JP2017009461A - 分光測定装置、画像形成装置、及び分光測定方法 - Google Patents

分光測定装置、画像形成装置、及び分光測定方法 Download PDF

Info

Publication number
JP2017009461A
JP2017009461A JP2015125877A JP2015125877A JP2017009461A JP 2017009461 A JP2017009461 A JP 2017009461A JP 2015125877 A JP2015125877 A JP 2015125877A JP 2015125877 A JP2015125877 A JP 2015125877A JP 2017009461 A JP2017009461 A JP 2017009461A
Authority
JP
Japan
Prior art keywords
measurement
wavelength
color patch
light
color
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015125877A
Other languages
English (en)
Other versions
JP6631048B2 (ja
Inventor
野澤 武史
Takeshi Nozawa
武史 野澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2015125877A priority Critical patent/JP6631048B2/ja
Priority to CN201610429356.6A priority patent/CN106289523B/zh
Priority to US15/185,373 priority patent/US9721195B2/en
Publication of JP2017009461A publication Critical patent/JP2017009461A/ja
Application granted granted Critical
Publication of JP6631048B2 publication Critical patent/JP6631048B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K15/00Arrangements for producing a permanent visual presentation of the output data, e.g. computer output printers
    • G06K15/02Arrangements for producing a permanent visual presentation of the output data, e.g. computer output printers using printers
    • G06K15/027Test patterns and calibration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/021Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using plane or convex mirrors, parallel phase plates, or particular reflectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0229Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using masks, aperture plates, spatial light modulators or spatial filters, e.g. reflective filters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/06Scanning arrangements arrangements for order-selection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J3/26Generating the spectrum; Monochromators using multiple reflection, e.g. Fabry-Perot interferometer, variable interference filters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/2823Imaging spectrometer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/46Measurement of colour; Colour measuring devices, e.g. colorimeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/46Measurement of colour; Colour measuring devices, e.g. colorimeters
    • G01J3/463Colour matching
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/46Measurement of colour; Colour measuring devices, e.g. colorimeters
    • G01J3/50Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/46Measurement of colour; Colour measuring devices, e.g. colorimeters
    • G01J3/52Measurement of colour; Colour measuring devices, e.g. colorimeters using colour charts
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/00002Diagnosis, testing or measuring; Detecting, analysing or monitoring not otherwise provided for
    • H04N1/00007Diagnosis, testing or measuring; Detecting, analysing or monitoring not otherwise provided for relating to particular apparatus or devices
    • H04N1/00015Reproducing apparatus
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/00002Diagnosis, testing or measuring; Detecting, analysing or monitoring not otherwise provided for
    • H04N1/00007Diagnosis, testing or measuring; Detecting, analysing or monitoring not otherwise provided for relating to particular apparatus or devices
    • H04N1/00023Colour systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/00002Diagnosis, testing or measuring; Detecting, analysing or monitoring not otherwise provided for
    • H04N1/00026Methods therefor
    • H04N1/00034Measuring, i.e. determining a quantity by comparison with a standard
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/00002Diagnosis, testing or measuring; Detecting, analysing or monitoring not otherwise provided for
    • H04N1/00026Methods therefor
    • H04N1/00045Methods therefor using a reference pattern designed for the purpose, e.g. a test chart
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/00002Diagnosis, testing or measuring; Detecting, analysing or monitoring not otherwise provided for
    • H04N1/00026Methods therefor
    • H04N1/00068Calculating or estimating
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/00002Diagnosis, testing or measuring; Detecting, analysing or monitoring not otherwise provided for
    • H04N1/00071Diagnosis, testing or measuring; Detecting, analysing or monitoring not otherwise provided for characterised by the action taken
    • H04N1/00082Adjusting or controlling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/46Colour picture communication systems
    • H04N1/56Processing of colour picture signals
    • H04N1/60Colour correction or control
    • H04N1/603Colour correction or control controlled by characteristics of the picture signal generator or the picture reproducer
    • H04N1/6033Colour correction or control controlled by characteristics of the picture signal generator or the picture reproducer using test pattern analysis
    • H04N1/6036Colour correction or control controlled by characteristics of the picture signal generator or the picture reproducer using test pattern analysis involving periodic tests or tests during use of the machine
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/46Colour picture communication systems
    • H04N1/56Processing of colour picture signals
    • H04N1/60Colour correction or control
    • H04N1/603Colour correction or control controlled by characteristics of the picture signal generator or the picture reproducer
    • H04N1/6033Colour correction or control controlled by characteristics of the picture signal generator or the picture reproducer using test pattern analysis
    • H04N1/6044Colour correction or control controlled by characteristics of the picture signal generator or the picture reproducer using test pattern analysis involving a sensor integrated in the machine or otherwise specifically adapted to read the test pattern
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/06Scanning arrangements arrangements for order-selection
    • G01J2003/061Mechanisms, e.g. sine bar
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J2003/1226Interference filters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/2823Imaging spectrometer
    • G01J2003/2826Multispectral imaging, e.g. filter imaging

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Ink Jet (AREA)
  • Accessory Devices And Overall Control Thereof (AREA)

Abstract

【課題】分光測定を適切な位置で実施可能な分光測定装置、画像形成装置、及び分光測定方法を提供する。【解決手段】プリンター10は、測定領域からの光が入射する波長可変干渉フィルター、及び、波長可変干渉フィルターからの光を受光し、受光量に応じた検出信号を出力する受光部を有する分光器17と、分光測定の測定対象に対して分光器17を一方向に沿って相対移動させ、測定対象に対して測定領域を移動させるキャリッジ移動ユニット14と、検出信号を微分し、微分信号を出力する微分回路を有するタイミング検知回路21と、を含み、測定対象がカラーパッチである場合に、受光量を検出する分光測定を、微分信号に基づいて開始する。【選択図】図2

Description

本発明は、分光測定装置、画像形成装置、及び分光測定方法等に関する。
従来、一方向に沿って配列された測色用パターンに沿って、測色器が搭載された測色器ホルダを移動させながら、当該測色用パターンの各カラーパッチの測色を行う測色装置ユニットが知られている(例えば特許文献1参照)。
特許文献1では、当該測色ユニットを例えばプリンターに装着し、当該プリンターによって印刷された測色用パターンの測色を行い、測色結果に基づいて、プリンターのキャリブレーションを実施する。
特開2008−281549号公報
ところで、上記特許文献1に記載のような測色ユニットを一方向に例えば一定速度で移動させ、その移動中にカラーパッチに対して分光測定を実施する場合、測色装置ユニット(分光測定装置)による測定領域がカラーパッチ内を移動する間に、測定したい複数波長の光の光量を取得する必要がある。
しかしながら、測色装置ユニットの移動速度の変化や、カラーパッチの設置位置のずれ等によって、実際の測定開始位置にて分光測定を開始することができず、測定開始から測定終了までの間に測定領域がカラーパッチを通り過ぎてしまったり、測定開始のタイミングが早すぎたりして、カラーパッチに対する測定領域の位置がずれる場合がある。このような場合では、カラーパッチから外れた位置で分光測定を実施してしまうため、カラーパッチに対する分光測定を適切に実施できず、測色精度が悪化する。
本発明は、分光測定を適切な位置で実施可能な分光測定装置、画像形成装置、及び分光測定方法を提供することを目的とする。
本発明の一適用例に係る分光測定装置は、測定領域からの光が入射する波長可変干渉フィルター、及び、前記波長可変干渉フィルターからの光を受光し、受光量に応じた検出信号を出力する受光部を有する分光器と、測定対象に対して前記分光器を相対移動させ、前記測定対象に対して前記測定領域を移動させる移動機構と、前記検出信号を微分し、微分信号を出力する微分回路と、を含み、前記測定対象がカラーパッチである場合に、前記受光部での受光量を検出する分光測定を、前記微分信号に基づいて開始することを特徴とする。
ここで、本適用例において、微分信号に基づいて分光測定を開始するとは、微分信号を参照する以外にも、当該微分信号に増幅処理等を行って得られた信号(検知信号)を参照して分光測定を開始する場合も含む。
本適用例では、カラーパッチに対して測定領域を相対移動させた際に、当該測定領域からの光の受光量に応じた検出信号を、微分回路にて微分処理して得られた微分信号に基づいて、分光測定を開始するタイミング(開始タイミング)を検知し、分光測定を開始する。
すなわち、測定領域が、カラーパッチ外の領域からカラーパッチへと移動して、測定領域とカラーパッチとが重なり始めると、重なり量の変化に応じて検出信号の出力値が変化し、当該変化量に応じた微分信号が出力される。そして、測定領域の全域がカラーパッチと重なり、測定領域とカラーパッチとの重なり量が変化しなくなると、検出信号が略一定となるため、微分信号の値は略「0」となる。本適用例では、カラーパッチに対する測定領域の位置を予め把握していなくとも、微分信号に基づいて開始タイミングを容易に検知することができる。したがって、測定開始位置がずれることによってカラーパッチ外の領域を測定するといった不具合の発生を抑制でき、高精度にカラーパッチの分光測定を実施できる。
また、移動機構による移動速度や、測色の所要時間(測定時間)等に応じた最小寸法以外に、位置ずれを考慮したマージンを加えてカラーパッチの寸法を設定したとしても、測定開始位置のずれを抑制できるため、当該マージンを小さくすることができ、カラーパッチの寸法を小さくできる。したがって、マージンを大きくして測定開始位置のずれを抑制する場合と比べて、測定領域が1つのカラーパッチを通過する時間を短縮でき、分光測定の所要時間を短縮できる。
本適用例の分光測定装置において、前記移動機構は、前記測定対象に対して前記分光器を一方向に沿って相対移動させることが好ましい。
本適用例では、カラーパッチに対して測定領域を一方向に沿って相対移動させた際に、上記適用例と同様に。微分信号に基づいて分光測定を開始する。このような構成では、測定領域の全域がカラーパッチに重なり、分光測定を適切に実施可能となったタイミングを、微分信号に基づいて、より確実かつ容易に検知することができる。
本適用例の分光測定装置において、前記測定対象が、前記一方向に沿って配置された複数のカラーパッチを含むカラーパッチ群である場合に、前記カラーパッチ群に含まれる前記複数のカラーパッチの各々の領域内に前記測定領域が移動される際の前記検出信号の出力値が、同一の増減方向となるように、前記波長可変干渉フィルターが通過させる光の波長を設定することが好ましい。
ここで、本適用例において、増減方向が同一とは、カラーパッチ群に含まれるいずれのカラーパッチについても、当該カラーパッチ内に測定領域が移動される際に、検出信号の出力値が増大又は減少することをいう。例えば、減少する場合としては、波長可変干渉フィルターが通過させる光の波長が、カラーパッチ外よりもカラーパッチ内における反射率が小さくなる波長に設定されている場合である。この場合、カラーパッチ外からカラーパッチ内に、測定領域が移動されるにしたがって、受光量が減少し、検出信号が減少する。
本適用例では、複数のカラーパッチを含み構成されるカラーパッチ群について分光測定を実施する際に、各カラーパッチ内に測定領域が移動される際の各検出信号の増減方向が同一となるように、波長可変干渉フィルターが通過させる波長(すなわち、波長可変干渉フィルターの出射波長)を設定する。このような構成では、開始タイミングの検知を行う際に、出力値が増大する検出信号のみか、減少する検出信号のみが微分回路へ入力されることとなる。これにより、単電源で駆動する微分回路を用いることができる。したがって、隣り合うカラーパッチのそれぞれの反射率特性に応じて検出信号が増大したり減少したりすることに対応するために、双電源で駆動する微分回路を用いる必要がある場合と比べて装置構成を簡略化できる。
本適用例の分光測定装置は、前記測定対象が、前記複数のカラーパッチの各々における所定波長に対する反射率が前記一方向に沿って同一の増減方向となるカラーパッチ群である場合に、前記波長可変干渉フィルターが通過させる光の波長を前記所定波長に設定することが好ましい。
本適用例では、所定波長における反射率における上記増減方向が一方向に沿って同一となるカラーパッチ群を測定対象とする際に、波長可変干渉フィルターの出射波長を所定波長に設定する。これにより、各カラーパッチにおいて、開始タイミングを検知する際に、同一の所定波長に設定しても、各カラーパッチ間での検出値の増減方向を同一とすることができる。したがって、開始タイミングの検知を行う度に、波長可変干渉フィルターの出射波長の設定値を変更しなくとも上記増減方向を同一とすることができ、分光測定に係る処理の簡略化を図ることができる。
本適用例の分光測定装置は、前記測定対象が、前記一方向に配置される前記複数のカラーパッチの各々における色相が同一で、かつ前記色相の特徴波長に対する反射率が前記複数のカラーパッチの各々で前記一方向に沿って同一の増減方向となるカラーパッチ群である場合に、前記波長可変干渉フィルターが通過させる光の波長を前記特徴波長に設定することが好ましい。
本適用例では、各カラーパッチにおける色相が同一であり、当該色相を特徴づける特徴波長における反射率が、一方向に沿ったカラーパッチ間で同一の増減方向となるカラーパッチ群を測定対象とする際に、波長可変干渉フィルターの出射波長を上記特徴波長とする。このような構成では、カラーパッチの反射率が比較的に大きい特徴波長を、波長可変干渉フィルターの出射波長とするため、例えば、特徴波長以外の、反射率が比較的に小さい波長を出射波長とする場合に比べて、検出信号の出力値を大きくすることができる。したがって、検出信号や微分信号のSN比を向上させることができ、開始タイミングの検知精度を向上させることができる。
ここで、特徴波長とは、カラーパッチの分光スペクトルのピーク波長や、中心波長(例えば、所定の色相に対応する波長範囲の中心波長や、複数のピークに対する中心波長)等の、当該分光スペクトルの特徴を示す波長のことをいう。
本適用例の分光測定装置は、前記分光測定を開始するタイミングにおける前記波長可変干渉フィルターが通過させる光の波長を、前記分光測定における初期波長とすることが好ましい。
本適用例では、開始タイミングの検知時に設定された波長(検知波長)を含む複数波長にて分光測定を実施する際に、上記検知波長を初期波長とする。このような構成では、開始タイミングを検知した後、分光測定を実施する際に、波長可変干渉フィルターの出射波長を検知波長から別の波長に設定する必要がないため、分光測定の所要時間の短縮を図ることができる。
本適用例の分光測定装置は、前記分光測定の実施時に前記微分信号を参照した前記分光測定を開始するタイミングの検知を行わず、前記分光測定の終了の後に前記微分信号を参照して前記タイミングの検知を行うことが好ましい。
本適用例では、分光測定装置は、分光測定を実施している期間において、微分信号を参照した開始タイミングの検知を行わず、分光測定の終了から次の分光測定の開始タイミングを検知するまで、微分信号を参照して開始タイミングの検知を行う。例えば、微分回路から微分信号が出力される出力状態と、出力されない非出力状態とを切り替えるスイッチ回路を設ける。そして、当該スイッチ回路を、1つのカラーパッチに対して分光測定が実施されている期間では非出力状態に、分光測定が実施されていない期間では出力状態に設定する。これにより、分光測定時の検出信号に応じた微分信号を参照することによる開始タイミングの誤検知の発生を抑制できる。
本適用例の分光測定装置は、前記分光測定が終了したタイミングにおける前記微分信号の出力値に基づいて、前記分光測定の測定エラーを検知することが好ましい。
本適用例では、分光測定が適切に実施された場合、分光測定処理が終了したタイミングにおける微分信号が略「0」となる。一方、分光測定の終了タイミングにおいて、測定領域が、隣り合うカラーパッチ間を跨いでいる場合、微分信号が略「0」とはならず、検出信号の変化に応じた値となる。この場合、分光測定が適切に実施されなかったおそれがある。本適用例では、微分信号に基づいて測定エラーを検知することにより、分光測定が適切に実施できていない可能性があることを検知できる。したがって、検知結果に基づいて、移動機構による移動速度や、カラーパッチの寸法を適切に調整する等の処理を実施することもでき、上記エラーの発生を抑制することも可能となる。
本発明の一適用例の分光測定装置は、測定対象に対する分光測定を実施する分光測定装置であって、測定領域からの光を受光し、受光量に応じた検出信号を出力する受光部と、前記測定対象に対して前記受光部を相対移動させ、前記測定対象に対して前記測定領域を移動させる移動機構と、前記検出信号を微分し、微分信号を出力する微分回路と、を含み、前記測定対象がカラーパッチである場合に、前記分光測定を、前記微分信号に基づいて開始することを特徴とする。
本適用例では、上記分光測定装置に係る適用例と同様に、カラーパッチに対する測定領域の位置を予め把握していなくとも、微分信号に基づいて開始タイミングを容易に検知することができる。したがって、測定開始位置がずれることによってカラーパッチ外の領域を測定するといった不具合の発生を抑制でき、高精度にカラーパッチの分光測定を実施できる。
また、測定開始位置のずれを抑制できるため、移動機構による移動速度や、測色の所要時間(測定時間)等に応じた最小寸法に対して、位置ずれを考慮したマージンを加えて、一方向におけるカラーパッチの寸法を設定したとしても、当該マージンに係る寸法を小さくすることができ、カラーパッチの寸法を小さくできる。したがって、マージンに係る寸法を大きくして測定開始位置のずれに対応する場合と比べて、1つのカラーパッチを測定領域が通過する時間を短縮でき、分光測定の所要時間を短縮できる。
本発明の一適用例に係る画像形成装置は、上記適用例に係る分光測定装置と、画像形成対象に画像を形成する画像形成部と、を含むことを特徴とする。
本適用例では、画像形成部により、上述したようなカラーパッチを画像形成対象に形成した上で、分光測定装置により、形成されたカラーパッチに対する分光測定を行うことができる。また、このような画像形成装置では、形成されたカラーパッチの色が、画像形成部に指令した色と同じ色であるか否かを確認することができ、異なる場合には、分光測定結果に応じて画像形成部にフィードバックすることができる。
本適用例の画像形成装置において、前記画像形成部は、一方向に沿って複数のカラーパッチが配置され、かつ、前記複数のカラーパッチの各々における所定波長に対する反射率が、前記一方向に沿って同一の増減方向となるカラーパッチ群を、前記画像形成対象に形成することが好ましい。
本適用例では、画像形成部により、所定波長に対する反射率が、一方向に沿ったカラーパッチ間における、所定波長に対する反射率の増減方向が同一となるカラーパッチ群を形成する。このようなカラーパッチ群に対して、分光測定装置を用いて分光測定を実施することにより、上述のように、分光測定装置の微分回路として、単電源で駆動する微分回路を用いることができ、装置構成を簡略化できる。さらに、開始タイミングの検知を行う度に、波長可変干渉フィルターの出射波長の設定値を変更しなくとも上記増減方向を同一とすることができ、分光測定に係る処理の簡略化を図ることができる。
本適用例の画像形成装置において、前記画像形成部は、前記測定対象が、前記複数のカラーパッチの各々における色相が同一で、かつ前記色相の特徴波長に対する反射率が前記一方向に沿って同一の増減方向となるカラーパッチ群を、前記画像形成対象に形成することが好ましい。
本適用例では、画像形成部により、各カラーパッチにおける色相が同一であり、当該色相を特徴づける特徴波長における反射率が、一方向に沿ったカラーパッチ間で同一の増減方向となるカラーパッチ群を形成する。このようなカラーパッチ群に対して、分光測定装置を用いて分光測定を実施することにより、上述のように、検出信号や微分信号のSN比を向上させることができ、開始タイミングの検知精度を向上させることができる。
本発明の一適用例に係る分光測定方法は、測定領域からの光が入射する波長可変干渉フィルター、及び、前記波長可変干渉フィルターからの光を受光し、受光量に応じた検出信号を出力する受光部を有する分光器と、前記測定対象に対して前記分光器を相対移動させ、前記測定対象に対して前記測定領域を移動させる移動機構と、前記検出信号を微分し、微分信号を出力する微分回路と、を含み、前記測定対象に対する分光測定を実施する分光測定装置を用いる分光測定方法であって、前記測定対象であるカラーパッチに対して前記測定領域を移動させる工程と、前記受光量を検出する分光測定を、前記微分信号に基づいて開始させる工程と、を実施することを特徴とする。
本適用例では、上記分光測定装置に係る適用例と同様に、カラーパッチに対する測定領域の位置を予め把握していなくとも、微分信号に基づいて開始タイミングを容易に検知することができる。したがって、測定開始位置がずれることによってカラーパッチ外の領域を測定するといった不具合の発生を抑制でき、高精度にカラーパッチの分光測定を実施できる。
また、測定開始位置のずれを抑制できるため、移動機構による移動速度や、測色の所要時間(測定時間)等に応じた最小寸法に対して、位置ずれを考慮したマージンを加えて、一方向におけるカラーパッチの寸法を設定したとしても、当該マージンに係る寸法を小さくすることができ、カラーパッチの寸法を小さくできる。したがって、マージンに係る寸法を大きくして測定開始位置のずれに対応する場合と比べて、1つのカラーパッチを測定領域が通過する時間を短縮でき、分光測定の所要時間を短縮できる。
本発明に係る第一実施形態のプリンターの概略構成を示す外観図。 第一実施形態のプリンターの概略構成を示すブロック図。 第一実施形態の分光器の概略構成を示す断面図。 第一実施形態の光学フィルターデバイスの概略構成を示す断面図。 第一実施形態における制御ユニットに含まれるCPUの機能構成を示したブロック図。 第一実施形態のタイミング検知回路の概略構成を示す図。 第一実施形態のプリンターにおける分光測定方法を示すフローチャート。 第一実施形態のプリンターにおける分光測定方法を示すフローチャート。 第一実施形態におけるカラーチャートの一例を示す図。 第一実施形態のカラーチャートにおけるカラーパッチ群の色相と波長との対応関係の一例を示す図。 第一実施形態のタイミング検知回路における入力信号及び各回路の出力信号と、カラーパッチに対する測定領域の位置との関係を示す図。 第一実施形態の各カラーパッチ群における測定波長と測定順番との関係の一例を示す図。 第二実施形態における制御ユニットに含まれるCPUの機能構成を示したブロック図。 第二実施形態のプリンターにおける分光測定方法を示すフローチャート。 第二実施形態においてエラー検知時のタイミング検知回路における出力信号と、カラーパッチに対する測定領域の位置との関係を示す図。
[第一実施形態]
以下、本発明に係る第一実施形態について、図面に基づいて説明する。本実施形態では、本発明の画像形成装置の一例として、分光測定装置を備えたプリンター10(インクジェットプリンター)について、以下説明する。
[プリンターの概略構成]
図1は、第一実施形態のプリンター10の外観の構成例を示す図である。図2は、本実施形態のプリンター10の概略構成を示すブロック図である。
図1に示すように、プリンター10は、供給ユニット11、搬送ユニット12と、キャリッジ13と、キャリッジ移動ユニット14と、制御ユニット15(図2参照)と、を備えている。このプリンター10は、例えばパーソナルコンピューター等の外部機器100から入力された印刷データに基づいて、各ユニット11,12,14及びキャリッジ13を制御し、媒体A上に画像を印刷する。また、本実施形態のプリンター10は、予め設定された較正用印刷データに基づいて媒体A上の所定位置に測色用のカラーパッチ31(図9等参照)を形成し、かつ当該カラーパッチ31に対する分光測定を行う。これにより、プリンター10は、カラーパッチ31に対する実測値と、較正用印刷データとを比較して、印刷されたカラーに色ずれがあるか否か判定し、色ずれがある場合は、実測値に基づいて色補正を行う。
以下、プリンター10の各構成について具体的に説明する。
供給ユニット11は、画像形成対象となる媒体A(本実施形態では、白色紙面を例示)を、画像形成位置に供給するユニットである。この供給ユニット11は、例えば媒体Aが巻装されたロール体111(図1参照)、ロール駆動モーター(図示略)、及びロール駆動輪列(図示略)等を備える。そして、制御ユニット15からの指令に基づいて、ロール駆動モーターが回転駆動され、ロール駆動モーターの回転力がロール駆動輪列を介してロール体111に伝達される。これにより、ロール体111が回転し、ロール体111に巻装された紙面がY方向(副走査方向)における下流側(+Y方向)に供給される。
なお、本実施形態では、ロール体111に巻装された紙面を供給する例を示すがこれに限定されない。例えば、トレイ等に積載された紙面等の媒体Aをローラー等によって1枚ずつ供給する等、如何なる供給方法によって媒体Aが供給されてもよい。
搬送ユニット12は、供給ユニット11から供給された媒体Aを、Y方向に沿って搬送する。この搬送ユニット12は、搬送ローラー121と、搬送ローラー121と媒体Aを挟んで配置され、搬送ローラー121に従動する従動ローラー(図示略)と、プラテン122と、を含んで構成されている。
搬送ローラー121は、図示略の搬送モーターからの駆動力が伝達され、制御ユニット15の制御により搬送モーターが駆動されると、その回転力により回転駆動されて、従動ローラーとの間に媒体Aを挟み込んだ状態でY方向に沿って搬送する。また、搬送ローラー121のY方向の下流側(+Y側)には、キャリッジ13に対向するプラテン122が設けられている。
キャリッジ13は、媒体Aに対して画像を印刷する印刷部16と、媒体A上の所定の測定領域R(図2参照)の分光測定を行う分光器17と、を備えている。
このキャリッジ13は、キャリッジ移動ユニット14によって、Y方向と交差する主走査方向(本発明における一方向であり、X方向)に沿って移動可能に設けられている。
また、キャリッジ13は、フレキシブル回路131により制御ユニット15に接続され、制御ユニット15からの指令に基づいて、印刷部16による印刷処理(媒体Aに対する画像形成処理)及び、分光器17による分光測定処理を実施する。
なお、キャリッジ13の詳細な構成については後述する。
キャリッジ移動ユニット14は、本発明における移動機構を構成し、制御ユニット15からの指令に基づいて、キャリッジ13をX方向に沿って往復移動させる。
このキャリッジ移動ユニット14は、例えば、キャリッジガイド軸141と、キャリッジモーター142と、タイミングベルト143と、を含んで構成されている。
キャリッジガイド軸141は、X方向に沿って配置され、両端部がプリンター10の例えば筐体に固定されている。キャリッジモーター142は、タイミングベルト143を駆動させる。タイミングベルト143は、キャリッジガイド軸141と略平行に支持され、キャリッジ13の一部が固定されている。そして、制御ユニット15の指令に基づいてキャリッジモーター142が駆動されると、タイミングベルト143が正逆走行され、タイミングベルト143に固定されたキャリッジ13がキャリッジガイド軸141にガイドされて往復移動する。
次に、キャリッジ13に設けられる印刷部16及び分光器17の構成について、図面に基づいて説明する。
[印刷部(画像形成部)の構成]
印刷部16は、本発明の画像形成部であり、媒体Aの対向する部分に、インクを個別に吐出して、媒体A上に画像を形成する。
この印刷部16は、複数色のインクに対応したインクカートリッジ161が着脱自在に装着されており、各インクカートリッジ161からインクタンク(図示略)にチューブ(図示略)を介してインクが供給される。また、印刷部16の下面(媒体Aに対向する位置)には、インク滴を吐出するノズル(図示略)が、各色に対応して設けられている。これらのノズルには、例えばピエゾ素子が配置されており、ピエゾ素子を駆動させることで、インクタンクから供給されたインク滴が吐出されて媒体Aに着弾し、ドットが形成される。
[分光器の構成]
図3は、分光器17の概略構成を示す断面図である。
分光器17は、図3に示すように、光源部171と、光学フィルターデバイス172、受光部173と、導光部174と、を備えている。
この分光器17は、光源部171から媒体A上に照明光を照射し、媒体Aで反射された光成分を、導光部174により光学フィルターデバイス172に入射させる。そして、光学フィルターデバイス172は、この反射光から所定波長の光を出射(透過)させて、受光部173により受光させる。また、光学フィルターデバイス172は、制御ユニット15の制御に基づいて、透過波長(出射波長)を選択可能であり、可視光における各波長の光の光量を測定することで、媒体A上の測定領域Rの分光測定が可能となる。
[光源部の構成]
光源部171は、光源171Aと、集光部171Bとを備える。この光源部171は、光源171Aから出射された光を媒体Aの測定領域R内に、媒体Aの表面に対する法線方向から照射する。
光源171Aとしては、可視光域における各波長の光を出射可能な光源が好ましい。このような光源171Aとして、例えばハロゲンランプやキセノンランプ、白色LED等を例示でき、特に、キャリッジ13内の限られたスペース内で容易に設置可能な白色LEDが好ましい。集光部171Bは、例えば集光レンズ等により構成され、光源171Aからの光を測定領域Rに集光させる。なお、図3においては、集光部171Bでは、1つのレンズ(集光レンズ)のみを表示するが、複数のレンズを組み合わせて構成されていてもよい。
[光学フィルターデバイスの構成]
図4は、光学フィルターデバイス172の概略構成を示す断面図である。
光学フィルターデバイス172は、筐体6と、筐体6の内部に収納された波長可変干渉フィルター5(波長可変干渉フィルター)とを備えている。
(波長可変干渉フィルターの構成)
波長可変干渉フィルター5は、波長可変型のファブリーペローエタロン素子であり、図4に示すように、透光性の固定基板51及び可動基板52を備え、これらの固定基板51及び可動基板52が、接合膜53により接合されることで、一体的に構成されている。
固定基板51は、エッチングにより形成された第一溝部511、及び第一溝部511より溝深さが浅い第二溝部512を備えている。そして、第一溝部511には、固定電極561が設けられ、第二溝部512には、固定反射膜54が設けられている。
固定電極561は、例えば第二溝部512を囲う環状に形成されており、可動基板52に設けられた可動電極562に対向する。
固定反射膜54は、例えばAg等の金属膜、Ag合金等の合金膜、高屈折層及び低屈折層を積層した誘電体多層膜、又は、金属膜(合金膜)と誘電体多層膜を積層した積層体により構成されている。
可動基板52は、可動部521と、可動部521の外に設けられ、可動部521を保持する保持部522とを備えている。
可動部521は、保持部522よりも厚み寸法が大きく形成されている。この可動部521は、固定電極561の外周縁の径寸法よりも大きい径寸法に形成されており、可動部521の固定基板51に対向する面に、可動電極562及び可動反射膜55が設けられている。
可動電極562は、固定電極561に対向する位置に設けられている。
可動反射膜55は、固定反射膜54に対向する位置に、ギャップGを介して配置されている。この可動反射膜55としては、上述した固定反射膜54と同一の構成の反射膜を用いることができる。
保持部522は、可動部521の周囲を囲うダイアフラムであり、可動部521よりも厚み寸法が小さく形成されている。このような保持部522は、可動部521よりも撓みやすく、僅かな静電引力により、可動部521を固定基板51側に変位させることが可能となる。これにより、固定反射膜54及び可動反射膜55の平行度を維持した状態で、ギャップGのギャップ寸法を変更することが可能となる。
なお、本実施形態では、ダイアフラム状の保持部522を例示するが、これに限定されず、例えば、平面中心点を中心として、等角度間隔で配置された梁状の保持部が設けられる構成などとしてもよい。
また、可動基板52の外周部(固定基板51に対向しない領域)には、固定電極561や可動電極562と個別に接続された複数の電極パッド57が設けられている。
(筐体の構成)
筐体6は、図4に示すように、ベース61と、ガラス基板62と、を備えている。これらのベース61及びガラス基板62は、例えばガラスフリット(低融点ガラス)を用いた低融点ガラス接合、エポキシ樹脂等による接着などを利用でき、これにより、内部に収容空間が形成され、この収容空間内に波長可変干渉フィルター5が収納される。
ベース61は、例えば薄板上にセラミックを積層することで構成され、波長可変干渉フィルター5を収納可能な凹部611を有している。波長可変干渉フィルター5は、ベース61の凹部611の例えば側面に固定材64により固定されている
ベース61の凹部611の底面には、光通過孔612が設けられている。この光通過孔612は、波長可変干渉フィルター5の反射膜54,55と重なる領域を含むように設けられている。また、ベース61のガラス基板62とは反対側の面には、光通過孔612を覆うカバーガラス63が接合されている。
また、ベース61には、波長可変干渉フィルター5の電極パッド57に接続される内側端子部613が設けられており、この内側端子部613は、導通孔614を介して、ベース61の外側に設けられた外側端子部615に接続されている。この外側端子部615は、制御ユニット15に電気的に接続されている。
[受光部及び導光光学系の構成]
図3に戻り、受光部173は、波長可変干渉フィルター5の光軸上に配置され、当該波長可変干渉フィルター5を透過した光を受光する。そして、受光部173は、制御ユニット15の制御に基づいて、受光量に応じた検出信号(電流値)を出力する。なお、受光部173により出力された検出信号は、I−V変換器(図示略)、増幅器(図示略)、及びAD変換器(図示略)を介して制御ユニット15に入力される。
導光部174は、反射鏡174Aと、バンドパスフィルター174Bとを備えている。
この導光部174は、測定領域Rで、媒体Aの表面に対して45°で反射された光を反射鏡174Aにより、波長可変干渉フィルター5の光軸上に反射させる。バンドパスフィルター174Bは、可視光域(例えば380nm〜720nm)の光を透過させ、紫外光及び赤外光の光をカットする。これにより、波長可変干渉フィルター5には、可視光域の光が入射されることになり、受光部173において、可視光域における波長可変干渉フィルター5により選択された波長の光が受光される。
[信号処理ユニットの構成]
信号処理ユニット20は、受光素子からの受光信号(アナログ信号)を増幅したのち、デジタル信号に変換して制御ユニット15に出力する。また、信号処理ユニット20は、入力された受光信号に応じて、測定開始タイミングを検知するために検知信号を制御ユニット15に出力する。この信号処理ユニット20は、図2に示すように、I−V変換器201と、増幅器202と、A/D変換器203と、タイミング検知回路21と、を含み構成される。
I−V変換器201は、受光部173から入力された受光信号を電圧値に変換し、増幅器202に出力する。
増幅器202は、I−V変換器201から入力された検出信号に応じた電圧(検出電圧)を増幅する。この増幅器202は、検出信号の出力レベルに応じて、増幅率を変更可能に構成されている。
なお、I−V変換器201及び増幅器202は、図示例のように、受光部173と別体として構成されているが、IC(Integrated Circuit)として受光部173と一体的に構成されてもよい。
A/D変換器203は、増幅器202から入力された検出電圧(アナログ信号)をデジタル信号に変換し、制御ユニット15に出力する。
図5は、タイミング検知回路の構成を模式的に示す図である。
タイミング検知回路21は、後述するように、複数のカラーパッチが一方向に沿って配されたカラーパッチ群を含むカラーチャートの測色を行う場合、測色領域の全領域が測定対象となるカラーパッチに重なり、当該カラーパッチの分光測定が可能となる測定開始タイミングを検知するための検知信号を制御ユニット15に出力する。
このタイミング検知回路21は、スイッチ回路211と、サンプルホールド回路(S/H回路)212と、微分回路213と、増幅回路214と、を含み構成される。
スイッチ回路211は、カラーパッチの分光測定時以外においてオンされ、タイミング検知回路21の出力である検知信号が出力される出力状態とし、カラーパッチの分光測定時に検知信号が出力されない非出力状態とする。スイッチ回路211は、制御ユニット15からの制御信号(スイッチ信号)に応じて、上記出力状態及び非出力状態を設定する。
S/H回路212は、制御ユニット15の制御に応じた所定のタイミングで、検知信号の電圧値を取得し、当該電圧値に応じたサンプリング信号を微分回路213に出力する。
微分回路213は、S/H回路212から出力されたサンプリング信号を微分処理し、微分信号を増幅回路214に出力する。本実施形態では、微分回路213は、単電源で駆動される。なお、後に詳述するが、分光器17による測定領域Rが、測定対象のカラーパッチに重なり始め、測定領域Rの全域が当該カラーパッチに重なるまでの間、受光量の変化に応じて、微分回路213の出力値がHigh(正値)となる。そして、測定領域Rの全域が、測定対象のカラーパッチに重なると、微分回路213の出力値がLowとなる。この出力値の変化に基づいて、測定領域Rの全域が当該カラーパッチに重なり、分光測定が可能となったことを検知することができる。
増幅回路214は、微分回路213からの微分信号を増幅し、制御ユニット15に検知信号を出力する。この増幅回路214は、ゲインを変更可能に構成され、微分回路213からの出力に応じたゲインに設定される。例えば、カラーチャートを測色する際に、隣接して配置された2つのカラーパッチ上に跨って測定領域Rを移動させる際の微分信号のうち、出力値(電圧値)が最小となる微分信号に応じて設定される。すなわち、当該微分信号に応じた検知信号の電圧値が所定値以上、例えば、増幅回路214の最大出力値となるように、増幅回路214のゲインが設定される。これにより、測定領域Rが、1つのカラーパッチのみに重なる位置を移動している際(図11の測定可能期間Ta)に、タイミング検知回路21からの出力がLowとなる。また、測定領域Rが、隣接する2つのカラーパッチに同時に重なる位置を移動している際に、タイミング検知回路21からの出力がHighとなる(図11参照)。
[制御ユニットの構成]
制御ユニット15は、図2に示すように、I/F151と、ユニット制御回路152と、メモリ153と、CPU(Central Processing Unit)154と、を含んで構成されている。
I/F151は、外部機器100から入力される印刷データをCPU154に入力する。
ユニット制御回路152は、供給ユニット11、搬送ユニット12、印刷部16、光源171A、波長可変干渉フィルター5、受光部173、キャリッジ移動ユニット14、及び信号処理ユニット20をそれぞれ制御する制御回路を備えており、CPU154からの指令信号に基づいて、各ユニットの動作を制御する。なお、各ユニットの制御回路が、制御ユニット15とは別体に設けられ、制御ユニット15に接続されていてもよい。
メモリ153は、プリンター10の動作を制御する各種プログラムや各種データが記憶されている。
各種データとしては、例えば、波長可変干渉フィルター5を制御する際の、静電アクチュエーター56への印加電圧に対する、波長可変干渉フィルター5を透過する光の波長を示したV−λデータ、印刷データとして含まれる色データに対する各インクの吐出量を記憶した印刷プロファイルデータ等が挙げられる。また、光源171Aの各波長に対する発光特性(発光スペクトル)や、受光部173の各波長に対する受光特性(受光感度特性)等が記憶されていてもよい。さらに、各種データとしては、例えば、後述するカラーチャートを形成するための較正用印刷データや、分光測定時におけるキャリッジ13の走査速度や、1つのカラーパッチの分光測定に要する測定時間等が記憶されている。
図6は、プリンター10の制御ユニット15に含まれるCPUの機能構成を示すブロック図である。
CPU154は、メモリ153に記憶された各種プログラムを読み出し実行することで、図6に示すように、走査制御手段181、印刷制御手段182、フィルター制御手段183、光量検出手段184、スイッチ制御手段185、タイミング検知手段186、測色手段187、及びキャリブレーション手段188等として機能する。
走査制御手段181は、供給ユニット11、搬送ユニット12、及びキャリッジ移動ユニット14を駆動させる旨の指令信号をユニット制御回路152に出力する。これにより、ユニット制御回路152は、供給ユニット11のロール駆動モーターを駆動させて、媒体Aを搬送ユニット12に供給させる。また、ユニット制御回路152は、搬送ユニット12の搬送モーターを駆動させて、媒体Aの所定領域をプラテン122のキャリッジ13に対向する位置まで、Y方向に沿って搬送させる。また、ユニット制御回路152は、キャリッジ移動ユニット14のキャリッジモーター142を駆動させて、キャリッジ13をX方向に沿って所定の速度(走査速度)で移動させる。
なお、走査制御手段181は、カラーチャートの測色時において、予めメモリ153に記憶されている走査速度を参照し、当該走査速度でキャリッジ13を移動させる旨の指令信号をユニット制御回路152に出力する。
印刷制御手段182は、例えば外部機器100から入力された印刷データに基づいて、印刷部16を制御する旨の指令信号をユニット制御回路152に出力する。また、本実施形態では、印刷制御手段182は、予め設定された所定色のカラーパッチ31を所定位置に形成する旨の較正用印刷データに基づいて、媒体A上にカラーパッチ31を形成する。なお、較正用印刷データとしては、メモリ153に記憶されていてもよく、外部機器100から入力されてもよい。
カラーパッチ31についての詳細な説明は後述する。
印刷制御手段182からユニット制御回路152に指令信号が出力されると、ユニット制御回路152は、印刷部16に印刷制御信号を出力し、ノズルに設けられたピエゾ素子を駆動させて媒体Aに対してインクを吐出させる。なお、印刷を実施する際は、キャリッジ13がX方向に沿って移動されて、その移動中に印刷部16からインクを吐出させてドットを形成するドット形成動作と、媒体AをY方向に搬送する搬送動作とを交互に繰り返し、複数のドットから構成される画像を媒体Aに印刷する。
フィルター制御手段183は、波長可変干渉フィルター5を透過させる光の波長に対する静電アクチュエーター56への駆動電圧を、メモリ153のV−λデータから読み出し、ユニット制御回路152に指令信号を出力する。これにより、ユニット制御回路152は、波長可変干渉フィルター5に指令された駆動電圧を印加し、波長可変干渉フィルター5から所望の透過波長(出射波長)の光が透過される。
また、フィルター制御手段183は、カラーパッチの分光測定の開始前に、当該カラーパッチに応じて予め設定された所定の透過波長(初期波長)に対応する初期電圧を、静電アクチュエーター56に印加させる。さらに、フィルター制御手段183は、後述のタイミング検知手段186によって検知されたカラーパッチの測定開始タイミングと、走査制御手段181により移動されるキャリッジ13の移動速度と、移動開始からの経過時間と、に基づいて、静電アクチュエーター56に印加する電圧を切り替える。
光量検出手段184は、受光部173を駆動させる駆動信号をユニット制御回路152に出力し、受光部173からの検出信号に基づいて受光量を取得する。なお、光量検出手段184は、各カラーパッチにて、各測定波長について検出された光量を、当該カラーパッチ及び測定波長と対応させてメモリ153に記憶させる。
スイッチ制御手段185は、カラーパッチの分光測定時以外においてスイッチ回路211をオフとするようにユニット制御回路152に指令信号を出力する。すなわち、スイッチ制御手段185は、カラーパッチの分光測定時においてスイッチ回路211をオフとし、タイミング検知回路21を非出力状態に設定する。また、スイッチ制御手段185は、1つのカラーパッチの分光測定が終了した後、タイミング検知回路21から検知信号が出力され、次の分光測定が開始されるまでの間、スイッチ回路211をオンとし、タイミング検知回路21を出力状態に設定する。
タイミング検知手段186は、タイミング検知回路21の検知信号に基づいて、カラーパッチの測定開始タイミングを検知する。すなわち、キャリッジ13の移動に応じて、測定領域RがX方向に沿って移動した際に、カラーパッチに対する測定領域Rの位置に応じてタイミング検知回路21から検知信号がHighからLowに変化したことを検知することにより、測定開始タイミングを検知する。
測色手段187は、各カラーパッチに対して得られた複数波長の光に対する分光測定結果に基づいて、カラーパッチにおける色度を測定する。
キャリブレーション手段188は、測色手段187による測色結果と、較正用印刷データとに基づいて、印刷プロファイルデータを補正(更新)する。
なお、制御ユニット15における各機能構成の詳細な動作については後述する。
[分光測定方法]
次に、本実施形態のプリンター10における分光測定方法について、図面に基づいて説明する。
図7及び図8は、プリンター10における分光測定方法を示すフローチャートである。
なお、本実施形態では、測定対象となる波長域は400nmから700nmの可視光域であり、初期波長を700nmとして、20nm間隔となる16個の波長の光の光量に基づいて分光測定を実施する例を示す。
(カラーチャートの形成)
プリンター10による分光測定方法では、まず、媒体A上にカラーパッチ31を含むカラーチャートを形成する。
これには、走査制御手段181は、媒体Aを所定位置にセットする(ステップS1)。すなわち、走査制御手段181は、供給ユニット11、搬送ユニット12を制御して、媒体Aを副走査方向(+Y方向)に搬送し、媒体Aの所定の印刷開始位置をプラテン122上にセットする。また、走査制御手段181は、キャリッジ13を、初期位置(例えば主走査方向の−X側端部)に移動させる。
この後、印刷制御手段182は、メモリ153から較正用印刷データを読み出し、走査制御手段181による制御と同期して、カラーチャートを媒体A上に印刷する(ステップS2)。
すなわち、走査制御手段181により、キャリッジ13を+X側に例えば一定速度で走査させる。印刷制御手段182は、例えば走査開始からの時間に応じてキャリッジ13の印刷部16の位置を特定し、較正用印刷データに基づいた所定位置に所定色のノズルからインクを吐出させてドットを形成する(ドット形成動作)。また、走査制御手段181は、キャリッジ13が+X側端部まで移動されると、供給ユニット11及び搬送ユニット12を制御して媒体Aを+Y方向に搬送する(搬送動作)。そして、走査制御手段181は、キャリッジ13を−X方向に走査させ、印刷制御手段182は、較正用印刷データに基づいて、所定位置にドットを形成する。
以上のようなドット形成動作と搬送動作を繰り返すことで、媒体A上にカラーチャートが形成される。
この後、印刷制御手段182は、メモリ153から較正用印刷データを読み出し、走査制御手段181による制御と同期して、カラーチャートを媒体A上に印刷する(ステップS2)。
すなわち、走査制御手段181により、キャリッジ13を+X側に例えば一定速度で走査させる。印刷制御手段182は、例えば走査開始からの時間に応じてキャリッジ13の印刷部16の位置を特定し、較正用印刷データに基づいた所定位置に所定色のノズルからインクを吐出させてドットを形成する(ドット形成動作)。また、走査制御手段181は、キャリッジ13が+X側端部まで移動されると、供給ユニット11及び搬送ユニット12を制御して媒体Aを+Y方向に搬送する(搬送動作)。そして、走査制御手段181は、キャリッジ13を−X方向に走査させ、印刷制御手段182は、較正用印刷データに基づいて、所定位置にドットを形成する。
以上のようなドット形成動作と搬送動作を繰り返すことで、媒体A上にカラーチャートが形成される。
図9は、本実施形態において形成されるカラーチャートの一例を示す図である。
本実施形態では、図9に示すように、複数色のカラーパッチ31がX方向に沿って隙間なく配置されて構成された複数のカラーパッチ群30A〜30Fを、Y方向に沿って配置させたカラーチャート3が印刷により形成される。各カラーパッチ群30A〜30Fは、それぞれ異なる色相について形成される。また、各カラーパッチ群30A〜30Fは、+X側に向かうにしたがって、各色相の特徴波長における反射率が減少するように各カラーパッチ31が形成されている。ここで、特徴波長とは、カラーパッチ31の分光スペクトルのピーク波長や、色相に対応する波長範囲の中心波長や、当該波長範囲に含まれる複数のピーク波長に対する中心波長等であり、カラーパッチ31の分光スペクトルの特徴を示す波長のことをいう。
なお、カラーチャート3には、カラーパッチ群30A〜30Fの−X側でY方向に平行な直線状のスタートバー、及びカラーパッチ群30A〜30Fの+X側でY方向に平行な直線状のゴールバーが設けられてもよい。
図10は、各カラーパッチ群30A〜30Fのそれぞれの色相と、波長との対応関係を示す図である。
各カラーパッチ群30A〜30Fのうち、+Y側に位置する第1カラーパッチ群30Aは、図10に示す、第1短波長域λ1(400nm〜430nm)に特徴波長を有するカラーパッチ31を含む。
また、第1カラーパッチ群30Aでは、隣接するカラーパッチ31のうち−X側に位置するカラーパッチ31よりも、+X側に位置するカラーパッチ31の方が、対応する色相の特徴波長における反射率が小さい。換言すると、波長可変干渉フィルター5の透過波長の初期波長を特徴波長(例えば400nm)に設定した際に、各カラーパッチ31の当該初期波長に対する受光量(検出値)が、+X側に向かうにしたがって小さくなる。
また、第2カラーパッチ群30Bは、第2短波長域λ2(430nm〜490nm)に特徴波長を有する複数のカラーパッチ31を含む。これら複数のカラーパッチ31は、例えば、第2短波長域λ2の中心波長460nmを上記初期波長とした際に、当該初期波長に対して、隣接するカラーパッチ31のうち+X側に位置するカラーパッチ31の方が、受光量(検出値)が小さい。
また、第3カラーパッチ群30Cは、第3中波長域λ3(490nm〜550nm)に特徴波長を有し、同様に、初期波長520nmに対して、上記関係となるように配置された複数のカラーパッチ31を含む。
また、第4カラーパッチ群30Dは、第4中波長域λ4(550nm〜610nm)にピーク波長を有し、同様に、初期波長580nmに対して、上記関係となるように配置された複数のカラーパッチ31を含む。
また、第5カラーパッチ群30Eは、第5長波長域λ5(610nm〜670nm)にピーク波長を有し、初期波長640nmに対して、上記関係となるように配置された複数のカラーパッチ31を含む。
また、第6カラーパッチ群30Fは、第6長波長域λ6(670nm〜700nm)にピーク波長を有し、初期波長700nmに対して、上記関係となるように配置された複数のカラーパッチ31を含む。
なお、各カラーパッチ群に対する初期波長は、上記例に限定されず、対応する波長域に含まれる波長であれば任意の波長を設定することができる。
(初期設定)
図7に戻り、ステップS2の後、カラーチャート3の分光測定に先立ち、分光器17のキャリブレーション処理(白色校正処理)を実施する(ステップS3)。
キャリブレーション処理では、例えば、制御ユニット15は、キャリッジ13を−X側端部の初期位置に移動させ、この初期位置の白色紙面に対する分光測定を実施する。すなわち、制御ユニット15は、光源171Aを点灯させて、フィルター制御手段183により、波長可変干渉フィルター5の静電アクチュエーター56に印加する駆動電圧を順次変化させ、測定波長範囲に含まれ、かつ、20nm間隔となるnバンド(例えば16バンド)の受光部173の出力値をそれぞれ取得する。また、制御ユニット15は、受光部173に光が入射していない状態での出力値(暗電圧)を測定する。これには、例えば光源171Aを消灯させた状態で受光部173からの出力値を取得してもよく、例えば分光器17の導光部174に、光路に対して進退可能な遮光板を設け、遮光板により受光部173への光の入射を遮断した上で、受光部173からの出力値を取得してもよい。そして、測色手段187は、白色紙面に対する分光スペクトルと、暗電圧とに基づいて、分光器17のキャリブレーション処理を実施する。
なお、本実施形態では、媒体Aが白色紙面の例を示したが、その他の色であってもよい。この場合では、媒体Aの色(各波長に対する反射率)が既知であるため、キャリブレーション時の各波長の出力値から基準出力値を算出できる。また、カラーチャート3の形成時に、カラーチャート3の−X側に、基準色となる白色カラーパッチを形成してもよい。この場合、インク顔料として白色を有する場合、媒体Aによらず反射率が既知となる白色カラーパッチを形成することができる。
(分光測定)
次に、ステップS3の後、印刷されたカラーチャート3のインクが乾燥されると、走査制御手段181は、搬送ユニット12を制御して、媒体Aを−Y方向に搬送させ、カラーチャート3における測定対象の第n行目のカラーパッチ群、例えば、最初は第1行目の第1カラーパッチ群30Aを、キャリッジ13(測定領域R)に対向する走査直線上に位置させる(ステップS4)。
なお、以降の説明にあたり、カラーパッチ31は、Y方向に沿ってn行配置されており、カラーパッチ31における測定対象の行数を変数n(本実施形態では、nは1〜6)にて示す。ステップS3では、変数n=1がセットされることで、走査制御手段181は、第1行目の第1カラーパッチ群30Aがプラテン122上に位置するように、媒体Aを搬送する。また、ステップS3では、走査制御手段181は、キャリッジ13を−X側端部(初期位置X=0)に移動させる。
次に、フィルター制御手段183は、静電アクチュエーター56に初期電圧Vnを印加させ、波長可変干渉フィルター5の透過波長(測定波長)を測定対象のカラーパッチ群に応じた初期波長に設定する(ステップS5)。初期電圧Vnを印加された後、可動部521の変位が収束する安定化時間が経過すると、波長可変干渉フィルター5のギャップ寸法が初期波長に対応する値となる。
例えば、フィルター制御手段183は、第1行目(n=1)に配置された第1カラーパッチ群30Aに対して、初期波長400nmに対応する初期電圧V1を静電アクチュエーター56に印加させる。
次に、スイッチ制御手段185は、スイッチ回路211をオンし、タイミング検知回路21が検知信号を出力可能な出力状態に設定する(ステップS6)。
この後、走査制御手段181は、キャリッジ13をX方向に沿って移動させ、第1カラーパッチ群30Aを走査する(ステップS7)。また、制御ユニット15は、S/H回路212を所定のサンプリング周期で駆動させて、受光部173からの出力値に応じてタイミング検知回路21から出力される検知信号を取得する。
(測定開始タイミングの検知)
タイミング検知手段186は、上記検知信号の変化に基づいて測定開始タイミングを検知する(ステップS8)。なお、タイミング検知手段186は、測定開始タイミングを検知するまで同判定を繰り返す。
図11は、増幅器202、及びタイミング検知回路における後述する各回路の出力信号の出力変化と、カラーパッチに対する測定領域Rとの関係を模式的に示す図である。なお、図11では、一例として、複数のカラーパッチのうち、−X側に位置する2つのカラーパッチについて図示している。
図11に示すように、分光測定開始時において、測定領域Rは、カラーパッチよりも−X側の白色領域32に位置している(P1位置)。また、スイッチ回路211は、ユニット制御回路152からのスイッチ信号によってオンされ、タイミング検知回路21が出力状態に設定されている。
そして、キャリッジ13の移動に応じて測定領域RがX方向に沿って移動され、測定領域Rの+X側の端部が一つ目のカラーパッチ31Aに重なり始めると(P2位置)、重なり量に応じて増幅器202の出力が減少する(第2状態に相当)。これに応じてS/H回路212の出力が減少し、微分回路213及び増幅回路214の出力がHighとなり、タイミング検知回路21からHighの検知信号が出力される。
さらに、測定領域RがX方向に沿って移動され、P3位置となり、測定領域Rの全領域が一つ目のカラーパッチ31Aに重なると、受光量が変化しなくなる(第1状態に相当)。このため、微分回路213及び増幅回路214の出力がLowに変わり、タイミング検知回路21からLowの検知信号が出力される。タイミング検知手段186は、検知信号の出力レベルがHighからLowに変化したことを検知することにより、測定開始タイミングを検知する。
また、図11に示す測定領域Rの−X側端部がカラーパッチ31Aの−X側端部に重なるP3位置から、測定領域Rの+X側端部がカラーパッチ31Aの+X側端部に重なるP5位置に移動するまでの間の期間が、当該カラーパッチ31Aの分光測定を適切に実施可能な測定可能期間Taである。この測定可能期間Taにおいて分光測定が実施され、当該測定可能期間Ta内に設定された測定時間が経過すると、再び、波長可変干渉フィルター5が初期波長に設定される(P4位置)。そして、カラーパッチ31Aの+X側に配置されたカラーパッチ31Bについての測定開始タイミングの検知処理が、同様に、実施され、測定領域RがP6位置になったタイミングで、測定開始タイミングが検知される
ここで、本実施形態では、上述のように、第1カラーパッチ群30Aは、第1短波長域λ1(400nm〜430nm)に反射率のピーク波長を有し、初期波長400nmに対する反射率が互いに異なる複数のカラーパッチ31を含み構成されている。これらカラーパッチ31は、当該反射率が、+X側に向かうにしたがって小さくなるように配置されている。このため、任意の隣接する2つのカラーパッチ31に測定領域Rが重なる区間(P1からP2の区間)において、初期波長400に対するS/H回路の出力値が減少する。この場合、微分回路213の出力信号を正値のみを出力可能に構成しても、測定開始タイミングを検知することができる。したがって、微分回路213として単電源で駆動する構成を採用することができ、タイミング検知回路21の構成を簡略化できる。
なお、隣り合うカラーパッチ31間において、初期波長に対するタイミング検知回路21への入力値の差が、1mV以上であることが好ましい。すなわち、図11において測定領域RがP3位置からP5位置である場合と、P6位置である場合とで、入力信号の値が1mV以上となる。これにより、微分信号のSN比を向上させることができ、測定開始タイミングをより確実に検出できる。
また、微分信号の出力が小さく、測定開始タイミングを所望の精度で検知できない場合、増幅器202(図2参照)の増幅率を増大させることにより、微分信号の出力を増大させ、検知精度を向上させることができる。これ以外にも、隣り合うカラーパッチ31間において初期波長に対する反射率差を増大させることや、受光部173の感度を向上させることにより、微分信号の出力を増大させることができる。
(カラーパッチ群の測定)
図8に戻り、測定対象となるカラーパッチ31に測定領域の全域が重なり(図11のP2位置参照)、当該カラーパッチ31を適切に分光測定可能な状態となると、ステップS8でYESと判定される。
次に、スイッチ制御手段185は、スイッチ回路211をオフし、タイミング検知回路21を非出力状態に設定する(ステップS9)。
次に、制御ユニット15は、カラーパッチ31の分光測定を実施する(ステップS10)。具体的には、フィルター制御手段183は、V−λデータに基づいて、静電アクチュエーター56に印加する電圧を、後述するように所定の順番で順次変更する(図12参照)。これにより、所定波長域における複数バンドの光に対する出力値(例えば400nm〜700nmにおける20nm間隔の波長の光に対する16個の出力値)が制御ユニット15に出力される。制御ユニット15は、これらの出力値を適宜メモリ153に記憶する。
図12は、各波長帯域に対応する各カラーパッチ群30A〜30Fのそれぞれにおいて、各測定波長の測定順番の一例を示す図である。なお、1番目の測定波長は、上記初期波長である。
図12に示すように、第1カラーパッチ群30Aを測定する際には、制御ユニット15は、各カラーパッチについて、初期波長400nmから700nmの区間で20nm間隔に設定された16の各測定波長について、400nmから順次測定する。
また、第2カラーパッチ群30Bを測定する際には、制御ユニット15は、初期波長460nmから700nmまでの各測定波長について順次測定した後、400nmから440nmまでの各測定波長について順次測定する。
また、第3カラーパッチ群30C乃至第6カラーパッチ群30Fについても、第2カラーパッチ群30Bと同様に、制御ユニット15は、初期波長から700nmまでの各測定波長について、短波長側から順次測定し、その後、未測定の各測定波長について、短波長側から順次測定する。
このような順番で各測定波長について測定を行う場合、測定波長が700nmから400nmに変更されるタイミングを除き、フィルター制御手段183に、静電アクチュエーター56に印加する駆動電圧が徐々に変更されて、ギャップGの間隔寸法が徐々に変更される。これにより、ギャップ寸法の変動間隔が小さくなり、可動部521の変位時の振動を抑えることができる。
なお、第6カラーパッチ群30Fは、初期波長が700nmであるので、700nmから20nm間隔で測定波長を小さくするように測定波長を変更してもよく、この場合でも、ギャップ寸法の変動間隔が小さくなり、可動部521の変位時の振動を抑えることができる。
また、本例では、測定波長を徐々に増大させる(ギャップ寸法を徐々に減少させる)例を示すが、これに限定されず、初期波長を除き、各測定波長を徐々に減少させる(ギャップ寸法を徐々に増大させる)ように、静電アクチュエーター56に印加する駆動電圧を変更してもよい。
図8に戻り、ステップS10において、1つのカラーパッチ31の分光測定が終了すると、次に、n行目のカラーパッチ群の全カラーパッチ31の分光測定が終了したか否かを判定する(ステップS11)。
ステップS11においてNOと判定されると、ステップS5と同様に、フィルター制御手段183は、測定対象のカラーパッチ群に応じた初期波長に測定波長を設定するために、静電アクチュエーター56に初期電圧Vnを印加させる(ステップS12)。
次に、フィルター制御手段183は、ステップS10の分光測定の開始から、1つのカラーパッチ31の分光測定に要する所定の測定時間が経過したか否かを判定する(ステップS13)。測定時間は、16バンドの測定波長についての分光測定の実施に要する時間と、ギャップ寸法が初期電圧Vnに対応する値に安定するまでの安定化時間を含み、予め設定されメモリ153に記憶されている。測定時間が経過すると、波長可変干渉フィルター5の透過波長が、初期電圧Vnに対応する初期波長に設定される(図11のP4位置参照)。
透過波長が初期波長に設定されると、スイッチ制御手段185は、ステップS6と同様に、スイッチ回路211をオンし、タイミング検知回路21を、検知信号を出力可能な出力状態に設定する(ステップS14)。そして、ステップS8に戻り、n行目に配置された全カラーパッチ31について分光測定が終了するまで、ステップS8からステップS14までの処理を繰り返し実行する。
一方、ステップS11においてYESと判定され、n行目の測定が終了すると、カラーチャート3の全カラーパッチ31について測定結果が取得され、分光測定が終了したか否かを判定する(ステップS15)。
ステップS15においてNOと判定されると、制御ユニット15は、変数nに1を加算する(ステップS16)。その後、制御ユニット15は、ステップS4に戻り、分光測定が実施されていないカラーパッチ群について分光測定を実施する。
一方、ステップS15においてYESと判定されると、測色手段187は、各カラーパッチ31毎に取得された各波長の出力値と、ステップS3で得られた基準色に関する測定値とに基づいて、各カラーパッチの波長毎の反射率を算出する(ステップS17)。すなわち、測色手段187は、各カラーパッチの測色処理を実施し、色度を算出する。
この後、キャリブレーション手段188は、較正用印刷データに記録された各カラーパッチの色度と、ステップS17により算出された色度とに基づいて、メモリ153に記憶された印刷プロファイルデータを更新する(ステップS18)。
ステップS18の後に、制御ユニット15は、本フローチャートにおける処理を終了させる。
[第一実施形態の作用効果]
本実施形態では、カラーパッチ31に対して測定領域Rを一方向に沿って移動させた際に、当該測定領域Rからの光の受光量に応じた検出信号を、微分回路213にて微分処理して得られた微分信号に基づいて、測定開始タイミングを検知する。このため、カラーパッチ31に対する測定領域Rの位置を予め把握していなくとも、微分信号に基づいて測定開始タイミングを容易に検知することができる。したがって、測定開始位置がずれることによって測定対象のカラーパッチ31外の領域を測定するといった不具合の発生を抑制でき、高精度にカラーパッチ31の分光測定を実施できる。
また、キャリッジ移動ユニット14による移動速度や、測定時間等に応じたカラーパッチ31の最小寸法に対して、さらに、位置ずれを考慮したマージンを加えてカラーパッチ31の寸法を設定したとしても、測定開始位置のずれを抑制できるため、当該マージンを小さくすることができ、カラーパッチの寸法を小さくできる。したがって、マージンを大きくして測定開始位置のずれを抑制する場合と比べて、1つのカラーパッチ31を測定領域Rが通過する時間を短縮でき、分光測定の所要時間を短縮できる。
本実施形態では、各カラーパッチ群に対して分光測定を実施する際に、各カラーパッチ31内に測定領域Rが移動される際の各検出信号の変化方向が減少する方向となる(すなわち、増減方向が同一となる)ように、波長可変干渉フィルター5の初期波長を設定する。このような構成では、測定開始タイミングの検知を行う際に、減少する検出信号のみが微分回路213へ入力されることとなる。これにより、単電源で駆動する微分回路213を用いることができる。したがって、隣り合うカラーパッチ間の反射率特性に応じて検出信号が増大したり減少したりすることに対応するために双電源で駆動する微分回路を用いる必要がある場合と比べて、装置構成を簡略化できる。
また、本実施形態では、初期波長における各カラーパッチ31の反射率が、+X側に向かうにしたがって小さくなるように、複数のカラーパッチ31が配置されたカラーパッチ群を測定対象とする。これにより、各カラーパッチ31の測定開始タイミングの検知時に、同一の所定波長に設定しても、検知時における検出信号の変化方向を減少方向とすることができる。測定開始タイミングの検知を行う度に、波長可変干渉フィルター5の初期波長を変更しなくともよく、分光測定処理の簡略化を図ることができる。
また、本実施形態では、対応する色相の特徴波長における各カラーパッチ31の反射率が、+X側に向かうにしたがって小さくなるように、複数のカラーパッチ31が配置されたカラーパッチ群を測定対象とする。そして、初期波長を特徴波長として、測定開始タイミングの検知が実施される。このような構成では、カラーパッチ31の反射率が比較的に大きい特徴波長を用いて測定開始タイミングの検知が行われるため、例えば、特徴波長以外の、反射率が比較的に小さい波長を用いる場合と比べて、検出信号の出力値を大きくすることができる。したがって、検出信号や微分信号のSN比を向上させることができ、測定開始タイミングの検知精度を向上させることができる。
また、本実施形態では、分光測定における初期波長を、測定開始タイミングの検知に用いる特徴波長(検知波長)とする。このような構成では、測定開始タイミングを検知した後、分光測定を実施する際に、波長可変干渉フィルター5の出射波長を検知波長から別の波長に設定する必要がないため、分光測定の所要時間の短縮を図ることができる。
本実施形態では、スイッチ回路211を制御し、分光測定実施時にはタイミング検知回路21が非出力状態に設定され、分光測定の終了から次の測定開始タイミングの検知まで、タイミング検知回路21が出力状態に設定される。これにより、分光測定実施時の検出信号の変化に応じた微分信号を参照することによる開始タイミングの誤検知の発生を抑制できる。
本実施形態では、上述のカラーチャート3を形成した上で、当該カラーチャート3に含まれる各カラーパッチ31に対して分光測定を行うことができる。また、カラーパッチ31に対する高精度な測色を実施できるので、キャリブレーション手段188は、その測色結果に基づいて、印刷プロファイルデータを適切に更新することができる。すなわち、較正用印刷データに基づいて印刷部16により印刷された各カラーパッチの色度と、実際に測定された高精度な測色結果に基づく各カラーパッチの色度との差に基づいて、印刷部16に対してフィードバックすることで適切な色補正を行うことができ、ユーザーが所望する色を高精度に再現できる。
[第二実施形態]
次に、本発明に係る第二実施形態について説明する。なお、以降の説明に当たり、第一実施形態と同様の構成、同様の処理については、同符号を付し、その説明を省略又は簡略化する。
第二実施形態では、上記第一実施形態の構成に対して、更に、タイミング検知回路からの検知信号に基づいて、分光測定が適切に実施されていない可能性があることを検知し、検知結果に基づいて、測定条件の再設定を実施可能に構成される。すなわち、分光器の移動速度(走査速度)が設定値に対して大きいと、隣接する2つのカラーパッチ31のうち−X側のカラーパッチ31の分光測定が終了する前に、測定領域が上記+X側のカラーパッチ31に重なり始める場合がある。この場合、−X側のカラーパッチ31の分光測定が適切に実施できていないおそれがある他、以降のカラーパッチ31についても分光測定を適切に実施できないおそれがある。第二実施形態に係る分光測定装置は、上述のような測定エラーを検知可能に構成される。
図13は、第二実施形態に係るプリンター10Aの制御ユニット15に含まれるCPU154の機能構成を示すブロック図である。
CPU154は、メモリ153に記憶された各種プログラムを読み出し実行することで、図13に示すように、走査制御手段181、印刷制御手段182、フィルター制御手段183、光量検出手段184、スイッチ制御手段185、タイミング検知手段186、測色手段187、キャリブレーション手段188、エラー検知手段189、及び測定条件設定手段190等として機能する。
エラー検知手段189は、タイミング検知回路21からの検知信号に基づいて、測定エラーを検知する。例えば、走査制御手段181は、カラーパッチ幅や、各カラーパッチの分光測定に要する測定時間等に応じて予め設定された所定速度にて、キャリッジ13を移動させる。しかしながら、キャリッジガイド軸141の傾きや撓みが発生すると、キャリッジ13の移動速度が、所定速度よりも早くなるおそれがある。この場合、測定時間が経過する前に、測定領域が次のカラーパッチ31に重なり始め、適切に分光測定を実施できない可能性がある。エラー検知手段189は、スイッチ制御手段185によってスイッチ回路211がオンされ、タイミング検知回路21が出力状態に設定された際の検知信号がHighである場合に、測定エラーを検知する。これにより、測定時間が経過したタイミングで、測定領域が既に、次の測定対象のカラーパッチ31に重なり始めていることを検出することができる。
また、エラー検知手段189は、エラーの検知回数を計数し、メモリ153に記憶する。
測定条件設定手段190は、エラー検知手段189によるエラーの検知結果に基づいて、測定条件を設定する。例えば、測定条件設定手段190は、エラーの検知結果が所定回数以上である場合、走査制御手段181によるキャリッジ13の走査速度を設定する。走査速度の設定方法の一例については後述する。
[分光測定方法]
次に、本実施形態のプリンター10Aにおける分光測定方法について、図面に基づいて説明する。
図14は、プリンター10Aにおける分光測定方法を示すフローチャートである。なお、本実施形態の分光測定方法においては、図7に示すステップS1〜S7の処理を実施した後に、図14に示す各ステップの処理を実施する。すなわち、プリンター10Aは、予め設定された条件に基づいて、カラーチャート3を印刷し、キャリブレーション(白色校正)を実施した後、第1カラーパッチ群30Aを走査線上に設定し、タイミング検知回路21を出力状態として、キャリッジ13による走査を開始する(図7参照)。
そして、図14に示すように、プリンター10Aは、測定開始タイミングを検知する(ステップS8A)。なお、本実施形態では、測定開始タイミングを検知した場合、後述するように測定条件(走査速度)を設定するために、測定条件設定手段190は、測定開始タイミングを検知した時間(図15のT1,T2参照)を取得し、メモリ153に記憶する。
プリンター10Aは、測定開始タイミングを検知すると(ステップS8A:YES)、タイミング検知回路21を非出力状態に設定し(ステップS9)、カラーパッチ31の分光測定を実施する(ステップS10)。プリンター10Aは、カラーパッチ31の分光測定が終了し、かつ、第1カラーパッチ群30Aの全カラーパッチ31の分光測定が終了していない場合(ステップS11:NO)、静電アクチュエーター56に初期電圧Vnを印加し(ステップS12)、波長可変干渉フィルター5の透過波長を初期波長に設定する。プリンター10Aは、カラーパッチ31の分光測定開始から所定の測定時間が経過すると(ステップS13:YES)、タイミング検知回路21を出力状態に設定する(ステップS14)。次に、エラー検知手段189は、後述するエラー検知処理を実施する(ステップS21)。
(エラー検知処理)
図15は、エラーが検知される場合における、ユニット制御回路152から出力されるスイッチ信号と、微分回路213及び増幅回路214の出力信号の出力変化と、カラーパッチ31に対する測定領域Rとの関係を模式的に示す図である。
図15に示す例では、所定の測定時間ΔTsが経過した場合、測定領域Rが、分光測定を実施していたカラーパッチ31Aと、次に測定対象となるカラーパッチ31Bとの両方に重なっている。この場合、キャリッジ13の移動に応じて、透過光量が変化するため、スイッチ回路211がオンされたタイミングにおいて、微分回路213の出力がHighとなり、タイミング検知回路21からの検知信号の出力値がHighとなっている。このように、測定時間ΔTsが経過したタイミングで、Highの検知信号が出力される場合、カラーパッチ31Aに対する分光測定が適切に実施されていないおそれがある。
本実施形態では、図14に示すように、エラー検知手段189は、ステップS14にてタイミング検知回路21が出力状態に設定された際、検知信号がHighである場合にエラーを検知したと判定し(ステップS21:YES)、検知信号がLow(すなわち、略「0」)である場合にエラーを検知しないと判定する(ステップS21:NO)。
ステップS21においてYESと判定された場合、エラー検知手段189は、エラー検知数を示す変数kに1を加算し(ステップS22)、タイミング検知手段186は、ステップS8Aの処理を実施する。一方、ステップS21においてNOと判定された場合、エラー検知手段189がステップS22を実施せず、タイミング検知手段186がステップS8Aを実施する。なお、ステップS8Aでは、検知信号がHighからLowに変化したことを検知し、測定開始タイミングを検知するとともに、検知された際の時間(図15のT2)を取得し、メモリ153に記憶する。
(測定条件設定処理)
本実施形態では、エラー検知処理による検知結果に基づいて、カラーチャート3の分光測定を実施する際の測定条件を設定する(測定条件設定処理)。
具体的には、第n行目のカラーパッチ群の分光測定が終了したと判定され(ステップS11:YES)、かつ、カラーチャート3の分光測定が終了していないと判定されると(ステップS15:NO)、走査制御手段181は、ステップS16を実施する。
次に、測定条件設定手段190は、エラー検知数kが閾値kthを超えたか否かを判定する(ステップS23)。閾値kthは、エラー検知数の許容値であり、例えば、必要な測定精度に応じて適宜設定される。
測定条件設定手段190は、エラー検知数kが閾値kthを超えたと判定すると(ステップS23:YES)、測定条件を設定する(ステップS24)。なお、ステップS24が実施された後、又は、ステップS23においてNOと判定された場合、制御ユニット15は、ステップS4に戻り、次の行のカラーパッチ群の分光測定を実施する。
ここで、キャリッジ13の実際の走査速度Vrが、予め設定されている設定速度Vsよりも大きくなることにより、上記エラーが発生する場合があることは上述のとおりである。ステップS24において、測定条件設定手段190が、走査速度の設定値を現在の設定速度Vsよりも小さい設定速度Vsaに再設定することにより、上記エラーの発生を抑制することができる。
ここで、実際の走査速度Vrは、図15に示す、エラーが検知されたカラーパッチ31Aにおける測定開始時間T1と、次の測定対象となるカラーパッチ31Bの測定開始時間T2と、カラーパッチ31Aのパッチ幅Wpと、を用いて、下記式(1)として得ることができる。なお、下記式(1)に示すように、走査速度Vrは、カラーパッチ31Aの分光測定時の平均速度を用いる。
設定速度Vsaは、例えば、実際の走査速度Vrと設定速度Vsとの差分値ΔV(下記式(2)参照)を、設定速度Vsから減じた値を用いることができる(下記式(3)参照)。なお、本実施形態では、複数のカラーパッチにおいてエラーが検知されているため、測定条件設定手段190は、最大の走査速度Vrを用いて設定速度Vsaを算出する。
[数1]
Vr=Wp/(T2−T1) …(1)
ΔV=Vr−Vs …(2)
Vsa=Vs−ΔV …(3)
なお、測定条件設定手段190は、上記式(3)に示すように設定速度Vsaを設定すること以外にも、設定速度Vsaとして予め複数の速度を設定可能に構成され、例えば、ΔVの値に応じて設定速度Vsaを設定してもよい。
また、本実施形態では、測定条件設定手段190が、キャリッジ13の走査速度を再設定し、次のカラーパッチ群を測定する構成を例示したが、実際の走査速度Vrと、測定時間ΔTsと、に基づいて、カラーパッチの幅Wpを再設定してもよい(下記式(4)参照)。なお、この場合も、複数のカラーパッチにおいてエラーが検知されているため、測定条件設定手段190は、最大の走査速度Vrを用いてカラーパッチの幅Wpを算出する。
[数2]
Wp=Vr×ΔTs …(4)
[第二実施形態の作用効果]
本実施形態では、エラー検知手段189は、分光測定が終了したタイミングにおける微分信号の出力値に基づいて、分光測定の測定エラーを検知する。これにより、分光測定が適切に実施できていない可能性があることを検知でき、検知結果に基づいて分光測定精度の低下抑制を図ることができる。
また、測定エラーが検知された期間における、実際の走査速度Vr(例えば、平均速度)を取得し、当該走査速度Vrと、設定速度Vsとに基づいて、走査速度を再設定することにより、測定精度の低下を抑制できる。また、複数の区間にて測定エラーが検知された場合、例えば、実際の走査速度Vrのうちの最大速度に基づいて走査速度を再設定することにより、測定エラーの発生をより確実に抑制できる。
また、実際の走査速度Vrと、測定時間ΔTsと、に基づいて、カラーパッチの幅Wpを再設定し、当該幅Wpを用いて新たなカラーチャート3を形成することにより、走査速度を変更しなくとも、測定エラーの発生を抑制できる。
[変形例]
なお、本発明は上述の各実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良、及び各実施形態を適宜組み合わせる等によって得られる構成は本発明に含まれるものである。
上記各実施形態では、測定開始タイミングの検出のために、分光器に内蔵された受光部の検出信号を用いる構成を例示したが、本発明はこれに限定されず、例えば、タイミング検出用の受光部を別に備える構成であってもよい。また、タイミング検出用の受光部と分光器17とを1つの移動機構によって一体的に移動させる構成としてもよいし、タイミング検出用の受光部と分光器17とのそれぞれに移動機構を設け、別々に移動可能としてもよい。
また、上記各実施形態では、波長可変干渉フィルター5を備える構成を例示したが、本発明はこれに限定されない。例えば、分光器17とは別に、タイミング検出用の受光部を設け、波長可変干渉フィルター5を介さずに当該受光部で測定対象からの光を受光した際の検出信号を用いて、測定開始タイミングを検出するようにしてもよい。この場合、例えば、隣り合うカラーパッチ間に明度の差を有するカラーパッチ群を用いればよい。また、各カラーパッチ間に白色領域を設けることにより、白色領域とカラーパッチとの間での反射光の光量差を利用して、測定開始タイミングを検出してもよい。このような構成により、簡易な構成によって測定開始タイミングを検出できる。
上記各実施形態において、キャリッジ13をX方向に沿って移動させる構成を例示したが、本発明はこれに限定されない。例えば、キャリッジ13を固定し、媒体Aをキャリッジ13に対して移動させる構成としてもよい。この場合、キャリッジ13の移動に伴う波長可変干渉フィルター5の振動を抑制でき、波長可変干渉フィルター5の透過波長を安定化させることができる。
また、X方向に沿って複数配置されたカラーパッチ31に対して、測定領域RをX方向に沿って走査させる例を示したが、カラーパッチ31に対して測定領域RをY方向に沿って走査させてもよい。この場合、搬送ユニット12によって媒体AをY方向に送ることで、測定領域Rをカラーパッチ31に対して相対移動させることができる。
上記各実施形態では、+X側に向かって所定波長における反射率が低下するように複数のカラーパッチが配置されたカラーパッチ群を用いる場合について、例示したが、本発明はこれに限定されない。例えば、+X側に向かって所定波長における反射率が増大するように複数のカラーパッチが配置されたカラーパッチ群を用いてもよい。
上記各実施形態では、同一の波長域に反射率のピーク波長を有するカラーパッチによって構成されたカラーパッチ群に対して、当該波長域に含まれる所定波長を初期波長として、測定開始タイミングを検知する構成を例示したが、本発明はこれに限定されない。例えば、上記波長域に含まれない波長を初期波長としてもよく、各カラーパッチの測定開始タイミングの検知時のそれぞれで異なる波長を初期波長としてもよい。
上記各実施形態では、同一の色相のカラーパッチを含むカラーパッチ群を用いて、当該色相の特徴波長を用いて、測定開始タイミングを検知した。しかしながら、本発明はこれに限定されず、例えば、1つのカラーパッチ群に、異なる色相のカラーパッチを含み、複数のカラーパッチが一方向に沿って配置されたカラーパッチ群を用いてもよい。
この場合、各カラーパッチの測定開始タイミングの検知時の波長可変干渉フィルターの設定波長を、検知時の検出信号の変化方向が各カラーパッチについて一致するように、適宜設定することにより、上記各実施形態と同様に、単電源で駆動する微分回路213を用いることができる。
例えば、走査方向に隣り合う2つのカラーパッチのそれぞれの反射率特性を、メモリに記憶された較正用印刷データを参照して、取得する。そして、走査方向の下流側(−X側)に位置する第1カラーパッチの反射率から、上流側(+X側)に位置する第2カラーパッチの反射率を減じた差分値が、所定値以上(例えば最大値)となる波長を、第2カラーパッチの測定開始タイミングの検知時の波長可変干渉フィルターの設定波長とする。これにより、第1カラーパッチから第2カラーパッチに測定領域が移動される際に、検出信号を、減少方向に変化させることができ、上述のように単電源で駆動可能な微分回路213を用いることができる。なお、検出信号を、増大方向に変化させる場合は、第2カラーパッチの反射率から、第1カラーパッチの反射率を減じた差分値が、所定値以上となる波長を設定波長とすればよい。
また、例えば、各カラーパッチの色相に応じた特徴波長をメモリに記憶しておき、検出信号の増減方向が、各カラーパッチの測定開始タイミングの検知時において一致するように、隣り合う第1及び第2カラーパッチのそれぞれの特徴波長のいずれかを選択する。すなわち、検出信号を増大方向に変化させるには、第2カラーパッチの特徴波長を選択し、減少方向に変化させるには、第1カラーパッチの特徴波長を選択すればよい。
また、例えば、測定対象のカラーパッチ群(カラーチャート)に対して、各カラーパッチの測定開始タイミングを検知するための設定波長を、予めメモリに記憶しておき、フィルター制御手段が、メモリから当該設定波長を取得し、波長可変干渉フィルターの波長を設定するようにしてもよい。
このような構成では、異なる色相のカラーパッチを含むカラーパッチ群の分光測定を行う場合でも、測定開始タイミングの検知時における検出信号の増減方向を、各カラーパッチにて一致させることができ、単電源で駆動する微分回路213を用いることができる。
上記各実施形態では、複数のカラーパッチが隙間なく配置されたカラーパッチ群を用いる構成を例示したが、本発明はこれに限定されない。例えば、カラーパッチ間に白色領域が配置されたカラーパッチ群を用いてもよい。この場合、隣り合う2つのカラーパッチ間において、初期波長に対する反射率の差が小さい場合でも、白色領域を挟むことにより、当該白色領域とカラーパッチとの間での反射率の差を用いることができる。したがって、測定開始タイミングの検知時における、受光量変化を大きくすることができ、すなわち微分信号の出力を大きくすることができ、検出精度の低下を抑制できる。
上記各実施形態では、スイッチ回路211を制御することにより、カラーパッチの分光測定の実施時に、検知信号が出力されない非出力状態にタイミング検知回路21を設定する構成を例示した。しかしながら、本発明は、これに限定されない。すなわち、スイッチ回路211を設けずに、制御ユニット15側の処理によって、同様の機能を実現してもよい。例えば、制御ユニット15は、分光測定実施時には、入力された検知信号の値を参照しないように構成されてもよい。より具体的には、例えば、制御ユニット15は、分光測定実施時には、検知信号の実際の入力値に関わらず、入力値が「0」であったとして処理を実施する、マスク処理を実施してもよい。これにより、分光測定実施時の検出信号に応じた微分信号(検知信号)が、制御ユニット15に入力されたとしても、当該微分信号(検知信号)による誤動作を抑制できる。
上記第二実施形態では、カラーパッチ群について分光測定を行った際の測定エラーを検知し、検知結果に基づいて、走査速度を再設定する構成を例示したが、本発明はこれに限定されない。例えば、測定エラーの検知結果に基づく処理として、測定エラーが検知されたカラーパッチの分光測定を実施する際に、再設定後の走査速度で分光測定を実施し、それ以外のカラーパッチは、予め設定された走査速度を用いてもよい。これにより、測定エラーの発生を抑制しつつ、カラーパッチ群の測定所要時間が長くなることを抑制でき、測定精度及び効率の低下を抑制できる。なお、上記第二実施形態のように、一定の走査速度で走査し、かつ、当該走査速度を再設定する場合、走査速度を変化させながら分光測定を実施する場合よりも、分光測定装置の動作を簡略化できる。
また、測定エラーが検知される度に、当該エラーが検知されたカラーパッチの分光測定を再び行うようにしてもよい。この場合、より確実に各カラーパッチの分光測定を適切に実施できる。したがって、カラーパッチ群の分光測定を再び行う必要がなく、再測定による効率の低下を抑制できる。
さらに、エラーが検知された際のY方向における位置(エラー位置)を記憶しておき、次回のカラーパッチ群の測定では、エラー位置に配置されたカラーパッチを測定する際に、移動機構による走査速度を適宜低減したり0にしたりしてもよい。この場合、簡単な制御によって、次回のカラーパッチ群の測定において、予め、測定エラーの発生を抑制できる。
上記各実施形態において、波長可変干渉フィルター5として、入射光から反射膜54,55間のギャップGに応じた波長の光を透過させる光透過型の波長可変干渉フィルター5を例示したが、これに限定されない。例えば、反射膜54、55間のギャップGに応じた波長の光を反射させる光反射型の波長可変干渉フィルターを用いてもよい。また、その他の形式の波長可変干渉フィルターを用いてもよい。
また、筐体6に波長可変干渉フィルター5が収納された光学フィルターデバイス172を例示したが、波長可変干渉フィルター5が直接分光器17に設けられる構成などとしてもよい。
さらに、波長可変干渉フィルター5を備えた光学フィルターデバイス172が、導光部174から受光部173の間に設けられる構成(後分光)を例示したがこれに限定されない。例えば、光源部171内に波長可変干渉フィルター5、若しくは、波長可変干渉フィルター5を備えた光学フィルターデバイス172を配置し、波長可変干渉フィルター5により分光された光を媒体Aに照射する構成(前分光)としてもよい。
上記各実施形態において、分光測定装置を備えたプリンター10を例示したが、これに限定されない。例えば、画像形成部を備えず、媒体Aに対する測色処理のみを実施する分光測定装置であってもよい。また、例えば工場等において製造された印刷物の品質検査を行う品質検査装置に、本発明の分光測定装置を組み込んでもよく、その他、如何なる装置に本発明の分光測定装置を組み込んでもよい。
その他、本発明の実施の際の具体的な構造は、本発明の目的を達成できる範囲で上記各実施形態及び変形例を適宜組み合わせることで構成してもよく、また他の構造などに適宜変更してもよい。
5…波長可変干渉フィルター、10,10A…プリンター(画像形成装置)、12…搬送ユニット、13…キャリッジ、14…キャリッジ移動ユニット(移動機構)、16…印刷部(画像形成部)、17…分光器、30A〜30F…カラーパッチ群、31,31A,31B…カラーパッチ、213…微分回路、A…媒体、R…測定領域。

Claims (13)

  1. 測定領域からの光が入射する波長可変干渉フィルター、及び、前記波長可変干渉フィルターからの光を受光し、受光量に応じた検出信号を出力する受光部を有する分光器と、
    測定対象に対して前記分光器を相対移動させ、前記測定対象に対して前記測定領域を移動させる移動機構と、
    前記検出信号を微分し、微分信号を出力する微分回路と、を含み、
    前記測定対象がカラーパッチである場合に、前記受光部での受光量を検出する分光測定を、前記微分信号に基づいて開始する
    ことを特徴とする分光測定装置。
  2. 請求項1に記載の分光測定装置において、
    前記移動機構は、前記測定対象に対して前記分光器を一方向に沿って相対移動させる
    ことを特徴とする分光測定装置。
  3. 請求項2に記載の分光測定装置において、
    前記測定対象が、前記一方向に沿って配置された複数のカラーパッチを含むカラーパッチ群である場合に、前記カラーパッチ群に含まれる前記複数のカラーパッチの各々の領域内に前記測定領域が移動される際の前記検出信号の出力値が、同一の増減方向となるように、前記波長可変干渉フィルターが通過させる光の波長を設定する
    ことを特徴とする分光測定装置。
  4. 請求項3に記載の分光測定装置において、
    前記測定対象が、前記複数のカラーパッチの各々における所定波長に対する反射率が前記一方向に沿って同一の増減方向となるカラーパッチ群である場合に、前記波長可変干渉フィルターが通過させる光の波長を前記所定波長に設定する
    ことを特徴とする分光測定装置。
  5. 請求項4に記載の分光測定装置において、
    前記測定対象が、前記一方向に配置される前記複数のカラーパッチの各々における色相が同一で、かつ前記色相の特徴波長に対する反射率が前記複数のカラーパッチの各々で前記一方向に沿って同一の増減方向となるカラーパッチ群である場合に、前記波長可変干渉フィルターが通過させる光の波長を前記特徴波長に設定する
    ことを特徴とする分光測定装置。
  6. 請求項3から請求項5のいずれか1項に記載の分光測定装置において、
    前記分光測定を開始するタイミングにおける前記波長可変干渉フィルターが通過させる光の波長を、前記分光測定における初期波長とする
    ことを特徴とする分光測定装置。
  7. 請求項1から請求項6のいずれか1項に記載の分光測定装置において、
    前記分光測定の実施時に前記微分信号を参照した前記分光測定を開始するタイミングの検知を行わず、前記分光測定の終了の後に前記微分信号を参照して前記タイミングの検知を行う
    ことを特徴とする分光測定装置。
  8. 請求項1から請求項7のいずれか1項に記載の分光測定装置において、
    前記分光測定が終了したタイミングにおける前記微分信号の出力値に基づいて、前記分光測定の測定エラーを検知する
    ことを特徴とする分光測定装置。
  9. 測定対象に対する分光測定を実施する分光測定装置であって、
    測定領域からの光を受光し、受光量に応じた検出信号を出力する受光部と、
    前記測定対象に対して前記受光部を相対移動させ、前記測定対象に対して前記測定領域を移動させる移動機構と、
    前記検出信号を微分し、微分信号を出力する微分回路と、を含み、
    前記測定対象がカラーパッチである場合に、前記分光測定を、前記微分信号に基づいて開始する
    ことを特徴とする分光測定装置。
  10. 請求項1から請求項9のいずれか1項に記載の分光測定装置と、
    画像形成対象に画像を形成する画像形成部と、を含む
    ことを特徴とする画像形成装置。
  11. 請求項10に記載の画像形成装置において、
    前記画像形成部は、一方向に沿って複数のカラーパッチが配置され、かつ、前記複数のカラーパッチの各々における所定波長に対する反射率が、前記一方向に沿って同一の増減方向となるカラーパッチ群を、前記画像形成対象に形成する
    ことを特徴とする画像形成装置。
  12. 請求項11に記載の画像形成装置において、
    前記画像形成部は、前記測定対象が、前記複数のカラーパッチの各々における色相が同一で、かつ前記色相の特徴波長に対する反射率が前記一方向に沿って同一の増減方向となるカラーパッチ群を、前記画像形成対象に形成する
    ことを特徴とする画像形成装置。
  13. 測定領域からの光が入射する波長可変干渉フィルター、及び、前記波長可変干渉フィルターからの光を受光し、受光量に応じた検出信号を出力する受光部を有する分光器と、前記測定対象に対して前記分光器を相対移動させ、前記測定対象に対して前記測定領域を移動させる移動機構と、前記検出信号を微分し、微分信号を出力する微分回路と、を含み、前記測定対象に対する分光測定を実施する分光測定装置を用いる分光測定方法であって、
    前記測定対象であるカラーパッチに対して前記測定領域を移動させる工程と、
    前記受光量を検出する分光測定を、前記微分信号に基づいて開始させる工程と、を実施する
    ことを特徴とする分光測定方法。
JP2015125877A 2015-06-23 2015-06-23 分光測定装置、画像形成装置、及び分光測定方法 Active JP6631048B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015125877A JP6631048B2 (ja) 2015-06-23 2015-06-23 分光測定装置、画像形成装置、及び分光測定方法
CN201610429356.6A CN106289523B (zh) 2015-06-23 2016-06-16 分光测定装置、图像形成装置以及分光测定方法
US15/185,373 US9721195B2 (en) 2015-06-23 2016-06-17 Spectrometry device, image forming device, and spectrometry method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015125877A JP6631048B2 (ja) 2015-06-23 2015-06-23 分光測定装置、画像形成装置、及び分光測定方法

Publications (2)

Publication Number Publication Date
JP2017009461A true JP2017009461A (ja) 2017-01-12
JP6631048B2 JP6631048B2 (ja) 2020-01-15

Family

ID=57602476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015125877A Active JP6631048B2 (ja) 2015-06-23 2015-06-23 分光測定装置、画像形成装置、及び分光測定方法

Country Status (3)

Country Link
US (1) US9721195B2 (ja)
JP (1) JP6631048B2 (ja)
CN (1) CN106289523B (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019049446A (ja) * 2017-09-08 2019-03-28 キヤノン株式会社 検知装置及び画像形成装置
JP2020034459A (ja) * 2018-08-30 2020-03-05 セイコーエプソン株式会社 プログラムおよび印刷システムの生産方法
US10671005B2 (en) 2017-09-08 2020-06-02 Canon Kabushiki Kaisha Detecting apparatus and image forming apparatus
JP2020152082A (ja) * 2019-03-22 2020-09-24 セイコーエプソン株式会社 印刷装置及び印刷装置の測色制御方法
CN113022132A (zh) * 2019-12-24 2021-06-25 精工爱普生株式会社 测量装置以及测量方法
JP2021101171A (ja) * 2019-12-24 2021-07-08 セイコーエプソン株式会社 測定装置、プリンター、及び測定方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6623685B2 (ja) * 2015-10-29 2019-12-25 セイコーエプソン株式会社 測定装置及び印刷装置
US10955336B2 (en) * 2017-08-26 2021-03-23 Innovative Micro Technology Gas sensor comprising a rotatable Fabry-Perot multilayer etalon
KR20190031706A (ko) * 2017-09-18 2019-03-27 에이치피프린팅코리아 유한회사 화상형성장치 및 화상형성방법
JP6992450B2 (ja) * 2017-11-29 2022-02-04 セイコーエプソン株式会社 印刷装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63144219A (ja) * 1986-12-08 1988-06-16 Komori Printing Mach Co Ltd 走査濃度計の測定位置同期方法
JPH09201947A (ja) * 1995-05-04 1997-08-05 Quad Tech Inc 印刷機において色をモニターするシステム及び方法
JP2003057115A (ja) * 2001-08-14 2003-02-26 Nireco Corp カラー印刷機のインクの色彩測定装置
US6623096B1 (en) * 2000-07-28 2003-09-23 Hewlett-Packard Company Techniques for measuring the position of marks on media and for aligning inkjet devices
JP2012213053A (ja) * 2011-03-31 2012-11-01 Seiko Epson Corp 印刷制御方法
JP2013187913A (ja) * 2012-03-06 2013-09-19 Ntt Docomo Inc 干渉アラインメントに基づくプリコーディング方法、送信機およびデバイス
JP2014190916A (ja) * 2013-03-28 2014-10-06 Seiko Epson Corp 測色器、画像処理装置、及び測色方法

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW226450B (ja) * 1992-08-31 1994-07-11 Canon Kk
JPH08193916A (ja) * 1995-01-19 1996-07-30 Dainippon Printing Co Ltd カラー試料の検査装置
JP3792273B2 (ja) * 1995-06-30 2006-07-05 株式会社島津製作所 分光測定装置
JP3157463B2 (ja) 1996-07-02 2001-04-16 サンクス株式会社 光電センサ及びカラーセンサ
JP3447928B2 (ja) 1997-09-22 2003-09-16 富士通株式会社 バーコード読み取り装置
JPH11142752A (ja) * 1997-11-05 1999-05-28 Yokogawa Electric Corp 透過波長可変干渉フィルタ及びこれを用いた分光器
JP3430093B2 (ja) * 1999-12-02 2003-07-28 三菱電機株式会社 分光撮像方法および装置
US8203749B2 (en) * 2006-06-16 2012-06-19 Hewlett-Packard Development Company, L.P. Printing device, carriage and color measurement method
US8109594B2 (en) 2007-04-13 2012-02-07 Seiko Epson Corporation Unit for measuring color and recording apparatus
JP2008281549A (ja) 2007-04-13 2008-11-20 Seiko Epson Corp 測色装置ユニット及び記録装置
JP5067436B2 (ja) * 2010-03-05 2012-11-07 オムロン株式会社 光電センサおよびしきい値の確認作業の支援方法
JP2012198177A (ja) * 2011-03-23 2012-10-18 Seiko Epson Corp 印刷制御装置、印刷装置、印刷制御方法、及び、印刷制御プログラム
JP2013225839A (ja) * 2012-03-22 2013-10-31 Ricoh Co Ltd 画像読取装置及び画像読取装置の制御方法
JP2013217654A (ja) * 2012-04-04 2013-10-24 Canon Inc 測色装置、記録装置、及び測色方法
US9165223B2 (en) * 2012-06-11 2015-10-20 Ricoh Production Print Solutions LLC Compensation for optical brighteners of print media to facilitate calibration of a printing system
JP6057729B2 (ja) * 2013-01-16 2017-01-11 キヤノン株式会社 画像形成装置
US9564065B2 (en) * 2015-02-27 2017-02-07 TrueLite Trace, Inc. Fuel savings training needs prediction and alert system
EP3064915A1 (en) * 2015-03-03 2016-09-07 Seiko Epson Corporation Spectrometry device, image forming apparatus, and spectrometry method
JP2016161435A (ja) * 2015-03-03 2016-09-05 セイコーエプソン株式会社 色むら検出装置、画像形成装置、及び色むら検出方法
JP6528471B2 (ja) * 2015-03-09 2019-06-12 セイコーエプソン株式会社 画像形成装置、及び汚れ検出方法
JP6500537B2 (ja) * 2015-03-23 2019-04-17 セイコーエプソン株式会社 測色装置、画像形成装置、電子機器、カラーチャート、及び測色方法
JP2016186472A (ja) * 2015-03-27 2016-10-27 セイコーエプソン株式会社 分光測定装置、及び画像形成装置
JP6601007B2 (ja) * 2015-06-18 2019-11-06 セイコーエプソン株式会社 分光測定装置、画像形成装置、及び分光測定方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63144219A (ja) * 1986-12-08 1988-06-16 Komori Printing Mach Co Ltd 走査濃度計の測定位置同期方法
JPH09201947A (ja) * 1995-05-04 1997-08-05 Quad Tech Inc 印刷機において色をモニターするシステム及び方法
US6623096B1 (en) * 2000-07-28 2003-09-23 Hewlett-Packard Company Techniques for measuring the position of marks on media and for aligning inkjet devices
JP2003057115A (ja) * 2001-08-14 2003-02-26 Nireco Corp カラー印刷機のインクの色彩測定装置
JP2012213053A (ja) * 2011-03-31 2012-11-01 Seiko Epson Corp 印刷制御方法
JP2013187913A (ja) * 2012-03-06 2013-09-19 Ntt Docomo Inc 干渉アラインメントに基づくプリコーディング方法、送信機およびデバイス
JP2014190916A (ja) * 2013-03-28 2014-10-06 Seiko Epson Corp 測色器、画像処理装置、及び測色方法

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019049446A (ja) * 2017-09-08 2019-03-28 キヤノン株式会社 検知装置及び画像形成装置
US10671005B2 (en) 2017-09-08 2020-06-02 Canon Kabushiki Kaisha Detecting apparatus and image forming apparatus
US10877417B2 (en) 2017-09-08 2020-12-29 Canon Kabushiki Kaisha Detecting apparatus and image forming apparatus
JP2020034459A (ja) * 2018-08-30 2020-03-05 セイコーエプソン株式会社 プログラムおよび印刷システムの生産方法
JP7230372B2 (ja) 2018-08-30 2023-03-01 セイコーエプソン株式会社 プログラムおよび印刷システムの生産方法
JP2020152082A (ja) * 2019-03-22 2020-09-24 セイコーエプソン株式会社 印刷装置及び印刷装置の測色制御方法
JP7255270B2 (ja) 2019-03-22 2023-04-11 セイコーエプソン株式会社 印刷装置及び印刷装置の測色制御方法
CN113022132A (zh) * 2019-12-24 2021-06-25 精工爱普生株式会社 测量装置以及测量方法
JP2021101171A (ja) * 2019-12-24 2021-07-08 セイコーエプソン株式会社 測定装置、プリンター、及び測定方法
CN113022132B (zh) * 2019-12-24 2022-06-28 精工爱普生株式会社 测量装置以及测量方法
US11506539B2 (en) 2019-12-24 2022-11-22 Seiko Epson Corporation Measurement device, printer, and measurement method
JP7404860B2 (ja) 2019-12-24 2023-12-26 セイコーエプソン株式会社 測定装置、プリンター、及び測定方法

Also Published As

Publication number Publication date
JP6631048B2 (ja) 2020-01-15
US9721195B2 (en) 2017-08-01
US20160379095A1 (en) 2016-12-29
CN106289523B (zh) 2020-11-06
CN106289523A (zh) 2017-01-04

Similar Documents

Publication Publication Date Title
JP6631048B2 (ja) 分光測定装置、画像形成装置、及び分光測定方法
US9739662B2 (en) Spectrometry device and image forming apparatus
JP6601007B2 (ja) 分光測定装置、画像形成装置、及び分光測定方法
JP6686281B2 (ja) 分光測定装置、画像形成装置
JP6492838B2 (ja) 分光測定装置、画像形成装置、及び分光測定方法
US9998633B2 (en) Color irregularity detecting device, image forming apparatus, and color irregularity detecting method
TW201632847A (zh) 分光測定裝置、圖像形成裝置、及分光測定方法
US10473527B2 (en) Measuring device and measuring method
CN108121025B (zh) 光学模块以及电子设备
US10442228B2 (en) Spectrometry device, image forming apparatus, and spectrometry method
US20170334221A1 (en) Measurement device and printing apparatus
JP2017111059A (ja) 測定装置、及び印刷装置
US11480466B2 (en) Measurement device and measurement method
US20170122864A1 (en) Measurement device and printing apparatus
JP7404860B2 (ja) 測定装置、プリンター、及び測定方法
JP2017116388A (ja) 分光測定装置、印刷装置、メディア、及び分光測定方法
JP2018169185A (ja) 測色装置、画像形成装置及び測色方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190820

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191125

R150 Certificate of patent or registration of utility model

Ref document number: 6631048

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150