JP2017073374A - バイポーラ型リチウムイオン電池およびバイポーラ型リチウムイオン電池の製造方法 - Google Patents

バイポーラ型リチウムイオン電池およびバイポーラ型リチウムイオン電池の製造方法 Download PDF

Info

Publication number
JP2017073374A
JP2017073374A JP2016022945A JP2016022945A JP2017073374A JP 2017073374 A JP2017073374 A JP 2017073374A JP 2016022945 A JP2016022945 A JP 2016022945A JP 2016022945 A JP2016022945 A JP 2016022945A JP 2017073374 A JP2017073374 A JP 2017073374A
Authority
JP
Japan
Prior art keywords
current collector
layer
bipolar
lithium ion
ion battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016022945A
Other languages
English (en)
Other versions
JP6676399B2 (ja
Inventor
松山 敏也
Toshiya Matsuyama
敏也 松山
素志 田村
Motoshi Tamura
素志 田村
山本 一富
Kazutomi Yamamoto
一富 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Co Ltd
Original Assignee
Furukawa Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Co Ltd filed Critical Furukawa Co Ltd
Publication of JP2017073374A publication Critical patent/JP2017073374A/ja
Application granted granted Critical
Publication of JP6676399B2 publication Critical patent/JP6676399B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

【課題】単位セル同士の積層性及び単位セル間の電気的接触に優れたバイポーラ型リチウムイオン電池の提供。【解決手段】電池100は正極層101と負極層103と、正極層と負極層との間に一又は二以上のバイポーラ電極層105と、複数の電解質層107と、を含む電池素子200を備えるバイポーラ型二次電池。正極層とバイポーラ電極層との間に電解質層107aと、バイポーラ電極層と負極層との間に電解質層107bと、が設けられているバイポーラ型二次電池。バイポーラ電極層は、バイポーラ電極集電体109と、バイポーラ電極集電体の一方の面の正極活物質層111bと、バイポーラ電極集電体の他方の面の負極活物質層113aと、を含み、バイポーラ電極集電体は、第一集電体と、貫通孔を有する粘着性樹脂層と、第二集電体とがこの順番に積層され、第一集電体と第二集電体とが粘着性樹脂層を介して接着しているバイポーラ型二次電池。【選択図】図1

Description

本発明は、バイポーラ型リチウムイオン電池およびバイポーラ型リチウムイオン電池の製造方法に関する。
バイポーラ型リチウムイオン電池は、正極層と負極層との間に、バイポーラ電極層を設けた構造を有する電池である。バイポーラ電極層とは、集電体の一方の面に正極活物質層が設けられ、他方の面に負極活物質層が設けられた電極である。バイポーラ型リチウムイオン電池は、高電圧化、部品点数の低減、単位セル同士の電気抵抗の低減、不要空間の削減による高エネルギー密度化等が比較的容易なことから注目を集めている。
以下の特許文献1および2には、バイポーラ型リチウムイオン電池の例が記載されている。
特許文献1(特開2014−116156号公報)には、固体電解質の一方の面に正極電極層が形成され他方の面に負極電極層が形成されてなるリチウム電池の単位セルと、上記単位セルと交互に積層される内部電極層とを含むバイポーラ型の積層電池を複数個有し、上記複数の積層電池は、正極集電箔および負極集電箔を介して積み重ねられ、かつ並列に電気接続され、さらに、モールド樹脂によって封止されたことを特徴とする全固体電池が記載されている。
特許文献2(特開2008−103285号公報)には、正極と負極と固体電解質からなる全固体電池であって、正極を構成する正極活物質と負極を構成する負極活物質が1枚の集電体の両側に保持されるバイポーラ型電極を備え、固体電解質がリチウム元素、リン元素および硫黄元素を含有し、該固体電解質の固体31P−NMRスペクトルが、90.9±0.4ppmおよび86.5±0.4ppmの位置に、結晶に起因するピークを有し、上記固体電解質に占める上記結晶の比率が60〜100mol%であることを特徴とする全固体バイポーラ電池が記載されている。
特開2014−116156号公報 特開2008−103285号公報
従来のバイポーラ型リチウムイオン電池は、まず正極層、バイポーラ電極層、固体電解質層、負極層等の中間体を作製し、その後中間体を組み上げてバイポーラ型リチウムイオン電池としている。しかし、ユーザー毎に異なる電圧仕様に対応するためには、単位セルを複数作製し、得られた単位セルを重ね合わせることによりバイポーラ型リチウムイオン電池を作製する方法の方が好ましい。
しかし、本発明者らの検討によれば、単位セル同士を重ね合わせる方法では、複数の単位セルを積層してバイポーラ型リチウムイオン電池を作製する際に単位セル同士がズレ易く、単位セル同士のズレが生じた場合、正極層、負極層もしくは電解質層の欠落や崩壊が生じて短絡が起こり易いことが明らかになった。
また、本発明者らの検討によれば、粘着剤を介して単位セル同士を積層させることにより単位セル同士の積層性が改善されるものの、今度は単位セル間の電気的接触が悪化し、バイポーラ型リチウムイオン電池の内部抵抗が増加してしまうことが明らかになった。
本発明は上記事情に鑑みてなされたものであり、単位セル同士の積層性および単位セル間の電気的接触に優れたバイポーラ型リチウムイオン電池を提供するものである。
本発明者らは、単位セル間の電気的接触に優れ、かつ、単位セル同士のズレが抑制されたバイポーラ型リチウムイオン電池を安定的に提供するため鋭意検討した。その結果、貫通孔を有する粘着性樹脂層を介して単位セル同士を積層することにより、単位セル間の電気的接触が良好で、かつ、単位セル同士のズレが抑制されたバイポーラ型リチウムイオン電池を安定的に得ることができることを見出し、本発明に至った。
すなわち、本発明によれば、
バイポーラ型リチウムイオン電池であって、
正極層と、負極層と、上記正極層と上記負極層との間に設けられた一または二以上のバイポーラ電極層と、複数の電解質層と、を含む電池素子を備え、
上記正極層と上記バイポーラ電極層との間および上記負極層と上記バイポーラ電極層との間に上記電解質層が設けられており、
上記バイポーラ電極層は、バイポーラ電極集電体と、上記バイポーラ電極集電体の一方の面に設けられた正極活物質層と、上記バイポーラ電極集電体の他方の面に設けられた負極活物質層と、を含み、
上記バイポーラ電極集電体は、第一集電体と、貫通孔を有する粘着性樹脂層と、第二集電体とがこの順番に積層されており、
上記第一集電体と上記第二集電体とが上記粘着性樹脂層を介して接着しているバイポーラ型リチウムイオン電池が提供される。
さらに、本発明によれば、
上記のバイポーラ型リチウムイオン電池を製造するための製造方法であって、
正極集電体と、第一正極活物質層と、第一電解質層と、第一負極活物質層と、第一集電体がこの順番に積層された第一単位セルを準備する工程と、
第二集電体と、第二正極活物質層と、第二電解質層と、第二負極活物質層と、負極集電体と、がこの順番に積層された第二単位セルを準備する工程と、
上記第一集電体の上記第一負極活物質層側とは反対側の面および上記第二集電体の上記第二正極活物質層側とは反対側の面のうち少なくとも一方の面上に、貫通孔を有する粘着性樹脂層を形成する工程と、
上記第一集電体と上記第二集電体とを上記粘着性樹脂層を介して接着することにより、上記第一単位セルと上記第二単位セルとが積層された積層体を得る工程と、
上記積層体を加圧することにより、上記第一集電体と上記第二集電体とを、上記粘着性樹脂層の上記貫通孔内で直接接触させることにより、上記第一集電体と、上記粘着性樹脂層と、上記第二集電体とがこの順番に積層されたバイポーラ電極層を形成する工程と、
を含むバイポーラ型リチウムイオン電池の製造方法が提供される。
さらに、本発明によれば、
上記のバイポーラ型リチウムイオン電池を製造するための製造方法であって、
正極集電体と、第一正極活物質層と、第一電解質層と、第一負極活物質層と、第一集電体がこの順番に積層された第一単位セルを準備する工程と、
第二集電体と、第二正極活物質層と、第二電解質層と、第二負極活物質層と、負極集電体と、がこの順番に積層された第二単位セルを準備する工程と、
上記第一集電体の上記第一負極活物質層側とは反対側の面および上記第二集電体の上記第二正極活物質層側とは反対側の面のうち少なくとも一方の面上に、貫通孔を有し、かつ、上記貫通孔内に導電部を有する粘着性樹脂層を形成する工程と、
上記第一集電体と上記第二集電体とを上記粘着性樹脂層を介して接着することにより、上記第一単位セルと上記第二単位セルとが積層された積層体を得る工程と、
上記積層体を加圧することにより、上記第一集電体と上記第二集電体とを、上記粘着性樹脂層の上記貫通孔内の上記導電部を介して電気的に接触させることにより、上記第一集電体と、上記粘着性樹脂層と、上記第二集電体とがこの順番に積層されたバイポーラ電極層を形成する工程と、
を含むバイポーラ型リチウムイオン電池の製造方法が提供される。
本発明によれば、単位セル同士の積層性および単位セル間の電気的接触に優れたバイポーラ型リチウムイオン電池を実現できる。
本実施形態のバイポーラ型リチウムイオン電池の構造の一例を模式的に示した断面図である。 本実施形態のバイポーラ電極集電体の構造の一例を模式的に示した断面図である。 本実施形態の貫通孔を有する粘着性樹脂層の構造の一例を模式的に示した平面図である。 本実施形態のバイポーラ型リチウムイオン電池の構造の一例を模式的に示した断面図である。 本実施形態のバイポーラ型リチウムイオン電池の構造の一例を模式的に示した断面図である。 本実施形態のバイポーラ型リチウムイオン電池の製造工程の一例を模式的に示した工程断面図である。
以下、本発明の実施形態について、図面を用いて説明する。なお、すべての図面において、同様な構成要素には共通の符号を付し、適宜説明を省略する。また、図は概略図であり、実際の寸法比率とは一致していない。なお、数値範囲の「A〜B」は特に断りがなければ、A以上B以下を表す。
[バイポーラ型リチウムイオン電池]
はじめに、本実施形態のバイポーラ型リチウムイオン電池100について説明する。
図1は、本実施形態のバイポーラ型リチウムイオン電池100の構造の一例を模式的に示した断面図である。図2は、本実施形態のバイポーラ電極集電体109の構造の一例を模式的に示した断面図である。図3は、本実施形態の貫通孔110を有する粘着性樹脂層109bの構造の一例を模式的に示した平面図である。
本実施形態に係るバイポーラ型リチウムイオン電池100は、正極層101と、負極層103と、正極層101と負極層103との間に設けられた一または二以上のバイポーラ電極層105と、複数の電解質層107(107a、107b)と、を含む電池素子200を備える。
正極層101とバイポーラ電極層105との間に電解質層107aが設けられている。バイポーラ電極層105と負極層103との間に電解質層107bが設けられている。バイポーラ電極層105は、バイポーラ電極集電体109と、バイポーラ電極集電体109の一方の面に設けられた正極活物質層111bと、バイポーラ電極集電体109の他方の面に設けられた負極活物質層113aと、を含む。そして、バイポーラ電極集電体109は、第一集電体109aと、貫通孔を有する粘着性樹脂層109bと、第二集電体109cとがこの順番に積層されており、第一集電体109aと第二集電体109cとが粘着性樹脂層109bを介して接着している。
ここで、第一集電体109aと第二集電体109cとは、例えば、粘着性樹脂層109bの貫通孔110内で直接接触することにより、電気的に接触している。
また、第一集電体109aと第二集電体109cとの電気的接触の安定性をより向上させ、電気的接触が良好なバイポーラ型リチウムイオン電池100をより安定的に得る観点から、バイポーラ電極集電体109が粘着性樹脂層109bの貫通孔110内に導電部を有し、第一集電体109aと第二集電体109cとが上記導電部を介して電気的に接触しているのが好ましい。
本発明者らの検討によれば、単位セル同士が積層されたバイポーラ型リチウムイオン電池は、複数の単位セルを積層してバイポーラ型リチウムイオン電池を作製する際に単位セル同士がズレ易いことが明らかになった。
また、本発明者らの検討によれば、粘着剤を介して単位セル同士を積層させることにより単位セル同士の積層性が改善されるものの、今度は単位セル間の電気的接触が悪化し、バイポーラ型リチウムイオン電池の内部抵抗が増加してしまうことが明らかになった。
上記事情の元に、本発明者らは、単位セル間の電気的接触に優れ、かつ、単位セル同士のズレが抑制されたバイポーラ型リチウムイオン電池を安定的に提供するため鋭意検討した。その結果、貫通孔を有する粘着性樹脂層を介して単位セル同士を積層することにより、単位セル間の電気的接触が良好で、かつ、単位セル同士のズレが抑制されたバイポーラ型リチウムイオン電池を安定的に得ることができることを見出し、本発明に至った。
バイポーラ型リチウムイオン電池100は、電解質層107(107a、107b)を介して、正極層101とバイポーラ電極層105と負極層103とがこの順番で積層されている。また、正極活物質層111aと負極活物質層113aとが、電解質層107aを介して対向するように積層されている。また、正極活物質層111bと負極活物質層113bとが、電解質層107bを介して対向するように積層されている。このようにして、正極活物質層111aと電解質層107aと負極活物質層113aにより構成される第1の発電要素と、正極活物質層111bと電解質層107bと負極活物質層113bにより構成される第2の発電要素が形成される。なお、本実施形態では、正極層101と負極層103との間に、1つのバイポーラ電極層105を積層しているが、それに限定されず、バイポーラ型リチウムイオン電池100の供給電圧の設計値に応じて2つ以上のバイポーラ電極層105を積層してもよい。その場合、バイポーラ電極層105とそれに隣り合うバイポーラ電極層105との間にも、電解質層107が配置される。具体的には、2つ以上のバイポーラ電極層105は、所定のバイポーラ電極層105の正極活物質層111bと、別のバイポーラ電極層105の負極活物質層113aとが電解質層107を介して対向するように積層される。
以下、バイポーラ型リチウムイオン電池100の各構成要素について具体的に説明する。
(正極層)
正極層101は特に限定されず、リチウムイオン電池に一般的に用いられている正極を使用することができる。正極層101は、通常、正極活物質層111aと、正極集電体115と、を含む。
正極層101は特に限定されないが、一般的に公知の方法に準じて製造することができる。例えば、正極活物質を含む正極活物質層111aを正極集電体115上に形成することにより得ることができる。
正極層101の厚みや密度は、電池の使用用途等に応じて適宜決定されるため特に限定されず、一般的に公知の情報に準じて設定することができる。
また、正極層101の厚みは、粘着性樹脂層109bの貫通孔110内での第一集電体109aと第二集電体109cとの接触をより効果的におこなう観点から、面方向における中心部近傍の厚みが、面方向における外周部近傍の厚みよりも厚いことが好ましい。
正極集電体115としては、特に限定されず、リチウムイオン電池に一般的に用いられているものを使用でき、例えば、銅箔、銅合金箔、ニッケル箔、アルミニウム箔、アルミニウム合金箔、ステンレス鋼箔、炭素シート等が挙げられる。価格や入手容易性、電気化学的安定性等の観点から、正極集電体115としてはアルミニウム箔が好ましい。また、正極集電体115の厚みは特に限定されないが、例えば、0.001〜0.5mmの範囲のものを用いることが好ましい。
正極活物質層111aは特に限定されないが、正極活物質以外の成分として、例えば、固体電解質材料、バインダー、導電助剤等から選択される一種または二種以上の材料を含んでもよい。
正極活物質層111a中の各種材料の配合割合は、電池の使用用途等に応じて、適宜決定されるため特に限定されず、一般的に公知の情報に準じて設定することができる。
本実施形態に係る正極活物質としては特に限定されず、リチウムイオン電池の正極に使用可能な一般的に公知の正極活物質を用いることができる。例えば、リチウムコバルト酸化物(LiCoO)、リチウムニッケル酸化物(LiNiO)、リチウムマンガン酸化物(LiMn)、固溶体酸化物(LiMnO−LiMO(M=Co、Ni等))、リチウム−マンガン−ニッケル酸化物(LiNi1/3Mn1/3Co1/3)、オリビン型リチウムリン酸化物(LiFePO)等の複合酸化物;ポリアニリン、ポリピロール等の導電性高分子;LiS、CuS、Li−Cu−S化合物、TiS、FeS、MoS、Li−Mo−S化合物、Li−Ti−S化合物、Li−V−S化合物等の硫化物系正極活物質;硫黄を含浸したアセチレンブラック、硫黄を含浸した多孔質炭素、硫黄と炭素の混合粉等の硫黄を活物質とした材料;等を用いることができる。これらの正極活物質は1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
これらの中でも、より高い放電容量密度を有し、かつ、サイクル特性により優れる観点から、硫化物系正極活物質が好ましく、Li−Mo−S化合物、LiTiS化合物、LiS化合物から選択される一種または二種以上がより好ましい。
ここで、Li−Mo−S化合物は構成元素としてLi、Mo、およびSを含んでいるものであり、通常は原料であるモリブデン硫化物および硫化リチウムをメカノケミカル処理等の混合粉砕することにより得ることができる。
また、Li−Ti−S化合物は構成元素としてLi、Ti、およびSを含んでいるものであり、通常は原料であるチタン硫化物と硫化リチウムをメカノケミカル処理等の混合粉砕することにより得ることができる。
Li−V−S化合物は構成元素としてLi、V、およびSを含んでいるものであり、通常は原料であるバナジウム硫化物と硫化リチウムをメカノケミカル処理等の混合粉砕することにより得ることができる。
本実施形態に係る正極活物質の形状としては、例えば微粒子状を挙げることができる。
本実施形態に係る微粒子状の正極活物質は特に限定されないが、レーザー回折散乱式粒度分布測定法による重量基準粒度分布における平均粒子径d50が、好ましくは0.5μm以上20μm以下であり、より好ましくは1μm以上10μm以下である。
正極活物質の平均粒子径d50を上記範囲内とすることにより、良好なハンドリング性を維持すると共に、より一層高密度の正極を作製することができる。
上記固体電解質材料としては特に限定されないが、一般的にリチウムイオン電池に用いられるものを用いることができる。例えば、硫化物系固体電解質材料、酸化物系固体電解質材料、その他のリチウム系無機固体電解質材料等の無機系固体電解質材料;ポリマー電解質等の有機系固体電解質材料を挙げることができる。これらの中でも、硫化物系固体電解質材料が好ましい。これにより、正極活物質との界面抵抗がより一層低下し、出力特性に優れたリチウムイオン電池にすることができる。
上記硫化物系固体電解質材料としては、例えば、LiS−P材料、LiS−SiS材料、LiS−GeS材料、LiS−Al材料、LiS−SiS−LiPO材料、LiS−P−GeS材料、LiS−LiO−P−SiS材料、LiS−GeS−P−SiS材料、LiS−SnS−P−SiS材料等が挙げられる。これらは、一種単独で使用してもよいし、二種以上を組み合わせて使用してもよい。これらの中でも、リチウムイオン伝導性に優れ、かつ広い電圧範囲で分解等を起こさない安定性を有する点から、LiS−P材料が好ましい。ここで、例えば、LiS−P材料とは、少なくともLiS(硫化リチウム)とPとを含む混合物をメカノケミカル処理等の混合粉砕することにより得られる材料を意味する。
上記酸化物系固体電解質材料としては、例えば、LiTi(PO、LiZr(PO、LiGe(PO等のNASICON型、(La0.5+xLi0.5−3x)TiO等のペロブスカイト型等が挙げられる。
その他のリチウム系無機固体電解質材料としては、例えば、LiPON、LiNbO、LiTaO、LiPO、LiPO4−x(xは0<x≦1)、LiN、LiI、LISICON等が挙げられる。さらに、これらの無機固体電解質の結晶を析出させて得られるガラスセラミックスも固体電解質材料として用いることができる。
上記有機系固体電解質材料としては、例えば、ドライポリマー電解質、ゲル電解質等のポリマー電解質を用いることができる。
ポリマー電解質としては、一般的にリチウムイオン電池に用いられるものを用いることができる。
上記固体電解質材料の形状としては、例えば粒子状を挙げることができる。粒子状の固体電解質材料は特に限定されないが、レーザー回折散乱式粒度分布測定法による重量基準粒度分布における平均粒子径d50が、好ましくは1μm以上20μm以下であり、より好ましくは1μm以上10μm以下である。
上記固体電解質材料の平均粒子径d50を上記範囲内とすることにより、良好なハンドリング性を維持すると共に、リチウムイオン伝導性をより一層向上させることができる。
上記導電助剤としてはリチウムイオン電池に使用可能な通常の導電助剤であれば特に限定されないが、例えば、天然黒鉛、人造黒鉛等のグラファイト類;アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラック等のカーボンブラック類;炭素繊維、金属繊維等の導電性繊維類;アルミニウム粉等の金属粉末類;酸化亜鉛ウィスカー、導電性チタン酸カリウムウィスカー等の導電性ウィスカー類;酸化チタン等の導電性金属酸化物;フェニレン誘導体等の有機導電性材料;等が挙げられる。これらの導電助剤は1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
これらの中でも、粒子径が小さく、価格が安いカーボンブラック類が好ましい。
上記バインダーとしては、ポリマー電解質およびそれ以外のバインダーを使用できる。ポリマー電解質の中でも、ドライポリマー電解質が好ましい。また、ポリマー電解質とそれ以外のバインダーとを組み合わせて使用してもよい。
ポリマー電解質以外のバインダーとしては、リチウムイオン電池で一般的に使用されるバインダーであれば特に限定されないが、例えば、ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン、ポリエチレン、ポリプロピレン、アラミド樹脂、ポリアミド、ポリイミド、ポリアミドイミド、ポリビニルアルコール、ポリアクリロニトリル、ポリアクリル酸、ポリアクリル酸メチル、ポリアクリル酸エチル、ポリアクリル酸ヘキシル、ポリメタクリル酸、ポリメタクリル酸メチル、ポリメタクリル酸エチル、ポリメタクリル酸ヘキシル、ポリ酢酸ビニル、ポリビニルピロリドン、ポリエーテル、ポリエーテルサルフォン、ポリヘキサフルオロプロピレン、スチレンブタジエンゴム、カルボキシメチルセルロース等が挙げられる。これらのバインダーは1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
(正極層の製造方法)
つぎに、正極層101の製造方法について説明する。
正極層101は特に限定されないが、例えば、正極集電体115上に、微粒子状の上記正極活物質を付着させて正極活物質層111aを形成することにより、正極層101を作製することができる。例えば、次のような方法で製造することができる。
まず、正極活物質、必要に応じて、導電助剤、固体電解質材料等を混合機により混合する。各材料の混合比は、電池の使用用途等に応じて適宜決定される。
混合機としては、ボールミル、プラネタリーミキサー等公知のものが使用でき、特に限定されない。混合方法も特に限定されず、公知の方法に準じておこなうことができる。
つづいて、得られた正極活物質を含む混合物を、正極集電体115上に所定の厚みになるように付着させることにより、正極活物質層111aを形成する。こうすることにより、正極層101を得ることができる。
また、正極集電体115上に完全に付着していない正極活物質等を除去する工程をさらにおこなってもよい。また、正極活物質等を付着させた面をプレスすることにより、正極活物質層111aの付着力を高めることで、正極活物質等の脱離を抑制したり、正極活物質等が付着した面の平滑性を向上させたりしてもよい。また、正極活物質等を付着させた面をプレスすることにより、正極活物質層111aの厚みや密度を調整してもよい。プレスの方法としては、一般的に公知の方法を用いることができる。
正極集電体115上に正極活物質を含む混合物を付着させる方法としては特に限定されないが、空気中または不活性雰囲気中で正極集電体115上に正極活物質を含む混合物を直接供給する方法や、分散液に正極活物質を含む混合物を分散させてスラリー状態にし、そのスラリーを正極集電体115に供給する方法等がある。正極活物質層111aの厚みを高度に制御する観点から、空気中または不活性雰囲気中で正極集電体115上に正極活物質を含む混合物を直接供給する方法が好ましい。
空気中または不活性雰囲気中で正極集電体115上に正極活物質を含む混合物を直接供給する方法としては正極集電体115上に正極活物質を含む混合物を落下させる方法、正極活物質を含む混合物を正極集電体115上に噴霧する方法等が挙げられる。
正極活物質層111aの厚みをより高度に制御する観点から、正極活物質を含む混合物を多孔体の空隙に充填し、多孔体の空隙に充填された上記混合物を正極集電体115上に篩い落とすことにより、正極集電体115上に正極活物質層111aを形成する方法が好ましい。多孔体の形態としては、例えば、織布、不織布、メッシュクロス、多孔性膜、エキスパンドシート、パンチングシート等から選択される一種または二種以上が挙げられる。これらの中でも、正極活物質を含む混合物の充填性に優れるとともに、正極活物質を含む混合物を篩い落とす性能に優れる観点からメッシュクロスが好ましい。
また、多孔体を構成する材料としては、ナイロン、ポリエチレンテレフタレート(PET)等のポリエステル、ポリエチレン、ポリプロピレン、ポリテトラフルオロエチレン(PTFE)、エチレン−テトラフルオロエチレン共重合体、ポリフッ化ビニリデン、ポリ塩化ビニリデン、ポリ塩化ビニル、ポリウレタン、ビニロン、ポリベンズイミダゾール、ポリイミド、ポリフェニレンサルファイト、ポリエーテルエーテルケトン、セルロース、アクリル樹脂等の樹脂材料;麻、木材パルプ、コットンリンター等の天然繊維;鉄、アルミニウム、チタン、ニッケル、ステンレス等の金属材料;ガラス、カーボン等の無機材料等から選択される一種または二種以上が挙げられる。
これらの中でも、柔軟性に優れる点から、樹脂材料や天然繊維が好ましく、樹脂材料がより好ましく、ナイロンが特に好ましい。
また、正極集電体115の面方向において外周部近傍よりも中心部近傍の方により多くの正極活物質を含む混合物を供給することにより、面方向における中心部近傍の厚みが、面方向における外周部近傍の厚みよりも厚い正極層101を得ることができる。
(負極層)
負極層103は特に限定されず、リチウムイオン電池に一般的に用いられている負極を使用することができる。負極層103は、通常、負極活物質層113bと、負極集電体117と、を含む。
負極層103は特に限定されないが、一般的に公知の方法に準じて製造することができる。例えば、負極活物質を含む負極活物質層113bを負極集電体117上に形成することにより得ることができる。
負極層103の厚みや密度は、電池の使用用途等に応じて適宜決定されるため特に限定されず、一般的に公知の情報に準じて設定することができる。
また、負極層103の厚みは、粘着性樹脂層109bの貫通孔110内での第一集電体109aと第二集電体109cとの接触をより効果的におこなう観点から、面方向における中心部近傍の厚みが、面方向における外周部近傍の厚みよりも厚いことが好ましい。
負極集電体117としては、特に限定されず、リチウムイオン電池に一般的に用いられているものを使用でき、例えば、銅箔、銅合金箔、ニッケル箔、アルミニウム箔、アルミニウム合金箔、ステンレス鋼箔、炭素シート等が挙げられる。価格や入手容易性、電気化学的安定性等の観点から、負極集電体117としては銅箔が好ましい。また、負極集電体117の厚みは特に限定されないが、例えば、0.001〜0.5mmの範囲のものを用いることが好ましい。
負極活物質層113bは特に限定されないが、負極活物質以外の成分として、例えば、固体電解質材料、バインダー、導電助剤等から選択される一種または二種以上の材料を含んでもよい。固体電解質材料、バインダーおよび導電助剤の具体例としては、前述した正極活物質層111aで挙げたものと同様のものを挙げることができる。
負極活物質層113b中の各種材料の配合割合は、電池の使用用途等に応じて、適宜決定されるため特に限定されず、一般的に公知の情報に準じて設定することができる。
上記負極活物質としては特に限定されず、リチウムイオン電池の負極に使用可能な一般的に公知の負極活物質を用いることができる。例えば、天然黒鉛、人造黒鉛、樹脂炭、炭素繊維、活性炭、ハードカーボン、ソフトカーボン等の炭素質材料;スズ、スズ合金、シリコン、シリコン合金、ガリウム、ガリウム合金、インジウム、インジウム合金、アルミニウム、アルミニウム合金等を主体とした金属系材料;ポリアセン、ポリアセチレン、ポリピロール等の導電性ポリマー;金属リチウム;リチウムチタン複合酸化物(例えばLiTi12);Li−Si合金、Li−Sn合金、Li−Al合金、Li−Ga合金、Li−Mg合金、Li−In合金等のリチウム合金;等が挙げられる。これらの負極活物質は、1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
負極活物質の形状としては、例えば微粒子状や箔状を挙げることができる。
本実施形態に係る微粒子状の負極活物質は特に限定されないが、レーザー回折散乱式粒度分布測定法による重量基準粒度分布における平均粒子径d50が、好ましくは1μm以上50μm以下であり、より好ましくは5μm以上30μm以下である。
負極活物質の平均粒子径d50を上記範囲内とすることにより、良好なハンドリング性を維持すると共に、より一層高密度の負極を作製することができる。
(負極層の製造方法)
つぎに、負極層103の製造方法について説明する。
負極層103は特に限定されないが、例えば、負極集電体117上に、微粒子状の上記負極活物質を付着させて負極活物質層113bを形成することにより、負極層103を作製することができる。また、負極集電体117上に、箔状の上記負極活物質を圧着させることにより、負極活物質層113bを形成してもよい。
負極集電体117上に微粒子状の上記負極活物質を付着させて負極活物質層113bを形成することにより、負極層103を作製する方法としては、例えば、前述した正極層101の製造方法と同様の方法を挙げることができる。
(バイポーラ電極層)
バイポーラ電極層105は、バイポーラ電極集電体109と、バイポーラ電極集電体109の一方の面に設けられた正極活物質層111bと、バイポーラ電極集電体109の他方の面に設けられた負極活物質層113aと、を含む。
そして、バイポーラ電極集電体109は、第一集電体109aと、貫通孔110を有する粘着性樹脂層109bと、第二集電体109cとがこの順番に積層されており、第一集電体109aと第二集電体109cとが粘着性樹脂層109bを介して接着している。
ここで、第一集電体109aと第二集電体109cとは、例えば、粘着性樹脂層109bの貫通孔110内で直接接触している。
また、第一集電体109aと第二集電体109cとの電気的接触の安定性をより向上させ、電気的接触が良好なバイポーラ型リチウムイオン電池100をより安定的に得る観点から、バイポーラ電極集電体109が粘着性樹脂層109bの貫通孔110内に導電部を有し、第一集電体109aと第二集電体109cとが上記導電部を介して電気的に接触しているのが好ましい。
正極活物質層111bとしては、正極活物質層111aと同様の構成を挙げることができる。また、負極活物質層113aとしては、負極活物質層113bと同様の構成を挙げることができる。
第一集電体109aおよび第二集電体109cとしては、バイポーラ型リチウムイオン電池に一般的に用いられているバイポーラ電極集電体を使用することができる。例えば、銅箔、銅合金箔、ニッケル箔、アルミニウム箔、アルミニウム合金箔、ステンレス鋼箔、炭素シート、クラッド材等が挙げられる。クラッド材には、例えば、銅を主成分とする層と、アルミニウムを主成分とする層とを接合した積層材料等が挙げられる。また、第一集電体109aおよび第二集電体109cの厚みは特に限定されないが、例えば、それぞれ0.001〜0.5mmの範囲のものを用いることが好ましい。
本実施形態に係る粘着性樹脂層109bは第一集電体109aおよび第二集電体109cを接着できる程度の粘着性を有し、かつ、貫通孔110を有するものであれば特に限定されないが、例えば、粘着性樹脂により構成された層が好ましい。
本実施形態に係る粘着性樹脂層109bの平均厚みは、粘着性樹脂層109bの貫通孔110内での第一集電体109aと第二集電体109cとの接触をより効果的におこなう観点から、好ましくは50μm以下、より好ましくは30μm以下、さらに好ましくは15μm以下、さらにより好ましくは10μm以下、さらにより好ましくは8μm以下、特に好ましくは5μm以下である。
また、本実施形態に係る粘着性樹脂層109bの平均厚みは、粘着性樹脂層109bの取扱い性や、第一集電体109aと第二集電体109cとの接着性を向上させる点から、好ましくは0.5μm以上、より好ましくは1μm以上、さらに好ましくは3μm以上である。
粘着性樹脂層109bの平面形状(外形形状)は、第一集電体109aや第二集電体109cの平面形状と同等である。
粘着性樹脂層109bには、その表裏を貫通する貫通孔110が形成されている。貫通孔110の平面形状は特に限定されないが、対称性の高い形状の方が粘着性樹脂層109bの面全体に均等な圧力を与えられるため好ましい。貫通孔110は、第一集電体109aと第二集電体109cとの接触を効果的におこなえる寸法に設定されていることが好ましい。
また、第一集電体109aと第二集電体109cとの接着性をより良好なものとする観点から、貫通孔110は、粘着性樹脂層109bの端部に1mm以上の幅が残るような寸法とすることが好ましい。
本実施形態に係る粘着性樹脂層109bには導電性微粒子が含まれてもよいが、導電性微粒子の含有量は、粘着性樹脂層109bの全体を100質量%としたとき、好ましくは0.5質量%未満であり、より好ましくは0.1質量%以下であり、さらに好ましくは0.05質量%以下である。また、本実施形態に係る粘着性樹脂層109bは、導電性微粒子を含まないことが特に好ましい。
これにより、粘着性樹脂層109bの平均厚みを上記上限値以下としつつ、より一層良好な粘着性を得ることができる。
ここで、導電性微粒子としては、後述する導電性樹脂層に用いられる導電性微粒子と同様のものを挙げることができる。
本実施形態に係る粘着性樹脂層109bに含まれる粘着性樹脂としては粘着性を示す樹脂であれば特に限定されないが、例えば、(メタ)アクリル系熱可塑性樹脂、シリコーン樹脂、ウレタン樹脂、ポリビニルエーテル、ゴム等が挙げられる。ここで、本実施形態では、「(メタ)アクリル」とは、アクリルおよびメタクリルを総称する表現として用いることとする。
本実施形態において、(メタ)アクリル系熱可塑性樹脂とは、(メタ)アクリル酸エステル単位を含有する熱可塑性樹脂であり、例えば、(メタ)アクリル酸エステルの単独重合体、2種以上の(メタ)アクリル酸エステルの共重合体、(メタ)アクリル酸エステルおよびこれと共重合可能な不飽和結合を有するビニルモノマーとの共重合体等が挙げられる。
上記(メタ)アクリル酸エステルとしては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n−ブチル、(メタ)アクリル酸tert−ブチル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸2−エチルヘキシル、(メタ)アクリル酸n−オクチル、(メタ)アクリル酸ステアリル、(メタ)アクリル酸イソボルニル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸メトキシエチル、(メタ)アクリル酸2−ブトキシエチル、(メタ)アクリル酸2−フェノキシエチル、(メタ)アクリル酸グリシジル、(メタ)アクリル酸テトラヒドロフルフリル、ヘキサンジオールジ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ウレタンアクリレート、(メタ)アクリル酸2−ヒドロキシエチル、(メタ)アクリル酸3−ヒドロキシプロピル、(メタ)アクリル酸2−ヒドロキシプロピル、(メタ)アクリル酸4−ヒドロキシブチル、(メタ)アクリル酸2−ヒドロキシブチル、(メタ)アクリル酸5−ヒドロキシペンチル、(メタ)アクリル酸6−ヒドロキシヘキシル、(メタ)アクリル酸3−ヒドロキシ−3−メチルブチル、(メタ)アクリル酸2−ヒドロキシ−3−フェノキシプロピル、ペンタエリスリトールトリ(メタ)アクリレート、2−〔(メタ)アクリロイルオキシ〕エチル−2−ヒドロキシエチルフタル酸、2−〔(メタ)アクリロイルオキシ〕エチル−2−ヒドロキシプロピルフタル酸等が挙げられる。
また、上記(メタ)アクリル酸エステルと共重合可能な不飽和結合を有するビニルモノマーとしては、例えば、(メタ)アクリル酸、無水マレイン酸、マレイミド誘導体、(メタ)アクリロニトリル、N−ビニルピロリドン、N−アクリロイルモルフォリン、N−ビニルカプロラクトン、N−ビニルピペリジン、N−ビニルホルムアミド、N−ビニルアセトアミド、スチレン、インデン、α−メチルスチレン、p−メチルスチレン、p−クロロスチレン、p−クロロメチルスチレン、p−メトキシスチレン、p−tert−ブトキシスチレン、ジビニルベンゼン、ブタジエン、イソプレン、酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、カプロン酸ビニル、安息香酸ビニル、珪皮酸ビニルおよびその誘導体等が挙げられる。上記(メタ)アクリル酸エステルおよび(メタ)アクリル酸エステルと共重合可能な不飽和結合を有するビニルモノマーは、単独で用いてもよく、複数種併用してもよい。
(メタ)アクリル系熱可塑性樹脂に含まれる(メタ)アクリル酸エステル単位の含有量は、導電性微粒子の分散性が良くなる点から、(メタ)アクリル系熱可塑性樹脂の全体を100質量%としたとき、好ましくは20質量%以上100質量%以下であり、より好ましくは50質量%以上100質量%以下であり、より好ましくは80質量%以上100質量%以下である。
上記シリコーン樹脂としては、例えば、ポリジメチルシロキサン等が挙げられる。
上記ポリビニルエーテルとしては、ポリビニルメチルエーテル、ポリビニルエチルエーテル等が挙げられる。
上記ゴムとしては、天然ゴム、イソプレン系ゴム、スチレン−ブタジエン系ゴム、ポリイソブチレン系ゴム等が挙げられる。
本実施形態に係る粘着性樹脂層109bに含まれる粘着性樹脂の含有量は、粘着性樹脂層109bの全体を100質量%としたとき、好ましくは80質量%以上100質量%以下であり、より好ましくは90質量%以上100質量%以下である。粘着性樹脂の含有量が上記範囲内であると、粘着性樹脂層109bの粘着性と取扱い性とのバランスが優れる。
本実施形態に係る粘着性樹脂層109bは、必要に応じて、イソシアネート化合物、酸無水物、アミン化合物、エポキシ化合物、金属キレート類、アジリジン化合物、メラミン化合物等の架橋剤;ロジン系樹脂、テルペン系樹脂、石油樹脂、クマロン−インデン系樹脂、フェノール系樹脂、キシレン樹脂、スチレン系樹脂等の粘着付与樹脂;シランカップリング剤等をさらに含有していてもよい。本実施形態に係る粘着性樹脂層109bに粘着付与樹脂を含有させると、初期タック、接着力の調節が容易となる。
本実施形態に係る粘着性樹脂層109bは、粘着性樹脂層109bの平均厚みを上記上限値以下としつつ、取扱い性をより一層向上させる観点から、基材と、基材の片面または両面に設けられた粘着剤層とを備えた構成が好ましい。これにより、粘着性樹脂層109bの取扱い性が向上し、バイポーラ型リチウムイオン電池100の生産性をより一層向上させることができる。
上記基材はシート状であり、例えば、フィルム、織布、不織布、メッシュクロス、多孔性膜、エキスパンドシート、パンチングシート等が挙げられる。
また、基材を構成する材料としては、ナイロン、ポリエチレンテレフタレート(PET)等のポリエステル、ポリエチレン、ポリプロピレン、ポリテトラフルオロエチレン(PTFE)、エチレン−テトラフルオロエチレン共重合体、ポリフッ化ビニリデン、ポリ塩化ビニリデン、ポリ塩化ビニル、ポリウレタン、ビニロン、ポリベンズイミダゾール、ポリイミド、ポリフェニレンサルファイト、ポリエーテルエーテルケトン、セルロース、アクリル樹脂等の樹脂材料;麻、木材パルプ、コットンリンター等の天然繊維等が挙げられる。
本実施形態に係る粘着性樹脂層109bの製造方法は特に限定されないが、例えば、次のような方法で製造することができる。
まず、上記粘着性樹脂、必要に応じて、上記架橋剤、上記粘着付与樹脂、上記シランカップリング剤を適量配合した混合物を加熱溶融させる。
得られた樹脂組成物を基材の片面または両面に塗布後、常温まで放冷等によって冷却することにより、基材の片面または両面に粘着剤層を形成する。これにより、基材と、基材の片面または両面に設けられた粘着剤層とを備えた粘着性樹脂層を得ることができる。加熱溶融による混合は、例えばニーダールーダー、押出機、ミキシングロ−ル、バンバリーミキサー、その他既知の混練装置を用いて、通常100℃〜250℃の温度範囲で行うことができる。
また、得られた樹脂組成物を公知の成形方法を用いてシート状あるいはフィルム上に成形することにより粘着性樹脂層を得ることもできる。
次いで、得られ粘着性樹脂層に、パンチング等によって貫通孔を形成することにより、貫通孔110を有する粘着性樹脂層109bが得られる。
(導電性樹脂層)
本実施形態に係る正極集電体115、負極集電体117、第一集電体109a、第二集電体109c等の集電体において、活物質層が形成される面上には導電性樹脂層が設けられていることが好ましい。これにより、各集電体に対する各活物質層の密着性を高めることができる。
本実施形態に係る導電性樹脂層は特に限定されないが、例えば、粘着性樹脂および導電性微粒子を含み、導電性微粒子が粘着性樹脂中に分散している構造が好ましい。
本実施形態に係る導電性樹脂層の厚みは、導電性微粒子の平均粒径や粘着性樹脂等の特性を考慮して適宜決定されるが、通常は5μm以上60μm以下であり、好ましくは10μm以上40μm以下である。
導電性樹脂層の厚みが上記範囲内であると、活物質層と集電体との接着性と、導電性樹脂層の導電性とのバランスが優れる。
本実施形態に係る導電性樹脂層に含まれる導電性微粒子としては導電性を有する微粒子であれば特に限定はされないが、例えば、金、銀、白金、亜鉛、ステンレス、ニッケル、銅、コバルト、モリブデン、アンチモン、鉄、クロム等の金属粒子;アルミニウム・マグネシウム合金、アルミニウム・ニッケル合金等の合金粒子、酸化スズ、酸化インジウム等の金属酸化物粒子;ニッケル等の金属粒子に金、銀、白金等の貴金属類を被覆した粒子;ガラス、セラミック、プラスチック等の非導電性粒子に金、銀、白金等の貴金属類を被覆した粒子;天然黒鉛、人造黒鉛等のグラファイト類、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラック等のカーボンブラック類等のカーボン粒子等が挙げられる。
本実施形態に係る導電性微粒子のレーザー回折散乱式粒度分布測定法による重量基準粒度分布における平均粒子径d50は、好ましくは0.5μm以上50μm以下であり、より好ましくは5μm以上30μm以下である。平均粒子径d50を上記範囲内とすることにより、導電性微粒子の良好なハンドリング性を維持すると共に、導電性樹脂層の導電性を向上させることができる。
導電性樹脂層に含まれる導電性微粒子の含有量は、導電性樹脂層の全体を100質量%としたとき、好ましくは0.05質量%以上20質量%以下であり、より好ましくは0.1質量%以上10質量%以下である。導電性微粒子の含有量が上記範囲内であると、活物質層と集電体との接着性と、導電性樹脂層の導電性とのバランスが優れる。
本実施形態に係る導電性樹脂層に含まれる粘着性樹脂としては、前述した粘着性樹脂層109bに用いられる粘着性樹脂と同様のものを挙げることができる。
本実施形態に係る導電性樹脂層に含まれる(メタ)アクリル系熱可塑性樹脂の含有量は、導電性樹脂層の全体を100質量%としたとき、好ましくは80質量%以上99.95質量%以下であり、より好ましくは90質量%以上99.9質量%以下である。(メタ)アクリル系熱可塑性樹脂の含有量が上記範囲内であると、活物質層と集電体との接着性と、導電性樹脂層の導電性とのバランスが優れる。
(導電部)
粘着性樹脂層109bの貫通孔110内に挿入する導電部としては、電子伝導性を有する材料から形成されていれば特に限定されないが、例えば、金属材料、導電性樹脂材料、炭素材料等から形成されている。
金属材料としては特に限定されず、電子伝導性を有する公知の金属材料を用いることができる。例えば、銅、銅合金、ニッケル、アルミニウム、アルミニウム合金、ステンレス鋼等の金属材料が挙げられる。金属材料としては、これらの金属からなる金属箔が好ましい。
導電性樹脂材料としては特に限定されず、電子伝導性を有する公知の導電性樹脂材料を用いることができる。例えば、樹脂および導電性微粒子を含む材料、導電性高分子等が挙げられる。ここで、導電性微粒子としては、例えば、前述した導電性樹脂層に用いられる導電性微粒子と同様のものを用いることができる。樹脂としては、例えば、公知の熱可塑性樹脂および熱硬化性樹脂を用いることができる。導電性高分子としては、公知の導電性高分子を用いることができる。
炭素材料としては特に限定されず、電子伝導性を有する公知の炭素材料を用いることができる。例えば、グラファイト、グラフェン、カーボンブラック、非晶質炭素、炭素繊維等が挙げられる。
上記導電部は第一集電体109aと第二集電体109cとが電気的に接触するように形成されていればよく、粘着性樹脂層109bの貫通孔110内部を埋めるように形成されていてもよいし、粘着性樹脂層109bの貫通孔110の一部分に形成されていてもよい。
また、上記導電部の平均厚みは、第一集電体109aと第二集電体109cとが電気的に接触できる厚みであれば特に限定されないが、第一集電体109aと第二集電体109cとの接着性をより良好にする観点から、好ましくは50μm以下、より好ましくは30μm以下、さらに好ましくは15μm以下、さらにより好ましくは10μm以下、さらにより好ましくは8μm以下、特に好ましくは5μm以下である。
また、上記導電部の平均厚みは、第一集電体109aと第二集電体109cとの電気的接触をより良好にする観点から、好ましくは0.5μm以上、より好ましくは1μm以上、さらに好ましくは3μm以上である。
上記導電部の形状は第一集電体109aと第二集電体109cとが電気的に接触できる形状であれば特に限定されないが、例えば、塊状、膜状、シート状、箔状、フィルム状、織布、不織布、メッシュクロス、多孔性膜、エキスパンドシート、パンチングシート等が挙げられる。
(電解質層)
電解質層107は、正極活物質層111aと負極活物質層113aとの間および正極活物質層111bと負極活物質層113bとの間に介在するように配置される層である。電解質層107としては、多孔性セパレーターに非水電解液を含浸させたものや、固体電解質材料を含む固体電解質層が挙げられる。
本実施形態の多孔性セパレーターとしては正極活物質層と負極活物質層を電気的に絶縁させ、リチウムイオンを透過する機能を有するものであれば特に限定されないが、例えば、多孔性膜を用いることができる。
多孔性膜としては微多孔性高分子フィルムが好適に使用され、材質としてポリオレフィン、ポリイミド、ポリフッ化ビニリデン、ポリエステル等が挙げられる。特に、多孔性ポリオレフィンフィルムが好ましく、具体的には多孔性ポリエチレンフィルム、多孔性ポリプロピレンフィルム等が挙げられる。
本実施形態の非水電解液とは、電解質を溶媒に溶解させたものである。
上記電解質としては、公知のリチウム塩がいずれも使用でき、活物質の種類に応じて選択すればよい。例えば、LiClO、LiBF、LiPF、LiCFSO、LiCFCO、LiAsF、LiSbF、LiB10Cl10、LiAlCl、LiCl、LiBr、LiB(C、CFSOLi、CHSOLi、LiCFSO、LiCSO、Li(CFSON、低級脂肪酸カルボン酸リチウム等が挙げられる。
上記電解質を溶解する溶媒としては、電解質を溶解させる液体として通常用いられるものであれば特に限定されず、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、メチルエチルカーボネート(MEC)、ビニレンカーボネート(VC)等のカーボネート類;γ−ブチロラクトン、γ−バレロラクトン等のラクトン類;トリメトキシメタン、1,2−ジメトキシエタン、ジエチルエーテル、2−エトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン等のエーテル類;ジメチルスルホキシド等のスルホキシド類;1,3−ジオキソラン、4−メチル−1,3−ジオキソラン等のオキソラン類;アセトニトリル、ニトロメタン、ホルムアミド、ジメチルホルムアミド等の含窒素類;ギ酸メチル、酢酸メチル、酢酸エチル、酢酸ブチル、プロピオン酸メチル、プロピオン酸エチル等の有機酸エステル類;リン酸トリエステルやジグライム類;トリグライム類;スルホラン、メチルスルホラン等のスルホラン類;3−メチル−2−オキサゾリジノン等のオキサゾリジノン類;1,3−プロパンスルトン、1,4−ブタンスルトン、ナフタスルトン等のスルトン類;等が挙げられる。これらは、1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
本実施形態の固体電解質層は固体電解質材料により構成された層である。固体電解質層は特に限定されず、全固体型リチウムイオン電池に一般的に用いられている固体電解質層を使用することができる。固体電解質層は特に限定されないが、一般的に公知の方法に準じて製造することができる。
固体電解質層を構成する固体電解質材料としては、リチウムイオン伝導性を有するものであれば特に限定されるものではないが、例えば、前述した正極活物質層111aで挙げたものと同様のものを挙げることができる。これらの中でも、硫化物系固体電解質材料が好ましい。これにより、固体電解質材料間の界面抵抗がより一層低下し、出力特性に優れたリチウムイオン電池にすることができる。
本実施形態の固体電解質層における固体電解質材料の含有量は、所望の絶縁性が得られる割合であれば特に限定されるものではないが、例えば、10体積%以上100体積%以下の範囲内、中でも、50体積%以上100体積%以下の範囲内であることが好ましい。
また、本実施形態の固体電解質層は、バインダーを含有していてもよい。バインダーを含有することにより、可撓性を有する固体電解質層を得ることができる。バインダーとしては、例えば、ポリテトラフルオロエチレン、ポリフッ化ビニリデン等のフッ素含有結着材を挙げることができる。固体電解質層の厚さは、例えば、0.1μm以上1000μm以下の範囲内、中でも、0.1μm以上300μm以下の範囲内であることが好ましい。
固体電解質層の厚みや密度は、電池の使用用途等に応じて適宜決定されるため特に限定されず、一般的に公知の情報に準じて設定することができる。
バイポーラ型リチウムイオン電池100は電解質層107として、上述した固体電解質層を用いることによって全固体型リチウムイオン電池とすることができる。全固体型リチウムイオン電池は、電池内に可燃性の有機溶媒を用いないので、安全装置の簡素化が図れ、製造コストや生産性、安全性に優れる。
図4は、本実施形態のバイポーラ型リチウムイオン電池100の構造の一例を模式的に示した断面図である。
バイポーラ型リチウムイオン電池100において、単位セル間での短絡を抑制する観点から、粘着性樹脂層109bの片面の面積が、第一集電体109aおよび第二集電体109cの少なくとも一方の集電体の片面の面積以上であることが好ましく、第一集電体109aおよび第二集電体109cの少なくとも一方の集電体の片面の面積よりも大きいことがより好ましい。
第一集電体109aおよび第二集電体109cの少なくとも一方の集電体の片面の面積よりも大きい場合は、図4に示すように、粘着性樹脂層109bの端部が折り曲げ可能となり、単位セル間での短絡をより効果的に抑制することができる。この場合、粘着性樹脂層109bは絶縁性であることが好ましい。
図5は、本実施形態のバイポーラ型リチウムイオン電池100の構造の一例を模式的に示した断面図である。
バイポーラ型リチウムイオン電池100において、電池素子200を封止する封止樹脂部120をさらに備えることが好ましい。封止樹脂部120としては、例えば、樹脂製の枠体であって、その表裏を貫通する貫通孔が形成され、貫通孔内に電池素子200を収容できる構成が挙げられる。
これにより、電池素子200が封止樹脂部120によって封止されているので、バイポーラ型リチウムイオン電池100を安定的な構造のものとすることができる。
具体的には、枠体に形成された貫通孔内に電池素子200が収容されている。これにより、電池素子200の周囲が封止樹脂部20によって封止された構造が実現されている。こうした構造により、単位セル間や単位セル内での短絡をより一層抑制することができる。
また、電池素子200が貫通孔の内周壁面に対して非接合な状態で、貫通孔内に収容されている。これにより、少なくとも電池素子200は、貫通孔の内周壁面によって強固には拘束されておらず、貫通孔内においてある程度自由に移動することができる。このため、電池素子200に不要な応力が加わってしまうことを抑制できるので、バイポーラ型リチウムイオン電池100の品質を容易に安定させることができる。
つまり、バイポーラ型リチウムイオン電池100を、生産性に優れ、かつ、品質を容易に安定させることが可能な構造のものとすることができる。
枠体は、例えば、絶縁性樹脂製の薄板からなる。枠体の平面形状(外形形状)は、任意の形状とすることができ、例えば、角丸の矩形状等が挙げられる。
枠体には、その表裏を貫通する貫通孔が形成されている。貫通孔の平面形状は、電池素子200の平面形状と同等である。貫通孔は、電池素子200をほぼ隙間無く収容する寸法に設定されていることが好ましい。枠体の厚さは、電池素子200の厚さと同等である。
枠体を構成する樹脂材料は、貫通孔の内部に電池素子200を収容保持するのに十分な強度を確保できる材料であれば特に限定されない。一例として、枠体は、PET、塩化ビニル等のフィルムにより構成することができる。
枠体の貫通孔は、例えば、パンチング等によって形成することができる。
バイポーラ型リチウムイオン電池100において、面方向における中心部近傍の厚みをXとし、面方向における外周部近傍の厚みをXとしたとき、XとXとの差(X−X)が3μm以上であることが好ましく、5μm以上であることがより好ましく、10μm以上であることが特に好ましい。これにより、粘着性樹脂層109bの貫通孔110内での第一集電体109aと第二集電体109cとの接触をより効果的におこなうことができる。
とXとの差(X−X)を上記下限値以上とする方法は特に限定されないが、例えば、正極層101や負極層103において、面方向における中心部近傍の厚みを面方向における外周部近傍の厚みよりも厚く調整することにより(X−X)を上記下限値以上に調整することができる。
[バイポーラ型リチウムイオン電池の製造方法]
つぎに、本実施形態のバイポーラ型リチウムイオン電池100の製造方法について説明する。図6は、本実施形態のバイポーラ型リチウムイオン電池100の製造工程の一例を模式的に示した工程断面図である。
バイポーラ型リチウムイオン電池100の製造方法は、例えば、以下の(1)、(2)、(3A)、(4)および(5A)の5つの工程、または以下の(1)、(2)、(3B)、(4)および(5B)の5つの工程を含む。
(1)正極集電体115と、正極活物質層111a(第一正極活物質層)と、電解質層107a(第一電解質層)と、負極活物質層113a(第一負極活物質層)と、第一集電体109aがこの順番に積層された第一単位セル100aを作製する工程
(2)第二集電体109cと、正極活物質層111b(第二正極活物質層)と、電解質層107b(第二電解質層)と、負極活物質層113b(第二負極活物質層)と、負極集電体117と、がこの順番に積層された第二単位セル100bを作製する工程
(3A)第一集電体109aの負極活物質層113a(第一負極活物質層)側とは反対側の面および第二集電体109cの正極活物質層111b(第二正極活物質層)側とは反対側の面のうち少なくとも一方の面上に、貫通孔110を有する粘着性樹脂層109bを形成する工程
(3B)第一集電体109aの負極活物質層113a(第一負極活物質層)側とは反対側の面および第二集電体109cの正極活物質層111b(第二正極活物質層)側とは反対側の面のうち少なくとも一方の面上に、貫通孔110を有し、かつ、貫通孔110内に導電部を有する粘着性樹脂層109bを形成する工程
(4)第一集電体109aと第二集電体109cとを粘着性樹脂層109bを介して接着することにより、第一単位セル100aと第二単位セル100bとが積層された積層体150を得る工程
(5A)積層体150を加圧することにより、第一集電体109aと第二集電体109cとを、粘着性樹脂層109bの貫通孔110内で直接接触させることにより、第一集電体109aと、粘着性樹脂層109bと、第二集電体109cとがこの順番に積層されたバイポーラ電極層105を形成する工程
(5B)積層体150を加圧することにより、第一集電体109aと第二集電体109cとを、粘着性樹脂層109bの貫通孔110内の上記導電部を介して電気的に接触させることにより、第一集電体109aと、粘着性樹脂層109bと、第二集電体109cとがこの順番に積層されたバイポーラ電極層105を形成する工程
はじめに、(1)正極集電体115と、正極活物質層111aと、電解質層107aと、負極活物質層113aと、第一集電体109aがこの順番に積層された第一単位セル100aを作製する。
第一単位セル100aは、一般的に公知の方法に準じて製造される。例えば、正極集電体115および正極活物質層111aにより構成された正極層と、電解質層107aと、負極活物質層113aおよび第一集電体109aにより構成された負極層と、をこの順番に積層することにより得ることができる。
つぎに、(2)第二集電体109cと、正極活物質層111bと、電解質層107bと、負極活物質層113bと、負極集電体117と、がこの順番に積層された第二単位セル100bを作製する。
第二単位セル100bは、一般的に公知の方法に準じて製造される。例えば、第二集電体109cおよび正極活物質層111bにより構成された正極層と、電解質層107bと、負極活物質層113bおよび負極集電体117とにより構成された負極層と、をこの順番に積層することにより得ることができる。
次いで、(3A)第一集電体109aの負極活物質層113a側とは反対側の面および第二集電体109cの正極活物質層111b側とは反対側の面のうち少なくとも一方の面上に、貫通孔110を有する粘着性樹脂層109bを形成する。例えば、第一集電体109aの負極活物質層113a側とは反対側の面および第二集電体109cの正極活物質層111b側とは反対側の面のうち少なくとも一方の面上に貫通孔を有する粘着性樹脂層を貼り合わせることにより、貫通孔110を有する粘着性樹脂層109b形成することができる。
あるいは、(3B)第一集電体109aの負極活物質層113a側とは反対側の面および第二集電体109cの正極活物質層111b側とは反対側の面のうち少なくとも一方の面上に、貫通孔110を有し、かつ、貫通孔110内に導電部を有する粘着性樹脂層109bを形成することもできる。例えば、第一集電体109aの負極活物質層113a側とは反対側の面および第二集電体109cの正極活物質層111b側とは反対側の面のうち少なくとも一方の面上に、貫通孔を有し、かつ、貫通孔内に導電部を有する粘着性樹脂層を貼り合わせることにより、貫通孔110を有し、かつ、貫通孔110内に導電部を有する粘着性樹脂層109b形成することができる。
次いで、(4)第一集電体109aと第二集電体109cとを粘着性樹脂層109bを介して接着することにより、第一単位セル100aと第二単位セル100bとが積層された積層体150を得る。
次いで、(5A)積層体150を加圧することにより、第一集電体109aと第二集電体109cとを、粘着性樹脂層109bの貫通孔110内で直接接触させることにより、第一集電体109aと、粘着性樹脂層109bと、第二集電体109cとがこの順番に積層されたバイポーラ電極層105を形成し、バイポーラ型リチウムイオン電池100が得られる。
あるいは、(5B)積層体150を加圧することにより、第一集電体109aと第二集電体109cとを、粘着性樹脂層109bの貫通孔110内の上記導電部を介して電気的に接触させることにより、第一集電体109aと、粘着性樹脂層109bと、第二集電体109cとがこの順番に積層されたバイポーラ電極層105を形成し、バイポーラ型リチウムイオン電池100を得ることもできる。
積層体150を加圧することにより、第一集電体109aと第二集電体109cとが粘着性樹脂層109bを介して接着し、さらに粘着性樹脂層109bの貫通孔110内で直接接触する、あるいは上記導電部を介して電気的に接触することでバイポーラ電極集電体109となる。こうすることで、第一単位セル100aと第二単位セル100bが電気的に接続する。
また、積層体150を加圧することにより、各層間のアンカー効果で一定の強度を有するバイポーラ型リチウムイオン電池100になる。
積層体150を加圧する圧力は、例えば、40MPa以上500MPa以下である。
積層体150を加圧する方法は特に限定されず、例えば、平板プレス、ロールプレス等を用いることができる。
また、必要に応じて積層体150を加圧するとともに加熱してもよい。加熱加圧を行えば固体電解質材料同士の融着・結合が起こり、得られる固体電解質層の強度はより一層高くなる。その結果、固体電解質材料の欠落や、固体電解質層表面のひび割れをより一層抑制できる。
積層体150を加熱する温度は、例えば、150℃以上500℃以下である。
本実施形態のバイポーラ型リチウムイオン電池100の製造方法は、使用する装置が簡便であり、生産性に優れている。また、第一集電体109aと第二集電体109cとが粘着性樹脂層109bを介して密着しているため、単位セル同士のズレが起こりにくい。さらに第一集電体109aと第二集電体109cとが直接接触している、または導電部を介して電気的に接触しているため、単位セル同士の電気抵抗を低減することができる。
そのため、歩留まり良く、電気的接触性に優れたバイポーラ型リチウムイオン電池100を得ることができる。すなわち、本実施形態のバイポーラ型リチウムイオン電池100の製造方法によれば、バイポーラ型リチウムイオン電池100の生産性を向上させることができる。
以上、本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。
なお、本発明は前述の実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれるものである。
以下、本発明を実施例および比較例により説明するが、本発明はこれらに限定されるものではない。
[1]測定方法
はじめに、以下の実施例、比較例における測定方法を説明する。
(1)粒度分布
レーザー回折散乱式粒度分布測定装置(マルバーン社製、マスターサイザー3000)を用いて、レーザー回折法により、実施例および比較例で用いた材料の粒度分布を測定した。測定結果から、各材料について、重量基準の累積分布における50%累積時の粒径(d50、平均粒子径)をそれぞれ求めた。
(2)交流インピーダンスの測定
実施例および比較例で得られたバイポーラ型リチウムイオン電池について、放電終止電圧に到達した状態で交流インピーダンス測定装置(Bio−Logic社製SP−300)を用いて、25℃の温度下で、1kHzインピーダンス(Ω)を測定した。
(3)積層性評価
実施例および比較例において、アルミラミネートフィルムによる真空ラミネートの条件を変化させて、バイポーラ型リチウムイオン電池をそれぞれ10個作製し、以下の基準で積層性を評価した。
○:第一単位セルと第二単位セルとの間にズレが生じたバイポーラ型リチウムイオン電池が無かったもの
×:第一単位セルと第二単位セルとの間にズレが生じたバイポーラ型リチウムイオン電池が1個以上あったもの
なお、第一単位セルと第二単位セルとの間のズレは目視で観察し、明らかにズレがあったものを「ズレあり」とした。
(4)短絡防止性評価
実施例および比較例において、アルミラミネートフィルムによる真空ラミネートの条件を変化させて、バイポーラ型リチウムイオン電池をそれぞれ100個作製し、短絡が無い場合の初期の自然電位である2V以上が得られた電池の個数を百分率で評価した。
(5)生産性評価
実施例および比較例において、1時間で作製できたバイポーラ型リチウムイオン電池の個数により、バイポーラ型リチウムイオン電池の生産性を評価した。
[2]材料
つぎに、以下の実施例、比較例において使用した材料について説明する。
(1)正極活物質(Li14MoS化合物)の製造
アルゴン雰囲気下で、Al製ポットに、MoS(和光純薬工業社製、745mg、4.7mmol、平均粒子径:10μm)と、LiS(シグマアルドリッチジャパン社製、1497mg、32.5mmol、平均粒子径:5μm)と、を秤量して加え、さらにZrOボールを入れ、Al製ポットを密閉した。
次いで、Al製ポットを、ボールミル回転台に乗せ120rpmで、4日間処理を行い、混合物を得た。
得られたLi−Mo−S化合物は乳鉢により粉砕し、目開き43μmの篩により分級して、平均粒子径d50が2μmのLi−Mo−S化合物を得た。
Moの含有量に対するLiの含有量のモル比(Li/Mo)は14であり、Moの含有量に対するSの含有量のモル比(S/Mo)は9であった。
(2)硫化物系固体電解質材料(Li1112)の製造
硫化物系固体電解質材料であるLi1112を以下の手順で作製した。
原料には、LiS(シグマアルドリッチジャパン製、純度99.9%)、P(関東化学製試薬)を使用した。LiNは、以下の手順で作製した。
まず、窒素雰囲気のグローブボックス中で、Li箔(本城金属社製純度99.8%、厚さ0.5mm)にステンレス製の剣山を使用しφ1mm以下の穴を多数開けた。Li箔は穴の部分から黒紫色に変化し始め、そのまま、常温で24時間放置することでLi箔すべてが黒紫色のLiNに変化した。LiNは、メノウ乳鉢で粉砕後、ステンレス製篩で篩い分けし、75μm以下の粉末を回収し無機固体電解質材料の原料とした。
つづいて、アルゴングローブボックス中で各原料をLiS:P:LiN=67.5:22.5:10.0(モル%)になるように精秤し、これら粉末を20分間メノウ乳鉢で混合した。次いで、混合粉末2gを秤量し、φ10mmのジルコニア製ボール500gとともに、遊星ボールミル(フリッチュ社製、P−7)にて100rpmで1時間混合粉砕した。次いで、400rpmで15時間混合粉砕し、Li1112組成の硫化物系固体電解質材料を得た。
<実施例1>
導電性銅箔導電テープ(寺岡製作所製8313 0.03、外寸法:25.0mm×25.0mm、厚さ:30μm、電解銅箔:0.009mm、導電性アクリル系粘着剤層:0.021mm、粘着剤層面に黒鉛(日本黒鉛工業社製、CGC−20、8mg)を付着)、負極活物質層(インジウム箔、ニラコ社製、23.0mm×23.0mm、平均厚さ:20μm)、固体電解質層(Li1112、平均厚さ:60μm)、正極活物質層(Li14MoS:ケッチェンブラック(KB):Li1112=1:0.5:1.2(質量比)、平均厚さ:30μm)、導電性銅箔導電テープ(寺岡製作所製8313 0.03、外寸法:25.0mm×25.0mm、厚さ:30μm、電解銅箔:0.009mm、導電性アクリル系粘着剤層:0.021mm、粘着剤層面に銅粉(高純度化学研究所社製、325メッシュ、30mg)を付着)をこの順で積層させた。次いで、得られた積層体を80MPaで加圧して第一単位セルを作製した。ここで、第一単位セルの作製と同様の方法で、第一単位セルと同じ構成の第二単位セルを作製した。
次いで、中央に直径15mmの円形状の貫通孔を形成した粘着性樹脂層(日東電工社製、極薄両面テープNo.5600、層構成:アクリル系粘着剤層/PETフィルム基材/アクリル系粘着剤層、総厚み:5μm、外寸法:25.0mm×25.0mm)を介して、得られた第一単位セルと第二単位セルを積層して積層体を作製し、得られた積層体を80MPaで加圧した。次いで、得られた積層体をアルミラミネートフィルムで真空ラミネートし、バイポーラ型リチウムイオン電池を得た。このバイポーラ型リチウムイオン電池について交流インピーダンス測定、積層性評価、短絡防止性評価および生産性評価をおこなった。得られた結果を表1に示す。
<実施例2および3>
中央に直径15mmの円形状の貫通孔を形成した粘着性樹脂層の外寸法を表1に示す寸法に変えた以外は実施例1と同様にしてバイポーラ型リチウムイオン電池をそれぞれ作製し、実施例1と同様の評価をおこなった。なお、実施例2に関しては図4に示すように粘着性樹脂層の端部を折り曲げた。得られた結果を表1に示す。
<実施例4〜7>
中央に直径15mmの円形状の貫通孔を形成した粘着性樹脂層の外寸法を表1に示す寸法に変え、さらに図5に示すような封止樹脂部120(PETフィルムにより構成された樹脂枠)を設けた以外は実施例1と同様にしてバイポーラ型リチウムイオン電池をそれぞれ作製し、実施例1と同様の評価をおこなった。なお、実施例4および6に関しては図4に示すように粘着性樹脂層の端部を折り曲げた。得られた結果を表1に示す。
<実施例8>
中央に直径15mmの円形状の貫通孔を形成した粘着性樹脂層として、日東電工社製の透明粘着シート(CS9621T、アクリル系粘着剤層のみで基材なし、厚み:25μm、外寸法:25.0mm×25.0mm)を用いた以外は実施例1と同様にしてバイポーラ型リチウムイオン電池を作製し、実施例1と同様の評価をおこなった。得られた結果を表1に示す。
<実施例9>
中央に直径15mmの円形状の貫通孔を形成した粘着性樹脂層として、日東電工社製の基材レス両面接着テープ(GA5903、アクリル系粘着剤層のみで基材なし、厚み:30μm、外寸法:25.0mm×25.0mm)を用いた以外は実施例1と同様にしてバイポーラ型リチウムイオン電池を作製し、実施例1と同様の評価をおこなった。得られた結果を表1に示す。
<比較例1>
第一単位セルと第二単位セルとの間に粘着性樹脂層を設けなかった以外は実施例1と同様にしてバイポーラ型リチウムイオン電池を作製し、実施例1と同様の評価をおこなった。得られた結果を表1に示す。
<比較例2>
中央に直径15mmの円形状の貫通孔を形成した粘着性樹脂層の代わりに、貫通孔がまったく形成されていない粘着性樹脂層(日東電工社製、極薄両面テープNo.5600、層構成:アクリル系粘着剤層/PETフィルム基材/アクリル系粘着剤層、総厚み:5μm、外寸法:25.0mm×25.0mm)を用いた以外は実施例1と同様にしてバイポーラ型リチウムイオン電池を作製し、実施例1と同様の評価をおこなった。得られた結果を表1に示す。
<比較例3>
中央に直径15mmの円形状の貫通孔を形成した粘着性樹脂層の代わりに、貫通孔がまったく形成されていない導電性樹脂層(寺岡製作所製、7741、総厚み:50μm、層構成:導電性アクリル系粘着剤層/導電性不織布/導電性アクリル系粘着剤層、外寸法:25.0mm×25.0mm)を用いた以外は実施例1と同様にしてバイポーラ型リチウムイオン電池を作製し、実施例1と同様の評価をおこなった。得られた結果を表1に示す。
Figure 2017073374
表1から、貫通孔を形成した粘着性樹脂層を用いた実施例のバイポーラ型リチウムイオン電池は、第一単位セルと第二単位セルとの間に粘着性樹脂層を設けなかった比較例1のバイポーラ型リチウムイオン電池に比べて、単位セル同士の積層性に優れていることが分かった。
さらに、貫通孔を形成した粘着性樹脂層を用いた実施例のバイポーラ型リチウムイオン電池は、貫通孔をまったく有しない樹脂層を用いた比較例2および3のバイポーラ型リチウムイオン電池に比べて、1kHzインピーダンスが低く、内部抵抗が低かった。すなわち、実施例のバイポーラ型リチウムイオン電池は、単位セル間の電気的接触に優れていることが分かった。
以上から、本実施形態によれば、単位セル同士の積層性および単位セル間の電気的接触に優れたバイポーラ型リチウムイオン電池を実現できることが確認できた。
<実施例10>
粘着性樹脂層の貫通孔内に導電部として銅箔(直径10mm、厚み10μm)を挿入した以外は実施例4と同様にしてバイポーラ型リチウムイオン電池を得た。このバイポーラ型リチウムイオン電池を60個作製し、それぞれ充放電曲線を測定した。次いで、充放電曲線に不規則な電圧変動がない正常な電池の割合を求めた。得られた結果を表2に示す。なお、比較として実施例4の電池についてもバイポーラ型リチウムイオン電池を60個作製し、充放電曲線に不規則な電圧変動がない正常な電池の割合を求めた。
<実施例11>
粘着性樹脂層の貫通孔内に挿入する導電部を銅箔(直径14mm、厚み10μm)に変えた以外は実施例10と同様にバイポーラ型リチウムイオン電池を60個作製し、同様の評価をおこなった。得られた結果を表2に示す。
<実施例12>
粘着性樹脂層の貫通孔内に挿入する導電部を銅箔(直径10mm、厚み2μm)に変えた以外は実施例10と同様にバイポーラ型リチウムイオン電池を60個作製し、同様の評価をおこなった。得られた結果を表2に示す。
<実施例13>
粘着性樹脂層の貫通孔内に挿入する導電部をステンレス箔(直径10mm、厚み8μm)に変えた以外は実施例10と同様にバイポーラ型リチウムイオン電池を60個作製し、同様の評価をおこなった。得られた結果を表2に示す。
<実施例14>
粘着性樹脂層の貫通孔内に挿入する導電部をアルミニウム箔(直径14mm、厚み20μm)に変えた以外は実施例10と同様にバイポーラ型リチウムイオン電池を60個作製し、同様の評価をおこなった。得られた結果を表2に示す。
Figure 2017073374
表2から、貫通孔の内部に導電部を挿入した実施例10〜14は、貫通孔の内部に導電部を挿入しなかった実施例4に比べて、充放電曲線に不規則な電圧変動がない正常な電池の割合が多く、単位セル同士の電気的接触により一層優れていることが分かった。
100 バイポーラ型リチウムイオン電池
100a 第一単位セル
100b 第二単位セル
101 正極層
103 負極層
105 バイポーラ電極層
107 電解質層
107a 電解質層
107b 電解質層
109 バイポーラ電極集電体
109a 第一集電体
109b 粘着性樹脂層
109c 第二集電体
110 貫通孔
111a 正極活物質層
111b 正極活物質層
113a 負極活物質層
113b 負極活物質層
115 正極集電体
117 負極集電体
120 封止樹脂部
150 積層体
200 電池素子

Claims (14)

  1. バイポーラ型リチウムイオン電池であって、
    正極層と、負極層と、前記正極層と前記負極層との間に設けられた一または二以上のバイポーラ電極層と、複数の電解質層と、を含む電池素子を備え、
    前記正極層と前記バイポーラ電極層との間および前記負極層と前記バイポーラ電極層との間に前記電解質層が設けられており、
    前記バイポーラ電極層は、バイポーラ電極集電体と、前記バイポーラ電極集電体の一方の面に設けられた正極活物質層と、前記バイポーラ電極集電体の他方の面に設けられた負極活物質層と、を含み、
    前記バイポーラ電極集電体は、第一集電体と、貫通孔を有する粘着性樹脂層と、第二集電体とがこの順番に積層されており、
    前記第一集電体と前記第二集電体とが前記粘着性樹脂層を介して接着しているバイポーラ型リチウムイオン電池。
  2. 請求項1に記載のバイポーラ型リチウムイオン電池において、
    前記第一集電体と前記第二集電体とが前記粘着性樹脂層の前記貫通孔内で直接接触しているバイポーラ型リチウムイオン電池。
  3. 請求項2に記載のバイポーラ型リチウムイオン電池において、
    前記バイポーラ型リチウムイオン電池の面方向における中心部近傍の厚みをXとし、前記バイポーラ型リチウムイオン電池の面方向における外周部近傍の厚みをXとしたとき、XとXとの差(X−X)が3μm以上であるバイポーラ型リチウムイオン電池。
  4. 請求項1に記載のバイポーラ型リチウムイオン電池において、
    前記バイポーラ電極集電体は前記粘着性樹脂層の前記貫通孔内に導電部をさらに有し
    前記第一集電体と前記第二集電体とが前記導電部を介して電気的に接触しているバイポーラ型リチウムイオン電池。
  5. 請求項4に記載のバイポーラ型リチウムイオン電池において、
    前記導電部が金属材料、導電性樹脂材料および炭素材料から選択される少なくとも一層を含むバイポーラ型リチウムイオン電池。
  6. 請求項1乃至5いずれか一項に記載のバイポーラ型リチウムイオン電池において、
    前記粘着性樹脂層の片面の面積が、前記第一集電体および前記第二集電体の少なくとも一方の集電体の片面の面積以上であるバイポーラ型リチウムイオン電池。
  7. 請求項1乃至6いずれか一項に記載のバイポーラ型リチウムイオン電池において、
    前記粘着性樹脂層の平均厚みが50μm以下であるバイポーラ型リチウムイオン電池。
  8. 請求項1乃至7いずれか一項に記載のバイポーラ型リチウムイオン電池において、
    前記粘着性樹脂層の全体を100質量%としたとき、導電性微粒子の含有量が0.5質量%以下であるバイポーラ型リチウムイオン電池。
  9. 請求項1乃至8いずれか一項に記載のバイポーラ型リチウムイオン電池において、
    前記粘着性樹脂層が、基材と、基材の片面または両面に設けられた粘着剤層と、を含むバイポーラ型リチウムイオン電池。
  10. 請求項1乃至9いずれか一項に記載のバイポーラ型リチウムイオン電池において、
    前記電池素子を封止する封止樹脂部をさらに備え、
    前記封止樹脂部は、樹脂製の枠体であって、その表裏を貫通する貫通孔が形成され、前記貫通孔内に前記電池素子を収容しているバイポーラ型リチウムイオン電池。
  11. 請求項1乃至10いずれか一項に記載のバイポーラ型リチウムイオン電池において、
    前記電解質層が固体電解質材料により構成された固体電解質層であるバイポーラ型リチウムイオン電池。
  12. 請求項1乃至11いずれか一項に記載のバイポーラ型リチウムイオン電池において、
    全固体型リチウムイオン電池であるバイポーラ型リチウムイオン電池。
  13. 請求項1に記載のバイポーラ型リチウムイオン電池を製造するための製造方法であって、
    正極集電体と、第一正極活物質層と、第一電解質層と、第一負極活物質層と、第一集電体がこの順番に積層された第一単位セルを準備する工程と、
    第二集電体と、第二正極活物質層と、第二電解質層と、第二負極活物質層と、負極集電体と、がこの順番に積層された第二単位セルを準備する工程と、
    前記第一集電体の前記第一負極活物質層側とは反対側の面および前記第二集電体の前記第二正極活物質層側とは反対側の面のうち少なくとも一方の面上に、貫通孔を有する粘着性樹脂層を形成する工程と、
    前記第一集電体と前記第二集電体とを前記粘着性樹脂層を介して接着することにより、前記第一単位セルと前記第二単位セルとが積層された積層体を得る工程と、
    前記積層体を加圧することにより、前記第一集電体と前記第二集電体とを、前記粘着性樹脂層の前記貫通孔内で直接接触させることにより、前記第一集電体と、前記粘着性樹脂層と、前記第二集電体とがこの順番に積層されたバイポーラ電極層を形成する工程と、
    を含むバイポーラ型リチウムイオン電池の製造方法。
  14. 請求項1に記載のバイポーラ型リチウムイオン電池を製造するための製造方法であって、
    正極集電体と、第一正極活物質層と、第一電解質層と、第一負極活物質層と、第一集電体がこの順番に積層された第一単位セルを準備する工程と、
    第二集電体と、第二正極活物質層と、第二電解質層と、第二負極活物質層と、負極集電体と、がこの順番に積層された第二単位セルを準備する工程と、
    前記第一集電体の前記第一負極活物質層側とは反対側の面および前記第二集電体の前記第二正極活物質層側とは反対側の面のうち少なくとも一方の面上に、貫通孔を有し、かつ、前記貫通孔内に導電部を有する粘着性樹脂層を形成する工程と、
    前記第一集電体と前記第二集電体とを前記粘着性樹脂層を介して接着することにより、前記第一単位セルと前記第二単位セルとが積層された積層体を得る工程と、
    前記積層体を加圧することにより、前記第一集電体と前記第二集電体とを、前記粘着性樹脂層の前記貫通孔内の前記導電部を介して電気的に接触させることにより、前記第一集電体と、前記粘着性樹脂層と、前記第二集電体とがこの順番に積層されたバイポーラ電極層を形成する工程と、
    を含むバイポーラ型リチウムイオン電池の製造方法。
JP2016022945A 2015-10-05 2016-02-09 バイポーラ型リチウムイオン電池およびバイポーラ型リチウムイオン電池の製造方法 Active JP6676399B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015197505 2015-10-05
JP2015197505 2015-10-05

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2020043245A Division JP6995155B2 (ja) 2015-10-05 2020-03-12 バイポーラ型リチウムイオン電池およびバイポーラ型リチウムイオン電池の製造方法

Publications (2)

Publication Number Publication Date
JP2017073374A true JP2017073374A (ja) 2017-04-13
JP6676399B2 JP6676399B2 (ja) 2020-04-08

Family

ID=58537472

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2016022945A Active JP6676399B2 (ja) 2015-10-05 2016-02-09 バイポーラ型リチウムイオン電池およびバイポーラ型リチウムイオン電池の製造方法
JP2020043245A Active JP6995155B2 (ja) 2015-10-05 2020-03-12 バイポーラ型リチウムイオン電池およびバイポーラ型リチウムイオン電池の製造方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2020043245A Active JP6995155B2 (ja) 2015-10-05 2020-03-12 バイポーラ型リチウムイオン電池およびバイポーラ型リチウムイオン電池の製造方法

Country Status (1)

Country Link
JP (2) JP6676399B2 (ja)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017183024A (ja) * 2016-03-30 2017-10-05 日立造船株式会社 全固体二次電池およびその製造方法
KR101905167B1 (ko) * 2017-04-24 2018-10-08 한국생산기술연구원 바이폴라 전고체 전지
KR101905168B1 (ko) * 2017-04-24 2018-10-08 한국생산기술연구원 바이폴라 전고체 전지 및 그 제조 방법
US20180309163A1 (en) * 2017-04-24 2018-10-25 Korea Institute Of Industrial Technology Bipolar all solid-state battery
CN109301308A (zh) * 2017-07-25 2019-02-01 松下知识产权经营株式会社 电池
WO2019151193A1 (ja) * 2018-01-30 2019-08-08 株式会社豊田自動織機 蓄電モジュール及び蓄電モジュールの製造方法
JP2019162806A (ja) * 2018-03-20 2019-09-26 株式会社豊田自動織機 金型
JP2019192596A (ja) * 2018-04-27 2019-10-31 トヨタ自動車株式会社 硫化物固体電池とこれを備えた硫化物固体電池システム
JP2019207871A (ja) * 2018-05-28 2019-12-05 パナソニックIpマネジメント株式会社 電池
JP2019207840A (ja) * 2018-05-30 2019-12-05 トヨタ自動車株式会社 全固体電池
US10903500B2 (en) 2018-10-10 2021-01-26 Panasonic Intellectual Property Management Co., Ltd. Battery and cell stack
US11031601B2 (en) 2018-05-23 2021-06-08 Panasonic Intellectual Property Management Co., Ltd. Battery and cell stack
US11101497B2 (en) 2016-02-29 2021-08-24 Hitachi Zosen Corporation All-solid state secondary battery and method for manufacturing same
WO2021192258A1 (ja) * 2020-03-27 2021-09-30 Tdk株式会社 電極体、蓄電素子および蓄電モジュール
JPWO2020158884A1 (ja) * 2019-01-31 2021-11-25 株式会社村田製作所 固体電池およびその製造方法
US11296378B2 (en) 2018-05-23 2022-04-05 Panasonic Intellectual Property Management Co., Ltd. Battery
WO2023120171A1 (ja) * 2021-12-21 2023-06-29 株式会社豊田自動織機 蓄電装置
JP7461518B1 (ja) 2023-01-10 2024-04-03 ソフトバンク株式会社 集電体、電極、電池、飛行体、集電体を生産する方法、電極を生産する方法、及び、電池を生産する方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005317468A (ja) * 2004-04-30 2005-11-10 Nissan Motor Co Ltd バイポーラ電極、バイポーラ電極の製造方法、バイポーラ電池、組電池、およびこれらを搭載した車両
JP2010073500A (ja) * 2008-09-18 2010-04-02 Nissan Motor Co Ltd 有機構造体を含む双極型リチウムイオン二次電池用集電体
JP2010277862A (ja) * 2009-05-28 2010-12-09 Nissan Motor Co Ltd 双極型電池用集電体
JP2010287549A (ja) * 2009-06-15 2010-12-24 Nissan Motor Co Ltd 双極型二次電池用の集電体、双極型二次電池、組電池、車両、双極型二次電池の制御装置、および双極型二次電池の制御方法
JP2014116156A (ja) * 2012-12-07 2014-06-26 Mitsubishi Electric Corp 全固体電池及びその製造方法並びにこれを用いた回路基板
JP2015076178A (ja) * 2013-10-07 2015-04-20 古河機械金属株式会社 電気素子および電気素子の製造方法
US20150155564A1 (en) * 2012-07-03 2015-06-04 Commissariat A L'energie Atomique Et Aux Energies Alternatives Current collector with integrated leak-proofing means, bipolar battery comprising such a collector

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005317468A (ja) * 2004-04-30 2005-11-10 Nissan Motor Co Ltd バイポーラ電極、バイポーラ電極の製造方法、バイポーラ電池、組電池、およびこれらを搭載した車両
JP2010073500A (ja) * 2008-09-18 2010-04-02 Nissan Motor Co Ltd 有機構造体を含む双極型リチウムイオン二次電池用集電体
JP2010277862A (ja) * 2009-05-28 2010-12-09 Nissan Motor Co Ltd 双極型電池用集電体
JP2010287549A (ja) * 2009-06-15 2010-12-24 Nissan Motor Co Ltd 双極型二次電池用の集電体、双極型二次電池、組電池、車両、双極型二次電池の制御装置、および双極型二次電池の制御方法
US20150155564A1 (en) * 2012-07-03 2015-06-04 Commissariat A L'energie Atomique Et Aux Energies Alternatives Current collector with integrated leak-proofing means, bipolar battery comprising such a collector
JP2014116156A (ja) * 2012-12-07 2014-06-26 Mitsubishi Electric Corp 全固体電池及びその製造方法並びにこれを用いた回路基板
JP2015076178A (ja) * 2013-10-07 2015-04-20 古河機械金属株式会社 電気素子および電気素子の製造方法

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11101497B2 (en) 2016-02-29 2021-08-24 Hitachi Zosen Corporation All-solid state secondary battery and method for manufacturing same
JP2017183024A (ja) * 2016-03-30 2017-10-05 日立造船株式会社 全固体二次電池およびその製造方法
KR101905167B1 (ko) * 2017-04-24 2018-10-08 한국생산기술연구원 바이폴라 전고체 전지
KR101905168B1 (ko) * 2017-04-24 2018-10-08 한국생산기술연구원 바이폴라 전고체 전지 및 그 제조 방법
US20180309163A1 (en) * 2017-04-24 2018-10-25 Korea Institute Of Industrial Technology Bipolar all solid-state battery
JP2018186074A (ja) * 2017-04-24 2018-11-22 コリア インスティチュート オブ インダストリアル テクノロジー バイポーラ全固体電池
US11888158B2 (en) 2017-07-25 2024-01-30 Panasonic Intellectual Property Management Co., Ltd. Battery
JP2019029339A (ja) * 2017-07-25 2019-02-21 パナソニックIpマネジメント株式会社 電池
JP7466098B2 (ja) 2017-07-25 2024-04-12 パナソニックIpマネジメント株式会社 電池
CN109301308B (zh) * 2017-07-25 2024-04-09 松下知识产权经营株式会社 电池
US11509027B2 (en) 2017-07-25 2022-11-22 Panasonic Intellectual Property Management Co., Ltd. Battery
JP7157943B2 (ja) 2017-07-25 2022-10-21 パナソニックIpマネジメント株式会社 電池
CN109301308A (zh) * 2017-07-25 2019-02-01 松下知识产权经营株式会社 电池
WO2019151193A1 (ja) * 2018-01-30 2019-08-08 株式会社豊田自動織機 蓄電モジュール及び蓄電モジュールの製造方法
CN111630680B (zh) * 2018-01-30 2023-01-06 株式会社丰田自动织机 蓄电模块及蓄电模块的制造方法
CN111630680A (zh) * 2018-01-30 2020-09-04 株式会社丰田自动织机 蓄电模块及蓄电模块的制造方法
JPWO2019151193A1 (ja) * 2018-01-30 2021-01-28 株式会社豊田自動織機 蓄電モジュール及び蓄電モジュールの製造方法
JP2019162806A (ja) * 2018-03-20 2019-09-26 株式会社豊田自動織機 金型
JP7027996B2 (ja) 2018-03-20 2022-03-02 株式会社豊田自動織機 金型
JP2019192596A (ja) * 2018-04-27 2019-10-31 トヨタ自動車株式会社 硫化物固体電池とこれを備えた硫化物固体電池システム
JP7085124B2 (ja) 2018-04-27 2022-06-16 トヨタ自動車株式会社 硫化物固体電池とこれを備えた硫化物固体電池システム
US11031601B2 (en) 2018-05-23 2021-06-08 Panasonic Intellectual Property Management Co., Ltd. Battery and cell stack
US11296378B2 (en) 2018-05-23 2022-04-05 Panasonic Intellectual Property Management Co., Ltd. Battery
JP7270162B2 (ja) 2018-05-28 2023-05-10 パナソニックIpマネジメント株式会社 電池
JP2019207871A (ja) * 2018-05-28 2019-12-05 パナソニックIpマネジメント株式会社 電池
CN110544772A (zh) * 2018-05-28 2019-12-06 松下知识产权经营株式会社 电池
US11411243B2 (en) * 2018-05-30 2022-08-09 Toyota Jidosha Kabushiki Kaisha All-solid battery
CN110556584A (zh) * 2018-05-30 2019-12-10 丰田自动车株式会社 全固体电池
JP7085127B2 (ja) 2018-05-30 2022-06-16 トヨタ自動車株式会社 全固体電池
JP2019207840A (ja) * 2018-05-30 2019-12-05 トヨタ自動車株式会社 全固体電池
US10903500B2 (en) 2018-10-10 2021-01-26 Panasonic Intellectual Property Management Co., Ltd. Battery and cell stack
JP7156402B2 (ja) 2019-01-31 2022-10-19 株式会社村田製作所 固体電池およびその製造方法
JPWO2020158884A1 (ja) * 2019-01-31 2021-11-25 株式会社村田製作所 固体電池およびその製造方法
WO2021192258A1 (ja) * 2020-03-27 2021-09-30 Tdk株式会社 電極体、蓄電素子および蓄電モジュール
JPWO2021192258A1 (ja) * 2020-03-27 2021-09-30
JP7400946B2 (ja) 2020-03-27 2023-12-19 Tdk株式会社 電極体、蓄電素子および蓄電モジュール
WO2023120171A1 (ja) * 2021-12-21 2023-06-29 株式会社豊田自動織機 蓄電装置
JP7461518B1 (ja) 2023-01-10 2024-04-03 ソフトバンク株式会社 集電体、電極、電池、飛行体、集電体を生産する方法、電極を生産する方法、及び、電池を生産する方法

Also Published As

Publication number Publication date
JP2020109762A (ja) 2020-07-16
JP6676399B2 (ja) 2020-04-08
JP6995155B2 (ja) 2022-01-14

Similar Documents

Publication Publication Date Title
JP6995155B2 (ja) バイポーラ型リチウムイオン電池およびバイポーラ型リチウムイオン電池の製造方法
KR102126144B1 (ko) 고체 전해질 조성물, 전고체 이차 전지용 전극 시트 및 전고체 이차 전지와, 전고체 이차 전지용 전극 시트 및 전고체 이차 전지의 제조 방법
KR101774683B1 (ko) 전극 활물질 슬러리, 이의 제조 방법 및 이를 포함하는 전고체 이차전지
JP6570851B2 (ja) バイポーラ型リチウムイオン電池およびバイポーラ型リチウムイオン電池の製造方法
JP6085370B2 (ja) 全固体電池、全固体電池用電極及びその製造方法
JP3661945B2 (ja) 二次電池用正極およびそれを備えた二次電池
CN100401557C (zh) 非水电解质二次电池
JP6723715B2 (ja) 全固体型リチウムイオン電池用電極および全固体型リチウムイオン電池
KR101886358B1 (ko) Latp 함유 양극 복합재를 갖는 전고체 전지 및 이의 제조 방법
KR20150106809A (ko) 개선된 굴곡강도를 가지는 전극 조립체, 이의 제조 방법 및 이를 포함하는 전기 화학 전지
JP6127528B2 (ja) 電極、全固体電池、およびそれらの製造方法
WO2013183530A1 (ja) リチウムイオン二次電池用負極、リチウムイオン二次電池用負極スラリー、およびリチウムイオン二次電池
CN109478676B (zh) 电极组件及其制造方法
JP2018120811A (ja) リチウムイオン二次電池およびその製造方法
KR20200134688A (ko) 고에너지 밀도 전고체 전지 및 이의 제조 방법
JP6998993B2 (ja) 全固体型リチウムイオン電池用電極および全固体型リチウムイオン電池
CN113300051A (zh) 一种锂离子电池极片和隔膜的复合方法及锂离子电池
JP6754593B2 (ja) リチウムイオン電池
JP2010287497A (ja) 非水電解質二次電池用正極、非水電解質二次電池用正極の製造方法及び非水電解質二次電池
CN111937211A (zh) 电池的制造方法
WO2020065832A1 (ja) 導電性物質、正極および二次電池
JP6951388B2 (ja) バイポーラ型リチウムイオン電池の製造方法
JP7037267B2 (ja) リチウムイオン電池用負極の製造方法
JP6865796B2 (ja) 負極材料、リチウムイオン電池用負極、およびリチウムイオン電池
WO2021229680A1 (ja) 電池及びその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200312

R150 Certificate of patent or registration of utility model

Ref document number: 6676399

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250