JP2016187844A - ロボット、ロボット制御装置およびロボットシステム - Google Patents

ロボット、ロボット制御装置およびロボットシステム Download PDF

Info

Publication number
JP2016187844A
JP2016187844A JP2015068268A JP2015068268A JP2016187844A JP 2016187844 A JP2016187844 A JP 2016187844A JP 2015068268 A JP2015068268 A JP 2015068268A JP 2015068268 A JP2015068268 A JP 2015068268A JP 2016187844 A JP2016187844 A JP 2016187844A
Authority
JP
Japan
Prior art keywords
robot
coordinate system
unit
reference coordinate
marker
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2015068268A
Other languages
English (en)
Inventor
正樹 元▲吉▼
Masaki Motoyoshi
正樹 元▲吉▼
典夫 横島
Norio Yokoshima
典夫 横島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2015068268A priority Critical patent/JP2016187844A/ja
Priority to CN201610040460.6A priority patent/CN106003018A/zh
Priority to US15/066,202 priority patent/US10173325B2/en
Publication of JP2016187844A publication Critical patent/JP2016187844A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1694Programme controls characterised by use of sensors other than normal servo-feedback from position, speed or acceleration sensors, perception control, multi-sensor controlled systems, sensor fusion
    • B25J9/1697Vision controlled systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1602Programme controls characterised by the control system, structure, architecture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/08Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
    • B25J13/085Force or torque sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1628Programme controls characterised by the control loop
    • B25J9/1635Programme controls characterised by the control loop flexible-arm control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1679Programme controls characterised by the tasks executed
    • B25J9/1692Calibration of manipulator
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/39Robotics, robotics to robotics hand
    • G05B2219/39024Calibration of manipulator
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/39Robotics, robotics to robotics hand
    • G05B2219/39045Camera on end effector detects reference pattern

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Manipulator (AREA)
  • Automation & Control Theory (AREA)
  • Numerical Control (AREA)

Abstract

【課題】現実の空間に即した方向でロボットの動作に異方性を持たせる技術の提供。
【解決手段】本発明のロボットは、力検出器と、マーカーと撮像部との位置関係を変化させる駆動部と、を備えるロボットであって、前記駆動部は、複数の前記位置関係において前記撮像部が前記マーカーを撮像した画像に基づいて、前記マーカーの位置を基準とする基準座標系と、前記駆動部の制御の基準となるロボット座標系との対応関係である座標関係を特定する校正処理が行われた場合に、前記座標関係と前記力検出器の検出値とに基づいて、異方性を持つように制御される。
【選択図】図4

Description

本発明は、ロボット、ロボット制御装置およびロボットシステムに関する。
従来、ロボットアームの制御において、操作者によるロボットアームの移動動作を誘導する方向のみゲインを大きくすることにより、移動動作を誘導する方向のみロボットアームが移動しやすくする技術が知られている(特許文献1、参照)。これにより、移動動作を誘導する方向以外の方向へと操作者がロボットアームを移動させるように誘導できる。
特開2013−111684号公報
しかしながら、実空間内において操作者が認識している方向や、実空間内においてワークを移動させる方向が、ゲインを大きくすることによりロボットアームが移動しやすくなるようになった方向とずれている場合があった。例えば、ロボットアームを水平方向に移動させるべき場合にも拘わらず、水平方向からずれた方向にロボットアームが移動しやすくなるようにロボットアームが制御されてしまうという問題があった。
本発明は、これらの問題を解決するために創作されたものであって、現実の空間に即した方向でロボットの動作に異方性を持たせることができる技術の提供を目的とする。
前記目的を達成するためのロボットは、力検出器と、マーカーと撮像部との位置関係を変化させる駆動部と、を備えるロボットであって、前記駆動部は、複数の前記位置関係において前記撮像部が前記マーカーを撮像した画像に基づいて、前記マーカーの位置を基準とする基準座標系と、前記駆動部の制御の基準となるロボット座標系との対応関係である座標関係を特定する校正処理が行われた場合に、前記座標関係と前記力検出器の検出値とに基づいて、異方性を持つように制御される。
以上の構成において、予め基準座標系とロボット座標系との間の座標関係が特定され、当該座標関係に基づいて、異方性を持つように駆動部を制御するため、マーカーが存在する現実の空間に即した方向でロボットの動作に異方性を持たせることができる。ここで、マーカーと撮像部との位置関係を変化させるとは、撮像部の位置や姿勢を固定してマーカーの位置や姿勢を駆動部によって変化させることであってもよいし、マーカーの位置や姿勢を固定して撮像部の位置や姿勢を駆動部によって変化させることであってもよい。
なお請求項に記載された各手段の機能は、構成自体で機能が特定されるハードウェア資源、プログラムにより機能が特定されるハードウェア資源、又はそれらの組み合わせにより実現される。また、これら各手段の機能は、各々が物理的に互いに独立したハードウェア資源で実現されるものに限定されない。
ロボットシステムの模式図である。 ロボットシステムのブロック図である。 ロボットシステムのブロック図である。 教示処理のフローチャートである。 GUIを示す図である。 図6Aは校正処理のフローチャート、図6Bは校正処理の模式図である。 他の実施形態にかかる基準座標系の模式図である。 他の実施形態にかかるGUIを示す図である。
以下、本発明の実施の形態を以下の順序にしたがって添付図面を参照しながら説明する。なお、各図において対応する構成要素には同一の符号が付され、重複する説明は省略される。
(1)第1実施形態:
(1−1)アームの制御について:
(1−1−1)校正処理を行った場合:
(1−1−2)校正処理を行っていない場合:
(1−2)教示処理について:
(1−3)校正処理について:
(2)他の実施形態:
(1)第1実施形態:
本発明の第一実施例としてのロボットシステムは、図1に示すように、ロボット1と、撮像ユニット2と、教示端末3(ティーチングペンダント)と、制御端末4(コントローラー)と、を備えている。教示端末3と制御端末4とは、本発明のロボット制御装置を構成する。制御端末4は、本発明の制御部を構成する。教示端末3と制御端末4とは、それぞれ専用のコンピューターであってもよいし、ロボット1のためのプログラムがインストールされた汎用のコンピューターであってもよい。さらに、教示端末3と制御端末4とは、別々のコンピューターでなくてもよく、単一のコンピューターであってもよい。
ロボット1は、1つのアームAを備える単腕ロボットであり、アームAは6つの関節J1、J2、J3、J4、J5、J6を備える。関節J1、J2、J3、J4、J5、J6によって6個のアーム部材A1〜A6が連結される。関節J2、J3、J5は曲げ関節であり、関節J1、J4、J6はねじり関節である。関節J6には、ワークに対して把持や加工等を行うためのエンドエフェクターが装着される。先端の関節J6の回転軸を先端回転軸Tと表す。関節J6の先端側における先端回転軸T上の所定位置をツールセンターポイント(TCP)と表し、TCPの位置は各種のエンドエフェクターの位置の基準となる。また、関節J6には力覚センサーFSが備えられている。力覚センサーFSは、6軸の力検出器である。力覚センサーFSは、固有の座標系であるセンサー座標系において互いに直交する3個の検出軸上の力の大きさと、当該3個の検出軸まわりのトルクの大きさとを検出する。センサー座標系とTCPとの位置関係は既知であることとする。
図1において、エンドエフェクターとして、後述する校正処理を行うための撮像ユニット2が関節J6の先端に装着されている。ロボット1が設置された現実の空間を規定する座標系を基準座標系と表す。基準座標系は、水平上において互いに直交するX軸とY軸と、鉛直上向きを正方向とするZ軸とによって規定される3次元の直交座標系である。またX軸周りの回転角をRXで表し、Y軸周りの回転角をRYで表し、Z軸周りの回転角をRZで表す。X,Y,Z方向の位置により3次元空間における任意の位置を表現でき、RX,RY,RZ方向の回転角により3次元空間における任意の姿勢(回転方向)を表現できる。以下、位置と表記した場合、姿勢も意味し得ることとする。また、力と表記した場合、RX,RY,RZ方向に作用するトルクも意味し得ることとする。
制御端末4は、基準座標系またはロボット座標系においてTCPの位置を制御する。ここで、ロボット座標系とは、ロボット1の設置状態に依存する直交座標系であり、本実施形態では理想的に基準座標系と一致する。すなわち、ロボット座標系を規定する軸の方向(XR,YR,ZR,RXR,RYR,RZR)は、理想的に基準座標系を規定する軸の方向(X,Y,Z,RX,RY,RZ)と一致する。
しかしながら、ロボット1の設置状態によっては、ロボット座標系が基準座標系に対してずれることが生じ得る。例えば、アームAの最も根本側のアーム部材A1の長さ方向がロボット座標系のZR方向と一致するようにロボット座標系が定義されているとする。この場合、アーム部材A1の長さ方向が鉛直(Z軸)方向となるようにロボット1が設置されれば、ロボット座標系のZR方向が基準座標系のZ方向に一致するが、図1に示すようにアーム部材A1の長さ方向が鉛直方向からずれている場合にはロボット座標系のZR方向が基準座標系のZ方向に一致しない。このような場合、例えばワークをロボット座標系のZR方向に移動させるようにロボット1に指令しても、現実にはワークが鉛直方向からずれた方向に移動することとなる。また、アームAを構成する部材の経年劣化等によっても、ロボット座標系と基準座標系との間にずれが生じ得る。また、本実施形態において、ロボット1は、現実の空間における水平面をなす作業台WT上においてワークを取り扱うこととする。
撮像ユニット2は、撮像部としてのカメラCを備える。なお、撮像ユニット2は、カメラCのほかに、ワークを把持したり加工したりする機構を兼ね備えたエンドエフェクターであってもよい。カメラCは、光軸Lを中心に所定の画角を有するエリアイメージセンサーである。カメラCが撮像した画像(以下、校正画像と表記)に基づいて、校正画像に映し出された被写体とカメラCとの3次元の位置関係を特定できる。撮像ユニット2は、カメラCとしてステレオカメラを備えてもよいし、距離センサーを備えてもよい。
(1−1)アームの制御について:
(1−1−1)校正処理を行った場合:
図2は、ロボットシステムのブロック図である。制御端末4は、予め教示端末3にて設定された目標位置と目標力とがTCPにて実現するようにアームAを制御する。校正処理を行った場合、目標位置と目標力とは基準座標系において設定されていることとする。ここで、目標力とは、力覚センサーFSが検出すべき力である。ここで、目標位置と目標力との双方を実現するアームAの制御を力制御と表記する。校正処理を行った場合、Sの文字は、基準座標系を規定する軸の方向(X,Y,Z,RX,RY,RZ)のなかのいずれか1個の方向を表すこととする。例えば、S=Xの場合、基準座標系にて設定された目標位置のX方向成分がSt=Xtと表記され、目標力のX方向成分がfSt=fXtと表記される。また、Sは、S方向の位置も表すこととする。
ロボット1は、図1に図示した構成のほかに、駆動部としてのモーターM1〜M6とエンコーダーE1〜E6とを備える。アームAを制御するとは、モーターM1〜M6を制御することを意味することとする。モーターM1〜M6とエンコーダーE1〜E6とは、関節J1〜J6のそれぞれに対応して備えられており、エンコーダーE1〜E6はモーターM1〜M6の駆動位置を検出する。制御端末4は、ロボット1および教示端末3と通信可能なっている。制御端末4は、モーターM1〜M6の駆動位置の組み合わせと、ロボット座標系におけるTCPの位置との対応関係である変換関係Uを記録している。また、制御端末4は、ロボット1が行う作業の工程ごとに目標位置Stと目標力fStとを記録している。目標位置Stと目標力fStとは、後述する教示処理において設定されている。
制御端末4は、モーターM1〜M6の駆動位置を取得すると、当該駆動位置を変換関係Uによってロボット座標系におけるTCPの現実の位置(XR,YR,ZR,RXR,RYR,RZR)に変換する。さらに、制御端末4は、ロボット座標系におけるTCPの現実の位置を、座標関係Vによって基準座標系におけるTCPの現実の位置S(X,Y,Z,RX,RY,RZ)に変換する。
座標関係Vとは、ロボット座標系と基準座標系との対応関係を示すテーブルまたは関数であり、後述する校正処理によって特定された対応関係である。従って、校正処理が行われた場合に限り、基準座標系におけるTCPの現実の位置Sを得ることができる。校正処理が行われた場合とは、制御端末4に座標関係Vが記録されている場合を意味するが、制御端末4に有効な座標関係Vが記録されている場合であってもよい。有効な座標関係Vとは、例えば現在から所定期間以内の校正処理によって作成された座標関係Vであってもよいし、最後にロボット1の部品交換をしたよりも後の校正処理によって作成された座標関係Vであってもよいし、最後にロボット1の設置箇所を移動したよりも後の校正処理によって作成された座標関係Vであってもよい。
制御端末4は、基準座標系におけるTCPの現実の位置Sと、力覚センサーFSの検出値とに基づいて、力覚センサーFSに作用している現実の力fを基準座標系において特定する。なお、力覚センサーFSは、独自のセンサー座標系において検出値を検出するが、センサー座標系(3個の検出軸の方向)とTCPとの相対位置関係が既知のデータとして記録されているため、制御端末4はロボット座標系において現実の力fを特定できる。さらに、制御端末4は、座標関係Vに基づいて、基準座標系において現実の力fを特定できる。制御端末4は、現実の力fに対して重力補償を行う。重力補償とは、現実の力fから重力成分を除去することである。重力補償を行った基準座標系における現実の力fは、ワークに作用している重力以外の力と見なすことができる。
制御端末4は、後述する教示処理によって設定された目標力fStと現実の力fとをインピーダンス制御の運動方程式に代入することにより、力由来補正量ΔSを特定する。(1)式は、インピーダンス制御の運動方程式である。校正処理を行った場合、目標力fStと現実の力fとは基準座標系にて規定されるため、インピーダンス制御は基準座標系において行われることとなる。
Figure 2016187844
(1)式の左辺は、TCPの現実の位置Sの2階微分値に慣性係数mを乗算した第1項と、TCPの現実の位置Sの微分値に粘性係数dを乗算した第2項と、TCPの現実の位置Sに弾性係数kを乗算した第3項とによって構成される。(1)式の右辺は、目標力fStから現実の力fを減算した力偏差ΔfS(t)によって構成される。(1)式における微分とは、時間による微分を意味する。ロボット1が行う工程において、目標力fStとして一定値が設定される場合もあるし、目標力fStとして時間に依存する関数によって導出される値が設定される場合もある。
インピーダンス制御とは、仮想の機械的インピーダンスをモーターM1〜M6によって実現する制御である。慣性係数mはTCPが仮想的に有する質量を意味し、粘性係数dはTCPが仮想的に受ける粘性抵抗を意味し、弾性係数kはTCPが仮想的に受ける弾性力のバネ定数を意味する。各係数m,d,kは方向ごとに異なる値に設定されてもよいし、方向に拘わらず共通の値に設定されてもよい。力由来補正量ΔSとは、TCPが機械的インピーダンスを受けた場合に、目標力fStとの力偏差ΔfS(t)を解消するために、TCPが移動すべき位置Sの大きさを意味する。制御端末4は、後述する教示処理よって設定された基準座標系における目標位置Stに、力由来補正量ΔSを加算することにより、インピーダンス制御を考慮した補正目標位置(St+ΔS)を特定する。
そして、制御端末4は、座標関係Vに基づいて、基準座標系における各方向の補正目標位置(St+ΔS)を、ロボット座標系における各方向の補正目標位置(St+ΔS)へと変換する。さらに、制御端末4は、対応関係Uに基づいて、ロボット座標系における各方向の補正目標位置(St+ΔS)を、各モーターM1〜M6の目標の駆動位置である目標駆動位置Dtに変換する。そして、制御端末4は、目標駆動位置DtからモーターM1〜M6の現実の駆動位置Daを減算することにより、駆動位置偏差De(=Dt−Da)を算出する。そして、制御端末4は、駆動位置偏差Deに位置制御ゲインKpを乗算した値と、現実の駆動位置Daの時間微分値である駆動速度との差である駆動速度偏差に、速度制御ゲインKvを乗算した値とを加算することにより、制御量Dcを特定する。なお、位置制御ゲインKpおよび速度制御ゲインKvは、比例成分だけでなく微分成分や積分成分にかかる制御ゲインを含んでもよい。制御量Dcは、モーターM1〜M6のそれぞれについて特定される。
以上説明した構成により、校正処理を行った場合、制御端末4は、基準座標系における目標位置Stと目標力fStとに基づいてアームAを制御することができる。すなわち、校正処理を行った場合、基準座標系を規定する軸の方向(X,Y,Z,RX,RY,RZ)を基準にインピーダンス制御が行われることとなる。従って、インピーダンス制御によって実現される機械的インピーダンス特性(弾性,粘性,慣性)も基準座標系を規定する軸の方向における特性を意味することとなる。
(1−1−2)校正処理を行っていない場合:
図3は、ロボットシステムのブロック図である。図3においては、校正処理を行っていない場合のロボットシステムを示し、制御端末4には座標関係Vが記録されていない。校正処理を行っていない場合、目標位置Stと目標力fStとはロボット座標系において設定されていることとする。校正処理を行っていない場合、Sの文字は、ロボット座標系を規定する軸の方向(XR,YR,ZR,RXR,RYR,RZR)のなかのいずれか1個の方向を表すこととする。例えば、S=XRの場合、ロボット座標系にて設定された目標位置のXR方向成分がSt=XRtと表記され、目標力のX方向成分がfSt=fXRtと表記される。
この場合、制御端末4は、ロボット座標系におけるTCPの現実の位置Sを、座標関係Vによって基準座標系におけるTCPの現実の位置Sに変換することなく、ロボット座標系におけるTCPの現実の位置Sに基づいて力制御を行う。校正処理を行っていない場合、目標力fStと現実の力fとはロボット座標系にて規定されるため、インピーダンス制御はロボット座標系において行われることとなる。すなわち、校正処理を行っていない場合、ロボット座標系を規定する軸の方向(XR,YR,ZR,RXR,RYR,RZR)を基準にインピーダンス制御が行われることとなる。従って、インピーダンス制御によって実現される仮想の機械的インピーダンス特性(弾性,粘性,慣性)もロボット座標系を規定する軸の方向における特性を意味することとなる。
(1−2)教示処理について:
教示端末3にはロボット1の各種設定を行うための教示プログラムがインストールされている。教示端末3は、プロセッサーやRAMやROMを備え、これらのハードウェア資源が教示プログラムと協働する。これにより、図2,図3に示すように、教示端末3は、機能構成として教示部33と校正部34とUI(User Interface)部35とを備えることとなる。図示しないが、教示端末3は、ユーザーからの指示を受け付ける入力装置(マウス、キーボード、タッチパネル等)と、ユーザーに各種情報を出力する出力装置(ディスプレイ、スピーカー等)を備える。以下、フローチャートの順にしたがって各機能構成を説明する。UI部35は本発明のユーザーインターフェイス部を構成する。
図4は、教示処理のフローチャートである。まず、校正部34は校正開始位置までアームAを制御する(ステップS100)。校正開始位置までアームAを制御するとは、TCPが予め決められた校正開始位置となるようにアームAを制御することを意味する。校正開始位置は、どのような位置であってもよく、例えばTCPが移動可能な空間内の中央の位置であってもよい。
次に、UI部35は、GUI(Graphic User Interface)を表示する(ステップS110)。すなわち、UI部35は、ディスプレイにGUIを示す画像データを出力することにより、当該ディスプレイにGUIを表示させる。そして、UI部35は、入力装置に対するオペレーターの操作を監視することにより、GUIにおいて校正開始指示を受け付ける。
図5は、GUIの例を示す図である。GUIには、『校正開始』と記載された校正開始指示ボタンB1と、『教示』と記載された教示指示ボタンB2とが設けられる。また、GUIには、基準座標系における各方向(X,Y,Z,RX,RY,RZ)についてTCPを拘束するか否かを指定するためのチェックボックスCHと、教示する位置の名称を指定するためのドロップダウンリストDと、『拘束条件を指定するには校正が必要』との通知を示すメッセージ部Hとが設けられている。
GUIを表示すると、UI部35は、GUIにおけるボタン操作が校正開始指示と教示指示のいずれであるかを判定する(ステップS120)。すなわち、UI部35は、校正開始指示ボタンB1と、ダイレクトティーチ開始ボタンB3のどちらが操作されたかを判定する。校正開始指示ボタンB1が操作された場合、校正部34は、後述する校正処理を実行する(ステップS130)。校正処理が行われれば、基準座標系とロボット座標系との対応関係を規定した座標関係Vが制御端末4に記録され、当該制御端末4がロボット座標系において力制御を行うことが可能となる。そして、校正処理を終了すると、UI部35は、拘束条件の受付を許可する(ステップS140)。拘束条件の受付を許可するとは、チェックボックスCHに対してチェックを入れる操作を許可することを意味する。UI部35は、校正処理が行われない限り、グレーアウト等によりチェックボックスCHにチェックは入れられないようにする。
一方、ステップS120にてダイレクトティーチ開始ボタンB3が操作された場合、教示部33は、校正処理が行われたか否かを判定する(ステップS145)。すなわち、教示部33は、制御端末4が基準座標系における力制御を行うことが可能であるか否かを判定する。校正処理が行われたと判定した場合(ステップS145:Y)、教示部33は、拘束状態の下でアームAの移動を許容する(ステップS150)。ステップS150にてアームAの移動を許容するとは、オペレーターがアームAの先端を持って、当該先端を移動させるのに倣ってアームAを移動させることを意味する。
具体的に、教示部33は、以下のような力制御を行うように制御端末4に指令する。本実施形態において、制御端末4は、インピーダンス制御の(1)式の弾性係数kを0に設定するとともに、TCPの目標位置Stとして一定の位置を与え続ける。すなわち、弾性係数kを0にすることによって位置Sの変化量に比例した弾性力(もとの位置に留まろうとする力)を生じさせない条件下でインピーダンス制御を行いながら、力由来補正量ΔSのみでアームの移動を許容する。。
また、ステップS150にてアームAの移動を許容する場合、制御端末4は、すべての方向において目標力fStを0に設定する。これにより、オペレーターがアームAの先端に作用させた力fSの方向について、当該力fSに応じた大きさの力由来補正量ΔSが(1)式から導出され。当該力由来補正量ΔSに等しい駆動位置偏差DeからモーターM1〜M6の制御量Dcが導出されることとなる。その結果、オペレーターがアームAの先端を移動させるのに倣ってアームAを移動させることができる。ただし、(1)式においては、機械的インピーダンスが加味されており、(1)式の係数m,d,kが大きくなるほど、力fSから導出される力由来補正量ΔSの大きさが小さくなる。すなわち、(1)式の係数m,d,kが大きくなるほど、オペレーターがアームAの先端を移動させるのに倣ってアームAが移動し難くなる。また、校正処理が行われているため、ステップS150においては、図2に示すように、制御端末4は、基準座標系においてステップS150におけるアームAの力制御を行えばよい。
次に、ステップS150における拘束状態について説明する。制御端末4は、校正処理が行われた場合に限り、拘束状態を実現するようにアームAの制御を行う。拘束状態とは、基準座標系において異方性を持つようにアームAを制御する状態である。
具体的に、制御端末4は、駆動部としてのアームAによって移動可能な移動点としてのTCPの移動しやすさが、基準座標系における第1方向よりも基準座標系における第2方向において大きくなるように、座標関係Vに基づいて関節J1〜J6の制御を行う。より具体的に、制御端末4は、関節J1〜J6が実現する機械的インピーダンスが、基準座標系における第1方向よりも基準座標系における第2方向において大きくなるように、座標関係Vに基づいて関節J1〜J6の制御を行う。すなわち、制御端末4は、アームAの機械的インピーダンスを調整することにより、基準座標系におけるTCPの移動しやすさが、第1方向よりも第2方向において大きくなるようにする。
図2に示すように、校正処理が行われた場合、基準座標系を規定する各軸の方向について前記の(1)式を満足する力由来補正量ΔSを用いた力制御が行われるが、制御端末4は、第2方向における粘性係数dよりも、第1方向における粘性係数dが大きくなるように設定する。つまり、TCPが第1方向において受ける粘性抵抗が、TCPが第2方向において受ける粘性抵抗よりも大きくなるように設定する。オペレーターがアームAの先端に加えた力fSから(1)式によって導出される力由来補正量ΔSを比較すると、第2方向における力由来補正量ΔSよりも、第1方向における力由来補正量ΔSが小さくなる。従って、第2方向よりも第1方向において、オペレーターがアームAの先端を移動させるのに倣ってアームAが移動し難くなる。従って、第1方向における粘性係数dを大きくすることにより、第1方向においてTCPの移動を実質的に制限することができる。粘性係数dの代わり、または、粘性係数dと併せて(1)式の他の係数m,kの少なくとも一方の大きさを、第1方向と第2方向とで異ならせてもよい。むろん、必ずしも弾性係数kは0でなくてもよい。また、制御端末4は、第1方向について(1)式のインピーダンス制御を無効したり(力由来補正量ΔS=0と見なす)、第1方向について力覚センサーFSの検出値を0と見なしたりすることにより、第1方向においてTCPの移動を実質的に許容しないようにしてもよい。さらに、制御端末4は、TCPが移動できる速度や加速度の上限値を、第1方向と第2方向とで異ならせてもよい。
ここで、第1方向はチェックボックスCHにおいてチェックが入れられた基準座標系の方向であり、第2方向はチェックボックスCHにおいてチェックが入れられなかった基準座標系の方向である。校正処理が行われ、かつ、チェックボックスCHに対するチェックが入れられていない状態でダイレクトティーチ開始ボタンB3が操作された場合、基準座標系におけるすべての方向が第2方向となり、ステップS150においては、すべての方向において均一にTCPがオペレーターの手に倣って移動しやすくなる。すなわち、校正処理を行ったが、チェックボックスCHのいずれの方向にもチェックが入れられなかった場合、実質的に、基準座標系において異方性を持つようなアームAの制御が行われず、オペレーターがアームAの先端を移動させるのに倣ってアームAの移動しやすさがすべての方向において均一となる。
図5の例では、第1方向としてのZ方向よりも、第2方向としてのX方向とY方向の方がTCPが移動しやすくなるような拘束条件が指定されている。ここで、X方向とY方向とは、Z方向に直交する単一平面上の2方向となる。これにより、Z方向の位置を変化させることなく、Z方向に直交する水平面上にてTCP(ワーク)を移動させるための教示作業を容易に行うことができる。また、図5の例では、第1方向としてのRX方向とRY方向よりも、第2方向としてのRZ方向の方がTCPが移動(回転)しやすくなるような拘束条件が指定されている。これにより、RX方向とRY方向にTCPを回転させることなく、RZ方向にてTCPを回転させるための教示作業を容易に行うことができる。例えば、エンドエフェクターによってネジを回すための教示作業等を容易に行うことができる。
また、第2方向は基準座標系における単一軸に沿った方向であり、第1方向は前記基準座標系において単一軸に直交する平面上の2方向であってもよい。例えば、第1方向としてのX方向とY方向よりも、第2方向としてのZ方向の方がTCPが移動しやすくなるような拘束条件が指定されてもよい。これにより、TCPを一直線に移動させるための教示作業を容易に行うことができる。以上のように、校正処理を行っておけば、基準座標系において正確に拘束状態を実現することができ、オペレーターがTCPを容易に所望の位置に移動させることができる。つまり、鉛直方向と水平方向(作業台WTと平行な方向)の位置を厳密に拘束した状態で、オペレーターがTCPの位置を教示することができる。
ここで、UI部35は、教示作業(ステップS150)の際に、基準座標系において異方性を持つようにアームAを制御するか否かの指定をチェックボックスCHにて受け付ける。そして、UI部35は、校正処理が行われた場合に、教示作業の際に、基準座標系において異方性を持つようにアームAを制御する旨の指定を、チェックボックスCHにて許可していると言うことができる。UI部35は、教示作業(ステップS150)の際に、基準座標系において異方性を持つようにアームAを制御するためには、校正処理が行うことが必要であることをメッセージ部Hによってオペレーターに通知していることとなる。
ステップS150において、オペレーターがアームAを移動させてTCPを所望の位置に移動させた後で、ダイレクトティーチ終了ボタンB4を操作すると力制御が終了する。その後、教示指示ボタンB2を操作すると、教示部33は、基準座標系におけるTCPの位置を取得する(ステップS160)。すなわち、教示部33は、オペレーターの所望の位置となった現在のTCPの位置をロボット1から取得する。制御端末4は、モーターM1〜M6の駆動位置を変換関係Uによってロボット座標系におけるTCPの現実の位置に変換し、さらにロボット座標系におけるTCPの現実の位置を座標関係Vによって基準座標系におけるTCPの現実の位置Sに変換し、教示部33に受け渡す。
次に、教示部33は、基準座標系でTCPの目標位置Stを設定する(ステップS170)。すなわち、教示部33は、教示指示ボタンB2が操作された際にドロップダウンリストDにて選択された名称(図5においてP1)に対応する目標位置Stとして、ステップS160にて取得した基準座標系におけるTCPの現実の位置を教示端末3の制御端末4に設定する。
次に、教示部33は、基準座標系でTCPの目標力fStを設定する(ステップS180)。すなわち、教示部33は、例えばGUI上にてオペレーターが指定した大きさと方向の力を、教示指示ボタンB2が操作された際にドロップダウンリストDにて選択された名称に対応する目標位置Stにおける目標力fStとして設定する。力制御を行わない場合にはステップS180の処理を省略してもよい。なお、ドロップダウンリストDにて、名称を切り替えてステップS150〜S180の処理を繰り返して行うことにより、複数の目標位置Stが設定可能となっている。
一方、校正処理が行われたと判定しなかった場合(ステップS145:N)、教示部33は、アームAの移動を許容する(ステップS155)。すなわち、教示部33は、拘束状態を実現することなく、オペレーターがアームAの先端を移動させるのに倣ってアームAを移動させる。校正処理が行われていない場合には、座標関係Vによる座標系の変換が不可能であるため、図3に示すように、制御端末4は、ロボット座標系においてアームAの力制御を行えばよい。すなわち、ステップS150と同様に、制御端末4は、TCPが目標位置StとなるようにアームAを制御しないとともに、目標力fStを0としてインピーダンス制御を行う。ステップS155におけるインピーダンス制御においては、ロボット座標系におけるすべての方向において係数k,d,mを同一の値に設定する。これにより、オペレーターによるアームAの移動をすべての方向において均一に許容することができる。
校正処理が行われなかった場合、実質的に、異方性を持つようにアームAを制御することが禁止され、オペレーターがアームAの先端を移動させるのに倣ってアームAが移動する移動しやすさがすべての方向において均一となる。校正処理が行われなかった場合には、座標関係Vが制御端末4に記録されていないため、そもそも基準座標系において異方性を持つようにアームAを制御することは不可能である。すなわち、校正処理が行われなかった場合に異方性を持つようにアームAを制御するとすれば、基準座標系ではなくロボット座標系において異方性を持つようにアームAを制御することとなるが、ロボット座標系において異方性を持つようにアームAを制御することが禁止される。
ステップS165,S175,S185の処理は、ステップS160,S170,S180の処理とほぼ同様である。ただし、ステップS165,S175,S185の処理においては、校正処理が行われておらず制御端末4が座標関係Vを使用することができないため、ロボット座標系において目標位置Stと目標力fStが設定されることとなる。このように、校正処理を行っていなくても、オペレーターがアームAを自由に移動させてTCPを所望の位置に移動させて教示作業を行うことができる。
(1−3)校正処理について:
図6は、校正処理のフローチャートである。上述したように、校正処理は基準座標系とロボット座標系との対応関係を特定し、当該対応関係を座標関係Vとして作成する処理である。また、校正処理は教示端末3の校正部34が実行する処理である。図1に示すように、校正処理は、作業台WT上に校正ボード5が載置された状態で行われる。校正ボード5には複数のマーカーMKが配置されている。校正ボード5は水平な作業台WT上に配置されており、マーカーMKは水平面上に配置されている。マーカーMKは直交格子の格子点上に配置されており、図1においてマーカーMKが横方向に並ぶ方向が基準座標系のX方向を構成し、マーカーMKが縦方向に並ぶ方向が基準座標系のY方向を構成する。さらに、マーカーMKが配置されている水平面に直交する鉛直方向が基準座標系のZ方向を構成する。以上のように、基準座標系を規定する軸の方向はマーカーMKの位置を基準に設定されていることとなる。むろん、基準座標系におけるマーカーMKの位置は既知である。
まず、校正部34は、カメラCを移動させて複数の校正画像を撮像する(ステップS131)。次に、校正部34は、ロボット座標におけるTCPの位置と校正画像に基づいてTCPとカメラCとの位置関係を特定する(ステップS132)。なお、カメラCの光学仕様は既知の情報として教示端末3に記録されている。校正部34は、基準座標系において既知であるマーカーMKの位置と、撮像画像におけるマーカーMKの像の位置と、撮像画像を撮像した際の焦点距離と、カメラCの光学仕様とに基づいて、撮像画像ごとに基準座標系におけるカメラCの基準位置(例えば光軸Lとレンズ表面とが交差する位置)を特定する。
図6Bは、ステップS131におけるカメラCの移動を説明する模式図である。例えば、ステップS131において、先端の関節J6のみを回転させて先端回転軸Tまわりに撮像ユニット2を回転させながら複数の撮像画像を撮像した場合、カメラCの基準位置の軌跡O1は、先端回転軸Tを中心軸とする円錐断面の輪郭を構成することとなる。従って、校正部34は、当該円錐の中心軸を特定することにより、先端回転軸Tの位置と方向を基準座標系において特定できる。さらに、ステップS131において、TCPの位置(姿勢は含まない)を固定し、先端回転軸Tの直交軸まわりにTCPを回転させて複数の撮像画像を撮像した場合、カメラCの基準位置の軌跡O2が構成する円弧の中心角の位置と、TCPとは、先端回転軸Tに直交する単一平面上に存在することとなる。従って、校正部34は、当該中心角の位置する先端回転軸Tの直交平面を特定することにより、先端回転軸T上のTCPの位置を基準座標系において特定できる。基準座標系において、TCPの位置とカメラCの基準位置とが特定できれば、校正部34は、TCPの位置とカメラCの基準位置との対応関係を特定できる。ただし、必ずしもTCPとカメラCとの位置関係が未知でなくてもよく、TCPとカメラCとの位置関係が既知であってもよい。この場合、ステップS131,132は省略できる。
次に、校正部34は、ロボット座標系において設定した複数のTCPの位置で校正画像を撮像する(ステップS134)。すなわち、ロボット1はロボット座標系において設定した複数のTCPの位置となるようにアームAを制御するとともに、校正部34はTCPの各位置においてカメラCが撮像した校正画像を取得する。ステップS134にて設定される複数のTCPの位置は、例えばロボット座標系において均等に分布する格子点上の位置であってもよい。
次に、校正部34は、校正画像に基づいて基準座標系におけるTCPの位置を特定する(ステップS135)。すなわち、校正部34は、基準座標系において既知であるマーカーMKの位置と、撮像画像におけるマーカーMKの像の位置と、撮像画像を撮像した際の焦点距離と、カメラCの光学仕様とに基づいて基準座標系においてカメラCの基準位置を特定し、さらにステップS132にて特定したTCPとカメラCの基準位置との位置関係に基づいて、基準座標系におけるTCPの位置を特定する。
次に、校正部34は、ロボット座標におけるTCPの位置と、基準座標系おけるTCPの位置との対応関係を座標関係Vとして特定する(ステップS136)。すなわち、校正部34は、ステップS134にて撮像画像を撮像する際に移動させたロボット座標系におけるTCPの位置と、当該撮像画像に基づいて得られた基準座標系におけるTCPの位置との対応関係を複数取得するとともに、当該複数の対応関係を示す座標関係Vを特定する。座標関係Vは、ロボット座標系におけるTCPの位置と、基準座標系におけるTCPの位置との複数の対応関係(座標同士)を規定したテーブルであってもよいし、ロボット座標系におけるTCPの位置と基準座標系におけるTCPの位置とを相互に変換可能な関数であってもよい。座標関係Vが複数の座標同士を規定したテーブルである場合、制御端末4は、補間演算によってロボット座標系におけるTCPの位置と基準座標系におけるTCPの位置とを相互に変換すればよい。座標関係Vが関数である場合、当該関数は線形関数(回転行列)であってもよいし、非線形関数であってもよい。最後に、校正部34は、座標関係Vをロボット1に設定する(ステップS137)。これにより、座標関係Vが制御端末4に記録され、制御端末4は座標関係Vを使用することが可能となる。なお、校正方法は図6Aの方法に限定されない。ステップS131からステップS136の内の複数のステップが同時に行われてもよいし、移動回数や撮像のタイミングが図6Aと異なっていてもよい。また、校正処理におけるカメラCとマーカーMKの相対移動の態様も図6Bの態様に限定されない。
以上説明した実施形態において、予め基準座標系とロボット座標系との間の座標関係Vが特定され、当該座標関係Vに基づいて、基準座標系において異方性を持つようにアームAを制御するため、マーカーMKが存在する現実の空間に即した方向でロボットの動作に異方性を持たせることができる。本実施形態において、オペレーターは、マーカーMKが存在する作業台WTに対して垂直な方向と水平な方向において正確に異方性を持たせた状態で教示作業を行うことができる。すなわち、作業台WTの方向に対して垂直な方向と水平な方向からずれた方向に異方性を持たせることにより、オペレーターが違和感を覚えることを防止できる。
(2)他の実施形態
前記実施形態において、撮像部としてのカメラCは、ロボット1に装着される撮像ユニット2に備えられたが、カメラCはロボット1の構成部品であってもよい。この場合、TCPとカメラCの位置との位置関係が既知の情報として用意されてもよい。また、撮像部は、マーカーMKとの位置関係が変化可能となるように構成されていればよく、必ずしもアームAによって移動しなくてもよい。例えば、作業台WTが撮像可能となるように撮像部が固定されていてもよく、当該作業台WT上においてアームAがマーカーMKを移動させてもよい。校正部34は、アームAがマーカーMKを移動させた際のロボット座標系におけるTCPの位置と、撮像部が撮像した校正画像に基づいて特定した基準座標系におけるTCPの位置との対応関係を座標関係Vとして特定すればよい。
図7は、他の実施形態にかかる基準座標系の模式図である。本実施形態において、作業台WT上に被嵌合部材Qが置かれており、被嵌合部材Qの嵌合面Q1のほぼ中央に嵌合穴Gが形成されている。嵌合穴Gは、嵌合面Q1に対して垂直な円柱状の穴である。この嵌合面Q1における嵌合穴Gの周囲(所定距離以内)に複数のマーカーMKが配置されている。所定距離は、例えばカメラCの光学仕様に基づいて設定されてもよく、例えば歪曲収差が大きいカメラCほど所定距離が小さく設定されてもよい。
基準座標系は、嵌合面Q1上においてマーカーMKが水平に並ぶ方向であるα方向と、α方向の軸と直交する嵌合面Q1上の方向であるβ方向と、嵌合面Q1に直交するγ方向とによって規定された直交座標系である。一方、ロボット座標系は、第1実施形態と同様である。第1実施形態においては、直交座標系とロボット座標系とが類似する座標系であったが、直交座標系とロボット座標系とは必ずしも類似しなくてもよい。このような基準座標系においても、第1実施形態と同様の校正処理を行うことにより、直交座標系とロボット座標系との対応関係である座標関係Vを特定することができる。また、嵌合穴Gの周囲(所定距離以内)に複数のマーカーMKが配置されているため、嵌合穴Gの周囲における直交座標系とロボット座標系との間の座標変換を高精度に行うことが可能な座標関係Vを特定することが可能となる。
本実施形態において、制御端末4は、嵌合穴Gに対象物を嵌合する際に、アームAの制御において基準座標系における嵌合方向(γ方向)と、当該嵌合方向以外の方向(α方向,β方向)とで異方性を持たせる。インピーダンス制御の(1)式において、制御端末4は、第2方向としてα方向,β方向における弾性係数kよりも、第1方向としてのγ方向における弾性係数kが大きくなるように設定する。また、ロボット1には対象物としてのワークを把持するエンドエフェクターが装着されており、エンドエフェクターに把持されたワークが嵌合穴Gに嵌合されることとなるTCPの位置が目標位置Stとして設定されている。目標位置Stは、上述した教示作業によって設定されている。
以上のように、異方性を持たせた状態で、TCPの位置が目標位置Stに近づくように力制御を行うと、α方向,β方向においてはワークが嵌合穴Gの壁面に倣って移動しやすく、γ方向において確実にワークを嵌合穴Gの最深部まで嵌合させることができる。基準座標系を規定する各軸の方向についてインピーダンス制御の(1)式を使用できるため、制御端末4は、基準座標系における異方性を容易に実現できる。
図8は、本実施形態にかかるGUIを示す図である。本実施形態においても、前記実施形態と同様の教示処理が行われる。ただし、GUIのチェックボックスCHにおいて、基準座標系において異方性を持たせる方向を、マーカーMKの位置を基準としてオペレーターに通知する記載が追加されている。本実施形態において、嵌合面Q1の方向を基準に基準座標系が設定されているため、オペレーターがα方向,β方向,γ方向を現実の空間内において認識しにくくなる。しかし、α方向,β方向,γ方向がマーカーMKの位置を基準として通知されているため、現実の空間内にて認識したマーカーMKの位置に基づいて、いかなる異方性が実現できるかを容易に認識できる。
また本発明は、6軸以外の垂直多関節ロボットにも適用できるし、アームの回転軸が全て平行なスカラーロボットにも適用できる。また、力覚センサーFSは必ずしもアームAの先端に備えられなくてもよいし、力検出器は必ずしも力覚センサーFSでなくてもよい。例えば、力検出器として、関節J1〜J6ごとに当該関節J1〜J6に作用するトルクを検出するトルクセンサーが備えられてもよい。また、トルクセンサーの代わりにモーターM1〜M6の負荷に基づいてトルクが検出されてもよい。また、ロボット座標系と基準座標系とのうちの少なくとも一方が直交座標系以外の座標系であってもよい。例えば、基準座標系が円筒座標系であってもよい。また、必ずしも制御端末4がアームAの制御するための処理を実行しなくてもよく、制御端末4の処理が教示端末3によって実現されてもよい。
1…ロボット、2…撮像ユニット、3…教示端末、5…校正ボード、4…制御端末,33…教示部、34…校正部、35…UI部、A…アーム、A1〜A6…アーム部材、B1…校正開始指示ボタン、B2…教示指示ボタン、C…カメラ、CH…チェックボックス、D…ドロップダウンリスト、WT…作業台、E1〜E6…エンコーダー、fS…力、FS…力覚センサーFSt…目標力、G…嵌合穴、H…メッセージ部、J1〜J6…関節、Kp…比例ゲイン、Kv…微分ゲイン、L…光軸、MK…マーカー、k…弾性係数、m…慣性係数、d…粘性係数、M1〜M6…モーター、T…先端回転軸、U…変換関係、V…座標関係

Claims (15)

  1. 力検出器と、
    マーカーと撮像部との位置関係を変化させる駆動部と、を備えるロボットであって、
    前記駆動部は、
    複数の前記位置関係において前記撮像部が前記マーカーを撮像した画像に基づいて、前記マーカーの位置を基準とする基準座標系と、前記駆動部の制御の基準となるロボット座標系との対応関係である座標関係を特定する校正処理が行われた場合に、前記座標関係と前記力検出器の検出値とに基づいて、異方性を持つように制御される、
    ロボット。
  2. 前記撮像部を備える、
    請求項1に記載のロボット。
  3. 前記駆動部は、前記校正処理が行われた場合に、前記駆動部によって移動可能な移動点の移動しやすさが、前記基準座標系における第1方向よりも前記基準座標系における第2方向において大きくなるように制御される、
    請求項1または請求項2のいずれかに記載のロボット。
  4. 前記駆動部は、前記駆動部が実現する機械的インピーダンスが、前記基準座標系における第1方向よりも前記基準座標系における第2方向において大きくなるように制御される、
    請求項1から請求項3のいずれか一項に記載のロボット。
  5. 前記第2方向は前記基準座標系における単一平面上の2方向であり、前記第1方向は前記基準座標系において前記単一平面に直交する方向である、
    請求項3または請求項4のいずれかに記載のロボット。
  6. 前記第2方向は前記基準座標系における単一軸に沿った方向であり、前記第1方向は前記基準座標系において前記単一軸に直交する平面上の2方向である、
    請求項3または請求項4のいずれかに記載のロボット。
  7. 前記第1方向と前記第2方向の少なくとも一方は、前記基準座標系における所定方向の軸まわりの回転方向である、
    請求項3または請求項4のいずれかに記載のロボット。
  8. 前記駆動部は、オペレーターがロボットを移動させてロボットの動作を教示する教示作業の際に、異方性を持つように制御される、
    請求項1から請求項7のいずれか一項に記載のロボット。
  9. 前記駆動部は、嵌合穴に対象物を嵌合する際に、前記基準座標系における嵌合方向と、当該嵌合方向以外の方向とで異方性を持つように制御される、
    請求項1から請求項8のいずれか一項に記載のロボット。
  10. 前記マーカーは、前記嵌合穴から所定距離以内の複数の位置に配置される、
    請求項9に記載のロボット。
  11. 力検出器と、マーカーと撮像部との位置関係を変化させる駆動部と、を備えるロボットを制御するロボット制御装置であって、
    複数の前記位置関係において前記撮像部が前記マーカーを撮像した画像に基づいて、前記マーカーの位置を基準とする基準座標系と、前記駆動部の制御の基準となるロボット座標系との対応関係である座標関係を特定する校正処理を行う校正部と、
    前記校正処理が行われた場合に、前記座標関係と前記力検出器の検出値とに基づいて、異方性を持つように、前記駆動部を制御する制御部と、
    を備える、
    ロボット制御装置。
  12. 前記ロボットは、オペレーターがロボットを移動させてロボットの動作を教示する教示作業の際に、異方性を持つように前記駆動部を制御し、
    前記教示作業の際に、異方性を持つように前記駆動部を制御するか否かの指定を受け付け、
    前記校正処理が行われた場合に、前記教示作業の際に、異方性を持つように前記駆動部を制御する旨の指定を許可するユーザーインターフェイス部を備える、
    請求項11に記載のロボット制御装置。
  13. 前記ユーザーインターフェイス部は、前記教示作業の際に、異方性を持つように前記駆動部を制御するためには、前記校正処理を行うことが必要であることを前記オペレーターに通知する、
    請求項12に記載のロボット制御装置。
  14. 前記ユーザーインターフェイス部は、異方性を持たせる方向を、前記マーカーの位置を基準として前記オペレーターに通知する、
    請求項12または請求項13のいずれかに記載のロボット制御装置。
  15. 力検出器と、駆動部とを備えるロボットと、
    前記駆動部が駆動することによりマーカーとの位置関係が変化する撮像部と、
    複数の前記位置関係において前記撮像部が前記マーカーを撮像した画像に基づいて、前記マーカーの位置を基準とする基準座標系と、前記駆動部の制御の基準となるロボット座標系との対応関係である座標関係を特定する校正処理を行う校正部と、
    前記座標関係と前記力検出器の検出値とに基づいて、異方性を持つように前記駆動部を制御する制御部と、
    を備える、
    ロボットシステム。
JP2015068268A 2015-03-30 2015-03-30 ロボット、ロボット制御装置およびロボットシステム Withdrawn JP2016187844A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015068268A JP2016187844A (ja) 2015-03-30 2015-03-30 ロボット、ロボット制御装置およびロボットシステム
CN201610040460.6A CN106003018A (zh) 2015-03-30 2016-01-21 机器人、机器人控制装置以及机器人系统
US15/066,202 US10173325B2 (en) 2015-03-30 2016-03-10 Robot, robot control apparatus and robot system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015068268A JP2016187844A (ja) 2015-03-30 2015-03-30 ロボット、ロボット制御装置およびロボットシステム

Publications (1)

Publication Number Publication Date
JP2016187844A true JP2016187844A (ja) 2016-11-04

Family

ID=57015070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015068268A Withdrawn JP2016187844A (ja) 2015-03-30 2015-03-30 ロボット、ロボット制御装置およびロボットシステム

Country Status (3)

Country Link
US (1) US10173325B2 (ja)
JP (1) JP2016187844A (ja)
CN (1) CN106003018A (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018126798A (ja) * 2017-02-06 2018-08-16 セイコーエプソン株式会社 制御装置、ロボットおよびロボットシステム
CN108621155A (zh) * 2017-03-21 2018-10-09 精工爱普生株式会社 控制装置、示教装置以及机器人系统
JP2018158435A (ja) * 2017-03-21 2018-10-11 セイコーエプソン株式会社 制御装置、教示装置、及びロボットシステム
US10201900B2 (en) 2015-12-01 2019-02-12 Seiko Epson Corporation Control device, robot, and robot system
JP2019198925A (ja) * 2018-05-16 2019-11-21 株式会社安川電機 操作用デバイス、制御システム、制御方法及びプログラム
JP2019198926A (ja) * 2018-05-16 2019-11-21 株式会社安川電機 操作用デバイス、制御システム、制御方法及びプログラム
KR20210022195A (ko) * 2019-08-19 2021-03-03 하이윈 테크놀로지스 코포레이션 비전 가이드 로봇 암 교정 방법
JP2022069698A (ja) * 2019-04-01 2022-05-11 ファナック株式会社 ロボットを制御するための機構誤差パラメータを較正するロボットの制御装置および教示操作盤
US11712806B2 (en) 2019-04-01 2023-08-01 Fanuc Corporation Calibration apparatus for calibrating mechanism error parameter for controlling robot

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6812095B2 (ja) * 2015-10-22 2021-01-13 キヤノン株式会社 制御方法、プログラム、記録媒体、ロボット装置、及び物品の製造方法
US10427305B2 (en) * 2016-07-21 2019-10-01 Autodesk, Inc. Robotic camera control via motion capture
US11554491B2 (en) * 2016-10-26 2023-01-17 Sony Group Corporation Robotic system and method of movement control using synthetic array radar and passive beacons
DE102016013083B4 (de) * 2016-11-02 2021-07-22 Kuka Roboter Gmbh Kalibrieren eines Modells eines Prozess-Roboters und Betreiben eines Prozess-Roboters
EP3338969A3 (en) * 2016-12-22 2018-07-25 Seiko Epson Corporation Control apparatus, robot and robot system
JP6809245B2 (ja) * 2017-01-20 2021-01-06 セイコーエプソン株式会社 ロボット
US10207404B2 (en) * 2017-02-09 2019-02-19 X Development Llc Generating a robot control policy from demonstrations collected via kinesthetic teaching of a robot
WO2018152779A1 (en) 2017-02-24 2018-08-30 Abb Schweiz Ag Method and apparatus for selecting initial point for industrial robot commissioning
EP3603904B1 (en) * 2017-03-23 2024-01-24 Fuji Corporation Robot system
JP6880982B2 (ja) * 2017-04-21 2021-06-02 セイコーエプソン株式会社 制御装置およびロボットシステム
WO2018209592A1 (zh) * 2017-05-17 2018-11-22 深圳配天智能技术研究院有限公司 一种机器人的运动控制方法、机器人及控制器
CN109311151B (zh) * 2017-05-22 2021-07-09 深圳配天智能技术研究院有限公司 一种机器人的标定方法、系统及标定板
WO2019055883A1 (en) * 2017-09-15 2019-03-21 Google Llc IMPROVEMENTS RELATING TO THE GENERATION OF A ROBOT CONTROL POLICY FROM DEMONSTRATIONS COLLECTED THROUGH KINESTHETIC TEACHING OF A ROBOT
JP6646025B2 (ja) * 2017-09-15 2020-02-14 ファナック株式会社 制御装置及び機械学習装置
JP2019078621A (ja) * 2017-10-24 2019-05-23 セイコーエプソン株式会社 エンコーダー、ロボットおよびプリンター
JP2019173393A (ja) * 2018-03-28 2019-10-10 前田建設工業株式会社 鋼製支保工の建て込み方法及び建て込みシステム
JP7131087B2 (ja) * 2018-05-31 2022-09-06 セイコーエプソン株式会社 ロボットシステムの制御方法およびロボットシステム
WO2020233777A1 (en) * 2019-05-17 2020-11-26 Telefonaktiebolaget Lm Ericsson (Publ) Technique for parameter conversion between a robotic device and a controller for the robotic device
US10925687B2 (en) * 2019-07-12 2021-02-23 Synaptive Medical Inc. System and method for optical axis calibration
DE102019131401B3 (de) * 2019-11-21 2020-10-29 Franka Emika Gmbh Kalibrierung einer Impedanzregelung eines Robotermanipulators
CN110974421B (zh) * 2019-12-13 2021-05-11 杭州三坛医疗科技有限公司 手术机器人tcp的标定方法、系统及存储介质
JP2021146431A (ja) * 2020-03-18 2021-09-27 セイコーエプソン株式会社 ロボットの制御方法及びロボットシステム
CN114310868B (zh) * 2020-09-29 2023-08-01 台达电子工业股份有限公司 机器手臂的坐标系校正设备及校正方法
TWI832770B (zh) * 2023-05-31 2024-02-11 台達電子工業股份有限公司 基於影像處理的機械手臂校正方法以及系統

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05150837A (ja) * 1991-11-26 1993-06-18 Kawasaki Heavy Ind Ltd ロボツトの制御装置
JPH05285870A (ja) * 1992-04-03 1993-11-02 Matsushita Electric Ind Co Ltd 多関節ロボットの直接教示装置
JPH05303425A (ja) * 1992-04-27 1993-11-16 Nippon Telegr & Teleph Corp <Ntt> 直接教示方式ロボット
JPH06250728A (ja) * 1993-02-26 1994-09-09 Hitachi Constr Mach Co Ltd ロボットの直接教示装置
JPH08272425A (ja) * 1995-03-29 1996-10-18 Fanuc Ltd 非接触でロボットに座標系を教示する方法
JPH1142575A (ja) * 1997-07-28 1999-02-16 Matsushita Electric Ind Co Ltd ロボットの制御方法および装置
JP2000343470A (ja) * 1999-06-01 2000-12-12 Agency Of Ind Science & Technol 物体協調運搬ロボットの制御方法及びその装置
JP2010269419A (ja) * 2009-05-22 2010-12-02 Ihi Corp ロボット制御装置およびその制御方法
JP2015042437A (ja) * 2013-07-22 2015-03-05 キヤノン株式会社 ロボットシステム及びロボットシステムの校正方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05301182A (ja) 1992-04-27 1993-11-16 Nippon Telegr & Teleph Corp <Ntt> ロボットの直接教示装置
JP3191563B2 (ja) 1994-05-31 2001-07-23 トヨタ自動車株式会社 オフラインティーチングデータの自動補正方法
US6304050B1 (en) * 1999-07-19 2001-10-16 Steven B. Skaar Means and method of robot control relative to an arbitrary surface using camera-space manipulation
US6681151B1 (en) * 2000-12-15 2004-01-20 Cognex Technology And Investment Corporation System and method for servoing robots based upon workpieces with fiducial marks using machine vision
CN101531216B (zh) 2003-03-27 2011-01-05 索尼株式会社 机器人设备及其控制方法
JP5618066B2 (ja) 2010-08-18 2014-11-05 株式会社Ihi 力制御ロボットのキャリブレーション装置と方法
JP5787646B2 (ja) 2011-07-06 2015-09-30 キヤノン株式会社 ロボットシステム及び部品の製造方法
JP2013111684A (ja) 2011-11-28 2013-06-10 Panasonic Corp ロボットアームの制御装置及び制御方法、ロボット、ロボットアームの制御プログラム、並びに、ロボットアームの制御用集積電子回路
CN104519823B (zh) * 2012-08-02 2018-02-16 皇家飞利浦有限公司 机器人远程运动中心的控制器限定
CN103115629A (zh) * 2013-01-23 2013-05-22 天津大学 机器人柔性视觉测量系统中工具坐标系快速修复方法
JP2014176943A (ja) 2013-03-15 2014-09-25 Yaskawa Electric Corp ロボットシステム、校正方法及び被加工物の製造方法
JP6335460B2 (ja) * 2013-09-26 2018-05-30 キヤノン株式会社 ロボットシステムの制御装置及び指令値生成方法、並びにロボットシステムの制御方法
DE102014202145A1 (de) * 2014-02-06 2015-08-06 Kuka Roboter Gmbh Verfahren zum Programmieren eines Industrieroboters und zugehörigerIndustrieroboter
US9511496B2 (en) * 2014-06-20 2016-12-06 The Boeing Company Robot alignment systems and methods of aligning a robot

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05150837A (ja) * 1991-11-26 1993-06-18 Kawasaki Heavy Ind Ltd ロボツトの制御装置
JPH05285870A (ja) * 1992-04-03 1993-11-02 Matsushita Electric Ind Co Ltd 多関節ロボットの直接教示装置
JPH05303425A (ja) * 1992-04-27 1993-11-16 Nippon Telegr & Teleph Corp <Ntt> 直接教示方式ロボット
JPH06250728A (ja) * 1993-02-26 1994-09-09 Hitachi Constr Mach Co Ltd ロボットの直接教示装置
JPH08272425A (ja) * 1995-03-29 1996-10-18 Fanuc Ltd 非接触でロボットに座標系を教示する方法
JPH1142575A (ja) * 1997-07-28 1999-02-16 Matsushita Electric Ind Co Ltd ロボットの制御方法および装置
JP2000343470A (ja) * 1999-06-01 2000-12-12 Agency Of Ind Science & Technol 物体協調運搬ロボットの制御方法及びその装置
JP2010269419A (ja) * 2009-05-22 2010-12-02 Ihi Corp ロボット制御装置およびその制御方法
JP2015042437A (ja) * 2013-07-22 2015-03-05 キヤノン株式会社 ロボットシステム及びロボットシステムの校正方法

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10201900B2 (en) 2015-12-01 2019-02-12 Seiko Epson Corporation Control device, robot, and robot system
JP2018126798A (ja) * 2017-02-06 2018-08-16 セイコーエプソン株式会社 制御装置、ロボットおよびロボットシステム
JP7106874B2 (ja) 2017-03-21 2022-07-27 セイコーエプソン株式会社 制御装置、教示装置、及びロボットシステム
CN108621155A (zh) * 2017-03-21 2018-10-09 精工爱普生株式会社 控制装置、示教装置以及机器人系统
JP2018158435A (ja) * 2017-03-21 2018-10-11 セイコーエプソン株式会社 制御装置、教示装置、及びロボットシステム
CN108621155B (zh) * 2017-03-21 2023-04-07 精工爱普生株式会社 控制装置、示教装置以及机器人系统
JP2019198925A (ja) * 2018-05-16 2019-11-21 株式会社安川電機 操作用デバイス、制御システム、制御方法及びプログラム
US11173600B2 (en) 2018-05-16 2021-11-16 Kabushiki Kaisha Yaskawa Denki Operation device, control system, control method, and non-transitory computer-readable storage medium
JP7017469B2 (ja) 2018-05-16 2022-02-08 株式会社安川電機 操作用デバイス、制御システム、制御方法及びプログラム
CN110497381A (zh) * 2018-05-16 2019-11-26 株式会社安川电机 操作设备、控制系统、控制方法及存储介质
US11426868B2 (en) 2018-05-16 2022-08-30 Kabushiki Kaisha Yaskawa Denki Operation device, control system, control method, and non-transitory computer-readable storage medium
CN110497381B (zh) * 2018-05-16 2022-11-11 株式会社安川电机 操作设备、控制系统、控制方法及存储介质
JP2019198926A (ja) * 2018-05-16 2019-11-21 株式会社安川電機 操作用デバイス、制御システム、制御方法及びプログラム
JP2022069698A (ja) * 2019-04-01 2022-05-11 ファナック株式会社 ロボットを制御するための機構誤差パラメータを較正するロボットの制御装置および教示操作盤
JP7295302B2 (ja) 2019-04-01 2023-06-20 ファナック株式会社 ロボットを制御するための機構誤差パラメータを較正するロボットの制御装置および教示操作盤
US11712806B2 (en) 2019-04-01 2023-08-01 Fanuc Corporation Calibration apparatus for calibrating mechanism error parameter for controlling robot
KR20210022195A (ko) * 2019-08-19 2021-03-03 하이윈 테크놀로지스 코포레이션 비전 가이드 로봇 암 교정 방법
KR102280663B1 (ko) 2019-08-19 2021-07-22 하이윈 테크놀로지스 코포레이션 비전 가이드 로봇 암 교정 방법

Also Published As

Publication number Publication date
US10173325B2 (en) 2019-01-08
US20160288332A1 (en) 2016-10-06
CN106003018A (zh) 2016-10-12

Similar Documents

Publication Publication Date Title
JP2016187844A (ja) ロボット、ロボット制御装置およびロボットシステム
CN107708937B (zh) 校准装置以及使用该校准装置的机器人系统
JP6924145B2 (ja) ロボット教示方法及びロボットアーム制御装置
JP6582483B2 (ja) ロボット制御装置およびロボットシステム
US11161249B2 (en) Robot control apparatus and robot system
JP2019018340A (ja) 作業用ロボット、作業用ロボットの制御方法
JP2018167334A (ja) 教示装置および教示方法
US20200030992A1 (en) Robot System
JP2016190292A (ja) ロボット制御装置、ロボットシステムおよびロボット制御方法
JP2021003771A (ja) ロボットシステム
JP2016221653A (ja) ロボット制御装置およびロボットシステム
US20220134571A1 (en) Display Control Method, Display Program, And Robot System
JP7423943B2 (ja) 制御方法およびロボットシステム
JP5316395B2 (ja) ロボットのばね定数同定方法およびロボットのばね定数同定装置
JP7173798B2 (ja) 動作プログラムの変数を監視するロボットの制御装置
JP6743431B2 (ja) 制御装置、及びロボットシステム
JP2021121451A (ja) 教示方法およびロボットシステム
JP2016179523A (ja) ロボット制御装置およびロボットシステム
JP2022047658A (ja) 作業時間提示方法、力制御パラメーター設定方法、ロボットシステムおよび作業時間提示プログラム
US20230001567A1 (en) Teaching Support Device
US20220080587A1 (en) Method Of Adjusting Force Control Parameter, Robot System, And Force Control Parameter Adjustment Program
WO2023200012A1 (ja) 遠隔制御システム、遠隔制御方法及び遠隔制御プログラム
JP2018158429A (ja) ロボットシステム
WO2021210514A1 (ja) ロボットの制御装置及び制御方法、ロボットシステム、ロボットの動作プログラムを生成する装置及び方法
JP2015168050A (ja) ロボット制御装置、ロボットおよびロボット制御方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180302

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20180905

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20181115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190226

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20190426