜
 25 第1導電型半導体層
 25f,35f 歯部
 25b,35b 櫛背部
 27,37 透明電極層
 28 第1電極層
 28f,38f フィンガー電極部
 28b,38b バスバー電極部
 35 第2導電型半導体層
 38 第2電極層
 40 貫通孔
 100 太陽電池モジュール

Claims (8)

  1.  電気的に接続された複数の太陽電池セルを備える太陽電池デバイスであって、
     前記複数の太陽電池セルにおける隣り合う太陽電池セルのうちの一方の太陽電池セルの一方端側の一方主面側の一部は、前記隣り合う太陽電池セルのうちの他方の太陽電池セルの前記一方端側と反対の他方端側の前記一方主面側と反対の他方主面側の一部の下に重なっており、
     前記複数の太陽電池セルの各々は、半導体基板と、前記半導体基板の前記他方主面側の一部に形成された第1導電型半導体層および第1電極層と、前記半導体基板の前記他方主面側の他の一部に形成された第2導電型半導体層および第2電極層とを含む裏面電極型の太陽電池セルであり、
     前記隣り合う太陽電池セルの一部同士が重なり合う重ね合わせ領域であって、前記一方の太陽電池セルの前記一方端側の前記他方主面側における前記重ね合わせ領域には前記第1電極層が形成され、前記他方の太陽電池セルの前記他方端側の前記他方主面側における前記重ね合わせ領域には前記第2電極層が形成されており、
     前記太陽電池セルの前記一方端側における前記重ね合わせ領域には、貫通孔が形成されており、
     前記貫通孔には導電性部材が充填されており、
     前記一方の太陽電池セルの前記第1電極層は、前記貫通孔における前記導電性部材を介して、前記他方の太陽電池セルの前記第2電極層と接続されている、
    太陽電池デバイス。
  2.  前記隣り合う太陽電池セルは、前記重ね合わせ領域において、導電性接着部材を介して接着されており、
     前記貫通孔における前記導電性部材は、前記第1電極層の材料および前記導電性接着部材の材料のうちの少なくともいずれか一方を含む、
    請求項1に記載の太陽電池デバイス。
  3.  前記複数の太陽電池セルの各々は、前記半導体基板の前記一方主面側に形成された絶縁層を含み、
     前記貫通孔の内面には、前記絶縁層の材料を含む絶縁膜が形成されている、
    請求項1または2に記載の太陽電池デバイス。
  4.  請求項1~3のいずれか1項に記載の太陽電池デバイスを含む太陽電池モジュール。
  5.  請求項1~3のいずれか1項に記載の太陽電池デバイスの製造方法であって、
     前記複数の太陽電池セルの各々において、前記半導体基板の前記他方主面側の一部に前記第1導電型半導体層を形成し、前記半導体基板の前記他方主面側の他の一部に前記第2導電型半導体層を形成し、
     前記複数の太陽電池セルの各々において、前記太陽電池セルの前記一方端側における前記重ね合わせ領域に前記貫通孔を形成し、
     前記複数の太陽電池セルの各々において、前記半導体基板の前記他方主面側の一部に前記第1電極層を形成し、前記半導体基板の前記他方主面側の他の一部に前記第2電極層を形成することによって、前記一方の太陽電池セルの前記一方端側の前記他方主面側における前記重ね合わせ領域に前記第1電極層を形成し、前記他方の太陽電池セルの前記他方端側の前記他方主面側における前記重ね合わせ領域に前記第2電極層を形成し、
     前記隣り合う太陽電池セルのうちの前記一方の太陽電池セルの前記一方端側の前記一方主面側の一部が、前記隣り合う太陽電池セルのうちの前記他方の太陽電池セルの前記他方端側の前記他方主面側の一部の下に導電性接着部材を介して重なるように、前記複数の太陽電池セルを配置し、
     前記複数の太陽電池セルに圧力を加えて、前記第1電極層の材料および前記導電性接着部材の材料のうちの少なくともいずれか一方の導電性部材を前記貫通孔に充填することにより、前記一方の太陽電池セルの前記第1電極層を、前記貫通孔における前記導電性部材を介して、前記他方の太陽電池セルの前記第2電極層と接続する、
    太陽電池デバイスの製造方法。
  6.  前記貫通孔を形成した後であって、前記第1電極層および前記第2電極層を形成する前に、前記半導体基板の前記一方主面側に絶縁層を形成することにより、前記貫通孔の内面に、前記絶縁層の材料を含む絶縁膜を形成する、請求項5に記載の太陽電池デバイスの製造方法。
  7.  前記貫通孔を形成する際、レーザを用いて前記貫通孔を形成する、請求項5または6に記載の太陽電池デバイスの製造方法。
  8.  前記貫通孔に前記導電性部材を充填する際、前記複数の太陽電池セルを吸着することにより、前記複数の太陽電池セルに圧力を加える、請求項5~7のいずれか1項に記載の太陽電池デバイスの製造方法。
PCT/JP2020/008933 2019-03-11 2020-03-03 太陽電池デバイスおよび太陽電池モジュール、並びに太陽電池デバイスの製造方法 WO2020184301A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021504954A JPWO2020184301A1 (ja) 2019-03-11 2020-03-03 太陽電池デバイスおよび太陽電池モジュール、並びに太陽電池デバイスの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019043845 2019-03-11
JP2019-043845 2019-03-11

Publications (1)

Publication Number Publication Date
WO2020184301A1 true WO2020184301A1 (ja) 2020-09-17

Family

ID=72427973

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/008933 WO2020184301A1 (ja) 2019-03-11 2020-03-03 太陽電池デバイスおよび太陽電池モジュール、並びに太陽電池デバイスの製造方法

Country Status (2)

Country Link
JP (1) JPWO2020184301A1 (ja)
WO (1) WO2020184301A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115000199A (zh) * 2022-08-01 2022-09-02 一道新能源科技(衢州)有限公司 一种p型perc单面电池结构
US11438691B2 (en) 2019-03-21 2022-09-06 Shure Acquisition Holdings, Inc. Auto focus, auto focus within regions, and auto placement of beamformed microphone lobes with inhibition functionality
WO2022186274A1 (ja) * 2021-03-03 2022-09-09 株式会社カネカ 結晶シリコン系太陽電池セル、太陽電池デバイスおよび太陽電池モジュール

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015152020A1 (ja) * 2014-03-31 2015-10-08 株式会社カネカ 太陽電池モジュールおよびその製造方法
JP2017517145A (ja) * 2014-05-27 2017-06-22 サンパワー コーポレイション こけら葺き状太陽電池モジュール
JP2019004155A (ja) * 2012-11-08 2019-01-10 サンパワー コーポレイション 太陽電池列のための高効率構成
WO2019016118A1 (en) * 2017-07-20 2019-01-24 Meyer Burger (Switzerland) Ag SOLID CELL CHAINS IN STABILIZED SHINGLES AND METHODS OF PRODUCING SAME

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2105970A4 (en) * 2006-12-26 2015-08-05 Kyocera Corp SOLAR CELL MODULE
JP2010080578A (ja) * 2008-09-25 2010-04-08 Sharp Corp 光電変換素子およびその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019004155A (ja) * 2012-11-08 2019-01-10 サンパワー コーポレイション 太陽電池列のための高効率構成
WO2015152020A1 (ja) * 2014-03-31 2015-10-08 株式会社カネカ 太陽電池モジュールおよびその製造方法
JP2017517145A (ja) * 2014-05-27 2017-06-22 サンパワー コーポレイション こけら葺き状太陽電池モジュール
WO2019016118A1 (en) * 2017-07-20 2019-01-24 Meyer Burger (Switzerland) Ag SOLID CELL CHAINS IN STABILIZED SHINGLES AND METHODS OF PRODUCING SAME

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11438691B2 (en) 2019-03-21 2022-09-06 Shure Acquisition Holdings, Inc. Auto focus, auto focus within regions, and auto placement of beamformed microphone lobes with inhibition functionality
WO2022186274A1 (ja) * 2021-03-03 2022-09-09 株式会社カネカ 結晶シリコン系太陽電池セル、太陽電池デバイスおよび太陽電池モジュール
CN115000199A (zh) * 2022-08-01 2022-09-02 一道新能源科技(衢州)有限公司 一种p型perc单面电池结构
CN115000199B (zh) * 2022-08-01 2022-10-25 一道新能源科技(衢州)有限公司 一种p型perc单面电池结构

Also Published As

Publication number Publication date
JPWO2020184301A1 (ja) 2021-11-04

Similar Documents

Publication Publication Date Title
WO2020184301A1 (ja) 太陽電池デバイスおよび太陽電池モジュール、並びに太陽電池デバイスの製造方法
CN111615752B (zh) 太阳能电池模块
WO2020121694A1 (ja) 太陽電池デバイスおよび太陽電池モジュール
JP7467352B2 (ja) 太陽電池デバイスおよび太陽電池モジュール
JP7291715B2 (ja) 太陽電池デバイスおよび太陽電池モジュール
US20190123229A1 (en) Solar cell module
JP6925434B2 (ja) 太陽電池モジュール
JP2019102620A (ja) 太陽電池モジュール
WO2021020465A1 (ja) 太陽電池セルの製造方法、太陽電池セル、太陽電池デバイスおよび太陽電池モジュール
JP7270631B2 (ja) 太陽電池モジュール
WO2020059204A1 (ja) 太陽電池セル、太陽電池デバイスおよび太陽電池モジュール
WO2013014972A1 (ja) 光起電力モジュール
CN111727485B (zh) 布线及使用了该布线的太阳能电池单元和太阳能电池模块
WO2021117740A1 (ja) 太陽電池セル、太陽電池デバイスおよび太陽電池モジュール
JP7275090B2 (ja) 太陽電池デバイスおよび太陽電池モジュール
JP7483382B2 (ja) 太陽電池モジュール
WO2023037885A1 (ja) 太陽電池デバイスおよび太陽電池モジュール
JP6528196B2 (ja) 太陽電池モジュール
JP2024066839A (ja) 太陽電池デバイスおよび太陽電池デバイスの製造方法
JP2024059169A (ja) 太陽電池セル、太陽電池デバイス、および、太陽電池デバイスの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20770798

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021504954

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20770798

Country of ref document: EP

Kind code of ref document: A1