JP2017126640A - 保持装置 - Google Patents

保持装置 Download PDF

Info

Publication number
JP2017126640A
JP2017126640A JP2016004448A JP2016004448A JP2017126640A JP 2017126640 A JP2017126640 A JP 2017126640A JP 2016004448 A JP2016004448 A JP 2016004448A JP 2016004448 A JP2016004448 A JP 2016004448A JP 2017126640 A JP2017126640 A JP 2017126640A
Authority
JP
Japan
Prior art keywords
plate
ceramic
bonding layer
base
side bonding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016004448A
Other languages
English (en)
Other versions
JP6580999B2 (ja
Inventor
晃文 土佐
Akibumi Tosa
晃文 土佐
正樹 辻
Masaki Tsuji
正樹 辻
龍之介 坂巻
Ryunosuke Sakamaki
龍之介 坂巻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2016004448A priority Critical patent/JP6580999B2/ja
Publication of JP2017126640A publication Critical patent/JP2017126640A/ja
Application granted granted Critical
Publication of JP6580999B2 publication Critical patent/JP6580999B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Ceramic Products (AREA)

Abstract

【課題】セラミックス板とベース板とを備える保持装置において、接合層と被接合部材との界面で剥離が発生することを抑制する。【解決手段】保持装置は、内部にヒータを有するセラミックス板と、金属により形成され、内部に冷媒流路が形成されたベース板とを備え、セラミックス板の表面上に対象物を保持する。保持装置は、さらに、セラミックス板とベース板との間に配置され、金属とセラミックスとの複合材料により形成された板状の複合板と、金属により形成され、セラミックス板と複合板とを接合するセラミックス側接合層と、有機系接着剤を含み、複合板とベース板とを接合するベース側接合層と、を備える。【選択図】図2

Description

本明細書に開示される技術は、対象物を保持する保持装置に関する。
例えば半導体製造装置において、ウェハを保持する保持装置として、静電チャックが用いられる。静電チャックは、例えば、セラミックスにより形成され、内部にヒータを有するセラミックス板と、金属により形成され、内部に冷媒流路が形成されたベース板とが接合された構成を有する。静電チャックは、内部電極を有しており、内部電極に電圧が印加されることにより発生する静電引力を利用して、セラミックス板の表面(以下、「吸着面」という)にウェハを吸着して保持する。
静電チャックに保持されたウェハの温度分布が不均一になると、ウェハに対する各処理(成膜、エッチング、露光等)の精度が低下するため、静電チャックにはウェハの温度分布を均一にする性能が求められる。そのため、静電チャックの使用時には、セラミックス板内部のヒータによる加熱や、ベース板内部の冷媒流路に冷媒を供給することによる冷却によって、セラミックス板の吸着面の温度制御が行われる。
また、静電チャックは、使用時に、熱サイクルにさらされる。セラミックス板の形成材料であるセラミックスとベース板の形成材料である金属とは熱膨張率が互いに異なるため、静電チャックが熱サイクルにさらされると、セラミックス板とベース板との間に熱膨張差が生ずる。従来、セラミックス板とベース板とを、弾性変形能力が比較的高い有機系接着剤を含む接合層により接合することにより、セラミックス板とベース板との間の熱膨張差を緩和し、部材の割れ等の発生を抑制する構成が知られている(例えば、特許文献1参照)。
特開平4−287344号公報
近年、半導体プロセスの多様化に伴い、静電チャックが従来よりも高温(例えば250℃以上)の環境で使用されることがあり、そのような場合には、静電チャックはより高温の熱サイクルにさらされる。上記従来の構成では、静電チャックがより高温の熱サイクルにさらされると、接合層に含まれる有機系接着剤が分解温度まで到達し、接合層と被接合部材との界面等で剥離が発生するおそれがある。そのような剥離が発生すると、剥離箇所においてベース板とセラミックス板との間の伝熱性が低下するため、ベース板内部の冷媒流路に冷媒を供給することによりベース板を冷却しても、剥離箇所においてセラミックス板からベース板への効果的な伝熱がなされず、セラミックス板の吸着面の温度分布の均一性が低下するおそれがある。
なお、このような課題は、静電引力を利用してウェハを保持する静電チャックに限らず、セラミックス板とベース板とを備え、セラミックス板の表面上に対象物を保持する保持装置に共通の課題である。
本明細書では、上述した課題を解決することが可能な技術を開示する。
本明細書に開示される技術は、例えば、以下の形態として実現することが可能である。
(1)本明細書に開示される保持装置は、セラミックスにより形成され、第1の表面を有する板状であり、内部に発熱抵抗体により構成されたヒータを有するセラミックス板と、前記セラミックス板の前記第1の表面とは反対側に配置され、金属により形成された板状であり、内部に冷媒流路が形成されたベース板と、を備え、前記セラミックス板の前記第1の表面上に対象物を保持する保持装置において、さらに、前記セラミックス板と前記ベース板との間に配置され、金属とセラミックスとの複合材料により形成された板状の複合板と、金属により形成され、前記セラミックス板と前記複合板とを接合するセラミックス側接合層と、有機系接着剤を含み、前記複合板と前記ベース板とを接合するベース側接合層と、を備える。セラミックス側接合層は、ベース側接合層と比べて、ヒータに近く、かつ、冷媒流路から遠いため、保持装置の使用時に温度が上昇しやすいが、本保持装置によれば、セラミックス側接合層は有機系接着剤と比べて耐熱性が高い金属により形成されているため、セラミックス側接合層が高温になってもセラミックス側接合層の接合面で剥離が発生することを抑制することができる。また、複合板は金属とセラミックスとの複合材料により形成されているため、セラミックス板の熱膨張率と複合板の熱膨張率との差は、セラミックス板の熱膨張率とベース板の熱膨張率との差と比べて小さく、セラミックス板と複合板との熱膨張差は比較的小さいため、セラミックス板と複合板とを接合するセラミックス側接合層を有機系接着剤と比べて弾性変形能力の小さい金属により形成しても、熱膨張差による応力によってセラミックス側接合層の接合面で剥離が発生することを抑制することができる。また、ベース側接合層は、セラミックス側接合層と比べて、ヒータから遠く、かつ、冷媒流路に近いため、保持装置の使用時にベース側接合層の温度上昇を抑制することができ、ベース側接合層を有機系接着剤を含むように形成しても、ベース側接合層の温度が有機系接着剤の分解温度まで到達してベース側接合層の接合面で剥離が発生することを抑制することができる。また、複合板とベース板とを接合するベース側接合層が金属と比べて弾性変形能力が高い有機系接着剤を含むように形成されているため、複合板とベース板との間の熱膨張差による応力が比較的大きくなっても、ベース側接合層の接合面で剥離が発生することを抑制することができる。
(2)上記保持装置において、前記ベース側接合層の厚さ方向において、前記ベース側接合層と前記冷媒流路との間の距離は、前記ベース側接合層と前記ヒータとの間の距離より短い構成としてもよい。本保持装置によれば、ベース側接合層が比較的冷媒流路に近く、かつ、ヒータから遠いこととなるため、保持装置が熱サイクルにさらされた際に、ベース側接合層の温度上昇が効果的に抑制され、ベース側接合層の接合面で剥離が発生することをさらに効果的に抑制することができる。
(3)上記保持装置において、前記セラミックス板の熱膨張率と前記複合板の熱膨張率との差は、前記複合板の熱膨張率と前記ベース板の熱膨張率との差より小さい構成としてもよい。本保持装置によれば、セラミックス板と複合板との熱膨張差を極力小さくすることができ、セラミックス板と複合板とを接合するセラミックス側接合層を有機系接着剤と比べて弾性変形能力の小さい金属により形成しても、熱膨張差による応力によってセラミックス側接合層の接合面で剥離が発生することをより確実に抑制することができる。
(4)上記保持装置において、前記セラミックス板の形成材料である前記セラミックスは、アルミナと窒化アルミニウムとの一方を主成分とするセラミックスであり、前記複合板の形成材料である前記複合材料は、アルミニウム合金と炭化ケイ素とを含み、前記ベース側接合層に含まれる前記有機系接着剤は、シリコーン樹脂を主成分とする有機系接着剤である構成としてもよい。本保持装置によれば、セラミックス板の熱膨張率と複合板の熱膨張率との差を小さくすることができ、セラミックス板と複合板とを接合するセラミックス側接合層を有機系接着剤と比べて弾性変形能力の小さい金属により形成しても、熱膨張差による応力によってセラミックス側接合層の接合面で剥離が発生することを確実に抑制することができる。また、ベース側接合層に含まれる有機系接着剤が、比較的分解温度が高く、かつ、弾性変形能力が高いシリコーン樹脂を主成分とする有機系接着剤であるため、ベース側接合層の温度が有機系接着剤の分解温度まで上昇することが抑制され、ベース側接合層の接合面で剥離が発生することを抑制することができると共に、複合板とベース板との間の熱膨張差による応力が比較的大きくなっても、ベース側接合層の接合面で剥離が発生することを抑制することができる。
(5)上記保持装置において、前記セラミックス側接合層は、アルミニウムを主成分とするアルミニウム合金であって、前記複合板の形成材料である前記複合材料に含まれるアルミニウム合金より低融点のアルミニウム合金により形成されている構成としてもよい。本保持装置によれば、セラミックス板と複合板とを接合する際に複合材料に含まれるアルミニウム合金が液相化し、液相化したアルミニウム合金が複合板からしみ出すことを抑制することができ、セラミックス板と複合板とをセラミックス側接合層によって良好に接合することができる。
(6)上記保持装置において、前記複合板の厚さは、3mm以上である構成としてもよい。複合板がアルミニウム合金と炭化ケイ素との複合材料により形成され、かつ、複合板の厚さが3mm以上であると、セラミックス板の第1の表面の温度を250℃にしても、ベース側接合層の温度を、ベース側接合層に含まれるシリコーン樹脂を主成分とする有機系接着剤の分解温度未満にすることができるため、ベース側接合層の接合面で剥離が発生することを効果的に抑制することができる。
(7)上記保持装置において、前記セラミックス側接合層は、純度99%以上のアルミニウムで形成されたアルミニウム層と、アルミニウムを主成分とするアルミニウム合金により形成され、前記セラミックス板と前記アルミニウム層とを接合する第1の接合機能層と、アルミニウムを主成分とするアルミニウム合金により形成され、前記複合板と前記アルミニウム層とを接合する第2の接合機能層と、を含む構成としてもよい。本保持装置によれば、セラミックス側接合層が塑性変形能力の高いアルミニウム層を含むため、セラミックス板と複合板とをセラミックス側接合層によって接合した後、接合温度から室温まで温度を下げる際にセラミックス板と複合板との収縮量の差によって発生するおそれのある反りの量を、アルミニウム層が塑性変形することによって抑制することができる。
(8)上記保持装置において、前記セラミックス側接合層の厚さは、1.2mm以上であることを特徴とする構成としてもよい。本保持装置によれば、セラミックス板と複合板とをセラミックス側接合層によって接合した後、接合温度から室温まで温度を下げる際にセラミックス板と複合板との収縮量の差によって発生するおそれのある反りの量を、極めて小さい量に抑えることができる。
なお、本明細書に開示される技術は、種々の形態で実現することが可能であり、例えば、保持装置、静電チャック、それらの製造方法等の形態で実現することが可能である。
第1実施形態における静電チャック100の外観構成を概略的に示す斜視図である。 第1実施形態における静電チャック100のXZ断面構成を概略的に示す説明図である。 第2実施形態における静電チャック100aのXZ断面構成を概略的に示す説明図である。 各性能評価に用いられた実施例および比較例の静電チャック100の概略構成を示す説明図である。 第1の性能評価の結果を示す説明図である。 第2の性能評価の結果を示す説明図である。 第3の性能評価の結果を示す説明図である。
A.第1実施形態:
A−1.静電チャック100の構成:
図1は、第1実施形態における静電チャック100の外観構成を概略的に示す斜視図であり、図2は、第1実施形態における静電チャック100のXZ断面構成を概略的に示す説明図である。各図には、方向を特定するための互いに直交するXYZ軸が示されている。本明細書では、便宜的に、Z軸正方向を上方向といい、Z軸負方向を下方向というものとするが、静電チャック100は実際にはそのような向きとは異なる向きで設置されてもよい。図3以降についても同様である。
静電チャック100は、対象物(例えばウェハW)を静電引力により吸着して保持する装置であり、例えば半導体製造装置の真空チャンバー内でウェハWを固定するために使用される。静電チャック100は、所定の配列方向(本実施形態では上下方向(Z軸方向))に並べて配置されたセラミックス板10と、複合板60と、ベース板20とを備える。セラミックス板10と複合板60とは、セラミックス板10の下面と複合板60の上面とが上記配列方向に対向するように配置されている。また、複合板60とベース板20とは、複合板60の下面とベース板20の上面とが上記配列方向に対向するように配置されている。静電チャック100は、さらに、セラミックス板10の下面と複合板60の上面との間に配置されたセラミックス側接合層70と、複合板60の下面とベース板20の上面との間に配置されたベース側接合層30とを備える。
セラミックス板10は、例えば円形平面の板状部材であり、セラミックスにより形成されている。セラミックス板10の形成材料としては、種々のセラミックスが用いられ得るが、強度や耐摩耗性、耐プラズマ性の観点から、例えば、アルミナ(Al)または窒化アルミニウム(AlN)を主成分とするセラミックスが用いられることが好ましい。なお、ここでいう主成分とは、含有割合(重量割合)の最も多い成分を意味する。セラミックス板10の直径は、例えば200mm〜350mm程度であり、セラミックス板10の厚さは、例えば2mm〜10mm程度である。
セラミックス板10の内部には、導電性材料(例えば、タングステンやモリブデン等)により形成された一対の内部電極40が設けられている。一対の内部電極40に電源(図示せず)から電圧が印加されると、静電引力が発生し、この静電引力によってウェハWがセラミックス板10の上面(以下、「吸着面S1」という)に吸着固定される。セラミックス板10の吸着面S1は、特許請求の範囲における第1の表面に相当する。
また、セラミックス板10の内部には、導電性材料(例えば、タングステンやモリブデン等)により形成された抵抗発熱体で構成されたヒータ50が設けられている。ヒータ50に電源(図示せず)から電圧が印加されると、ヒータ50が発熱することによってセラミックス板10が温められ、セラミックス板10の吸着面S1に保持されたウェハWが温められる。これにより、ウェハWの温度制御が実現される。
ベース板20は、例えばセラミックス板10と径が同じ、またはセラミックス板10より径が大きい円形平面の板状部材であり、金属(例えば、アルミニウムやアルミニウム合金等)により形成されている。ベース板20の直径は、例えば220mm〜350mm程度であり、ベース板20の厚さは、例えば20mm〜40mm程度である。
ベース板20の内部には冷媒流路21が形成されている。冷媒流路21に冷媒(例えば、フッ素系不活性液体や水等)が供給されると、ベース板20が冷却され、ベース側接合層30、複合板60、セラミックス側接合層70を介したベース板20からセラミックス板10への伝熱によりセラミックス板10が冷却され、セラミックス板10の吸着面S1に保持されたウェハWが冷却される。これにより、ウェハWの温度制御が実現される。
複合板60は、例えばセラミックス板10と略同径の円形平面の板状部材であり、セラミックスと金属との複合材料によりにより形成されている。この複合材料は、多孔質セラミックスに金属を溶融して加圧浸透させたものである。複合板60の形成材料としては、種々の複合材料が用いられ得るが、例えば、多孔質炭化ケイ素(SiC)にアルミニウム合金を浸透させた複合材料が用いられることが好ましい。複合板60の直径は、例えば200mm〜350mm程度であり、複合板60の厚さは、例えば1mm〜30mm程度である。
複合板60の形成材料である複合材料のセラミックスと金属との体積比を調整することにより、複合板60の熱膨張率を調整することができる。本実施形態では、セラミックス板10の熱膨張率と複合板60の熱膨張率との差が、複合板60の熱膨張率とベース板20の熱膨張率との差より小さくなるように、複合板60の熱膨張率が調整されている。すなわち、複合板60の熱膨張率は、セラミックス板10の熱膨張率に比較的近い。複合板60の熱膨張率とセラミックス板10の熱膨張率との差の絶対値は、1.5×10−6(/℃)以下であることが好ましい。
ベース側接合層30は、有機系接着剤を含んでおり、複合板60とベース板20とを接合している。ベース側接合層30に含まれる有機系接着剤として、シリコーン系樹脂やアクリル系樹脂、エポキシ系樹脂等の種々の有機系接着剤が用いられ得るが、比較的耐熱性が高く、かつ、柔らかいシリコーン系樹脂を主成分とする有機系接着剤が用いられることが好ましい。なお、ここでいう主成分とは、ベース側接合層30に含まれる接着成分(有機系接着剤)における含有割合(重量割合)の最も多い成分である。ベース側接合層30には、接着成分の他に、粉末成分(例えばアルミナやシリカ、炭化ケイ素、窒化ケイ素等)や添加剤(カップリング剤等)が含まれていてもよい。ベース側接合層30の厚さは、例えば0.1mm〜1mm程度である。
セラミックス側接合層70は、金属により形成されており、セラミックス板10と複合板60とを接合している。セラミックス側接合層70の形成材料としては、種々の金属が用いられ得るが、例えば、アルミニウムを主成分とするアルミニウム合金が用いられることが好ましい。なお、ここでいう主成分とは、含有割合(重量割合)の最も多い成分を意味する。セラミックス側接合層70の厚さは、例えば0.05mm〜5mm程度である。
A−2.静電チャック100の製造方法:
次に、第1実施形態における静電チャック100の製造方法の一例を説明する。はじめに、セラミックス板10とベース板20と複合板60とを準備する。なお、セラミックス板10とベース板20と複合板60とは、公知の製造方法によって製造可能であるため、ここでは製造方法の説明を省略する。
次に、セラミックス板10と複合板60との間に金属ろう材(例えば、アルミニウム合金であるAl−Si−Mg)の箔を挟み、真空チャンバー内において1〜10MPaの圧力下で500〜600℃に加熱する。これにより、セラミックス板10と複合板60とがセラミックス側接合層70によって接合(ろう付け)された積層体が作製される。このとき、セラミックス側接合層70の形成材料である金属(例えばアルミニウム合金)として、複合板60の形成材料である複合材料に含まれる金属(例えばアルミニウム合金)より低融点のものが用いられると、接合の際に複合材料に含まれる金属が液相化し、液相化した金属が複合板60からしみ出すことを抑制することができるため、セラミックス板10と複合板60とをセラミックス側接合層70によって良好に接合することができる。なお、作製されたセラミックス板10と複合板60との積層体の側面や上下の平面を研磨してもよい。
次に、ベース板20の上面に、ペースト状接着剤を塗布する。ペースト状接着剤は、接着成分(例えばシリコーン系樹脂やアクリル系樹脂、エポキシ系樹脂等)と粉末成分(例えばアルミナやシリカ、炭化ケイ素、窒化ケイ素等)とを混合して作製したペースト状の接着剤である。ペースト状接着剤は、カップリング剤等の添加剤を含んでいてもよい。
次に、ベース板20に塗布されたペースト状接着剤の表面に、セラミックス板10と複合板60とがセラミックス側接合層70によって接合された積層体を配置し、ペースト状接着剤を硬化させる硬化処理を行うことにより、ベース板20と上記積層体とを接合するベース側接合層30を形成する。硬化処理の内容は、使用する接着剤の種類に応じて異なり、熱硬化型の接着剤であれば硬化処理として熱を付与する処理が行われ、水分硬化型の接着剤であれば硬化処理として水分を付与する処理が行われる。以上の工程により、静電チャック100の製造が完了する。
A−3.第1実施形態の効果:
以上説明したように、第1実施形態の静電チャック100は、セラミックスにより形成され、吸着面S1を有する板状であり、内部に発熱抵抗体により構成されたヒータ50を有するセラミックス板10と、セラミックス板10の吸着面S1とは反対側に配置され、金属により形成された板状であり、内部に冷媒流路21が形成されたベース板20とを備え、セラミックス板10の吸着面S1上にウェハW等の対象物を保持する保持装置である。第1実施形態の静電チャック100は、さらに、セラミックス板10とベース板20との間に配置され、金属とセラミックスとの複合材料により形成された板状の複合板60と、金属により形成され、セラミックス板10と複合板60とを接合するセラミックス側接合層70と、有機系接着剤を含み、複合板60とベース板20とを接合するベース側接合層30とを備える。
ここで、セラミックス側接合層70は、ベース側接合層30と比べて、ヒータ50に近く、かつ、冷媒流路21から遠いため、静電チャック100の使用時に温度が上昇しやすいが、セラミックス側接合層70は有機系接着剤と比べて耐熱性が高い金属により形成されているため、セラミックス側接合層70が高温になってもセラミックス側接合層70の接合面で剥離が発生することを抑制することができる。また、セラミックス板10の熱膨張率と複合板60の熱膨張率との差は、セラミックス板10の熱膨張率とベース板20の熱膨張率との差と比べて小さく、セラミックス板10と複合板60との熱膨張差は比較的小さいため、セラミックス板10と複合板60とを接合するセラミックス側接合層70を有機系接着剤と比べて弾性変形能力の小さい金属により形成しても、熱膨張差による応力によってセラミックス側接合層70の接合面で剥離が発生することを抑制することができる。
また、ベース側接合層30は、セラミックス側接合層70と比べて、ヒータ50から遠く、かつ、冷媒流路21に近いため、静電チャック100の使用時にベース側接合層30の温度上昇を抑制することができ、ベース側接合層30を有機系接着剤を含むように形成しても、ベース側接合層30の温度が有機系接着剤の分解温度まで到達してベース側接合層30の接合面で剥離が発生することを抑制することができる。なお、冷媒流路21が、Z方向視で、セラミックス板10の吸着面S1におけるウェハWの載置領域の30%以上に重なるように配置されると、冷媒流路21に供給される冷媒によってベース側接合層30の温度上昇を効果的に抑制することができるため好ましい。また、複合板60とベース板20とを接合するベース側接合層30が金属と比べて弾性変形能力が高い有機系接着剤を含むように形成されているため、複合板60とベース板20との間の熱膨張差による応力が比較的大きくなっても、ベース側接合層30の接合面で剥離が発生することを抑制することができる。
また、本実施形態の静電チャック100では、セラミックス板10の熱膨張率と複合板60の熱膨張率との差が、複合板60の熱膨張率とベース板20の熱膨張率との差より小さくなるように、複合板60の熱膨張率が調整されている。そのため、セラミックス板10と複合板60との熱膨張差を極力小さくすることができ、セラミックス板10と複合板60とを接合するセラミックス側接合層70を有機系接着剤と比べて弾性変形能力の小さい金属により形成しても、熱膨張差による応力によってセラミックス側接合層70の接合面で剥離が発生することをより確実に抑制することができる。
なお、セラミックス板10の形成材料であるセラミックスは、アルミナと窒化アルミニウムとの一方を主成分とするセラミックスであることが好ましく、複合板60の形成材料である複合材料は、アルミニウム合金と炭化ケイ素とを含むことが好ましく、ベース側接合層30に含まれる有機系接着剤は、シリコーン樹脂を主成分とする有機系接着剤であることが好ましい。このような構成とすれば、セラミックス板10の熱膨張率と複合板60の熱膨張率との差を小さくすることができ、セラミックス板10と複合板60とを接合するセラミックス側接合層70を有機系接着剤と比べて弾性変形能力の小さい金属により形成しても、熱膨張差による応力によってセラミックス側接合層70の接合面で剥離が発生することを確実に抑制することができる。また、ベース側接合層30に含まれる有機系接着剤が、比較的分解温度が高く、かつ、弾性変形能力が高いシリコーン樹脂を主成分とする有機系接着剤であるため、ベース側接合層30の温度が有機系接着剤の分解温度まで上昇することが抑制され、ベース側接合層30の接合面で剥離が発生することを抑制することができると共に、複合板60とベース板20との間の熱膨張差による応力が比較的大きくなっても、ベース側接合層30の接合面で剥離が発生することを抑制することができる。
また、セラミックス側接合層70は、アルミニウムを主成分とするアルミニウム合金であって、複合板60の形成材料である複合材料に含まれるアルミニウム合金より低融点のアルミニウム合金により形成されていることが好ましい。このような構成とすれば、セラミックス板10と複合板60とを接合する際に複合材料に含まれるアルミニウム合金が液相化し、液相化したアルミニウム合金が複合板60からしみ出すことを抑制することができ、セラミックス板10と複合板60とをセラミックス側接合層70によって良好に接合することができる。
B.第2実施形態:
図3は、第2実施形態における静電チャック100aのXZ断面構成を概略的に示す説明図である。以下では、第2実施形態における静電チャック100aの構成の内、上述した第1実施形態における静電チャック100の構成と同一の構成については、同一の符号を付すことによってその説明を適宜省略する。
第2実施形態における静電チャック100aでは、セラミックス側接合層70aが、第1の接合機能層71と、アルミニウム層73と、第2の接合機能層72とを含んでいる。アルミニウム層73は、純度99%以上のアルミニウムで形成されている。第1の接合機能層71は、アルミニウムを主成分とするアルミニウム合金により形成されており、セラミックス板10とアルミニウム層73とを接合している。第2の接合機能層72は、アルミニウムを主成分とするアルミニウム合金により形成されており、複合板60とアルミニウム層73とを接合している。なお、ここでいう主成分とは、含有割合(重量割合)の最も多い成分を意味する。第2実施形態における静電チャック100aのその他の構成は、第1実施形態における静電チャック100の構成と同様である。
第2実施形態の静電チャック100aの製造方法は、上述した第1実施形態の静電チャック100の製造方法と以下の点が異なる。第1実施形態では、セラミックス板10と複合板60との間に金属ろう材(例えば、アルミニウム合金であるAl−Si−Mg)の箔のみを配置して加熱するものとしているが、第2実施形態では、セラミックス板10と複合板60との間に、純度99%以上のアルミニウム板の上下を同様の金属ろう材箔で挟んだものを配置し、同様に真空チャンバー内において1〜10MPaの圧力下で500〜600℃に加熱する。これにより、セラミックス板10と複合板60とが、第1の接合機能層71とアルミニウム層73と第2の接合機能層72とから構成されたセラミックス側接合層70aによって接合(ろう付け)された積層体が作製される。その後は、第1実施形態と同様に、該積層体にベース側接合層30によってベース板20が接合され、静電チャック100aの製造が完了する。
以上説明した第2実施形態の静電チャック100aは、上述した第1実施形態の静電チャック100が奏する効果に加えて、以下の効果を奏する。すなわち、第2実施形態の静電チャック100aでは、セラミックス板10と複合板60とを接合するセラミックス側接合層70aが、純度99%以上のアルミニウムで形成されたアルミニウム層73と、アルミニウムを主成分とするアルミニウム合金により形成され、セラミックス板10とアルミニウム層73とを接合する第1の接合機能層71と、アルミニウムを主成分とするアルミニウム合金により形成され、複合板60とアルミニウム層73とを接合する第2の接合機能層72とを含む。ここで、セラミックス板10と複合板60とをセラミックス側接合層70aによって接合した後、接合温度から室温まで温度を下げる際には、セラミックス板10と複合板60との収縮量の差によって反りが発生するおそれがある。そのような反りの量が大きくなると、セラミックス板10の吸着面S1の平行度、平面度を高めるためにセラミックス板10の表面を大きく研磨する必要があり、吸着面S1から内部電極40までの距離のばらつきが大きくなって安定したチャック性能が得られないおそれがある。第2実施形態の静電チャック100aでは、セラミックス側接合層70aが塑性変形能力の高いアルミニウム層73を含むため、アルミニウム層73が塑性変形することによってそのような反りの発生を抑制することができ、チャック性能の安定化を実現することができる。
C.性能評価:
静電チャック100を対象に、以下に説明する第1〜3の性能評価を行った。図4は、各性能評価に用いられた実施例および比較例の静電チャック100の概略構成を示す説明図である。
C−1.第1の性能評価:
図5は、第1の性能評価の結果を示す説明図である。第1の性能評価では、実施例1,2の静電チャック100および比較例1〜4の静電チャック100Xが用いられた。図4および図5に示すように、実施例1,2の静電チャック100は、上述した第1実施形態の静電チャック100の構成に該当するものである。すなわち、実施例1,2の静電チャック100は、セラミックス板10と、セラミックス側接合層70と、複合板60と、ベース側接合層30と、ベース板20とを備える。実施例1と実施例2とは、セラミックス板10の形成材料のみが異なっている。具体的には、実施例1では、セラミックス板10がアルミナ(Al)を主成分とするセラミックスにより形成され、実施例2では、セラミックス板10が窒化アルミニウム(AlN)を主成分とするセラミックスにより形成されている。実施例1,2におけるその他の部材の形成材料は同じである。具体的には、実施例1,2では、セラミックス側接合層70がアルミニウムを主成分とするアルミニウム合金により形成され、複合板60が多孔質炭化ケイ素(SiC)にアルミニウム合金を浸透させた複合材料により形成され、ベース側接合層30がシリコーン系樹脂を主成分とする有機系接着剤を含むように構成され、ベース板20がアルミニウム合金により形成されている。
また、比較例1〜4の静電チャック100Xは、セラミックス板10とベース板20とがベース側接合層30によって接合された構成である。すなわち、比較例1〜4の静電チャック100Xは、複合板60やセラミックス側接合層70を備えていない。比較例1,2と比較例3,4とは、ベース板20の形成材料が異なっている。具体的には、比較例1,2では、ベース板20がアルミニウム合金により形成されており、比較例3,4では、ベース板20が多孔質炭化ケイ素(SiC)にアルミニウム合金を浸透させた複合材料により形成されている。また、比較例1,3と比較例2,4とは、ベース側接合層30の形成材料が異なっている。具体的には、比較例1,3では、ベース側接合層30がシリコーン系樹脂を主成分とする有機系接着剤を含むように構成されており、比較例2,4では、ベース側接合層30がアルミニウムを主成分とするアルミニウム合金により形成されている。なお、比較例1〜4のいずれも、セラミックス板10はアルミナ(Al)を主成分とするセラミックスにより形成されている。
図5に示すように、第1の性能評価では、静電チャック100が熱サイクルにさらされたときのセラミックス板10の吸着面S1の温度分布(各位置における温度の差)の変化について、評価を行った。熱サイクル環境を作るため、実施例または比較例の静電チャック100を評価用チャンバーに設置し、ベース板20の冷媒流路21に80℃のチラーを供給しつつ、ヒータ50のオン・オフを交互に繰り返した。具体的には、放射温度計を用いてセラミックス板10の吸着面S1における複数点の温度を測定し、各点での温度測定値の内の最高値(以下、「最高点温度Tmax」という)が250℃まで上昇するとヒータ50をオフ状態にし、吸着面S1の最高点温度Tmaxが100℃まで低下するとヒータ50をオン状態にする制御を繰り返した。熱サイクルを行う前の初期状態時と、熱サイクルをN回繰り返した時点とで、セラミックス板10の吸着面S1の各点での温度測定値の内の最高値(最高点温度Tmax)と最低値(以下、「最低点温度Tmin」という)との差である温度差ΔTを算出した。そして、熱サイクルをN回繰り返した時点での温度差ΔT(以下、「サイクル後温度差ΔTN」という)と、初期状態時における温度差ΔT(以下、「初期温度差ΔT0」という)との差(ΔTN−ΔT0)を、N回の熱サイクル後の温度差変化量Ct(N)として算出した。なお、第1の性能評価では、N=1000回とした。
図5に示すように、実施例1,2の静電チャック100では、1000回の熱サイクル後の温度差変化量Ct(1000)が2℃未満と、ごく僅かであり、合格(〇)と判定された。実施例1,2の静電チャック100では、上述の「第1実施形態の効果」に記載したように、1000回の高温の熱サイクルにさらされても、セラミックス側接合層70やベース側接合層30の接合面で剥離が発生することが抑制され、温度差変化量Ctが小さい範囲に抑制されたものと考えられる。
一方、比較例1,3,4の静電チャック100Xでは、1000回の熱サイクル後の温度差変化量Ct(1000)が10℃より大きく、また、セラミックス板10の吸着面S1において突出して温度が高い点(ホットスポット)が発生したため、不合格(×)と判定された。比較例1,3の静電チャック100Xでは、セラミックス板10に内蔵されたヒータ50に比較的近い位置に、有機系接着剤を含むように構成されたベース側接合層30が配置されているため、1000回の高温の熱サイクルにさらされた際に、ベース側接合層30の温度が有機系接着剤の分解温度まで到達してベース側接合層30の接合面で剥離が発生し、温度差変化量Ctが大きくなると共に、ホットスポットが発生したものと考えられる。また、比較例4の静電チャック100Xでは、ベース側接合層30が比較的弾性変形能力の低い金属(Al合金)により形成されているが、被接合部材であるベース板20は比較的厚い部材であるために反りにくく、セラミックス板10とベース板20との間の熱膨張差による応力がベース板20の反りによって緩和されずにベース側接合層30に作用するため、当該応力によってベース側接合層30の接合面で剥離が発生し、温度差変化量Ctが大きくなると共に、ホットスポットが発生したものと考えられる。
また、比較例2の静電チャック100Xでは、セラミックス板10とベース板20とをベース側接合層30により接合した際に、接合界面にクラックが発生していることが確認されたため、評価不能として不合格(×)と判定された。比較例2の静電チャック100Xでは、ベース側接合層30が比較的弾性変形能力の低い金属(Al合金)により形成されているが、被接合部材であるベース板20は比較的厚い部材であるために反りにくく、かつ、ベース板20は金属(Al合金)により形成されているためセラミックス板10との熱膨張率の差が大きく、セラミックス板10とベース板20との間の大きな熱膨張差による大きな応力がベース板20の反りによって緩和されずにベース側接合層30に作用するため、クラックが発生したものと考えられる。
以上説明した第1の性能評価により、静電チャック100を、セラミックスにより形成されたセラミックス板10と、金属により形成されたベース板20と、金属とセラミックスとの複合材料により形成された複合板60と、金属により形成され、セラミックス板10と複合板60とを接合するセラミックス側接合層70と、有機系接着剤を含み、複合板60とベース板20とを接合するベース側接合層30とを備えるように構成すれば、セラミックス側接合層70やベース側接合層30の接合面で剥離が発生することを抑制することができることが確認された。
C−2.第2の性能評価:
図6は、第2の性能評価の結果を示す説明図である。第2の性能評価では、実施例3〜6の静電チャック100が用いられた。図4および図6に示すように、実施例3〜6の静電チャック100は、上述した第1実施形態の静電チャック100の構成に該当するものである。すなわち、実施例3〜6の静電チャック100は、アルミナ(Al)を主成分とするセラミックスにより形成されたセラミックス板10と、アルミニウムを主成分とするアルミニウム合金により形成されたセラミックス側接合層70と、多孔質炭化ケイ素(SiC)にアルミニウム合金を浸透させた複合材料により形成された複合板60と、シリコーン系樹脂を主成分とする有機系接着剤を含むように構成されたベース側接合層30と、アルミニウム合金により形成されたベース板20とを備える。
実施例3〜6は、複合板60の厚さが互いに異なる。具体的には、実施例3〜5では、複合板60の厚さは3mm以上であり、実施例6では、複合板60の厚さは3mm未満である。
さらに、実施例3〜6は、第1の距離L1と第2の距離L2との関係(図2参照)が互いに異なる。ここで、第1の距離L1は、ベース側接合層30の厚さ方向(Z方向)におけるベース側接合層30とヒータ50との間の距離であり、第2の距離L2は、ベース側接合層30の厚さ方向におけるベース側接合層30と冷媒流路21との間の距離である。図6に示すように、実施例3,4では、第2の距離L2が第1の距離L1より短く、実施例5,6では、第2の距離L2が第1の距離L1より長い。
第2の性能評価では、上述した第1の性能評価と同様に、1000回の熱サイクル後の温度差変化量Ct(1000)を算出した。実施例3〜6の静電チャック100のいずれにおいても、1000回の熱サイクル後の温度差変化量Ct(1000)は、2℃未満と、ごく僅かであった。
第2の性能評価では、さらに、3000回の熱サイクル後の温度差変化量Ct(3000)も算出した。実施例3,4の静電チャック100では、3000回の熱サイクル後の温度差変化量Ct(3000)も2℃未満と、ごく僅かであり、良好(◎)と判定された。一方、実施例5の静電チャック100では、3000回の熱サイクル後の温度差変化量Ct(3000)が2℃以上5℃未満と、やや大きく、合格(〇)と判定された。また、実施例6の静電チャック100では、3000回の熱サイクル後の温度差変化量Ct(3000)が5℃以上8℃未満と、さらに大きく、合格(〇)と判定された。
図6に示す第2の性能評価により、複合板60の厚さが3mm以上であると、ベース側接合層30の接合面で剥離が発生することを効果的に抑制することができることがわかる。これは、複合板60がアルミニウム合金と炭化ケイ素との複合材料により形成され、かつ、複合板60の厚さが3mm以上であると、セラミックス板10の吸着面S1の温度を250℃にしても、ベース側接合層30の温度を、ベース側接合層30に含まれるシリコーン樹脂を主成分とする有機系接着剤の分解温度未満にすることができたためであると考えられる。そのため、複合板60の厚さは3mm以上であることが好ましいと言える。なお、冷媒によってウェハWの温度を所望の温度にするまでの時間短縮や静電チャック100の小型化の観点から、複合板60の厚さは30mm以下であることが好ましい。
また、図6に示す第2の性能評価により、ベース側接合層30と冷媒流路21との間の距離(第2の距離L2)が、ベース側接合層30とヒータ50との間の距離(第1の距離L1)より短いと、ベース側接合層30の接合面で剥離が発生することをさらに効果的に抑制することができることがわかる。これは、第2の距離L2が第1の距離L1より短いと、ベース側接合層30が比較的冷媒流路21に近く、かつ、ヒータ50から遠いこととなるため、静電チャック100が熱サイクルにさらされた際に、ベース側接合層30の温度上昇が効果的に抑制されたためであると考えられる。そのため、ベース側接合層30と冷媒流路21との間の距離(第2の距離L2)は、ベース側接合層30とヒータ50との間の距離(第1の距離L1)より短いことが好ましいと言える。
C−3.第3の性能評価:
図7は、第3の性能評価の結果を示す説明図である。第3の性能評価では、実施例7〜10の静電チャック100が用いられた。図4および図7に示すように、実施例7の静電チャック100は、上述した第1実施形態の静電チャック100の構成に該当するものである。すなわち、実施例7の静電チャック100は、アルミナ(Al)を主成分とするセラミックスにより形成されたセラミックス板10と、アルミニウムを主成分とするアルミニウム合金により形成されたセラミックス側接合層70と、多孔質炭化ケイ素(SiC)にアルミニウム合金を浸透させた複合材料により形成された複合板60と、シリコーン系樹脂を主成分とする有機系接着剤を含むように構成されたベース側接合層30と、アルミニウム合金により形成されたベース板20とを備える。なお、便宜上、図7では、実施例7の静電チャック100が第1の接合機能層71を備えるように記載されているが、実際には、実施例7の静電チャック100は単層構成のセラミックス側接合層70を備える。
一方、実施例8〜10は、上述した第2実施形態の静電チャック100(100a)の構成に該当するものである。すなわち、実施例8〜10の静電チャック100は、セラミックス側接合層70の構成のみが実施例7と異なる。具体的には、実施例8〜10の静電チャック100では、セラミックス側接合層70が、アルミニウムを主成分とするアルミニウム合金により形成された第1の接合機能層71および第2の接合機能層72と、純度99%以上のアルミニウムで形成されたアルミニウム層73とを含むように構成されている。
また、実施例8〜10は、接合前におけるアルミニウム層73の厚さが互いに異なり、結果的に、接合後のセラミックス側接合層70の厚さが互いに異なっている。具体的には、実施例8では、接合後におけるセラミックス側接合層70の厚さは1.2mm未満であり、実施例9,10では、接合後におけるセラミックス側接合層70の厚さは1.2mm以上である。
第3の性能評価では、上述した第1の性能評価と同様に、1000回の熱サイクル後の温度差変化量Ct(1000)を算出した。実施例7〜10の静電チャック100のいずれにおいても、1000回の熱サイクル後の温度差変化量Ct(1000)は、2℃未満と、ごく僅かであった。
第3の性能評価では、さらに、セラミックス側接合層70によってセラミックス板10と複合板60とを接合したときの反り量を測定した。具体的には、セラミックス板10と複合板60との積層体をセラミックス板10を上側にして水平面に載置し、積層体の上側の表面の100点において、垂直方向の位置を三次元測定器で測定し、測定値の最小値と最大値との差の絶対値を反り量として算出した。
実施例8〜10の静電チャック100では、実施例7と比べて、接合後の反り量が小さい値に抑えられ、良好(◎)と判定された。これは、実施例8〜10の静電チャック100では、セラミックス側接合層70が、塑性変形能力の高いアルミニウム層73を含むため、セラミックス板10と複合板60とをセラミックス側接合層70によって接合した後、接合温度から室温まで温度を下げる際に、アルミニウム層73が塑性変形することによって、セラミックス板10と複合板60との収縮量の差による反りの発生を抑制することができたためであると考えられる。特に、実施例9,10の静電チャック100では、反り量が極めて小さい値に抑えられたため、接合後のセラミックス側接合層70の厚さは1.2mm以上であることが好ましいと言える。なお、セラミックス側接合層70に含まれるアルミニウム層73の熱膨張量を抑えて応力を抑える観点から、接合後のセラミックス側接合層70の厚さは5mm以下であることが好ましい。
D.変形例:
本明細書で開示される技術は、上述の実施形態に限られるものではなく、その要旨を逸脱しない範囲において種々の形態に変形することができ、例えば次のような変形も可能である。
上記各実施形態における各部材を形成する材料は、あくまで例示であり、各部材が他の材料により形成されてもよい。また、上記各実施形態では、セラミックス板10の熱膨張率と複合板60の熱膨張率との差は、複合板60の熱膨張率とベース板20の熱膨張率との差より小さいとしているが、必ずしもこのような構成である必要は無い。また、上記各実施形態では、セラミックス板10の内部に一対の内部電極40が設けられた双極方式が採用されているが、セラミックス板10の内部に1つの内部電極40が設けられた単極方式が採用されてもよい。また、上記各実施形態における静電チャック100の製造方法はあくまで一例であり、種々変形可能である。
本発明は、静電引力を利用してウェハWを保持する静電チャック100に限らず、セラミックス板とベース板とを備え、セラミックス板の表面上に対象物を保持する他の保持装置(例えば、真空チャックやヒータ等)にも適用可能である。
10:セラミックス板 20:ベース板 21:冷媒流路 30:ベース側接合層 40:内部電極 50:ヒータ 60:複合板 70:セラミックス側接合層 71:第1の接合機能層 72:第2の接合機能層 73:アルミニウム層 100:静電チャック

Claims (8)

  1. セラミックスにより形成され、第1の表面を有する板状であり、内部に発熱抵抗体により構成されたヒータを有するセラミックス板と、
    前記セラミックス板の前記第1の表面とは反対側に配置され、金属により形成された板状であり、内部に冷媒流路が形成されたベース板と、
    を備え、前記セラミックス板の前記第1の表面上に対象物を保持する保持装置において、さらに、
    前記セラミックス板と前記ベース板との間に配置され、金属とセラミックスとの複合材料により形成された板状の複合板と、
    金属により形成され、前記セラミックス板と前記複合板とを接合するセラミックス側接合層と、
    有機系接着剤を含み、前記複合板と前記ベース板とを接合するベース側接合層と、
    を備えることを特徴とする、保持装置。
  2. 請求項1に記載の保持装置において、
    前記ベース側接合層の厚さ方向において、前記ベース側接合層と前記冷媒流路との間の距離は、前記ベース側接合層と前記ヒータとの間の距離より短いことを特徴とする、保持装置。
  3. 請求項1または請求項2に記載の保持装置において、
    前記セラミックス板の熱膨張率と前記複合板の熱膨張率との差は、前記複合板の熱膨張率と前記ベース板の熱膨張率との差より小さいことを特徴とする、保持装置。
  4. 請求項1から請求項3までのいずれか一項に記載の保持装置において、
    前記セラミックス板の形成材料である前記セラミックスは、アルミナと窒化アルミニウムとの一方を主成分とするセラミックスであり、
    前記複合板の形成材料である前記複合材料は、アルミニウム合金と炭化ケイ素とを含み、
    前記ベース側接合層に含まれる前記有機系接着剤は、シリコーン樹脂を主成分とする有機系接着剤であることを特徴とする、保持装置。
  5. 請求項4に記載の保持装置において、
    前記セラミックス側接合層は、アルミニウムを主成分とするアルミニウム合金であって、前記複合板の形成材料である前記複合材料に含まれるアルミニウム合金より低融点のアルミニウム合金により形成されていることを特徴とする、保持装置。
  6. 請求項4または請求項5に記載の保持装置において、
    前記複合板の厚さは、3mm以上であることを特徴とする、保持装置。
  7. 請求項1から請求項4までのいずれか一項に記載の保持装置において、
    前記セラミックス側接合層は、
    純度99%以上のアルミニウムで形成されたアルミニウム層と、
    アルミニウムを主成分とするアルミニウム合金により形成され、前記セラミックス板と前記アルミニウム層とを接合する第1の接合機能層と、
    アルミニウムを主成分とするアルミニウム合金により形成され、前記複合板と前記アルミニウム層とを接合する第2の接合機能層と、
    を含むことを特徴とする、保持装置。
  8. 請求項7に記載の保持装置において、
    前記セラミックス側接合層の厚さは、1.2mm以上であることを特徴とする、保持装置。
JP2016004448A 2016-01-13 2016-01-13 保持装置 Active JP6580999B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016004448A JP6580999B2 (ja) 2016-01-13 2016-01-13 保持装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016004448A JP6580999B2 (ja) 2016-01-13 2016-01-13 保持装置

Publications (2)

Publication Number Publication Date
JP2017126640A true JP2017126640A (ja) 2017-07-20
JP6580999B2 JP6580999B2 (ja) 2019-09-25

Family

ID=59364438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016004448A Active JP6580999B2 (ja) 2016-01-13 2016-01-13 保持装置

Country Status (1)

Country Link
JP (1) JP6580999B2 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021120463A (ja) * 2018-08-07 2021-08-19 日本特殊陶業株式会社 保持装置
JP2022109651A (ja) * 2021-01-15 2022-07-28 日本特殊陶業株式会社 複合部材、保持装置、および接着用構造体
WO2023037698A1 (ja) * 2021-09-09 2023-03-16 日本碍子株式会社 ウエハ載置台
JP7509731B2 (ja) 2021-09-17 2024-07-02 日本特殊陶業株式会社 保持装置
JP7509814B2 (ja) 2022-03-11 2024-07-02 日本特殊陶業株式会社 保持装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09283609A (ja) * 1996-04-12 1997-10-31 Nhk Spring Co Ltd 静電吸着装置
JP2000031254A (ja) * 1998-07-07 2000-01-28 Shin Etsu Chem Co Ltd セラミックス製静電チャックおよびその製造方法
JP2003188240A (ja) * 2001-12-21 2003-07-04 Nhk Spring Co Ltd ウエハー保持装置
JP2004344958A (ja) * 2003-05-23 2004-12-09 Sentan Zairyo:Kk 炭素アルミニウム複合材料または炭化珪素アルミニウム複合材料に金属を接合したハイブリッド材料および該ハイブリッド材料を用いた熱交換器用部品
JP2005210039A (ja) * 2004-01-19 2005-08-04 Creative Technology:Kk 静電チャック接合体
JP2013247342A (ja) * 2012-05-29 2013-12-09 Shinko Electric Ind Co Ltd 静電チャック及び静電チャックの製造方法
WO2014156543A1 (ja) * 2013-03-25 2014-10-02 日本碍子株式会社 冷却板、その製法及び半導体製造装置用部材
JP2015134714A (ja) * 2009-02-20 2015-07-27 日本碍子株式会社 セラミックス−金属接合体

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09283609A (ja) * 1996-04-12 1997-10-31 Nhk Spring Co Ltd 静電吸着装置
JP2000031254A (ja) * 1998-07-07 2000-01-28 Shin Etsu Chem Co Ltd セラミックス製静電チャックおよびその製造方法
JP2003188240A (ja) * 2001-12-21 2003-07-04 Nhk Spring Co Ltd ウエハー保持装置
JP2004344958A (ja) * 2003-05-23 2004-12-09 Sentan Zairyo:Kk 炭素アルミニウム複合材料または炭化珪素アルミニウム複合材料に金属を接合したハイブリッド材料および該ハイブリッド材料を用いた熱交換器用部品
JP2005210039A (ja) * 2004-01-19 2005-08-04 Creative Technology:Kk 静電チャック接合体
JP2015134714A (ja) * 2009-02-20 2015-07-27 日本碍子株式会社 セラミックス−金属接合体
JP2013247342A (ja) * 2012-05-29 2013-12-09 Shinko Electric Ind Co Ltd 静電チャック及び静電チャックの製造方法
WO2014156543A1 (ja) * 2013-03-25 2014-10-02 日本碍子株式会社 冷却板、その製法及び半導体製造装置用部材

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021120463A (ja) * 2018-08-07 2021-08-19 日本特殊陶業株式会社 保持装置
JP7091522B2 (ja) 2018-08-07 2022-06-27 日本特殊陶業株式会社 保持装置
JP2022109651A (ja) * 2021-01-15 2022-07-28 日本特殊陶業株式会社 複合部材、保持装置、および接着用構造体
JP7386189B2 (ja) 2021-01-15 2023-11-24 日本特殊陶業株式会社 複合部材、保持装置、および接着用構造体
WO2023037698A1 (ja) * 2021-09-09 2023-03-16 日本碍子株式会社 ウエハ載置台
TWI829212B (zh) * 2021-09-09 2024-01-11 日商日本碍子股份有限公司 晶圓載置台
JP7509731B2 (ja) 2021-09-17 2024-07-02 日本特殊陶業株式会社 保持装置
JP7509814B2 (ja) 2022-03-11 2024-07-02 日本特殊陶業株式会社 保持装置

Also Published As

Publication number Publication date
JP6580999B2 (ja) 2019-09-25

Similar Documents

Publication Publication Date Title
JP6580999B2 (ja) 保持装置
JP6786439B2 (ja) 保持装置および保持装置の製造方法
JP6196095B2 (ja) 静電チャック
JP6319023B2 (ja) 静電チャック装置
JP6239894B2 (ja) 静電チャック
JP5276751B2 (ja) 静電チャック及びそれを含む基板処理装置
JP4614868B2 (ja) 接合体及びその製造方法
JP2019009270A (ja) 基板固定装置
JP2017126641A (ja) 保持装置
JP6060889B2 (ja) ウエハ加熱用ヒータユニット
JP6231443B2 (ja) 接合体およびこれを用いたウエハ支持部材
JP6158634B2 (ja) 静電チャック
JP6580975B2 (ja) 静電チャックの製造方法
JP6667386B2 (ja) 保持装置
JP6580974B2 (ja) 静電チャックの製造方法
JP2017174853A (ja) 保持装置の製造方法
JP2023071003A (ja) 静電チャック
JP6642170B2 (ja) 静電チャック装置及びその製造方法
JP6695204B2 (ja) 保持装置
JP7182910B2 (ja) 保持装置
JP6867907B2 (ja) セラミックス接合体およびセラミックス接合体の製造方法
JP6703645B2 (ja) 保持装置、および、保持装置の製造方法
JP2011222257A (ja) ウェハ加熱用ヒータユニットおよびそれを搭載した半導体製造装置
JP2006210696A (ja) セラミック製静電チャック
JP6322182B2 (ja) 保持装置および接着シート

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190829

R150 Certificate of patent or registration of utility model

Ref document number: 6580999

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250