JP2016056071A - 炭化ケイ素の結晶の製造方法及び結晶製造装置 - Google Patents

炭化ケイ素の結晶の製造方法及び結晶製造装置 Download PDF

Info

Publication number
JP2016056071A
JP2016056071A JP2014184978A JP2014184978A JP2016056071A JP 2016056071 A JP2016056071 A JP 2016056071A JP 2014184978 A JP2014184978 A JP 2014184978A JP 2014184978 A JP2014184978 A JP 2014184978A JP 2016056071 A JP2016056071 A JP 2016056071A
Authority
JP
Japan
Prior art keywords
crystal
seed crystal
rotation
silicon carbide
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014184978A
Other languages
English (en)
Other versions
JP6259740B2 (ja
Inventor
徹 宇治原
Toru Ujihara
徹 宇治原
俊太 原田
Shunta HARADA
俊太 原田
大輝 古池
Daiki FURUIKE
大輝 古池
智典 梅崎
Tomonori Umezaki
智典 梅崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya University NUC
Central Glass Co Ltd
Original Assignee
Nagoya University NUC
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2014184978A priority Critical patent/JP6259740B2/ja
Application filed by Nagoya University NUC, Central Glass Co Ltd filed Critical Nagoya University NUC
Priority to KR1020177009689A priority patent/KR101911455B1/ko
Priority to EP15839771.1A priority patent/EP3192898B1/en
Priority to PCT/JP2015/075711 priority patent/WO2016039415A1/ja
Priority to US15/510,038 priority patent/US10151046B2/en
Priority to CN201580048948.7A priority patent/CN107075724B/zh
Priority to TW104130177A priority patent/TWI679319B/zh
Publication of JP2016056071A publication Critical patent/JP2016056071A/ja
Application granted granted Critical
Publication of JP6259740B2 publication Critical patent/JP6259740B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B19/00Liquid-phase epitaxial-layer growth
    • C30B19/10Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B19/00Liquid-phase epitaxial-layer growth
    • C30B19/06Reaction chambers; Boats for supporting the melt; Substrate holders
    • C30B19/062Vertical dipping system
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B19/00Liquid-phase epitaxial-layer growth
    • C30B19/06Reaction chambers; Boats for supporting the melt; Substrate holders
    • C30B19/068Substrate holders
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B19/00Liquid-phase epitaxial-layer growth
    • C30B19/12Liquid-phase epitaxial-layer growth characterised by the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0635Carbides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/30Mechanisms for rotating or moving either the melt or the crystal
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B9/00Single-crystal growth from melt solutions using molten solvents
    • C30B9/04Single-crystal growth from melt solutions using molten solvents by cooling of the solution
    • C30B9/06Single-crystal growth from melt solutions using molten solvents by cooling of the solution using as solvent a component of the crystal composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02378Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02433Crystal orientation

Abstract

【課題】炭化ケイ素のオフ基板上へ表面荒れを抑制しながら炭化ケイ素の単結晶を成長させることが可能な方法を得る。【解決手段】炭化ケイ素の種結晶を、ケイ素及び炭素を含む原料溶液に接触させながら回転させる炭化ケイ素の結晶の製造方法において、前記種結晶の結晶成長面はオフ角を有し、前記種結晶の回転中心の位置が、前記種結晶の中心位置に対して、前記オフ角の形成方向であるステップフロー方向の下流側にあることを特徴とする炭化ケイ素の結晶の製造方法を用いる。【選択図】図1

Description

本発明は、いわゆる液相成長法による炭化ケイ素の結晶の製造方法などに関する。
炭化ケイ素(SiC)は電子デバイスなどの材料として幅広く用いられているSiと比較して、バンドギャップが2〜3倍程度、絶縁破壊電圧が約10倍である。そのため、SiC結晶はケイ素を用いたデバイスを超えるパワーデバイスの基板材料として期待される。SiC基板はSiC単結晶のインゴットから切出されて得られる。SiCインゴットの製造方法として、SiC結晶を気相中で結晶成長させる方法(気相成長法)と、SiC結晶を液相中で成長させる方法(液相成長法)が知られている。液相成長法は気相成長法と比較して、熱平衡に近い状態で結晶成長を行う為、欠陥密度が小さな高品質SiC単結晶が得られると期待されている。
SiCをパワーデバイス向けの基板材料として普及させる為には、デバイス化の際の信頼性向上とコストの低減が望まれている。デバイス化の際の信頼性向上に関しては、SiC単結晶中の転位欠陥が強い影響を及ぼすことが報告されており、転位欠陥の少ない高品質なSiC単結晶の製造技術が求められる。一方、製造コストの低減に関しては、SiC単結晶インゴットから切出されるチップ枚数を確保するため大型化の為の技術検討が進められている。
以上、SiCパワーデバイスの普及にはSiC単結晶の高品質化、大型化を両立させる結晶育成技術の開発が求められている。
SiC単結晶の高品質化に関して、液相成長法ではオフ角を有する種結晶基板(以下オフ基板と記す)上に結晶成長させた場合、成長方向に平行に伸びる貫通らせん転位や貫通刃状転位が基底面上の欠陥に変換されることで、成長に伴い欠陥が結晶の外部に掃きだされることで成長結晶内の転位密度を劇的に減少させることが可能であると報告されている(特許文献1、非特許文献1)。
一方、SiC単結晶の大型化の課題として、結晶育成時の成長界面における表面荒れの発生が挙げられる。結晶成長中に一旦表面荒れが発生すると、その修復は極めて困難であることから、それ以上の結晶育成は実質不可能となる。この表面荒れの発生は特にオフ基板上への結晶成長時に顕著に現れる現象である。そこで、表面荒れの発生を防止する為に成長雰囲気中に添加成分を加える、成長界面近傍の温度勾配を低減する、或いは溶媒流れを制御するなどの手法が提案されている。(非特許文献2、3、4)
国際公開第2014/034081号
Y.Yamamoto,S.Harada,K.Seki,A.Horio,T.Mitsuhashi,T.Ujihara APEX 7 065501(2014) T.Mitani,N.Komatsu,T.Takahashi,T.Kato,K.Fujii,T.Ujihara,Y.Matsumoto,K.Kurashige,H.Okumura,J.Cryst.Growth 681−685 401(2014) N.Komatsu,T.Mitani,T.Takahashi,M,Okamura,T.Kato,H.Okumura Mat.Sci.Forum 740−742 23−26(2013) C.Zhu,S.Harada,K.Seki,H.Zhang,H.Niinomi,M.Tagawa,T.Ujihara Cryst. Growth Des. 13 3691(2013)
上述のように、SiC単結晶の高品質化、大口径化を両立させるためにはオフ基板上への結晶成長時に表面荒れが発生しない結晶育成技術の開発が望まれる。しかしながら、オフ基板上への結晶成長では成長界面の形状不安定が生じ、結晶成長の進行に伴い部分的にトレンチと呼ばれる窪みが発生するため、オフ基板上への結晶育成ではオン基板(オフ角を有しない種結晶基板)上への結晶育成と比べて表面荒れが生じやすいという問題がある。また、非特許文献2と非特許文献3では、いずれもオン基板を用いている。現在のSiCバルク単結晶の育成では種結晶としてオン基板を使用せざるを得ない状況である。オフ基板上への結晶育成において表面荒れが発生しない成長技術が実現されれば、高品質な大型結晶が可能になるものと期待されている。
本発明は、オフ基板上への結晶成長において表面荒れが抑制可能な炭化ケイ素の結晶成長方法を提供することを目的とする。
本発明者らは、表面荒れ発生の原因として結晶表面上へのトレンチの形成に着目した。トレンチ部では溶媒からの炭素供給が滞る為、結晶育成中に一旦トレンチが発生すると、その後の表面荒れの修復は極めて困難である。本発明者らは、種結晶としてオフ基板を用いても、オフ基板のステップフロー方向に対する溶媒の流れの方向を対向流となるようにすることにより、オフ基板上への結晶育成におけるトレンチ形成の抑制が可能であることを見出した。
本願の第1の発明は、炭化ケイ素の種結晶を、ケイ素及び炭素を含む原料溶液に接触させながら回転させる炭化ケイ素の結晶の製造方法において、前記種結晶の結晶成長面はオフ角を有し、前記種結晶の回転中心の位置が、前記種結晶の中心位置に対して、前記オフ角の形成方向であるステップフロー方向の下流側にあり、前記種結晶の回転が、周期的に正回転と逆回転を繰り返すことを特徴とする炭化ケイ素の結晶の製造方法である。
また、前記種結晶の回転中心が、前記種結晶の内部または外部に存在することが好ましく、前記種結晶の回転が前記原料溶液の液面と平行な面で行われることが好ましい。さらに、前記原料溶液中にクロムを含み、クロムのシリコンとクロムの合計に対する比が20〜60モル%であることが好ましい。
本願の第2の発明は、炭化ケイ素の種結晶を、容器内に保持されたケイ素及び炭素を含む原料溶液に接触させる炭化ケイ素の結晶の製造方法において、前記種結晶の結晶成長面はオフ角を有し、前記容器は、回転中心の位置が、前記種結晶の中心位置に対して、前記オフ角の形成方向であるステップフロー方向の下流側にあるように回転し、前記容器の回転が、周期的に正回転と逆回転を繰り返すことを特徴とする炭化ケイ素の結晶の製造方法である。
本願の第3の発明は、結晶の原料を含む原料溶液と、前記原料溶液を収容する容器と、結晶成長面にオフ角を有する種結晶と、前記種結晶を前記原料溶液に接触させながら回転させる回転部と、を有し、前記種結晶の回転中心の位置が、前記種結晶の中心位置に対して、前記オフ角の形成方向であるステップフロー方向の下流側にあり、前記種結晶の回転が、周期的に正回転と逆回転を繰り返すことを特徴とする結晶製造装置である。
本願の第4の発明は、結晶の原料を含む原料溶液と、前記原料溶液を収容する容器と、結晶成長面にオフ角を有する種結晶と、を有し、前記容器は、回転中心の位置が、前記種結晶の中心位置に対して、前記オフ角の形成方向であるステップフロー方向の下流側にあるように回転し、前記容器の回転が、周期的に正回転と逆回転を繰り返すことを特徴とする結晶製造装置である。
本発明により、オフ基板上への結晶成長において表面荒れが抑制可能な炭化ケイ素の結晶成長方法を提供することができる。
本実施形態にかかる結晶成長装置1の概要を示す図。 オフ角を有する種結晶9の表面の模式図。 (a)〜(c)本実施形態における種結晶の中心11と回転中心15との位置関係を示す図。 (a)〜(e)実施例、比較例における種結晶の中心11と回転中心15との位置関係を示す図。 実施例1で得られた炭化ケイ素単結晶の成長表面の写真。 実施例2で得られた炭化ケイ素単結晶の成長表面の写真。 比較例1で得られた炭化ケイ素単結晶の成長表面の写真。 比較例2で得られた炭化ケイ素単結晶の成長表面の写真。 比較例3で得られた炭化ケイ素単結晶の成長表面の写真。 (a)、(b)比較例1と実施例2において、種結晶の成長表面より0.2mm下に生じる原料溶液の流れの平均値を数値計算で求めた結果。
本発明の実施形態を、図面を用いて説明する。
図1は、本実施形態にかかる結晶成長装置1の概要を示す図である。結晶成長装置1は、るつぼ3の内部にケイ素と炭素を含む原料溶液5を有し、回転部7は、長軸を回転軸として先端に取り付けられた種結晶9を回転可能である。
るつぼ3としては、原料溶液5に炭素を供給可能なグラファイト製の黒鉛るつぼが好ましいが、炭化水素ガスや固体の炭素源を添加可能であれば、黒鉛るつぼ以外の坩堝を使用可能である。なお、原料溶液5の組成を均一にするために、るつぼ3も正方向と逆方向に周期的に回転方向を反転させながら回転させることが好ましい。
原料溶液5は、るつぼ3の周囲に設けられた誘導加熱式のヒーター4などにより加熱され、溶融状態が保たれる。るつぼ3内の温度が1700〜2100℃であることが好ましい。
原料溶液5は、炭化ケイ素の結晶成長に用いられるケイ素と炭素を含む溶液であれば特に限定されないが、添加元素を加えたSi溶媒に、炭素が溶解している溶液を用いることが好ましい。シリコン合金としては、シリコンと、Ti、Cr、Sc、Ni、Al、Co、Mn、Mg、Ge、As、P、N、O、B、Dy、Y、Nb、Nd、Feから選ばれる少なくとも一種の合金を使用できる。特に、炭素溶解度が大きく、蒸気圧が小さく、化学的に安定している点で、Crを20〜60モル%含むSi−Cr合金系を溶媒として用いることが好ましい。
原料溶液のシリコン源としては、シリコンまたはシリコン合金を用いることができる。また、原料溶液の炭素源としては、黒鉛、グラッシーカーボン、SiCや、メタン、エタン、プロパン、アセチレンなどの炭化水素ガス、などを用いることができる。
種結晶9は、4H−SiCおよび6H−SiCに代表される結晶多形を用いることができる。図2は種結晶9の表面の模式図である。種結晶9は(0001)面に対して0.5〜2度傾斜して切断されて形成されており、種結晶9の表面と(0001)面との角度をオフ角と呼ぶ。また、ステップフロー方向とは、オフ角が進展する方向である。例えば、[11−20]方向に向けてオフ角が形成されていれば、ステップフロー方向は[11−20]方向である。後述するとおり、原料溶液5を、ステップフロー方向と対向する方向14に流動させることで、結晶成長時のトレンチの発生を抑制することができる。
少なくとも種結晶9の結晶成長面に接触する原料溶液5は、過飽和状態になっている必要がある。SiCの過飽和状態を得る方法としては、前述したように、溶液を蒸発させ過飽和状態とする蒸発法、飽和濃度のSiC溶液に種結晶基板を浸漬後、過冷却によって過飽和状態とする冷却法、温度勾配を有するSiC溶液中に種結晶基板を浸漬し、低温部でSiC結晶を晶出させる温度差法などが可能である。
温度差法を用いる場合は、ヒーター4の加熱を制御するか、種結晶9により冷却するなどして、種結晶9の近辺のみが過飽和状態になるため、回転部7は、種結晶9を原料溶液5の液面にすれすれで接触する位置で回転しながら引き上げることで、種結晶9の結晶成長面にはSiCの結晶が析出する。特に、SiCの単結晶が析出する。
冷却法や蒸発法を用いる場合は、原料溶液5の全体が過飽和となるため、種結晶9を原料溶液5の内部に浸漬した状態で、回転部7を回転させることでも結晶成長をすることが可能である。
種結晶9の回転速度は50〜300rpmが好ましく、50〜200rpmがより好ましい。回転速度が遅すぎると成長速度が遅くなる。また、回転速度が速すぎると装置に負担となるうえに、成長速度もさほど高くならない。
また、種結晶9の回転は、周期的に正回転と逆回転を繰り返す回転であることが好ましく、その周期は30秒〜5分程度である。周期的に回転方向を入れ替えることで、結晶成長を行う際の種結晶の成長表面における原料溶液の流れを制御することができる。具体的に説明すると、回転方向を周期的に入れ替えることで、結晶成長を行う期間で平均化した原料溶液の流れは、回転中心から直線状に外側に向かう流れとなり、原料溶液がステップフロー方向と対向する方向へ流れる領域を広くすることができる。
オフ角のある種結晶9には、図2に示すように、ステップフロー方向と対向する方向14に原料溶液5を流動させることで、トレンチの発生を抑制することができる。本実施形態では、ステップフロー方向に対向する流れができる領域を広げるため、図3(a)〜(c)に示すように、種結晶9の回転中心15は、種結晶の中心11から、ステップフロー方向13の下流側に離れて位置する。
回転中心15は、種結晶の中心11より、種結晶の直径の20%以上離れていることが好ましい。回転中心15と種結晶の中心11が近すぎると、トレンチの発生を抑制できる領域が小さくなるためである。
図3(a)〜(c)は、本実施形態における種結晶の中心11と回転中心15との位置関係を示す図である。図3(a)では、回転中心15は種結晶9の内部にある。また、図3(b)では、回転中心15は種結晶の中心11からさらに離れ、回転中心15は種結晶9の端部にある。さらに、図3(c)では、回転中心15は種結晶の中心11からさらに離れ、回転中心15は種結晶9の外側にある。回転中心15と種結晶の中心11が離れるほど、種結晶9の面内での原料溶液5の流れが均一となり、種結晶9の面内の全体が平滑な結晶となる。
また、回転中心15から種結晶の中心11に向けた方向と、ステップフロー方向13との間をなす角度が180度±45度であることが好ましく、180度±15度であることがより好ましく、180度±5度であることが特に好ましい。この範囲であれば、種結晶9に結晶成長面において、ステップフロー方向13と、原料溶液5の流れが対向流となる領域が広がり、得られた結晶に、トレンチの発生が少ない領域が広がるためである。
また、必ずしも種結晶9を回転させなくとも、るつぼ3を回転させることで、種結晶9の結晶成長面に、ステップフロー方向13と対向するような、原料溶液5の流れを形成してもよい。具体的には、るつぼ3を、るつぼ3の回転中心の位置が、種結晶9の中心位置に対して、ステップフロー方向13の下流側にあるように回転させ、さらに、るつぼ3の回転が、周期的に正回転と逆回転を入れ替えるようにする。なお、るつぼ3を回転させる際に、種結晶9は回転させても回転させなくてもよい。さらに、種結晶9は、前述の偏心かつ周期反転を行う回転を行ってもよい。
すなわち、周期的に正回転と逆回転を入れ替えるようにるつぼ3を回転させると、結晶成長を行う期間で平均化した原料溶液の流れを、るつぼ3の回転中心から外側に向かう流れにすることができる。そのため、るつぼ3の回転中心の位置を、種結晶9の中心位置に対してステップフロー方向の下流側にあるようにすると、平均化した原料溶液5の流れは、ステップフロー方向13と対向するようになる。
なお、るつぼ3の回転中心は、種結晶9の内部にあってもよいし、外部にあってもよい。また、るつぼ3の回転速度は5〜30rpmが好ましく、5〜20rpmがより好ましい。回転速度が遅すぎると成長速度が遅くなる。また、回転速度が速すぎると装置に負担となるうえに、成長速度もさほど高くならない。
本実施形態においては、種結晶またはるつぼの回転中心を種結晶の中心から動かすという簡単な改良により、トレンチの発生が少なく、表面荒れの少ない炭化ケイ素の結晶を得ることができる。
[実施例1]
最大回転速度20rpmで、30秒周期で正回転と逆回転を入れ替えながら回転する黒鉛るつぼ内の1900℃のSi−40at.%Cr溶媒中に直径1インチの4H−SiC種結晶C面(1度オフ基板)を浸漬し、種結晶の最大回転速度150rpm、2分周期で正回転と逆回転を入れ替えながら3時間成長させた。種結晶の回転中心位置は種結晶の中心位置から2.5cm離れた地点とし、種結晶中心からみた種結晶の回転中心の方向はステップフロー方向と同一、すなわち、回転中心から種結晶の中心に向けた方向と、ステップフロー方向との間をなす角度が180度であるように設定した。
得られた単結晶の成長表面のモフォロジーを観察した結果、図5に示すように、ほぼ全面に渡り成長表面でのトレンチ形成が抑制されていた。これは、実施例1での回転により、種結晶の成長表面のほぼ全面にステップフロー方向と対向する方向に原料溶液5が流れたため、得られた単結晶の表面の全面に渡ってトレンチの形成が抑制されたと考えられる。なお、図5中の得られた単結晶の中央部にある黒い点は、結晶成長中に混入した粒子が付着したもので、本発明で課題とする結晶成長中に生じるトレンチや表面荒れとは異なる原因により生じたものである。
[実施例2]
種結晶の回転中心位置を種結晶の中心位置から0.6cm離れた地点とし、種結晶中心からみた種結晶の回転中心の方向をステップフロー方向と同一に設定した以外は実施例1と同様にして結晶成長させた。
成長表面のモフォロジーを観察した結果、図6に示すように、種結晶の回転中心よりもステップフロー上流側の領域ではトレンチの形成が抑制できた。
[比較例1]
種結晶の回転中心位置を種結晶の中心位置とした以外は実施例1と同様にして結晶成長させた。
成長表面のモフォロジーを観察した結果、図7に示すように、図中右側にわずかにトレンチの形成が抑制された領域を有するが、種結晶のほぼすべての領域でトレンチが形成していた。
また、原料溶液の流れが、表面形状に与える影響を評価するため、三次元の数値計算シミュレーションを行った。図10(a)、(b)は、比較例1と実施例2において、種結晶の成長表面より0.2mm下に生じる原料溶液の流れの平均値を数値計算で求めた結果を示す。図10(a)では、回転中心の位置と種結晶の中心の位置が同じであるため、回転中心(図10中で「+」で示された位置)を中心に外側に向かう流れができている。図10(a)での、回転中心から右側に、流れがステップフロー方向と対抗する方向(図中右向き方向)に向いた領域がわずかに形成され、その領域は図7でトレンチの形成が抑制された領域と一致している。
一方、図10(b)は、回転中心が種結晶の中心位置から図中左側にずれているため、種結晶から右側に、流れがステップフロー方向と対抗する方向に向いた領域が形成され、その領域は図6でトレンチの形成が抑制された領域と一致している。また、図10(a)、(b)を比べると、回転中心をステップフロー方向の下流側に移動したことにより、原料溶液の流れがステップフロー方向と対抗する方向に向いた領域が拡大し、トレンチの形成が抑制された領域が拡大したことがわかる。
[比較例2]
種結晶の回転中心位置を種結晶の中心位置から0.6cm離れた地点とし、種結晶中心からみた種結晶の回転中心の方向をステップフロー方向と逆方向に設定する以外は実施例1と同様にして結晶成長させた。
成長表面のモフォロジーを観察した結果、図8に示すように種結晶のほぼすべての領域でトレンチが形成していた。これは、種結晶の回転中心がステップフロー方向の上流側に移動したことにより、原料溶液の流れがステップフロー方向と対抗する方向に向いた領域が縮小し、トレンチの形成が抑制された領域がほとんどなくなってしまったためである。
[比較例3]
20rpmで回転する黒鉛るつぼ内の1900℃のSi−40at.%Cr溶媒中に直径1インチの4H−SiC種結晶C面(1度オフ基板)を浸漬し、種結晶の回転速度150rpmで回転(つるぼの回転方向とは逆方向)させながら3時間成長させた。種結晶の回転中心位置は種結晶の中心位置とした。
成長表面のモフォロジーを観察した結果、図9に示すように種結晶のほぼすべての領域でトレンチが形成していた。
以上の実施例1〜2、比較例1〜3の回転中心と種結晶の中心との位置関係を図4(a)〜(e)に示し、実験条件と結果を以下の表1にまとめた。なお、表1中ではステップフローをSFと略した。実施例1〜2では、種結晶の内部にトレンチの発生が抑制された、滑らかな表面を有する領域が得られた。
1 単結晶成長装置
3 るつぼ
4 ヒーター
5 原料溶液
7 回転部
9 種結晶
11 種結晶の中心
13 ステップフロー方向
14 ステップフロー方向に対向する方向
15 回転中心

Claims (10)

  1. 炭化ケイ素の種結晶を、ケイ素及び炭素を含む原料溶液に接触させながら回転させる炭化ケイ素の結晶の製造方法において、
    前記種結晶の結晶成長面はオフ角を有し、
    前記種結晶の回転中心の位置が、前記種結晶の中心位置に対して、前記オフ角の形成方向であるステップフロー方向の下流側にあり、
    前記種結晶の回転が、周期的に正回転と逆回転を繰り返すことを特徴とする炭化ケイ素の結晶の製造方法。
  2. 前記種結晶の回転中心が、前記種結晶の内部に存在することを特徴とする請求項1に記載の炭化ケイ素の結晶の製造方法。
  3. 前記種結晶の回転中心が、前記種結晶の外部に存在することを特徴とする請求項1に記載の炭化ケイ素の結晶の製造方法。
  4. 前記種結晶の回転が前記原料溶液の液面と平行な面で行われることを特徴とする請求項1〜3のいずれか1項に記載の炭化ケイ素の結晶の製造方法。
  5. 炭化ケイ素の種結晶を、容器内に保持されたケイ素及び炭素を含む原料溶液に接触させる炭化ケイ素の結晶の製造方法において、
    前記種結晶の結晶成長面はオフ角を有し、
    前記容器は、回転中心の位置が、前記種結晶の中心位置に対して、前記オフ角の形成方向であるステップフロー方向の下流側にあるように回転し、
    前記容器の回転が、周期的に正回転と逆回転を繰り返すことを特徴とする炭化ケイ素の結晶の製造方法。
  6. 前記容器の回転中心が、前記種結晶の内部に存在することを特徴とする請求項5に記載の炭化ケイ素の結晶の製造方法。
  7. 前記容器の回転中心が、前記種結晶の外部に存在することを特徴とする請求項5に記載の炭化ケイ素の結晶の製造方法。
  8. 前記原料溶液中にクロムを含み、クロムのシリコンとクロムの合計に対する比が20〜60モル%であることを特徴とする請求項1〜7のいずれか1項に記載の炭化ケイ素の結晶の製造方法。
  9. 結晶の原料を含む原料溶液と、
    前記原料溶液を収容する容器と、
    結晶成長面にオフ角を有する種結晶と、
    前記種結晶を前記原料溶液に接触させながら回転させる回転部と、を有し、
    前記種結晶の回転中心の位置が、前記種結晶の中心位置に対して、前記オフ角の形成方向であるステップフロー方向の下流側にあり、
    前記種結晶の回転が、周期的に正回転と逆回転を繰り返すことを特徴とする結晶製造装置。
  10. 結晶の原料を含む原料溶液と、
    前記原料溶液を収容する容器と、
    結晶成長面にオフ角を有する種結晶と、を有し、
    前記容器は、回転中心の位置が、前記種結晶の中心位置に対して、前記オフ角の形成方向であるステップフロー方向の下流側にあるように回転し、
    前記容器の回転が、周期的に正回転と逆回転を繰り返すことを特徴とする結晶製造装置。
JP2014184978A 2014-09-11 2014-09-11 炭化ケイ素の結晶の製造方法及び結晶製造装置 Active JP6259740B2 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2014184978A JP6259740B2 (ja) 2014-09-11 2014-09-11 炭化ケイ素の結晶の製造方法及び結晶製造装置
EP15839771.1A EP3192898B1 (en) 2014-09-11 2015-09-10 Method for producing silicon carbide crystals
PCT/JP2015/075711 WO2016039415A1 (ja) 2014-09-11 2015-09-10 炭化ケイ素の結晶の製造方法及び結晶製造装置
US15/510,038 US10151046B2 (en) 2014-09-11 2015-09-10 Method for producing crystal of silicon carbide, and crystal production device
KR1020177009689A KR101911455B1 (ko) 2014-09-11 2015-09-10 탄화 규소의 결정의 제조 방법 및 결정 제조 장치
CN201580048948.7A CN107075724B (zh) 2014-09-11 2015-09-10 碳化硅的晶体的制造方法以及晶体制造装置
TW104130177A TWI679319B (zh) 2014-09-11 2015-09-11 碳化矽之結晶之製造方法及結晶製造裝置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014184978A JP6259740B2 (ja) 2014-09-11 2014-09-11 炭化ケイ素の結晶の製造方法及び結晶製造装置

Publications (2)

Publication Number Publication Date
JP2016056071A true JP2016056071A (ja) 2016-04-21
JP6259740B2 JP6259740B2 (ja) 2018-01-10

Family

ID=55459159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014184978A Active JP6259740B2 (ja) 2014-09-11 2014-09-11 炭化ケイ素の結晶の製造方法及び結晶製造装置

Country Status (7)

Country Link
US (1) US10151046B2 (ja)
EP (1) EP3192898B1 (ja)
JP (1) JP6259740B2 (ja)
KR (1) KR101911455B1 (ja)
CN (1) CN107075724B (ja)
TW (1) TWI679319B (ja)
WO (1) WO2016039415A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018058741A (ja) * 2016-10-07 2018-04-12 トヨタ自動車株式会社 SiC単結晶の製造方法
WO2019088221A1 (ja) * 2017-11-01 2019-05-09 セントラル硝子株式会社 炭化ケイ素単結晶の製造方法
WO2019225697A1 (ja) * 2018-05-25 2019-11-28 株式会社デンソー 炭化珪素単結晶製造装置および炭化珪素単結晶の製造方法
KR20210004200A (ko) * 2019-07-03 2021-01-13 주식회사 엘지화학 실리콘카바이드 단결정 제조 장치
KR20210004199A (ko) * 2019-07-03 2021-01-13 주식회사 엘지화학 실리콘카바이드 단결정 제조 장치

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6915526B2 (ja) * 2017-12-27 2021-08-04 信越半導体株式会社 炭化珪素単結晶の製造方法
JP6879236B2 (ja) * 2018-03-13 2021-06-02 信越半導体株式会社 炭化珪素単結晶の製造方法
KR102302753B1 (ko) * 2018-05-25 2021-09-14 주식회사 엘지화학 실리콘계 용융 조성물 및 이를 이용하는 실리콘카바이드 단결정의 제조 방법
JP7096079B2 (ja) * 2018-06-15 2022-07-05 キオクシア株式会社 プラズマ処理装置の再生装置
CN114108093B (zh) * 2021-11-30 2023-03-14 江苏集芯半导体硅材料研究院有限公司 碳化硅晶体生长装置
CN114574944A (zh) * 2022-03-21 2022-06-03 北京晶格领域半导体有限公司 碳化硅单晶液相生长装置及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02232913A (ja) * 1989-03-06 1990-09-14 Shin Etsu Chem Co Ltd 酸化物ガーネット単結晶の製造方法
JP2008100854A (ja) * 2006-10-17 2008-05-01 Toyota Motor Corp SiC単結晶の製造装置および製造方法
JP2011230966A (ja) * 2010-04-28 2011-11-17 Mitsubishi Chemicals Corp 第13族金属窒化物結晶の製造方法
JP2013173645A (ja) * 2012-02-24 2013-09-05 Hitachi Chemical Co Ltd 結晶成長装置及び結晶成長方法
WO2014034080A1 (ja) * 2012-08-26 2014-03-06 国立大学法人名古屋大学 3C-SiC単結晶およびその製造方法
JP2014043367A (ja) * 2012-08-26 2014-03-13 Nagoya Univ SiC単結晶の製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3228753A (en) * 1962-07-27 1966-01-11 Texas Instruments Inc Orbital-spin crystal pulling
US3353914A (en) * 1964-12-30 1967-11-21 Martin Marietta Corp Method of seed-pulling beta silicon carbide crystals from a melt containing silver and the product thereof
JPH11171689A (ja) * 1997-12-12 1999-06-29 Murata Mfg Co Ltd 酸化物単結晶膜の製造方法
JP5062053B2 (ja) * 2008-06-19 2012-10-31 日産自動車株式会社 車両用空気調和装置
JP4780209B2 (ja) * 2009-03-12 2011-09-28 トヨタ自動車株式会社 SiC単結晶の製造方法
JP4887418B2 (ja) * 2009-12-14 2012-02-29 昭和電工株式会社 SiCエピタキシャルウェハの製造方法
WO2014034081A1 (ja) * 2012-08-26 2014-03-06 国立大学法人名古屋大学 結晶製造装置、SiC単結晶の製造方法およびSiC単結晶
JP5936191B2 (ja) * 2012-08-26 2016-06-15 京セラ株式会社 結晶の製造方法
JP6028033B2 (ja) * 2012-09-04 2016-11-16 新日鐵住金株式会社 単結晶の製造装置、それに用いられる坩堝及び単結晶の製造方法
CN106103815A (zh) * 2014-03-13 2016-11-09 新日铁住金株式会社 SiC单晶的制造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02232913A (ja) * 1989-03-06 1990-09-14 Shin Etsu Chem Co Ltd 酸化物ガーネット単結晶の製造方法
JP2008100854A (ja) * 2006-10-17 2008-05-01 Toyota Motor Corp SiC単結晶の製造装置および製造方法
JP2011230966A (ja) * 2010-04-28 2011-11-17 Mitsubishi Chemicals Corp 第13族金属窒化物結晶の製造方法
JP2013173645A (ja) * 2012-02-24 2013-09-05 Hitachi Chemical Co Ltd 結晶成長装置及び結晶成長方法
WO2014034080A1 (ja) * 2012-08-26 2014-03-06 国立大学法人名古屋大学 3C-SiC単結晶およびその製造方法
JP2014043367A (ja) * 2012-08-26 2014-03-13 Nagoya Univ SiC単結晶の製造方法

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018058741A (ja) * 2016-10-07 2018-04-12 トヨタ自動車株式会社 SiC単結晶の製造方法
WO2019088221A1 (ja) * 2017-11-01 2019-05-09 セントラル硝子株式会社 炭化ケイ素単結晶の製造方法
JP2019085328A (ja) * 2017-11-01 2019-06-06 セントラル硝子株式会社 炭化ケイ素単結晶の製造方法
JP7352058B2 (ja) 2017-11-01 2023-09-28 セントラル硝子株式会社 炭化ケイ素単結晶の製造方法
JP7255089B2 (ja) 2018-05-25 2023-04-11 株式会社デンソー 炭化珪素単結晶製造装置および炭化珪素単結晶の製造方法
CN112166210A (zh) * 2018-05-25 2021-01-01 株式会社电装 碳化硅单晶制造装置及碳化硅单晶的制造方法
CN112166210B (zh) * 2018-05-25 2023-03-10 株式会社电装 碳化硅单晶制造装置及碳化硅单晶的制造方法
JP2019202925A (ja) * 2018-05-25 2019-11-28 株式会社デンソー 炭化珪素単結晶製造装置および炭化珪素単結晶の製造方法
WO2019225697A1 (ja) * 2018-05-25 2019-11-28 株式会社デンソー 炭化珪素単結晶製造装置および炭化珪素単結晶の製造方法
KR20210004200A (ko) * 2019-07-03 2021-01-13 주식회사 엘지화학 실리콘카바이드 단결정 제조 장치
KR20210004199A (ko) * 2019-07-03 2021-01-13 주식회사 엘지화학 실리콘카바이드 단결정 제조 장치
KR102646714B1 (ko) * 2019-07-03 2024-03-11 주식회사 엘지화학 실리콘카바이드 단결정 제조 장치
KR102646715B1 (ko) * 2019-07-03 2024-03-11 주식회사 엘지화학 실리콘카바이드 단결정 제조 장치

Also Published As

Publication number Publication date
JP6259740B2 (ja) 2018-01-10
EP3192898A1 (en) 2017-07-19
WO2016039415A1 (ja) 2016-03-17
KR20170051512A (ko) 2017-05-11
CN107075724B (zh) 2019-11-26
EP3192898B1 (en) 2019-11-06
EP3192898A4 (en) 2018-05-02
US10151046B2 (en) 2018-12-11
TW201621099A (zh) 2016-06-16
KR101911455B1 (ko) 2018-10-24
CN107075724A (zh) 2017-08-18
US20170260647A1 (en) 2017-09-14
TWI679319B (zh) 2019-12-11

Similar Documents

Publication Publication Date Title
JP6259740B2 (ja) 炭化ケイ素の結晶の製造方法及び結晶製造装置
JP4946202B2 (ja) 炭化珪素半導体エピタキシャル基板の製造方法。
JP5483216B2 (ja) SiC単結晶およびその製造方法
JP5218348B2 (ja) 炭化珪素単結晶の製造方法
WO2006025420A1 (ja) 炭化珪素単結晶の製造方法
JP2009091222A (ja) SiC単結晶の製造方法、SiC単結晶ウエハ及びSiC半導体デバイス
JP4475091B2 (ja) 炭化珪素単結晶の製造方法
JP2002356397A (ja) 炭化珪素(SiC)単結晶の製造方法
JP2007261844A (ja) 炭化珪素単結晶の製造方法
JP6239490B2 (ja) バルク炭化珪素単結晶
WO2015137439A1 (ja) SiC単結晶の製造方法
TWI809003B (zh) 碳化矽單晶之製造方法
JP4645499B2 (ja) 炭化珪素単結晶の製造方法
JP6845418B2 (ja) 炭化ケイ素単結晶ウェハ、インゴット及びその製造方法
JP6784220B2 (ja) SiC単結晶の製造方法
JP2009280436A (ja) 炭化珪素単結晶薄膜の製造方法
Soueidan et al. Nucleation of 3C–SiC on 6H–SiC from a liquid phase
WO2011135669A1 (ja) SiC基板の作製方法
JP2018080063A (ja) SiC単結晶の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171211

R150 Certificate of patent or registration of utility model

Ref document number: 6259740

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250