JP2017087676A - 画像処理装置およびその方法、画像形成装置、並びに、キャリブレーション装置およびその方法 - Google Patents

画像処理装置およびその方法、画像形成装置、並びに、キャリブレーション装置およびその方法 Download PDF

Info

Publication number
JP2017087676A
JP2017087676A JP2015224234A JP2015224234A JP2017087676A JP 2017087676 A JP2017087676 A JP 2017087676A JP 2015224234 A JP2015224234 A JP 2015224234A JP 2015224234 A JP2015224234 A JP 2015224234A JP 2017087676 A JP2017087676 A JP 2017087676A
Authority
JP
Japan
Prior art keywords
spot diameter
gradation correction
image
unit
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015224234A
Other languages
English (en)
Other versions
JP6659122B2 (ja
JP2017087676A5 (ja
Inventor
陽一 滝川
Yoichi Takigawa
陽一 滝川
亮介 大谷
Ryosuke Otani
亮介 大谷
秀徳 金澤
Hidenori Kanazawa
秀徳 金澤
剛 荒木
Takeshi Araki
剛 荒木
石川 尚
Takashi Ishikawa
尚 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2015224234A priority Critical patent/JP6659122B2/ja
Priority to US15/351,730 priority patent/US10545446B2/en
Publication of JP2017087676A publication Critical patent/JP2017087676A/ja
Publication of JP2017087676A5 publication Critical patent/JP2017087676A5/ja
Application granted granted Critical
Publication of JP6659122B2 publication Critical patent/JP6659122B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/50Machine control of apparatus for electrographic processes using a charge pattern, e.g. regulating differents parts of the machine, multimode copiers, microprocessor control
    • G03G15/5062Machine control of apparatus for electrographic processes using a charge pattern, e.g. regulating differents parts of the machine, multimode copiers, microprocessor control by measuring the characteristics of an image on the copy material
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/01Apparatus for electrographic processes using a charge pattern for producing multicoloured copies
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/04Apparatus for electrographic processes using a charge pattern for exposing, i.e. imagewise exposure by optically projecting the original image on a photoconductive recording material
    • G03G15/04036Details of illuminating systems, e.g. lamps, reflectors
    • G03G15/04045Details of illuminating systems, e.g. lamps, reflectors for exposing image information provided otherwise than by directly projecting the original image onto the photoconductive recording material, e.g. digital copiers
    • G03G15/04072Details of illuminating systems, e.g. lamps, reflectors for exposing image information provided otherwise than by directly projecting the original image onto the photoconductive recording material, e.g. digital copiers by laser
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/04Apparatus for electrographic processes using a charge pattern for exposing, i.e. imagewise exposure by optically projecting the original image on a photoconductive recording material
    • G03G15/043Apparatus for electrographic processes using a charge pattern for exposing, i.e. imagewise exposure by optically projecting the original image on a photoconductive recording material with means for controlling illumination or exposure
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G2215/00Apparatus for electrophotographic processes
    • G03G2215/01Apparatus for electrophotographic processes for producing multicoloured copies
    • G03G2215/0103Plural electrographic recording members
    • G03G2215/0119Linear arrangement adjacent plural transfer points
    • G03G2215/0122Linear arrangement adjacent plural transfer points primary transfer to an intermediate transfer belt
    • G03G2215/0125Linear arrangement adjacent plural transfer points primary transfer to an intermediate transfer belt the linear arrangement being horizontal or slanted
    • G03G2215/0129Linear arrangement adjacent plural transfer points primary transfer to an intermediate transfer belt the linear arrangement being horizontal or slanted horizontal medium transport path at the secondary transfer
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G2215/00Apparatus for electrophotographic processes
    • G03G2215/01Apparatus for electrophotographic processes for producing multicoloured copies
    • G03G2215/0151Apparatus for electrophotographic processes for producing multicoloured copies characterised by the technical problem
    • G03G2215/0164Uniformity control of the toner density at separate colour transfers

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Control Or Security For Electrophotography (AREA)
  • Facsimile Image Signal Circuits (AREA)
  • Accessory Devices And Overall Control Thereof (AREA)
  • Color, Gradation (AREA)
  • Laser Beam Printer (AREA)

Abstract

【課題】階調補正特性の数を抑えて、補正残差が少ない面内濃度むら補正を行う画像処理装置を提供する。【解決手段】保持部411は、感光体の表面を露光する光のスポット径の範囲を所定間隔で分割した複数のスポット径それぞれに対応する複数の階調補正特性を保持する。設定部422は、画素データDに対応する画素の感光体上のスポット径に基づき、複数の階調補正特性から選択した階調補正特性を設定する。補正部421は、設定された階調補正特性に基づき画素データDを補正して、階調補正データDcを生成する。【選択図】図5

Description

本発明は、電子写真方式の画像形成における画像データの処理に関する。
電子写真方式の画像形成装置の露光部に採用される露光方式として、LED露光方式やレーザ露光方式がある。LED露光方式は、発光素子である複数のLED素子を感光体の長手方向に配置し、LED素子が出力する光を感光体上に集光するレンズを複数設ける。レーザ露光方式は、発光素子である半導体レーザによってレーザ光を出射する光源部、および、ポリゴンミラーによってレーザ光を偏向走査する走査部を有する。レーザ露光方式は、さらに、光源部からのレーザ光を走査部に導き、かつ、走査部によって偏向走査されたレーザ光を感光体上に結像する複数のレンズを有する。
感光体表面に結像する光強度分布(以下、スポット形状)は略円形であることが望ましく、スポット形状の大きさ(以下、スポット径)は感光体表面の位置に依らず略均一であることが望ましい。従って、発光素子から出力された光がレンズ群を通過した後、感光体表面に略均一のスポット径で結像するように設計される。
近年、小型化やコストダウンを目的としてレンズ特性を簡略化し、スポット径が必ずしも均一とはならない設計例が存在する。また、スポット径を均一にする設計であっても、構成部品や支持体などの製造誤差や組立誤差による歪みが影響して、スポット径が変化し、均一なスポット径が得られない場合がある。スポット径の不均一は、走査位置による階調特性の差として出力画像に現われ、所謂、面内濃度むらを生じさせる。
特許文献1は、入力画像の階調値に応じた濃度補正を行う二次元テーブルを、主走査方向の各位置に対して複数保持する技術を開示する。当該技術によって、面内濃度むらの充分な抑制を図るには、濃度補正用に保持すべき二次元テーブルの数を増やす必要がある。特許文献1によれば、主走査方向に均一濃度、かつ、副走査方向に濃度勾配を有するテストパターンを形成し、テストパターンの濃度を検出して、主走査方向の濃度むらを補正する補正テーブルを作成する。テストパターンは、主走査方向の全域に複数のパッチを等間隔に配置したものである。
特許文献1の技術によれば、主走査方向を等間隔に分割した代表点(特許文献1の図4、8によれば16点)について最適な補正テーブルが得られるが、その他の点においては補正残差が生じる。補正残差を充分に小さくするには、主走査方向の分割数を増やす必要がある。しかし、分割数の増加は、補正テーブル数の増大につながる。
特開2006-349851号公報
本発明は、階調補正特性の数を抑えて、補正残差が少ない面内濃度むら補正を行うことを目的とする。また、面内濃度むら補正の精度維持を他の目的とする。
本発明は、前記の目的を達成する一手段として、以下の構成を備える。
本発明にかかる画像処理装置は、感光体の表面を露光する光のスポット径の範囲を所定間隔で分割した複数のスポット径それぞれに対応する複数の階調補正特性を保持する保持手段と、画素データに対応する画素の前記感光体上のスポット径に基づき、前記複数の階調補正特性から選択した階調補正特性を設定する設定手段と、前記設定された階調補正特性に基づき前記画素データを補正して、階調補正データを生成する補正手段とを有する。
本発明にかかるキャリブレーション装置は、感光体に照射する光を発光する発光素子の駆動信号を生成する手段に、テスト画像を形成するための画像データを供給する供給手段と、前記形成されたテスト画像を読み取った画像データを取得する取得手段と、前記テスト画像を読み取った画像データに基づき、前記感光体の有効主走査範囲の各位置における前記光のスポット径を推定する推定手段と、前記スポット径の推定の結果に基づき、前記感光体上の画素の形成位置に対応するスポット径を示すスポット径テーブルを更新する更新手段とを有する。
本発明によれば、階調補正特性の数を抑えて、補正残差が少ない面内濃度むら補正を行うことができる。また、面内濃度むら補正の精度維持を図ることができる。
実施例の画像形成装置の概略構成を示す図。 画像データ処理部の構成例を示すブロック図。 感光体の表面を露光する光のスポット形状、および、階調特性を説明する図。 感光体上の主走査方向の位置とスポット径の変化の関係例を示す図。 画像処理部の構成例を示すブロック図。 スポット径テーブルの一例を示す図。 保持部が保持する複数の階調補正テーブルの一例、および、取得スポット径に対して選択される階調補正テーブルを説明する図。 感光体上の主走査方向の位置、スポット径、選択される階調補正テーブルの関係例を示す図。 画素データから階調補正データを生成する処理を説明するフローチャート。 実施例2の画像処理部の構成例を示すブロック図。 取得スポット径に対して選択される階調補正テーブル、および、感光体上の主走査方向の位置、スポット径、選択される階調補正テーブルの関係例を示す図。 実施例3の画像処理部の構成例を示す図。 テスト画像の一例を示す図。 キャリブレーション部の処理を説明するフローチャート。 スポット径の推定を説明するフローチャート。 線分、濃度データ、パッチ幅の関係を示す図。 変形例1における中間転写ベルトとラインセンサの関係例を示す図。 変形例1のスポット径の推定を説明するフローチャート。 変形例2のテスト画像の一例を示す図。 変形例2のスポット径の推定を説明するフローチャート。 画像データ処理部の処理を示すフローチャート。
以下、本発明にかかる実施例の画像形成装置、画像処理装置および画像処理方法を図面を参照して詳細に説明する。なお、実施例は特許請求の範囲にかかる本発明を限定するものではなく、また、実施例において説明する構成の組み合わせのすべてが本発明の解決手段に必須とは限らない。
図1により実施例の画像形成装置101の概略構成を示す。図1(a)に示すように、画像形成装置101は、中間転写ベルト110に沿って、画像形成部150a、150b、150c、150d、二次転写部120、中間転写ベルトクリーニング部140を有する。二次転写部120の下流側(記録紙の搬送方向の下流側)には定着部130が配置される。画像データ処理部102と画像形成制御部103については後述する。
●画像形成部
図1(b)は画像形成部150aの構成例を示す。感光体151の周囲に、帯電部152、露光部153、現像部154、一次転写部155、クリーニング部156を有する。画像形成部150a、150b、150c、150dは、それぞれ色が異なるトナーを使用する点を除き同様の構成を有する。トナーとして、一般に、シアンC、マゼンタM、イエローY、ブラックKの四色のトナーが使用される画像形成部150aがCトナー、画像形成部150bがMトナー、画像形成部150cがYトナー、画像形成部150dがKトナーを使用する。なお、画像形成部と色は四種類に限らず、淡色(淡シアンLc、淡マゼンタLm、グレイGy)やクリアCLに対応する画像形成部とトナーがあってもよい。また、色の重ね順(画像形成部の配置順)も限定されず、任意でよい。
●画像形成装置の動作
感光体151は、外周面に帯電極性が負極性である有機光導電体層を有し、図1(b)に示す矢印R3の方向に回転する。帯電部152は、負電圧が印加され、感光体151の表面に帯電粒子を照射して、感光体151の表面を負電位に一様に帯電させる。露光部153は例えば画像形成制御部103から入力される駆動信号に応じて感光体151にレーザ光を照射して、帯電した感光体151の表面に静電潜像を形成する。
現像部154は、略等速度で回転する現像ローラを用いて、負極性に帯電されたトナーを感光体151へ供給して、感光体151の静電潜像にトナーを付着させ、静電潜像を反転現像する。一次転写部155は、正電圧が印加され、感光体151に担持された負極性に帯電したトナー像を、図1(b)に示す矢印R1の方向に移動する中間転写ベルト110に一次転写する。クリーニング部156は、一次転写部155を通過した感光体151の表面に残留する残トナー像を除去する。画像形成部150a、150b、150c、150dは同様の動作を行う。カラー画像を形成する場合、画像形成部150a、150b、150c、150dは、帯電、露光、現像、一時転写、クリーニングの各工程を、所定の時間ずらしたタイミングで実行する。その結果、中間転写ベルト110上に、四色のトナー像を重畳したフルカラーのトナー像が形成される。
二次転写部120は、中間転写ベルト110に担持されたトナー像を、図1(a)に示す矢印R2方向に搬送される記録紙に二次転写する。定着部130は、トナー像が転写された記録紙を加圧加熱して、トナー像を記録紙に定着させる。中間転写ベルトクリーニング部140は、二次転写部120を通過した中間転写ベルト110に残留した残トナーを除去する。
●画像データ処理部
図2のブロック図により画像データ処理部102の構成例を示す。入力部301は、コンビュータ機器などの外部機器から多値の画像データ(例えばRGB各8ビット)を入力し、画像データの解像度を画像形成装置101の記録解像度に変換する。
色分解部302は、記憶部303に格納された色分解テーブルを参照して、入力画像データをCMYK各色の画像データ(例えばCMYK各8ビット)に色分解する。階調補正部304は、詳細は後述するが、記憶部303に格納された情報に基づき、CMYK各色の画像データに階調補正処理を施す。ハーフトーン処理部305は、階調補正後のCMYK各色の画像データにハーフトーン処理を施して、例えばCMYK各4ビットの画像データに変換する。なお、ハーフトーン処理は、例えば、記憶部303に記憶されたディザマトリクスを用いて行われる。
画像データ処理部102をソフトウェアとして構成することもできる。その場合、当該ソフトウェアのプログラムがインストールされたコンピュータ機器において、画像データ処理部102は、例えばプリンタドライバとして機能する。
●スポット径と階調特性
前述したように、感光体151の表面に結像するスポット形状は略円形であり、スポット径は感光体151の表面の位置に依らず略均一であることが望ましい。しかし、小型化やコストダウンを目的としてレンズ特性を簡略化、あるいは、構成部品や支持体などの製造誤差や組立誤差により、スポット径が均一にならない場合がある。図3により感光体151の表面を露光する光のスポット形状、および、階調特性を説明する。図3(a)に示す露光部153の発光素子1531は、一つまたは複数の半導体レーザ素子で構成される。発光素子1531が出力するレーザ光は、図示しないコリメータレンズ、開口絞り、シリンドリカルレンズを通過し、ポリゴンミラー1532の反射面によって反射された後、光学素子1533を通過して、感光体151の表面に結像する。
図3(a)に示す矢印R4の方向に一定速度で回転するポリゴンミラー1532の反射面に反射されたレーザ光は、感光体151上を矢印R5の方向(主走査方向)に偏向走査される。通常、光学素子1533の働きにより、感光体151の表面に略均一のスポット径でレーザ光が結像するように設計されている。しかし、上述した理由により、スポット径が必ずしも均一にならない場合がある。例えば、感光体151の主走査方向の中央部のスポット形状1511の径に比べて、感光体151の主走査方向の端部のスポット形状1512の径が大きくなることがある。スポット径が不均一な場合、スポット径に応じて出力画像の階調特性が異なる問題が発生する。なお、階調特性は、入力画像データが示す濃度と出力画像の濃度の対応関係を示す。以下では、図3(a)に示すように、主走査方向の中央部におけるスポット径に比べて、主走査方向の端部ほどスポット径が大きい場合を説明する。
図3(b)は、主走査方向の中央部のスポット径が最小になる位置における階調特性を示す。図3(d)は主走査方向の端部のスポット径が最大になる位置における階調特性を示す。図3(c)は中央部と端部の間の中間的な位置(スポット径が中間的な大きさになる位置)における階調特性を示す。図3(b)(c)(d)に示すように、スポット径が大きいほど所謂「ガンマが立った」状態になることが知られている。その理由は、スポット径が大きい場合、ハイライト部においては、スポット径の拡がりにより露光強度が弱くなった単独のドットが感光体上に形成され、単独のドットのトナー付着量が減少して濃度が低下する。一方、シャドウ部においては、スポット径の拡がりにより幅の狭い白抜き部のトナー付着量が増加して濃度が上昇する。つまり、位置に依存するスポット径に応じて出力画像の階調特性が変化して面内濃度むらが生じる。
画像データの階調特性と出力画像の階調特性の関係をリニアにする階調補正処理は、出力画像の階調特性と逆の特性をもつ階調補正テーブルを用いて画像データを変換する処理である。画像データの階調補正処理と異なり、感光体151上の位置に対する階調特性の変化に起因する面内濃度むらの抑制には、感光体151上の位置に対応する階調補正特性が必要になる。しかし、感光体151上のすべての位置に対応する階調補正特性を作成し階調補正テーブルとして保持すれば、キャリブレーション(階調補正特性の調整)の手間の増大、階調補正テーブルを保持するメモリ領域の増大を招き、現実的ではない。
そこで、感光体151上の代表位置において調整した階調補正特性(以下、代表階調補正特性)を保持し、その他の位置(以下、非代表位置)の階調補正特性は代表階調補正特性から生成することが考えられる。つまり、感光体151上に等間隔に代表位置を配置し、非代表位置の階調補正特性は、最近傍の二つの代表階調補正特性の線形補間により生成する。この場合、非代表位置と最近傍の代表位置P1、P2の間の距離がL1、L2の場合、代表位置P1の階調補正特性と代表位置P2の階調補正特性がL2:L1の割合で混合(ブレンド)された非代表位置の階調補正特性が生成される。
代表位置以外の階調補正特性は真に最適なものとは異なり、階調特性に僅かな補正残差が生じる。代表位置の数を多くするほど、補正残差を少なくすることができる。言い替えれば、代表階調補正特性を保持するテーブルの数と面内濃度むらの抑制はトレードオフの関係にある。
このような補正残差は、感光体151上の主走査方向のスポット径の変化が一様ではないために生じ、スポット径の変化が急峻な位置で生じ易い。図4により感光体151上の主走査方向の位置とスポット径の変化の関係例を示す。図4に示すように、感光体151の中央部付近でのスポット径の変化率が小さく、感光体151の右端(および左端)付近で急峻にスポット径が変化する傾向がある。
図4に示すスポット径の変化を示す場合、感光体151の両端付近において補正残差が大きくなる。縦の破線は代表位置を示し、代表位置によって区分される複数の区間のうち、中央部に近い区間1401や1402と比較して、中間の区間1403や1404において大きな補正残差が生じる。さらに、右端に近い区間1405や1406においてより大きな補正残差が生じる。
そこで、異なる複数のスポット径に対応する複数の階調補正特性を作成し、複数の階調補正テーブルとして保持する。そして、それら階調補正テーブルが示す階調補正特性をスポット径に応じた比率でブレンドして非代表位置の階調補正特性とする。その際、スポット径の変化が略一様になるような代表位置を決定して、補正残差を小さくする。そうすれば、区間数が同じ場合、代表位置を感光体151上に等間隔に配置する場合と比較して、補正残差が少ない階調補正処理を行うことが可能になる。
●階調補正部
図5のブロック図により階調補正部304の構成例を示す。階調補正部304は、階調補正データを生成する補正部421、複数の補正データのブレンド比率を設定する設定部422を有する。設定部422において、スポット径取得部403は、カウント値Cntに基づき、処理画素の感光体151上の形成位置Ppを算出し、保持部412が保持するスポット径テーブルからスポット径を取得する。
図6によりスポット径テーブルの一例を示す。図6に示すスポット径テーブルは、感光体151の左端を-128、中央を0、右端を127として、左端に対応する-128から右端に対応する127の間の幾つかの位置(図6においては整数に対応する位置)のスポット径を保持する。この場合、処理画素の感光体151上の形成位置Ppは、下式により算出される。
Pp = floor(Cnt/Xw×255 - 128) …(1)
ここで、Cntは処理画素が画像左端部から何番目に位置するかを示す情報、
Xwは感光体151の有効主走査範囲に対応する画素数、
floor()は床関数。
スポット径テーブルは、製造時に感光体ドラム上のスポット径を測定した結果や設計時のシミュレーションなどに基づいて予め作成し、保持しておく。前述したとおり、感光体ドラム上の位置に対してスポット径は一様に変化せず、非線形に変化する。そのため、主走査方向のスポット径の変化を充分滑らかに表現するだけのデータ数(図示した例では256点のデータ)に基づいてスポット径テーブルを作成することが好ましい。少なくとも、スポット径テーブルの作成には、後述する非代表位置のスポット径を複数測定することが必要である。
テーブル選択部408は、詳細は後述するが、スポット径取得部403が取得したスポット径(以下、取得スポット径)に基づき、保持部411が保持する複数の階調補正テーブルから第一および第二の階調補正テーブルを選択する。比率算出部404は、詳細は後述するが、取得スポット径、および、第一および第二の階調補正テーブルが対応するスポット径に基づき、比率Rbを算出する。
補正部421において、第一の補正部401は、第一の階調補正テーブルを用いて、画像データ処理部102から入力される画素データDに階調補正処理を施した第一の補正データD1を生成する。第二の補正部402は、第二の階調補正テーブルを用いて、画素データDに階調補正処理を施した第二の補正データD2を生成する。ブレンド部405は、比率算出部404から入力される比率Rbに基づき、下式により第一の補正データD1と第二の補正データD2をブレンドした階調補正データDcを出力する。
Dc = int{(1-Rb)×D1 + Rb×D2} …(2)
ここで、0≦Rb≦1、
int()は小数点以下を切り捨てる関数。
ここで算出された階調補正データDcはハーフトーン処理部305に入力される。画像形成制御部103は、ハーフトーン処理されたデータに基づいてパルス幅変調した、露光部153の発光素子1531の駆動信号を生成し、駆動信号を画像形成部150aに供給する。また、図5には、例えばフラッシュメモリやEEPROMで構成される二つの保持部411、412を示したが、複数の階調補正テーブルおよびスポット径テーブルが一つの保持部に保持される構成でもよい。
●画像データ処理
図21に示すように、本実施例の画像データ処理部102は通常と同様に、画像データの入力(S1101)、色分解処理(S1102)、階調補正データの生成処理(S1103)、ハーフトーン処理(S1103)の順で処理を行う。当該階調補正データの生成処理(S1103)の処理内容に本発明の特徴がある。階調補正データの生成処理(S1103)は、色分解部302によって生成されたCMYK各色の画像データそれぞれの全画素について、当該画素の画素値および感光体151上の形成位置Ppに基づいて実施される。形成位置Ppの算出方法は前述したとおりである。
●複数の階調補正テーブルとその選択方法
図7(a)により保持部411が保持する複数の階調補正テーブルの一例を示す。保持部411は、例えば、スポット径の範囲(例えば70μmから100μm)を所定間隔(例えば5μm)で分割した複数のスポット径それぞれに対応する複数の階調補正特性を階調補正テーブルとして保持する。図7(a)において、階調補正テーブルT70はスポット径70μmに、階調補正テーブルT75はスポット径75μmに、…、階調補正テーブルT100はスポット径100μmにそれぞれ対応する。
各階調補正テーブルは、対応するスポット径に応じて、入力データの階調特性と出力画像の階調特性の関係がリニアになるように設計される。なお、図7(a)には入出力が8ビットの例を示すが、この限りではない。また、スポット径の間隔の一例として5μmを示すが、当該間隔は2.5μm、10μm、15μmなどでもよい。前述したように、階調補正特性を保持するテーブルの数と面内濃度むらの抑制はトレードオフの関係にあり、所望する面内濃度むらの抑制が得られるテーブルの数、つまりスポット径の間隔を設定すればよい。
図7(b)により取得スポット径に対して選択される階調補正テーブルを説明する。テーブル選択部408は、保持部412が保持する複数の階調補正テーブルのうち、取得スポット径以上で最小のスポット径に対応する階調補正テーブルを第一の階調補正テーブルとして選択する。また、保持部412が保持する複数の階調補正テーブルのうち、取得スポット径以下で最大のスポット径に対応する階調補正テーブルを第二の補正テーブルとして選択する。
保持部412が図7(a)に示す階調補正テーブルT70、T75、…、T100を保持し、取得スポット径が77μmの場合、スポット径80μmに対応する階調補正テーブルT80が第一の階調補正テーブルとして選択される。また、スポット径75μmに対応する階調補正テーブルT75が第二の階調補正テーブルとして選択される。つまり、取得スポット径を挟む(中間とする)二つのスポット径に対応する二つの階調補正テーブルが選択される。また、取得スポット径が90μmの場合、スポット径90μmに対応する階調補正テーブルT90が第一および第二の補正テーブルとして選択される。あるいは、第一または第二の階調補正テーブルの何れか一方として、次に近い階調補正テーブルを選択してもよい。この場合、第一の階調補正テーブルとしてT90が選択され、第二の階調補正テーブルとしてT85が選択されるか、第二の階調補正テーブルとしてT90が選択され、第一の補正テーブルとしてT95が選択される。
図8により感光体151上の主走査方向の位置、スポット径、選択される階調補正テーブルの関係例を示す。スポット径の変化が小さい感光体151の中央部付近では同じ階調補正テーブルが選択される区間が広く、スポット径の変化が大きい感光体151の右端(および左端)付近では同じ階調補正テーブルが選択される区間が狭くなる。言い替えれば、スポット径の変化が急峻な部分では、階調補正テーブルが頻繁に切り替わる。代表位置の数は同じであるが、感光体151上に等間隔に代表位置を配置する図4の場合と比較して、各区間におけるスポット径の変化が抑制される。例えば、区間においてスポット径は、図4に示す例では最大12-13μm変化するが、図8に示す例では5μm変化するだけである。
●階調補正データの生成処理
図9のフローチャートにより画素データから階調補正データを生成する処理を説明する。階調補正部403は、未処理画素があるか否かを判定し(S901)、未処理画素がある場合は未処理画素のうちの一画素を処理画素に指定する。スポット径取得部403は、処理画素の感光体151上の形成位置Ppを算出し(S902)、形成位置Ppに対応するスポット径をスポット径テーブルから取得する(S903)。テーブル選択部408は、取得スポット径に対応する二つの階調補正テーブルを選択して補正部421に設定し(S904)、二つの階調補正テーブルが対応するスポット径を比率算出部404に通知する(S905)。
比率算出部404は、取得スポット径と、二つの階調補正テーブルが対応するスポット径に基づき比率Rbを算出する(S906)。例えば、取得スポット径が二つの階調補正テーブルが対応するスポット径の範囲を内分する比率を算出すればよい。つまり、取得スポット径がスポット径の範囲をs:1-sに内分する場合、比率Rb=sが算出される。例えば、取得スポット径が72μm、スポット径の範囲が70-75μmの場合、内分比は0.4:1-0.4であるから比率Rb=0.4が算出される。勿論、比率の算出方法はこれに限らず、他の関数を用いる方法やテーブルを用いる方法も採用可能である。
補正部421は、処理画素の画素データDを入力する(S907)。第一の補正部401は、設定された階調補正テーブルの一方(第一の階調補正テーブル)を用いて画素データDを補正した第一の補正データD1を生成する(S908)。第二の補正部402は、設定された階調補正テーブルの他方(第二の階調補正テーブル)を用いて画素データDを補正した第二の補正データD2生成する(S909)。ブレンド部405は、比率算出部404から入力される比率Rbに従い、第一の補正データD1と第二の補正データD2をブレンドした階調補正データDcを生成し出力する(S910)。階調補正データDcの出力後、処理はステップS901に戻り、未処理画素がある場合はステップS902からS910の処理が繰り返される。図9には例えばシアン成分の画素データに対応する処理だけを示すが、他の色成分の処理も同様に実行される。
このように、処理画素の感光体上の形成位置に対応するスポット径の変化に従い二つの階調補正特性を切り替えて階調補正した二つの補正データを生成する。そして、スポット径と二つの階調補正特性が対応するスポット径の範囲から算出される比率Rbに従い、それら補正データをブレンドする。従って、実質的に、処理画素の感光体上の形成位置に対応する階調補正特性により、処理画素の画素データが階調補正されたことになる。その結果、スポット径の変化に起因する階調特性の違いを吸収し、補正残差が少ない好適な面内濃度むら補正を実現することができる。感光体上の代表位置と非代表位置の関係に基づき、代表位置の階調補正特性を線形補間して得た階調補正特性を用いて非代表位置の階調補正を行う方法は、スポット径の変化の影響を受け易く、スポット径が急峻に変化する領域において補正残差が大きくなる。このような階調補正方法を「形成位置ベース階調補正方法」と呼ぶ。
これに対して、スポット径に基づき、スポット径に対応する階調補正特性を線形補間して得た階調補正特性を用いて階調補正を行う方法は、スポット径の変化の影響を受け難く、スポット径が急峻に変化する領域においても補正残差を小さく抑えることができる。このような実施例の階調補正方法を「スポット径ベース階調補正方法」と呼ぶ。
以下、本発明にかかる実施例2の画像形成装置、画像処理装置および画像処理方法を説明する。なお、実施例2において、実施例1と略同様の構成については、同一の符号を付して、その詳細な説明を省略する場合がある。実施例1では、取得スポット径に応じて二つの階調補正テーブルを選択し、実質的に、それら階調補正テーブルの階調補正特性を比率Rbに従ってブレンドした階調補正特性を階調補正データDcの生成に用いる例を説明した。実施例2では、取得スポット径に応じて一つの階調補正テーブルを選択して階調補正データDcを生成する方法を説明する。
図10のブロック図により実施例2の階調補正部304の構成例を示す。実施例1の構成と異なる部分は、補正部421から第二の補正部402とブレンド部405が削除され、設定部422から比率算出部404が削除されている点である。テーブル選択部408は、取得スポット径に対応する階調補正テーブルを保持部411が保持する複数の階調補正テーブルから選択する。実施例1における第一の補正部である階調補正部401は、選択された階調補正テーブルを用いて画素データDを階調補正処理した階調補正データDcを生成する。
図11により取得スポット径に対して選択される階調補正テーブル、および、感光体151上の主走査方向の位置、スポット径、選択される階調補正テーブルの関係例を示す。テーブル選択部408は、図11(a)に示すように、保持部411が保持する複数の階調補正テーブルのうち、取得スポット径に最も近いスポット径に対応する階調補正テーブルを選択する。例えば、取得スポット径が77μmの場合、スポット径75μmに対応する階調補正テーブルT75が選択される。取得スポット径に最も近いスポット径に対応する階調補正テーブルが複数ある場合は、さらに別のルール(例えば、より大きいスポット径に対応する階調補正テーブルを選択する)によって一つを選択する。例えば、保持部411が図7(a)に示す階調補正テーブルを保持し、取得スポット径が77.5μmの場合、取得スポット径に最も近いスポット径に対応する階調補正テーブルとしてT80とT75の二つが存在する。この場合は、より大きいスポット径に対応する階調補正テーブルT80が最終的に選択される。
図11(b)に示すように、スポット径の変化が小さい感光体151の中央部付近では同じ階調補正テーブルが選択される区間が広く、スポット径の変化が大きい感光体151の右端(および左端)付近では同じ階調補正テーブルが選択される区間が狭くなる。言い替えれば、実施例1と同様に、スポット径の変化が急峻な部分では、階調補正テーブルが頻繁に切り替わる。このように、スポット径に基づき選択した一つの階調補正テーブルによって階調補正データCcが生成される。従って、実施例2の階調補正方法もスポット径ベース階調補正方法の一種であり、実施例1に比べれば補正残差は大きくなるが、スポット径が急峻に変化する領域において、形成位置ベース階調補正方法よりも補正残差を小さく抑えることができる。
[変形例]
上記では、階調補正テーブル、スポット径テーブルなどのテーブルを用いて処理を行う例を説明したが、テーブルの代りにテーブルの入出力特性を近似した関数やマトリクス演算を用いてもよい。
以下、本発明にかかる実施例3の画像形成装置、画像処理装置および画像処理方法、並びに、キャリブレーション装置およびキャリブレーション方法を説明する。なお、実施例3において、実施例1、2と略同様の構成については、同一の符号を付して、その詳細な説明を省略する場合がある。実施例1、2においては、スポット径ベース階調補正方法を説明した。感光体上の各位置におけるスポット径は熱変形や経時変化などにより変化する。従って、スポット径ベース階調補正方法に用いるスポット径テーブル(感光体上の各位置におけるスポット径の情報)は、所定のタイミングでキャリブレーションする必要がある。キャリブレーションを適切に行うことで、熱変形や経時変化などにより生じるスポット径の変化に対応することができる。
しかし、感光体上の各位置におけるスポット径の実測は極めて難しく、製品出荷後、スポット径の実測によるキャリブレーションは実質的に不可能である。実施例3では、製品出荷後、簡易なテストチャートを用いて感光体上の各位置における実効的なスポット径を測定することで、スポット径テーブルのキャリブレーションを実現する。
[階調補正部]
図12により実施例3の階調補正部304の構成例を示す。図12には、簡単のために、実施例2の階調補正部304の構成にスポット径テーブルのキャリブレーション部423を加えた構成を示すが、実施例1の階調補正部304の構成にキャリブレーション部423を加えた構成も可能である。テスト画像供給部413は、保持部412から読み出したテスト画像の画素データを画像形成制御部103に入力する。なお、テスト画像の画像データは外部から入力してもよい。画像形成制御部103からテスト画像の駆動信号が入力される画像形成部105aは、通常の画像形成と同様のプロセスでテスト画像を形成する。
読取画像取得部414は、例えばUSBインタフェイスなどを介して画像読取装置106を制御し、画像読取装置106がテスト画像を読み取って生成した画像データを取得する。画像読取装置106は、例えば画像形成装置101のイメージリーダ部や外部のイメージスキャナなどである。スポット径推定部415は、テスト画像の画像データに基づき、感光体151上の複数の位置についてスポット径を推定する。テーブル書換部416は、推定されたスポット径に基づき、保持部412が保持するスポット径テーブルを書き換える。
キャリブレーション部423は、例えば、ワンチップマイクロコントローラ(MPU)が内蔵ROMに格納されたキャリブレーション用のブログラムを実行することで実現される。あるいは、画像形成装置101や画像処理部103aの図示しない制御部のCPUがROMなどに格納されたキャリブレーション用のブログラムを実行することで実現されてもよい。
●テスト画像
図13によりテスト画像の一例を示す。図13(a)は保持部412に格納されたテスト画像の全体を示し、図13(b)(c)はスポット径パッチを示す。図13(a)に示すように、テスト画像により、感光体151の有効主走査範囲に亘ってスポット径パッチが連続して形成され、黒基準パッチ1301、および、白基準パッチ1302が形成される。例えば、図6に示すスポット径テーブルをキャリブレーションする場合、256個のスポット径パッチが連続して一行に形成される。図13(b)(c)に示すように、スポット径パッチには位置基準画像1303aと1303b、または、終端用の位置基準画像1303cと1303dが備わる。位置基準画像は、例えば十字状または丁字状(終端用)の二つのマーカであり、二つのマーカは同じ主走査位置に配置され、二つのマーカを結ぶ線分上に、スポット径パッチが存在する。
図13(d)は記録紙上に形成されたテスト画像の一例を示す。スポット径が大きいとトナーがより広い領域に付着して、スポット径パッチの面積が大きくなり、図13(f)に一例を示すスポット径パッチ(以下、大径パッチ)が形成される。一方、スポット径が小さいとトナーが付着する領域が狭く、スポット径パッチの面積が大きくなることはなく、図13(e)に一例を示すスポット径パッチ(以下、小径パッチ)が形成される。なお、実際には形状の歪みやトナー付着量のむらによる濃淡があるが、図13(d)(e)(f)は、それらを無視し簡略化した状態を示している。
図13(e)(f)に示すように、大径パッチのパッチ幅1305は、小径パッチのパッチ幅1304に比べて大きくなる。図13(d)に示すように、感光体151の中央部でスポット径が小さく、感光体151の端部でスポット径が大きい場合、例えば、中央部において小径パッチ(図13(e))が得られ、端部において大径パッチ(図13(f))が得られる。このように、スポット径とパッチ幅の相関が得られる。そこで、実施例3においては、感光体151の有効主走査範囲の複数位置にスポット径パッチを形成し、それらのパッチ幅を測定して、複数位置のスポット径を推定する。
●キャリブレーション
スポット径テーブルのキャリブレーションは、画像形成装置101の起動後の所定タイミングや、所定期間ごと、画像形成部150aの所定稼働時間ごとに行われたり、ユーザ指示に従って行われたりする。あるいは、画像形成装置101の起動後の所定タイミングにおいて、面内むらの測定チャートを形成し、測定チャートにより測定した面内むらが所定の大きさを超えた場合に、スポット径テーブルのキャリブレーションを行うこともできる。
図14のフローチャートによりキャリブレーション部423の処理を説明する。この処理は、YMCK各色に対して、略同時または順次、行われる。テスト画像供給部413は、保持部412から読み出したテスト画像の画素データを画像形成制御部103に供給し、テスト画像の形成を行う(S1401)。テスト画像の形成後、読取画像取得部414は、画像読取装置106からテスト画像の画像データを取得する(S1402)。スポット径推定部415は、詳細は後述するが、テスト画像の画像データに基づきスポット径を推定する(S1403)。テーブル書換部416は、推定された各位置のスポット径に基づきスポット径テーブルを作成し(S1405)、保持部412が保持するスポット径テーブルを更新する(S1406)。
図15のフローチャートによりスポット径の推定(S1403)を説明する。スポット径推定部415は、黒濃度を取得し(S1411)、白濃度を取得する(S1412)。テスト画像の画像データに含まれる黒基準パッチ画像の平均濃度値が黒濃度として取得され、テスト画像の画像データに含まれる白基準パッチ画像の平均濃度値を白濃度として取得される。続いて、スポット径推定部415は、取得した黒濃度と白濃度に基づき濃度閾値(例えば、黒濃度と白濃度の平均値)を設定し(S1413)、カウント値を「0」に初期化する(S1414)。
次に、スポット径推定部415は、テスト画像の画像データから一組の位置基準画像を検出する(S1415)。なお、一回目に検出される位置基準画像は、感光体151の有効主走査範囲の左端に対応する。続いて、スポット径推定部415は、検出した位置基準画像を結ぶ線分上の濃度データを抽出し(S1416)、濃度データが濃度閾値以上の線分の長さをパッチ幅として取得する(S1417)。
図16により線分、濃度データ、パッチ幅の関係を示す。図16(a)に示すように、位置基準画像1501aと1501bを結ぶ線分1502の濃度データが取得される。濃度データは、スポット径パッチの副走査方向の濃度変化を示す。図16(b)に示すように、濃度データが濃度閾値以上の線分の長さがパッチ幅として取得される。
次に、スポット径推定部415は、取得したパッチ幅に基づきスポット径を推定し(S1418)、推定したスポット径と位置情報をテーブル書換部416に出力する(S1419)。スポット径は、例えば、パッチ幅とスポット径の関係を表すテーブルを予め作成し保持して、当該テーブルを参照することで推定する。勿論、関数を用いてパッチ幅からスポット径を算出してもよい。また、位置情報は、スポット径テーブルが図6の形式を有する場合、カウント値から128を減算した値になる。
次に、スポット径推定部415は、ステップS1415で検出した位置基準画像に基づきスポット径の推定が終端に達したか否かを判定する(S1420)。つまり、位置基準画像が終端の位置基準(図13(c))に対応する場合、スポット径推定部415は、スポット径の推定を終了する。そうでない場合、スポット径推定部415は、カウント値をインクリメントして(S1421)、処理をステップS1415に戻す。
図13(c)に例示するように、位置基準は、終端のみ丁字状であり、それ以外は十字状であるため、位置基準画像の形状の違いから推定処理の終了を容易に判定することができる。位置基準の形状は、これに限定されず、終端の位置基準が判定できる形状であればよい。あるいは、カウント値に基づき、終端に達したか否かを判定してもよい。また、二回目以降の位置基準画像の検出(S1415)においては、前回検出した位置基準画像の右隣に位置する位置基準画像が検出される。
このように、感光体151の有効主走査範囲に亘ってスポット径パッチが連続して配置されたテスト画像を形成し、テスト画像の読み取った画像データに基づきスポット径テーブルのキャリブレーションが可能になる。従って、熱変形や経時変化などにより生じるスポット径の変化に適切なタイミングで対応することができ、スポット径ベース階調補正方法による面内濃度むら補正の精度維持を図ることができる。
[変形例1]
実施例3では、通常の画像形成と同じプロセスにより、テスト画像を記録紙上に形成し、外部の画像読取装置106などが読み取ったテスト画像の画像データをキャリブレーションに利用する例を説明した。中間転写ベルト110の近傍に配置したセンサ(例えば図12に示すラインセンサ111)により、中間転写ベルト110上に形成されたテスト画像を読み取り、その画像データをキャリブレーションに利用することもできる。
図17により変形例1における中間転写ベルト110とラインセンサ111の関係例を示す。ラインセンサ111は、中間転写ベルト110の移動方向の、画像形成部150dの下流に位置し、主走査方向に配列された複数のセンサによって、中間転写ベルト110上のテスト画像(トナー像)の濃度を計測する。なお、濃度に相当する物理量であれば、例えば明度や輝度を計測してもよい。また、この場合のテスト画像の形成処理においては、二次転写と定着を行わなくてもよい。
例えば、図6に示すスポット径テーブルをキャリブレーションする場合、少なくとも256個の受光素子をもつラインセンサ111を使用すればよい。256個以上の受光素子をもつラインセンサ111を使用する場合は、隣接する複数の受光素子の濃度データの平均値を利用すればよい。読取画像取得部414は、順次、ラインセンサ111から濃度データを取得し、濃度データをバッファに格納してテスト画像の画像データを形成する。スポット径推定部415は、テスト画像の画像データに基づき、ラインセンサ111の受光素子ごとにスポット径を推定する。
図18のフローチャートにより変形例1のスポット径の推定(S1403)を説明する。図15に示す処理と同一の処理には同一の符号を付して詳細説明を省略する。カウント値を「0」に初期化(S1414)した後、スポット径推定部415は、カウント値に対応する受光素子の濃度データと濃度閾値に基づきパッチ幅を取得する(S1431)。つまり、対応する受光素子の濃度データの変化を調べ、濃度データが濃度閾値以上の区間(画素数)をパッチ幅として取得する。
次に、スポット径推定部415は、スポット径の推定(S1418)、スポット径と位置情報の出力(S1419)を行い、カウント値が閾値Nth未満か否かを判定する(S1432)。閾値Nthは、図6の形式を有するスポット径テーブルの場合は「256」である。カウント値が閾値Nth未満の場合、処理はカウント値のインクリメント(S1421)を得てステップS1431に戻る。カウント値が閾値Nthに達すると、スポット径推定部415は、スポット径の推定を終了する。
上記では、中間転写ベルト110の近傍にラインセンサ111を配置する例を説明したが、ラインセンサ111の配置はこれに限らない。例えば、感光体151の近傍にラインセンサ111を配置してもよいし、画像形成装置101の外に排出される前の記録紙上の画像を読み取る位置にラインセンサ111を配置してもよい。
[変形例2]
以下では、図13に示すテスト画像とは異なるテスト画像を用いるキャリブレーションを説明する。図19により変形例2のテスト画像の一例を示す。スポット径パッチが糸巻形状である図13に示すテスト画像(以下、糸巻型テスト画像)と異なり、変形例2のテスト画像のスポット径パッチは副走査方向に白色部と黒色部が交互に配置されたパターンを有す。以下、変形例2のテスト画像を「縞模様テスト画像」と呼ぶ。
図19(a)は保持部412に格納されたテスト画像の全体を示し、図19(b)(c)はスポット径パッチを示す。図19(a)に示すように、テスト画像により、感光体151の有効主走査範囲に亘ってスポット径パッチが連続して形成され、黒基準パッチ1301、および、白基準パッチ1302が形成される。例えば、図6に示すスポット径テーブルをキャリブレーションする場合、256個のスポット径パッチが連続して一行に形成される。
図19(b)(c)に示すように、スポット径パッチには位置基準画像1303aと1303b、または、終端用の位置基準画像1303cと1303dが備わる。位置基準画像は、例えば十字状または丁字状(終端用)の二つのマーカであり、二つのマーカは同じ主走査位置に配置され、二つのマーカを結ぶ線分上に、スポット径パッチが存在する。
図19(d)は記録紙上に形成されたスポット径パッチの一例を示し、位置基準画像1501aと1501bを結ぶ線分1502の濃度データが取得される。図19(e)はスポット径が小さい場合の線分1502の濃度データの変化(以下、パッチ振幅)を示し、パッチ振幅が大きい。一方、図19(f)はスポット径が大きい場合のパッチ振幅を示し、パッチ振幅が小さい。変形例2においては、この性質を利用してスポット径を推定する。
図20のフローチャートにより変形例2のスポット径の推定(S1403)を説明する。図15に示す処理と同一の処理には同一の符号を付して詳細説明を省略する。スポット径推定部415は、黒濃度の取得(S1411)、白濃度の取得(S1412)を行い、黒濃度と白濃度の間の差分(以下、基準差分)を算出する(S1441)。
次に、スポット径推定部415は、カウント値の「0」初期化(S1414)、一組の位置基準画像の検出(S1415)、位置基準画像を結ぶ線分上の濃度データの抽出(S1416)を行う。そして、濃度データの最大値と最小値の間の差分を算出する(S1442)。その際、複数の最大値の平均値と、複数の最小値の平均値の間の差分を算出することが好ましい。次に、スポット径推定部415は、ステップS1442で算出した差分を基準差分で除算した値をパッチ振幅として取得し(S1443)、取得したパッチ振幅に基づきスポット径を推定する(S1444)。スポット径は、例えば、パッチ振幅とスポット径の関係を表すテーブルを予め作成し保持して、当該テーブルを参照することで推定する。スポット径と位置情報の出力(S1419)、終端の判定(S1420)、カウント値のインクリメント(S1421)は実施例3と同様であり、説明を省略する。
[その他の実施例]
本発明は、上述の実施形態の一以上の機能を実現するプログラムを、ネットワーク又は記憶媒体を介してシステム又は装置に供給し、そのシステム又は装置のコンピュータにおける一以上のプロセッサがプログラムを読み出し実行する処理でも実現可能である。また、一以上の機能を実現する回路(例えば、ASIC)によっても実現可能である。
411 … 保持部、421 … 補正部、422 … 設定部

Claims (17)

  1. 感光体の表面を露光する光のスポット径の範囲を所定間隔で分割した複数のスポット径それぞれに対応する複数の階調補正特性を保持する保持手段と、
    画素データに対応する画素の前記感光体上のスポット径に基づき、前記複数の階調補正特性から選択した階調補正特性を設定する設定手段と、
    前記設定された階調補正特性に基づき前記画素データを補正して、階調補正データを生成する補正手段とを有する画像処理装置。
  2. 前記設定手段は、
    スポット径テーブルに基づき、前記形成位置に対応するスポット径を取得する取得手段と、
    前記取得されたスポット径に基づき、前記複数の階調補正特性から前記設定する階調補正特性を選択する選択手段とを有する請求項1に記載された画像処理装置。
  3. 前記設定手段は、
    スポット径テーブルに基づき、前記形成位置に対応するスポット径を取得する取得手段と、
    前記複数の階調補正特性から、前記取得されたスポット径を挟む二つのスポット径に対応する二つの階調補正特性を前記設定する階調補正特性として選択する選択手段と、
    前記二つの階調補正特性が対応するスポット径に基づき比率を算出する算出手段とを有する請求項1に記載された画像処理装置。
  4. 前記補正手段は、
    前記二つの階調補正特性の一方に基づき前記画素データを補正した第一の補正データを生成する手段と、
    前記二つの階調補正特性の他方に基づき前記画素データを補正した第二の補正データを生成する手段と、
    前記比率に基づき、前記第一および第二の補正データをブレンドした前記階調補正データを生成する手段とを有する請求項3に記載された画像処理装置。
  5. 前記設定手段は、前記画素データに対応する画素の前記感光体上の形成位置におけるスポット径に基づいて、前記階調補正特性を設定する請求項1から請求項4の何れか一項に記載された画像処理装置。
  6. 前記階調補正データに基づき、前記感光体に照射する光を発光する発光素子の駆動信号を生成する生成手段を有し、前記駆動信号は画像形成装置に出力される請求項2から請求項5の何れか一項に記載された画像処理装置。
  7. テスト画像を形成するための画像データを前記生成手段に供給する手段と、
    前記形成されたテスト画像を読み取った画像データを取得する手段と、
    前記テスト画像を読み取った画像データに基づき、前記感光体の有効主走査範囲の各位置における前記光のスポット径を推定する手段と、
    前記スポット径の推定の結果に基づき前記スポット径テーブルを更新する手段とを有する請求項6に記載された画像処理装置。
  8. 請求項1から請求項7の何れか一項に記載された画像処理装置と、
    前記画像処理装置から入力される信号に基づき画像形成を行う画像形成手段とを有する画像形成装置。
  9. 感光体に照射する光を発光する発光素子の駆動信号を生成する手段に、テスト画像を形成するための画像データを供給する供給手段と、
    前記形成されたテスト画像を読み取った画像データを取得する取得手段と、
    前記テスト画像を読み取った画像データに基づき、前記感光体の有効主走査範囲の各位置における前記光のスポット径を推定する推定手段と、
    前記スポット径の推定の結果に基づき、前記感光体上の画素の形成位置に対応するスポット径を示すスポット径テーブルを更新する更新手段とを有するキャリブレーション装置。
  10. 前記テスト画像は、前記有効主走査範囲に連続して形成される複数のスポット径パッチを有する請求項9に記載されたキャリブレーション装置。
  11. 前記推定手段は、前記スポット径パッチの副走査方向の濃度変化に基づき、前記スポット径の推定を行う請求項10に記載されたキャリブレーション装置。
  12. 前記推定手段は、前記スポット径パッチの副走査方向の濃度の最大値と最小値の間の差分に基づき、前記スポット径の推定を行う請求項10に記載されたキャリブレーション装置。
  13. 前記形成されたテスト画像を読み取った画像データを出力する読取手段を有する請求項9から請求項12の何れか一項に記載されたキャリブレーション装置。
  14. 感光体の表面を露光する光のスポット径の範囲を所定間隔で分割した複数のスポット径それぞれに対応する複数の階調補正特性を保持し、
    画素データに対応する画素の前記感光体上のスポット径に基づき、前記複数の階調補正特性から選択した階調補正特性を設定し、
    前記設定された階調補正特性に基づき前記画素データを補正して、階調補正データを生成する画像処理方法。
  15. 感光体に照射する光を発光する発光素子の駆動信号を生成する手段に、テスト画像を形成するための画像データを供給し、
    前記形成されたテスト画像を読み取った画像データを取得し、
    前記テスト画像を読み取った画像データから前記感光体の有効主走査範囲の各位置における前記光のスポット径を推定し、
    前記スポット径の推定の結果に基づき、前記感光体上の画素の形成位置に対応するスポット径を示すスポット径テーブルを更新するキャリブレーション方法。
  16. コンピュータを請求項1から請求項8の何れか一項に記載された画像処理装置の各手段として機能させるためのプログラム。
  17. コンピュータを請求項9から請求項13の何れか一項に記載されたキャリブレーション装置の各手段として機能させるためのプログラム。
JP2015224234A 2015-11-16 2015-11-16 画像処理装置及びその方法及びプログラム Active JP6659122B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015224234A JP6659122B2 (ja) 2015-11-16 2015-11-16 画像処理装置及びその方法及びプログラム
US15/351,730 US10545446B2 (en) 2015-11-16 2016-11-15 Tone correction image processing based on pixel formation position on a photoreceptor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015224234A JP6659122B2 (ja) 2015-11-16 2015-11-16 画像処理装置及びその方法及びプログラム

Publications (3)

Publication Number Publication Date
JP2017087676A true JP2017087676A (ja) 2017-05-25
JP2017087676A5 JP2017087676A5 (ja) 2018-12-13
JP6659122B2 JP6659122B2 (ja) 2020-03-04

Family

ID=58690997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015224234A Active JP6659122B2 (ja) 2015-11-16 2015-11-16 画像処理装置及びその方法及びプログラム

Country Status (2)

Country Link
US (1) US10545446B2 (ja)
JP (1) JP6659122B2 (ja)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6630129B2 (ja) 2015-11-16 2020-01-15 キヤノン株式会社 画像処理装置およびその方法、並びに、画像形成装置
JP6758997B2 (ja) 2016-08-23 2020-09-23 キヤノン株式会社 色分解処理装置、色分解処理方法、色分解lutの作成方法及びプログラム
JP2019096928A (ja) 2017-11-17 2019-06-20 キヤノン株式会社 画像処理装置、画像処理方法、及びプログラム、並びに画像表示装置
JP7210294B2 (ja) 2018-01-26 2023-01-23 キヤノン株式会社 画像処理装置、画像処理方法及びプログラム
JP2019204428A (ja) 2018-05-25 2019-11-28 キヤノン株式会社 画像処理装置、表示システム、画像処理方法及びプログラム
JP7214404B2 (ja) 2018-08-31 2023-01-30 キヤノン株式会社 画像処理装置及び画像処理方法、プログラム
JP2020040334A (ja) 2018-09-12 2020-03-19 キヤノン株式会社 画像処理装置、画像処理方法およびプログラム
JP7187278B2 (ja) 2018-11-15 2022-12-12 キヤノン株式会社 画像処理装置、画像処理方法、及びプログラム
US10855877B2 (en) 2018-12-03 2020-12-01 Canon Kabushiki Kaisha Image processing apparatus, image processing method and storage medium
EP3664429B1 (en) 2018-12-07 2022-07-27 Canon Kabushiki Kaisha Image processing apparatus, image processing method, and program
JP2020100064A (ja) 2018-12-21 2020-07-02 キヤノン株式会社 画像処理装置、画像処理方法及びプログラム
US10834288B2 (en) 2018-12-21 2020-11-10 Canon Kabushiki Kaisha Generating image region dot data based on corrected number of dots and determined arrangement priority
US11020985B2 (en) 2019-01-31 2021-06-01 Canon Kabushiki Kaisha Image processing apparatus, image processing method and storage medium
JP7391619B2 (ja) 2019-11-07 2023-12-05 キヤノン株式会社 画像処理装置、画像処理方法及びプログラム
JP7446792B2 (ja) 2019-11-27 2024-03-11 キヤノン株式会社 画像処理装置、画像処理方法及びプログラム
JP2021084298A (ja) 2019-11-27 2021-06-03 キヤノン株式会社 画像処理装置、画像形成システム、画像処理方法、画像形成システムの制御方法及びプログラム
JP7475928B2 (ja) 2020-03-31 2024-04-30 キヤノン株式会社 画像処理装置、その制御方法及びプログラム
JP7520553B2 (ja) 2020-03-31 2024-07-23 キヤノン株式会社 画像処理装置、その制御方法及びプログラム
JP7481935B2 (ja) 2020-07-21 2024-05-13 キヤノン株式会社 画像処理装置、画像処理方法
US11840060B2 (en) 2021-02-24 2023-12-12 Canon Kabushiki Kaisha Information processing apparatus, information processing method, and storage medium

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000190554A (ja) * 1998-12-24 2000-07-11 Fuji Xerox Co Ltd 光走査装置
US20070115338A1 (en) * 2005-11-22 2007-05-24 Xerox Corporation Streak compensation with scan line dependent ROS actuation
JP2010078857A (ja) * 2008-09-25 2010-04-08 Canon Inc 走査光学装置、画像形成装置及び制御方法
JP2010099931A (ja) * 2008-10-23 2010-05-06 Konica Minolta Business Technologies Inc 画像形成方法および光走査装置ならびに画像形成装置
JP2013202902A (ja) * 2012-03-28 2013-10-07 Kyocera Document Solutions Inc 光走査装置及び画像形成装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006349851A (ja) 2005-06-14 2006-12-28 Konica Minolta Business Technologies Inc 画像形成装置
JP6353271B2 (ja) 2013-06-04 2018-07-04 キヤノン株式会社 画像処理装置およびその方法
US9749496B2 (en) 2013-06-19 2017-08-29 Canon Kabushiki Kaisha Performing halftone processing using intra-cell sum value differences applied so as to correct boundary pixels
EP3754962B1 (en) 2014-07-01 2022-12-21 Canon Kabushiki Kaisha Image processing apparatus, image processing method, printing medium and storage medium
JP6316135B2 (ja) 2014-08-01 2018-04-25 キヤノン株式会社 画像処理装置、画像処理方法及びプログラム
JP6512838B2 (ja) 2015-01-21 2019-05-15 キヤノン株式会社 画像処理装置、画像処理方法及びプログラム
JP6706985B2 (ja) 2015-08-06 2020-06-10 キヤノン株式会社 画像処理装置およびその制御方法
JP6584278B2 (ja) 2015-10-19 2019-10-02 キヤノン株式会社 画像形成装置および画像形成装置における濃度補正方法
JP6624881B2 (ja) 2015-10-19 2019-12-25 キヤノン株式会社 画像形成装置及びその制御方法
JP6649750B2 (ja) 2015-11-16 2020-02-19 キヤノン株式会社 画像処理装置、画像処理方法
JP6630129B2 (ja) 2015-11-16 2020-01-15 キヤノン株式会社 画像処理装置およびその方法、並びに、画像形成装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000190554A (ja) * 1998-12-24 2000-07-11 Fuji Xerox Co Ltd 光走査装置
US20070115338A1 (en) * 2005-11-22 2007-05-24 Xerox Corporation Streak compensation with scan line dependent ROS actuation
JP2010078857A (ja) * 2008-09-25 2010-04-08 Canon Inc 走査光学装置、画像形成装置及び制御方法
JP2010099931A (ja) * 2008-10-23 2010-05-06 Konica Minolta Business Technologies Inc 画像形成方法および光走査装置ならびに画像形成装置
JP2013202902A (ja) * 2012-03-28 2013-10-07 Kyocera Document Solutions Inc 光走査装置及び画像形成装置

Also Published As

Publication number Publication date
JP6659122B2 (ja) 2020-03-04
US10545446B2 (en) 2020-01-28
US20170139363A1 (en) 2017-05-18

Similar Documents

Publication Publication Date Title
JP6659122B2 (ja) 画像処理装置及びその方法及びプログラム
JP6630129B2 (ja) 画像処理装置およびその方法、並びに、画像形成装置
US10194053B2 (en) Image forming apparatus and density correction method in image forming apparatus based on correction characteristics
JP6512838B2 (ja) 画像処理装置、画像処理方法及びプログラム
JP2011064984A (ja) 画像形成装置
JP6280379B2 (ja) 画像形成装置、トナー消費量の算出方法およびプログラム
JP2016208151A (ja) 画像処理装置、画像処理方法、画像処理装置を有する画像形成装置、及びプログラム。
US10788433B2 (en) Correction value calculation method, image forming apparatus, program, and inspection image
US20160223941A1 (en) Image processing apparatus, image processing method, and storage medium
JP2012048009A (ja) 画像形成装置
JP2016130006A (ja) 画像処理装置およびその制御方法
JP2011104959A (ja) 画像形成装置、画像形成方法およびプログラム
JP2016045454A (ja) 画像形成装置及び画像形成方法
JP6257398B2 (ja) 画像形成装置
JP5679098B2 (ja) 画像処理装置及びプログラム
JP2016061976A (ja) 画像形成装置
JP2015035643A (ja) 画像処理装置、画像形成装置、及び画像処理プログラム
JP6531340B2 (ja) 画像形成装置
JP6772017B2 (ja) 画像処理装置、画像処理方法、画像形成装置およびプログラム
US10477067B2 (en) Image forming apparatus, image forming method, and storage medium
JP6136391B2 (ja) 画像処理装置、画像形成装置、画像補正方法およびプログラム
JP5995555B2 (ja) 画像処理装置およびその制御方法
JP6504773B2 (ja) 画像処理装置、画像処理方法、及びプログラム
JP6165112B2 (ja) 画像形成装置
JP6273912B2 (ja) 画像検査装置、画像検査システム及び画像検査プログラム

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181029

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181029

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200204

R151 Written notification of patent or utility model registration

Ref document number: 6659122

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151