JP2016219143A - 二次電池 - Google Patents

二次電池 Download PDF

Info

Publication number
JP2016219143A
JP2016219143A JP2015100035A JP2015100035A JP2016219143A JP 2016219143 A JP2016219143 A JP 2016219143A JP 2015100035 A JP2015100035 A JP 2015100035A JP 2015100035 A JP2015100035 A JP 2015100035A JP 2016219143 A JP2016219143 A JP 2016219143A
Authority
JP
Japan
Prior art keywords
insulating film
battery case
peel strength
electrode body
separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015100035A
Other languages
English (en)
Other versions
JP6210336B2 (ja
Inventor
圭一郎 小林
Keiichiro Kobayashi
圭一郎 小林
幸志郎 米田
Koshiro Yoneda
幸志郎 米田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2015100035A priority Critical patent/JP6210336B2/ja
Priority to CN201610305501.XA priority patent/CN106159123B/zh
Priority to KR1020160057464A priority patent/KR101787254B1/ko
Priority to US15/152,910 priority patent/US9859534B2/en
Priority to EP16169476.5A priority patent/EP3093912B1/en
Publication of JP2016219143A publication Critical patent/JP2016219143A/ja
Application granted granted Critical
Publication of JP6210336B2 publication Critical patent/JP6210336B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0431Cells with wound or folded electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/59Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries characterised by the protection means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/103Primary casings; Jackets or wrappings characterised by their shape or physical structure prismatic or rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/117Inorganic material
    • H01M50/119Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/121Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/131Primary casings; Jackets or wrappings characterised by physical properties, e.g. gas permeability, size or heat resistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/131Primary casings; Jackets or wrappings characterised by physical properties, e.g. gas permeability, size or heat resistance
    • H01M50/133Thickness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Cell Separators (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

【課題】高温と低温との間の温度変化を繰り返し受けても絶縁フィルムの破れの発生が抑制された二次電池を提供する。【解決手段】二次電池100は、最表面がセパレータ70である電極体80と、電池ケース30と、電極体80および電池ケース30に接触して保持された絶縁フィルム10とを備える。電池ケース30の熱膨張係数は、絶縁フィルム10およびセパレータ70の熱膨張係数より小さい。絶縁フィルム10は、電極体80および電池ケース30に接触して保持された部分において、電極体80の最表面のセパレータ70および電池ケース30とそれぞれ接着されている。絶縁フィルム10と電池ケース30との間の第1の90度剥離強度は、絶縁フィルム10とセパレータ70との間の第2の90度剥離強度よりも大きく、第1の90度剥離強度が、15mN/cm以上であり、第2の90度剥離強度は5mN/cm以上である。【選択図】図1

Description

本発明は、二次電池に関する。
リチウムイオン二次電池に代表される非水電解液二次電池などの二次電池は、既存の電池に比べて軽量かつエネルギー密度が高いことから、近年、パソコンや携帯端末等のいわゆるポータブル電源や車両駆動用電源として用いられている。特に、軽量で高エネルギー密度が得られるリチウムイオン二次電池は、電気自動車(EV)、ハイブリッド自動車(HV)、プラグインハイブリッド自動車(PHV)等の車両の駆動用高出力電源として今後ますます普及していくことが期待されている。
この種の二次電池は、典型的には長尺状正極シートおよび長尺状負極シートを長尺状セパレータと共に積層し捲回させた捲回電極体が、電池ケースに収容された構造を有している。電池ケースとしては、物理的強度が大きいという観点から、しばしば金属製のケースが使用されている。捲回電極体では、幅方向(長尺方向に直交する方向)の両端部に集電部が設けられ、集電部においては正極および負極が露出している。そこで、電池ケースが金属製である場合には、例えば特許文献1に記載のように、電池ケースと電極体とを絶縁するために、電極体を袋状の絶縁フィルムで包装することが行われている。そして、車両の振動等によって電極体が電池ケース内を移動しないように、絶縁フィルムは、電池ケースに熱溶着によって固定されることがある。
特開2013−222504号公報
本発明者らは、二次電池の体積効率を向上させるために、絶縁フィルムの薄型化についての検討を行った。その検討の結果、二次電池が高温(例えば60℃以上)と低温(例えば−30℃以下)との間の温度変化を繰り返し受けた場合に、絶縁フィルムに破れが生じ易くなるという新たな問題があることが見つかった。絶縁フィルムに破れが生じると、電極体と電池ケースとを絶縁できなくなるおそれがある。
そこで本発明は、電極体と電池ケースとの間に絶縁フィルムを備える二次電池であって、高温と低温との間の温度変化を繰り返し受けても絶縁フィルムの破れの発生が抑制された二次電池を提供することを目的とする。
ここに開示される二次電池は、正極、負極およびセパレータを有する電極体であって、最表面がセパレータである電極体と、前記電極体を収容する電池ケースと、前記電極体および前記電池ケースに接触して保持された絶縁フィルムとを備える。前記電池ケースの熱膨張係数は、前記絶縁フィルムおよび前記セパレータの熱膨張係数より小さい。前記絶縁フィルムは、前記電極体および前記電池ケースに接触して保持された部分において、前記電極体の最表面のセパレータおよび前記電池ケースとそれぞれ接着されている。接着部分における前記絶縁フィルムと前記電池ケースとの間の第1の90度剥離強度(以下、「剥離強度A」と称することがある)は、接着部分における前記絶縁フィルムと前記セパレータとの間の第2の90度剥離強度(以下、「剥離強度B」と称することがある)よりも大きい。前記第1の90度剥離強度は、15mN/cm以上であり、前記第2の90度剥離強度は、5mN/cm以上である。このような構成によれば、高温(例えば60℃以上)と低温(例えば−30℃以下)との間の温度変化を繰り返し受けても絶縁フィルムの破れの発生が抑制された二次電池を提供することができる。
ここに開示される二次電池の好ましい一態様において、前記絶縁フィルムの少なくとも一方の面に親水化処理が施されており、当該親水化処理された面が、前記電池ケースの内壁を向いている。このような構成によれば、前記第2の剥離強度よりも大きな前記第1の90度剥離強度を得ることが容易である。
ここに開示される二次電池の好ましい一態様において、前記絶縁フィルムの厚さが、70μm以下である。この範囲の厚さの絶縁フィルムの使用は、電池の体積効率の面で有利であり、また、この範囲の厚さの絶縁フィルムでは、高温と低温との間の温度変化を繰り返し受けた際に特に破れが生じやすいため、破れ発生の抑制効果が特に大きい。
ここに開示される二次電池の好ましい一態様において、前記第1の90度剥離強度が25〜50mN/cmであり、前記第2の90度剥離強度が5〜30mN/cmである。このような範囲の剥離強度を有する二次電池は、製造が容易である。
ここに開示される二次電池の好ましい一態様において、前記電池ケースがアルミニウムまたはアルミニウム合金製であり、前記セパレータがポリオレフィン製であり、かつ前記絶縁フィルムがポリオレフィン製である。このような材質の組み合わせによれば、適切な第1の90度剥離強度および第2の90度剥離強度を得ることが容易である。
一実施形態に係る二次電池の構成を模式的に示す分解斜視図である。 一実施形態に係る二次電池の構成を模式的に示す図である。 一実施形態に係る二次電池の捲回電極体を示す図である。 絶縁フィルムの破れの発生のメカニズムを説明するための模式図であり、図4(a)は高温下に置く前の状態、図4(b)は高温下に置いた状態、図4(c)は低温下に置いた状態を示す。
以下、図面を参照しながら、本発明による実施の形態を説明する。なお、本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事柄(例えば、本発明を特徴付けない電池の一般的な構成および製造プロセス)は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。また、以下の図面においては、同じ作用を奏する部材・部位には同じ符号を付して説明している。また、各図における寸法関係(長さ、幅、厚さ等)は実際の寸法関係を反映するものではない。
なお、本明細書において「二次電池」とは、繰り返し充放電可能な蓄電デバイス一般をいい、リチウムイオン二次電池等のいわゆる蓄電池ならびに電気二重層キャパシタ等の蓄電素子を包含する用語である。以下、扁平角型のリチウムイオン二次電池を例にして、本発明について詳細に説明する。なお、本発明をかかる実施形態に記載されたものに限定することを意図したものではない。
図1は、本実施形態に係るリチウムイオン二次電池100の構成を模式的に示す分解斜視図である。図2は、本実施形態に係るリチウムイオン二次電池100の構成(特に内部の構成)を模式的に示す図である。このリチウムイオン二次電池100は、図1および図2に示すように、電極体80と電池ケース30と絶縁フィルム10とを備えている。
〔電極体〕
図2および図3に示されるように、本実施形態に用いられる電極体80は、正極(正極シート)50、負極(負極シート)60および2枚のセパレータ70,72が積層され捲回されてなる扁平形状の捲回電極体80である。捲回電極体80において、セパレータ70が、最表面に位置している。なお、電極体80は、捲回型の電極体に限られず、積層型の電極体であってもよい。積層型の電極体である場合には、セパレータが最表面に位置する。なお、ここで最表面とは、最も外側の表面であって露出している表面のことをいう。
正極シート50は、図3に示すように、長尺状の正極集電体52(正極芯材)を有している。また、正極シート50は、正極活物質層非形成部分(非塗工部)53と正極活物質層54とを有している。正極活物質層非形成部分53は正極集電体52の幅方向片側の縁部に沿って設けられている。本実施形態では、正極活物質層54は、正極集電体52の両面に形成されているが、正極集電体52の一方の面のみに形成されていてもよい。
正極活物質層54は、正極活物質を含む層である。正極活物質層54は、典型的には、正極活物質が導電材と共にバインダ(結着剤)により互いに結合され、正極集電体52に接合された形態であり得る。このような正極シート50は、典型的には、例えば、正極活物質と導電材とバインダとを適当な溶媒に分散させてなる正極ペースト(スラリー、インク等を包含する。)を、正極活物質層非形成部分53を除く正極集電体52の表面に供給した後、乾燥して溶媒を除去することにより作製することができる。正極集電体52としては、導電性の良好な金属(例、アルミニウム、ニッケル、チタン、ステンレス鋼)からなる導電性部材を好適に使用することができる。ここでは、正極集電体52としてアルミニウム箔を用いている。
正極活物質としては、リチウムイオンを吸蔵及び放出可能な材料であって、リチウム元素と一種または二種以上の遷移金属元素とを含むリチウム含有化合物(例、リチウム遷移金属複合酸化物)を好適に用いることができる。リチウム含有化合物の具体例としては、リチウムニッケルコバルトマンガン複合酸化物(例、LiNi1/3Co1/3Mn1/3)のような三元系リチウム含有複合酸化物、ポリアニオン系化合物(例、LiFePO、LiMnPO)等が挙げられる。
導電材は、従来この種のリチウムイオン二次電池で用いられているものであればよく、その例としては、カーボン粉末やカーボンファイバー等のカーボン材料が挙げられる。カーボン粉末としては、種々のカーボンブラック、グラファイト粉末等のカーボン粉末を用いることができる。このような導電材は、一種を単独で、または二種以上を適宜組み合わせて用いることができる。
バインダとしては、一般的なリチウムイオン二次電池の正極に使用されるバインダと同様のものを適宜採用することができる。例えば、正極活物質層54をペースト供給により形成する場合には、かかるペーストを構成する溶媒に均一に溶解または分散され得る性状のポリマーをバインダとして用いることができる。具体例としては、ポリフッ化ビニリデン(PVDF)等が挙げられる。
上記の正極活物質層54を構成する材料を分散させる溶媒としては、使用するバインダの性状に応じたものであれば水性溶媒および非水性溶媒(有機溶媒)のいずれもが使用可能である。
負極シート60は、図3に示すように、長尺状の負極集電体62(負極芯材)を有している。また、負極シート60は、負極活物質層非形成部分(非塗工部)63と負極活物質層64とを有している。負極活物質層非形成部分63は負極集電体62の幅方向片側の縁部に沿って設けられている。本実施形態では、負極活物質層64は、負極集電体62の両面に形成されているが、負極集電体62の一方の面のみに形成されていてもよい。
負極活物質層64は、負極活物質を含む層である。負極活物質層64は、典型的には、負極活物質がバインダ(結着剤)により互いに結合されるとともに、負極集電体62に接合された形態であり得る。このような負極シート60は、例えば、負極活物質とバインダとを適当な溶媒(例、水やN−メチル−2−ピロリドン、好ましくは水)に分散させてなる負極ペーストを負極集電体62の表面に供給した後、乾燥して溶媒を除去することにより作製することができる。負極集電体62としては、導電性の良好な金属(例、銅、ニッケル、チタン、ステンレス鋼)からなる導電性部材を好適に使用することができる。ここでは、負極集電体62として銅箔を用いている。
負極活物質としては特に制限されず、この種のリチウムイオン二次電池の負極活物質として使用し得ることが知られている各種の材料の1種を単独で、または2種以上を組み合わせる(混合または複合体化する)等して用いることができる。好適例として、黒鉛(グラファイト)、難黒鉛化炭素(ハードカーボン)、易黒鉛化炭素(ソフトカーボン)等の炭素系材料が挙げられる。なかでも、黒鉛系材料、特に、少なくとも一部の表面に非晶質炭素が配置されているものを好ましく用いることができる。また、かかる炭素系材料のほかに、例えば、LiTi12等のリチウムチタン複合酸化物、リチウム遷移金属複合窒化物等の、リチウム遷移金属複合酸化物を用いることもできる。
バインダとしては、一般的なリチウムイオン二次電池の負極に使用されるバインダと同様のものを適宜採用することができる。例えば、スチレンブタジエンゴム(SBR)等を用いることができる。
また、負極活物質層64の形成方法によっては、増粘剤を含み得る。かかる増粘剤としては、上記のバインダと同様のものを用いても良いし、例えば、以下の水溶性又は水分散性のポリマーを採用してもよい。水溶性のポリマーとしては、例えば、メチルセルロース(MC)、カルボキシルメチルセルロース(CMC)、酢酸フタル酸セルロース(CAP)等のセルロース系ポリマー;ポリビニルアルコール(PVA)等が挙げられる。
セパレータ70,72は、正極シート50と負極シート60とを隔てる部材である。セパレータ70,72は、非水電解質の保持機能やシャットダウン機能を備えるように構成される。セパレータ70,72としては、ポリエチレン(PE)、ポリプロピレン(PP)、ポリエステル、セルロース、ポリアミド等の樹脂製の多孔質膜を用いることができる。なかでも、PEやPP等のポリオレフィン樹脂からなる多孔質膜が好ましい。セパレータ70,72は、単一の多孔質膜から構成される単層構造であってもよく、材質や性状(例、平均厚さや空孔率)の異なる2種以上の多孔質膜が積層された構造(例、PE層の両面にPP層が積層された三層構造)であってもよい。
セパレータ70,72の負極側に面する面に、耐熱層(HRL)が設けられていてもよい。
捲回電極体80は、正極活物質層54と負極活物質層64との間にセパレータ70,72を介在させつつ、正極シート50と負極シート60とを積層し、捲回した後、得られた捲回体を側面方向から押圧して扁平形状に拉げさせることによって作製され得る。
本実施形態では、図3に示すように、負極活物質層64の幅b1は正極活物質層54の幅a1よりも少し広い。さらにセパレータ70,72の幅c1、c2は、負極活物質層64の幅b1よりも少し広い(c1、c2>b1>a1)。正極シート50と負極シート60とセパレータ70,72は、長さ方向を揃えて、正極シート50、セパレータ70、負極シート60、セパレータ72の順で重ねられている。さらに、正極シート50の正極活物質層非形成部分(非塗工部)53と負極シート60の負極活物質層非形成部分(非塗工部)63とは、セパレータ70,72の幅方向において互いに反対側にはみ出るように重ねられている。重ねられたシート材は、幅方向に設定された捲回軸周りに捲回されている。
〔絶縁フィルム〕
電極体80と電池ケース30との間には、当該電極体80と電池ケース30とを隔離する絶縁フィルム10が配置されている。かかる絶縁フィルム10によって、発電要素である電極体80と電池ケース30との直接的な接触が回避され、電極体80と電池ケース30との絶縁を確保することができる。本実施形態では、絶縁フィルム10は、電極体80(特に捲回部分)が収容されるように上端側が開口した有底の袋状に形成されている。なお、絶縁フィルム10の形状は、電極体80と電池ケース30とを絶縁できる限り袋状に限られず、例えば筒状のフィルムであってもよいし、平面状のフィルムであってもよい。絶縁フィルム10の材質は、絶縁部材として機能し得る材料で構成されていればよく、例えば、ポリオレフィン(例、ポリプロピレン(PP)、ポリエチレン(PE))などの樹脂材料を好適に使用することができる。
絶縁フィルム10の厚さは、特に制限がないが、電池の体積効率の観点から、小さいことが好ましい。具体的には、70μm以下であることが好ましく、60μm以下であることがより好ましく、58μm以下であることがさらに好ましく、55μm以下であることが特に好ましい。一方、フィルム強度の観点から、30μm以上であることが好ましく、40μm以上であることがより好ましく、42μm以上であることがさらに好ましく、45μm以上であることが特に好ましい。厚さ70μm以下(特に60μm以下)の絶縁フィルム10は、高温と低温との間の温度変化を繰り返し受けた際に破れが特に生じやすいが、本実施形態では、絶縁フィルム10の厚さがこの範囲にあっても、高温と低温との間の温度変化を繰り返し受けた際の破れの発生が十分に抑制されている。本実施形態では、絶縁フィルム10には、厚さ50μmのものを採用している。
〔電池ケース〕
本実施形態の電池ケース30は、図2に示すように、内部空間が電極体80に対応する箱状となるように形成された、角部が計8か所あるいわゆる角型(典型的には直方体形状)の電池ケースである、電池ケース30は、ケース本体32と、蓋体34とを備えている。ケース本体32は、有底四角筒状を有しており、一側面(上面)が開口した扁平な箱型の容器である。蓋体34は、当該ケース本体32の開口(上面の開口)に取り付けられて当該開口を塞ぐ部材である。ケース本体32は、その上部の開口を介して電極体80および絶縁フィルム10を収容することができる。ケース本体32は、ケース内に収容される捲回電極体80の扁平面に対向する一対の幅広面36(図1)と、幅広面36に隣接する一対の幅狭面38と、底面39とから構成されている。
電池ケース30の材質には、絶縁フィルム10およびセパレータ70,72の熱膨張係数よりも小さい熱膨張係数を有するものが選択される。絶縁フィルム10およびセパレータ70,72に通常用いられる材質よりも熱膨張係数の小さい材質の例としては、アルミニウム、ステンレス鋼、ニッケルめっき鋼等の金属材料、ポリフェニレンサルファイド樹脂、ポリイミド樹脂等の樹脂材料が挙げられる。なかでも、金属材料が好ましい。本実施形態に用いられる電池ケース30(具体的には本体32および蓋体34)は、アルミニウムまたはアルミニウム合金製である。
〔電池全体の構成〕
本実施形態においては、リチウムイオン二次電池100は、車両用に適したサイズに構成されている。図1および図2に示すように、電池ケース30は、捲回電極体80を収容する空間として、扁平な矩形の内部空間を有しており、電池ケース30の扁平な内部空間は、捲回電極体80よりも横幅が少し広い。この電池ケース30の内部空間に、捲回電極体80が、捲回軸に直交する一の方向において扁平に変形させられた状態で収容されている。ケース本体32と捲回電極体80の間には絶縁フィルム10が配置されて、ケース本体32と捲回電極体80とが絶縁されている。電池ケース30の蓋体34には、正極端子42および負極端子44が取り付けられている。正極端子42および負極端子44は、電池ケース30(蓋体34)を貫通して電池ケース30の外部に突出している。また、蓋体34には安全弁35が設けられている。安全弁35の隣には、電池製造時に電解液(図示せず)を注入するための注入口(図示せず)が設けられている。蓋体34とケース本体32の合わせ目32aは、レーザ溶接等によって封止されている。
捲回電極体80では、セパレータ70,72の幅方向において、正極シート50の正極活物質層非形成部分(非塗工部)53と負極シート60の負極活物質層非形成部分(非塗工部)63とが互いに反対側にはみ出ている。このうち、正極活物質層非形成部分53には正極集電端子92が付設されており、上述の正極端子42と接続されている。正極集電端子92は、例えばアルミニウムまたはアルミニウム合金からなる。この例では、図2に示すように、正極集電端子92は、捲回電極体80の正極活物質層非形成部分53の中央部に延びている。正極集電端子92の先端部は、正極活物質層非形成部分53の中央部に溶接(例、超音波溶接)されている。また、負極活物質層非形成部分63には負極集電端子94が付設されており、上述の負極端子44と接続されている。負極集電端子94は、例えば銅または銅合金からなる。負極集電端子94は、捲回電極体80の負極活物質層非形成部分63の中央部に延びている。負極集電端子94の先端部は、負極活物質層非形成部分63の中央部に溶接(例、抵抗溶接)されている。
電池ケース30の内部には、電解液(図示せず)が封入されている。電解液としては、非水溶媒と、該溶媒に溶解可能なリチウム塩(支持電解質)とを含む非水電解液を好ましく用いることができる。上記非水溶媒としては、カーボネート類、エステル類、エーテル類、ニトリル類、スルホン類、ラクトン類等の非プロトン性溶媒を用いることができる。例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、1,2−ジメトキシエタン、1,2−ジエトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、ジオキサン、1,3−ジオキソラン、ジエチレングリコールジメチルエーテル、エチレングリコールジメチルエーテル、アセトニトリル、プロピオニトリル、ニトロメタン、N,N−ジメチルホルムアミド、ジメチルスルホキシド、スルホラン、γ−ブチロラクトン等の、一般にリチウムイオン二次電池の電解液に使用し得るものとして知られている非水溶媒から選択される一種または二種以上を用いることができる。
上記支持電解質としては、LiPF,LiBF,LiN(SOCF,LiN(SO,LiCFSO,LiCSO,LiC(SOCF,LiClO等の、リチウムイオン二次電池の電解液において支持電解質として機能し得ることが知られている各種のリチウム塩から選択される一種または二種以上を用いることができる。支持電解質(支持塩)の濃度は特に制限されず、例えば従来のリチウムイオン二次電池で使用される電解液と同様とすることができる。典型的には、支持電解質をおよそ0.1mol/L〜5mol/L(例えばおよそ0.8mol/L〜1.5mol/L)程度の濃度で含有する非水電解液を好ましく使用することができる。
また、非水電解液は、リチウムイオン二次電池100のさらなる特性向上を目的として、被膜形成剤、過充電添加剤、界面活性剤、分散剤、増粘剤等の添加剤をさらに含んでいてもよい。
本実施形態では、絶縁フィルム10は、電極体80および電池ケース30に接触して保持された部分において、電極体80の最表面のセパレータ70および電池ケース30とそれぞれ接着されている。絶縁フィルム10の、電極体80および電池ケース30に接触して保持された部分では、絶縁フィルム10が、電極体80および電池ケース30から圧力を受けながら面接触して保持されている。従来技術である特許文献1では、絶縁フィルム10は、電池ケース30とのみ熱溶着により接着されて電池ケース30のみと接着されていたところ、本実施形態では、絶縁フィルム10は、電池ケース30およびセパレータ70の両方に接着される。
接着強度(剥離強度)に関し、接着部分における絶縁フィルム10と電池ケース30との間の90度剥離強度Aが、接着部分における絶縁フィルム10とセパレータ70との間の90度剥離強度Bよりも大きい。そして、90度剥離強度Aが15mN/cm以上であり、90度剥離強度Bが5mN/cm以上である。このような接着強度の条件が満たされることにより、高温と低温との間の温度変化を繰り返し受けても絶縁フィルム10の破れの発生が抑制されたリチウムイオン二次電池100が提供される。その理由は、次のように考えられる。
図4は、絶縁フィルムの破れの発生のメカニズムを説明するための模式図である。図4は、二次電池の蓋体およびケース底面に平行な断面において、電極体と絶縁フィルムおよび電池ケース(幅広面)の一部のみを図示したものである。図4(a)に示すように、絶縁フィルム101は、電池ケース301および電極体801から圧力を受けて、電池ケース301および電極体801に接触してしっかりと保持されている。一般的に、二次電池においては、電池ケースの熱膨張係数は、絶縁フィルムおよびセパレータの熱膨張係数より小さい。よって、二次電池がまず高温下(例えば60℃以上)に置かれた場合に、絶縁フィルム101は、電池ケース301よりも熱膨張係数が大きいため、絶縁フィルム101は、電池ケース301よりも膨張を起こす。このとき、絶縁フィルム101の一部が、電池ケース301および電極体801に保持された部分から逃れるように膨張を起こす。その結果、図4(b)に示すように、絶縁フィルム101が電池ケース301および電極体801に保持された部分では、薄肉化が起こり、絶縁フィルム101が電池ケース301および電極体801に保持されていない部分では、厚肉化が起こる。二次電池が低温下(例えば−30℃以下)に置かれた場合、絶縁フィルム101は収縮を起こそうとするが、絶縁フィルム101は、電池ケース301および電極体801にしっかりと保持されているために、図4(c)に示すように、厚肉化した部分が、絶縁フィルム101が電池ケース301および電極体801に保持された部分に戻ることができない。このように高温から低温への温度変化によって、絶縁フィルム101が電池ケース301および電極体801に保持された部分での薄肉化と、絶縁フィルム101が電池ケース301および電極体801に保持されていない部分での厚肉化が起こる。このような高温から低温への温度変化が繰り返し起こると、前記の薄肉化と厚肉化が徐々に進行していくことになり、絶縁フィルム101が電池ケース301および電極体801に保持された部分で薄肉化が過度に進行すると、絶縁フィルム101に破れが発生することになる。
これに対して、本実施形態では、絶縁フィルム10は、電池ケース30およびセパレータ70の両方に接着されている。本実施形態に係るリチウムイオン二次電池100が高温下(例えば60℃以上)に置かれた場合に、絶縁フィルムの一部が、電池ケース30および電極体80に保持された部分から逃げようとするが、絶縁フィルム10が、電池ケース30およびセパレータ70の両方に接着されているために、電池ケース30および電極体80に保持された部分から逃げることができない。この結果、高温から低温への温度変化による、絶縁フィルム10が電池ケース30および電極体80に保持された部分での薄肉化を防止することができる。よって、高温から低温への温度変化が繰り返し起こっても、絶縁フィルム10は、電池ケース30および電極体80に保持された部分においても十分な厚さを保つことができ、その結果、絶縁フィルム10の破れの発生を抑制することができる。
ここで、接着部分における絶縁フィルム10と電池ケース30との間の90度剥離強度Aが、接着部分における絶縁フィルム10とセパレータ70との間の90度剥離強度Bよりも大きい。これは、電池ケース30は、セパレータ70よりも熱膨張係数が小さいので、90度剥離強度Aが90度剥離強度Bよりも小さいと、絶縁フィルム10の破れが発生し得るためである。また、後述の実施例において実験的に証明されたことであるが、絶縁フィルム10の破れの発生を抑制するために、90度剥離強度Aが15mN/cm以上であり、かつ90度剥離強度Bが5mN/cm以上である。
なお、絶縁フィルムの破れの発生は、絶縁フィルムが電池ケースおよび電極体に接触して保持された部分の寸法が大きい(例えば、電極体の絶縁フィルムと接触する部分の幅方向の長さが100mm以上である)方が起こりやすいと推測される。したがって、本実施形態において、リチウムイオン二次電池100が、車両用に適したサイズ(電極体80の絶縁フィルム10と接触する部分の幅方向の長さが通常は100mm以上であるサイズ)に構成されることの意義は大きい。
90度剥離強度Aを15mN/cm以上にするために、本実施形態では、少なくとも一方の面に親水化処理が施された絶縁フィルム10を用いる方法が採用されている。ここで親水化処理とは、材料の表面にヒドロキシル基、カルボキシル基等の親水性基が導入される処理のことをいう。親水化処理により、絶縁フィルム10の一方の面における親水性基の量は、もう一方の面よりも多い。親水化処理としては、例えばコロナ放電処理、プラズマ処理、オゾン処理等が挙げられ、なかでも、実施が容易なことから、コロナ放電処理が好ましい。
まず、少なくとも一方の面に親水化処理が施された袋状の絶縁フィルム10を用意する。このとき、親水化処理された面が電池ケース30側の面(外面)になるようにする。次にこの絶縁フィルム10を用いて、電池ケース30および捲回電極体80に絶縁フィルム10が接触して保持された電池セルを組み立てる。この組み立てた電池セルに熱処理を施すことにより、絶縁フィルム10と電池ケース30とを接着させることができる。熱処理は、二次電池の製造の際にセル乾燥工程および高温エージング工程を実施することで行うことができる。
セル乾燥工程は、例えば80℃〜115℃で行う。高温エージング工程は、例えば50℃以上、典型的には50℃〜80℃で行う。また、高温エージング工程は、例えば拘束治具を用いて、絶縁フィルム10と電池ケース30とが密着するように拘束圧を印加しつつ行う。
このようなセル乾燥工程および高温エージング工程を実施することで、絶縁フィルム10と電池ケース30とが強固に接着され、90度剥離強度Aを15mN/cm以上とすることができる。ここで、セル乾燥工程および高温エージング工程の条件(例、温度条件)を変化させることで、90度剥離強度Aの大きさを調整することができる。また、電池ケース30の材質を変更することで、90度剥離強度Aの大きさを調整することができる。このようにすれば、公知の電池の製造工程を経ることによって、大きな90度剥離強度Aを得ることができるため、リチウムイオン二次電池100の生産効率の面で有利であり、特に、25〜50mN/cmという90度剥離強度Aを容易に得ることができる。
このような方法により、90度剥離強度Aが15mN/cm以上にされているため、本実施形態に係るリチウムイオン二次電池100においては、絶縁フィルム10の少なくとも一方の面に親水化処理が施されており、当該親水化処理された面が、電池ケース30の内壁を向いている。また、絶縁フィルム10の親水化処理された面が、電池ケース30の内壁と接触している部分において接着がなされている。
なお、90度剥離強度Aを、15mN/cm以上にするための別の方法としては、適切な接着強度を有する接着剤を少なくとも絶縁フィルム10と電池ケース30とが接触する部分に塗布して接着する方法が挙げられる。接着剤の代わりに両面テープを用いることもできる。
90度剥離強度Bを5mN/cm以上にする方法としては、フィルム同士のブロッキングという現象、すなわち重ね合わされたフィルム同士が互着する現象を利用する。本実施形態では、セパレータ70には、ポリオレフィン多孔質膜を用い、絶縁フィルム10にもポリオレフィンを用いている。またセパレータ70には、表面改質処理(特にコロナ放電処理)が施されている。二次電池の製造の際にセパレータ70と絶縁フィルム10とを密着させ、上述したセル乾燥工程および高温エージング工程を実施することで、5mN/cm以上の90度剥離強度を得ることができる。ここで、セル乾燥工程および高温エージング工程の条件(例、温度条件)を変化させることで、90度剥離強度Bの大きさを調整することができる。このようにすれば、従来の電池の製造工程を経ることによって、大きな90度剥離強度Bを得ることができるため、リチウムイオン二次電池100の生産効率の面で有利であり、特に、5〜30mN/cmという90度剥離強度Bを容易に得ることができる。
なお、90度剥離強度Bを、5mN/cm以上にするための別の方法としては、適切な接着強度を有する接着剤を少なくとも絶縁フィルム10とセパレータ70とが接触する部分に塗布して接着する方法が挙げられる。接着剤の代わりに両面テープを用いることもできる。
以上のことから、本実施形態のリチウムイオン二次電池100は、電極体80、電池ケース30、および少なくとも一方の面に親水化処理を施した絶縁フィルム10を準備する工程と、電池ケース30および電極体80の間に絶縁フィルム10が接触して保持され、絶縁フィルム10の前記処理が施された面が電池ケース30の内壁を向くように、絶縁フィルム10および電極体80が電池ケース30に収容された電池セルを構築する工程と、電極体80と絶縁フィルム10とが密着し、かつ絶縁フィルム10と電池ケース30とが密着するように前記電池セルを押圧しながら、前記電池セルを加熱下に置く工程(特に、セル乾燥工程および/または高温エージング工程)を実施することによって製造されることが好ましい。
適切な90度剥離強度Aおよび90度剥離強度Bを得る観点からは、アルミニウムまたはアルミニウム合金製の電池ケース30、ポリオレフィン製のセパレータ70,72、およびポリオレフィン製の絶縁フィルム10の組み合わせが特に有利である。
リチウムイオン二次電池100は、各種用途に利用可能である。好適な用途としては、電気自動車(EV)、ハイブリッド自動車(HV)、プラグインハイブリッド自動車(PHV)等の車両に搭載される駆動用電源が挙げられる。
リチウムイオン二次電池100は、典型的には複数個を直列および/または並列に接続してなる組電池の形態でも使用され得る。
以下、本発明に関するいくつかの実施例を説明するが、本発明をかかる実施例に示すものに限定することを意図したものではない。
[二次電池の作製]
正極活物質としてのLiNi1/3Co1/3Mn1/3と、導電材としてのアセチレンブラックと、バインダとしてのPVDFとを、93/4/3(質量比)でN−メチル−2−ピロリドン中で混練して、正極活物質層形成用スラリーを調製した。このスラリーをアルミニウム箔(正極集電体)の両面に塗工して、乾燥後にプレス加工し、正極集電体上に正極活物質層を備えた正極を作製した。
次に、負極活物質としての黒鉛と、バインダとしてのSBRと、増粘剤としてのCMCとを、98/1/1(質量比)でイオン交換水中で混練して、負極活物質層形成用スラリーを調製した。このスラリーを銅箔(負極集電体)の両面に塗工して、乾燥後にロールプレスすることによって、負極集電体上に負極活物質層を備えた負極を作製した。
また、PP/PE/PPという三層構造のセパレータを2枚準備した。なお、このセパレータにはコロナ放電処理が施されていた。
正極、セパレータ、負極、セパレータの順で積層したものを捲回し、電極体を準備した。捲回の際には、セパレータが最表面に位置するようにした。
また、片面にコロナ放電処理が施されたポリプロプレンフィルム(厚さ50μm)またはコロナ放電処理が施されていないポリプロピレンフィルム(厚さ50μm)を用いて、袋状の絶縁フィルムを作製した。
また、非水電解液として、ECとDMCとEMCとを30/40/30の体積比で含む混合溶媒に、支持塩としてのLiPFを1.1mol/Lの濃度で溶解させたものを準備した。
電極体の正負極にそれぞれリード端子を溶着した後、袋状の絶縁フィルムに収納し、さらに電極体を絶縁フィルムとともに、アルミニウム(A3003)製の電池ケースに収納し、電池セルを得た。
この電池セルについて、セル乾燥を行った。その後非水電解液を注入し、初期充電および高温エージングを行ってNo.1〜15の電池を作製した。
なお、90度剥離強度Aおよび90度剥離強度Bを変化させるために、No.1〜No.10の電池では、ポリプロピレンフィルムのコロナ放電処理が施された面が外面(電池ケースの内壁と接触することになる面)になるようにし、No.11〜No.14の電池では、コロナ放電処理が施された面が内面(電極体のセパレータと接触することになる面)になるようにした。また、No.15の電池では、コロナ放電処理が施されていないポリプロピレンフィルムを用いた。これに加えて、90度剥離強度Aおよび90度剥離強度Bを変化させるために、電池ごとにセル乾燥と高温エージングの条件を変化させた。
[剥離強度の評価]
剥離強度は、便宜上、No.1〜15の各電池の製造条件と同じ条件下に曝したサンプルについて測定した。
(1)90度剥離強度A
上記No.1〜15の各電池の袋状の絶縁フィルムの作製に用いたポリプロプレンフィルムを、10mm×150mmサイズの短冊状に切り出した。これを、電池ケースと同じ素材のアルミニウム(A3003)製の板上に密着させた。このとき、ポリプロプレンフィルムがコロナ放電処理されている場合には、コロナ放電処理された面の向きは、No.1〜14の各電池の製造条件にあわせた。続いてこれを、No.1〜15の各電池製造時のセル乾燥条件および高温エージング条件と同じ条件下に曝した。
このようにして得られたサンプルについて、引張試験機(今田製作所製「SV−201NA−50SL」)を用いて90度剥離強度を測定した。具体的には、サンプルを水平な可動式テーブル上に両面テープで固定し、テーブルを移動させながらポリプロピレンフィルムを垂直方向に引っ張って20mm/minの速度で剥離させ、そのときの荷重を測定した。
(2)90度剥離強度B
上記No.1〜15の各電池の袋状の絶縁フィルムの作製に用いたポリプロプレンフィルムを、10mm×150mmサイズの短冊状に切り出した。これを電池の製造に用いたセパレータと同じセパレータ上に密着させた。このとき、ポリプロプレンフィルムがコロナ放電処理されている場合には、コロナ放電処理された面の向きは、No.1〜14の各電池の製造条件にあわせた。続いてこれを、No.1〜15の各電池製造時のセル乾燥および高温エージング条件と同じ条件下に曝した。
このようにして得られたサンプルについて、90度剥離強度Aと同様にして引張試験機(今田製作所製「SV−201NA−50SL」)を用いて90度剥離強度を測定した。
[セパレータの破れ評価]
得られた二次電池No.1〜15について熱衝撃サイクル試験を行った。具体的には、各二次電池を加熱して60℃以上の温度に達したら−30℃以下の温度まで冷却するという温度変化を1サイクルとして、各二次電池に1000サイクルの温度変化を与えた。その後各二次電池を分解して、セパレータの破れの有無を調べた。
評価結果を表1に示す。
Figure 2016219143
表1からわかるように、剥離強度Aが剥離強度Bより大きく、剥離強度Bが5mN/cm以上のNo.1〜No.9の二次電池では、セパレータの破れの発生が抑制されていた。一方、従来技術に相当する絶縁フィルムとセパレータが接着されていないNo.10の二次電池では、セパレータに破れが発生した。剥離強度Aが剥離強度Bよりも小さいNo.11〜14の二次電池では、セパレータに破れが発生した。絶縁フィルムが電池ケースおよびセパレータと接着されていないNo.15の二次電池では、セパレータに破れが発生した。
以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、請求の範囲を限定するものではない。請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。例えば、本発明の効果が得られる範囲において、接着面が実質的に接着していれば、接着面全面が所定の剥離強度(15mN/cm以上の剥離強度Aまたは5mN/cm以上の剥離強度B)を有していなくてもよい。すなわち、接着面の一部に所定の剥離強度未満の箇所があってもよい。例えば、絶縁フィルムをセパレータまたは電池ケースに接着する際に、接着面において、両面テープや接着剤を間隔をあけて(例えば縞状に)用いてもよい。
10 絶縁フィルム
30 電池ケース
32 ケース本体
34 蓋体
35 安全弁
42 正極端子
44 負極端子
50 正極
52 正極集電体
53 正極活物質層非形成部分
54 正極活物質層
60 負極
62 負極集電体
63 負極活物質層非形成部分
64 負極活物質層
70,72 セパレータ
80 電極体
92 正極集電端子
94 負極集電端子
100 リチウムイオン二次電池

Claims (5)

  1. 正極、負極およびセパレータを有する電極体であって、最表面がセパレータである電極体と、
    前記電極体を収容する電池ケースと、
    前記電極体および前記電池ケースに接触して保持された絶縁フィルムとを備える二次電池であって、
    前記電池ケースの熱膨張係数が、前記絶縁フィルムおよび前記セパレータの熱膨張係数より小さく、
    前記絶縁フィルムは、前記電極体および前記電池ケースに接触して保持された部分において、前記電極体の最表面のセパレータおよび前記電池ケースとそれぞれ接着されており、
    接着部分における前記絶縁フィルムと前記電池ケースとの間の第1の90度剥離強度は、接着部分における前記絶縁フィルムと前記セパレータとの間の第2の90度剥離強度よりも大きく、
    前記第1の90度剥離強度が、15mN/cm以上であり、
    前記第2の90度剥離強度が、5mN/cm以上である、
    二次電池。
  2. 前記絶縁フィルムの少なくとも一方の面に親水化処理が施されており、当該親水化処理された面が、前記電池ケースの内壁を向いている、請求項1に記載の二次電池。
  3. 前記絶縁フィルムの厚さが、70μm以下である、請求項1または2に記載の二次電池。
  4. 前記第1の90度剥離強度が25〜50mN/cmであり、前記第2の90度剥離強度が5〜30mN/cmである、請求項1〜3のいずれか1項に記載の二次電池。
  5. 前記電池ケースがアルミニウムまたはアルミニウム合金製であり、前記セパレータがポリオレフィン製であり、かつ前記絶縁フィルムがポリオレフィン製である、請求項1〜4のいずれか1項に記載の二次電池。
JP2015100035A 2015-05-15 2015-05-15 二次電池 Active JP6210336B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2015100035A JP6210336B2 (ja) 2015-05-15 2015-05-15 二次電池
CN201610305501.XA CN106159123B (zh) 2015-05-15 2016-05-10 二次电池
KR1020160057464A KR101787254B1 (ko) 2015-05-15 2016-05-11 이차 전지
US15/152,910 US9859534B2 (en) 2015-05-15 2016-05-12 Secondary battery
EP16169476.5A EP3093912B1 (en) 2015-05-15 2016-05-13 Secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015100035A JP6210336B2 (ja) 2015-05-15 2015-05-15 二次電池

Publications (2)

Publication Number Publication Date
JP2016219143A true JP2016219143A (ja) 2016-12-22
JP6210336B2 JP6210336B2 (ja) 2017-10-11

Family

ID=55969001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015100035A Active JP6210336B2 (ja) 2015-05-15 2015-05-15 二次電池

Country Status (5)

Country Link
US (1) US9859534B2 (ja)
EP (1) EP3093912B1 (ja)
JP (1) JP6210336B2 (ja)
KR (1) KR101787254B1 (ja)
CN (1) CN106159123B (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160167358A1 (en) * 2014-12-12 2016-06-16 Micro Materials Inc. Support for bonding a workpiece and method thereof
JP2019091604A (ja) * 2017-11-14 2019-06-13 トヨタ自動車株式会社 非水電解液二次電池
KR20190096826A (ko) 2018-02-09 2019-08-20 도요타 지도샤(주) 이차 전지 및 세트 전지
JP2020087832A (ja) * 2018-11-29 2020-06-04 トヨタ自動車株式会社 非水電解液二次電池
JP7459029B2 (ja) 2021-08-25 2024-04-01 プライムプラネットエナジー&ソリューションズ株式会社 電池および該電池の製造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6852629B2 (ja) * 2017-09-12 2021-03-31 トヨタ自動車株式会社 蓄電装置
US20200280025A1 (en) * 2017-11-17 2020-09-03 Shenzhen Kedal Industry Co., Ltd Aluminum case
US11450892B2 (en) * 2018-06-20 2022-09-20 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002184364A (ja) * 2000-12-19 2002-06-28 Matsushita Electric Ind Co Ltd 角型電池およびその外装方法
JP2007154135A (ja) * 2005-12-08 2007-06-21 Sanyo Electric Co Ltd テープ及び電池
JP2011124198A (ja) * 2009-09-04 2011-06-23 Samsung Sdi Co Ltd 二次電池及びその二次電池の製造方法
JP2012252888A (ja) * 2011-06-03 2012-12-20 Sharp Corp 二次電池および組電池
JP2015011895A (ja) * 2013-06-28 2015-01-19 日立オートモティブシステムズ株式会社 角形二次電池

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4558279B2 (ja) 2003-02-21 2010-10-06 パナソニック株式会社 角形電池およびその製造方法
KR100670483B1 (ko) 2005-08-25 2007-01-16 삼성에스디아이 주식회사 리튬 이차 전지
JP5151327B2 (ja) 2007-09-07 2013-02-27 大日本印刷株式会社 電池用包装材料
JP5124506B2 (ja) * 2009-02-13 2013-01-23 シャープ株式会社 二次電池および二次電池の製造方法
JP5327540B2 (ja) 2009-09-28 2013-10-30 トヨタ自動車株式会社 リチウムイオン二次電池用セパレータおよびその製造方法
US9356273B2 (en) * 2009-12-04 2016-05-31 Sony Corporation Nonaqueous electrolyte secondary battery and separator
KR101853995B1 (ko) 2010-10-27 2018-05-02 도레이 필름 카코우 가부시키가이샤 이차 전지 및 그의 제조 방법 및 이차 전지용 열접착성 절연 필름
JP5906912B2 (ja) * 2012-04-12 2016-04-20 株式会社豊田自動織機 蓄電装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002184364A (ja) * 2000-12-19 2002-06-28 Matsushita Electric Ind Co Ltd 角型電池およびその外装方法
JP2007154135A (ja) * 2005-12-08 2007-06-21 Sanyo Electric Co Ltd テープ及び電池
JP2011124198A (ja) * 2009-09-04 2011-06-23 Samsung Sdi Co Ltd 二次電池及びその二次電池の製造方法
JP2012252888A (ja) * 2011-06-03 2012-12-20 Sharp Corp 二次電池および組電池
JP2015011895A (ja) * 2013-06-28 2015-01-19 日立オートモティブシステムズ株式会社 角形二次電池

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160167358A1 (en) * 2014-12-12 2016-06-16 Micro Materials Inc. Support for bonding a workpiece and method thereof
US11097306B2 (en) * 2014-12-12 2021-08-24 Micro Materials Inc. Support for bonding a workpiece and method thereof
JP2019091604A (ja) * 2017-11-14 2019-06-13 トヨタ自動車株式会社 非水電解液二次電池
KR20190096826A (ko) 2018-02-09 2019-08-20 도요타 지도샤(주) 이차 전지 및 세트 전지
US10978745B2 (en) 2018-02-09 2021-04-13 Toyota Jidosha Kabushiki Kaisha Secondary battery and battery pack
JP2020087832A (ja) * 2018-11-29 2020-06-04 トヨタ自動車株式会社 非水電解液二次電池
JP7119956B2 (ja) 2018-11-29 2022-08-17 トヨタ自動車株式会社 非水電解液二次電池
JP7459029B2 (ja) 2021-08-25 2024-04-01 プライムプラネットエナジー&ソリューションズ株式会社 電池および該電池の製造方法

Also Published As

Publication number Publication date
EP3093912A1 (en) 2016-11-16
CN106159123A (zh) 2016-11-23
JP6210336B2 (ja) 2017-10-11
EP3093912B1 (en) 2018-02-28
KR20160134516A (ko) 2016-11-23
KR101787254B1 (ko) 2017-10-18
CN106159123B (zh) 2018-08-24
US9859534B2 (en) 2018-01-02
US20160336548A1 (en) 2016-11-17

Similar Documents

Publication Publication Date Title
JP6210336B2 (ja) 二次電池
KR101334623B1 (ko) 원심력을 이용한 이차전지의 탈기 방법
JP6208708B2 (ja) リチウムイオン二次電池およびそれを用いたシステム
KR101304870B1 (ko) 전지셀의 제조방법 및 이를 이용하여 생산되는 전지셀
JP4927064B2 (ja) 二次電池
JP6086240B2 (ja) 非水電解液電池およびその製造方法
JP2013201077A (ja) 非水電解質二次電池
JP2010244930A (ja) ラミネート形電池の製造方法
JP6238081B2 (ja) 非水電解液二次電池
JP6862919B2 (ja) 角形リチウムイオン二次電池
JP5843107B2 (ja) 非水電解液二次電池の製造方法
JP6697687B2 (ja) 非水電解液二次電池
JP2017084533A (ja) 非水電解液二次電池の製造方法
JP6331097B2 (ja) 二次電池の製造方法
JP2017027837A (ja) リチウムイオン二次電池
KR101307772B1 (ko) 이차전지 제조방법 및 이를 이용하여 생산되는 이차전지
JP2017130320A (ja) 二次電池
JP2016134277A (ja) 非水電解液二次電池
JP2016181352A (ja) 二次電池
JP7430665B2 (ja) 二次電池の集電体およびその製造方法、ならびに二次電池
JP7373120B2 (ja) 非水電解液二次電池
JP7417840B2 (ja) 二次電池
JP7079413B2 (ja) 二次電池の製造方法
JP2017004729A (ja) 非水電解質二次電池
JP2019091603A (ja) 非水電解液二次電池

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160923

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170817

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170830

R151 Written notification of patent or utility model registration

Ref document number: 6210336

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151