JP2017147951A - 細胞培養方法及び培養組織 - Google Patents

細胞培養方法及び培養組織 Download PDF

Info

Publication number
JP2017147951A
JP2017147951A JP2016031777A JP2016031777A JP2017147951A JP 2017147951 A JP2017147951 A JP 2017147951A JP 2016031777 A JP2016031777 A JP 2016031777A JP 2016031777 A JP2016031777 A JP 2016031777A JP 2017147951 A JP2017147951 A JP 2017147951A
Authority
JP
Japan
Prior art keywords
collagen
molded body
cell culture
irradiation
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016031777A
Other languages
English (en)
Other versions
JP6758616B2 (ja
Inventor
健次 泉
Kenji Izumi
健次 泉
寛子 加藤
Hiroko Kato
寛子 加藤
竜 前田
Ryu Maeda
竜 前田
貴宏 河上
Takahiro Kawakami
貴宏 河上
山口 勇
Isamu Yamaguchi
勇 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niigata University NUC
Taki Chemical Co Ltd
Original Assignee
Niigata University NUC
Taki Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Niigata University NUC, Taki Chemical Co Ltd filed Critical Niigata University NUC
Priority to JP2016031777A priority Critical patent/JP6758616B2/ja
Publication of JP2017147951A publication Critical patent/JP2017147951A/ja
Application granted granted Critical
Publication of JP6758616B2 publication Critical patent/JP6758616B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】細胞培養基材を用いた新規な細胞培養方法の提供。【解決手段】この細胞培養方法は、細胞培養基材に細胞を播種する播種工程と、この細胞を培養する培養工程とを含む。細胞培養基材は、表面加工コラーゲン成形体である。表面加工コラーゲン成形体は、未架橋の線維化コラーゲンゲル、線維化コラーゲン膜又は非線維化コラーゲン膜が、水性溶媒の存在下、γ線照射、電子線照射、UV照射又はプラズマ照射により架橋された成形体である。この成形体の表面の少なくとも一部は凹形状及び/又は凸形状を有しており、かつこの成形体の主要構成要素は、損なわれていない(intact)線維化コラーゲン又はコラーゲン分子である。【選択図】図5

Description

本発明は、細胞培養基材を用いた細胞培養方法及び培養組織に関する。
近年、再生医療への関心の高まりから、細胞培養技術を用いて、生体組織と類似した構造及び機能を備えた培養組織を人工的に得る試みがなされている。生体を構成する細胞の多くは接着依存性細胞である。接着依存性細胞を効率的に培養して、生体組織と類似した培養組織を得るためには、足場となる細胞培養基材が不可欠である。
一方、コラーゲンは、生体内のタンパク質の30%を占め、骨格支持及び細胞接着等の機能を有する重要なタンパク質であり、例えば、骨・軟骨、靭帯・腱、角膜実質、皮膚、肝臓、筋肉等の組織は、コラーゲン線維からできている。コラーゲン線維は、3重螺旋構造のコラーゲン分子が略規則的に配向した会合体である。
コラーゲンを、細胞培養基材の材料として適用するために、種々の検討がなされている。例えば、特許文献1には、コラーゲン線維で構成され、三次元の細胞培養が可能な多孔質構造を有し、且つ、架橋処理されたコラーゲン線維架橋多孔体に関する技術が開示されている。
特許文献2には、底面に複数の氷粒子を配置した鋳型にブタI型アテロコラーゲン酸性水溶液を注入し、凍結乾燥により氷粒子を除去した後、グルタルアルデヒドで架橋処理することにより、複数の凹部が表面に設けられた多孔質コラーゲン成形体の製造に関する技術が開示されている。
特開2015−213676号公報 特許第5822266号公報
特許文献1及び2に記載の多孔質コラーゲン成形体では、その表面に存在する凹部形状は別として、成形体そのものが多孔質に形成されている。特許文献2に記載された製造方法は、凍結乾燥によりコラーゲン水溶液中の氷結晶を除去する方法であるため、細胞にとっては相当に大きな孔径の孔を有した多孔質の成形体が形成されると考えられる。したがって、このような多孔質コラーゲン成形体を細胞培養基材として用いた場合、細胞が成形体の孔内部に落ち込むため、成形体の表面にとどまるのが困難となる傾向がある。よって、このような成形体は、特に、細胞培養基材の表面で組織形成する細胞種にとって、好適な材料とは言い難かった。一説には、孔径が数十μm程度あれば、細胞が孔内部に落ち込むと言われている。
以上のように、細胞の種類、細胞培養によって得られる培養組織の種類等によっては、新たな特性を有する細胞培養基材及びこれを用いた細胞培養方法の技術開発が要望されていた。
本発明者らは、上記特性の1つとして、より生体組織に類似した細胞培養基材を用いた細胞培養方法について鋭意検討するなかで、驚くべきことに、非多孔質性であって、その表面に凹形状及び/又は凸形状を有する表面加工コラーゲン成形体を細胞培養基材として用いることにより、このような表面加工されていないコラーゲン成形体を細胞培養基材に用いた場合と比較して、優れた培養結果が得られることを見出し、本発明を完成させるに至った。
本発明は、以下のとおりである。
〔1〕細胞培養基材に細胞を播種する播種工程と、この細胞を培養する培養工程とを含む細胞培養方法であって、前記細胞培養基材が表面加工コラーゲン成形体であり、前記表面加工コラーゲン成形体が、未架橋の線維化コラーゲンゲル、線維化コラーゲン膜又は非線維化コラーゲン膜が、水性溶媒の存在下、γ線照射、電子線照射、UV照射又はプラズマ照射により架橋された成形体であって、この成形体の表面の少なくとも一部が凹形状及び/又は凸形状を有しており、かつこの成形体の主要構成要素が、損なわれていない(intact)線維化コラーゲン又はコラーゲン分子である細胞培養方法。
〔2〕細胞培養基材に細胞を播種する播種工程と、この細胞を培養する培養工程とを含む細胞培養方法であって、前記細胞培養基材が表面加工コラーゲン成形体であり、前記表面加工コラーゲン成形体が、未架橋の線維化コラーゲンゲル、線維化コラーゲン膜又は非線維化コラーゲン膜が、水性溶媒の存在下、少なくとも一部が転写部材と接触した状態で、γ線照射、電子線照射、UV照射又はプラズマ照射により架橋された成形体であって、この成形体の表面の少なくとも一部に前記転写部材の形状が転写又は反映された被転写部を有しており、この被転写部に凹形状及び/又は凸形状を有している細胞培養方法。
〔3〕細胞培養基材に細胞を播種する播種工程と、この細胞を培養する培養工程とを含む細胞培養方法であって、前記細胞培養基材が表面加工コラーゲン成形体であり、前記表面加工コラーゲン成形体が、未架橋の線維化コラーゲンゲル、線維化コラーゲン膜又は非線維化コラーゲン膜が、水性溶媒の存在下、γ線照射、電子線照射、UV照射又はプラズマ照射により架橋された成形体であって、この成形体の表面の少なくとも一部に、凹形状及び/又は凸形状に変形した表面形状を有している細胞培養方法。
〔4〕細胞培養基材と、この細胞培養基材の表面及び/又は内部に形成されている細胞組織とを含んでなる培養組織であって、上記細胞培養基材が、表面加工コラーゲン成形体であり、上記表面加工コラーゲン成形体が、未架橋の線維化コラーゲンゲル、線維化コラーゲン膜又は非線維化コラーゲン膜が、水性溶媒の存在下、γ線照射、電子線照射、UV照射又はプラズマ照射により架橋された成形体であって、この成形体の表面の少なくとも一部が凹形状及び/又は凸形状を有しており、かつこの成形体の主要構成要素が、損なわれていない(intact)線維化コラーゲン又はコラーゲン分子である培養組織。
〔5〕細胞培養基材と、この細胞培養基材の表面及び/又は内部に形成されている細胞組織とを含んでなる培養組織であって、上記細胞培養基材が、表面加工コラーゲン成形体であり、上記表面加工コラーゲン成形体が、未架橋の線維化コラーゲンゲル、線維化コラーゲン膜又は非線維化コラーゲン膜が、水性溶媒の存在下、少なくとも一部が転写部材と接触した状態で、γ線照射、電子線照射、UV照射又はプラズマ照射により架橋された成形体であって、この成形体の表面の少なくとも一部に上記転写部材の形状が転写又は反映された被転写部を有しており、この被転写部に凹形状及び/又は凸形状を有している培養組織。
〔6〕細胞培養基材と、この細胞培養基材の表面及び/又は内部に形成されている細胞組織とを含んでなる培養組織であって、上記細胞培養基材が、表面加工コラーゲン成形体であり、上記表面加工コラーゲン成形体が、未架橋の線維化コラーゲンゲル、線維化コラーゲン膜又は非線維化コラーゲン膜が、水性溶媒の存在下、γ線照射、電子線照射、UV照射又はプラズマ照射により架橋された成形体であって、この成形体の表面の少なくとも一部に、凹形状及び/又は凸形状に変形した表面形状を有している培養組織。
本発明に係る細胞培養方法は、その表面の少なくとも一部に凹形状及び/又は凸形状を有する表面加工コラーゲン成形体を、細胞培養基材として用いる方法である。この成形体の表面は、切削等の加工手段により生じうる損傷を受けていないため、上記凹形状及び/又は凸形状の部分においても、それ以外の部分の表面と同様の平滑性が保たれている。この成形体を細胞培養基材として用いることにより、平滑性の低下に起因する細胞接着性等への影響が抑制されうる。さらに、この表面加工コラーゲン成形体の主要構成要素は、水性溶媒の存在下、γ線照射、電子線照射、UV照射又はプラズマ照射により架橋された架橋コラーゲンであるため、生体への悪影響が懸念される架橋剤等の化学物質を含まない。よって、この成形体は、生体親和性及び生体安全性により優れたものと言える。また、架橋コラーゲンを主要構成要素とするこの成形体は、細胞培養環境、生体内環境等においても分解し難いという利点を有する。この成形体を細胞培養基材とする細胞培養方法によれば、細胞培養基材への細胞接着性及び細胞増殖性の向上が期待できるため、効率的に細胞を培養することができる。また、この成形体は、細胞が成形体表面の凹形状及び/又は凸形状を居住や増殖の場として活用することも可能なものである。
図1Aは、製造例1で用いた転写部材であるナイロンメッシュ表面の走査型電子顕微鏡像であり、図1Bは、製造例1の表面加工コラーゲン成形体に形成された表面形状を示す走査型電子顕微鏡像である。 図2は、製造例2の表面加工コラーゲン成形体に形成された表面形状を示す走査型電子顕微鏡像である。 図3は、実施例1及び2において、12wellプレートに収容した製造例1及び2の細胞培養基材の、Day 0からDay 11までの形態変化を示す写真である。 図4は、実施例1で得られた培養組織の組織像である(倍率は、4A:10倍、4B:20倍)。 図5は、実施例2で得られた培養組織の組織像である(倍率は、5A:10倍、5B:20倍、5C:40倍)。
以下、好ましい実施形態に基づいて本発明が詳細に説明されるが、本発明は、以下の実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能である。
本発明に係る細胞培養方法(以下、「本培養方法」と称する)は、以下に説明する表面加工コラーゲン成形体を細胞培養基材(以下、「本基材」と称する)として用いることを特徴とするものである。
〔本基材〕
本基材である表面加工コラーゲン成形体は、例えば、次の3つの態様で表すことができるものである。なお、いずれの態様においても、本基材は、切削等の加工手段によることなく、その表面の少なくとも一部に、凹形状及び/又は凸形状を有している。そのため、本基材の当該形状を有する部分は、それ以外の部分と同様の平滑性が保たれている。
第1態様は、未架橋の線維化コラーゲンゲル、線維化コラーゲン膜又は非線維化コラーゲン膜が、水性溶媒の存在下、γ線照射、電子線照射、UV照射又はプラズマ照射により架橋された成形体であって、上記成形体の表面の少なくとも一部が凹形状及び/又は凸形状を有し、かつ上記成形体の主要構成要素が、損なわれていない(intact)線維化コラーゲン又はコラーゲン分子である表面加工コラーゲン成形体である。
第2態様は、未架橋の線維化コラーゲンゲル、線維化コラーゲン膜又は非線維化コラーゲン膜が、水性溶媒の存在下、少なくとも一部が転写部材と接触した状態で、γ線照射、電子線照射、UV照射又はプラズマ照射により架橋された成形体であって、上記成形体の表面の少なくとも一部に上記転写部材の形状が転写又は反映された被転写部を有しており、上記被転写部に凹形状及び/又は凸形状を有している表面加工コラーゲン成形体である。
第3態様は、未架橋の線維化コラーゲンゲル、線維化コラーゲン膜又は非線維化コラーゲン膜が、水性溶媒の存在下、γ線照射、電子線照射、UV照射又はプラズマ照射により架橋された成形体であって、上記成形体の表面の少なくとも一部が凹形状及び/又は凸形状に変形した表面形状を有する表面加工コラーゲン成形体である。
第1〜3態様に係る本基材の好適な製造方法として、後掲の第1製法と第2製法を挙げることができる。このうち、第3態様については、特に好適な製法として、第1製法を挙げることができる。以下、本願明細書において、本基材の表面の凹形状及び/又は凸形状を「パターン形状」と称する場合がある。また、本基材の表面とは、外表面を意味する。
以下、第1〜3態様に共通な事項である表面形状と架橋処理について説明した後、個々の態様について説明する。
(表面形状)
本発明の目的が達成される限り、本基材の表面全体がパターン形状を有していてもよく、表面の一部がパターン形状を有していてもよい。例えば、本基材の外形が平膜状の場合、その上面、下面及び側面のうちから選択されるいずれか又は全ての表面がパターン形状を有していてもよい。また、その上面、下面及び側面から選択されたいずれかの面において、その面全体がパターン形状を有していてもよく、その面の一部の領域がパターン形状を有していてもよい。以下、パターン形状が形成された領域を「パターン領域」と称する場合がある。一つの面の異なる領域に、複数のパターン領域が形成されてもよい。
本基材の表面全体の面積に対して、全てのパターン領域が占める面積の比率は、本基材の外形や使用目的により適宜選択することが好ましい。
本基材におけるパターン形状の個数は、1個であっても複数個であってもよい。複数個のパターン形状を有する場合、それらが規則的なパターンで配列されたものでもよく、不規則なパターンで配列されたものでもよい。細胞培養における培養効率の観点から、複数個のパターン形状が規則的なパターンで配列されることがより好ましい。
本基材において、パターン形状の種類や大きさは、用途に応じて適宜選択されうる。例えば、パターン形状が凹形状である場合、当該形状は窪みのある形状であれば特に限定されることはなく、平面視形状として、正方形、長方形といった多角形、円、楕円等が例示でき、鉛直方向での断面視形状として、半円、長方形、三角形、台形等が例示できる。また、本基材の一面を横断する凹形状であっても、また、無数の窪み形状であっても構わない。パターン形状が凸形状である場合、当該形状は突起のある形状であれば特に限定されることはなく、平面視形状については上記凹形状と同様の形状が例示でき、断面視形状については上記凹形状と上下向きを反転させた形状が例示できる。本基材において、一の面に凹形状と凸形状が併存してもよく、またそれぞれの形状が2種以上で併存してもよい。また、平面視したときの1個のパターン形状の大きさについても特に限定されることはなく、用途に応じて適宜設定することが好ましい。
凹形状の深さ及び凸形状の高さは、目的とする用途に応じて適宜設定されうる。例えば、培養細胞に応じて適正な深さ及び高さが選択されるが、敢えて数値範囲で示すと、非パターン領域の面を基準面として、この基準面と凹形状の最深部との差を、10〜1000μmの範囲に設定することが好ましく、この基準面と凸形状の最高部との差を、10〜1000μmの範囲に設定することが好ましい。尚、凹形状の深さ及び凸形状の高さは、例えば、本基材断面の走査型電子顕微鏡像により求められる。
前述した通り、本発明における凹形状及び凸形状は、あくまでも、非多孔質である本成形体の表面形状である。従って、凹形状の深さ及び凸形状の高さは、非多孔質である本成形体の非パターン領域を基準面として計測されるものであり、例えば、特許文献1及び2に記載された多孔質体の平均孔径とは、本質的に異なる技術事項である。
(架橋)
本基材は、未架橋の線維化コラーゲンゲル、線維化コラーゲン膜又は非線維化コラーゲン膜が、水性溶媒の存在下で、γ線照射、電子線照射、UV照射又はプラズマ照射により架橋されたものである。以下、未架橋の線維化コラーゲンゲル、線維化コラーゲン膜及び非線維化コラーゲン膜を、「コラーゲン基材」とも称する。また、γ線照射、電子線照射、UV照射又はプラズマ照射による架橋を、「照射架橋」とも称する。
ここで、本基材を特定するにあたって、架橋処理の規定を設けた理由を説明する。コラーゲンの架橋法として、物理的架橋法と化学的架橋法が知られている。物理的架橋法の代表例として、照射架橋と熱脱水架橋があり、化学的架橋法の代表例として、水溶性化学架橋剤又は気化能を有する化学架橋剤による架橋がある。以下、架橋法を問わず、架橋されたコラーゲンを「架橋体」と称する。
まず、物理的架橋法について、照射架橋によって得られた架橋体と、熱脱水架橋によって得られた架橋体とは、架橋体同士を見比べても外観的な違いを見出すことは極めて困難であり、また、分析によってもいずれの架橋法によって架橋されたものかを区別することは極めて困難である。
次に、照射架橋によって得られた架橋体と、化学的架橋法によって得られた架橋体とは、架橋体同士を見比べても外観的な違いを見出すことは極めて困難である。化学的架橋法のうち、化学的架橋剤として、例えば、グルタルアルデヒドやポリエポキシ化合物(エチレングリコールジグリシジルエーテル、グリセロールポリグリシジルエーテル等)を用いた場合は、化学的架橋剤がコラーゲンと結合して架橋反応が起きるために、化学的架橋剤を検出できれば、両者の判別は可能である。しかし、化学的架橋剤として1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド・塩酸塩等のコラーゲンと結合しないタイプのものを用いたときには、架橋体を分析しても化学的架橋剤の痕跡を見出すことはほぼ不可能である。
また、架橋されていないコラーゲン(「未架橋体」と称する)と架橋体との区別も極めて困難である。例えば、分析によって未架橋体と架橋体の違いを見出すことは、特に照射架橋体においては架橋点の多寡の違いしかないため、極めて困難である。未架橋体は架橋体よりも一般に強度的に弱く、水中保存安定性も低い傾向があるが、それら物理的傾向の違いが架橋処理の有無に起因したものであることを立証することも極めて困難である。
以上の区別の困難性から、第1〜3態様において本基材が照射架橋によって架橋されたものであることを発明特定事項としたのである。
ところで、水性溶媒の存在下で照射架橋された架橋体の一特性は、例えば、特許第5633880号公報に記載されているように、細胞培養環境や生体内環境において分解し難いというものである。例えば、この架橋体をダルベッコリン酸緩衝生理食塩水(D-PBS)中に37℃で5日間浸漬した場合の溶解率が10質量%以下であるとき、この架橋体が上記特性を有するといえる。尚、溶解率とは、D-PBS中への架橋体からの溶出成分の質量の、浸漬前の架橋体の質量に対する割合(%)である。溶解率は、ゲル浸透クロマトグラフィー(GPS)によって、D-PBS中の溶出成分の分子量分布を測定する方法、又はD-PBS中の溶出成分の質量を測定する方法によって評価できる。本基材の溶解率も、10質量%以下である。
(その他構成要素)
本発明の目的が阻害されない限り、使用目的に応じて、本基材に、その他構成要素として各種添加剤が配合されてもよい。その他構成要素の例として、フィブリン、トロンビン、ゼラチン、ヒアルロン酸、コンドロイチン硫酸、アルギン酸等が挙げられる。
(コラーゲン)
本基材において、用いられるコラーゲンの種類は特に限定されないが、生体内での存在量が多いI型コラーゲンが好ましく、抗原決定基であるテロペプタイドが除去されたアテロコラーゲンがより好ましい。また、通常、哺乳類、魚介類、鳥類、爬虫類等の生物原料由来のコラーゲンが使用されうるが、ヒトと共通のウイルスを有しない魚介類由来のコラーゲンが好適に用いられる。
以下、第1〜3態様における各特徴的部分を説明する。なお、コラーゲン基材、水性溶媒等は、後掲の製造方法において説明する。
(第1態様)
第1態様の特徴的部分は、本基材の主要構成要素が、損なわれていない(intact)線維化コラーゲン又はコラーゲン分子であることにある。即ち、表面の少なくとも一部にパターン形状を有する本基材が、切削等の加工手段による損傷を受けていないコラーゲンを主要構成要素として構成されていることを意味する。
(第2態様)
第2態様の特徴的部分は、転写部材と接触した状態で架橋されることにより、転写部材の形状が転写又は反映されたパターン形状を有する被転写部が、本基材の表面の少なくとも一部に存在することである。当該パターン形状としては、特に限定されるものではなく、例えば、転写部材の形状が完全に反転された形状だけでなく、その相似形状であってもよい。また、コラーゲン基材の表面が転写部材によって変形された形状であってもよい。変形の一例として、コラーゲン基材として弾力性を有したものを用いたときに、直方体状の突起を有した転写部材によって形成された略ドーム型の窪み形状(凹形状)が挙げられる。
(第3態様)
第3態様の特徴的部分は、本基材の表面の少なくとも一部が、所定のパターン形状に変形していることである。つまり、このパターン形状は、本基材の表面の「変形」によるものであり、切削等の加工手段によるものではない。本態様には、第2態様で挙げた「変形の一例」も含まれる。
〔本基材の製造方法〕
本基材の製造方法として、次の第1製法と第2製法を例示することができる。なお、本発明の目的が達成される限り、第1製法及び第2製法において、更に他の工程を含んでもよい。
第1製法は、未架橋の線維化コラーゲンゲル、線維化コラーゲン膜及び非線維化コラーゲン膜から選択されるコラーゲン基材の表面の少なくとも一部を転写部材で押圧した状態で、水性溶媒の存在下、γ線照射、電子線照射、UV照射又はプラズマ照射によって架橋処理する工程を含む、表面が凹形状及び/又は凸形状に変形加工された表面加工コラーゲン成形体の製造方法である。
第2製法は、転写部材と接触した状態で、可溶化コラーゲン溶液中のコラーゲンを線維化させて、コラーゲン基材である線維化コラーゲンゲルを調製する第一工程と、上記線維化コラーゲンゲルを水性溶媒の存在下、γ線照射、電子線照射、UV照射又はプラズマ照射によって架橋処理する第二工程とを含む、表面が凹形状及び/又は凸形状を有する表面加工コラーゲン成形体の製造方法である。
以下、第1製法及び第2製法に共通な事項について説明した後、個々の製法について説明する。
(コラーゲン基材)
コラーゲン基材としては未架橋のものを用いる。本発明の目的が阻害されない限り、コラーゲン基材が、少量の架橋コラーゲンを含んでもよい。以下、「未架橋の」と特に限定しなくても、コラーゲン基材である線維化コラーゲンゲル、線維化コラーゲン膜及び非線維化コラーゲン膜は、架橋されていないものを指すこととする。
線維化コラーゲンゲルは、可溶化コラーゲン溶液に適当な緩衝液を添加し、可溶化コラーゲン溶液のイオン強度及びpHを適正な範囲に調整して、コラーゲンの線維化を引き起こすことにより得られるものであり、水性溶媒等を含んでいるため、所謂ハイドロゲルと呼ばれるものである。ゲル化の程度により、粘稠性を有した液状物から一定の形状を有するものまでさまざまな性状の線維化コラーゲンゲルが得られるが、製造方法に応じて適宜使い分けることが好ましい。例えば、第1製法の場合、一定の形状を有するゲルを用いることが好ましい。また、第2製法の場合、第一工程において、目的に応じた好適なゲル化度の線維化コラーゲンゲルを調製して用いればよい。線維化コラーゲンゲルの全体的な外観形状については、特に限定されることはなく、例えば、膜状、立方体状、円柱状等の形状が挙げられる。
線維化コラーゲン膜は、線維化コラーゲンゲルから作製された膜状のものである。好適な一形態として、例えば、特許第5633880号公報、再公表特許第2012−70679号公報等に記載の架橋前の線維化コラーゲン膜が挙げられる。具体的には、可溶化コラーゲン溶液中のコラーゲンを線維化させて線維化コラーゲンゲルを調製し、これを脱塩した後乾燥させる。脱塩においては、エタノール/水の容量比を50/50〜100/0まで段階的に変化させた混合液に順次浸漬させることが好ましい。また、乾燥においては、膜の上下面をポリスチレン板で覆い、側面のみから脱媒させることが好ましい。
非線維化コラーゲン膜は、可溶化コラーゲン溶液中のコラーゲンを線維化させることなく膜状に作製されたものである。好適な一形態として、例えば、特許第5633880号公報、再公表特許第2012−70680号公報等に記載の架橋前の非線維化コラーゲン膜が挙げられる。具体的には、成形器に入れたコラーゲン酸性溶液を乾燥させることによって得られる。
特に、コラーゲン基材として、線維化コラーゲン膜又は非線維化コラーゲン膜を用いた場合は、細胞培養環境や生体内環境において収縮又は膨張し難い架橋体を得ることも可能である。一方、線維化コラーゲンゲルをコラーゲン基材として得られる架橋体には、線維化コラーゲン膜又は非線維化コラーゲン膜を用いて得られる架橋体よりも、収縮しやすい特性を有するものがある。しかし、細胞培養の目的や細胞の種類によっては、収縮しやすい架橋体を本基材とすることが有利な場合がある。例えば、線維化コラーゲンゲルから得られる架橋体を本基材として、角化細胞を培養した場合に、本基材が収縮して、皮膚の表皮基底膜と類似した構造に変化する現象が観察されている。これにより、角化細胞の成長、増殖等に好適な環境が得られると考えられる。
(転写部材)
転写部材は、本基材にパターン形状を形成することができる部材である。当該機能を有している限り、転写部材の種類、形状等は特に限定されることはなく、使用目的に応じて適切な転写部材を選択することが望ましい。ここで、転写部材のうち、本基材のパターン形状の形成に寄与する部分を転写部と称する。
転写部材は、例えば、転写部材全体が非通水性のものであってもよいし、転写部材全体が通水性を有するものであってもよい。後者の一例は、多孔質部材である。多孔質の孔構成は規則的であっても不規則であってもよい。また、転写部以外は非通水性であり、転写部のみが通水性を有する転写部材であってもよい。
転写部材の形状は、網、織布、不織布等の凹凸を有した平面形状部材であってもよく、パンチングメタルのような多孔板であってもよい。さらに、容器型であって、その内側の側面又は底面にパターン形状を有するものであってもよい。また、印判のように特定の部分に転写部を有したものであってもよい。転写部材の製造方法は特に限定されず、射出成形、押出成形、加圧成形等の既知の成形方法や、既存の成形品の表面加工等の製造方法を例示できる。
転写部材の材質は、コラーゲンとの相性や架橋方法を勘案して選択すればよい。例えば、コラーゲンが付着し難い材質や照射架橋に対する耐久性の高い材質を選択することも好ましい態様である。材質の具体例として、熱可塑性樹脂、例えば、アクリル樹脂、ポリウレタン、ポリエチレン、ポリプロピレン、ABS樹脂、ポリカーボネート、ポリエチレンテレフタレート、ポリアミド、スチロール樹脂等が挙げられ、また、熱硬化性樹脂、例えば、シリコーン樹脂、ウレタン樹脂、フェノール樹脂、エポキシ樹脂等が挙げられる。また、無機材料、例えば、金属、ガラス等を材質として選択することも可能である。これらのうち、ウレタン樹脂、シリコーン樹脂等がより好ましく、特に好ましくはウレタン樹脂である。
(水性溶媒)
水性溶媒は、例えば、水、緩衝液、酸性溶液等が挙げられ、これらに有機溶媒を添加した混合溶媒でもよい。コラーゲン基材の種類と照射架橋の方法に応じて適宜使い分けることが好ましい。このような使い分けの具体例について、以下に説明する。
線維化コラーゲンゲル又は線維化コラーゲン膜のように線維化コラーゲンを主要構成要素とする場合は、可溶化コラーゲン溶液から線維化コラーゲンを得るために用いた緩衝液と同様の緩衝液を水性溶媒として選択することが好適な一形態である。好ましくは、pH3.0〜10.0の範囲の緩衝液であり、より好ましくは、pH6.0〜8.0の範囲の中性塩水溶液又はpH8.0〜10.0の範囲のアルカリ性塩水溶液である。更に好ましくは、線維化コラーゲンを溶解しにくいpHに調整された中性塩水溶液又はアルカリ性塩水溶液である。しかし、線維化コラーゲンを比較的溶解し易い水性溶媒であっても、この水性溶媒への浸漬及び架橋処理を短時間でおこなう場合には使用可能である。線維化コラーゲンゲル又は線維化コラーゲン膜への適用に好適な水性溶媒として、リン酸緩衝液、トリス緩衝液、HEPES緩衝液、酢酸緩衝液、炭酸緩衝液、クエン酸緩衝液、リン酸緩衝生理食塩水(PBS)、ダルベッコリン酸緩衝生理食塩水(D-PBS)、トリス緩衝生理食塩水、HEPES緩衝生理食塩水等を例示できる。
次に、非線維化コラーゲン膜の場合は、コラーゲンの線維化を引き起こさない水性溶媒を用いることが望ましい。例えば、酵素で可溶化したコラーゲン溶液又は希酸で抽出したコラーゲン溶液から得られた非線維化コラーゲン膜の場合、水性溶媒としてpH2.0〜6.0の酸性溶液を用いることが好ましく、より好ましくはpH3.0〜5.0のものである。酸性溶液としては、例えば、二酸化炭素が溶解した水溶液が挙げられ、具体的には、酸性水、酸性緩衝液、有機溶媒添加酸性水性溶媒等を例示できる。前記酸性水、酸性緩衝液及び有機溶媒添加酸性水性溶媒は、水、緩衝液若しくは有機溶媒添加水性溶媒に二酸化炭素をバブリングする方法、水、緩衝液若しくは有機溶媒添加水性溶媒にドライアイスを投入する方法等によって作製することができる。二酸化炭素の溶解量は、特に限定されないが、pHを上記範囲とする溶解量に設定することが好ましい。また、二酸化炭素を含まない酸性緩衝液として、例えば、酢酸緩衝溶液、クエン酸緩衝溶液、塩酸等を使用することも可能である。
(架橋処理方法)
架橋処理方法は、照射架橋法である。γ線照射、電子線照射、UV照射及びプラズマ照射のうち2種以上を組み合わせてもよい。好適な照射架橋法は、透過力が高く、均一に架橋させることができるγ線照射による架橋法である。特に、γ線照射による架橋処理では、照射線量を適宜設定することによって、高強度の表面加工コラーゲン成形体を得ることもできる。γ線照射では、線量率が固定の線源を用い、照射時間等の条件を適宜設定することにより、所定の照射線量を簡便に得ることができる。例えば、コバルト60線源を用いる場合、照射線量5〜75kGyで架橋処理を行うことができる。照射線量として、好ましくは5〜50kGyであり、より好ましくは10〜50kGyであり、さらに好ましくは15〜30kGyである。照射時間は、コラーゲン基材の量や大きさに応じて架橋反応が十分に進行するように設定することが好ましい。さらに、照射条件を適宜設定すれば架橋処理と同時に滅菌処理を行うことができる。そのため、架橋処理中及び架橋処理後の密封状態を保つようにすることで、滅菌済み製品として、そのまま市場に流通させることも可能である。
(架橋処理と水性溶媒)
第1製法及び第2製法において、作用機序については定かではないが、水性溶媒の存在下で照射架橋をおこなうことによって、照射(γ線等)により発生した水のラジカルがコラーゲンの未架橋部分に作用し、これによって架橋反応を開始又は進行させると推測される。これにより、細胞培養環境や生体内環境で使用された場合にも、分解し難いという特性を付与することができると考えられる。特に好適な一形態は、照射架橋処理中に、転写部材と接触している部分のコラーゲン基材には水性溶媒が流通又は浸潤しており、転写部材と接触していない部分のコラーゲン基材には水性溶媒が流通している状態とすることである。即ち、転写部材と接触していない部分は当然のことながら、たとえ転写部材と接触している部分のコラーゲン基材であっても、水性溶媒の流動性が少なからず確保されている状態とする。これによって、水性溶媒の流動とともに、新たに発生した水のラジカルが順次コラーゲンの未架橋部分に作用して架橋反応を進行させてより強い架橋とすることも可能になると考えられる。尚、上記水性溶媒の流通又は浸潤においては、たとえ撹拌等による外力が作用しなくても、水分子のレベルでコラーゲン基材の内部から外部へ、またその逆方向への動きが確保されている状態であればよいと考えられる。
第1製法及び第2製法において、使用する水性溶媒の量は、特に限定されず、コラーゲン基材の外形や大きさに応じて調整される。例えば、少なくともコラーゲン基材の表面全体が水性溶媒で覆われる状態であり、好適には、コラーゲン基材が水性溶媒に浸漬した状態である。また、コラーゲン基材が水性溶媒に完全に浸漬していない状態、例えば、コラーゲン基材の一部が水性溶媒に浸漬していない場合であっても、当該部分における浸潤性が確保できていれば、コラーゲン基材が水性溶媒に浸漬した状態と言える。本願明細書では、以上例示したようなコラーゲン基材に対する水性溶媒の状態を含めて、「水性溶媒の存在下」と称するものである。水性溶媒の量として、例えば、コラーゲン基材の容量に対して、2〜100倍の範囲が好ましく、5〜100倍の範囲がより好ましく、10〜50倍の範囲が更に好ましい。
(第1製法)
第1製法では、水性溶媒の存在下、コラーゲン基材の表面の少なくとも一部を転写部材で押圧した状態で照射架橋する。転写部材による押圧の程度は特に限定されないが、コラーゲン基材の表面を所定の形状に加工できる程度の押圧力とすることが好ましい。好適な一形態は、押圧部分だけが変形し、それ以外の部分は大きく変形しない程度の圧力とすることである。
第1製法の別の好適な一形態は、押圧側と反対側にコラーゲン基材を支える支持部材を用いることである。このとき、例えば、非通水性の転写部材を用いる場合には、通水性を有する支持部材を用いて、コラーゲン基材と転写部材との接触部分に、水性溶媒が僅かでも浸潤できるような全体設計とすることが好ましい。さらに別の好適な一形態は、膜状のコラーゲン基材を用いて、この膜の両面を転写部材で押圧するものである。このときは、少なくとも一方に、通水性を有する転写部材を用いることが好ましく、コラーゲン基材の両面を押圧する転写部材を、適当な治具を用いて、押圧状態が保持されるように固定することが好ましい。
また、さらに別の好適な一形態は、所定の弾力性を有するコラーゲン基材を用いるものである。この場合、非通水性の転写部材を用いたとしても、転写部材と、転写部材に押圧されたコラーゲン基材との間にたわみが生じ易いために、水性溶媒が流通できる隙間の確保が容易となることがある。
(第2製法)
第2製法は、転写部材と接触した状態で、可溶化コラーゲン溶液中のコラーゲンを線維化させて、コラーゲン基材である線維化コラーゲンゲルを調製する第一工程と、転写部材と接触した状態の線維化コラーゲンゲルを水性溶媒の存在下で照射架橋する第二工程とを含むものである。
第一工程では、容器に入れた可溶化コラーゲン溶液又は線維化が進行中の可溶化コラーゲン溶液の上面に転写部材を載置することにより、転写部材と可溶化コラーゲン溶液とを接触させてもよいし、転写部材を予め底面に敷設した容器に可溶化コラーゲン溶液を投入することにより、接触させてもよい。転写部材を載置する場合は、可溶化コラーゲン溶液中に転写部材が沈み込まないようにすることが好ましい。可溶化コラーゲン溶液中への転写部材の沈降を避ける方法として、例えば、軽量な転写部材を用いる方法、あるいは、可溶化コラーゲン溶液を容器上端まで充填し転写部材を容器に橋渡しに架ける方法等が挙げられる。また、容器の底面又は側面に転写部を有するものを転写部材として用い、この容器中で可溶化コラーゲン溶液を線維化させてもよい。
第二工程では、転写部材と接触した部分の線維化コラーゲンゲルに水性溶媒が流通又は浸潤するような全体設計とすることが好ましい。架橋処理は、線維化コラーゲンゲルを容器から取り出して実施してもよいし、容器に入れたままで実施してもよい。後者においては、架橋処理中に、線維化コラーゲンゲルが容器内で位置を変えないように、通水性を有する部材を用いて線維化コラーゲンゲルを固定してもよい。
(乾燥工程)
第1製法及び第2製法の各最終工程に引き続き、架橋処理物を脱溶媒することにより乾燥させる乾燥工程を更に含んでもよい。乾燥の程度は、用途に応じて適宜設定すればよい。乾燥方法は、公知の方法を用いればよく、特に限定されることはない。本基材の主要構成要素が非線維化コラーゲンである場合、コラーゲンの線維化が生じない乾燥方法及び乾燥条件とすることが好ましい。
(その他構成要素の配合)
前述したその他構成要素を本基材に配合する場合は、その他構成要素の種類、目的とする用途等に応じて、その他構成要素の配合タイミングを適切に選択することが好ましい。配合のタイミングとして、例えば、架橋処理前、架橋処理後等が挙げられる。
〔細胞培養方法〕
本発明は、以上説明した本基材を、細胞培養基材として用いることを特徴とする細胞培養方法である。具体的には、細胞を播種する播種工程と、この細胞を培養する培養工程とを含む。本発明の目的が阻害されない限り、本培養方法が、更に他の工程を含んでもよい。
(播種工程)
播種工程では、本基材に対して、培養する細胞が播種される。一般には、培養容器に本基材を収容した状態で播種する。細胞を播種する方法は特に限定されず、既知の手法が用いられうる。例えば、目的とする細胞を緩衝液又は液状の培地に懸濁して、所定濃度の細胞懸濁液を作製し、この細胞懸濁液を滴下することにより、播種工程が実施されてもよい。本基材として、例えば、膜状のものを用いるときは、好適にはパターン形状を有する面に細胞を播種する。培養容器に収納する本基材の数は特に限定されず、目的に応じて複数の本基材を用いることも可能であり、その場合には、外形、大きさ、パターン形状等が異なる複数の本基材を一つの培養容器に収容してもよい。培養容器の種類及び大きさは特に限定されず、通常、細胞培養用として使用されるシャーレ、ディッシュ、マルチカルチャープレート、フラスコ等既知の培養容器が適宜選択されて用いられる。また、培養容器の材質は、ガラスであってもよく、ポリスチレン等の樹脂であってもよい。
(培養工程)
培養工程では、本基材に播種した細胞を所定の培養条件下で培養する。培養工程の一例では、先ず、細胞が播種された本基材を収容する培養容器に、培地が添加される。培地の種類は特に限定されないが、播種工程において、細胞懸濁液の作製に使用した培地と同じ種類の培地が好ましい。必要に応じて、各種成長因子、血清、抗生物質等を含む培地が用いられてもよい。次に、培地が添加された培養容器が、細胞の種類や培養の目的等に応じて選択された所定の培養条件下に置かれることにより、本基材に播種された細胞が培養される。一般には、温度37℃、湿度90%以上、CO2濃度5容積%に調整されたインキュベーターが利用される。
また、別の細胞培養方法の一例は、本基材の乾燥体を細胞培養基材として用いるものであり、初めに、本基材を細胞懸濁液中に浸漬した後、細胞懸濁液を含有した状態で本基材を培養容器に収容して、これを所定の培養条件下に置くことにより培養をおこなう方法である。当該細胞培養方法も、細胞を播種する播種工程と、この細胞を培養する培養工程とを含む本発明の範囲に含まれる。当該細胞培養方法では、本基材の外表面及び内部に効率よく細胞を付着させることも可能である。
本培養方法の対象となる細胞の種類として、例えば、角化細胞(keratinocyte)、上皮細胞(epithelial cell)、内皮細胞(endothelial cell)、線維芽細胞(fibroblast)、神経細胞(nerve cell)、間葉系幹細胞(mesenchymal stem cell)、骨細胞(osteocyte)、軟骨細胞(chondrocyte)等が挙げられ、これらの細胞の由来として、ヒト、サル、ブタ、イヌ、ラット、マウス等が例示されるが、これらに限定されるものではない。好ましくは、本基材のパターン形状を好んで接着及び増殖する細胞が選択される。この観点から、より好ましい細胞として、例えば、角化細胞、上皮細胞、神経細胞等が挙げられる。本培養方法の播種工程において、2種以上の細胞を本基材に播種することも可能である。
本培養方法において、本基材の表面及び/又は内部で、培養細胞が増殖及び分化することにより、細胞組織が形成されうる。本基材が備えるパターン形状は、とりわけ細胞の接着及び増殖に有効に作用するものであり、本基材を用いることによって、生体組織と類似した構造及び機能を有する細胞組織を構築することも可能である。
(培養組織)
本発明は、本基材と、本基材の表面及び/又は内部に形成されている細胞組織とを含んでなる培養組織をも対象とするものである。本発明に係る培養組織(以下、「本培養組織」と称する)は、少なくとも、本基材を製造する製造工程、本基材に細胞を播種する播種工程及びこの細胞を培養する培養工程を含む製造方法により作製される。各工程の詳細については前述した通りである。
本培養組織において、細胞組織を構成する細胞の種類は特に限定されず、目的とする用途等に応じて適宜選択される。細胞組織が、種類の異なる複数の細胞を含んで構成されたものでもよい。また、本培養組織が、それぞれ異なる種類の細胞からなる複数の細胞組織を含んでもよい。さらには、種類の異なる複数の培養組織を組み合わせたものも、本発明の範囲に含まれる。
尚、本発明は、前述した細胞培養方法によって得られた培養組織を対象とするものであるが、この培養組織は、細胞の種類、培養期間等の条件は勿論のこと、本基材の種類によっても得られる培養組織の形状、性状等が異なるものとなるため、その特徴を物の構造又は特性により直接特定することは、分析・解析手段を駆使しても不可能であることは明白である。したがって、「不可能・非実際的事情」が存在することは容易に理解できるところである。
以下に、本発明を実施例によりさらに詳細に説明するが、本発明はこれらに制限されるものではない。尚、実施例において%は、特に断らない限り全て質量%を示す。
〔製造例1〕
(可溶化コラーゲン溶液の調製)
ティラピアの鱗から製造された多木化学(株)製「セルキャンパス FD-08G」(凍結乾燥品)をpH3のHCl溶液に溶解した後、コラーゲン濃度1.1%、pH3に調整して、無色透明の可溶化コラーゲン溶液を得た。
(線維化コラーゲン成形体の作製)
可溶化コラーゲン溶液の9容量部と、10倍濃度のダルベッコリン酸緩衝生理食塩水(D-PBS)の1容量部とを混合し、この混合液0.79mlをシリコーン製成形器(直径20mm、高さ2.5mm)に注入した。水分の蒸発を防ぐために、成形器の上面をスライドグラスで覆い、25℃で12時間保持して線維化コラーゲンゲルを得た。当該線維化コラーゲンゲルを、エタノール/水混合液(容量比50/50)に浸漬した。続いて、容量比70/30、90/10、100/0のエタノール/水混合液に順次浸漬して、この線維化コラーゲンゲルを脱塩した。その後、成形器から取り出した線維化コラーゲンゲルの上下面をポリスチレン板で覆い、側面のみから脱溶媒することにより乾燥させて膜状の線維化コラーゲン成形体(以下、「線維化コラーゲン膜」と称する)を得た。
(表面加工コラーゲン成形体の製造)
製造例1では、前述の線維化コラーゲン膜をコラーゲン基材とし、ナイロンメッシュ(目開き:300μm、繊維径:100〜150μm)を転写部材として使用し、ポリエチレンシートを支持部材として使用した。1枚の線維化コラーゲン膜の上面及び下面を、上記各1枚のナイロンメッシュ及びポリエチレンシートで挟んで押圧し、クリップで固定して押圧状態を保持した。その後、D-PBS中に投入して、25kGyのγ線を照射することにより、製造例1の表面加工コラーゲン成形体を得た。得られた表面加工コラーゲン成形体の主要構成要素は、架橋された線維化コラーゲンである。
(表面観察)
製造例1の表面加工コラーゲン成形体のナイロンメッシュと接していた表面を、走査型電子顕微鏡(日本電子(株)製「JSM-6010LA」)で観察した。その結果、この表面にナイロンメッシュの表面形状が転写又は反映された、一定のパターン形状が形成されていることを確認した(図1B、倍率50倍)。また、この成形体そのものが多孔質構造を有するものでないことを確認した。尚、図1Aは、転写部材として用いたナイロンメッシュをカーボンペースト上に載置して撮影した走査型電子顕微鏡像(倍率50倍)である。
(溶解率)
製造例1の表面加工コラーゲン成形体を、6wellプレートに配し、D-PBS 5ml中に37℃で5日間浸漬した。5日後、上澄みのみをサンプリングし、80℃で1日間乾燥した後、溶解重量を測定し、溶解率を求めた。その結果、溶解率は3%であった。
〔製造例2〕
製造例1と同様の方法で調製した可溶化コラーゲン溶液の9容量部と、10倍濃度のD-PBSの1容量部とを混合し、この混合液0.79mlをシリコーン製成形器(直径20mm、高さ2.5mm)に注入した。
次に、ナイロンメッシュ(目開き:300μm、繊維径:100〜150μm)を転写部材として、可溶化コラーゲン溶液の上面に載置した。さらに、水分の蒸発を防ぐために、成形器の上面をスライドグラスで覆い、25℃で12時間保持して、ナイロンメッシュが載置された線維化コラーゲンゲルを得た。
得られた線維化コラーゲンゲルをシリコーン製成形器に入れたまま、ナイロンメッシュを載置した状態で、D-PBS中に投入して25kGyのγ線を照射した。γ線の照射終了後に載置されたナイロンメッシュを除去して、成形器から取り出すことにより、製造例2の表面加工コラーゲン成形体を得た。この表面加工コラーゲン成形体は、架橋された線維化コラーゲンが水性溶媒で膨潤したハイドロゲルである。
製造例2の表面加工コラーゲン成形体の、ナイロンメッシュを載置していた表面の走査型電子顕微鏡像(図2、倍率50倍)により、この表面にナイロンメッシュの表面形状が転写又は反映された、一定のパターン形状が形成されていることを確認した。また、この成形体そのものが多孔質構造を有するものでないことを確認した。製造例2の表面加工コラーゲン成形体の溶解率は8%であった。
(実施例1)
製造例1の表面加工コラーゲン成形体を細胞培養基材として、以下の手順により、本発明に係る細胞培養方法を実施した。なお、角化細胞(Keratinocyte)として、新潟大学歯学部倫理委員会の承認を受けて実験に使用している、新潟大学医歯学総合病院の口腔外科を受診した患者の口腔粘膜上皮由来の初代培養細胞を用いた。
(Day 0)
12wellプレートに、細胞培養基材として、製造例1の表面加工コラーゲン成形体を収容した。尚、パターン形状を有する面を上面とした。これを1 wellあたり1μg/μlのIV型コラーゲン溶液25μLとD-PBS 500μlの混合液でコーティングした後、4℃で一晩静置した。
(Day 1)
角化細胞の細胞懸濁液を調製し、この細胞懸濁液を、1×106 cells/wellとなるように、細胞培養基材の表面に播種した。培地は、EpiLife(登録商標、Thermo Fisher Scientific)high Ca++(1.2mM)培地5.5mLを用い、液相培養(Submerged Culture)にて培養4日目(Day 4)まで毎日培地交換した。
(Day 4)
気相−液相培養(air-liquid interface culture)に移行し、EpiLife(登録商標、Thermo Fisher Scientific)high Ca++(1.2mM)培地10mLで1日おきに培地交換した。当該培養を培養11日目(Day 11)まで継続した。
(Day 11)
得られた培養組織を、4%パラホルムアルデヒドに一晩浸漬(4℃)することにより固定した。次に、パラフィン包埋後、常法によるヘマトキシリン・エオジン(HE)染色を施して、光学顕微鏡による形態観察に供した。実施例1で得られた培養組織の光学顕微鏡写真が、図4(4A及び4B)に示されている。
(実施例2)
製造例1の表面加工コラーゲン成形体に替えて、製造例2の表面加工コラーゲン成形体を細胞培養基材として用いた以外は、実施例1と同様にして、実施例2の細胞培養方法を実施した。尚、細胞培養基材は、パターン形状を有する面を上面として12wellプレートに収容し、この上面に対して細胞懸濁液を播種した。実施例2で得られた培養組織の光学顕微鏡写真が、図5(5A−5C)に示されている。
(培養期間中の細胞培養基材の外観)
図3は、12wellプレートに収容した製造例1及び2の細胞培養基材の、Day 0からDay 11までの形状変化を示す写真である。図示される通り、製造例1の細胞培養基材は、外観形状にほとんど変化がみられなかったが、製造例2の細胞培養基材は、培養日数の経過とともに収縮した。
(実施例1で得られた培養組織の組織像)
図4は、実施例1で得られた培養組織の断面を示す組織像である(4A:倍率10倍、4B:倍率20倍)。実施例1では、細胞培養基材の上部(表面)全体に、連続した上皮層の形成が見られた。細胞培養基材のパターン形状が形成された部位には、上皮脚様の細胞が増殖していた。細胞組織が厚い部分では、10層程度の上皮層及び5層程度の角化層の形成が確認された。
(実施例2で得られた培養組織の組織像)
図5は、実施例2で得られた培養組織の断面を示す組織像である(5A:倍率10倍、5B:倍率20倍、5C:倍率40倍)。実施例2では、細胞培養基材の上部(表面)全体に、連続した上皮層の形成が見られた。また、細胞と細胞培養基材との接着は良好であった。細胞培養基材のパターン形状が形成された部位には、上皮脚様の細胞が増殖していた。実施例2では、パターン形状の有無に関係なく、どの部位にもある程度の厚みがある上皮層が形成され、細胞の密度が高く、円柱状の細胞の配列が認められた。細胞組織が厚い部分では、10層程度の上皮層及び5層程度の角化層の形成が確認された。
〔比較製造例1〕
特許文献1に記載の実施例1に従って、多孔質コラーゲン成形体を作製した。先ず、実施例1と同様の方法で調製した可溶化コラーゲン溶液の9容量部に、重炭酸ナトリウム水溶液1容量部を、重炭酸ナトリウム/可溶化コラーゲン溶液中のコラーゲン(モル比)=1.5×103となるように添加して、線維化コラーゲンゲルを得た。次に、当該線維化コラーゲンゲルを12wellプレートに2mlずつ分注した後、-35℃・3時間で凍結乾燥して、線維化コラーゲンで構成された多孔体を得た。次いで、この多孔体を0.05mol/Lの重炭酸ナトリウム水溶液中に浸漬した状態で25kGyのγ線照射を行うことによって、比較製造例1の多孔質コラーゲン成形体を得た。比較製造例1の多孔質コラーゲン成形体の表面には凹凸は殆ど確認出来なかった。また、特許文献1に記載の方法で平均孔径を求めたところ、多孔質コラーゲン成形体の平均孔径は95.5μm であった。この多孔質コラーゲン成形体の主要構成要素は、架橋された線維化コラーゲンである。
(比較例1)
製造例1の表面加工コラーゲン成形体に替えて、比較製造例1の多孔質コラーゲン成形体を細胞培養基材として用いた以外は、実施例1と同様にして、比較例1の細胞培養方法を実施した。比較例1では、播種した角化細胞が成形体内部に落ち込み、所定の培養期間経過後も、ヒト口腔粘膜上皮に類似した層構造を有する上皮の形成は見られなかった。
以上説明された細胞培養方法及び培養組織は、再生医療用材料、移植用材料、創傷被覆用材料、癒着防止用材料等種々の用途への適用が可能である。

Claims (6)

  1. 細胞培養基材に細胞を播種する播種工程と、この細胞を培養する培養工程とを含む細胞培養方法であって、
    上記細胞培養基材が、表面加工コラーゲン成形体であり、
    上記表面加工コラーゲン成形体が、未架橋の線維化コラーゲンゲル、線維化コラーゲン膜又は非線維化コラーゲン膜が、水性溶媒の存在下、γ線照射、電子線照射、UV照射又はプラズマ照射により架橋された成形体であって、この成形体の表面の少なくとも一部が凹形状及び/又は凸形状を有しており、かつこの成形体の主要構成要素が、損なわれていない(intact)線維化コラーゲン又はコラーゲン分子である細胞培養方法。
  2. 細胞培養基材に細胞を播種する播種工程と、この細胞を培養する培養工程とを含む細胞培養方法であって、
    上記細胞培養基材が、表面加工コラーゲン成形体であり、
    上記表面加工コラーゲン成形体が、未架橋の線維化コラーゲンゲル、線維化コラーゲン膜又は非線維化コラーゲン膜が、水性溶媒の存在下、少なくとも一部が転写部材と接触した状態で、γ線照射、電子線照射、UV照射又はプラズマ照射により架橋された成形体であって、この成形体の表面の少なくとも一部に上記転写部材の形状が転写又は反映された被転写部を有しており、この被転写部に凹形状及び/又は凸形状を有している細胞培養方法。
  3. 細胞培養基材に細胞を播種する播種工程と、この細胞を培養する培養工程とを含む細胞培養方法であって、
    上記細胞培養基材が、表面加工コラーゲン成形体であり、
    上記表面加工コラーゲン成形体が、未架橋の線維化コラーゲンゲル、線維化コラーゲン膜又は非線維化コラーゲン膜が、水性溶媒の存在下、γ線照射、電子線照射、UV照射又はプラズマ照射により架橋された成形体であって、この成形体の表面の少なくとも一部に、凹形状及び/又は凸形状に変形した表面形状を有している細胞培養方法。
  4. 細胞培養基材と、この細胞培養基材の表面及び/又は内部に形成されている細胞組織とを含んでなる培養組織であって、
    上記細胞培養基材が、表面加工コラーゲン成形体であり、
    上記表面加工コラーゲン成形体が、未架橋の線維化コラーゲンゲル、線維化コラーゲン膜又は非線維化コラーゲン膜が、水性溶媒の存在下、γ線照射、電子線照射、UV照射又はプラズマ照射により架橋された成形体であって、この成形体の表面の少なくとも一部が凹形状及び/又は凸形状を有しており、かつこの成形体の主要構成要素が、損なわれていない(intact)線維化コラーゲン又はコラーゲン分子である培養組織。
  5. 細胞培養基材と、この細胞培養基材の表面及び/又は内部に形成されている細胞組織とを含んでなる培養組織であって、
    上記細胞培養基材が、表面加工コラーゲン成形体であり、
    上記表面加工コラーゲン成形体が、未架橋の線維化コラーゲンゲル、線維化コラーゲン膜又は非線維化コラーゲン膜が、水性溶媒の存在下、少なくとも一部が転写部材と接触した状態で、γ線照射、電子線照射、UV照射又はプラズマ照射により架橋された成形体であって、この成形体の表面の少なくとも一部に上記転写部材の形状が転写又は反映された被転写部を有しており、この被転写部に凹形状及び/又は凸形状を有している培養組織。
  6. 細胞培養基材と、この細胞培養基材の表面及び/又は内部に形成されている細胞組織とを含んでなる培養組織であって、
    上記細胞培養基材が、表面加工コラーゲン成形体であり、
    上記表面加工コラーゲン成形体が、未架橋の線維化コラーゲンゲル、線維化コラーゲン膜又は非線維化コラーゲン膜が、水性溶媒の存在下、γ線照射、電子線照射、UV照射又はプラズマ照射により架橋された成形体であって、この成形体の表面の少なくとも一部に、凹形状及び/又は凸形状に変形した表面形状を有している培養組織。
JP2016031777A 2016-02-23 2016-02-23 細胞培養方法及び培養組織 Active JP6758616B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016031777A JP6758616B2 (ja) 2016-02-23 2016-02-23 細胞培養方法及び培養組織

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016031777A JP6758616B2 (ja) 2016-02-23 2016-02-23 細胞培養方法及び培養組織

Publications (2)

Publication Number Publication Date
JP2017147951A true JP2017147951A (ja) 2017-08-31
JP6758616B2 JP6758616B2 (ja) 2020-09-23

Family

ID=59739978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016031777A Active JP6758616B2 (ja) 2016-02-23 2016-02-23 細胞培養方法及び培養組織

Country Status (1)

Country Link
JP (1) JP6758616B2 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020018627A (ja) * 2018-08-01 2020-02-06 国立大学法人 新潟大学 線維化コラーゲンゲル作製用鋳型材料
JP2020105083A (ja) * 2018-12-26 2020-07-09 国立大学法人 新潟大学 口腔粘膜上皮細胞培養用の架橋線維化コラーゲンゲル
WO2021133143A1 (ko) * 2019-12-27 2021-07-01 주식회사 아모라이프사이언스 세포배양기재 및 이의 제조방법
WO2021133142A1 (ko) * 2019-12-27 2021-07-01 주식회사 아모라이프사이언스 세포배양기재 및 이의 제조방법
JPWO2020004646A1 (ja) * 2018-06-29 2021-08-05 国立研究開発法人量子科学技術研究開発機構 細胞培養用ハイドロゲル、ゲルキット、細胞培養物の製造方法、及び細胞培養用ハイドロゲルの製造方法
TWI753622B (zh) * 2020-10-23 2022-01-21 財團法人工業技術研究院 細胞組織片成形裝置及設備

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1147258A (ja) * 1997-07-30 1999-02-23 Menicon Co Ltd ゼラチンとコラーゲンとを含有する医用基材
JP2004065087A (ja) * 2002-08-06 2004-03-04 National Institute For Materials Science 高密度培養が可能な細胞培養体とその培養モジュール
JP2006191809A (ja) * 2005-01-11 2006-07-27 Kuraray Co Ltd 伸展方向が制御された細胞の培養方法
JP2008054566A (ja) * 2006-08-30 2008-03-13 Hitachi Ltd 軟骨細胞の培養方法、軟骨細胞培養基材、軟骨細胞含有生体組織再生用材料および軟骨細胞
JP2010521985A (ja) * 2007-03-19 2010-07-01 ヴァシフ・ハシルジ パターン付スタック型バイオマテリアルおよび/または組織工学スキャフォルド
WO2011118211A1 (ja) * 2010-03-23 2011-09-29 株式会社クラレ 多能性哺乳細胞を分化させる培養方法
JP2013226112A (ja) * 2011-07-12 2013-11-07 Mitsubishi Chemical Medience Corp 肝細胞の培養方法
JP2014218453A (ja) * 2013-05-07 2014-11-20 国立大学法人東京工業大学 コラーゲン成形体及びその製造方法
JP2015035978A (ja) * 2013-08-13 2015-02-23 独立行政法人農業生物資源研究所 ガラス化後のハイドロゲル膜の製造方法、ハイドロゲル材料の製造方法、ガラス化後のハイドロゲル膜、ガラス化後のハイドロゲル膜の乾燥体、細胞シート、およびガラス化後のハイドロゲル膜の製造装置
JP2015213675A (ja) * 2014-05-12 2015-12-03 多木化学株式会社 溶解性コラーゲン線維多孔体

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1147258A (ja) * 1997-07-30 1999-02-23 Menicon Co Ltd ゼラチンとコラーゲンとを含有する医用基材
JP2004065087A (ja) * 2002-08-06 2004-03-04 National Institute For Materials Science 高密度培養が可能な細胞培養体とその培養モジュール
JP2006191809A (ja) * 2005-01-11 2006-07-27 Kuraray Co Ltd 伸展方向が制御された細胞の培養方法
JP2008054566A (ja) * 2006-08-30 2008-03-13 Hitachi Ltd 軟骨細胞の培養方法、軟骨細胞培養基材、軟骨細胞含有生体組織再生用材料および軟骨細胞
JP2010521985A (ja) * 2007-03-19 2010-07-01 ヴァシフ・ハシルジ パターン付スタック型バイオマテリアルおよび/または組織工学スキャフォルド
WO2011118211A1 (ja) * 2010-03-23 2011-09-29 株式会社クラレ 多能性哺乳細胞を分化させる培養方法
JP2013226112A (ja) * 2011-07-12 2013-11-07 Mitsubishi Chemical Medience Corp 肝細胞の培養方法
JP2014218453A (ja) * 2013-05-07 2014-11-20 国立大学法人東京工業大学 コラーゲン成形体及びその製造方法
JP2015035978A (ja) * 2013-08-13 2015-02-23 独立行政法人農業生物資源研究所 ガラス化後のハイドロゲル膜の製造方法、ハイドロゲル材料の製造方法、ガラス化後のハイドロゲル膜、ガラス化後のハイドロゲル膜の乾燥体、細胞シート、およびガラス化後のハイドロゲル膜の製造装置
JP2015213675A (ja) * 2014-05-12 2015-12-03 多木化学株式会社 溶解性コラーゲン線維多孔体

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020004646A1 (ja) * 2018-06-29 2021-08-05 国立研究開発法人量子科学技術研究開発機構 細胞培養用ハイドロゲル、ゲルキット、細胞培養物の製造方法、及び細胞培養用ハイドロゲルの製造方法
JP7414224B2 (ja) 2018-06-29 2024-01-16 国立研究開発法人量子科学技術研究開発機構 細胞培養用ハイドロゲル、ゲルキット、細胞培養物の製造方法、及び細胞培養用ハイドロゲルの製造方法
JP2020018627A (ja) * 2018-08-01 2020-02-06 国立大学法人 新潟大学 線維化コラーゲンゲル作製用鋳型材料
JP7197886B2 (ja) 2018-08-01 2022-12-28 国立大学法人 新潟大学 線維化コラーゲンゲル作製用鋳型材料
JP2020105083A (ja) * 2018-12-26 2020-07-09 国立大学法人 新潟大学 口腔粘膜上皮細胞培養用の架橋線維化コラーゲンゲル
JP7203376B2 (ja) 2018-12-26 2023-01-13 国立大学法人 新潟大学 口腔粘膜上皮細胞培養用の架橋線維化コラーゲンゲル
WO2021133143A1 (ko) * 2019-12-27 2021-07-01 주식회사 아모라이프사이언스 세포배양기재 및 이의 제조방법
WO2021133142A1 (ko) * 2019-12-27 2021-07-01 주식회사 아모라이프사이언스 세포배양기재 및 이의 제조방법
JP2023508478A (ja) * 2019-12-27 2023-03-02 アモライフサイエンス カンパニー リミテッド 細胞培養基材及びその製造方法
JP2023508476A (ja) * 2019-12-27 2023-03-02 アモライフサイエンス カンパニー リミテッド 細胞培養基材及びその製造方法
TWI753622B (zh) * 2020-10-23 2022-01-21 財團法人工業技術研究院 細胞組織片成形裝置及設備

Also Published As

Publication number Publication date
JP6758616B2 (ja) 2020-09-23

Similar Documents

Publication Publication Date Title
JP6758616B2 (ja) 細胞培養方法及び培養組織
Rowland et al. The effects of crosslinking of scaffolds engineered from cartilage ECM on the chondrogenic differentiation of MSCs
US9211266B2 (en) Cell construct for cell transplantation and cell aggregate for cell transplantation
CN102791301B (zh) 细胞支持体和骨再生材料
CN107007883B (zh) 一种软骨修复支架及其制备方法
Singh et al. Engineering three-dimensional macroporous hydroxyethyl methacrylate-alginate-gelatin cryogel for growth and proliferation of lung epithelial cells
JP4677559B2 (ja) 任意の形状のビトリゲルと、当該ビトリゲルの製造方法
CN102481389A (zh) 三维纳米结构化复合支架及其制备方法
CN106397819B (zh) 一种用于调控细胞三维微图案化生长的水凝胶及其制备方法
US11027044B2 (en) Method for producing sheet-like cell structure and sheet-like cell structure
US20140271454A1 (en) Cell-synthesized particles
Parke-Houben et al. Interpenetrating polymer network hydrogel scaffolds for artificial cornea periphery
JP6240997B2 (ja) ガラス化後のハイドロゲル膜の製造方法、ハイドロゲル材料の製造方法、ガラス化後のハイドロゲル膜、ガラス化後のハイドロゲル膜の乾燥体および細胞シート
Ng et al. Hydrogels for 3-D bioprinting-based tissue engineering
JP2005305177A (ja) 組織付属器官様構造体を含む人工組織およびその製造方法
CA2874527C (en) Collagenous foam materials
Sun et al. Scaffold with orientated microtubule structure containing polylysine-heparin sodium nanoparticles for the controlled release of TGF-β1 in cartilage tissue engineering
Wang et al. Gelatin-based hydrogels for controlled cell assembly
JP6730044B2 (ja) 表面加工コラーゲン成形体
JPWO2019064807A1 (ja) コラーゲンビトリゲル及びその精製物の製造方法並びに当該方法により得られたコラーゲンビトリゲル及びその精製物
US9259445B2 (en) Integrated implant system (IIS) biocompatible, biodegradable and bioactive, comprising a biocompatible sterile porous polymeric matrix and a gel, integrating in situ the tridimensional matrix structure
KR20150040848A (ko) 조직 재생 컨스트럭트 및 조직 재생 컨스트럭트의 제조 방법
JP7203376B2 (ja) 口腔粘膜上皮細胞培養用の架橋線維化コラーゲンゲル
US20090186408A1 (en) Biocompatible bilayer porous matrix and preparation thereof
RU2772734C2 (ru) Способ получения биочернил, обеспечивающих высокий уровень пористости в тканеинженерных конструкциях

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190123

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20190123

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190123

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191029

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200811

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200819

R150 Certificate of patent or registration of utility model

Ref document number: 6758616

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250