JP2015510932A - ゲルベアルコール、並びにその調製方法及び使用 - Google Patents

ゲルベアルコール、並びにその調製方法及び使用 Download PDF

Info

Publication number
JP2015510932A
JP2015510932A JP2015501761A JP2015501761A JP2015510932A JP 2015510932 A JP2015510932 A JP 2015510932A JP 2015501761 A JP2015501761 A JP 2015501761A JP 2015501761 A JP2015501761 A JP 2015501761A JP 2015510932 A JP2015510932 A JP 2015510932A
Authority
JP
Japan
Prior art keywords
alkyl
formula
compound
independently
double bond
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015501761A
Other languages
English (en)
Other versions
JP6510400B2 (ja
JP2015510932A5 (ja
Inventor
フォリー パトリック
フォリー パトリック
ヤン ヨンファ
ヤン ヨンファ
Original Assignee
ピー2 サイエンス,インコーポレイティド
ピー2 サイエンス,インコーポレイティド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ピー2 サイエンス,インコーポレイティド, ピー2 サイエンス,インコーポレイティド filed Critical ピー2 サイエンス,インコーポレイティド
Publication of JP2015510932A publication Critical patent/JP2015510932A/ja
Publication of JP2015510932A5 publication Critical patent/JP2015510932A5/ja
Application granted granted Critical
Publication of JP6510400B2 publication Critical patent/JP6510400B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/132Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group
    • C07C29/136Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH
    • C07C29/14Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of a —CHO group
    • C07C29/141Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of a —CHO group with hydrogen or hydrogen-containing gases
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C31/00Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms
    • C07C31/02Monohydroxylic acyclic alcohols
    • C07C31/125Monohydroxylic acyclic alcohols containing five to twenty-two carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/40Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with ozone; by ozonolysis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/61Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups
    • C07C45/67Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton
    • C07C45/68Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton by increase in the number of carbon atoms
    • C07C45/72Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton by increase in the number of carbon atoms by reaction of compounds containing >C = O groups with the same or other compounds containing >C = O groups
    • C07C45/74Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton by increase in the number of carbon atoms by reaction of compounds containing >C = O groups with the same or other compounds containing >C = O groups combined with dehydration
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/78Separation; Purification; Stabilisation; Use of additives
    • C07C45/81Separation; Purification; Stabilisation; Use of additives by change in the physical state, e.g. crystallisation
    • C07C45/82Separation; Purification; Stabilisation; Use of additives by change in the physical state, e.g. crystallisation by distillation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C47/00Compounds having —CHO groups
    • C07C47/02Saturated compounds having —CHO groups bound to acyclic carbon atoms or to hydrogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C59/00Compounds having carboxyl groups bound to acyclic carbon atoms and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups
    • C07C59/235Saturated compounds containing more than one carboxyl group
    • C07C59/245Saturated compounds containing more than one carboxyl group containing hydroxy or O-metal groups

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

本発明は、ゲルベアルコール前駆体及びゲルベアルコール、並びにそれらの合成方法に関する。

Description

関連出願
本願は、2012年5月21日に出願された米国仮出願第61/613,867号、2012年5月2日に出願された米国仮出願第61/641,742号、及び2012年6月21日に出願された米国仮出願61/662,639号に基づく優先権及び利益を主張する。それらの各々の内容全体は、本明細書に参照により組み込まれる。
ゲルベアルコール (Guerbet Alcohol)(GA)またはゲルベ型 (Guerbet-type)アルコールは、多数のパーソナルケア製品および洗浄剤のための合成試薬および配合成分として使用される。ゲルベアルコールは、類似の分子量の直鎖アルコールと比較して望ましい物理的性質、例えばきわめて低い融点および低い粘度を有することが知られている。例えば、O’Lenick, Journal of Surfactants and Detergents, vol. 4(3), 311-315, 2001を参照されたい。
現在のところ、ゲルベ型アルコールの製造の実行は、(1)α−オレフィンをヒドロホルミル化してアルデヒドを製造すること、ここで当該アルデヒドはその後、二量体化されかつ/または還元され得る(例えば、国際公開第2010082793号参照)、または(2)塩基性触媒上でアルキルアルコールを加熱(>130℃)してイン・サイチュ (in situ)でアルキルアルデヒドを生み出すこと、ここで前記アルデヒドはその後二量体化され、そしてその後還元され得る(例えば、国際公開第2010082793号参照)、を含む。第一の方法の場合、α−オレフィンは一般に資源枯渇性の石油化学原料から得られ、また第二の方法の場合、そのアルコールを高温に加熱しなければならず、したがってかなりのエネルギーが必要になる。したがって、アルキルアルデヒドおよびゲルベアルコールを非枯渇資源から生産するためのエネルギー効率のよい方法が望まれる。本発明はこれらの必要性を対処する。
一態様において本発明は、式I:
Figure 2015510932
のエナールまたはその塩の合成方法に関する。この式において、Rは、水素、あるいは無置換または置換C1〜C20アルキルであり、当該アルキルは直鎖又は分岐鎖であり、そして場合によりそのアルキルの内部または末端にカルボニル部分(C=O)を含有し、そして場合によりORa、COORa、NRab、S(O)pa、CONRab、またはNRaCORbで置換され、pは0、1、または2であり、RaおよびRbの各々は、独立してH、C1〜C10アルキル、C3〜C8シクロアルキル、アリール、またはヘテロアリールである。
当該方法は、(1)トリグリセリド、脂肪酸又は脂肪酸エステルをオゾン分解して、式R−CH2CHOで表されるモノ−アルデヒドを得ること、及び(2)前記モノ−アルデヒドを二量体化して、式Iの化合物を得ること、を含む。
トリグリセリド油から付加価値を付けた材料への転換は、油脂化学工業の第一次産業活動である。植物油をオゾンで処理してトリグリセリドアルキル鎖中の不飽和の部位を開裂することが、単一のおよび二つの官能基を有するアルカンなどの有用な生成物を生み出すために長く使用されてきた。例えば Throckmorton, et al., Journal of the American Oil Chemists’ Society, Vol. 49, 643-648, 1972.を参照されたい。当該方法はオゾン分解として知られ、今日でも注目され続けている。例えば Omonov, et al. Journal of the American Oil Chemists’ Society, Vol. 88, 689-705, 2011 を参照されたい。オゾン分解を使用して植物油からアルキルアルデヒドを生み出すことにもまた関心が持たれている。アルキルアルデヒドは、化学ビルディングブロック(chemical building blocks)、芳香剤、および食品添加物としての用途を有する。
本発明は、生物由来のトリグリセリド(TG)、脂肪酸(FA)、または脂肪酸エステル(FAE)のオゾン分解によるアルキルアルデヒドを使用してゲルベアルコール前駆体(GAP)、例えばエナール化合物を生み出すことに関する。次いでこれらのエナールを還元して、時にはゲルベアルコール(GA)と呼ばれる分岐アルコールを得ることができる。
本発明の幾つかの化合物において、Rは脂肪酸の脂肪族鎖である。本発明の幾つかの化合物において、RはC1〜C20アルキルであり、1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、または20個の炭素原子を有し、例えば2、3、4、5、6、7、8、9、または10個の炭素原子を有し、あるいは例えば6、7、8、9、または10個の炭素原子を有し、あるいは例えば11、12、13、14、15、16、17、18、19、または20個の炭素原子を有する。
一実施形態において、当該方法は、式Iのエナール化合物を還元して、式II
Figure 2015510932
の化合物またはその塩を製造することをさらに含む。
例えば当該還元は水素化触媒の存在下で行われる。
例えば当該方法は、(1)トリグリセリド、脂肪酸、または脂肪酸エステルをオゾン分解して、式R−CH2CHOを有するモノアルデヒドを得ること、(2)他のオゾン分解生成物から蒸留、例えば真空下での蒸留によってモノアルデヒドを単離すること、および(3)そのモノアルデヒドを二量体化して式Iの化合物を得ること、を含む。
例えば、本明細書中で述べる合成方法の二量体化反応は、酸または塩基、例えば酸性または塩基性固相イオン交換触媒の存在下で行われる。
例えば、本明細書中で述べる合成方法の二量体化反応は、アルコールを含有する水性溶液(例えば、アルコール水溶液)中で行われる。このアルコールは、第一または第二アルコールのいずれか一方、例えばエタノール、メタノール、プロパノール、イソプロパノール、またはブタノールであり得る。
例えば、本明細書中で述べる合成方法の二量体化反応は、極性溶媒(例えば、極性プロトン性または極性非プロトン性溶媒)、例えば水性溶液中で行われる。例えば、モノアルデヒドR−CH2CHOにおけるRが、そのアルキルの末端にカルボキシル部分(COOH)を含有するC1〜C20アルキルである場合、二量体化は水性溶液中で行われる。その水性溶液はアルコールを含有してもよく、また含有しなくてもよい。
例えば、当該アルコール水溶液中のアルコールと水の体積比は、10:1〜1:10の範囲であり、例えば3:1〜1:3であり、又は2:1〜1:2であり、又は約1:1である。
例えば、本明細書中で述べる合成方法の二量体化反応は、アルコール水溶液中、100℃未満の温度で、例えば50℃〜90℃の温度で、または60℃〜80℃の温度で行われる。
例えば、本明細書中で述べる合成方法のオゾン分解のステップで使用されるオゾンは、水を電気分解することによって発生させる。
例えば、水の電気分解によって発生する水素は、本明細書中で述べる合成方法の還元のステップにおいて式IIの化合物を生み出すために使用される。
一実施形態において、Rは水素、無置換C1〜C20アルキル、またはアルキル鎖の末端に−COOHを含有する置換C1〜C20アルキルである。例えば、この無置換C1〜C20アルキル、またはアルキル鎖の末端−COOHを含有する置換C1〜C20アルキルは、直鎖アルキルである。例えば、この無置換C1〜C20アルキル、またはアルキル鎖の末端−COOHを含有する置換C1〜C20アルキルは、分岐アルキルである。例えば、末端−COOHを含有する置換C1〜C20アルキルは、場合によってはORa、COORa、NRab、S(O)pa、CONRab、およびNRaCORbから選択される1種類または複数種類の基でさらに置換される。
一実施形態において、当該方法は、式Iの化合物を誘導体化して、式III:
Figure 2015510932
[式中、
Figure 2015510932
は単結合又は二重結合であり、
Figure 2015510932
の各々は、二重結合であるか、又は存在せず、
Figure 2015510932
が二重結合であるとき、Zの各々は、独立して、O又はSであり、あるいは、
Figure 2015510932
が存在しないとき、Zは存在せず、
R’の各々は、独立して、ORa又はNRabであり、Ra及びRbの各々は、独立して、H、C1−C10アルキル、C3−C8シクロアルキル、アリール又はヘテロアリールであり、そしてnは、1、2、3、4、5、6、7、8、9、10、11又は12である]
の化合物又はその塩を製造することをさらに含む。
例えば、式I中のRは、アルキル鎖の末端に−COOHを含有するC1〜C20アルキルである。
例えば、式Iの化合物の誘導体化には、還元、酸化、アミド化、SおよびS原子を交換してチオケトンを形成すること、および/または塩を形成することが含まれる。
例えば、式IIIの化合物は、Z基を含有しない。
例えば、式IIIの化合物は、2個のZ基を含有する。
例えば、式IIIの化合物は、3個の基を含有する。
本発明はまた、本明細書中で述べる合成方法によって生み出される式Iのエナール化合物、式IIまたはIIIの化合物、あるいはそれらの塩に関する。
本発明はまた、以下の式IV:
Figure 2015510932
[式中、
Figure 2015510932
は単結合又は二重結合であり、
Figure 2015510932
の各々は、二重結合であるか、又は存在せず、
Figure 2015510932
が二重結合であるとき、Zの各々は、独立して、O又はSであり、あるいは、
Figure 2015510932
が存在しないとき、Zは存在せず、
R’の各々は、独立して、ORa又はNRabであり、Ra及びRbの各々は、独立して、H、C1−C10アルキル、C3−C8シクロアルキル、アリール又はヘテロアリールであり、そしてm及びnの各々は、独立して、1、2、3、4、5、6、7、8、9、10、11又は12である]
の化合物又はその塩に関する。
上記式(IV)の化合物の合成方法もまた考慮される。当該方法は、Rx−CH2CHOをRy−CH2CHOと反応させることを含む(ここで、各RxおよびRyは独立して、そのアルキル鎖の末端に−COOHを含有する置換C1〜C20アルキルである)。RxおよびRyは同一でも、異なってもよい。当該方法にはさらに、還元、酸化、アミド化、SおよびS原子を交換してチオケトンを形成すること、および/または塩を形成することが含まれる。
例えば、式I〜IVのいずれかの化合物の塩は、その化合物の−COOH基を塩基と反応させて、Na+、K+、Li+などのアルカリ金属塩、Mg2+またはCa2+などのアルカリ土類金属塩、有機アミン塩、あるいは有機ホスホニウム塩を形成することによって形成される。
本明細書中で述べる化合物は、多機能性化合物が望まれる様々な用途に有用性を見出すことができる。それらの用途にはナイロン、ポリエステル、およびポリウレタンなどのポリマーと、潤滑剤が挙げられる。
別段の定義がない限り、本明細書中で使用されるすべての技術用語および科学用語は、本発明が属する当業界の普通の熟練者によって一般に理解されるものと同じ意味を有する。本明細書において単数形は、文脈による明白な別段の指示がない限り複数もまた含む。本明細書中で述べたものと類似または等効の方法および材料を本発明の実施または試験において使用することができるが、好適な方法および材料を下記に述べる。さらに、これら材料、方法、および例は、単に例示にすぎず、限定するものではない。
本発明の他の特徴および利点は、下記の詳細な説明および別添の特許請求の範囲から明らかになるはずである。
ノナナールの二量体化から得られる生成物の1H NMRスペクトルである。 ノナナールの二量体化後のガスクロマトグラフィー(GC)炎イオン化検出(FID)分析を示す線図である。 ノナナール二量体を還元して所望のアルコールにした後のGC FIDを示す線図である。
本発明は、ゲルベアルコール前駆体およびゲルベアルコールを合成するための新規な方法、ならびにその方法による生成物に関する。一態様において本発明は、式I
Figure 2015510932
のエナールまたはその塩の合成方法に関する。この式において、Rは、水素又は、無置換の若しくは置換されたC1−C20アルキルであり、ここで前記アルキルは直鎖又は分岐鎖であり、そして場合によりアルキル鎖の内部又は末端にカルボニル部位(C=O)を含み、そして場合により、ORa、COORa、NRab、S(O)pa、CONRab又はNRaCORbで置換され、pは0、1又は2であり、そしてRa及びRbの各々は、独立して、H、C1−C10アルキル、C3−C8シクロアルキル、アリール又はヘテロアリールである。
本明細書中で述べる合成方法は、トリグリセリド、脂肪酸、または脂肪酸エステルをオゾン分解して式R−CH2CHOを有するモノアルデヒドを得ること、およびそのモノアルデヒドを二量体化して式Iの化合物を得ること、を含む。
一実施形態において、本明細書中で述べる合成方法は、式Iのエナール化合物を還元して、式II:
Figure 2015510932
の化合物、又はその塩を製造することをさらに含む。
一実施形態において、Rは水素、無置換C1〜C20アルキル、またはアルキル鎖の末端に−COOHを含有する置換C1〜C20アルキルである。
一実施形態において、Rはアルキル鎖の末端に−COOHを含有する置換C1〜C20アルキルである。当該方法は、式Iの化合物を誘導体化して、式III:
Figure 2015510932
[式中、
Figure 2015510932
は単結合又は二重結合であり、
Figure 2015510932
の各々は、二重結合であるか、又は存在せず、
Figure 2015510932
が二重結合であるとき、Zの各々は、独立して、O又はSであり、あるいは、
Figure 2015510932
が存在しないとき、Zは存在せず、
R’の各々は、独立して、ORa又はNRabであり、Ra及びRbの各々は、独立して、H、C1−C10アルキル、C3−C8シクロアルキル、アリール又はヘテロアリールであり、そしてnは、1、2、3、4、5、6、7、8、9、10、11又は12である]
の化合物又はその塩を製造することをさらに含む。
例えば、式Iの化合物の誘導体化には、還元、酸化、アミド化、SおよびS原子を交換してチオケトンを形成すること、および/または塩を形成することが含まれる。
例えば、式IIIの化合物は、以下の式IIIa、IIIb又はIIIc:
Figure 2015510932
の化合物である。
例えば、式Iの化合物の還元は、適切な水素化触媒の存在下で行われる。水素化触媒は、均一触媒であることも、また不均一触媒であることもできる。それら触媒の例には、これらに限定されないが白金、パラジウム(例えば、米国特許第 3,979,466 号)、と、ロジウム、ルテニウム、ニッケル、鉛の塩(例えば、米国特許第 3,119,880 号)と、銅、鉛、亜鉛、クロム、モリブデン、タングステン、マンガンの酸化物(例えば米国特許第 3,558,716 号)と、銀化合物(例えば米国特許第 3,864,407 号)とが挙げられる。
例えば、本明細書中で述べる合成方法はさらに、(1)トリグリセリド、脂肪酸、または脂肪酸エステルをオゾン分解して、式R−CH2CHOを有するモノアルデヒドを得ること、(2)他のオゾン分解生成物から蒸留、例えば真空下での蒸留によってモノアルデヒドを単離すること、および(3)そのモノアルデヒドを二量体化して式Iの化合物を得ることを含む。
例えば、本明細書中で述べる合成方法の二量体化反応は、酸性または塩基性固相イオン交換触媒などの酸または塩基の存在下で行われる。触媒の例には、これらに限定されないが三フッ化ホウ素と、ピロリジン、モルホリン、またはピペリジンなどのアミン触媒が挙げられる。上記触媒のそれぞれは、遊離型でも、樹脂結合型でもどちらでもよい。遷移金属触媒およびゼオライトも同様に使用することができる。
例えば、本明細書中で述べる合成方法のオゾン分解のステップに使用されるオゾンは、水を電気分解することによって発生させる。
例えば、水の電気分解によって発生する水素は、本明細書中で述べる合成方法の還元のステップにおいて式IIの化合物を生み出すために使用される。
本発明の方法の例を、下記のスキーム1に示す。
Figure 2015510932
脂肪族アルデヒドを二量体化してエナールを生み出すことは、ゲルベアルコール(GA)の生産経路において重要な工業的転換である。現在のところ、アルキルアルデヒドは、塩基性脱水素触媒上でイン・サイチュでアルコールから生み出し、続いて高温で二量体化するか、あるいはハイドロホルミル化したオレフィンから直接に二量体化するかのどちらかである。後者の場合、一般には短鎖(炭素3〜5個)脂肪族アルデヒドを、1〜5%の塩基(例えばNaOH)の存在下で、塩基性溶液:アルデヒドの体積比9:1〜20:1の範囲の希釈度の希釈塩基性水溶液中で反応させる(Bahrmann, H., et al., 2-Ethyl Hexanol: Ullmann’s Encyclopedia of Industrial Chemistry. Vol. 13, 579-584, 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)。当該方法の利点は、出発アルデヒドが塩基性溶液に可溶であり、したがって容易に反応させることができるが、二量体化時に形成されるエナール生成物は可溶でなく、したがって所望の生成物の反応はより緩慢であり、単純な相分離による単離が可能なことである。
ヘキサナールおよびノナナールなどの植物油のオゾン分解から得られるアルデヒドにこれらの条件を適用することが望ましい場合もあるが、長鎖脂肪族アルデヒドは水性媒体に不溶性であるために、上記で述べた方法にしたがっての同様の望ましい転換および分離は達成されなかった。したがって長鎖アルデヒドの二量体化にとっては新しい溶媒系および条件が必要である。本発明はこのことを対処する。
本発明はまた、反応媒体としてアルコール水溶液を使用してアルデヒド(例えば、油脂化学由来のアルデヒド、具体的には炭素5個より長い鎖長を有するもの)を二量体化して、高収率(例えば90%以上の転換率)でエナール生成物を得る方法に関する。具体的には、まず出発アルデヒドを塩基性反応媒体に溶解し、次いで首尾よく高収率で目標とする二量体に転換する。転換後、所望の生成物を素早く反応媒体から相分離させ、容易に単離することができる。
上記スキーム1において、この開示した方法の二量体化反応は、アルコールを含有する水性溶液、例えばアルコール水溶液中で行うことができ、そのアルコールは、例えばエタノール、メタノール、プロパノール、イソプロパノール、またはブタノールである。アルコールと水の体積比は、10:1〜1:10の範囲、例えば3:1〜1:3の範囲、又は2:1〜1:2の範囲、または約1:1であり得る。この二量体化反応は、100℃未満の温度、例えば50℃〜90℃の温度、または60℃〜80℃の温度で行うことができる。
一実施形態においてアルデヒド(例えば、C6-12アルデヒド)を、塩基(例えばNaOH)を添加した溶媒(例えばエタノール水溶液)に100℃未満の温度(例えば70℃)で加える。溶媒とアルデヒドの体積比は、0.5:1〜10:1の範囲(例えば、1:1〜9:1の範囲、又は1:1〜4:1の範囲、又は1:1〜2:1の範囲)であり得る。この混合物を、70℃で少なくとも15分間激しく撹拌する(例えば、660RPMでのオーバーヘッド撹拌による)。反応の完了を判断するためには、その反応混合物の分割量を取り出し、例えば1.0M塩酸中で反応を止める。この分割量を水で希釈し、有機物を重水素化クロロホルムで抽出し、それからプロトンNMRを撮る。出発材料の大部分(例えば、90%以上、80%以上、または70%以上)が、NMRによって判断される所望のエナール生成物に転換されていた場合、続いて残りの反応混合物をメスシリンダーに注ぎ込み、反応混合物の相分離の観察結果を記録する。
一実施形態において、次いでその二量体生成物のアナールを、ラネーニッケルなどの適切な触媒の存在下での水素化により還元して所望のアルコールにする。例えば、ノナナールを前述の方法に従って二量体化し、得られた二量体を還元反応の前にアルコール及び水の層から分離することができる。この二量体生成物にラネーニッケルを加える(例えば、10〜30%、15〜25%、または20%(w/w))ことができ、得られた混合物を高圧反応器中に置き、高圧のH2および高温下(例えば、約300〜500psiのH2下および約120〜200℃で)において約3〜24時間激しく撹拌して所望のアルコール生成物を得ることができる。この還元反応からのアルコール生成物は、>80%純粋(例えば、>90%、>95%>、98%。または>99%純粋)で、>70%の収率(例えば、>75%、>80%、>85%、>90%、>95%、>98%、または99%の収率)であることができる。1H NMRおよびガスクロマトグラフィーを使用して、この所望のアルコール生成物の特徴を明らかにすることができる。例えば、1H NMRにおいてエナールプロトンの消滅と、〜3.3乃至3.5ppmでの2個のメチレンプロトンの出現は、二量体出発材料の所望のアルコール生成物への転換を示すことができる。例えば、そのアルコール生成物は、望まれていない副生物または出発材料を含まない。例えば、アルコール生成物中の不純物(例えば、アルデヒド二量体などの望まれていない副生物または出発材料)は、20%未満(例えば、<10%、<5%、<2%、または<1%)である。
本発明はまた、当該方法を、より大きなオゾン分解方法のスキーム(TG/FA/FAE材料の全部ではなく一部をGAP/GAの生成に使用する)に組み込むことに関する。組み込まれた方法の代表的なスキームを下記のスキーム2に示す。
Figure 2015510932
一実施形態において、二量体化による式Iのエナール化合物の製造に消費されないモノアルデヒドを、既知の油脂化学的変換を用いた酸、アルコール、アミン、エステル、および/またはアミドの合成に使用することができる。例えば、上記スキーム2を参照されたい。
一実施形態において、TG/FA/FAEのオゾン分解の副生物を処理して、二官能基化アルキル鎖、グリセロール、および/またはグリセロール生成物を生み出すことができる。例えば、上記スキーム2を参照されたい。
一実施形態において、オゾン分解に使用されるオゾンは、水を電気分解することによって生み出される。さらに、水を電気分解することにより生み出される水素を二量体化生成物の還元のステップにおいて使用して目標とするゲルベアルコールを生成することができる。例えば、上記スキーム2を参照されたい。
本発明はさらに、以下の式IV:
Figure 2015510932
[式中、
Figure 2015510932
は単結合又は二重結合であり、
Figure 2015510932
の各々は、二重結合であるか、又は存在せず、
Figure 2015510932
が二重結合であるとき、Zの各々は、独立して、O又はSであり、あるいは、
Figure 2015510932
が存在しないとき、Zは存在せず、
R’の各々は、独立して、ORa又はNRabであり、Ra及びRbの各々は、独立して、H、C1−C10アルキル、C3−C8シクロアルキル、アリール又はヘテロアリールであり、そしてm及びnの各々は、独立して、1、2、3、4、5、6、7、8、9、10、11又は12である]
の化合物又はその塩の合成方法に関する。
当該方法は、Rx−CH2CHOをRy−CH2CHOと反応させることを含む(ただし、各RxおよびRyは独立して、そのアルキル鎖の末端に−COOHを含有する置換C1〜C20アルキルである)。RxおよびRyは同一でも、異なってもよい。当該方法はさらに、還元、酸化、アミド化、SおよびS原子を交換してチオケトンを形成すること、および/または塩を形成することを含むことができる。
下記スキーム3に示すように当該方法を使用して、植物由来のアルデヒドから新規な化合物を合成することができる。植物油の還元的オゾン分解の後に、アゼルアルデヒド(すなわち9−オキソノナン酸)などの酸アルデヒドを生み出すことができる。次いでこれらの酸アルデヒドを(下記スキーム3に示すように)二量体化することもでき、また様々な他のアルデヒド、例えばグリオキシル酸およびその誘導体と縮合させることもできる。縮合後、次いでこれらの化合物を、下記スキーム3に示すように誘導体化して三酸、ジアシドール(diacidol)、トリオール、およびそれらの任意のアミン変異形を生み出すことができる(スキーム3においてRは、H、あるいはLi+、Na+、または任意の他の適切な金属などの陽イオン、アンモニウム、またはホスホニウムの化学種であり、------は単結合または二重結合を表す)。
Figure 2015510932
スキーム1〜3中に示すアルキル鎖は、出発材料、例えば生物由来のトリグリセリド(TG)、脂肪酸(FA)、または脂肪酸エステル(FAE)により異なる長さを有する他のアルキル鎖に置き換えることができることを理解されたい。
一実施形態において二量体化のためのモノアルデヒドは、TG/FA/FAEをオゾンで処理し、続いて所望のアルデヒド材料を蒸留または低圧で取り出すことによって生み出される。次いでこれらのアルデヒド材料を、性質上均質または不均質のいずれかの、また性質上有機または無機のいずれかの適切な酸または塩基触媒上を通過させて所望の二量体化の事象を促進させることができる。
一実施形態においてまた、上記で述べたものと似た条件を使用して三官能性誘導体を得ることもできる。例えば、上記スキーム3を参照されたい。例えば、植物油のオゾン分解による開裂から得られる9−オキソノナン酸(すなわち、アゼルアルデヒド)を、純粋な形で、またはペラルゴン酸、パルミチン酸、およびステアリン酸などの脂肪酸と組み合わせて出発材料として使用する。アゼルアルデヒドの二量体化は、単独溶媒としての水中で行われる。例えば、アゼルアルデヒド(例えば、〜41.9重量%)と脂肪酸を含有する混合物を、NaOH(例えば、アゼルアルデヒドの28%(w/w))の存在下で水(例えば25mL)中に溶解し、得られた混合物を、例えば70℃で1時間撹拌する。反応の完了を判断するために、分析用分割量を採取し、1N HClで中和する。中和すると有機相が分離し、次いでこれを分割し、1H NMR分析に使用することができる。一実施形態において、望ましい反応完了レベルで、そのままで、または希釈水溶液としてその二量体の塩基性水溶液を直接に水素化にかける。例えば、二量体生成物を水(例えば300mL)で希釈し、ラネーニッケル(例えば、10〜30%、15〜25%、または20%(w/w))を加え、得られた混合物を高圧反応器中に置き、高圧のH2および高温下(例えば、約300〜500psiのH2下および約120〜200℃で)において約3〜24時間激しく撹拌して所望のアルコール生成物を得ることができる。
この還元反応からのアルコール生成物(例えば、上記スキーム3中のトリオールまたはジアシドール)は、>80%純粋(例えば、>90%、>95%>、98%。または>99%純粋)であり得、そして>70%の収率(例えば、>75%、>80%、>85%、>90%、>95%、>98%、または99%の収率)であり得る。1H NMRおよびガスクロマトグラフィーを使用して、この所望のアルコール生成物の特徴を明らかにすることができる。例えば、1H NMRの〜3.3乃至3.5ppmにおけるエナールプロトンの消滅および2個のメチレンプロトンの出現が、二量体出発材料の所望のアルコール生成物への転換を示すことができる。例えば、そのアルコール生成物は、望まれていない副生物または出発材料を含まない。例えば、アルコール生成物中の不純物(例えば、望まれていない副生物または出発材料)は、20%未満(例えば、<10%、<5%、<2%、または<1%)である。
本発明の一形態において、オゾン発生用の空気の代わりに酸素源として水を使用し、また分子水素共生成物を下流材料の還元に使用することができる。
幾つかの実施形態において本発明の方法の生成物は、60%以上の、例えば70%以上、80%以上、または90%以上の総収率を有する。
本発明はまた、本明細書中で述べた方法により合成されるゲルベアルコール前駆体(例えば、式Iの化合物)およびゲルベアルコール(例えば、式IIの化合物)に関する。
幾つかの実施形態において本発明の方法の生成物は、85%超、90%超、92%超、95%超、97%超、または99%超の式Iの化合物を含有する。例えばこの生成物は、望まれていない副生物または出発材料を含まない。例えば、アルコール生成物中の不純物(例えば、モノアルデヒドなどの望まれていない副生物または出発材料)は、20%未満(例えば、<15%、<10%、<8%、<5%、<3%、<2%、または<1%)である。
幾つかの実施形態において本発明の方法の生成物は、80%超の式IIの化合物を含有する。幾つかの実施形態において本発明の方法の生成物は、85%超、90%超、92%超、95%超、97%超、または99%超の式IIの化合物を含有する。例えばこの生成物は、望まれていない副生物または出発材料を含まない。例えば、生成物中の不純物(例えば、アルデヒド二量体などの望まれていない副生物または出発材料)は、20%未満(例えば、<15%、<10%、<8%、<5%、<3%、<2%、または<1%)である。
本明細書中で開示する方法は、所望の化合物の大規模および小規模調製の両方に適していることが分かるはずである。本明細書中で述べた方法の好ましい実施形態において、式Iのエナール化合物または式IIの化合物を、大規模に、例えば実験的/実験室規模ではなく工業生産規模で調製することができる。例えば、開示の方法によるバッチ式プロセスは、生成物の少なくとも1g、または少なくとも5g、または少なくとも10g、または少なくとも100g、または少なくとも1kg、または少なくとも10kg、または少なくとも100kgのバッチの調製を可能にする。さらに、当該方法は、少なくとも80%、少なくとも85%、少なくとも90%、少なくとも95%、少なくとも98%、または少なくとも98.5%の純度を有する生成物の調製を可能にする。例えば生成物は、望まれていない副生物または出発材料を含まない。例えば生成物中の不純物(モノアルデヒドまたはアルデヒド二量体などの望まれていない副生物または出発材料)は、20%未満(例えば、<15%、<10%、<8%、<5%、<3%、<2%、<1.5%、または<1%)である。
本明細書中で述べた化合物は、本発明の方法によって調製することができる。別法において、またこれに加えて、本明細書中で述べた化合物は、例えば2012年7月6日出願の共有の米国仮特許出願第61/668,863号明細書(代理人整理番号44019-502P01US)、2012年7月19日出願の米国仮特許出願第61/673,411号明細書(代理人整理番号44019-502P02US)、米国仮特許出願第61/XXX,XXX号明細書(発明の名称「Ozonolysis Operations for Generation of Reduced and/or Oxidized Product Streams」)(代理人整理番号44019-502P03US)、米国特許第6,093,856号明細書、米国特許第6,060,443号明細書、米国特許第6,013,813号明細書、米国特許第6,008,181号明細書、米国特許第5,929,263号明細書、米国特許第5,919,959号明細書、米国特許第5,919,743号明細書、米国特許第5,786,389号明細書、米国特許第5,756,785号明細書、米国特許第5,744,626号明細書、米国特許第5,717,119号明細書、米国特許第5,646,321号明細書、米国特許第5,488,121号明細書、米国特許第5,387,374号明細書、米国特許第5,312,968号明細書、米国特許第5,264,006号明細書、米国特許第5,094,667号明細書、米国特許第4,830,769号明細書、米国特許第4,800,077号明細書、米国特許第4,767,815号明細書、米国特許第4,731,190号明細書、および米国特許第4,425,458号明細書に記載の方法によって調製することができる。本明細書中で述べた化合物の調製のための好適な方法はまた、例えば M.Guerbet,C.R. Acad, Sci. Paris, 128, 511; 1002(1899)、 Veibel, S. and Nielsen, J., Tetrahedron, 23, 1723-1733 (1967)、 S. Cannizzaro, Liebigs Ann. Chem.88. 129 (1853)、 Geissman, T.A., Organic Reactions, Vol II, p.94 Wiley, New York(1944)、 O’Lenik, Jr. Anthony J. and Bilbo, Raymond E.,Guerbet Alcohols, Versatile Hydrophobes, SCCS, April, 1987、 Henkel ,K., Fatty Alcohols, Raw Materials, Process and Applications, Henkel KGaA, 1982, p.163、 Stein, W. in: Method Chim, 5 (1975) p.563-573、ドイツ特許第538,388号明細書(1931年10月)、 Morrison, Robert and Boyd,Robert,Organic Chemistry,3rd Edition (1973) p.582、 O’Lenik, Anthony J. Surfactants Chemistry and Properties, Allured Publishing, 1999, p.28-30、および Sunwoo, Chunkee, and Wade, William H., J. Dispersion Sci. and Tech, 13, 491, 1992 中に見出すことができる。
本発明の1または複数の実施形態の詳細を下記の付随の説明において述べる。別段の定義がない限り、本明細書中で使用されるすべての技術用語および科学用語は、本発明が属する当業界の普通の熟練者によって一般に理解されるものと同じ意味を有する。不一致の場合は、本明細書が支配することにする。
別段の指示がない限り本明細書中で使用される用語法は、単に特定の実施形態を記述する目的のものに過ぎず、限定するものではないことを理解されたい。本明細書中において、また別添の特許請求の範囲において複数の用語に言及されるはずであり、それらは下記に述べる定義を有するものと定義されるものとする。
本明細書中で使用される単数形「ある(“a”および“an”)」および「その(“the”)」は、脈絡上で別段の明白な指示がない限り、複数の指示対象を含む。したがって、例えば「ある反応物」についての言及は、単一の反応物だけでなく2種類以上の異なる反応物の組合せまたは混合物も含み、「ある置換基」についての言及は、単一の置換基だけでなく2種類以上の置換基も含む、など。
本明細書中で使用される語句「例えば(“for example”、“for instance”)」、「など(“such as”)」、または「含めた(“including”)」は、より概括的な主題をさらに明確にする例を導入することを意味する。これらの例は、開示内容を理解する助けとしてのみ提供され、いかなるやり方でも限定することを意味しない。さらに、本明細書中で使用される用語「してもよい(“may”)」、「任意選択の(“optional”)」、「場合によっては(“optionally”)」、または「場合によっては〜することができる(“may optionally”)」は、その後に述べる状況が生じても、生じなくてもよいことを意味し、したがってその記述は、その状況が生ずる例および生じない例を含む。例えば、語句「場合によっては存在する」は、その目的物が存在してもしなくてもよいことを意味し、したがってその記述は、目的物が存在する例および目的物が存在しない例を含む。
本明細書中で使用される語句「式を有する」または「構造を有する」は、限定するものではなく、用語「含む(“comprising”)」が一般に使用されているのと同じように使用される。
「異性 (Isomerism)」とは、同一の分子式を有するが、それらの原子の結合順位またはそれらの原子の空間における配置が異なる化合物を意味する。それらの原子の空間配置が異なる異性体を「立体異性体」と呼ぶ。互いの鏡像でない立体異性体を「ジアステレオ異性体」と呼び、また互いの重ね合せることができない鏡像である立体異性体を「鏡像異性体」または時には光学異性体と呼ぶ。逆のキラリティの個々の鏡像異性型を等量で含有する混合物を「ラセミ混合物」と呼ぶ。
4個の同一でない置換基に結合している炭素原子を「キラル中心」と呼ぶ。
「キラル異性体」とは、少なくとも1個のキラル中心を有する化合物を意味する。2個以上のキラル中心を有する化合物は、個々のジアステレオ異性体として存在するか、または「ジアステレオ混合物」とも呼ばれるジアステレオ異性体の混合物として存在するかのどちらかであることができる。1個のキラル中心が存在する場合、立体異性体をそのキラル中心の絶対配置(RまたはS)によって特徴づけることができる。絶対配置とは、キラル中心に結合している置換基の空間配置を指す。検討されているキラル中心に結合している置換基は、Cahn、 Ingold、およびPrelogの順位規則(Cahn et al.,Angew. Chem. Inter. Edit. 1966, 5, 385; errata 511、 Cahn et al., Angew. Chem. 1966, 78, 413、 Cahn and Ingold, J. Chem. Soc. 1951 (London), 612、 Cahn et al., Experientia 1956,12,81、 およびCahn, J. Chem. Educ. 1964, 41, 116)に従って順位付けされる。本願の幾つかの式においては、1個または複数個のキラル中心をキラル炭素の隣に置かれる星印によって識別する。他の式においてキラル中心は識別されないが、それにもかかわらずキラル異性体はこれらの式に包含される。
「幾何異性体」とは、二重結合の周りの回転が束縛されることにより存在する、ジアステレオ異性体を意味する。それらの立体配置は、それらの名称において接頭辞 cis(シス)および trans(トランス)、またはZおよびEによって区別される。これらは、基がCahn-Ingold-Prelog規則による分子中の二重結合の同じ側または反対側にあることを表す。
本発明の幾つかの化合物は互変異性型で存在することができ、これらもまた本発明の範囲内に包含されることを意図している。「互変異性体」とは、その構造が原子配置の点で顕著に異なるが、容易かつ迅速な平衡状態で存在する化合物を指す。本発明の化合物は様々な互変異性体として描くことができることを理解されたい。それら化合物が互変異性型を有する場合、すべての互変異性型が本発明の範囲内にあることを意図しており、かつそれら化合物のネーミングがいずれの互変異性型も排除しないこともまた理解されたい。さらに、たとえ1種類の互変異性体が記述される場合でも、本発明は本発明の化合物のすべての互変異性体を含む。
本明細書中で使用される用語「塩」は、塩酸塩、臭化水素酸塩、リン酸塩、硫酸塩、重硫酸塩、アルキルスルホン酸塩、アリールスルホン酸塩、酢酸塩、安息香酸塩、クエン酸塩、マレイン酸塩、フマル酸塩、コハク酸塩、乳酸塩、および酒石酸塩と、Na+、K+、Li+などのアルカリ金属陽イオンと、Mg2+またはCa2+などのアルカリ土類金属塩とを含めた酸付加塩、あるいは有機アミン塩、あるいは有機ホスホニウム塩を含むことができる。
本明細書中で使用される用語「アルキル」とは、必ずしもこれに限らないが、一般には1個〜約28個の炭素原子を含有する分岐または非分岐の飽和または不飽和炭化水素基、例えばメチル、エチル、n−プロピル、イソプロピル、n−ブチル、イソブチル、t−ブチル、オクチル、デシルなどを指す。必ずしもこれに限らないが本明細書中で述べる脂質中のアルキル基は、一般には4個〜約28個の炭素原子を含有することができ、またそのような基は10個〜約28個の炭素原子を含有することができる。「置換アルキル」とは、1種類または複数種類の置換基で置換されたアルキルを指し、また用語「ヘテロ原子含有アルキル」および「ヘテロアルキル」とは、少なくとも1個の炭素原子が、O、S、Se、N、またはPなどのヘテロ原子で置き換えられたアルキル基を指す。
本明細書中で使用される用語「シクロアルキル」は、3〜30個の炭素原子を有する置換または無置換の非芳香族炭化水素環を含むことを意図している。したがって用語「C3〜C8シクロアルキル」とは、その環構造中に3、4、5、6、7、または8個の炭素原子を有するシクロアルキルを指す。一実施形態においてシクロアルキル基、例えばシクロペンチル、シクロペンテニル、シクロヘキシルは、環構造中に5個または6個の炭素を有する。「置換シクロアルキル」とは、1種類または複数種類の置換基で置換されたシクロアルキルを指し、また用語「ヘテロ原子含有シクロアルキル」および「ヘテロシクロアルキル」とは、少なくとも1個の炭素原子がヘテロ原子で置き換えられたシクロアルキル環を指す。
「アリール」には、芳香族性を有する基が挙げられ、これには少なくとも1個の芳香環を有する「共役」系または多環系が含まれる。例には、フェニル、ベンジルなどが挙げられる。
「ヘテロアリール」基は、環構造中に1個〜4個のヘテロ原子を有する上記で定義されたアリール基であり、「アリールヘテロ環」または「ヘテロ芳香族炭化水素」とも呼ぶことができる。本明細書中で使用される用語「ヘテロアリール」は、複数個の炭素原子と、窒素、酸素、および硫黄からなる群から独立して選択される1個または複数個のヘテロ原子、例えば1個または1〜2個または1〜3個または1〜4個または1〜5個または1〜6個のヘテロ原子とからなる安定な5員、6員、または7員単環式芳香族ヘテロ環、または7員、8員、9員、10員、11員、または12員二環式芳香族ヘテロ環を含むことを意図している。その窒素原子は、置換されても無置換でもよい(すなわち、NまたはNR、ただしRはHまたは定義したような他の置換基である)。窒素および硫黄ヘテロ原子は、場合によっては酸化されてもよい(すなわち、N→OおよびS(O)p、ただしp=1または2)。芳香族ヘテロ環中のSおよびO原子の総数は1以下であることに留意されたい。
ヘテロアリール基の例には、ピロール、フラン、チオフェン、チアゾール、イソチアゾール、イミダゾール、トリアゾール、テトラゾール、ピラゾール、オキサゾール、イソオキサゾール、ピリジン、ピラジン、ピリダジン、ピリミジンなどが挙げられる。
さらに、用語「アリール」および「ヘテロアリール」は、多環式アリールおよびヘテロアリール基、例えば三環式、二環式アリールおよびヘテロアリール基、例えばナフタレン、ベンゾオキサゾール、ベンゾジオキサゾール、ベンゾチアゾール、ベンゾイミダゾール、ベンゾチオフェン、メチレンジオキシフェニル、キノリン、イソキノリン、ナフチリジン、インドール、ベンゾフラン、プリン、ベンゾフラン、デアザプリン、インドリジンを含む。
多環式芳香環の場合、ただそれら環の1個が芳香族であることが必要である(例えば、2,3−ジヒドロインドール)が、環のすべてが芳香族であってもよい(例えば、キノリン)。第二の環を縮合または架橋させることもまた可能である。シクロアルキル、ヘテロシクロアルキル、アリール、およびヘテロアリールを互いに縮合させることもまた可能である。架橋環は、1個または複数個の炭素原子が2個の非隣接炭素原子と連結する場合に生じる。一実施形態において架橋環は、1個または2個の炭素原子である。架橋は、常に単環式環を三環式環に変えることに留意されたい。環が架橋される場合、その環の列挙されている置換基もまたその架橋上に存在することができる。縮合環(例えば、ナフチル、テトラヒドロナフチル)およびスピロ環もまた含まれる。
「置換アルキル」などの場合の「置換された」とは、そのアルキルまたは他の部分において、炭素原子に結合した少なくとも1個の水素原子が、1個または複数個の非水素置換基、例えば官能基によって置き換えられることを意味する。
官能基の例には、制限なしに、ハロ、ヒドロキシル、スルフヒドリル、C1〜C24アルコキシ、C2〜C24アルケニルオキシ、C2〜C24アルキニルオキシ、C5〜C20アリールオキシ、アシル(これにはC2〜C24アルキルカルボニル(−CO−アルキル)およびC6〜C20アリールカルボニル(−CO−アリール)が含まれる)、アシルオキシ(−O−アシル)、C2〜C24アルコキシカルボニル(−(CO)−O−アルキル)、C6〜C20アリールオキシカルボニル(−(CO)−O−アリール)、ハロカルボニル(−(CO)−X、ただしXはハロ)、C2〜C24アルキルカルボナト(−O(CO)−O−アルキル)、C6〜C20アリールカルボナト(−O−(CO)−O−アリール)、カルボキシ(−COOH)、カルボキシラト(−COO-)、カルバモイル(−(CO)−NH2)、一置換C1〜C24アルキルカルバモイル(−(CO)−NH(C1〜C24アルキル))、二置換アルキルカルバモイル(−(CO)−N(C1〜C24アルキル)2)、一置換アリールカルバモイル(−(CO)−NH−アリール)、トリカルバモイル(−(CS)−NH2)、カルバミド(−NH−(CO)−NH2)、シアノ(−C≡N)、イソシアノ(−N+≡C-)、シアナト(−O−C≡N)、イソシアナト(−O−N+≡C-)、イソチオシアナト(−S−C≡N)、アジド(−N=N+=N-)、ホルミル(−(CO)−H)、チオホルミル(−(CS)−H)、アミノ(−NH2)、モノ−およびジ−(C1〜C24アルキル)置換アミノ、モノ−およびジ−(C5〜C20アリール)置換アミノ、C2〜C24アルキルアミド(−NH−(CO)−アルキル)、C5〜C20アリールアミド(−NH−(CO)−アリール)、イミノ(−CR=NH、ただしR=水素、C1〜C24アルキル、C5〜C20アリール、C6〜C20アルキルアリール、C6〜C20アラルキルなど)、アルキルイミノ(−CR=N(アルキル)、ただしR=水素、アルキル、アリール、アルキルアリールなど)、アリールイミノ(−CR=N(アリール)、ただしR=水素、アルキル、アリール、アルキルアリールなど)、ニトロ(−NO2)、ニトロソ(−NO)、スルホ(−SO2−OH)、スルホナト((−SO2−O-)、C1〜C24アルキルスルファニル(−S−アルキル、「アルキルチオ」とも呼ばれる)、アリールスルファニル(−S−アリール、「アリールチオ」とも呼ばれる)、C1〜C24アルキルスルフィニル(−(SO)−アルキル)、C5〜C20アリールスルフィニル(−(SO)−アリール)、C1〜C24アルキルスルホニル(−SO2−アルキル)、C5〜C20アリールスルホニル(−SO2−アリール)、ホスホノ(−P(O)(OH)2)、ホスホナト(−P(O)(O-2)、ホスフィナト(−P(O)(O-))、ホスホ(−PO2)、ホスフィノ(−PH2)、モノ−およびジ−(C1〜C24アルキル)置換ホスフィノ、モノ−およびジ−(C5〜C20アリール)置換ホスフィノ、C1〜C24アルキルなどのヒドロカルビル部分(これにはC1〜C18アルキルが含まれ、さらにC1〜C12アルキルが含まれ、またさらにC1〜C6アルキルが含まれる)、C2〜C24アルケニル(これにはC2〜C18アルケニルが含まれ、さらにC2〜C12アルケニルが含まれ、またさらにC2〜C6アルケニルが含まれる)、C2〜C24アルキニル(これにはC2〜C18アルキニルが含まれ、さらにC2〜C12アルキニルが含まれ、またさらにC2〜C6アルキニルが含まれる)、C5〜C30アリール(これにはC5〜C20アリールが含まれ、またさらにC5〜C12アリールが含まれる)、およびC6〜C30アラルキル(これにはC6〜C20アラルキルが含まれ、またさらにC6〜C12アラルキルが含まれる)が挙げられる。これに加えて特定の基がこれを容認する場合、前述の官能基をさらに1種類または複数種類の追加の官能基で、あるいは1種類または複数種類のヒドロカルビル部分、例えば上記で具体的に列挙したもので置換することができる。
本明細書において化合物の構造式は、幾つかのケースにおいて便宜上、ある特定の異性体を表すが、本発明には、幾何異性体、不斉炭素に基づく光学異性体、立体異性体、互変異性体などのすべての異性体が含まれる。これに加えて、その式によって表される化合物に関して結晶多形が存在することができる。任意の結晶形、結晶形の混合物、あるいはその無水物または水和物が本発明の範囲に含まれることに留意されたい。
本明細書中で使用されるすべての百分率および比率は、別段の指定がない限り、重量単位である。
実施例1:長鎖脂肪族アルデヒドの二量体化
反応媒体としてエタノール:水の溶液を使用する油脂化学由来のアルデヒドの二量体化の方法を発展させ、出発原料および生成物の両方の特有の可溶化必要条件を得た。具体的にはまず出発アルデヒドを塩基性反応媒体中に可溶化し、それを高収率で成功裡に二量体に転換させた。転換後、所望の生成物は反応媒体から相分離して容易に単離された。
実験
表1および2中で提供されるデータを得るための代表的手順
溶媒、すなわち70℃で1.35gのNaOHを添加したエタノール水溶液にヘキサナールまたはノナナールを加えて50mLの総体積とした。下記表1に示す通り、溶媒中のエタノール対水の体積比は、99:1から0:100の範囲であり、溶媒対アルデヒドの体積比は9:1に維持された。相対的には下記表2に示す通り、溶媒中のエタノール対水の体積比は50:50に維持され、また溶媒対アルデヒドの体積比は、9:1から1:1の範囲であった。この混合物を、660RPMでのオーバーヘッド撹拌により70℃で15分間激しく撹拌した。15分後、反応混合物の分割量を採取し、1.0M塩酸中で反応を止めた。この分割量を水で希釈し、有機物を重水素化クロロホルムで抽出し、それからプロトンNMRを撮った。続いて残りの反応混合物をメスシリンダーに注ぎ込み、反応混合物の相分離の観察結果を記録した。
下記表1は、選択されたエタノール:水系中でのエナール生成物の転換と、それに続く分離の要点をまとめる(注記:好ましい溶媒系は「+/+」の記号表示を有する)。
Figure 2015510932
* 反応条件は、2.7%(wt/vol)NaOH、70℃および660rpmでの15分間の撹拌を含む。
**スラッシュの左側の「+」が1H NMRに基づく所望の化合物への>90%転換を表すのに対し、<90%転換は「−」で表される。さらに相分離のことを言う場合は、「+」は迅速な相分離が観察されたことを表し、「−」は相分離が観察されなかったことを表す。例えば、「+/+」の記号表示は、>90%転換および迅速な相分離が観察されたことを表す。
これに加えて表2に示す通り、好ましいエタノール:水の溶媒系を、望ましい転換率および相分離を維持しながら様々な溶媒:基質の体積比で使用した。驚くべきことに望ましい転換率および相分離は、塩基性溶液:アルデヒドの体積比を9:1から1:1へ増大させた場合にも維持された。
Figure 2015510932
* 反応条件は、2.7%(wt/vol)NaOH、70℃および660rpmでの15分間の撹拌を含む。
**スラッシュの左側の「+」は1H NMRに基づく所望の化合物への>90%転換を表し、スラッシュの右側の「+」は迅速な相分離が観察されたことを表す。例えば、「+/+」の記号表示は、>90%転換および迅速な相分離が観察されたことを表す。
反応が起こらないように溶媒系から塩基を除いた対照実験を設定することによって、相分離における転換の役割をさらに調べた。結果を表3に示す。表中、「+」は迅速な相分離が観察されたことを表し、「−」は相分離が観察されなかったことを表す。例えば、「+/+」の記号表示は、転換生成物(すなわち、エナール二量体)が容易に相分離したのに対し、出発材料(すなわち、ヘキサナールおよび/またはノナナール)が反応媒体から相分離しなかったことを表す。
Figure 2015510932
* 塩基性反応条件は、二量体化実験については2.7%(wt/vol)NaOH、70℃および660rpmでの15分間の撹拌を含む。非塩基性反応は、NaOHを除外したこと以外は同一であった。
二量体の代表的1H NMRを図1に見ることができる。エナール官能基の特性ピーク、すなわち〜9.34ppm(一重線)および〜6.57ppm(三重線)が観察された。
実施例2:二量体化による生成物の還元
250mLのノナナール(206g、1.45モル)を前述の実施例1の条件に従って二量体化し、得られた二量体をエタノールおよび水の層から分離した。次いでその二量体に20%(wt/wt)のラネーニッケルを加えた。得られた混合物を高圧反応器中に置き、300psiのH2下で125℃において24時間激しく撹拌した。次いで得られた物質を濾過して触媒を除去し、>90%純粋な所望の生成物を収率>80%で得た。生成物の1H NMRは、エナールプロトンの消滅と、〜3.3乃至3.5ppmにおける2個のメチレンプロトンの出現によって特徴付けられた。
実施例3:ノナナールの二量体化および二量体の還元
脂肪酸のオゾン分解による開裂から得られるノナナール(7mL、5.789g)を、水酸化ナトリウム(3.4重量%)を添加した1:1のエタノール:水の溶液10mLで希釈した。次いで反応物を70℃で15分間撹拌し、次いで熱および撹拌を止め、分液漏斗中で相分離させた。
次いで還元のために一番上の有機相を還元に直接かけた(5.529g)。この物質の分析用分割量がGC FID分析のために採取され、その結果を図2に示す。二量体ピークが、10.678分の所にあった。出発材料ノナナールの痕跡を表すピークが、〜4.7分の所に観察された。この痕跡は、所望の生成物への>95%転換を示唆した。
次いで有機相をエタノール(300mL)で希釈し、Parr水素化装置中でラネーニッケル(20%(wt/wt))を加えた。この反応器を密閉し、420psiの水素ガスを160℃で3時間投入した。次いで反応物を冷却し、触媒を濾過して取り除き、溶媒を蒸発させた。5.4gの有機物質が回収された。その有機物質の分析用分割量を、GC FIDを使用して分析した。所望のアルコールのピークが、GC FIDトレースの13.406分の所にあった。図3に示す結果は、所望のアルコールが>90%純粋であったことを示唆する。
実施例4:三官能性誘導体
脂肪酸との混合物中の〜41.9重量%としての5gのアゼルアルデヒドを、1.39gのNaOHの存在下で25mの水に溶解した。得られた溶液を70℃で1時間撹拌した。分析用分割量を採取し、1N HClで中和した。中和すると有機相が分離し、次いでこれを分割し、1H NMR分析に使用した。1H NMRデータは、特徴のあるエナール官能基の形成および他の脂肪族アルデヒドの消滅を示した。
次いでその塩基性水溶液を、水溶液を形成するための希釈有無のいずれかで水素化に直接かけた。一実験において、反応した物質5gを300mLの水中で希釈し、それにラネーニッケル(20%(wt/wt))を加えた。次いで得られた混合物を高圧反応器中に置き、400psiのH2下で160℃において3時間激しく撹拌した。濾過および中和の後、分析試料を1H NMRに使用し、それは特徴のあるエナールプロトンの消滅と、〜3.3乃至3.5ppmにおける特徴のあるメチレンプロトンの出現とを示し、これは所望の8−(ヒドロキシメチル)ヘプタデカン二酸の形成と一致した。
参照による援用
本明細書中で言及される特許文書および科学論文のそれぞれの全開示内容は、あらゆる目的に対して参照により援用される。
等価物
本発明を、その精神または本質的特徴から逸脱することなく他の特定の形態で実施することができる。したがって前述の実施形態は、本明細書中で述べた本発明に関してあらゆる点で限定するものではなく例示的なものと見なされるべきである。したがって本発明の範囲は、前述の説明によってではなく添付の特許請求の範囲によって表され、特許請求の範囲の意味および等価の範囲内に入るすべての変更はこの中に包含されることを意図している。

Claims (20)

  1. 式I:
    Figure 2015510932
    [式中、
    Rは、水素又は、無置換の若しくは置換されたC1−C20アルキルであり、ここで前記アルキルは直鎖又は分岐鎖であり、そして場合によりアルキル鎖の内部又は末端にカルボニル部位(C=O)を含む]
    の化合物、又はその塩の製造方法であって、以下のステップ:
    トリグリセリド、脂肪酸又は脂肪酸エステルをオゾン分解して、式R−CH2CHOで表されるモノ−アルデヒドを得;そして
    前記モノ−アルデヒドを二量体化して、式Iの化合物を得ること
    を含む、前記方法。
  2. 式Iの化合物を還元して、式II:
    Figure 2015510932
    の化合物、又はその塩を製造すること
    をさらに含む、請求項1に記載の方法。
  3. 前記還元が、水素化触媒の存在下で行われる、請求項2に記載の方法。
  4. オゾン分解ステップと二量体化ステップとの間に、蒸留によって、他のオゾン分解産物から前記モノ−アルデヒドを単離することをさらに含む、請求項1に記載の方法。
  5. 前記蒸留が真空下で行われる、請求項1に記載の方法。
  6. Rが、1個、2個、3個、4個、5個、6個、7個、8個、9個、10個、11個、12個、13個、14個、15個又は16個の炭素原子を有するアルキルである、請求項1〜5のいずれか1項に記載の方法。
  7. Rが、2個、3個、4個、5個、6個、7個、8個、9個又は10個の炭素原子を有するアルキルである、請求項1〜5のいずれか1項に記載の方法。
  8. 前記二量体化反応は、酸又は塩基の存在下で行われる、請求項1〜5のいずれか1項に記載の方法。
  9. 前記二量体化反応は、アルコール水溶液中で行われる、請求項8に記載の方法。
  10. 前記アルコール水溶液中のアルコールと水との体積比が10:1〜1:10である、請求項9に記載の方法。
  11. 前記アルコールがエタノールである、請求項10に記載の方法。
  12. 前記オゾン分解ステップにおいて使用されるオゾンは、水を電解することによって生じる、請求項1に記載の方法。
  13. 水を電解することによって生じる水素が、請求項2の還元ステップにおいて使用される、請求項12に記載の方法。
  14. Rが、水素、無置換のC1−C20アルキル又は、アルキル鎖の末端に−COOHを含む置換されたC1−C20アルキルである、請求項1に記載の方法。
  15. 式Iの化合物を誘導体化して、式III:
    Figure 2015510932
    [式中、
    Figure 2015510932
    は単結合又は二重結合であり、
    Figure 2015510932
    の各々は、二重結合であるか、又は存在せず、
    Figure 2015510932
    が二重結合であるとき、Zの各々は、独立して、O又はSであり、あるいは、
    Figure 2015510932
    が存在しないとき、Zは存在せず、
    R’の各々は、独立して、ORa又はNRabであり、Ra及びRbの各々は、独立して、H、C1−C10アルキル、C3−C8シクロアルキル、アリール又はヘテロアリールであり、そしてnは、1、2、3、4、5、6、7、8、9、10、11又は12である]
    の化合物又はその塩を製造することをさらに含む、請求項14に記載の方法。
  16. 請求項1に記載の方法によって製造された、式I:
    Figure 2015510932
    [式中、
    Rは、水素又は、無置換の若しくは置換されたC1−C20アルキルであり、ここで前記アルキルは直鎖又は分岐鎖であり、そして場合によりアルキル鎖の内部又は末端にカルボニル部位(C=O)を含み、そして場合により、ORa、COORa、NRab、S(O)pa、CONRab又はNRaCORbで置換され、pは0、1又は2であり、そしてRa及びRbの各々は、独立して、H、C1−C10アルキル、C3−C8シクロアルキル、アリール又はヘテロアリールである]
    の化合物又はその塩。
  17. 請求項2に記載の方法によって製造された、式II:
    Figure 2015510932
    [式中、
    Rは、水素又は、無置換の若しくは置換されたC1−C20アルキルであり、ここで前記アルキルは直鎖又は分岐鎖であり、そして場合によりアルキル鎖の内部又は末端にカルボニル部位(C=O)を含み、そして場合により、ORa、COORa、NRab、S(O)pa、CONRab又はNRaCORbで置換され、pは0、1又は2であり、そしてRa及びRbの各々は、独立して、H、C1−C10アルキル、C3−C8シクロアルキル、アリール又はヘテロアリールである]
    の化合物又はその塩。
  18. 請求項15に記載の方法によって製造された、式III:
    Figure 2015510932
    [式中、
    Figure 2015510932
    は単結合又は二重結合であり、
    Figure 2015510932
    の各々は、二重結合であるか、又は存在せず、
    Figure 2015510932
    が二重結合であるとき、Zの各々は、独立して、O又はSであり、あるいは、
    Figure 2015510932
    が存在しないとき、Zは存在せず、
    R’の各々は、独立して、ORa又はNRabであり、Ra及びRbの各々は、独立して、H、C1−C10アルキル、C3−C8シクロアルキル、アリール又はヘテロアリールであり、そしてnは、1、2、3、4、5、6、7、8、9、10、11又は12である]
    の化合物又はその塩。
  19. 請求項15に記載の方法によって製造された、式IIIの化合物であって、前記化合物が、以下の式IIIa、IIIb又はIIIc:
    Figure 2015510932
    の化合物である、前記化合物。
  20. 式IV:
    Figure 2015510932
    [式中、
    Figure 2015510932
    は単結合又は二重結合であり、
    Figure 2015510932
    の各々は、二重結合であるか、又は存在せず、
    Figure 2015510932
    が二重結合であるとき、Zの各々は、独立して、O又はSであり、あるいは、
    Figure 2015510932
    が存在しないとき、Zは存在せず、
    R’の各々は、独立して、ORa又はNRabであり、Ra及びRbの各々は、独立して、H、C1−C10アルキル、C3−C8シクロアルキル、アリール又はヘテロアリールであり、そしてm及びnの各々は、独立して、1、2、3、4、5、6、7、8、9、10、11又は12である]
    の化合物又はその塩。
JP2015501761A 2012-03-21 2013-03-13 ゲルベアルコール、並びにその調製方法及び使用 Active JP6510400B2 (ja)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US201261613867P 2012-03-21 2012-03-21
US61/613,867 2012-03-21
US201261641742P 2012-05-02 2012-05-02
US61/641,742 2012-05-02
US201261662639P 2012-06-21 2012-06-21
US61/662,639 2012-06-21
PCT/US2013/030962 WO2013142206A1 (en) 2012-03-21 2013-03-13 Guerbet alcohols and methods for preparing and using same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2017240485A Division JP6591518B2 (ja) 2012-03-21 2017-12-15 ゲルベアルコール、並びにその調製方法及び使用

Publications (3)

Publication Number Publication Date
JP2015510932A true JP2015510932A (ja) 2015-04-13
JP2015510932A5 JP2015510932A5 (ja) 2016-05-12
JP6510400B2 JP6510400B2 (ja) 2019-05-08

Family

ID=49223214

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2015501761A Active JP6510400B2 (ja) 2012-03-21 2013-03-13 ゲルベアルコール、並びにその調製方法及び使用
JP2017240485A Active JP6591518B2 (ja) 2012-03-21 2017-12-15 ゲルベアルコール、並びにその調製方法及び使用

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2017240485A Active JP6591518B2 (ja) 2012-03-21 2017-12-15 ゲルベアルコール、並びにその調製方法及び使用

Country Status (5)

Country Link
US (1) US9840449B2 (ja)
EP (1) EP2828231B1 (ja)
JP (2) JP6510400B2 (ja)
CA (1) CA2867698C (ja)
WO (1) WO2013142206A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6687547B2 (ja) * 2014-06-20 2020-04-22 ピー2 サイエンス,インコーポレイティド 管式又は多管式反応器における膜オゾン分解
JP6959246B2 (ja) * 2016-03-04 2021-11-02 ユニバーシティ オブ ピッツバーグ−オブ ザ コモンウェルス システム オブ ハイヤー エデュケーションUniversity Of Pittsburgh Of The Commonwealth System Of Higher Education 治療に有効な量のジカルボン酸化合物を使用した、病気の予防、治療及び治癒
EP3866968A4 (en) 2018-10-19 2022-07-27 P2 Science, Inc. NEW METHODS FOR THE DISPROPORTIONATION DETERRENCE OF OZONIDES
US20220169596A1 (en) * 2019-03-26 2022-06-02 Jean-Christophe Raboin Derivatives of 10-methylene lipids, process for preparing such derivatives and use thereof
EP4157815A2 (en) * 2020-05-29 2023-04-05 Dow Global Technologies LLC Composition with mixed c8-c18 alcohols and surfactants thereof

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2875241A (en) * 1955-12-27 1959-02-24 Monsanto Chemicals New polyhydroxy alcohols and polyesters and novel process of preparing such compounds
JPS58210859A (ja) * 1982-06-01 1983-12-08 コノコ・インコ−ポレ−テツド アルコール類のアルコキシ化反応用触媒
JPS61500784A (ja) * 1981-04-22 1986-04-24 モンサント コンパニ− 洗浄剤範囲アルデヒド及びアルコ−ル混合物、及び誘導体、及びそのための方法
DE3440620A1 (de) * 1984-11-07 1986-05-07 Henkel KGaA, 4000 Düsseldorf Verfahren zur herstellung von (omega)-funktionalisierten aldehyden durch reduktive ozonolyse von ungesaettigten fettsaeureestern bzw. ungesaettigten fettalkoholen
JPH01268655A (ja) * 1988-04-20 1989-10-26 Kuraray Co Ltd 1,1,7−トリメチロールヘプタン
JP2001340763A (ja) * 2000-06-05 2001-12-11 Nippon Shokubai Co Ltd 気相オゾンによる触媒の活性化方法
US20020061566A1 (en) * 2000-03-20 2002-05-23 Eirich L. Dudley Biooxidation capabilities of candida sp
DE10232458A1 (de) * 2002-07-17 2003-07-03 Sasol Germany Gmbh Verfahren zur Herstellung von Guerbet-Säuren
JP2003521565A (ja) * 1999-06-18 2003-07-15 イー.アイ.デュポン ドゥ ヌムール 不飽和油の酸化開裂およびこれから得られる製品
JP2005298488A (ja) * 2004-03-16 2005-10-27 Mitsubishi Chemicals Corp 精製アルコールの製造方法
JP2007262019A (ja) * 2006-03-29 2007-10-11 Mitsubishi Chemicals Corp アルデヒドの製造方法
WO2008084062A1 (fr) * 2007-01-09 2008-07-17 Pierre Fabre Dermo-Cosmetique Nouveau procede de preparation d'hydroxy-acides gras insatures
JP2009520596A (ja) * 2005-12-23 2009-05-28 タレスナノ ナノテクノロジアイ ゼットアールテー フロー型実験室オゾン分解装置およびオゾン分解反応を実行する方法
JP2010065020A (ja) * 2008-08-13 2010-03-25 Ehime Univ アルドール縮合化合物の製造方法
JP2010180197A (ja) * 2008-08-27 2010-08-19 Kobelco Eco-Solutions Co Ltd 消化ガスの脱酸素方法及び装置
US20110282108A1 (en) * 2009-01-16 2011-11-17 Lg Chem, Ltd. Apparatus for producing alcohols from olefins
WO2011160730A1 (de) * 2010-06-25 2011-12-29 Evonik Degussa Gmbh Synthese von omega-aminocarbonsäuren und deren estern aus ungesättigten fettsäurederivaten

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2813113A (en) 1953-05-07 1957-11-12 Emery Industries Inc Method of making azelaic acid
US3119880A (en) 1961-05-29 1964-01-28 Gulf Research Development Co Condensation of alcohols
DE1223822B (de) 1965-01-27 1966-09-01 Deutsche Erdoel Ag Verfahren zur Herstellung von beta-verzweigten, gesaettigten und ungesaettigten Aldehyden
US3979466A (en) 1973-06-06 1976-09-07 Continental Oil Company Process for condensation of alcohols
US3864407A (en) 1973-06-06 1975-02-04 Continental Oil Co Catalytic Process For Producing Higher Molecular Weight
US4425458A (en) 1982-04-09 1984-01-10 Henkel Corporation Polyguerbet alcohol esters
US4540828A (en) * 1982-06-01 1985-09-10 Vista Chemical Company Catalysts for alkoxylation reactions
US4731190A (en) 1987-02-06 1988-03-15 Alkaril Chemicals Inc. Alkoxylated guerbet alcohols and esters as metal working lubricants
US4830769A (en) 1987-02-06 1989-05-16 Gaf Corporation Propoxylated guerbet alcohols and esters thereof
US4767815A (en) 1987-11-09 1988-08-30 Gaf Corporation Guerbet alcohol esters
US4800077A (en) 1988-01-13 1989-01-24 Gaf Corporation Guerbet quaternary compounds
US5264006A (en) 1990-03-20 1993-11-23 Exxon Research And Engineering Co. Guerbet alkyl ether mono amines
US5094667A (en) 1990-03-20 1992-03-10 Exxon Research And Engineering Company Guerbet alkyl ether mono amines
DE4040154A1 (de) 1990-12-15 1992-06-17 Henkel Kgaa Guerbetcarbonate
US5312968A (en) 1993-09-07 1994-05-17 Siltech Inc. Fluorine containing guerbet citrate esters
US5488121A (en) 1994-10-31 1996-01-30 Siltech Inc. Di-guerbet esters
US5717119A (en) 1994-10-31 1998-02-10 Lambent Technologies Inc. Polyoxyalkylene glycol guerbet esters
US5744626A (en) 1994-10-31 1998-04-28 Lambent Technologies Inc Complex guerbet acid esters
US5646321A (en) 1995-08-17 1997-07-08 Siltech Inc. Guerbet meadowfoam esters
EG22088A (en) 1996-04-16 2002-07-31 Procter & Gamble Alkoxylated sulfates
PH11997056158B1 (en) 1996-04-16 2001-10-15 Procter & Gamble Mid-chain branched primary alkyl sulphates as surfactants
US6093856A (en) 1996-11-26 2000-07-25 The Procter & Gamble Company Polyoxyalkylene surfactants
US5756785A (en) 1997-03-21 1998-05-26 Lambent Technologies, Inc. Guerbet betaines
US6287431B1 (en) 1997-03-21 2001-09-11 Lynntech International, Ltd. Integrated ozone generator system
US5786389A (en) 1997-12-28 1998-07-28 Lambert Technologies Inc. Guerbet castor esters
US5929263A (en) 1998-06-17 1999-07-27 Lambent Technologies Inc Guerbet branched quaternary compounds
US6013813A (en) 1998-06-17 2000-01-11 Hansotech Inc Guerbet based sorbitan esters
US5919959A (en) 1998-06-18 1999-07-06 Lambent Tech Inc Guerbet branched amine oxides
US5919743A (en) 1998-12-28 1999-07-06 Petroferm Inc. Guerbet branched quaternary compounds in personal care applications
DE60109058T2 (de) 2000-12-12 2006-03-02 Lynntech International, Ltd., College Station Elektrochemische vorrichtung mit ausfahrbarer elektrode
DE102006021438A1 (de) 2006-05-09 2007-11-15 Cognis Ip Management Gmbh Verfahren zur Ozonolyse von ungesättigten Verbindungen
EP2319822B1 (de) 2009-11-06 2017-01-11 Cognis IP Management GmbH Verfahren zur Herstellung von Guerbet-Alkoholen
US8840705B2 (en) 2011-07-07 2014-09-23 Linde Aktiengesellschaft Methods for the ozonolysis of organic compounds
CA2878935C (en) 2012-07-19 2019-08-13 P2 Science, Inc. Ozonolysis operations for generation of reduced and/or oxidized product streams

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2875241A (en) * 1955-12-27 1959-02-24 Monsanto Chemicals New polyhydroxy alcohols and polyesters and novel process of preparing such compounds
JPS61500784A (ja) * 1981-04-22 1986-04-24 モンサント コンパニ− 洗浄剤範囲アルデヒド及びアルコ−ル混合物、及び誘導体、及びそのための方法
JPS58210859A (ja) * 1982-06-01 1983-12-08 コノコ・インコ−ポレ−テツド アルコール類のアルコキシ化反応用触媒
DE3440620A1 (de) * 1984-11-07 1986-05-07 Henkel KGaA, 4000 Düsseldorf Verfahren zur herstellung von (omega)-funktionalisierten aldehyden durch reduktive ozonolyse von ungesaettigten fettsaeureestern bzw. ungesaettigten fettalkoholen
JPH01268655A (ja) * 1988-04-20 1989-10-26 Kuraray Co Ltd 1,1,7−トリメチロールヘプタン
JP2003521565A (ja) * 1999-06-18 2003-07-15 イー.アイ.デュポン ドゥ ヌムール 不飽和油の酸化開裂およびこれから得られる製品
US20020061566A1 (en) * 2000-03-20 2002-05-23 Eirich L. Dudley Biooxidation capabilities of candida sp
JP2001340763A (ja) * 2000-06-05 2001-12-11 Nippon Shokubai Co Ltd 気相オゾンによる触媒の活性化方法
DE10232458A1 (de) * 2002-07-17 2003-07-03 Sasol Germany Gmbh Verfahren zur Herstellung von Guerbet-Säuren
JP2005298488A (ja) * 2004-03-16 2005-10-27 Mitsubishi Chemicals Corp 精製アルコールの製造方法
JP2009520596A (ja) * 2005-12-23 2009-05-28 タレスナノ ナノテクノロジアイ ゼットアールテー フロー型実験室オゾン分解装置およびオゾン分解反応を実行する方法
JP2007262019A (ja) * 2006-03-29 2007-10-11 Mitsubishi Chemicals Corp アルデヒドの製造方法
WO2008084062A1 (fr) * 2007-01-09 2008-07-17 Pierre Fabre Dermo-Cosmetique Nouveau procede de preparation d'hydroxy-acides gras insatures
JP2010065020A (ja) * 2008-08-13 2010-03-25 Ehime Univ アルドール縮合化合物の製造方法
JP2010180197A (ja) * 2008-08-27 2010-08-19 Kobelco Eco-Solutions Co Ltd 消化ガスの脱酸素方法及び装置
US20110282108A1 (en) * 2009-01-16 2011-11-17 Lg Chem, Ltd. Apparatus for producing alcohols from olefins
WO2011160730A1 (de) * 2010-06-25 2011-12-29 Evonik Degussa Gmbh Synthese von omega-aminocarbonsäuren und deren estern aus ungesättigten fettsäurederivaten

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
"7-Amino-5-(methylamino)heptanoic acid: a potential putrescine hapten", THE JOURNAL OF ORGANIC CHEMISTRY, vol. 46, no. 22, JPN6016036201, 1981, pages 4582 - 4584, ISSN: 0003402623 *
"Aldol condensation of Y-formylbutyric acid esters", GAZZETTA CHIMICA ITALIANA, vol. 98(3), JPN6016036196, 1968, pages 235 - 44, ISSN: 0003402616 *
"Butenolide 4", BULLETIN DE LA SOCIETE CHIMIQUE DE FRANCE, vol. (7-8), JPN6016036197, 1959, pages 1259 - 67, ISSN: 0003402617 *
"Guerbet chemistry", JOURNAL OF SURFACTANTS AND DETERGENTS, vol. vol.4(3), JPN6016036195, 2001, pages 311 - 315, ISSN: 0003402618 *
"Guerbet reaction of primary alcohols leading to beta-alkylated dimer alcohols catalyzed by iridium c", THE JOURNAL OF ORGANIC CHEMISTRY, vol. 71, no. 21, JPN6016036194, 2006, pages 8306 - 8308, ISSN: 0003402619 *
"Michael addition of nitroalkanes to dimethyl maleate with DBU. A new direct method for the synthesis", TETRAHEDRON LETTERS, vol. 35, no. 49, JPN6016036199, 1994, pages 9247 - 9250, ISSN: 0003402621 *
"Ozonolysis of canola oil: a study of product yields and ozonolysis kinetics in different solvent sys", JOURNAL OF THE AMERICAN OIL CHEMISTS' SOCIETY, vol. 88, JPN6016036193, 2011, pages 689 - 705, ISSN: 0003402615 *
"Potassium fluoride/basic alumina as far superior heterogeneous catalyst for the chemoselective conju", ADVANCED SYNTHESIS & CATALYSIS, vol. vol. 348, no. 10-11, JPN6016036200, 2006, pages 1154 - 1156, ISSN: 0003402622 *
"オキシ酸に関する研究(第1〜3報)", 日本化学雑誌, vol. 第81巻 第2号, JPN6016036198, 1960, pages 272 - 274, ISSN: 0003402620 *
BERICHTE DER DEUTSCHEN CHEMISCHEN GESELLSCHAFT, vol. 41(2), JPN7016002793, 1 May 1908 (1908-05-01), pages 2794 - 2799, ISSN: 0003402624 *

Also Published As

Publication number Publication date
EP2828231A1 (en) 2015-01-28
CA2867698C (en) 2020-07-07
JP2018052975A (ja) 2018-04-05
CA2867698A1 (en) 2013-09-26
US9840449B2 (en) 2017-12-12
EP2828231A4 (en) 2015-06-24
US20130274511A1 (en) 2013-10-17
WO2013142206A1 (en) 2013-09-26
EP2828231B1 (en) 2019-11-06
JP6591518B2 (ja) 2019-10-16
JP6510400B2 (ja) 2019-05-08

Similar Documents

Publication Publication Date Title
JP6591518B2 (ja) ゲルベアルコール、並びにその調製方法及び使用
EP3107904B1 (en) Substituted delta-lactones and methods of preparing same
PL185425B1 (pl) Pochodne kwasu 3 cyjano-5-metyloheksanowego oraz sposób wytwarzania kwasu (+)-3-(aminometylo)-5-metyloheksanowego
WO2015191706A1 (en) Terpene-derived compounds and methods for preparing and using same
JPWO2006104226A1 (ja) 軸不斉を有する光学活性な4級アンモニウム塩およびそれを用いたα−アミノ酸およびその誘導体の製造方法
JP2013521267A (ja) ビシナルジオールの酸化開裂によるカルボン酸の製造方法
KR20160125115A (ko) 3-히드록시테트라하이드로퓨란의 제조방법
JPH03236359A (ja) 環状アミノ酸抗けいれん性化合物の改良製法
JP2013227345A (ja) ハーフエステルの合成方法
CN113292434A (zh) 光催化非芳基重氮化合物和烯烃的环丙烷化反应
FR2492815A1 (fr) Nouveau derive d'acide cinnamoyl-cinnamique, son procede de preparation et son application en therapeutique
CN101648931B (zh) 一种3-(2,3-二氢苯并呋喃-5-基)-丙酸的制备方法
TW200306310A (en) Process for preparing polyenedialdehyde monoacetals
FR2999178A1 (fr) Nouveau procede de synthese du 3-(2-bromo-4,5-dimethoxyphenyl)propanenitrile, et application a la synthese de l'ivabradine et de ses sels d'addition a un acide pharmaceutiquement acceptable
JP7436689B2 (ja) γ-アミノ酪酸及びその類似体の製造方法
CN112851619B (zh) 一种含硒异色满化合物的合成方法
WO2000035899A1 (en) METHOD FOR THE DEVELOPMENT OF δ-LACTONES AND HYDROXY ACIDS FROM UNSATURATED FATTY ACIDS AND THEIR GLYCERIDES
RU2673461C2 (ru) Способ получения 4-метил-1-нитропентена-1
US5849935A (en) Method for the development of δ-lactones and hydroxy acids from unsaturated fatty acids and their glycerides
KR100365526B1 (ko) 바이시클로[3.3.1]노난 구조 화합물의 제조방법
RU2544859C1 (ru) Способ получения (s)-3-аминометил-5-метилгексановой кислоты (прегабалина)
JPH085840B2 (ja) ジャスモン酸の光学分割方法
SU878763A1 (ru) Способ получени производных 2-аминоциклопентана
KR100619117B1 (ko) 시스-시클로프로판-감마-부티로락톤 화합물 및 그의제조방법
JP2021008437A (ja) キサントリゾールの調製方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160311

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160311

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160920

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20161216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170317

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170815

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20171218

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20180123

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20180323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190404

R150 Certificate of patent or registration of utility model

Ref document number: 6510400

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250