JP2019202925A - 炭化珪素単結晶製造装置および炭化珪素単結晶の製造方法 - Google Patents

炭化珪素単結晶製造装置および炭化珪素単結晶の製造方法 Download PDF

Info

Publication number
JP2019202925A
JP2019202925A JP2018100904A JP2018100904A JP2019202925A JP 2019202925 A JP2019202925 A JP 2019202925A JP 2018100904 A JP2018100904 A JP 2018100904A JP 2018100904 A JP2018100904 A JP 2018100904A JP 2019202925 A JP2019202925 A JP 2019202925A
Authority
JP
Japan
Prior art keywords
pedestal
single crystal
seed crystal
shaft
silicon carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018100904A
Other languages
English (en)
Other versions
JP7255089B2 (ja
Inventor
信之 大矢
Nobuyuki Oya
信之 大矢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2018100904A priority Critical patent/JP7255089B2/ja
Priority to CN201980033272.2A priority patent/CN112166210B/zh
Priority to PCT/JP2019/020444 priority patent/WO2019225697A1/ja
Publication of JP2019202925A publication Critical patent/JP2019202925A/ja
Priority to US17/081,058 priority patent/US20210040645A1/en
Application granted granted Critical
Publication of JP7255089B2 publication Critical patent/JP7255089B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/14Feed and outlet means for the gases; Modifying the flow of the reactive gases
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/10Heating of the reaction chamber or the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/12Substrate holders or susceptors
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B35/00Apparatus not otherwise provided for, specially adapted for the growth, production or after-treatment of single crystals or of a homogeneous polycrystalline material with defined structure
    • C30B35/002Crucibles or containers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

【課題】ファセット面での異種多形や異方位結晶の発生する確率を低下させることができるSiC単結晶製造装置およびSiC単結晶の製造方法を提供する。【解決手段】種結晶5が設置される台座10と、原料ガス3aを供給するガス供給機構2、3と、原料ガスを加熱して分解する加熱装置12と、台座10を回転させる回転機構11とを有するSiC単結晶製造装置1において、台座10の中心軸を回転中心Rに対して偏心させることで、種結晶5およびSiC単結晶6の成長面の中心を回転中心Rから偏心させる。そして、種結晶5のうちオフ方向の下流側が位置する点Aを台座10のうち最もシャフト11aの中心軸に近い側に配置する。【選択図】図1

Description

本発明は、炭化珪素(以下、SiCという)単結晶で構成される種結晶に対して原料ガスを供給することでSiC単結晶の製造を行うSiC単結晶製造装置およびSiC単結晶の製造方法に関するものである。
従来より、SiC原料ガスをSiC単結晶で構成された種結晶の成長面に供給し、種結晶の上にSiC単結晶を成長させるガス成長法によるSiC単結晶製造装置やSiC単結晶の製造方法が提案されている(例えば、特許文献1参照)。
種結晶には、成長面が(0001)C面から所定のオフ角傾斜したオフ基板が用いられ、種結晶の成長面上にステップフロー成長させることによって、SiC単結晶が成長させられる。また、SiC単結晶の成長表面の温度分布の緩和などのために、種結晶を貼り付ける台座を回転機構によって回転させてSiC単結晶の成長が行われる。
特開2014―240336号公報
SiC単結晶を成長させる際に、結晶成長における欠陥となる異種多形や異方位結晶のほとんどは、成長面のうち(0001)C面と一致した面となるファセット面において発生する。上記したように、オフ基板とされた種結晶の上にSiC単結晶を成長させる際には、SiC単結晶における外縁部の一部に偏った位置にファセット面が形成され、その位置に欠陥の要因となる異種多形や異方位結晶が発生する。そして、ガス成長法において、台座と共に種結晶を回転させながらSiC単結晶を成長させる場合、台座や種結晶とこれらを囲む円筒状の加熱容器との距離が均等とされているため、ファセット面が加熱容器の壁面に近い位置で形成される。
SiC単結晶の成長表面の周囲において、加熱容器の壁面が均一な温度であるのが理想的であるが、実際には温度バラツキが存在する。また、ガス供給口から供給されるSiC原料ガスについても、SiC単結晶の成長面の中心に対してバラツキ無く均等に、つまり回転対称となるように供給されるのが理想的であるが、実際には供給バラツキが存在する。特に、台座よりも上方に備えられるガス排出口の配置位置によってSiC原料ガスの流れ方が変動し、SiC原料ガスの供給が均等に行われなくなる。このように、加熱容器の壁面の温度バラツキやガス流れのバラツキなど、成長条件の変動要因が大きく、ファセット面において異種多形や異方位結晶が発生する確率を高くしている。
本発明は上記点に鑑みて、ファセット面での異種多形や異方位結晶の発生する確率を低下させることができるSiC単結晶製造装置およびSiC単結晶の製造方法を提供することを目的とする。
上記目的を達成するため、請求項1に記載の発明は、反応室を構成する中空部を有する筒形状の坩堝(9)と、坩堝における中空部内に配置され、一面に炭化珪素単結晶(6)の成長用の種結晶(5)が設置されると共に、種結晶が配置される一面が円形状とされた台座(10)と、台座よりも下方より、種結晶の表面に炭化珪素単結晶を成長させるための炭化珪素原料ガス(3a)を供給するガス供給機構(3)と、炭化珪素原料ガスを加熱して分解する加熱装置(12)と、台座を回転させることで、種結晶を回転させながら炭化珪素単結晶の成長を行わせる回転機構(11)と、を有し、台座の中心軸が該台座の回転中心(R)から偏心させられている。
このように、台座の中心軸が台座の回転中心から偏心させられるようにしている。このため、種結晶のうちオフ方向の下流側が位置する点を台座のうち最も回転中心に近い側に配置してSiC単結晶を成長させると、SiC単結晶のうちファセット面が形成される側を坩堝の内壁面から離せる。したがって、坩堝の壁面の温度バラツキの影響が緩和できると共に、ガス流れのバラツキの影響も緩和できる。したがって、SiC単結晶のファセット面での異種多形や異方位結晶の発生する確率を低下させることが可能となる。
なお、各構成要素等に付された括弧付きの参照符号は、その構成要素等と後述する実施形態に記載の具体的な構成要素等との対応関係の一例を示すものである。
第1実施形態にかかるSiC単結晶製造装置の断面図である。 種結晶を台座へ貼り合わせた時の様子を示した図である。 種結晶のうちファセット面が形成される側となる点Aとその反対側となる点Bの軌跡を示した図である。 種結晶の成長面上にSiC単結晶が成長したときの様子を示した図である。 第2実施形態にかかるSiC単結晶製造装置の断面図である。 第3実施形態にかかるSiC単結晶製造装置の断面図である。
以下、本発明の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、同一符号を付して説明を行う。
(第1実施形態)
図1に示すSiC単結晶製造装置1は、長尺成長によってSiC単結晶インゴットを製造するのに用いられるものであり、図1の紙面上下方向が天地方向に向くようにして設置される。
具体的には、SiC単結晶製造装置1は、ガス供給口2を通じてガス供給源3からのSiC原料ガスを含む供給ガス3aを流入させると共に、ガス排出口4を通じて未反応ガスを排出することで、SiC単結晶基板からなる種結晶5上にSiC単結晶6を成長させる。
SiC単結晶製造装置1には、ガス供給源3、真空容器7、断熱材8、加熱容器9、台座10、回転引上機構11および第1、第2加熱装置12、13が備えられている。
ガス供給源3は、キャリアガスと共にSiおよびCを含有するSiC原料ガス、例えばシラン等のシラン系ガスとプロパン等の炭化水素系ガスの混合ガスをガス供給口2より供給する。このガス供給源3等により、種結晶5に対して下方からSiC原料ガスを供給するガス供給機構が構成されている。
真空容器7は、石英ガラスなどで構成され、中空部を有する筒形状、本実施形態の場合は円筒形状をなしており、供給ガス3aの導入導出が行える構造とされている。また、真空容器7は、SiC単結晶製造装置1の他の構成要素を収容すると共に、その収容している内部空間の圧力を真空引きすることにより減圧できる構造とされている。この真空容器7の底部に供給ガス3aのガス供給口2が設けられ、上部、具体的には側壁の上方位置に貫通孔7aが形成されており、この貫通孔7a内に供給ガス3aのうちの未反応ガスなどの排気ガスのガス排出口4が嵌め込まれている。
断熱材8は、中空部を有する筒形状、本実施形態の場合は円筒形状をなしており、真空容器7に対して同軸的に配置されている。断熱材8は、真空容器7よりも径が縮小された円筒形状とされ、真空容器7の内側に配置されることで、断熱材8の内側の空間から真空容器7側への伝熱を抑制している。断熱材8は、例えば黒鉛のみ、もしくは、表面をTaC(炭化タンタル)やNbC(炭化ニオブ)などの高融点金属炭化物にてコーティングした黒鉛などで構成され、熱エッチングされにくいものとされている。
加熱容器9は、反応容器となる坩堝を構成するもので有り、中空部を有する筒形状、本実施形態の場合は円筒形状で構成される。加熱容器9の中空部により、種結晶5の表面にSiC単結晶6を成長させる反応室を構成している。加熱容器9は、例えば黒鉛のみ、もしくは、表面をTaCやNbCなどの高融点金属炭化物にてコーティングした黒鉛などで構成され、熱エッチングされにくいものとされている。この加熱容器9は、台座10を囲むように配置されている。そして、加熱容器9の内周面と種結晶5および台座10の外周面との間を通じて、供給ガス3aのうちの未反応ガスなどの排気ガスがガス排出口4側に導かれるようになっている。この加熱容器9により、ガス供給口2からの供給ガス3aを種結晶5に導くまでに、供給ガス3a中のSiC原料ガスを分解している。
なお、断熱材8および加熱容器9のうちの上部、具体的には側壁の上方位置に貫通孔が形成されており、貫通孔内にガス排出口4が嵌め込まれることで、加熱容器9の内側から真空容器7の外側に排気ガスの排出が行えるようになっている。
台座10は、種結晶5を設置するための部材である。台座10は、種結晶5が設置される一面が円形状とされ、台座10の中心軸が加熱容器9の中心軸や後述する回転引上機構11のシャフト11aの中心軸に対して偏心した位置に配置されている。台座10は、例えば黒鉛のみ、もしくは、表面をTaCやNbCなどの高融点金属炭化物にてコーティングした黒鉛などで構成され、熱エッチングされにくいものとされている。この台座10のガス供給口2側の一面に、種結晶5が貼り付けられ、種結晶5の表面にSiC単結晶6が成長させられる。台座10のうち種結晶5が貼り付けられる面が種結晶5の形状と対応する形状とされ、本実施形態の場合、台座10を種結晶5と同じ径の円柱形状部材で構成することで、種結晶5が設置される一面が円形状とされている。また、台座10は、種結晶5が配置される面と反対側の面においてシャフト11aに連結されており、シャフト11aの回転に伴って回転させられ、シャフト11aが引き上げられることに伴って紙面上方に引き上げ可能となっている。
台座10の中心軸と加熱容器9の中心軸との間の距離については任意であり、台座10の径に応じて適宜設定されれば良い。ただし、台座10の中心軸を加熱容器9の中心軸から偏心させることによって、台座10の外周の一部が加熱容器9の内壁面に近づくことになる。これを考慮して、台座10のうち最も加熱容器9の内壁面との距離が短くなる位置において、台座10と加熱容器9との間の距離が20mm以上となるようにするのが好ましい。このようにすることで、加熱容器9の温度がSiC単結晶6に与える影響を抑制でき、SiC単結晶6の多結晶化などを抑制できる。
回転引上機構11は、パイプ材などで構成されるシャフト11aを介して台座10の回転および引上げを行う。シャフト11aは、本実施形態では上下に伸びる直線状で構成されており、一端が台座10のうちの種結晶5の貼付面と反対側の面に接続されており、他端が回転引上機構11の本体に接続されている。このシャフト11aも、例えば黒鉛のみ、もしくは、表面をTaCやNbCなどの高融点金属炭化物にてコーティングした黒鉛などで構成され、熱エッチングされにくいものとされている。このような構成により、台座10、種結晶5およびSiC単結晶6の回転および引き上げが行え、SiC単結晶6の成長面が所望の温度分布となるようにしつつ、SiC単結晶6の成長に伴って、その成長表面の温度を成長に適した温度に調整できるようになっている。
第1、第2加熱装置12、13は、例えば誘導加熱用コイルや直接加熱用コイルなどの加熱コイルによって構成され、真空容器7の周囲を囲むように配置されている。本実施形態の場合、第1、第2加熱装置12、13を誘導加熱用コイルによって構成している。これら第1、第2加熱装置12、13は、対象場所をそれぞれ独立して温度制御できるように構成されており、第1加熱装置12は、加熱容器9の下方位置と対応した位置に配置され、第2加熱装置13は、台座10と対応した位置に配置されている。したがって、第1加熱装置12によって加熱容器9の下方部分の温度を制御して、SiC原料ガスを加熱して分解することができる。また、第2加熱装置13によって台座10や種結晶5およびSiC単結晶6の周囲の温度をSiC単結晶6の成長に適した温度に制御することができる。
このようにして、本実施形態にかかるSiC単結晶製造装置1が構成されている。続いて、本実施形態にかかるSiC単結晶製造装置1を用いたSiC単結晶6の製造方法について、図1に加えて図2〜図4を参照して説明する。
まず、台座10の一面に種結晶5を貼り付ける。種結晶5は、図2に示すように、台座10と反対側の一面、つまりSiC単結晶6の成長面が(0001)C面に対して例えば4°もしくは8°などの所定のオフ角を有するオフ基板となっている。そして、種結晶5については、種結晶5のうちオフ方向の下流側が位置する部分を点A、その反対側を点Bとして、台座10の外周のうち最もシャフト11aの中心軸に近い側の部分に点A、遠い側の部分に点Bがそれぞれ配置されるように台座10に貼り付ける。つまり、種結晶5のうちオフ方向の下流側が位置する部分がその反対側よりも回転中心側に近くなるように、種結晶5を台座10に設置する。なお、オフ方向とは、「成長面の法線ベクトル、本実施形態の場合は(0001)C面に対する法線ベクトルとなる<0001>方向のベクトルを種結晶5の表面に投影したベクトルと平行な方向」のことを言う。また、オフ方向の下流側とは、そのうちの一方側を定義したものであり、「成長面の法線ベクトルを種結晶5の表面に投影したベクトルの先端が向いている側」を意味している。
続いて、加熱容器9内に台座10および種結晶5を配置する。そして、第1、第2加熱装置12、13を制御し、所望の温度分布を付ける。すなわち、供給ガス3aに含まれるSiC原料ガスが加熱分解されて種結晶5の表面に供給され、かつ、種結晶5の表面においてSiC原料ガスが再結晶化されつつ、加熱容器9内において再結晶化レートよりも昇華レートの方が高くなるような温度分布とする。このようにすることで、例えば、加熱容器9の底部の温度を2400℃、種結晶5の表面の温度を2200℃程度にすることができる。
また、真空容器7を所望圧力にしつつ、必要に応じてArやHeなどの不活性ガスによるキャリアガスやHやHClなどのエッチングガスを導入しながらガス供給口2を通じてSiC原料ガスを含む供給ガス3aを導入する。これにより、供給ガス3aが図1中の矢印で示したように流動して種結晶5に供給され、このガス供給に基づいて、種結晶5の表面にSiC単結晶6が成長させられる。
そして、回転引上機構11により、シャフト11aを介して台座10や種結晶5およびSiC単結晶6を回転させつつ、SiC単結晶6の成長レートに合せて引上げる。これにより、SiC単結晶6の成長表面の高さがほぼ一定に保たれ、成長表面温度の温度分布を制御性良く制御することが可能となる。また、高温な加熱容器9に投入してSiC単結晶6を成長させているため、種結晶5の表面以外での結晶の付着を防止することができ、ガス排出口4の詰まりを防止して、連続してSiC単結晶6を成長させることが可能となる。
ここで、上記したように、台座10の中心軸をシャフト11aの中心軸に対して偏心させており、この台座10に対して種結晶5を貼り付けている。このため、図3に示すように、回転引上機構11によって台座10を回転させた際に、種結晶5の中心Cは種結晶5や台座10の回転中心Rとなるシャフト11aの中心軸に対して公転するように移動し、点Bの軌跡L2の内側に点Aの軌跡L1が入り込む状態となる。すなわち、点Aは、台座10の中心軸をシャフト11aの中心軸に対して偏心させていない場合と比較して、種結晶5や台座10の回転中心Rの近辺において移動する軌跡となる。なお、以下の説明では、種結晶5や台座10の回転中心Rのことを単に回転中心Rという。
図4に示すように、種結晶5の成長面上にSiC単結晶6を成長させた際に、点Aの位置上に、(0001)C面と一致するファセット面Fが形成されることになる。この点Aについて、上記したように、台座10の中心軸をシャフト11aの中心軸に対して偏心させていない場合と比較して、回転中心Rの近辺に移動する軌跡を描くことから、加熱容器9の内壁面からの距離を離すことができる。
このため、ファセット面Fが形成される点Aの近傍において、加熱容器9の壁面の温度バラツキの影響が緩和される。また、SiC単結晶6の中心がシャフト11aの中心軸に対して偏心した状態で回転させられるため、SiC単結晶6の中心がシャフト11aの中心軸と一致する状態で回転させられる場合と比較して、ファセット面Fへのガス流れのバラツキの影響が緩和される。つまり、ファセット面Fが加熱容器9の壁面から離れた位置で動くことになり、加熱容器9の壁面近傍にガス流れのバラツキがあっても、結果的にガス流れのバラツキの影響が緩和される。また、ファセット面Fが形成される点Aの近傍における台座10と加熱容器9との間の隙間が広くなることで、ガス流れのバラツキの影響が緩和される。さらに、台座10の径をSiC単結晶6の径に合わせていることから、台座10と加熱容器9との間の隙間も台座10の回転に伴って変化させられることになる。このため、それに伴ってガス流れを変化させることができ、同じガス流れのままバラツキが生じる場合と比較して、ガス流れのバラツキを平均して低減することが可能となる。
以上説明したように、本実施形態のSiC単結晶製造装置1では、台座10の中心軸をシャフト11aの中心軸に対して偏心させることで、種結晶5およびSiC単結晶6の成長面の中心が回転中心Rから偏心するようにしている。そして、種結晶5のうちオフ方向の下流側が位置する点Aを台座10のうち最もシャフト11aの中心軸に近い側に配置している。
これにより、SiC単結晶6にファセット面Fが形成される点A側を加熱容器9の内壁面から離すことができ、加熱容器9の壁面の温度バラツキの影響が緩和できると共に、ガス流れのバラツキの影響も緩和できる。したがって、SiC単結晶6のファセット面Fでの異種多形や異方位結晶の発生する確率を低下させることが可能となる。
(第2実施形態)
第2実施形態について説明する。本実施形態は、第1実施形態に対して台座10の中心軸を回転中心Rから偏心させる構造を変更したものであり、その他に関しては第1実施形態と同様であるため、第1実施形態と異なる部分についてのみ説明する。
図5に示すように、本実施形態では、シャフト11aをすべて直線状とするのではなく、折曲部11bを有した構造としている。折曲部11bは、シャフト11aの途中位置、つまり真空容器7の上面から台座10に至るまでの間において、シャフト11aが折曲げられた形状とされることで構成されている。具体的には、折曲部11bは、台座10が最も下方位置に位置している状態において、真空容器7の上面から離れた位置に形成されている。そして、回転引上機構11によって、シャフト11aと共に台座10を引き上げたときにも折曲部11bが真空容器7の上面に当接しないように、折曲部11bの形成位置が決められている。
また、台座10については、台座10の中心軸がシャフト11aのうち折曲部11bよりも下方に位置している部分の中心軸と一致するようにして、シャフト11aに固定されている。
このような構成とした場合、シャフト11aのうち折曲部11bよりも上方に位置している部分の中心軸が回転中心Rとなる。このため、シャフト11aのうち折曲部11bよりも下方部分、つまり台座10が取り付けられる部分が回転中心Rに対して偏心させられることになり、台座10の中心軸も回転中心Rに対して偏心させられた状態となる。したがって、本実施形態の構造としても、第1実施形態と同様の効果を得ることが可能となる。
(第3実施形態)
第3実施形態について説明する。本実施形態も、第1実施形態に対して台座10の中心軸を回転中心Rから偏心させる構造を変更したものであり、その他に関しては第1実施形態と同様であるため、第1実施形態と異なる部分についてのみ説明する。
図6に示すように、本実施形態では、シャフト11aをすべて直線状とするのではなく、シャフト11aの途中位置、つまり真空容器7の上面から台座10に至るまでの間で折曲させ、加熱容器9の中心軸に対して傾斜した傾斜部11cを備えるようにしている。具体的には、傾斜部11cは、台座10が最も下方位置に位置している状態において、真空容器7の上面から離れた位置に形成されている。そして、回転引上機構11によって、シャフト11aと共に台座10を引き上げたときにも傾斜部11cが真空容器7の上面に当接しないように、傾斜部11cの形成位置が決められている。また、傾斜部11cのうち台座10が取り付けられる下端の中心が回転中心Rから偏心した状態となっている。
一方、台座10については、台座10の中心軸がシャフト11aのうち傾斜部11cの下端の中心と一致するようにして、シャフト11aに固定されている。
このような構成とした場合、シャフト11aのうち傾斜部11cよりも上方に位置している部分の中心軸が回転中心Rとなる。このため、台座10の中心軸が回転中心Rに対して偏心させられた状態となる。したがって、本実施形態の構造としても、第1実施形態と同様の効果を得ることが可能となる。
(他の実施形態)
本発明は上記した実施形態に限定されるものではなく、特許請求の範囲に記載した範囲内において適宜変更が可能である。
例えば、上記各実施形態では、台座10の中心軸を回転中心Rから偏心させられることで、種結晶5の中心が回転中心Rから偏心させられるようにしている。しかしながら、これも一例を示したに過ぎず、他の構成によって、種結晶5の中心が回転中心Rから偏心させられるようにしても良い。例えば、台座10の中心軸が回転中心Rと一致するようにしつつ、台座10の径を種結晶5の径よりも大きくし、台座10の中心に対して種結晶5の中心がずれるように種結晶5を台座10に貼り付ける。このようにしても、種結晶5の中心を回転中心Rから偏心させることができる。ただし、このような構造とする場合、種結晶5の周囲において、台座10の表面に何も貼り付けられていない部分が存在することになり、その表面に多結晶が成長して、SiC単結晶6に付着するなど悪影響を及ぼす可能性がある。このため、上記各実施形態のように、台座10の径を種結晶5の径と一致させるようにするのが好ましい。
また、台座10の回転と引き上げの双方が行える回転引上機構11を例に挙げたが、少なくとも台座10を回転させられる回転機構であれば良い。
上記各実施形態では、SiC単結晶製造装置1として、供給ガス3aがSiC単結晶6の成長表面に供給されてからSiC単結晶6の外周表面や台座10の横を通過して更に上方に排出させられる方式であるアップフロー方式のものを例に挙げて説明した。しかしながら、それに限らず、供給ガス3aがSiC単結晶6の成長表面に供給されてから、再度その供給方向と同方向に戻される方式であるリターンフロー方式であっても良い。また、供給ガス3aがSiC単結晶6の成長表面に供給されてから、加熱容器9の外周方向に排出させられる方式であるサイドフロー方式であっても良い。
1 SiC単結晶製造装置
3a 供給ガス
5 種結晶
6 SiC単結晶
9 加熱容器
10 台座
11 回転引上機構
11a シャフト
11b 折曲部
11c 傾斜部

Claims (5)

  1. 反応室を構成する中空部を有する筒形状の坩堝(9)と、
    前記坩堝における前記中空部内に配置され、一面に炭化珪素単結晶(6)の成長用の種結晶(5)が設置されると共に、前記種結晶が配置される一面が円形状とされた台座(10)と、
    前記台座よりも下方より、前記種結晶の表面に前記炭化珪素単結晶を成長させるための炭化珪素原料ガス(3a)を供給するガス供給機構(2、3)と、
    前記炭化珪素原料ガスを加熱して分解する加熱装置(12)と、
    前記台座を回転させることで、前記種結晶を回転させながら前記炭化珪素単結晶の成長を行わせる回転機構(11)と、を有し、
    前記台座の中心軸が該台座の回転中心(R)から偏心させられている炭化珪素単結晶製造装置。
  2. 前記回転機構は、前記台座を回転させるシャフト(11a)を有し、
    前記シャフトは直線状とされていると共に、該シャフトの中心軸に対して前記台座の中心が偏心している請求項1に記載の炭化珪素単結晶製造装置。
  3. 前記回転機構は、前記台座を回転させるシャフト(11a)を有し、
    前記シャフトは、折曲部(11b)が形成されることで該シャフトのうち前記台座が取り付けられる下方部分が前記回転中心から偏心させられており、
    前記台座は、該台座の中心軸が前記シャフトのうちの前記下方部分の中心軸と一致させられている請求項1に記載の炭化珪素単結晶製造装置。
  4. 前記回転機構は、前記台座を回転させるシャフト(11a)を有し、
    前記シャフトは、該シャフトの回転軸に対して傾斜させられた傾斜部(11c)を有していると共に、該傾斜部の下端が前記回転中心から偏心させられており、
    前記台座は、該台座の中心軸が前記シャフトのうちの前記下端の中心と一致させられている請求項1に記載の炭化珪素単結晶製造装置。
  5. 反応室を構成する中空部を有する筒形状の坩堝(9)内に、一面が円形状とされると共に該一面に炭化珪素単結晶(6)の成長用の種結晶(5)が設置された台座(10)を配置することと、
    前記台座よりも下方より、加熱分解された炭化珪素原料ガス(3a)を供給すると共に、前記台座を回転させることで、前記種結晶を回転させながら該種結晶の表面上に前記炭化珪素単結晶の成長を行わせることと、を含み
    前記成長を行わせることでは、前記台座および前記種結晶の中心軸を該台座の回転中心から偏心させ、
    前記種結晶が設置された前記台座を配置することでは、前記種結晶として表面が(0001)C面に対して所定のオフ角を有するオフ基板を用い、かつ、該種結晶のうちのオフ方向の下流側が位置する部分がその反対側よりも前記回転中心に近くなるように、前記種結晶を前記台座に設置したものを前記坩堝内に配置する、炭化珪素単結晶の製造方法。
JP2018100904A 2018-05-25 2018-05-25 炭化珪素単結晶製造装置および炭化珪素単結晶の製造方法 Active JP7255089B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018100904A JP7255089B2 (ja) 2018-05-25 2018-05-25 炭化珪素単結晶製造装置および炭化珪素単結晶の製造方法
CN201980033272.2A CN112166210B (zh) 2018-05-25 2019-05-23 碳化硅单晶制造装置及碳化硅单晶的制造方法
PCT/JP2019/020444 WO2019225697A1 (ja) 2018-05-25 2019-05-23 炭化珪素単結晶製造装置および炭化珪素単結晶の製造方法
US17/081,058 US20210040645A1 (en) 2018-05-25 2020-10-27 Silicon carbide single crystal manufacturing apparatus, and manufacturing method of silicon carbide single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018100904A JP7255089B2 (ja) 2018-05-25 2018-05-25 炭化珪素単結晶製造装置および炭化珪素単結晶の製造方法

Publications (2)

Publication Number Publication Date
JP2019202925A true JP2019202925A (ja) 2019-11-28
JP7255089B2 JP7255089B2 (ja) 2023-04-11

Family

ID=68616994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018100904A Active JP7255089B2 (ja) 2018-05-25 2018-05-25 炭化珪素単結晶製造装置および炭化珪素単結晶の製造方法

Country Status (4)

Country Link
US (1) US20210040645A1 (ja)
JP (1) JP7255089B2 (ja)
CN (1) CN112166210B (ja)
WO (1) WO2019225697A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000286201A (ja) * 1999-03-31 2000-10-13 Fuji Xerox Co Ltd 半導体結晶成長装置
JP2006222228A (ja) * 2005-02-09 2006-08-24 Shindengen Electric Mfg Co Ltd 化学気相成長装置
JP2008100854A (ja) * 2006-10-17 2008-05-01 Toyota Motor Corp SiC単結晶の製造装置および製造方法
CN103628040A (zh) * 2012-08-28 2014-03-12 北京北方微电子基地设备工艺研究中心有限责任公司 Mocvd设备和mocvd加热方法
JP2016056071A (ja) * 2014-09-11 2016-04-21 国立大学法人名古屋大学 炭化ケイ素の結晶の製造方法及び結晶製造装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4866005A (en) * 1987-10-26 1989-09-12 North Carolina State University Sublimation of silicon carbide to produce large, device quality single crystals of silicon carbide
JPH07277880A (ja) * 1994-04-05 1995-10-24 Hitachi Metals Ltd 酸化物単結晶およびその製造方法
KR100206343B1 (ko) * 1997-08-08 1999-07-01 윤덕용 엘비오단결정 제조장치 및 그 제조방법
US7192482B2 (en) * 2004-08-10 2007-03-20 Cree, Inc. Seed and seedholder combinations for high quality growth of large silicon carbide single crystals
JP4924105B2 (ja) * 2007-03-06 2012-04-25 株式会社デンソー 炭化珪素単結晶の製造装置および製造方法
JP6268761B2 (ja) * 2013-06-12 2018-01-31 株式会社デンソー 炭化珪素単結晶の製造方法
JP6584428B2 (ja) * 2014-12-05 2019-10-02 昭和電工株式会社 炭化珪素単結晶の製造方法及び炭化珪素単結晶基板

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000286201A (ja) * 1999-03-31 2000-10-13 Fuji Xerox Co Ltd 半導体結晶成長装置
JP2006222228A (ja) * 2005-02-09 2006-08-24 Shindengen Electric Mfg Co Ltd 化学気相成長装置
JP2008100854A (ja) * 2006-10-17 2008-05-01 Toyota Motor Corp SiC単結晶の製造装置および製造方法
CN103628040A (zh) * 2012-08-28 2014-03-12 北京北方微电子基地设备工艺研究中心有限责任公司 Mocvd设备和mocvd加热方法
JP2016056071A (ja) * 2014-09-11 2016-04-21 国立大学法人名古屋大学 炭化ケイ素の結晶の製造方法及び結晶製造装置

Also Published As

Publication number Publication date
CN112166210A (zh) 2021-01-01
US20210040645A1 (en) 2021-02-11
CN112166210B (zh) 2023-03-10
WO2019225697A1 (ja) 2019-11-28
JP7255089B2 (ja) 2023-04-11

Similar Documents

Publication Publication Date Title
KR101447476B1 (ko) 탄화규소 단결정 제조 장치
JP4924290B2 (ja) 炭化珪素単結晶の製造装置およびその製造方法
JP4888548B2 (ja) 炭化珪素単結晶の製造装置および製造方法
WO2019044392A1 (ja) 気相成長方法
WO2013014920A1 (ja) 炭化珪素単結晶製造装置
JP2010034372A (ja) 気相成長装置用のサセプタ及び気相成長装置
EP2465980B1 (en) Apparatus and method for manufacturing silicon carbide single crystal
WO2019225697A1 (ja) 炭化珪素単結晶製造装置および炭化珪素単結晶の製造方法
JP5831339B2 (ja) 炭化珪素単結晶の製造方法
JP5648604B2 (ja) 炭化珪素単結晶製造装置
JP6052051B2 (ja) 炭化珪素単結晶の製造装置
JP5867335B2 (ja) 炭化珪素単結晶の製造装置および製造方法
JP5482669B2 (ja) 炭化珪素単結晶の製造装置
JP5811012B2 (ja) 炭化珪素単結晶の製造装置および製造方法
US11846040B2 (en) Silicon carbide single crystal
JP6187372B2 (ja) 炭化珪素単結晶製造装置
JP5842725B2 (ja) 炭化珪素単結晶製造装置
JP4941475B2 (ja) 炭化珪素単結晶の製造方法およびそれに適した製造装置
JP2016216303A (ja) 炭化珪素単結晶製造装置
JP2023127894A (ja) 炭化珪素単結晶およびその製造方法
JP2007210865A (ja) シリコン単結晶引上装置
JPH09165291A (ja) 単結晶製造方法およびその装置
JP2010034113A (ja) 気相成長装置
JP2013035729A (ja) 炭化珪素単結晶製造装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230313

R151 Written notification of patent or utility model registration

Ref document number: 7255089

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151