JP2016195226A - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
JP2016195226A
JP2016195226A JP2015075457A JP2015075457A JP2016195226A JP 2016195226 A JP2016195226 A JP 2016195226A JP 2015075457 A JP2015075457 A JP 2015075457A JP 2015075457 A JP2015075457 A JP 2015075457A JP 2016195226 A JP2016195226 A JP 2016195226A
Authority
JP
Japan
Prior art keywords
base region
semiconductor
region
type
type base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015075457A
Other languages
English (en)
Other versions
JP6550869B2 (ja
Inventor
熊谷 直樹
Naoki Kumagai
直樹 熊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2015075457A priority Critical patent/JP6550869B2/ja
Publication of JP2016195226A publication Critical patent/JP2016195226A/ja
Application granted granted Critical
Publication of JP6550869B2 publication Critical patent/JP6550869B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

【課題】オン抵抗の増加を抑制することができるとともに、誤オンを抑制することができる半導体装置を提供すること。
【解決手段】ワイドバンドギャップ半導体からなるn+型ドレイン層1となるn+型半導体基板のおもて面上に、エピタキシャル成長によりn-型ドリフト層2およびp型ベース領域3が順に積層されている。p型ベース領域3側には、p型ベース領域3、高濃度p+型ベース領域4、n+型ソース領域5、n型打ち返し領域12a、JFET領域12b、ゲート絶縁膜7およびゲート電極8からなるプレーナゲート型のMOSゲート構造が設けられている。高濃度p+型ベース領域4は、n-型ドリフト層2の、p型ベース領域3側の表面層に選択的に設けられ、p型ベース領域3のドレイン側に接する。高濃度p+型ベース領域4は、p型ベース領域3との界面で最も低く、p型ベース領域3との界面から離れるほど所定の勾配で増加する不純物濃度分布を有する。
【選択図】図1

Description

この発明は、半導体装置に関する。
従来、炭化珪素(SiC)、窒化ガリウム(GaN)またはダイヤモンドなど、シリコン(Si)よりもバンドギャップの広い半導体(以下、ワイドバンドギャップ半導体とする)は、その高い絶縁破壊電界や高い熱伝導率などの優れた特性により、特にパワーデバイスへの応用が期待されている。ワイドバンドギャップ半導体を用いた従来の半導体装置として、例えば炭化珪素を用いたプレーナゲート構造の縦型MOSFET(Metal Oxide Semiconductor Field Effect Transistor:絶縁ゲート型電界効果トランジスタ)が提案されている(例えば、下記特許文献1参照。)。このようなワイドバンドギャップ半導体を用いた従来の半導体装置の構造について説明する。図4は、従来の半導体装置の構造を示す断面図である。
図4に示すように、従来の半導体装置は、p型ベース領域103とn-型ドリフト層102との間に、p型ベース領域103よりも不純物濃度の高い高濃度p+型ベース領域104を備える。n-型ドリフト層102およびp型ベース領域103は、n+型ドレイン層101となる炭化珪素からなるn+型半導体基板のおもて面上に順に積層されたエピタキシャル層である。n-型ドリフト層102の厚さは、耐圧1200Vクラスである場合においては10μm程度であり、高耐圧であるほど厚くする必要がある。ゲート電極108の直下(基体側)において隣り合うp型ベース領域103間には、n型不純物のイオン注入によりp型ベース領域103の一部をn型に反転させてなるn型打ち返し領域112aが設けられている。
高濃度p+型ベース領域104は、p型ベース領域103とn-型ドリフト層102との間のpn接合に逆方向のバイアス電圧を印加したとき(逆バイアス時)に、当該pn接合から伸びる空乏層によるパンチスルー(以下、単にパンチスルーとする)を防止する機能を有する。高濃度p+型ベース領域104の不純物濃度は一様であり、通常1×1018/cm3以上である。このような高耐圧素子では、15V〜30V程度のゲート電圧で駆動する場合が多く、信頼性を確保する上でゲート絶縁膜107の厚さは50nm〜150nm程度に設定される。また、p型ベース領域103をp型エピタキシャル層とすることで、p型ベース領域103をイオン注入により形成したp型拡散層とする場合に比べて、イオン注入のダメージによるチャネル移動度の低下がなく、高性能(高チャネル移動度)となる。
n型打ち返し領域112aの下、隣り合う高濃度p+型ベース領域104間に挟まれた部分112bには、n-型ドリフト層102よりも高不純物濃度にn型不純物を導入することが多い。112bは、ゲート電極108の直下におけるJFET(Junction FET)領域であり、JFET抵抗を低減させる機能を有する。また、高濃度p+型ベース領域104とn-型ドリフト層102との境界に、n-型ドリフト層102よりも高不純物濃度にn型不純物を導入しキャリアの広がり抵抗を低減させる、いわゆる電流拡散層(Current Spreading Layer:CSL)を設けることもある。符号105,106,109〜111は、それぞれn+型ソース領域、p++型コンタクト領域、ソース電極、層間絶縁膜およびドレイン電極である。
次に、ワイドバンドギャップ半導体を用いたMOSFETの基本的な動作について、図4に示す従来の半導体装置を例に説明する。ソース電極109に対してゲート電極108にゲートしきい値電圧以上のゲート電圧が印加されると、ゲート電極108の直下のp型ベース領域103の、ゲート電極108側の表面にn型の反転層(以下、表面反転層(チャネル)とする)が形成される。その際、ソース電極109に対してドレイン電極111に正の電圧が印加されると、ソース電極109からn+型ソース領域105、p型ベース領域103の表面反転層、n-型ドリフト層102およびn+型ドレイン層101を介してドレイン電極111に至る電子の経路が形成される。このため、ドレイン電極111からソース電極109へ電流が流れる。一方、ソース電極109に対してゲート電極108に印加されるゲート電圧がゲートしきい値電圧未満である場合、ゲート電極108の直下のp型ベース領域103の表面反転層が消滅するため、電流は流れない。
このように、ワイドバンドギャップ半導体を用いたMOSFETの基本的な動作は、シリコンを用いたMOSFETと同様であるが、ワイドバンドギャップ半導体では、絶縁破壊電界がシリコンに比較して高い。例えば、4H−SiC(炭化珪素の四層周期六方晶)、窒化ガリウムおよびダイヤモンドの絶縁破壊電界は、それぞれシリコンの約10倍、約11倍および約19倍である。このため、ワイドバンドギャップ半導体を用いた半導体装置では、シリコンを用いた半導体装置よりもn-型ドリフト層の不純物濃度を高くして、p型ベース領域とn-型ドリフト層との間のpn接合からドレイン側に伸びる空乏層の伸びを少なくすることができる。これにより、シリコンを用いた半導体装置よりも所定耐圧を確保するために必要なn-型ドリフト層の厚さを薄くすることが可能となり、高い耐圧で低いオン抵抗を実現することが可能となる。
国際公開第2004/036655号公報
しかしながら、ワイドバンドギャップ半導体を用いた従来の半導体装置では、n-型ドリフト層の不純物濃度を高くして低オン抵抗を実現することができるという利点を活かそうとすると、シリコンを用いた同じ耐圧の半導体装置と比べてゲート−ドレイン間容量が大きくなる。このため、ドレイン電圧のdV/dt(電圧変動)によってゲート−ドレイン間容量を介してドレインからゲートに電流が流れたとき、この電流によるゲートインピーダンスの電圧降下によって生じるゲート電圧の上昇はシリコンを用いた同じ耐圧の半導体装置と比べて大きくなる。したがって、オフ状態であるにもかかわらず、ゲートしきい値電圧を超えるゲート電圧が印加されオン状態となる誤オンという現象が発生しやすいという問題点がある。
この誤オンは、特にインバータ等のブリッジ回路等を構成する上下アームに適用した場合に、対向アームのドレイン電圧の低下(−dV/dt)に起因するドレイン電圧のdV/dtや、並列に接続されたFWD(Free Wheeling Diode:還流ダイオード)の逆回復時に発生するドレイン電圧のdV/dtを原因として発生しやすい。特に、ワイドバンドギャップ半導体を用いた半導体装置の利点の一つである高温動作時においては、ゲートしきい値電圧が低下し誤オンに対するマージンが低下する。このため、高温動作時にはさらに誤オンが発生しやすく、ワイドバンドギャップ半導体を用いて半導体装置を作製(製造)することによる利点が損なわれる。
誤オンを抑制するには、ゲートしきい値電圧を高くすることが有効である。ゲートしきい値電圧を高くするには、ゲート絶縁膜の厚さを厚くする、p型ベース領域の不純物濃度を高くするなどの方法がある。しかしながら、いずれの場合においても、印加したゲート電圧に対するゲート絶縁膜に印加される電圧分担が大きくなる。このため、相互コンダクタンスが低下し所定のゲート電圧でのオン抵抗が増加するという問題点がある。p型ベース領域の不純物濃度を高くする場合には、パンチスルーを防止する効果があり、チャネル長を短くすることが可能であるため、相互コンダクタンスを高くすることができる。しかしながら、チャネル移動度はp型ベース領域の不純物濃度に大きく依存し、p型ベース領域の不純物濃度を高くするほど、チャネル移動度が低下するという問題点がある。
MOSFETのチャネル移動度の、p型ベース領域の不純物濃度依存性について、例えば、ティー・キモト(T.Kimoto)らによる「インターフェイス プロパティーズ オブ メタル−オキサイド−セミコンダクター ストラクチャーズ オン 4H−SiC{0001} アンド (1120) フォームド バイ N2O オキシデーション(Interface Properties of Metal−Oxide−Semiconductor Structures on 4H−SiC{0001} and (1120) Formed by N2O Oxidation)」ジャパニーズ ジャーナル オブ アプライド フィジクス(JJAP:Japanese Journal of Applied Physics)、応用物理学会、2005年、第44巻、第3号、pp.1213−1218の中で報告されている。
この非特許文献の中で報告されている4H−SiCを用いたMOSFETの実効的なチャネル移動度(実効チャネル移動度)とp型エピタキシャル層からなるp型ベース領域の不純物濃度(p層のキャリア濃度)との関係を図5に示す。図5は、4H−SiCを用いたMOSFETにおけるチャネル移動度とp型ベース領域の不純物濃度との関係を示す特性図である。図5に示すように、炭化珪素のいずれの面方位においても、p型ベース領域の不純物濃度の増加とともにチャネル移動度が大きく低下することがわかる。ワイドバンドギャップ半導体を用いた半導体装置では、バルクの移動度に対してチャネル移動度が非常に低く、チャネル抵抗がオン抵抗に与える影響が大きい。このため、チャネル移動度の低下はオン抵抗の増加につながり、ワイドバンドギャップ半導体を用いた半導体装置の低オン抵抗という利点が損なわれる。
この問題を解決するには、p型ベース領域の厚さを低減することが有効である。図6は、図4の切断線B−B’におけるバンド図である。切断線B−B’は、ゲート電極108からゲート絶縁膜(SiO2膜)107を通ってp型ベース領域103および高濃度p+型ベース領域104に至る。p型ベース領域103および高濃度p+型ベース領域104は、ソース電極109に電気的に接続されている。図6(a)のバンド図121は、p型ベース領域103の厚さt101が厚い場合で、かつゲート電圧が0Vの状態(無バイアス時)を示している。図6(b)のバンド図122は、p型ベース領域103の厚さt101が厚い場合で、かつゲート電極108に正電圧Vg1を印加し、それによってp型ベース領域103に表面反転層が形成された状態、すなわち正電圧Vg1がゲートしきい値電圧である状態を示している。図6(c)のバンド図123は、p型ベース領域103の厚さt101が薄い場合で、かつ無バイアス時の状態を示している。図6(d)のバンド図124は、p型ベース領域103の厚さt101が薄く、かつゲート電極108に正電圧Vg2を印加し、それによってp型ベース領域103に表面反転層が形成された状態、すなわち正電圧Vg2がゲートしきい値電圧である状態を示している。
図6(a),6(c)に示すように、無バイアス時、ゲート電極108とp型ベース領域103との仕事関数の違いにより電界が発生し、ゲート絶縁膜107およびp型ベース領域103に電圧が印加され、p型ベース領域103の、ゲート絶縁膜107との界面付近に空乏層が形成される。ゲート絶縁膜107およびp型ベース領域103にかかる電圧は、ゲート絶縁膜107の静電容量と、p型ベース領域103の空乏層(絶縁領域)の静電容量との直列接続によって分担される。このため、ゲート絶縁膜107およびp型ベース領域103は、それぞれの容量の逆数に比例した電圧を分担する。p型ベース領域103の不純物濃度が低い場合、p型ベース領域103全体に空乏層が広がり、その伸びは高濃度p+型ベース領域104で停止する。このため、p型ベース領域103の空乏層の静電容量は、p型ベース領域103の厚さt101によって決定される。具体的には、p型ベース領域103の厚さt101が薄いほど、空乏層の幅が狭くなるため、空乏層の静電容量が大きくなる。p型ベース領域103の空乏層の静電容量が大きいほど、p型ベース領域103に印加される電圧分担が小さくなり、p型ベース領域103の、ゲート絶縁膜107との界面付近の電子に対するポテンシャルバリアが高くなる。したがって、無バイアス時のバンド図121,123において、フェルミレベルを基準としたポテンシャルバリアPV1,PV2は、p型ベース領域103の厚さt101の薄いバンド図123のほうが大きい(PV1<PV2)。このため、p型ベース領域103の厚さt101を薄くすることで、p型ベース領域103の不純物濃度を高くした場合と同様に、チャネルリークを低減させる効果や、パンチスルーを防止する効果が得られる。チャネルリークとは、オフ状態であるにもかかわらず、チャネルを介してドレインからソースに向って電流が流れることである。
一方、図6(b),6(d)に示すように、ゲート電極108に正電圧(ゲート電圧)Vg1,Vg2を印加した場合においても、p型ベース領域103の厚さt101によって、p型ベース領域103の空乏層の静電容量が決定される。p型ベース領域103の厚さt101の厚いバンド図122の場合、p型ベース領域103の空乏層の静電容量が小さく、p型ベース領域103が分担する電圧比率が大きいため、比較的低いゲート電圧Vg1でp型ベース領域103に表面反転層が形成される。すなわち、バンド図122,124において、p型ベース領域103に表面反転層が形成されるゲート電圧Vg1,Vg2は、p型ベース領域103の厚さt101の薄いバンド図124のほうが大きい(Vg1<Vg2)。したがって、p型ベース領域103の厚さt101を薄くすることで、p型ベース領域103の不純物濃度を変えずに、ゲートしきい値電圧を高くすることができる。p型ベース領域103の厚さ(p層の厚さ)t101とゲートしきい値電圧Vthとの関係をシミュレーションした結果を図7に示す。図7は、p型ベース領域の厚さとゲートしきい値電圧との関係を示す特性図である。p型ベース領域103の不純物濃度を、高チャネル移動度を実現可能な程度に低い5×1015/cm3とした。ゲート絶縁膜107の厚さを110nmとした。図7に示すように、p型ベース領域103の厚さt101が薄いほど、ゲートしきい値電圧Vthが高くなることがわかる。p型ベース領域103の厚さt101が薄い場合、p型ベース領域103の不純物濃度を高くした場合と同様にp型ベース領域103の空乏層の静電容量が増加しゲインが低下するが、p型ベース領域103の不純物濃度を低くしてもよいため、チャネル移動度を改善することができる。
また、p型ベース領域103の厚さt101が薄い場合、n型打ち返し領域112a,JFET領域112bの体積が減少する。このため、ゲート絶縁膜107とn型打ち返し領域112aとの界面から伸びる空乏層と、p型ベース領域103および高濃度p+型ベース領域104とn型打ち返し領域112a,JFET領域112bとの間のpn接合から延びる空乏層とにより、n型打ち返し領域112a,JFET領域112bを容易に空乏化することができる。これにより、n型打ち返し領域112a,JFET領域112bの不純物濃度を、図4の従来のMOSFETのn型打ち返し領域の不純物濃度よりも高くしても、耐圧を低下させることなく、オン状態でのJFET効果によるオン電圧の上昇を抑制することができる。
しかしながら、高濃度p+型ベース領域104上に、p型ベース領域103となる、高濃度p+型ベース領域104よりも不純物濃度の低いp型エピタキシャル層を堆積(形成)する場合、p型不純物を含む場合の炭化珪素の平均原子間距離の違いによる格子不整合の応力によりミスフィット転位等の欠陥が発生し易い。これによってp型ベース領域103となるp型エピタキシャル層の品質が低下するという問題点がある。特に、p型エピタキシャル層の厚さ(すなわちp型ベース領域103の厚さt101)が薄い場合には応力を緩和することが困難であるため、p型エピタキシャル層の品質が低下する傾向が強い。このため、p型ベース領域103の厚さt101を薄くすることによる深さ方向(基板主面に垂直な方向)の電界強度の上昇に伴って生じる、表面粗さに起因するチャネル移動度の低下以上に、チャネル移動度が低下する。また、ミスフィット転位の発生を抑制するために高濃度p+型ベース領域104全体の不純物濃度を低くした場合、パンチスルーを防止するために高濃度p+型ベース領域104の総不純物量を増やす必要がある。高濃度p+型ベース領域104の総不純物量を増やすためには、高濃度p+型ベース領域104の深さを深くする必要があり、JFET効果が大きくなりJFET抵抗が高くなるため適当ではない。
この発明は、上述した従来技術による問題点を解消するため、オン抵抗の増加を抑制することができるとともに、誤オンを抑制することができるゲートしきい値電圧の高い半導体装置を提供することを目的とする。
上述した課題を解決し、本発明の目的を達成するため、この発明にかかる半導体装置は、次の特徴を有する。半導体基板のおもて面に、前記半導体基板よりも不純物濃度の低い第1導電型の第1半導体領域が設けられている。前記半導体基板および前記第1半導体領域は、シリコンよりもバンドギャップの広い半導体からなる。前記第1半導体領域の、前記半導体基板側に対して反対側の表面層に、第2導電型の第2半導体領域が選択的に設けられている。前記第1半導体領域の内部に、前記第2半導体領域よりも不純物濃度の高い第2導電型の第3半導体領域が選択的に設けられている。前記第3半導体領域は、前記第2半導体領域の前記半導体基板側に接する。前記第2半導体領域の内部に、第1導電型の第4半導体領域が選択的に設けられている。前記第2半導体領域の、前記第4半導体領域と前記第1半導体領域とに挟まれた部分の表面上から前記第1半導体領域の表面上にわたって、ゲート絶縁膜を介してゲート電極が設けられている。第1電極は、前記第2半導体領域および前記第4半導体領域に接する。第2電極は、前記半導体基板の裏面に接する。前記第3半導体領域の不純物濃度は、前記第2半導体領域側で低く、深さ方向に前記第2半導体領域から離れるほど高くなっている。
また、この発明にかかる半導体装置は、上述した発明において、前記第2半導体領域の不純物濃度は、前記ゲート絶縁膜側で低く、深さ方向に前記ゲート絶縁膜から離れるほど高くなっていることを特徴とする。
また、この発明にかかる半導体装置は、上述した発明において、前記第2半導体領域の、前記第3半導体領域との界面付近の不純物濃度は、前記第3半導体領域の、前記第2半導体領域との界面付近の不純物濃度よりも低いことを特徴とする。
また、この発明にかかる半導体装置は、上述した発明において、前記第2半導体領域の厚さは、0.5μm以下であることを特徴とする。
また、この発明にかかる半導体装置は、上述した発明において、前記半導体基板は、第1導電型であることを特徴とする。
また、この発明にかかる半導体装置は、上述した発明において、前記半導体基板は、第2導電型であることを特徴とする。
また、この発明にかかる半導体装置は、上述した発明において、前記第2半導体領域は、シリコンよりもバンドギャップの広い半導体からなる第2導電型エピタキシャル層である。前記第1半導体領域は、第1導電型エピタキシャル層と、第1導電型拡散領域と、で構成されている。前記第1導電型エピタキシャル層は、前記半導体基板と前記第2導電型エピタキシャル層との間に設けられている。前記第1導電型拡散領域は、前記第2導電型エピタキシャル層の一部が第1導電型に反転されてなり、前記第2導電型エピタキシャル層を深さ方向に貫通して前記第1導電型エピタキシャル層に達することを特徴とする。
また、この発明にかかる半導体装置は、上述した発明において、シリコンよりもバンドギャップの広い半導体は、炭化珪素、窒化ガリウムまたはダイヤモンドであることを特徴とする。
上述した発明によれば、第3半導体領域と第2半導体領域との不純物濃度差によって生じる、ワイドバンドギャップ半導体の格子不整合によるミスフィット転位等の欠陥発生を抑制することができる。このため、第2半導体領域の厚さを薄くしたとしても、応力等により第2半導体領域の品質が低下することを防止することができ、チャネル移動度の低下を抑制することができる。また、第2半導体領域の厚さを薄くすることができるため、ゲートしきい値電圧を高くすることができる。
本発明にかかる半導体装置によれば、オン抵抗の増加を抑制することができるとともに、ゲートしきい値電圧が高く誤オンを抑制することができるという効果を奏する。
実施の形態1にかかる半導体装置の構造を示す断面図である。 実施の形態1にかかる半導体装置の要部の不純物濃度分布を模式的に示す特性図である。 実施の形態2にかかる半導体装置の構造を示す断面図である。 従来の半導体装置の構造を示す断面図である。 4H−SiCを用いたMOSFETにおけるチャネル移動度とp型ベース領域の不純物濃度との関係を示す特性図である。 図4の切断線B−B’におけるバンド図である。 p型ベース領域の厚さとゲートしきい値電圧との関係を示す特性図である。
以下に添付図面を参照して、この発明にかかる半導体装置の好適な実施の形態を詳細に説明する。本明細書および添付図面においては、nまたはpを冠記した層や領域では、それぞれ電子または正孔が多数キャリアであることを意味する。また、nやpに付す+および−は、それぞれそれが付されていない層や領域よりも高不純物濃度および低不純物濃度であることを意味する。なお、以下の実施の形態の説明および添付図面において、同様の構成には同一の符号を付し、重複する説明を省略する。なお、本明細書では、ミラー指数の表記において、“−”はその直後の指数につくバーを意味しており、指数の前に“−”を付けることで負の指数を表している。
(実施の形態1)
実施の形態1にかかる半導体装置の構造について説明する。図1は、実施の形態1にかかる半導体装置の構造を示す断面図である。図1に示すように、実施の形態1にかかる半導体装置は、エピタキシャル基体のおもて面側にプレーナゲート型のMOSゲート(金属−酸化膜−半導体からなる絶縁ゲート)構造を備えた縦型MOSFETである。エピタキシャル基体は、ワイドバンドギャップ半導体からなるn+型ドレイン層1となるn+型半導体基板のおもて面上に、エピタキシャル成長によりn-型ドリフト層(第1半導体領域(第1導電型エピタキシャル層))2およびp型ベース領域(第2半導体領域(第2導電型エピタキシャル層))3を順に積層してなる。ワイドバンドギャップ半導体とは、例えば炭化珪素(SiC)や窒化ガリウム(GaN)、ダイヤモンドなど、シリコン(Si)よりもバンドギャップの広い半導体である。MOSゲート構造は、p型ベース領域3、高濃度p+型ベース領域(第3半導体領域)4、n+型ソース領域(第4半導体領域)5、p++型コンタクト領域6、ゲート絶縁膜7およびゲート電極8からなる。
具体的には、n+型ドレイン層1となるn+型半導体基板のおもて面上に、n-型ドリフト層2となるn-型エピタキシャル層が設けられている。n-型ドリフト層2の厚さは、耐圧クラスに応じて種々変更可能であり、例えば、ワイドバンドギャップ半導体として炭化珪素を用いて、耐圧1200Vクラスとする場合には10μm程度であってもよい。n-型ドリフト層2の、n+型半導体基板側に対して反対側の表面層には、p型ベース領域3よりも不純物濃度の高い高濃度p+型ベース領域4が選択的に設けられている。高濃度p+型ベース領域4は、p型ベース領域3とn-型ドリフト層2との間のpn接合に逆方向のバイアス電圧を印加したとき(逆バイアス時)に、当該pn接合から伸びる空乏層によるパンチスルーを防止する機能を有する。
高濃度p+型ベース領域4の不純物濃度は、p型ベース領域3側(すなわち基体おもて面側)で低く、深さ方向にp型ベース領域3から離れるほど高くなっている。その理由は、次の通りである。p型不純物を含むワイドバンドギャップ半導体からなる高濃度p+型ベース領域4およびp型ベース領域3において、互いの平均原子間距離を近づけることができる。これにより、高濃度p+型ベース領域4上にp型ベース領域3をエピタキシャル成長させたときに生じるワイドバンドギャップ半導体の格子不整合によるミスフィット転位の発生を抑制し、p型ベース領域3の品質低下を抑制することができるからである。高濃度p+型ベース領域4の、p型ベース領域3に接する側の部分の不純物濃度は、例えば1×1016/cm3以上1×1017/cm3以下程度であってもよい。高濃度p+型ベース領域4の詳細な不純物濃度分布については後述する。
-型ドリフト層2の、n+型半導体基板側に対して反対側の表面上には、高濃度p+型ベース領域4を覆うように、p型ベース領域3となるp型エピタキシャル層が設けられている。p型ベース領域3をp型エピタキシャル層とすることで、p型ベース領域3をイオン注入により形成したp型拡散層とする場合に比べて、イオン注入のダメージによるチャネル移動度の低下がなく、高性能とすることができる。p型ベース領域3の不純物濃度は、ゲート絶縁膜7側(すなわち基体おもて面側)で低く、深さ方向にゲート絶縁膜7から離れるほど高くなっていることが好ましい。その理由は、上述したワイドバンドギャップ半導体の格子不整合によるミスフィット転位の発生をさらに抑制することができるからである。p型ベース領域3の、高濃度p+型ベース領域4との界面付近の不純物濃度は、高濃度p+型ベース領域4の、p型ベース領域3との界面付近の不純物濃度よりも低い。
p型ベース領域3の厚さt1は薄く、例えば0.5μm以下程度であることが好ましく、より好ましくは例えば0.3μm以下程度であることがよい。その理由は、図7に示すようにp型ベース領域3の厚さt1が0.5μm以上ではゲートしきい値電圧の増加は殆どなく、0.3μm以下で顕著になるためである。この場合、高濃度p+型ベース領域4上にp型ベース領域3をエピタキシャル成長させたときに生じるワイドバンドギャップ半導体の格子不整合によるミスフィット転位等の発生によりp型ベース領域3の品質が低下し易いが、p型ベース領域3および高濃度p+型ベース領域4に濃度勾配を付けることにより、ミスフィット転位等の欠陥発生を抑制してp型ベース領域3の品質低下を抑制することが好ましい。p型ベース領域3の厚さt1を0.3μm以下程度とすることで、ワイドバンドギャップ半導体のゲートしきい値電圧を大きくする効果がさらに大きくなる。
p型ベース領域3の内部には、n+型ソース領域5およびp++型コンタクト領域6がそれぞれ選択的に、かつ互いに接するように設けられている。n+型ソース領域5は、基体おもて面から深さ方向に例えばp型ベース領域3を貫通して高濃度p+型ベース領域4に達する。n+型ソース領域5は、基体おもて面から深さ方向に、p型ベース領域3よりも浅い深さで設けられていてもよいし、p型ベース領域3よりも深く、高濃度p+型ベース領域4の内部に突出する深さで設けられていてもよい。図1には、基体おもて面からp型ベース領域3と同じ深さでn+型ソース領域5が設けられ、高濃度p+型ベース領域4に接している状態を示す。
++型コンタクト領域6は、基体おもて面から深さ方向に例えばp型ベース領域3を貫通して高濃度p+型ベース領域4に達する。p++型コンタクト領域6は、p型ベース領域3よりも深く、高濃度p+型ベース領域4の内部に突出する深さで設けられていてもよい。p++型コンタクト領域6は、後述するソース電極(第1電極)9とのコンタクト抵抗を低減させる機能を有する。p型ベース領域3の、隣り合うn+型ソース領域5間には、n+型ソース領域5と離してn型打ち返し領域(第1半導体領域(第1導電型拡散領域))12aが設けられている。n型打ち返し領域12aは、n型不純物を例えばイオン注入することによりp型ベース領域3の一部をn型に反転させてなる。n型打ち返し領域12aの不純物濃度は、n-型ドリフト層2の不純物濃度と同じ、好ましくはn-型ドリフト層2の不純物濃度よりも高いことがよい。
また、JFET領域12bは、ゲート電極8の直下(基体側)において隣り合う高濃度p+型ベース領域4間に挟まれた部分にわたって設けられていてもよい。すなわち、n型JFET領域12bは、基体おもて面から高濃度p+型ベース領域4の下側(ドレイン側)の面とほぼ同じ深さに達する深さで設けられていてもよい。JFET領域12bは、隣り合う高濃度p+型ベース領域4間に挟まれた部分の不純物濃度をn-型ドリフト層2の不純物濃度よりも高くすることで、JFET抵抗を低減させることができる。p型ベース領域3の、n型打ち返し領域12aとn+型ソース領域5とに挟まれた部分の表面上には、n型打ち返し領域12aの表面上にわたって、ゲート絶縁膜7を介して例えばポリシリコン(poly−Si)からなるゲート電極8が設けられている。
ソース電極9は、n+型ソース領域5およびp++型コンタクト領域6に接し、p++型コンタクト領域6を介してp型ベース領域3および高濃度p+型ベース領域4に電気的に接続されている。また、ソース電極9は、層間絶縁膜10によってゲート電極8と電気的に絶縁されている。n+型ドレイン層1となるn+型半導体基板の裏面(基体裏面)には、ドレイン電極(第2電極)11が設けられている。図1には、オン状態のときに電流が流れる活性領域の1つの単位セル(素子の機能単位)を示し、この単位セルに隣接するように繰り返し配置された他の単位セルや、活性領域の周囲を囲むエッジ終端構造部を図示省略する(図3においても同様)。エッジ終端構造部は、n-型ドリフト層2の基体おもて面側の電界を緩和し耐圧を保持する領域である。
次に、高濃度p+型ベース領域4の不純物濃度分布について、図4に示す従来の半導体装置(以下、従来例とする)と比較して説明する。図2は、実施の形態1にかかる半導体装置の要部の不純物濃度分布を模式的に示す特性図である。図2(a)に、図1の切断線A−A’における不純物濃度分布を示す。図2(b)に、図1の切断線A−A’における不純物濃度分布の別の一例を示す。図2(c)に、図4の切断線B−B’における不純物濃度分布を示す。図2(c)に示すように、従来例では、高濃度p+型ベース領域104の不純物濃度が深さ方向に一様である。一方、図2(a)に示すように、本発明においては、高濃度p+型ベース領域4は、p型ベース領域3との界面で最も低く、p型ベース領域3との界面から離れるほど所定の勾配で増加する不純物濃度分布を有する。また、高濃度p+型ベース領域4は、p型ベース領域3との界面で最も低く、p型ベース領域3との界面から所定の深さまで所定の勾配で増加し、当該所定の深さからドレイン側で最大値を保持した一様な不純物濃度分布となっていてもよい。高濃度p+型ベース領域4の、p型ベース領域3との界面付近の不純物濃度は、p型ベース領域3の、高濃度p+型ベース領域4との界面付近の不純物濃度よりも高い。図2(a)には、p型ベース領域3側の部分4aに不純物濃度勾配を有し、ドレイン側で一様な不純物濃度分布を有する高濃度p+型ベース領域4を示す(図2(b)においても同様)。不純物が導入されたワイドバンドギャップ半導体の平均原子間距離は、近似的に不純物濃度の3乗根に比例して増加すると推定される。このため、高濃度p+型ベース領域4の、p型ベース領域3側の不純物濃度勾配は、p型ベース領域3との界面から離れるほど、不純物濃度の3乗根に比例して増加することが好ましい。高濃度p+型ベース領域4の、p型ベース領域3側の部分4aの不純物濃度勾配のばらつきは、±20%以下に抑えることがよく、好ましくは±10%以下に抑えることがよい。p型ベース領域3の厚さt1は、従来例よりも薄いことが好ましい(t1<t101)。また、図2(b)に示すように、p型ベース領域3は、高濃度p+型ベース領域4側で高く、高濃度p+型ベース領域4から離れるほど減少し、ゲート絶縁膜7側で最も低くなる不純物濃度分布を有していてもよい。このような不純物濃度分布でp型ベース領域3を設けることで、p型ベース領域3と高濃度p+型ベース領域4との界面の不純物濃度差が小さくなる。このため、p型ベース領域3と高濃度p+型ベース領域4との界面において、p型ベース領域3の平均原子間距離と高濃度p+型ベース領域4の平均原子間距離とを互いに近づけることができる。
以上、説明したように、実施の形態1によれば、高濃度p+型ベース領域の、p型ベース領域側の不純物濃度を低くすることにより、高濃度p+型ベース領域とp型ベース領域との不純物濃度差によって生じる、ワイドバンドギャップ半導体の格子不整合によるミスフィット転位等の欠陥の発生を抑制することができる。このため、p型ベース領域の厚さを薄くしたとしても、応力等によりp型ベース領域の品質が低下することを防止することができ、チャネル移動度の低下を抑制することができる。また、p型ベース領域の不純物濃度を低くしてチャネル移動度を高くすることができ、低オン抵抗を実現することができる。また、p型ベース領域の厚さを薄くすることでゲートしきい値電圧を高くすることができるため(図7参照)、誤オン(オフ時にオン状態となる現象)の発生を抑制することができる。また、実施の形態1によれば、p型ベース領域の厚さを薄くすることで、ゲート電圧が0Vの状態(無バイアス時)であっても、p型ベース領域の、ゲート絶縁膜との界面付近の電子に対するポテンシャルバリアが高くなるため、チャネルリークを低減させる効果や、パンチスルーを防止する効果が得られる(図6参照)。パンチスルーを防止する効果が得られることでチャネル長を短くすることが可能であり、チャネル抵抗を低減させて相互コンダクタンスを高くすることができる。これにより、所定のゲート電圧でのオン抵抗が増加することを防止することができる。また、実施の形態1によれば、p型ベース領域の厚さを薄くすることでn型打ち返し領域の体積を減少させることができるため、オフ状態のときにゲート絶縁膜とn型打ち返し領域との界面から伸びる空乏層によりn型打ち返し領域が空乏化しやすく、耐圧を確保しやすい。このため、n型打ち返し領域の不純物濃度をn-型ドリフト層の不純物濃度よりも高くしてJFET抵抗を低減させたとしても、耐圧の低下を防止することができる。
(実施の形態2)
次に、実施の形態2にかかる半導体装置について説明する。図3は、実施の形態2にかかる半導体装置の構造を示す断面図である。実施の形態2にかかる半導体装置は、実施の形態1をIGBT(Insulated Gate Bipolar Transistor:絶縁ゲート型バイポーラトランジスタ)に適用した構造である。すなわち、図3に示すように、実施の形態2にかかる半導体装置は、p+型コレクタ層21となるp+型半導体基板のおもて面上にエピタキシャル成長によりn型バッファ層20、n-型ドリフト層2およびp型ベース領域3を順に積層してなるエピタキシャル基体を用いて作製される。実施の形態2にかかる半導体装置のMOSゲート構造は、実施の形態1と同様である。図3において、符号5,9,11は、それぞれ、n+型エミッタ領域、エミッタ電極およびコレクタ電極である。符号22a,22bはn型打ち返し領域およびJFET領域である。n型打ち返し領域22a,JFET領域22bの不純物濃度は、n-型ドリフト層2の不純物濃度以上であればよく、互いに異なっていてもよい。図3には、基体おもて面から深さ方向に、p型ベース領域3よりも浅い深さでn+型エミッタ領域5を設けた場合を示す。
以上、説明したように、実施の形態2によれば、IGBTに適用した場合においても実施の形態1と同様の効果を得ることができる。
以上において本発明は、本発明の趣旨を逸脱しない範囲で種々変更可能であり、上述した各実施の形態において、例えば各部の寸法や不純物濃度等は要求される仕様等に応じて種々設定される。また、上述した各実施の形態では、n-型ドリフト層の内部にイオン注入により形成した高濃度p+型ベース領域を設けているが、高濃度p+型ベース領域は、n-型ドリフト層の、n+型半導体基板側に対して反対側の表面上に積層されたp+型エピタキシャル層であってもよい。この場合、n型打ち返し領域は、基体おもて面から深さ方向にp型ベース領域および高濃度p+型ベース領域を貫通してn-型ドリフト層に達するように形成する。また、各実施の形態では第1導電型をn型とし、第2導電型をp型としたが、本発明は第1導電型をp型とし、第2導電型をn型としても同様に成り立つ。すなわち、上述した各実施の形態では、nチャネル型のMOSFETやIGBTを例に説明しているが、pチャネル型のMOSFETやIGBTにも適用可能である。
以上のように、本発明にかかる半導体装置は、インバータ、スイッチング電源などの電力変換装置や種々の産業用機械などの電源装置などに使用されるパワー半導体装置に有用であり、特にワイドバンドギャップ半導体を用いた半導体装置に適している。
1 n+型ドレイン層
2 n-型ドリフト層
3 p型ベース領域
4 高濃度p+型ベース領域
4a 高濃度p+型ベース領域の、p型ベース領域側の濃度勾配を有する部分
5 n+型ソース領域(またはn+型エミッタ領域)
6 p++型コンタクト領域
7 ゲート絶縁膜
8 ゲート電極
9 ソース電極(またはエミッタ電極)
10 層間絶縁膜
11 ドレイン電極(またはコレクタ電極)
12a,22a,112a n型打ち返し領域
12b,22b,112b JFET領域
20 n型バッファ層
21 p+型コレクタ層

Claims (8)

  1. シリコンよりもバンドギャップの広い半導体からなる半導体基板と、
    前記半導体基板のおもて面に設けられた、シリコンよりもバンドギャップの広い半導体からなる、前記半導体基板よりも不純物濃度の低い第1導電型の第1半導体領域と、
    前記第1半導体領域の、前記半導体基板側に対して反対側の表面層に選択的に設けられた第2導電型の第2半導体領域と、
    前記第1半導体領域の内部に選択的に設けられ、前記第2半導体領域の前記半導体基板側に接する、前記第2半導体領域よりも不純物濃度の高い第2導電型の第3半導体領域と、
    前記第2半導体領域の内部に選択的に設けられた第1導電型の第4半導体領域と、
    前記第2半導体領域の、前記第4半導体領域と前記第1半導体領域とに挟まれた部分の表面上から前記第1半導体領域の表面上にわたって、ゲート絶縁膜を介して設けられたゲート電極と、
    前記第2半導体領域および前記第4半導体領域に接する第1電極と、
    前記半導体基板の裏面に接する第2電極と、
    を備え、
    前記第3半導体領域の不純物濃度は、前記第2半導体領域側で低く、深さ方向に前記第2半導体領域から離れるほど高くなっていることを特徴とする半導体装置。
  2. 前記第2半導体領域の不純物濃度は、前記ゲート絶縁膜側で低く、深さ方向に前記ゲート絶縁膜から離れるほど高くなっていることを特徴とする請求項1に記載の半導体装置。
  3. 前記第2半導体領域の、前記第3半導体領域との界面付近の不純物濃度は、前記第3半導体領域の、前記第2半導体領域との界面付近の不純物濃度よりも低いことを特徴とする請求項2に記載の半導体装置。
  4. 前記第2半導体領域の厚さは、0.5μm以下であることを特徴とする請求項1〜3のいずれか一つに記載の半導体装置。
  5. 前記半導体基板は、第1導電型であることを特徴とする請求項1〜4のいずれか一つに記載の半導体装置。
  6. 前記半導体基板は、第2導電型であることを特徴とする請求項1〜4のいずれか一つに記載の半導体装置。
  7. 前記第2半導体領域は、シリコンよりもバンドギャップの広い半導体からなる第2導電型エピタキシャル層であり、
    前記第1半導体領域は、
    前記半導体基板と前記第2導電型エピタキシャル層との間に設けられた第1導電型エピタキシャル層と、
    前記第2導電型エピタキシャル層の一部が第1導電型に反転されてなり、前記第2導電型エピタキシャル層を深さ方向に貫通して前記第1導電型エピタキシャル層に達する第1導電型拡散領域と、で構成されていることを特徴とする請求項1〜6のいずれか一つに記載の半導体装置。
  8. シリコンよりもバンドギャップの広い半導体は、炭化珪素、窒化ガリウムまたはダイヤモンドであることを特徴とする請求項1〜7のいずれか一つに記載の半導体装置。
JP2015075457A 2015-04-01 2015-04-01 半導体装置 Active JP6550869B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015075457A JP6550869B2 (ja) 2015-04-01 2015-04-01 半導体装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015075457A JP6550869B2 (ja) 2015-04-01 2015-04-01 半導体装置

Publications (2)

Publication Number Publication Date
JP2016195226A true JP2016195226A (ja) 2016-11-17
JP6550869B2 JP6550869B2 (ja) 2019-07-31

Family

ID=57323002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015075457A Active JP6550869B2 (ja) 2015-04-01 2015-04-01 半導体装置

Country Status (1)

Country Link
JP (1) JP6550869B2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018096684A1 (ja) * 2016-11-28 2018-05-31 三菱電機株式会社 半導体ウエハ、半導体チップ、および半導体装置の製造方法
CN111146290A (zh) * 2019-11-29 2020-05-12 湖南国芯半导体科技有限公司 一种碳化硅vdmos器件的元胞结构及其制作方法
JP2021002624A (ja) * 2019-06-24 2021-01-07 株式会社デンソー 窒化物半導体装置
WO2021137341A1 (ko) * 2020-01-03 2021-07-08 엘지전자 주식회사 금속-산화막 반도체 전계효과 트랜지스터 소자 및 그 제조 방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004537162A (ja) * 2001-04-11 2004-12-09 シリコン・セミコンダクター・コーポレイション パワーデバイスとその製造方法
JP2013232562A (ja) * 2012-04-27 2013-11-14 National Institute Of Advanced Industrial & Technology 半導体装置
JP2015060841A (ja) * 2013-09-17 2015-03-30 三菱電機株式会社 炭化珪素半導体装置の製造方法
WO2016084158A1 (ja) * 2014-11-26 2016-06-02 新電元工業株式会社 炭化珪素半導体装置及びその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004537162A (ja) * 2001-04-11 2004-12-09 シリコン・セミコンダクター・コーポレイション パワーデバイスとその製造方法
JP2013232562A (ja) * 2012-04-27 2013-11-14 National Institute Of Advanced Industrial & Technology 半導体装置
JP2015060841A (ja) * 2013-09-17 2015-03-30 三菱電機株式会社 炭化珪素半導体装置の製造方法
WO2016084158A1 (ja) * 2014-11-26 2016-06-02 新電元工業株式会社 炭化珪素半導体装置及びその製造方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018096684A1 (ja) * 2016-11-28 2018-05-31 三菱電機株式会社 半導体ウエハ、半導体チップ、および半導体装置の製造方法
JPWO2018096684A1 (ja) * 2016-11-28 2019-06-24 三菱電機株式会社 半導体ウエハ、半導体チップ、および半導体装置の製造方法
CN109996908A (zh) * 2016-11-28 2019-07-09 三菱电机株式会社 半导体晶片、半导体芯片及半导体装置的制造方法
CN109996908B (zh) * 2016-11-28 2021-06-11 三菱电机株式会社 碳化硅半导体晶片、碳化硅半导体芯片及碳化硅半导体装置的制造方法
JP2021002624A (ja) * 2019-06-24 2021-01-07 株式会社デンソー 窒化物半導体装置
CN111146290A (zh) * 2019-11-29 2020-05-12 湖南国芯半导体科技有限公司 一种碳化硅vdmos器件的元胞结构及其制作方法
CN111146290B (zh) * 2019-11-29 2023-08-08 湖南国芯半导体科技有限公司 一种碳化硅vdmos器件的元胞结构及其制作方法
WO2021137341A1 (ko) * 2020-01-03 2021-07-08 엘지전자 주식회사 금속-산화막 반도체 전계효과 트랜지스터 소자 및 그 제조 방법

Also Published As

Publication number Publication date
JP6550869B2 (ja) 2019-07-31

Similar Documents

Publication Publication Date Title
JP6066219B2 (ja) 低いソース抵抗を有する電界効果トランジスタデバイス
US9627486B2 (en) Semiconductor device
JP5613995B2 (ja) 炭化珪素半導体装置およびその製造方法
Mikamura et al. Novel designed SiC devices for high power and high efficiency systems
JP5586887B2 (ja) 半導体装置及びその製造方法
US10276666B2 (en) Semiconductor device
JP6658137B2 (ja) 半導体装置及びその製造方法
JP2018107168A (ja) 半導体装置および半導体装置の製造方法
JP2015041719A (ja) ワイドバンドギャップ絶縁ゲート型半導体装置
JPWO2020110514A1 (ja) 超接合炭化珪素半導体装置および超接合炭化珪素半導体装置の製造方法
US20180350900A1 (en) Silicon carbide semiconductor device and method of manufacturing silicon carbide semiconductor device
US10062750B2 (en) Semiconductor device and method of manufacturing semiconductor device
JPWO2014125586A1 (ja) 半導体装置
JP2014131008A (ja) ワイドバンドギャップ半導体装置
JP2018022854A (ja) 半導体装置および半導体装置の製造方法
JP2018026562A (ja) 半導体装置および半導体装置の製造方法
JP6550869B2 (ja) 半導体装置
JP5630552B2 (ja) 炭化珪素半導体装置およびその製造方法
JP2019195007A (ja) 半導体装置およびその製造方法
JP2014220434A (ja) 半導体装置
JP5098293B2 (ja) ワイドバンドギャップ半導体を用いた絶縁ゲート型半導体装置およびその製造方法
US9450051B2 (en) High voltage semiconductor apparatus
JP2023530711A (ja) ハイブリッド・ゲート構造を有するパワー・デバイス
JP5402220B2 (ja) 炭化珪素半導体装置の製造方法および炭化珪素半導体装置
WO2019019395A1 (zh) 一种碳化硅开关器件及制作方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190221

A603 Late request for extension of time limit during examination

Free format text: JAPANESE INTERMEDIATE CODE: A603

Effective date: 20190221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190617

R150 Certificate of patent or registration of utility model

Ref document number: 6550869

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250