JP2017111059A - 測定装置、及び印刷装置 - Google Patents

測定装置、及び印刷装置 Download PDF

Info

Publication number
JP2017111059A
JP2017111059A JP2015246799A JP2015246799A JP2017111059A JP 2017111059 A JP2017111059 A JP 2017111059A JP 2015246799 A JP2015246799 A JP 2015246799A JP 2015246799 A JP2015246799 A JP 2015246799A JP 2017111059 A JP2017111059 A JP 2017111059A
Authority
JP
Japan
Prior art keywords
light
measurement
medium
light source
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2015246799A
Other languages
English (en)
Inventor
龍平 久利
Ryuhei Kuri
龍平 久利
二夫 五味
Tsugio Gomi
二夫 五味
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2015246799A priority Critical patent/JP2017111059A/ja
Publication of JP2017111059A publication Critical patent/JP2017111059A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Ink Jet (AREA)
  • Accessory Devices And Overall Control Thereof (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

【課題】迅速かつ高い精度で測定を行える測定装置、及び印刷装置を提供する。【解決手段】プリンターは、メディアAに光を照射する光源部171、及びメディアAで反射又は透過された光を受光する受光部173を含む分光器17と、メディアAに対して分光器17をX方向に沿って移動させるキャリッジ移動ユニットと、を備え、光源部171からの光がメディアAに照射される領域である照射領域Rは、X方向に沿った第一寸法より、X方向に交差するY方向に沿った第二寸法の方が大きい。【選択図】図3

Description

本発明は、測定装置、及び印刷装置に関する。
従来、メディア上に画像を形成する印刷装置において、画像データと、メディアに印刷された画像との色彩の差を補正するものが知られている(例えば、特許文献1参照)。
この特許文献1に記載の装置では、メディア上に画像を形成する印刷ヘッドと、メディア上に形成された画像を測色する測色ヘッドと、を備えている。そして、印刷ヘッドによりメディア上にカラーパッチを形成して、測色ヘッドによりそのカラーパッチの測色を行い、測色結果に応じて、印刷ヘッドのキャリブレーション(例えばインクの吐出量補正)を行う。
また、測色ヘッドは、通常、メディアに対して光源から照明光を照射し、照明光の照射範囲内の測定位置での反射光を受光部で受光することで測色を行う。
特開2011−77844号公報
ところで、カラーパッチに対する測色を実施する場合、第一方向(例えば主走査方向)に沿って、複数のカラーパッチにより構成されたパッチ群を配置し、第一方向に交差する第二方向(例えば副走査方向)に沿って、上記パッチ群を複数配置する。そして、測色ヘッドを、第一方向に沿って走査してパッチ群に属する各カラーパッチに対する測色を行い、メディアを第二方向に沿って搬送した後、第二方向に沿って並ぶ次のパッチ群の各カラーパッチに対して、再び測色ヘッドを第一方向に沿って走査して測色を行う。この場合、1つのパッチ群に属するカラーパッチの数が多い程、測色ヘッドの走査回数が減少し、測色に係る時間の短縮を図れる。
しかしながら、パッチ群に属するカラーパッチの数を増やすと、その分、個々のカラーパッチが小さくなる。よって、測色ヘッドにより測色を実施する際に、隣接するカラーパッチに光源からの照明光が照射され、その反射光が受光部に入射されるおそれがあり、この場合、測色精度が低下するとの課題がある。
本発明は、迅速かつ高い精度で測定を行える測定装置、及び印刷装置を提供することを目的とする。
本発明に係る一適用例の測定装置は、メディアに光を照射する光源部、及び前記メディアで反射又は透過された光を受光する受光部を含む測定器と、前記メディアに対して前記測定器を第一方向に沿って相対移動させる移動機構と、を備え、前記光源部からの光が前記メディアに照射される領域である照射領域は、前記第一方向に沿った第一寸法が、前記第一方向に交差する第二方向に沿った第二寸法よりも小さいことを特徴とする。
本適用例では、光源部及び受光部を含む測定器と、測定器を第一方向に沿って相対移動させる移動機構とを備える。そして、測定器の光源部からメディアに光を照射した際に、その照射領域の第一方向に沿った第一寸法が、第一方向に交差する第二方向に沿った第二寸法よりも小さくなる。
このような構成では、カラーパッチの第一方向に沿うサイズを小さくしても、照射領域が測定対象のカラーパッチ外にはみ出る不都合を抑制でき、高精度な測定を行うことができる。また、上記のように、カラーパッチの第一方向に沿うサイズを小さくできるので、より多くのカラーパッチを第一方向に沿って配置することができる。これにより、複数のカラーパッチを測定する際に、測定器の走査回数を減らすことができ、迅速な測定を行うことができる。
本適用例に係る測定装置において、前記光源部は、前記第二方向に沿って配置されたフィラメントを有するタングステンランプを含むことが好ましい。
本適用例では、光源にタングステンランプを用いる。このようなタングステンランプは、可視光域内の各波長の光量が略均一(分光スペクトル特性がブロード)となる光源であるので、例えば、可視光域の各波長の光の光量をそれぞれ測定する場合等において、測定精度を向上させることができる。
そして、本適用例では、タングステンランプの発光素子であるフィラメントが、第二方向に沿って配置されている。一般に、タングステンランプから出射される光により形成される照射領域は、フィラメントの長手方向を長軸とした楕円形状となる。従って、本適用例では、フィラメントが第二方向に沿って配置されている(つまり、フィラメントの長手方向と第二方向とが一致している)ので、照射領域における第一寸法が第二寸法よりも小さくなる。これにより、レンズ等の光学部材を用いることなく、簡素な構成で、メディアに対して第一寸法が第二寸法よりも小さくなる照射領域を形成することができる。
本適用例の測定装置において、前記光源部は、前記第二方向に沿い、かつ前記メディアの面の法線に対して傾斜する角度から前記照射領域に光を照射することが好ましい。
本適用例では、光源部は、第二方向に沿い、かつメディアの面の法線方向に対して傾斜する角度から照射領域に光を照射する。この場合でも、レンズ等の他の光学部材を用いることなく、簡素な構成で、第一寸法が第二寸法よりも小さくなる照射領域を形成することができる。
本適用例の測定装置において、前記光源部は、前記第二方向に沿って並接される第一光源及び第二光源を備え、前記第一光源は、前記第二方向に沿い、かつ前記メディアの面の法線に対して傾斜する角度から前記照射領域に光を照射し、前記第二光源は、前記メディアの面の法線から見た平面視で、前記照射領域を挟んで前記第一光源とは反対側に配置され、前記メディアの法線に対して傾斜する角度から前記照射領域に光を照射することが好ましい。
本適用例では、第二方向に沿って、第一光源と第二光源とが並接されている。このうち、第一光源は、上記適用例と同様、第二方向に沿い、かつメディアの面の法線方向に対して傾斜する角度から照射領域に光を照射する。一方、第二光源は、照射領域を挟んで第一光源とは反対側に配置され、第二方向に沿い、かつメディアの面の法線方向に対して傾斜する角度から照射領域に光を照射する。つまり、第二方向に沿った例えば正側から第一光源の光が照射領域に照射され、第二方向に沿った例えば負側から第二光源の光が照射領域に照射される。
第一光源のみからの光を斜めから照射すると、照射領域における光源に近い一方側において光量が大きくなり、光源から遠い他方側では光量が小さくなる。これに対して、本適用例では、照射領域を挟んで第一光源と第二光源とが設けられているので、照射領域には、略均一な光量の光が照射されることになり、カラーパッチ等の測定を実施する際に、測定精度を向上させることができる。
本適用例の測定装置において、前記測定器は、前記メディアで反射又は透過した光から所定波長の光を分光する分光素子を有することが好ましい。
本適用例では、測定器には分光素子が設けられており、分光素子により分光された分光波長の光を受光部で受光する。このような測定器では、測定対象の分光波長の光に対する光量を取得する、すなわち分光測定を実施できる。
本適用例の測定装置において、前記測定器が前記第一方向に相対移動されている間の第一期間に、前記受光部により受光される光の波長を変えながら測定を行い、前記第一期間における測定開始時、及び測定終了時において前記分光素子から第一波長の光を通過させ、前記測定開始時の前記測定の測定値である第一測定値と、前記測定終了時の前記測定の測定値である第二測定値とを比較することが好ましい。
本適用例では、測定器をカラーパッチに対して第一方向に沿って相対移動させ、測定器が相対移動されている間の第一期間において、分光測定を実施する。この際、第一期間の測定開始時及び測定終了時において、分光素子から出射させる光を第一波長に設定し、その測定開始時における測定値(第一測定値)と、測定終了時における測定値 (第二測定値)とを比較する。すなわち、第一期間において分光測定を実施した位置(測定範囲)がカラーパッチの領域内である場合、第一測定値及び第二測定値が同一、又は略同一となる。一方、測定開始時又は測定終了時における分光測定の位置がカラーパッチの領域から外れている場合では、第一測定値及び第二測定値が異なる値となる。よって、第一測定値及び第二測定値を比較することで、容易かつ迅速に、カラーパッチに対する測定範囲が適切か否かを判定することができる。また、本適用例では、分光器をカラーパッチ上で停止させて分光測定を行う必要がなく、分光測定に係る時間を短縮することができる。
本適用例の測定装置において、前記第一方向に沿って設けられたカラーパッチに対して前記測定器による測定を実施する際に、前記分光素子から第一波長の光を通過させつつ前記測定器を前記第一方向に沿って相対移動させ、前記受光部からの受光信号の変化量が所定閾値以下となったタイミングを基準として前記測定を実施することが好ましい。
本適用例では、受光部からの受光信号の変化量が閾値以下となるタイミングを基準(基準タイミング)として、測定器による測定を実施する。すなわち、分光素子による分光波長を一定(第一波長)にした状態で、照射領域をカラーパッチの外から内に移動させると、照射領域がカラーパッチの境界を跨いでいる間、受光部からの受光信号が変化し、照射領域がカラーパッチ内に入ると、受光部からの受光信号の変動がほぼ0となる。よって、受光部からの受光信号に基づいて、照射領域がカラーパッチ内に入ったタイミングを基準とすることで、測定を行うタイミングや測定を行う範囲を容易に特定することが可能となる。
この際、本適用例では、照射領域の第一寸法が第二寸法よりも小さいので、測定器を一方向に沿って相対移動させて、当該照射領域が第一のカラーパッチと第二のカラーパッチとの境界を跨ぐ際の受光信号の変化が急峻となる。したがって、照射領域がカラーパッチ内に入ったか否かの判定(基準タイミングの判定)を高精度に行うことができる。よって、各カラーパッチに対して、適切な位置で測定を行うことができる。
本発明に係る一適用例の印刷装置は、上述したような測定装置と、前記メディアに画像を印刷する印刷部と、を備えることを特徴とする。
本適用例では、印刷装置は、印刷部と測定装置とを備えている。したがって、印刷部により画像を印刷した後に、即座に測定装置による測定を実施でき、測定に係る時間を短縮できる。
本適用例の印刷装置において、前記印刷部は、前記第二方向を長手方向とする複数のカラーパッチが前記第一方向に並ぶカラーパッチを前記メディアに印刷することが好ましい。
本適用例では、印刷部により第二方向に沿って長手となるカラーパッチを第一方向に沿って複数配置したカラーパッチを印刷する。上述したように、本適用例では、測定装置における光源部からの光の照射領域は、第一寸法が第二寸法よりも小さくなる。よって、各カラーパッチの第一方向に沿った幅寸法を、照射領域の第一寸法に応じて小さくできるので、第一方向に沿って従来よりも多くカラーパッチを印刷することができる。つまり、測定器を第一方向に沿って走査させる際に、1走査で多くのカラーパッチの測定を行え、測定時間の短縮を図れる。
本適用例の印刷装置において、前記カラーパッチの測定結果に基づいて、前記印刷部の色補正係数を取得することが好ましい。
本適用例では、カラーパッチの測定結果に基づいて、印刷部の色補正係数を取得する。これにより、印刷部により画像データに基づいた画像を印刷する場合に、画像データの色と、印刷された画像の色との差を補正することができ、品質の高い画像を形成することができる。
本発明に係る第一実施形態のプリンターの概略構成を示す外観図。 第一実施形態のプリンターの概略構成を示すブロック図。 第一実施形態の分光器の概略構成を示す断面図。 第一実施形態の照射領域を示す図。 第一実施形態の光学フィルターデバイスの概略構成を示す断面図。 第一実施形態における制御ユニットに含まれるCPUの機能構成を示したブロック図。 第一実施形態のプリンターにおける分光測定方法を示すフローチャート。 第一実施形態のプリンターにおける分光測定方法を示すフローチャート。 第一実施形態におけるカラーチャートの一例を示す図。 従来のカラーパッチと、第一実施形態のカラーパッチとを比較する図。 第一実施形態においてカラーパッチに対する照射領域(測定領域)の位置と、受信信号(出力値)の変化と、キャリッジの移動時間との関係を示す図。 第一実施形態においてカラーパッチに対して測定範囲がずれていない場合の測定対象領域の位置、出力値の変化、反射膜間の容量変化を示す図。 従来の測定器を用いた場合の、カラーパッチに対して測定範囲がずれていない場合の測定対象領域の位置、出力値の変化、反射膜間の容量変化を示す図。 第一実施形態において、カラーパッチに対して測定範囲がずれている場合の測定対象領域の位置、出力値の変化、反射膜間の容量変化を示す図。 (A)第二実施形態の光源部の概略構成を示す図、(B)照射領域の光量分布を示す図。 (A)第三実施形態の光源部の概略構成を示す図、(B)第一照射領域及び第二照射領域の光量分布を示す図。
[第一実施形態]
以下、本発明に係る第一実施形態について、図面に基づいて説明する。本実施形態では、本発明の印刷装置の一例として、測定装置を備えたプリンター10について、以下説明する。
[プリンターの概略構成]
図1は、第一実施形態のプリンター10の外観の構成例を示す図である。図2は、本実施形態のプリンター10の概略構成を示すブロック図である。
図1に示すように、プリンター10は、供給ユニット11、搬送ユニット12と、キャリッジ13と、キャリッジ移動ユニット14と、制御ユニット15(図2参照)と、を備えている。このプリンター10は、例えばパーソナルコンピューター等の外部機器20から入力された印刷データに基づいて、各ユニット11,12,14及びキャリッジ13を制御し、メディアA上に画像を印刷する。また、本実施形態のプリンター10は、予め設定された較正用印刷データに基づいてメディアA上の所定位置に測色用のカラーパッチ31(図9等参照)を形成し、かつ当該カラーパッチ31に対する分光測定を行う。これにより、プリンター10は、カラーパッチ31に対する実測値と、較正用印刷データとを比較して、印刷されたカラーに色ずれがあるか否か判定し、色ずれがある場合は、実測値に基づいて色補正を行う。
以下、プリンター10の各構成について具体的に説明する。
供給ユニット11は、画像形成対象となるメディアA(本実施形態では、白色紙面を例示)を、画像形成位置に供給するユニットである。この供給ユニット11は、例えばメディアAが巻装されたロール体111(図1参照)、ロール駆動モーター(図示略)、及びロール駆動輪列(図示略)等を備える。そして、制御ユニット15からの指令に基づいて、ロール駆動モーターが回転駆動され、ロール駆動モーターの回転力がロール駆動輪列を介してロール体111に伝達される。これにより、ロール体111が回転し、ロール体111に巻装された紙面がY方向(本発明の第二方向であり、副走査方向)における下流側(+Y方向)に供給される。
なお、本実施形態では、ロール体111に巻装された紙面を供給する例を示すがこれに限定されない。例えば、トレイ等に積載された紙面等のメディアAをローラー等によって例えば1枚ずつ供給する等、如何なる供給方法によってメディアAが供給されてもよい。
搬送ユニット12は、供給ユニット11から供給されたメディアAを、Y方向に沿って搬送する。この搬送ユニット12は、搬送ローラー121と、搬送ローラー121とメディアAを挟んで配置され、搬送ローラー121に従動する従動ローラー(図示略)と、プラテン122と、を含んで構成されている。
搬送ローラー121は、図示略の搬送モーターからの駆動力が伝達され、制御ユニット15の制御により搬送モーターが駆動されると、その回転力により回転駆動されて、従動ローラーとの間にメディアAを挟み込んだ状態でY方向に沿って搬送する。また、搬送ローラー121のY方向の下流側(+Y側)には、キャリッジ13に対向するプラテン122が設けられている。
キャリッジ13は、メディアAに対して画像を印刷する印刷部16と、メディアA上の所定の照射領域R(図2参照)の分光測定を行う分光器17(測定器)と、を備えている。
このキャリッジ13は、キャリッジ移動ユニット14によって、Y方向と交差する主走査方向(本発明における第一方向であり、X方向)に沿って移動可能に設けられている。
また、キャリッジ13は、フレキシブル回路131により制御ユニット15に接続され、制御ユニット15からの指令に基づいて、印刷部16による印刷処理(メディアAに対する画像形成処理)及び、分光器17による分光測定処理を実施する。
なお、キャリッジ13の詳細な構成については後述する。
キャリッジ移動ユニット14は、本発明における移動機構を構成し、制御ユニット15からの指令に基づいて、キャリッジ13をX方向に沿って往復移動させる。
このキャリッジ移動ユニット14は、例えば、キャリッジガイド軸141と、キャリッジモーター142と、タイミングベルト143と、を含んで構成されている。
キャリッジガイド軸141は、X方向に沿って配置され、両端部がプリンター10の例えば筐体に固定されている。キャリッジモーター142は、タイミングベルト143を駆動させる。タイミングベルト143は、キャリッジガイド軸141と略平行に支持され、キャリッジ13の一部が固定されている。そして、制御ユニット15の指令に基づいてキャリッジモーター142が駆動されると、タイミングベルト143が正逆走行され、タイミングベルト143に固定されたキャリッジ13がキャリッジガイド軸141にガイドされて往復移動する。
次に、キャリッジ13に設けられる印刷部16及び分光器17の構成について、図面に基づいて説明する。
[印刷部(画像形成部)の構成]
印刷部16は、本発明の画像形成部であり、メディアAと対向する部分に、インクを個別にメディアA上に吐出して、メディアA上に画像を形成する。
この印刷部16は、複数色のインクに対応したインクカートリッジ161が着脱自在に装着されており、各インクカートリッジ161からインクタンク(図示略)にチューブ(図示略)を介してインクが供給される。また、印刷部16の下面(メディアAに対向する位置)には、インク滴を吐出するノズル(図示略)が、各色に対応して設けられている。これらのノズルには、例えばピエゾ素子が配置されており、ピエゾ素子を駆動させることで、インクタンクから供給されたインク滴が吐出されてメディアAに着弾し、ドットが形成される。
[分光器の構成]
図3は、分光器17の概略構成を示す断面図である。
分光器17は、本発明の測定器を構成し、図3に示すように、光源部171と、光学フィルターデバイス172と、受光部173と、導光部174と、を備えている。
この分光器17は、光源部171からメディアA上に照明光を照射する。そして、メディアA上の測定位置で反射された光成分を、導光部174により光学フィルターデバイス172に入射させる。そして、光学フィルターデバイス172は、この反射光から所定波長の光を出射(透過)させて、受光部173により受光させる。また、光学フィルターデバイス172は、制御ユニット15の制御に基づいて、透過波長を選択可能であり、可視光における各波長の光の光量を測定することで、メディアA上の照射領域Rの分光測定が可能となる。
[光源部の構成]
光源部171は、タングステンランプ171Aと、集光部171Bとを備え、タングステンランプ171Aから出射された光をメディアA上に照射する。なお、本実施形態では、メディアAの表面に対する法線方向から照明光を照射する。
また、タングステンランプ171Aは、可視光域における各波長の光を出射可能な光源であり、タングステンにより構成されたフィラメント171A1を有する。このフィラメント171A1は、図3に示すように、螺旋状に構成され、螺旋中心軸に沿うフィラメント171A1の長手方向がY方向に平行となる。すなわち、フィラメント171A1は、Y方向に沿って配置されている。
図4は、メディアA上の照射領域Rを示す図である。
上記のようなタングステンランプ171Aから照射された照明光がメディアA上に照射されると、図4に示すように、Y方向に長手となる楕円状の照射領域Rが形成される。つまり、照射領域RのX方向に沿う長さ寸法(第一寸法Ra)は、照射領域RのY方向に沿う長さ寸法(第二寸法Rb)よりも小さくなる。
集光部171Bは、例えば集光レンズ等により構成され、タングステンランプ171Aからの光を照射領域Rに集光させる。なお、図3においては、集光部171Bでは、1つのレンズ(集光レンズ)のみを表示するが、複数のレンズを組み合わせて構成されていてもよい。また、タングステンランプ171Aの外周にリフレクターを設ける構成などとしてもよい。
[光学フィルターデバイスの構成]
図5は、光学フィルターデバイス172の概略構成を示す断面図である。
光学フィルターデバイス172は、筐体6と、筐体6の内部に収納された波長可変干渉フィルター5(分光素子)とを備えている。
(波長可変干渉フィルターの構成)
波長可変干渉フィルター5は、波長可変型のファブリーペローエタロン素子であり、図5に示すように、透光性の固定基板51及び可動基板52を備え、これらの固定基板51及び可動基板52が、接合膜53により接合されることで、一体的に構成されている。
固定基板51は、エッチングにより形成された第一溝部511、及び第一溝部511より溝深さが浅い第二溝部512を備えている。そして、第一溝部511には、固定電極561が設けられ、第二溝部512には、固定反射膜54が設けられている。
固定電極561は、例えば第二溝部512を囲う環状に形成されており、可動基板52に設けられた可動電極562に対向する。
固定反射膜54は、例えばAg等の金属膜、Ag合金等の合金膜、高屈折層及び低屈折層を積層した誘電体多層膜、又は、金属膜(合金膜)と誘電体多層膜を積層した積層体により構成されている。
可動基板52は、可動部521と、可動部521の外に設けられ、可動部521を保持する保持部522とを備えている。
可動部521は、保持部522よりも厚み寸法が大きく形成されている。この可動部521は、固定電極561の外周縁の径寸法よりも大きい径寸法に形成されており、可動部521の固定基板51に対向する面に、可動電極562及び可動反射膜55が設けられている。
可動電極562は、固定電極561に対向する位置に設けられている。
可動反射膜55は、固定反射膜54に対向する位置に、ギャップGを介して配置されている。この可動反射膜55としては、上述した固定反射膜54と同一の構成の反射膜を用いることができる。
保持部522は、可動部521の周囲を囲うダイアフラムであり、可動部521よりも厚み寸法が小さく形成されている。このような保持部522は、可動部521よりも撓みやすく、僅かな静電引力により、可動部521を固定基板51側に変位させることが可能となる。これにより、固定反射膜54及び可動反射膜55の平行度を維持した状態で、ギャップGのギャップ寸法を変更することが可能となる。
なお、本実施形態では、ダイアフラム状の保持部522を例示するが、これに限定されず、例えば、平面中心点を中心として、等角度間隔で配置された梁状の保持部が設けられる構成などとしてもよい。
また、可動基板52の外周部(固定基板51に対向しない領域)には、固定電極561や可動電極562と個別に接続された複数の電極パッド57が設けられている。
(筐体の構成)
筐体6は、図5に示すように、ベース61と、ガラス基板62と、を備えている。これらのベース61及びガラス基板62は、例えばガラスフリット(低融点ガラス)を用いた低融点ガラス接合、エポキシ樹脂等による接着などを利用でき、これにより、内部に収容空間が形成され、この収容空間内に波長可変干渉フィルター5が収納される。
ベース61は、例えば薄板上にセラミックを積層することで構成され、波長可変干渉フィルター5を収納可能な凹部611を有している。波長可変干渉フィルター5は、ベース61の凹部611の例えば側面に固定材64により固定されている
ベース61の凹部611の底面には、光通過孔612が設けられている。この光通過孔612は、波長可変干渉フィルター5の反射膜54,55と重なる領域を含むように設けられている。また、ベース61のガラス基板62とは反対側の面には、光通過孔612を覆うカバーガラス63が接合されている。
また、ベース61には、波長可変干渉フィルター5の電極パッド57に接続される内側端子部613が設けられており、この内側端子部613は、導通孔614を介して、ベース61の外側に設けられた外側端子部615に接続されている。この外側端子部615は、制御ユニット15に電気的に接続されている。
[受光部及び導光光学系の構成]
図3に戻り、受光部173は、波長可変干渉フィルター5の光軸上に配置され、当該波長可変干渉フィルター5を透過した光を受光する。そして、受光部173は、制御ユニット15の制御に基づいて、受光量に応じた受光信号(電流値)を出力する。なお、受光部173により出力された受光信号は、I−V変換器(図示略)、増幅器(図示略)、及びAD変換器(図示略)を介して制御ユニット15に入力される。
導光部174は、反射鏡174Aと、バンドパスフィルター174Bとを備えている。
この導光部174は、照射領域Rで、メディアAの表面に対して45°で反射された光を反射鏡174Aにより、波長可変干渉フィルター5の光軸上に反射させる。バンドパスフィルター174Bは、可視光域(例えば380nm〜720nm)の光を透過させ、紫外光及び赤外光の光をカットする。これにより、波長可変干渉フィルター5には、可視光域の光が入射されることになり、受光部173において、可視光域における波長可変干渉フィルター5により選択された波長の光が受光される。
なお、メディアA上における受光部173により受光される測定領域の範囲は、照射領域Rと同一、若しくは照射領域Rよりも小さいことが好ましい。本実施形態では、説明の便宜上、照射領域Rと測定領域とが略同一領域である例について説明する。なお、反射鏡174Aを例えば凹面鏡等により構成することにより、照射領域Rと測定領域と同一領域とすることができる。
[制御ユニットの構成]
制御ユニット15は、図2に示すように、I/F151と、ユニット制御回路152と、メモリ153と、CPU(Central Processing Unit)154と、を含んで構成されている。
I/F151は、外部機器20から入力される印刷データをCPU154に入力する。
ユニット制御回路152は、供給ユニット11、搬送ユニット12、印刷部16、光源部171、波長可変干渉フィルター5、受光部173、及びキャリッジ移動ユニット14をそれぞれ制御する制御回路を備えており、CPU154からの指令信号に基づいて、各ユニットの動作を制御する。なお、各ユニットの制御回路が、制御ユニット15とは別体に設けられ、制御ユニット15に接続されていてもよい。
メモリ153は、プリンター10の動作を制御する各種プログラムや各種データが記憶されている。
各種データとしては、例えば、波長可変干渉フィルター5を制御する際の、静電アクチュエーター56への印加電圧に対する、波長可変干渉フィルター5を透過する光の波長を示したV−λデータ、印刷データとして含まれる色データに対する各インクの吐出量を補正するための色補正係数等が挙げられる。また、光源部171の各波長に対する発光特性(発光スペクトル)や、受光部173の各波長に対する受光特性(受光感度特性)等が記憶されていてもよい。
図6は、プリンター10の制御ユニット15に含まれるCPUの機能構成を示したブロック図である。
CPU154は、メモリ153に記憶された各種プログラムを読み出し実行することで、図6に示すように、走査制御手段181、印刷制御手段182、測定範囲設定手段183、フィルター制御手段184、判定手段185、ずれ量算出手段186、測色手段187、及びキャリブレーション手段188等として機能する。
走査制御手段181は、供給ユニット11、搬送ユニット12、及びキャリッジ移動ユニット14を駆動させる旨の指令信号をユニット制御回路152に出力する。これにより、ユニット制御回路152は、供給ユニット11のロール駆動モーターを駆動させて、メディアAを搬送ユニット12に供給させる。また、ユニット制御回路152は、搬送ユニット12の搬送モーターを駆動させて、メディアAの所定領域をプラテン122のキャリッジ13に対向する位置まで、Y方向に沿って搬送させる。また、ユニット制御回路152は、キャリッジ移動ユニット14のキャリッジモーター142を駆動させて、キャリッジ13をX方向に沿って移動させる。
印刷制御手段182は、例えば外部機器20から入力された印刷データに基づいて、印刷部16を制御する旨の指令信号をユニット制御回路152に出力する。また、本実施形態では、印刷制御手段182は、予め設定された所定色のカラーパッチ31を所定位置に形成する旨の較正用印刷データに基づいて、メディアA上にカラーパッチ31を形成する。なお、較正用印刷データとしては、メモリ153に記憶されていてもよく、外部機器20から入力されてもよい。
なお、カラーパッチ31についての詳細な説明は後述する。
印刷制御手段182からユニット制御回路152に指令信号が出力されると、ユニット制御回路152は、印刷部16に印刷制御信号を出力し、ノズルに設けられたピエゾ素子を駆動させてメディアAに対してインクを吐出させる。なお、印刷を実施する際は、キャリッジ13がX方向に沿って移動されて、その移動中に印刷部16からインクを吐出させてドットを形成するドット形成動作と、メディアAをY方向に搬送する搬送動作とを交互に繰り返し、複数のドットから構成される画像をメディアAに印刷する。
測定範囲設定手段183は、カラーパッチ31に対して測定範囲M(図11参照)を設定し、かつ、その測定範囲に対して分光測定を実施するための測定開始時間及び測定終了時間を設定する。
カラーパッチ31は、上記のように、較正用印刷データに基づいてメディアA上に形成されるものであり、X方向に対する幅寸法は較正用印刷データに記録された所定寸法となる。本実施形態では、1つのカラーパッチ31に対して、可視光域における所定間隔となる複数波長の光(例えば、400nmから700nmまでにおける20nm間隔毎の16バンド分の光)の分光特性を取得する。したがって、測定領域が1つのカラーパッチ31上を移動する間に、この複数の波長の光を取得できるように、波長可変干渉フィルターを駆動させる必要がある。
なお、本実施形態では、上述のように、照射領域Rと測定領域とが同一領域である例を示すが、照射領域Rに対して測定領域が小さい場合、カラーパッチ31内に測定範囲Mが収まっていても、照射領域Rがカラーパッチ31からはみ出すおそれがある。この場合、カラーパッチ31外で反射された光の一部が受光部173にて受光される。よって、測定範囲設定手段183は、照射領域Rの第一寸法Ra、波長可変干渉フィルター5の透過光を切り替えるために必要なフィルター駆動時間T、取得する光の数(バンド数)n、キャリッジ13をX方向に移動させる(等速直線運動)際の速度v、及びカラーパッチの寸法(パッチ幅W)に基づいて、カラーパッチ31の領域内における測定範囲Mの開始位置M1(図11参照)、終了位置M2(図11参照)をそれぞれ設定する。また、設定された開始位置M1、終了位置M2に、照射領域Rの所定の基準点Rc(図11参照)が移動するまでの時間(測定開始時間、測定終了時間)を算出する。
フィルター制御手段184は、波長可変干渉フィルター5を透過させる光の波長に対する静電アクチュエーター56への駆動電圧を、メモリ153のV−λデータから読み出し、ユニット制御回路152に指令信号を出力する。これにより、ユニット制御回路152は、波長可変干渉フィルター5に指令された駆動電圧を印加し、波長可変干渉フィルター5から所望の透過波長の光が透過される。
また、フィルター制御手段184は、測定範囲設定手段183により設定された測定範囲と、走査制御手段181により移動されるキャリッジ13の移動速度及び移動開始からの経過時間と、に基づいて、静電アクチュエーター56に印加する電圧を切り替える。
判定手段185は、照射領域Rの基準点Rcが、カラーパッチ31における測定範囲Mの開始位置M1に位置した際の測定値と、カラーパッチ31における測定範囲Mの終了位置M2に位置した際の測定値とに基づいて、測定範囲がカラーパッチ31の領域内であるか否か(カラーパッチ31から位置ずれして一部がはみ出ていないか)を判定する。
なお、本実施形態では、測定値として、受光部173からの受信信号(出力値)を用いる。ここで、照射領域Rの基準点Rcがi番目のカラーパッチ31における測定範囲Mの開始位置M1に位置した際の受光部173からの出力値を第一出力値V(i)(本発明の第一測定値)とし、照射領域Rの基準点Rcがi番目のカラーパッチ31における測定範囲Mの終了位置M2に位置した際の受光部173からの出力値を第二出力値V(i)(本発明の第二測定値)として以降説明する。
ずれ量算出手段186は、測定範囲Mがカラーパッチ31からずれている場合に、そのずれ量と、ずれ方向を演算する。
測色手段187は、測定範囲に対して得られた複数波長の光に対する分光測定結果に基づいて、カラーパッチ31における色度を測定する。
キャリブレーション手段188は、測色手段187による測色結果と、較正用印刷データとに基づいて、印刷プロファイルデータを補正(更新)する。
なお、制御ユニット15における各機能構成の詳細な動作については後述する。
[分光測定方法]
次に、本実施形態のプリンター10における分光測定方法について、図面に基づいて説明する。
図7及び図8は、プリンター10における分光測定方法を示すフローチャートである。
なお、本実施形態では、測定対象となる波長域は400nmから700nmの可視光域であり、初期波長を700nmとして、20nm間隔となる16個の波長の光の光量に基づいて分光測定を実施する例を示す。
(カラーチャートの形成)
プリンター10による分光測定方法では、まず、メディアA上にカラーパッチ31を含むカラーチャートを形成する。
これには、走査制御手段181は、メディアAを所定位置にセットする(ステップS1)。すなわち、走査制御手段181は、供給ユニット11、搬送ユニット12を制御して、メディアAを副走査方向(+Y方向)に搬送し、メディアAの所定の印刷開始位置をプラテン122上にセットする。また、走査制御手段181は、キャリッジ13を、初期位置(例えば主走査方向の−X側端部)に移動させる。
この後、印刷制御手段182は、メモリ153から較正用印刷データを読み出し、走査制御手段181による制御と同期して、カラーチャートをメディアA上に印刷する(ステップS2)。
すなわち、走査制御手段181により、キャリッジ13を+X側に例えば一定速度で走査させる。印刷制御手段182は、例えば走査開始からの時間に応じてキャリッジ13の印刷部16の位置を特定し、較正用印刷データに基づいた所定位置に所定色のノズルからインクを吐出させてドットを形成する(ドット形成動作)。また、走査制御手段181は、キャリッジ13が+X側端部まで移動されると、供給ユニット11及び搬送ユニット12を制御してメディアAを+Y方向に搬送する(搬送動作)。そして、走査制御手段181は、キャリッジ13を−X方向に走査させ、印刷制御手段182は、較正用印刷データに基づいて、所定位置にドットを形成する。
以上のようなドット形成動作と搬送動作を繰り返すことで、メディアA上にカラーチャートが形成される。
図9は、本実施形態において形成されるカラーチャートの一例を示す図である。
本実施形態では、図9に示すように、複数色のカラーパッチ31がX方向に沿って隙間なく配置されて構成されたカラーパッチ群30を、Y方向に沿って複数個配置させたカラーチャート3が印刷により形成される。
また、カラーチャート3には、カラーパッチ群30の−X側でY方向に平行な直線状のスタートバー32、及びカラーパッチ群30の+X側でY方向に平行な直線状のゴールバー33が設けられていてもよい。スタートバー32及びゴールバー33は、初期波長に対する反射率が、メディアAと異なる色で形成されていることが好ましい。例えば、白色紙面のメディアAに対して、黒色のスタートバー32及びゴールバー33が形成される。
図10(A)は、従来のカラーパッチ91を示す図であり、図10(B)は、第一実施形態のカラーパッチ31を示す図である。
従来の分光器では、光源としてメディアAの法線方向からLEDを用いる等により、メディアA上に例えば円形の照射領域Qを形成していた。この場合、照射領域Qがカラーパッチ91からはみ出すと、隣接するカラーパッチ91で反射された光が受光部で受光されるおそれがある。よって、カラーパッチ91のX方向の幅寸法は、照射領域Qの直径Qa以上とする必要がある。
これに対して、本実施形態では、上記のように、照射領域Rの第一寸法Raが第二寸法Rbよりも小さい(Ra<Rb=Qa)。この場合、図10(B)に示すように、各カラーパッチ31のX方向に沿ったパッチ幅Wpを、少なくとも第一寸法Raよりも大きくすればよく、パッチ幅Wpを従来に比べて小さくできる。これによって、カラーパッチ群30に含まれるカラーパッチ31の数が、従来に比べて多くなる。例えば図10に示す例では、従来3つ分のカラーパッチ91しか形成できなかった領域に、4つ分のカラーパッチ31を配置することが可能となる。
(初期設定)
図7に戻り、ステップS2の後、印刷されたカラーチャート3のインクが乾燥されると、走査制御手段181は、搬送ユニット12を制御して、メディアAを−Y方向に搬送させ、カラーパッチ31における第1行目を、キャリッジ13(照射領域R)に対向する走査直線上に位置させる(ステップS3)。
なお、以降の説明にあたり、カラーパッチ31は、Y方向に沿ってJ行配置されており、カラーパッチ31における測定対象の行数を変数j(jは1〜Jの整数)にて示す。ステップS3では、変数j=1がセットされることで、走査制御手段181は、第1行目のカラーパッチ群30がプラテン122上に位置するように、メディアAを搬送する。また、ステップS3では、走査制御手段181は、キャリッジ13を−X側端部(初期位置X=0)に移動させる。
ステップS3の後、分光器17のキャリブレーション処理を実施する(ステップS4)。
図11は、カラーパッチ31に対する照射領域R(測定領域)の位置と、出力値の変化と、キャリッジの移動時間との関係を示す図である。なお、図11、後述する図12、図13、及び図14では、説明の便宜上、照射領域Rに対して各カラーパッチ31のパッチ幅Wを大きくして表示している。
上記ステップS3の後では、キャリッジ13は、−X側端部の初期位置に位置しているため、照射領域Rは、図11に示すように、スタートバー32よりも−X側に位置している。
メディアAとして白色紙面を用いている場合、制御ユニット15は、この初期位置の白色紙面に対する分光測定を実施する。すなわち、制御ユニット15は、タングステンランプ171Aを点灯させて、フィルター制御手段184により、波長可変干渉フィルター5の静電アクチュエーター56に印加する駆動電圧を順次変化させ、初期波長から20nm間隔となるnバンド(例えば16バンド)の受光部173の出力値をそれぞれ取得する。また、制御ユニット15は、受光部173に光が入射していない状態での出力値(暗電圧)を測定する。これには、例えばタングステンランプ171Aを消灯させた状態で受光部173からの出力値を取得してもよく、例えば分光器17の導光部174に、光路に対して進退可能な遮光板を設け、遮光板により受光部173への光の入射を遮断した上で、受光部173からの出力値を取得してもよい。
そして、測色手段187は、白色紙面に対する分光スペクトルと、暗電圧とに基づいて、分光器17のキャリブレーション処理を実施する。すなわち、メディアAにおいて、光源部171からの光が反射された場合の、各波長に対する基準光量(基準出力値)を取得する。上記例では、白色紙面を測定した際の波長λに対する出力値をVw(λ)、暗電圧をVdとすると、波長λの基準出力値Vref(λ)=Vw(λ)−Vdにより算出できる。
なお、本実施形態では、メディアAが白色紙面の例を示したが、その他の色であってもよく、例えばプラテン122に設けられた白色基準板であってもよい。
また、ステップS4では、分光測定時に用いる基準出力値Vref(λ)の取得の他、波長可変干渉フィルター5のキャリブレーションを実施してもよい。
つまり、タングステンランプ171Aの発光特性及び受光部173の受光感度特性が既知であるため、タングステンランプ171Aの発光特性及び受光部173の受光感度特性を掛け合せた分光特性と、ステップS4での出力値の波形とを比較することで、V−λデータに基づく印加電圧に対する透過波長と、実際に印加した電圧に対する透過波長とのずれを検出することが可能となる。この場合、測定結果に基づいて、例えばV−λデータを補正することで、波長可変干渉フィルター5のキャリブレーションを実施できる。
また、メディアAの初期位置に対して、所定波長(例えば初期波長である700nm)の反射率又は吸収率が他の波長と比べて高い補正用カラーパッチを形成してもよい。例えば、初期波長に対する反射率のみが高い補正用カラーパッチを配置する場合では、各波長に対する分光測定を実施し、反射率のピーク(初期波長)が検出された電圧と、V―λデータに記録された初期波長に対する電圧とが一致するか否かを判定し、ずれている場合は、V−λデータを補正する。
(測定範囲設定処理)
ステップS4の後、制御ユニット15は、カラーチャート3のカラーパッチ群30の各カラーパッチ31を測定するための測定範囲Mを設定する(ステップS5)。
なお、以降の説明に当たり、図11に示すように、1つのカラーパッチ31のX方向に沿う−X側端部(マイナス側端部)を第一パッチ端部311、+X側端部(プラス側端部)を第二パッチ端部312とする。本実施形態では、カラーパッチ群30におけるi番目のカラーパッチ31の第一パッチ端部311は、i−1番目のカラーパッチ31の第二パッチ端部312と一致し、i番目のカラーパッチ31の第二パッチ端部312は、i+1番目のカラーパッチ31の第一パッチ端部311と一致する。また、照射領域Rの−X側端部を第一照射端部R1、+X側端部を第二照射端部R2とする。また、本実施形態では、照射領域Rにおける中心点を基準点Rcとする。
カラーチャート3は、較正用印刷データに基づいて形成される画像であり、図11に示すように、メディアA上に印刷されたカラーチャート3におけるスタートバー32から1つ目のカラーパッチ31までの距離W、各カラーパッチ31のX方向に沿う幅寸法(パッチ幅W)は既知の値となる。
また、走査制御手段181は、キャリッジ13をX方向に沿って等速運動(速度v)で走査させる。
さらに、波長可変干渉フィルター5の静電アクチュエーター56に駆動電圧を印加した後、駆動電圧に応じた透過波長の光が透過されるまでの時間(フィルター駆動時間)Tは、例えば波長可変干渉フィルターの検査時において予め測定しておくことで取得できる。従って、nバンド分の光の光量(出力値)を取得するために必要な時間は、n×Tとなり、その期間において照射領域RがX方向に移動する測定距離W(図11参照)は、W=v×(n×T)となる。実際に測色を実施する際には、この測定距離Wを移動する間、照射領域Rがカラーパッチ31の領域内に収まっている必要があるので、測定範囲Mとして、少なくとも下記式(1)を満たす必要がある。
[数 1]
Ra+W<W …(1)
ところで、カラーパッチ31の第一パッチ端部311と第一照射端部R1とが一致する位置(基準点Rcが、第一パッチ端部311から+Ra/2となる位置)を測定範囲Mの開始位置とし、第二パッチ端部312と第二照射端部R2とが一致する位置(基準点Rcが、第二パッチ端部312から−Ra/2となる位置)を測定範囲Mの終了位置とすると、測定範囲が僅かにずれただけで、開始位置又は終了位置がカラーパッチ31外に外れてしまう。この場合、カラーパッチ31に対する正確な分光測定を測定できなくなる。
したがって、本実施形態では、第一パッチ端部311に第一照射端部R1が重なる位置よりも、所定のマージンa(第一距離)だけ+X側の位置を開始位置M1とし、第二パッチ端部312に第二照射端部R2が重なる位置よりも、所定のマージンa(第二距離)だけ−X側の位置を終了位置M2とした測定範囲Mを設定する。
したがって、測定範囲設定手段183は、下記式(2)を満たすように、マージンa,aを設定し、測定範囲Mを設定する。なお、これらのマージンa,aとしては、同値であることが好ましい。実際に分光測定を実施する際には、測定範囲Mがどちらの方向に移動するか予想がつかないため、+X側及び−X側に同値のマージンa,aを設定することで、分光測定時の信頼性を高めることができる。
[数 2]
Ra+(a+a)+W=W …(2)
なお、本実施形態では、キャリッジ13は、初期位置(X=0)となる位置からスタートバー32までの間で、加速度直線運動により加速され、その後、速度vの等速直線運動により+X方向に移動され、ゴールバー33を超えたのち、加速度直線運動により減速されて停止する。
照射領域Rがカラーパッチ群30上を移動する間、キャリッジ13は等速度vで移動されるので、照射領域Rがカラーパッチを越えたタイミング(基準タイミングT)を検出できれば、測定範囲Mを特定できる。つまり、本実施形態では、測定範囲設定手段183は、測定範囲Mの設定として、照射領域Rが、隣接するカラーパッチ31から測定対象のカラーパッチ31内に完全に入ったタイミングから、基準点Rcが測定範囲Mの開始位置M1に移動する時間(測定開始時間)、基準点Rcが、各カラーパッチ31の終了位置M2に移動する時間(測定終了時間)を算出する。したがって、測定開始時間から測定終了時間までの間が、本発明における第一期間となり、実際にカラーパッチ31に対する分光測定が実施される時間となる。
より具体的に説明すると、本実施形態では、測定範囲Mに対する分光測定時以外では、波長可変干渉フィルター5から透過させる波長を一定(例えば初期波長700nm)に固定する。この場合、図11に示すように、受光部173からの出力値は、照射領域Rがカラーパッチ31の第一パッチ端部311を跨ぐ際に徐々に変化し、照射領域Rがカラーパッチ31内に完全に入ると略一定値となる。
よって、照射領域Rがカラーパッチ31に完全に入った位置を基準位置とし、照射領域Rが基準位置となった基準タイミングTを検出すれば、基準タイミングTから測定範囲Mの開始位置M1に照射領域Rの基準点Rcが移動する時間(測定開始時間Tm1)は、a/vとなる。また、基準タイミングTから測定範囲Mにおける終了位置M2までの移動時間(測定終了時間Tm2)は、(a+W)/vとなる。
すなわち、測定範囲設定手段183は、上記測定開始時間Tm1及び測定終了時間Tm2を算出する。
なお、本実施形態では、ステップS5の処理により、測定範囲M(測定開始時間Tm1及び測定終了時間Tm2)の設定を行う例を示すが、パッチ幅Wやマージンa,aが予め設定された規定値である場合、ステップS5の処理を実施しなくともよい。この場合、予め設定された測定開始時間Tm1及び測定終了時間Tm2をメモリ153に記憶しておけばよい。
(走査測定処理)
ステップS4の後、以下に示す走査測定処理を実施する。
走査測定処理では、フィルター制御手段184は、波長可変干渉フィルター5の静電アクチュエーター56に印加する電圧を、本発明の第一波長である初期波長(例えば700nm)に対する初期電圧に設定する(ステップS6)。
この後、走査制御手段181は、キャリッジ13をX方向に沿って移動させる(ステップS7)。
また、制御ユニット15は、受光部173からの出力値を所定のサンプリング周期で取得し、メモリ153に記憶する。さらに、フィルター制御手段184は、サンプリングされた出力値を監視し、照射領域Rがカラーパッチ31内に完全に入るタイミング(基準位置に位置する基準タイミングT)を特定し、基準タイミングTからの経過時間tをカウントする(ステップS8)。
ここで、本実施形態では、照射領域RがY方向を長軸とした楕円形となるため、基準タイミングTを、より高精度に検出することが可能となる。
図12は、本実施形態においてエラーが発生していない状態での出力値の波形例を示す図である。図13は、従来の分光器(例えば照射領域Qが円形領域)におけるエラーが発生していない状態での出力値の波形例を示す図である。
図12、図13及び後述の図14において、下段は、カラーパッチ31に対する照射領域Rの位置を示している。また、中段の信号波形は、上記照射領域Rの位置に対する受光部173からの出力値の波形を示している。また、上段の信号波形は、波長可変干渉フィルター5における反射膜54,55のギャップ寸法に応じた信号であり、例えば、反射膜54,55を容量検出量電極と機能させた際の電気容量の変化を示している。
本実施形態では、測定範囲Mに対する分光測定時以外では、波長可変干渉フィルター5を通過させる光の波長を第一波長(例えば初期波長)に固定する。この場合、上述したように、照射領域Rがカラーパッチ31外からカラーパッチ31内に移動する場合、及びカラーパッチ31から当該カラーパッチ31に隣接するカラーパッチ31内に移動する場合に、受光部173からの出力値が徐々に変動し、照射領域Rが測定対象のカラーパッチ31内に完全に入ると出力値が略一定値となる。したがって、フィルター制御手段184は、受光部173からの受信信号(出力値)の変化量が略一定値となったか否か、つまり、単位時間当たりの出力値の変化量が所定の第一閾値以下となったか否かを判定し、第一閾値以下でなったタイミングを基準タイミングTとして設定する。
図13に示すように、照射領域Q(図10(A)参照)が円形である場合、カラーパッチ31内に照射領域Qが移動する際に、受信信号の信号波形は、緩やかに変化する。よって、出力値の変化量が第一閾値以下となる範囲が広くなり、基準タイミングTの検出精度が低下する。第一閾値を小さくするとノイズの影響を強く受けるため、この場合でも検出精度が低下する。
これに対して、本実施形態のように、照射領域RがY方向を長軸とした楕円形である場合、カラーパッチ31内に照射領域Rが移動する際の出力値の信号波形は、図13に比べて急峻に変化する。この場合、第一閾値以下となる範囲は図13に比べて狭くなり、基準タイミングTの検出精度が向上する。
なお、受光部173からの出力値(受光信号)を微分した微分信号や2次微分信号に基づいて基準タイミングTを判定してもよい。例えば微分信号である場合は、微分信号の信号レベルの絶対値が所定の第二閾値以下となるタイミングを検出すればよい。
ステップS8の後、フィルター制御手段184は、基準タイミングTからの経過時間tがステップS5にて設定された測定開始時間Tm1となったか否かを判定する(ステップS9)。すなわち、照射領域Rの基準点Rcが、測定範囲Mにおける開始位置M1に位置したか否かを判定する。
ステップS9において、「No」と判定された場合は、経過時間tが測定開始時間Tm1となるまで待機する。
ステップS9において、「Yes」と判定された場合、制御ユニット15は、測定範囲Mに対する分光測定を実施する(ステップS10)。具体的には、フィルター制御手段184は、V−λデータに基づいて、静電アクチュエーター56に印加する電圧を順次変更する。これにより、所定波長域におけるnバンドの光に対する出力値(例えば400nm〜700nmにおける20nm間隔の波長の光に対する16個の出力値)が制御ユニット15に出力される。制御ユニット15は、これらの出力値を適宜メモリ153に記憶する。
ここで、フィルター制御手段184は、図12に示すように、静電アクチュエーター56に印加する駆動電圧を徐々に増加させて、ギャップGの間隔寸法を徐々に小さく(透過波長を徐々に短く)する。これにより、ギャップ寸法の変動間隔が小さくなり、可動部521の変位時の振動を抑えることができる。すなわち、波長可変干渉フィルター5の透過光を切り替えるために必要なフィルター駆動時間Tを短縮することができるので、測定範囲Mを縮小でき、カラーパッチ31から測定範囲Mが外れるエラーを抑えることができる。
なお、本例では、ギャップ寸法を徐々に減少させる例を示すが、これに限定されない。例えば、初期波長を400nmに設定(初期電圧を最大値に設定)し、分光測定時に静電アクチュエーター56に印加する駆動電圧を徐々に小さく(透過波長を徐々に長く)してもよい。
また、ギャップGを、測定終了時の400nmに対応したギャップ寸法から初期波長700nmに対応したギャップ寸法まで戻す際に、段階的に駆動電圧を切り替える等してもよい。さらには、透過波長を、初期波長である700nmから40nm間隔で400nmまで徐々に短くなるように変化させた後、420nmから40nm間隔で680nmまで徐々に長くなるように変化させてもよい。このような場合、分光測定が終了した後、透過波長を初期波長に戻す際に、可動部521の急激な変位が抑制される。したがって、可動部521の振動をより効果的に抑えることができ、終了位置M2での第二出力値V(i)の変動を抑えることができる。
この後、フィルター制御手段184は、基準タイミングTからの経過時間tがステップS5にて設定された測定終了時間Tm2となったか否かを判定する(ステップS11)。
ステップS11において、「No」と判定された場合は、経過時間が測定終了時間Tm2となるまで待機する。
ステップS11において、「Yes」と判定された場合は、フィルター制御手段184は、静電アクチュエーター56に印加する電圧を初期電圧に戻し、初期波長の光を波長可変干渉フィルター5から透過させる。
なお、経過時間tが測定終了時間Tm2となる前に、nバンドの光に対する分光測定が終了している場合は、フィルター制御手段184は、分光測定終了時点で、静電アクチュエーター56に印加する電圧を初期電圧に戻してもよい。
この後、制御ユニット15は、第j行目に配置されたカラーパッチ群30における全てのカラーパッチ31の分光測定処理が終了したか否かを判定する(ステップS12)。これには、分光測定処理の回数をカウントし、カウント数がカラーパッチ群30に配置されるカラーパッチ31の総数Iとなったか否かを判定してもよく、キャリッジ13がゴールバー33を超えたか否かを判定してもよい。
ステップS12において、「No」と判定された場合は、ステップS8に戻る。
(エラー判定処理)
図14は、エラー発生時の出力値の信号波形例を示す図である。
ステップS12において、「Yes」と判定された場合、図8に示すエラー判定処理に進む。つまり、判定手段185は、メモリ153に記憶された各カラーパッチ31に対する分光測定結果に基づいて、測定範囲Mが対応する1つのカラーパッチ31の領域内に収まっているか否かを判定する。
具体的には、判定手段185は、各カラーパッチ31に対する分光測定結果を参照し、開始位置M1において受光部173から出力された第一出力値V(i)、及び、終了位置M2において受光部173から出力された第二出力値V2(i)が、所定の第三閾値以上となるカラーパッチ31を選択する(ステップS13)。なお、第三閾値としては、例えば、ノイズ成分と受光部173からの受光信号とを判別できる程度の値が設定されていればよい。
次に、判定手段185は、選択された各カラーパッチ31における第一出力値V(i)と、第二出力値V(i)との差の絶対値(|V(i)−V2(i)|)をエラー判定値Cとして算出し、エラー判定値Cが所定の第四閾値以上となるカラーパッチ31があるか否かを判定する(ステップS14)。
つまり、開始位置M1及び終了位置M2では、波長可変干渉フィルター5を透過する光の波長は同一波長に設定されているので、カラーパッチ31の領域内に測定範囲Mが収まっていれば、第一出力値V(i)及び第二出力値V(i)は、図12に示すように、同一又は略同一となり、その差分値であるエラー判定値Cも小さくなるはずである。
しかしながら、例えば、プリンター10に加わる振動等によって、キャリッジ13の移動速度や位置が変化した場合や、メディアAの設置位置が変化した場合、図14に示すように、カラーパッチ31に対する測定範囲Mの位置がずれ、測定範囲Mの一部がカラーパッチ31から外れる場合がある。この場合、第一出力値V(i)及び第二出力値V(i)が異なる値となり、エラー判定値Cが大きくなる。
したがって、このエラー判定値Cが第四閾値以上となるか否かを判定することで、カラーパッチ31の領域内に測定範囲Mが収まっているか否か(カラーパッチ31に対して測定範囲Mの位置ずれがあるか否か)を判定することができる。
なお、第四閾値としては、光学フィルターデバイス172に加わる振動や静電アクチュエーター56の駆動に起因した可動部521の共振による透過波長の変動幅等に基づいて設定されればよい。例えば、図11に示す波形拡大図のように、出力値をサンプリングした際の信号波形は、微細振幅で振動する波形となる。したがって、第四閾値として、図11に示すように、微細振動の最大振幅及び最小振幅の差αを設定すればよい。
また、ステップS14において、「Yes」と判定された場合(エラー判定値Cが第四閾値以上となるカラーパッチ31がある場合)、さらに、エラー有とされたカラーパッチ31が、ステップS13で選択された全カラーパッチ31であるか否かを判定する(ステップS15)。
つまり、カラーパッチ31に対して、上述のように、測定範囲Mが位置ずれしている場合、全カラーパッチ31に対する分光測定結果において、第一出力値V(i)及び第二出力値V(i)が異なる値となり、全カラーパッチ31に対してエラーが出力されるはずである。
これに対して、一部のカラーパッチ31でのみ、エラー判定値Cが第二閾値以上となる場合(ステップS15で、「No」と判定された場合)は、例えば電気的なノイズや、機械的な振動による外乱ノイズによって、偶発的にエラーが生じたと予測される。
この場合、判定手段185は、例えばメモリ153に記憶されたエラーカウンタの値E(初期値E=0)に「1」を加算し(ステップS16)、エラーカウンタの値Eが所定の最大値Emax(例えば「4」)を越えたか否かを判定する(ステップS17)。
また、ステップS17において「No」と判定された場合は、ステップS6の処理に戻る。すなわち、上記のような偶発的なエラーが生じた場合では、測定範囲の位置ずれによるエラーではないと判定して、再度分光測定をやり直す。
一方、ステップS17において、「Yes」と判定された場合、エラーが発生する他の要因があると判断でき、強制終了処理を実施する(ステップS18)。つまり、ステップS15で「No」と判定された場合でも、偶発的なエラーが何度も発生する場合は、他のエラー要因があると考えられる。
強制終了処理では、走査制御手段181は、供給ユニット11及び搬送ユニット12を制御し、メディアAを強制排出させる。また、分光測定時においてエラーが発生している旨を報知する。例えば図示略のディスプレイに表示させたり、プリンター10に接続されているパーソナルコンピューター等の外部機器20に表示させたり、音声によりエラー発生を知らせる。
一方、ステップS15において、「Yes」と判定された場合(全カラーパッチ31に対する分光測定結果において、エラー判定値Cが第四閾値以上である場合)、ステップS16と同様、判定手段185は、エラーカウンタの値Eに「1」を加算する(ステップS19)。
そして、判定手段185は、ステップS17と同様、エラーカウンタの値Eが所定の最大値Emax(例えば「4」)を越えたか否かを判定する(ステップS20)。
ステップS20にて「Yes」と判定された場合は、ステップS18の強制終了処理に移る。
一方、ステップS20において、「No」と判定された場合は、エラー復帰処理に移る。
(エラー復帰処理)
エラー復帰処理では、ずれ量算出手段186により、測定範囲Mのずれ方向とずれ量を検出する(ステップS21)。ずれ方向の検出では、例えば、出力値変化、第一出力値V(i)、及び第二出力値V(i)との関係から判定することが可能となる。また、ずれ量は、測定範囲Mが−X側にずれている場合、出力値V(i),V(i),V(i−1)と、照射領域Rの第一寸法Raと、マージンaと、に基づいて算出することが可能となる。測定範囲Mが+X側にずれている場合、出力値V(i),V(i),V(i+1)と、照射領域Rの第一寸法Raと、マージンaと、に基づいて算出することが可能となる。
この後、ステップS21にて算出されたずれ方向及びずれ量に基づいて、測定範囲Mの位置、測定開始時間Tm1、及び測定終了時間Tm2を補正する(ステップS22)。
(行送り処理)
ステップS14において、「No」と判定され、カラーチャート3のj行目のカラーパッチ群30における全カラーパッチ31に対して、エラー判定値Cが第二閾値以下である(エラー無)と判定された場合、走査制御手段181は、変数jに「1」を加算し(ステップS23)、変数jが、カラーパッチ群30の最終行に対応した最大値J以上となったか否かを判定する(ステップS24)。
ステップS24において、「No」と判定された場合は、走査制御手段181は、第j行目のカラーパッチ群30がプラテン122上に位置するように、メディアAを搬送する(ステップS25)。この後、ステップS6に戻る。なお、各カラーパッチ31に対するパッチ幅Wがカラーパッチ群30毎に異なる場合は、ステップS25の後、ステップS5に戻り、測定範囲Mを設定する。
(測色処理及びプロファイル更新処理)
ステップS24において、「Yes」と判定された場合(カラーチャート3における全カラーパッチ31に対してエラー無く分光測定処理が終了した場合)、走査制御手段181は、搬送ユニット12を制御して排紙動作を行い、メディアAを排出させる(ステップS26)。
この後、測色手段187は、各カラーパッチ毎に取得された各波長の出力値と、ステップS4で得られた基準出力値Vref(λ)とに基づいて、各カラーパッチの波長毎の反射率を算出する(ステップS27)。すなわち、測色手段187は、各カラーパッチの測色処理を実施し、色度を算出する。
この後、キャリブレーション手段188は、較正用印刷データに記録された各カラーパッチの色度と、ステップS28により算出された色度とに基づいて、メモリ153に記憶された色補正係数を更新する(ステップS28)。
[本実施形態の作用効果]
本実施形態のプリンター10では、分光器17が搭載されたキャリッジ13と、キャリッジ13をX方向に沿って移動させるキャリッジ移動ユニット14と、を備える。また、分光器17は、光源部171と、受光部173とを備え、光源部171からメディアAに照射される領域である照射領域Rは、X方向に沿った第一寸法Raが、Y方向に沿った第二寸法Rbよりも小さい。
これにより、カラーパッチ31のX方向に沿ったパッチ幅Wを小さくしても、照射領域Rが測定対象のカラーパッチ31外にはみ出る不都合を抑制でき、カラーパッチ31に対する高精度な測定を行うことができる。
また、カラーパッチ31のパッチ幅Wを小さくできる分、1つのカラーパッチ群30に属するカラーパッチ31の数を増やすことができる。この場合、所定個数のカラーパッチ31を複数のカラーパッチ群30を形成して測定する際に、カラーパッチ群30の数も少なくできる。よって、キャリッジ13をX方向に移動させて分光測定を行う走査回数を少なくでき、また、メディアAをY方向に搬送する搬送回数も少なくできるので、分光測定に係る時間、及び色補正係数の算出に係る時間を短縮することができる。
本実施形態では、光源部171は、タングステンランプ171Aを有し、当該タングステンランプ171Aのフィラメント171A1が、Y方向に沿って配置されている。
タングステンランプ171Aを用いることで、可視光域内の各波長の光量が略均一(分光スペクトル特性がブロード)となり、各カラーパッチ31に対する分光測定の測定精度を向上させることができる。
また、フィラメント171A1が、Y方向に沿って配置されているので、照射領域RをY方向に沿って長手状にする光学部材(レンズ等)を別途設ける必要がなく、簡素な構成で、メディアAに対して第一寸法Raが第二寸法Rbよりも小さくなる照射領域Rを形成できる。
本実施形態では、分光器17は、波長可変干渉フィルター5を備え、当該波長可変干渉フィルター5を透過した所定波長の光が受光部173にて受光される。
このため、分光器17を用いて、各カラーパッチ31に対する分光測定を実施でき、可視光域に対する各波長の光量に基づいた色補正係数の算出を行うことができる。
本実施形態では、フィルター制御手段184は、キャリッジ13がX方向に走査され、照射領域Rの基準点Rcが測定範囲Mの開始位置M1に位置する測定開始時、及び基準点Rcが終了位置M2に位置する測定終了時に、波長可変干渉フィルター5の静電アクチュエーター56に初期電圧を印加して、透過波長を初期波長に設定する。さらに、フィルター制御手段184は、照射領域Rの基準点Rcが開始位置M1から終了位置M2までの測定範囲M内を移動する間(第一期間)に、静電アクチュエーター56に印加する電圧を順次切り替えて、透過波長を順次変化させる。
そして、判定手段185は、照射領域Rが開始位置M1に位置した際の受光部173からの第一出力値V(i)と、照射領域Rが終了位置M2に位置した際の受光部173からの第二出力値V(i)とを比較する。
このように、第一出力値V(i)及び第二出力値V(i)を比較することで、測定範囲Mが、カラーパッチ31に対して適切な位置に設定されているか否かを容易に判別することができる。また、キャリッジ13を移動させた状態で、測定範囲Mに対する分光測定を実施できるので、例えば、カラーパッチ31上でキャリッジ13を停止させて分光測定を実施する場合に比べて、迅速な分光測定を実施できる。
また、受光部173からの第一出力値V(i)及び第二出力値V(i)の比較を行うので、例えば、測色手段187によって算出された第一波長に対する反射率(V(i)/Vref(λ))を用いる場合に比べて、処理が容易であり、迅速に測定範囲Mが適切か否かを判定できる。
本実施形態では、フィルター制御手段184は、受光部173からの出力値の変化量が所定の第一閾値以内となった際に、基準タイミングT、つまり、照射領域Rが測定対象となるカラーパッチ31の外から当該カラーパッチ31内に完全に入ったタイミングであると判定する。そして、当該基準タイミングTに基づいて、測定対象のカラーパッチ31に対する測定を実施する。
上述したように、照射領域Rの第一寸法Raが第二寸法Rbよりも小さい楕円形状となるので、照射領域Rがカラーパッチ31の第一パッチ端部311を跨いで移動した際の受光部173からの出力値の変化が急峻となる。したがって、上記のように、出力値の変化量に基づいて基準タイミングTを高精度に検出することができ、各カラーパッチ31に対して適切な位置(測定範囲M)で分光測定を行うことができる。つまり、カラーパッチ31からずれた位置で分光測定が実施される不都合が抑制され、測定精度の向上を図れる。
そして、本実施形態では、上記のように、測定範囲Mがカラーパッチ31の領域内に収まっている際に取得された分光測定結果に基づいて、カラーパッチ31に対する高精度な測色処理を実施できるので、キャリブレーション手段188は、その測色結果に基づいて、色補正係数を適切に更新することができる。すなわち、較正用印刷データに基づいて印刷部16により印刷された各カラーパッチの色度と、実際に測定された高精度な測色結果に基づく各カラーパッチの色度との差に基づいて、印刷部16に対してフィードバックすることで適切な色補正を行うことができ、ユーザーが所望する色を高精度に再現できる。
[第二実施形態]
次に、本発明に係る第二実施形態について説明する。なお、以降の説明に当たり、第一実施形態と同様の構成、同様の処理については、同符号を付し、その説明を省略又は簡略化する。
上述した第一実施形態では、分光器17の光源部171は、フィラメント171A1がY方向に沿って配置されたタングステンランプ171Aを備える構成を例示した。これに対して、第二実施形態では、光源部171に他の光源を用いる点で相違する。
図15(A)は、第二実施形態における光源部171の概略構成を示す図であり、図15(B)は、照射領域Rの光量分布の一例を示す図である。
本実施形態では、光源部171は、例えば白色LED等により構成された第一光源171Cを有する、この第一光源171Cは、図15(A)に示すように、メディアAの法線方向とY方向とを含む面において、照射領域Rに対して傾斜する角度(例えば45°)から照明光を照射する。このような構成では、図15(B)に示すように、Y方向に沿って長手状となる照射領域Rが形成される。
なお、図示は省略するが、本実施形態のように、照明光をメディアAの法線に対して45度の角度から照射する場合、メディアAの法線方向に反射された光を受光部173で受光することが好ましい。
[本実施形態の作用効果]
本実施形態では、光源部171は、メディアAの法線方向とY方向とを含む面において、照射領域Rに対して45°の角度から照明光を照射する第一光源171Cを有する。
このため、メディアAの、Y方向に沿って長手状となる照射領域Rに照明光を照射することができる。よって、上記第一実施形態と同様、照射領域RにおけるX方向に沿う第一寸法RaがY方向に沿う第二寸法Rbよりも小さくなり、カラーパッチ31のパッチ幅Wを小さくすることができる。
また、第一光源171Cとしては、メディアAに法線方向から光を照射した際の照射領域が円形状となるもの、例えば白色LED等を用いることもでき、光源選択の自由度を広げることができる。
[第三実施形態]
次に、本発明に係る第三実施形態について説明する。
上記第二実施形態では、1つの第一光源171Cにより、メディアAの法線方向とY方向とを含む面において、照射領域Rに対して傾斜する角度(例えば45°)から照明光を照射する例を示した。これに対して、本実施形態では、光源が複数設けられる点で上記第二実施形態と相違する。
図16(A)は、第三実施形態における光源部171の概略構成を示す図であり、図16(B)は、照射領域Rの分布の一例を示す図である。
本実施形態では、光源部171は、例えば白色LED等により構成された第一光源171C及び第二光源171Dを有する。
第一光源171Cは、第二実施形態と同様、図16(A)に示すように、メディアAの法線方向とY方向とを含む面において、照射領域Rの下流側(+Y側)から45°の角度から照明光を照射する。一方、第二光源171Dは、図16(A)に示すように、メディアAの法線方向とY方向とを含む面において、照射領域Rの上流側(−Y側)から45°の角度から照明光を照射する。第二光源171Dとしては、第一光源171Cと同一光源を用いることが好ましい。
このような構成では、第二実施形態と同様、Y方向に沿って長手状となる照射領域Rが形成される。
また、図16(B)に示すように、照射領域Rの+Y側に配置される第一光源171Cから照射される光によって形成される第一照射領域RAは、第一光源171Cの光軸を中心として、周囲に向かう程光量が低下する。また、第一光源171Cは、照射領域Rに対してメディアAの法線に対して45°の角度から光を照射するので、第一照射領域RAにおける+Y側が−Y側よりも光量が低下する。一方、照射領域Rの+Y側に配置される第二光源171Dから照射される光によって形成される第二照射領域RBは、−Y側が+Y側よりも光量が低下する。したがって、第一光源171Cの光軸が照射領域Rの中心に対して−Y側に位置するように、かつ、第二光源171Dの光軸が照射領域Rの中心に対して+Y側に位置するように、第一光源171C及び第二光源171Dの配置位置を設定する。これにより、照射領域R内の光量が均一となり、分光測定における測定精度が向上する。なお、図16の光量分布は、第一照射領域RA及び第二照射領域RBのそれぞれの光量分布を示しており、照射領域R全体の光量分布は、これらの光量を足し合わせたものとなる。
[本実施形態の作用効果]
本実施形態では、光源部171は、メディアAの法線方向とY方向とを含む面において、照射領域Rの−Y側から45°の角度で照明光を照射する第一光源171Cと、照射領域Rの+Y側から45°の角度で照明光を照射する第二光源171Dと、を有する。
このため、上記第一及び第二実施形態と同様に、Y方向に沿って長手状となる照射領域Rに照明光を照射することができ、照射領域RにおけるX方向に沿う第一寸法RaがY方向に沿う第二寸法Rbよりも小さくなる。よって、上記各実施形態と同様、カラーパッチ31のパッチ幅Wを小さくすることができる。
また、第一光源171C及び第二光源171Dとして、メディアAに法線方向から光を照射した際の照射領域が円形状となるもの、例えば白色LED等を用いることもでき、光源選択の自由度を広げることができる。
さらに、照射領域Rの+Y側に配置される第一光源171Cからの光と、照射領域Rの−Y側に配置される第二光源171Dからの光とが照射領域Rで重ね合されることで、照射領域R内の光量分布を略均一にでき、分光測定を実施する際の測定精度を向上させることができる。
[変形例]
なお、本発明は上述の各実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良、及び各実施形態を適宜組み合わせる等によって得られる構成は本発明に含まれるものである。
上記各実施形態において、本発明の移動手段として、キャリッジ13を+X方向に移動させるキャリッジ移動ユニット14を例示したがこれに限定されない。
例えば、キャリッジ13を固定し、メディアAをキャリッジ13に対して移動させる構成としてもよい。この場合、キャリッジ13の移動に伴う波長可変干渉フィルター5の振動を抑制でき、波長可変干渉フィルター5の透過波長を安定化させることができる。
上記各実施形態において、X方向に複数のカラーパッチ31が隣接配置されたカラーパッチ群30を例示したが、各カラーパッチ31の間に隙間が設けられる構成などとしてもよい。ただし、隙間を設ける分、1つのカラーパッチ群30に属するカラーパッチ31の数が少なくなるので、上記実施形態に示したように、カラーパッチ31を隣接配置することが好ましい。
上記各実施形態では、照射領域Rと測定領域とが略同一である例を示したが、照射領域Rと測定領域とが異なる領域であってもよい。この場合では、上述したように、照射領域R内に測定領域が含まれるように、導光部174に、例えば、凹面鏡や光学レンズを設ければよい。
上記実施形態において、照射領域Rが楕円形状となる例を示したがこれに限定されない。つまり、照射領域Rの第一寸法Raが第二寸法Rbよりも小さくなればよく、例えば、矩形状の照射領域Rであってもよい。光源部171から出射される光の光路上に矩形孔部が設けられたアパーチャー等を設けることにより、矩形状の照射領域Rに対して照明光を照射することができる。
上記実施形態では、メディアAにて反射された光を受光部173にて受光する分光器17を例示したが、これに限定されない。
例えば透明又は半透明のメディアを測定する場合、メディアのプラテン側に光源部を設け、メディアのプラテンとは反対側に受光部を設ける構成などとし、メディアを透過した光を受光部により受光する構成としてもよい。
上記各実施形態では、キャリッジ13を+X側に移動させる間に、各カラーパッチ31に対する分光測定処理を実施する例を示したが、キャリッジ13を−X側に移動させる間に、各カラーパッチ31に対する分光測定処理を実施してもよい。
また、カラーチャート3に配置される例えば奇数行目のカラーパッチ群30に対してはキャリッジ13を+X側に移動する間に分光測定処理を実施し、偶数行目のカラーパッチ群30に対しては、キャリッジ13を−X側に移動する間に分光測定処理を実施してもよい。
第一実施形態において、Y方向に沿って光源部171及び受光部173が並ぶ例を示したが、これに限定されない。照射領域RがY方向に長手であれば、光源部171及び受光部173の並び方向がX方向であってもよい。
第一実施形態では、タングステンランプ171Aのフィラメント171A1をY方向に沿って配置することで、簡素な構成でY方向に長手となる照射領域Rに光を照射する例を示した。また、第二及び第三実施形態では、第一光源171Cや第二光源171Dを、メディアAの法線方向とY方向とを含む面において、照射領域Rに対して45°の角度から照明光を照射して、簡素な構成でY方向に長手となる照射領域Rに光を照射する例を示した。
これに対して、例えば、凹面鏡や光学レンズ等を用いて、光源から出射された光をY方向に長手となる照射領域Rに照射させる構成などとしてもよい。
上記各実施形態において、ステップS13において、第一出力値V(i)及び第二出力値V(i)が第三閾値以上となるカラーパッチ31を選択し、その選択されたカラーパッチ31の出力値に基づいて測定範囲Mの位置ずれ判定を実施したが、これに限定されない。例えば、全カラーパッチ31における第一出力値V(i)及び第二出力値V(i)に基づいて、測定範囲Mの位置ずれ判定を実施してもよい。
上記各実施形態では、測定範囲Mを設定する際に、マージンa,aを設定したが、これに限定されない。
例えば、測定範囲設定手段183は、マージンを設けずに測定範囲Mを設定してもよい。この場合、開始位置M1は、第一パッチ端部311と第一照射端部R1とが重なる位置(照射領域Rがカラーパッチ31の領域内に入った直後)となり、終了位置M2は、第二パッチ端部312と第二照射端部R2とが重なる位置(照射領域Rがカラーパッチ31外に出る直前)となる。この場合、各カラーパッチ31のパッチ幅Wをより小さくできるので、カラーパッチ群30に属するカラーパッチ31の数を更に増大させることも可能となる。
上記実施形態において、フィルター制御手段184は、照射領域Rの全体が第一パッチ端部311を超えた位置を基準位置とした基準タイミングTを判定したが、これに限定されない。例えば、測定範囲設定手段183が、照射領域Rがスタートバー32を超える位置を基準位置とし、照射領域Rが、基準位置から開始位置M1及び終了位置M2まで移動するのに要する時間を、それぞれ測定開始時間及び測定終了時間として算出してもよい。この場合、フィルター制御手段184は、照射領域Rがスタートバー32を越えたタイミング(基準タイミング)からの経過時間をカウントして、上記算出された測定開始時間及び測定終了時間に基づいて分光測定を実施する。
上記実施形態では、フィルター制御手段184は、受光部173からの出力値に基づいて、照射領域Rが基準位置に位置したかを判定したが、これに限定されない。
例えば、キャリッジ13の位置を位置センサーや、キャリッジ移動ユニット14の駆動モーターの回転角度及び回転数に基づいて、X方向におけるキャリッジ13の位置(照射領域Rの位置)を検出してもよい。
制御ユニット15において、ユニット制御回路152が設けられる構成を例示したが、上記のように、各制御ユニットが制御ユニット15とは別体で、各ユニットにそれぞれ設けられていてもよい。例えば、分光器17に波長可変干渉フィルター5を制御するフィルター制御回路、受光部173を制御する受光制御回路が設けられる構成としてもよい。また、分光器17に、マイコンやV−λデータを記憶した記憶メモリが内蔵され、当該マイコンがフィルター制御手段184、判定手段185、測色手段187として機能してもよい。
印刷部16として、インクタンクから供給されたインクを、ピエゾ素子を駆動させて吐出させるインクジェット型の印刷部16を例示したが、これに限定されない。例えば、印刷部16としては、ヒーターによりインク内に気泡を発生させてインクを吐出する構成や、超音波振動子によりインクを吐出させる構成としてもよい。
また、インクジェット方式のものに限定されず、例えば熱転写方式を用いたサーマルプリンターや、レーザープリンター、ドットインパクトプリンター等、如何なる印刷方式のプリンターに対しても適用できる。
また、波長可変干渉フィルター5として、入射光から反射膜54,55間のギャップGに応じた波長の光を透過させる光透過型の波長可変干渉フィルター5を例示したが、これに限定されない。例えば、反射膜54、55間のギャップGに応じた波長の光を反射させる光反射型の波長可変干渉フィルターを用いてもよい。また、その他の形式の波長可変干渉フィルターを用いてもよい。
また、分光素子として波長可変干渉フィルターを例示したが、例えば液晶チューナブルフィルター等、その他の分光素子を用いてもよい。
さらに、波長可変干渉フィルター5を備えた光学フィルターデバイス172が、導光部174から受光部173の間に設けられる構成(後分光)を例示したがこれに限定されない。
例えば、光源部171内に波長可変干渉フィルター5、若しくは、波長可変干渉フィルター5を備えた光学フィルターデバイス172を配置し、波長可変干渉フィルター5により分光された光をメディアAに照射する構成(前分光)としてもよい。
上記各実施形態において、分光測定装置を備えたプリンター10を例示したが、これに限定されない。例えば、画像形成部を備えず、メディアAに対する測色処理のみを実施する分光測定装置であってもよい。また、例えば工場等において製造された印刷物の品質検査を行う品質検査装置に、本発明の測定装置を組み込んでもよく、その他、如何なる装置に本発明の測定装置を組み込んでもよい。
その他、本発明の実施の際の具体的な構造は、本発明の目的を達成できる範囲で上記各実施形態及び変形例を適宜組み合わせることで構成してもよく、また他の構造などに適宜変更してもよい。
3…カラーチャート、5…波長可変干渉フィルター、10…プリンター、13…キャリッジ、14…キャリッジ移動ユニット(移動機構)、15…制御ユニット、16…印刷部、17…分光器(測定器)、30…カラーパッチ群、31…カラーパッチ、153…メモリ、154…CPU、171…光源部、171A…タングステンランプ、171A1…フィラメント、171B…集光部、171C…第一光源、171D…第二光源、172…光学フィルターデバイス、173…受光部、174…導光部、174A…反射鏡、174B…バンドパスフィルター、181…走査制御手段、182…印刷制御手段、183…測定範囲設定手段、184…フィルター制御手段、185…判定手段、186…ずれ量算出手段、187…測色手段、188…キャリブレーション手段、A…メディア、M…測定範囲、M1…開始位置、M2…終了位置、R…照射領域、RA…第一照射領域、RB…第二照射領域、Ra…第一寸法、Rb…第二寸法、Rc…基準点、T…基準タイミング、Tm1…測定開始時間、Tm2…測定終了時間。

Claims (10)

  1. メディアに光を照射する光源部、及び前記メディアで反射又は透過された光を受光する受光部を含む測定器と、
    前記メディアに対して前記測定器を第一方向に沿って相対移動させる移動機構と、を備え、
    前記光源部からの光が前記メディアに照射される領域である照射領域は、前記第一方向に沿った第一寸法が、前記第一方向に交差する第二方向に沿った第二寸法よりも小さい
    ことを特徴とする測定装置。
  2. 請求項1に記載の測定装置において、
    前記光源部は、前記第二方向に沿って配置されたフィラメントを有するタングステンランプを含む
    ことを特徴とする測定装置。
  3. 請求項1又は請求項2に記載の測定装置において、
    前記光源部は、前記第二方向に沿い、かつ前記メディアの面の法線に対して傾斜する角度から前記照射領域に光を照射する
    ことを特徴とする測定装置。
  4. 請求項3に記載の測定装置において、
    前記光源部は、前記第二方向に沿って並接される第一光源及び第二光源を備え、
    前記第一光源は、前記第二方向に沿い、かつ前記メディアの面の法線に対して傾斜する角度から前記照射領域に光を照射し、
    前記第二光源は、前記メディアの面の法線から見た平面視で、前記照射領域を挟んで前記第一光源とは反対側に配置され、前記メディアの法線に対して傾斜する角度から前記照射領域に光を照射する
    ことを特徴とする測定装置。
  5. 請求項1から請求項4のいずれか1項に記載の測定装置において、
    前記測定器は、前記メディアで反射又は透過した光から所定波長の光を分光する分光素子を有する
    ことを特徴とする測定装置。
  6. 請求項5に記載の測定装置において、
    前記測定器が前記第一方向に相対移動されている間の第一期間に、前記受光部により受光される光の波長を変えながら測定を行い、前記第一期間における測定開始時、及び測定終了時において前記分光素子から第一波長の光を通過させ、前記測定開始時の前記測定の測定値である第一測定値と、前記測定終了時の前記測定の測定値である第二測定値とを比較する
    ことを特徴とする測定装置。
  7. 請求項5又は請求項6に記載の測定装置において、
    前記第一方向に沿って設けられたカラーパッチに対して前記測定器による測定を実施する際に、前記分光素子から第一波長の光を通過させつつ前記測定器を前記第一方向に沿って相対移動させ、前記受光部からの受光信号の変化量が所定閾値以下となったタイミングを基準として前記測定を実施する
    ことを特徴とする測定装置。
  8. 請求項1から請求項7のいずれか1項に記載の測定装置と、
    前記メディアに画像を印刷する印刷部と、を備える
    ことを特徴とする印刷装置。
  9. 請求項8に記載の印刷装置において、
    前記印刷部は、前記第二方向を長手方向とする複数のカラーパッチが前記第一方向に並ぶカラーパッチを前記メディアに印刷する
    ことを特徴とする印刷装置。
  10. 請求項9に記載の印刷装置において、
    前記カラーパッチの測定結果に基づいて、前記印刷部の色補正係数を取得する
    ことを特徴とする印刷装置。
JP2015246799A 2015-12-17 2015-12-17 測定装置、及び印刷装置 Withdrawn JP2017111059A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015246799A JP2017111059A (ja) 2015-12-17 2015-12-17 測定装置、及び印刷装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015246799A JP2017111059A (ja) 2015-12-17 2015-12-17 測定装置、及び印刷装置

Publications (1)

Publication Number Publication Date
JP2017111059A true JP2017111059A (ja) 2017-06-22

Family

ID=59079592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015246799A Withdrawn JP2017111059A (ja) 2015-12-17 2015-12-17 測定装置、及び印刷装置

Country Status (1)

Country Link
JP (1) JP2017111059A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019095568A (ja) * 2017-11-21 2019-06-20 セイコーエプソン株式会社 干渉フィルター、光学デバイス、光学モジュール、及び電子機器
CN113022132A (zh) * 2019-12-24 2021-06-25 精工爱普生株式会社 测量装置以及测量方法
US11506539B2 (en) 2019-12-24 2022-11-22 Seiko Epson Corporation Measurement device, printer, and measurement method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019095568A (ja) * 2017-11-21 2019-06-20 セイコーエプソン株式会社 干渉フィルター、光学デバイス、光学モジュール、及び電子機器
CN113022132A (zh) * 2019-12-24 2021-06-25 精工爱普生株式会社 测量装置以及测量方法
JP2021101170A (ja) * 2019-12-24 2021-07-08 セイコーエプソン株式会社 測定装置、及び測定方法
CN113022132B (zh) * 2019-12-24 2022-06-28 精工爱普生株式会社 测量装置以及测量方法
US11506539B2 (en) 2019-12-24 2022-11-22 Seiko Epson Corporation Measurement device, printer, and measurement method
JP7400446B2 (ja) 2019-12-24 2023-12-19 セイコーエプソン株式会社 測定装置、及び測定方法

Similar Documents

Publication Publication Date Title
JP6601007B2 (ja) 分光測定装置、画像形成装置、及び分光測定方法
US9739662B2 (en) Spectrometry device and image forming apparatus
US9823129B2 (en) Spectrometry device, image forming apparatus, and spectrometry method
JP6471762B2 (ja) 分光測定装置、画像形成装置、及び分光測定方法
JP6686281B2 (ja) 分光測定装置、画像形成装置
JP6492838B2 (ja) 分光測定装置、画像形成装置、及び分光測定方法
JP6631048B2 (ja) 分光測定装置、画像形成装置、及び分光測定方法
US10473527B2 (en) Measuring device and measuring method
CN109814246B (zh) 波长可变干涉滤波器、光学器件、光学模块及电子设备
JP2016161435A (ja) 色むら検出装置、画像形成装置、及び色むら検出方法
JP2016180610A (ja) 測色装置、画像形成装置、電子機器、カラーチャート、及び測色方法
JP2017111059A (ja) 測定装置、及び印刷装置
US10442228B2 (en) Spectrometry device, image forming apparatus, and spectrometry method
JP2017207427A (ja) 測定装置、及び印刷装置
US11480466B2 (en) Measurement device and measurement method
JP2017083313A (ja) 測定装置、及び印刷装置
JP7404860B2 (ja) 測定装置、プリンター、及び測定方法
JP2017116388A (ja) 分光測定装置、印刷装置、メディア、及び分光測定方法
JP2019095568A (ja) 干渉フィルター、光学デバイス、光学モジュール、及び電子機器
JP2017122688A (ja) 測定装置及び印刷装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190910

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20191009