JP2015180600A - パワーモジュール用基板、ヒートシンク付パワーモジュール用基板、パワーモジュール及びパワーモジュール用基板の製造方法、並びに、銅部材接合用ペースト - Google Patents

パワーモジュール用基板、ヒートシンク付パワーモジュール用基板、パワーモジュール及びパワーモジュール用基板の製造方法、並びに、銅部材接合用ペースト Download PDF

Info

Publication number
JP2015180600A
JP2015180600A JP2015127751A JP2015127751A JP2015180600A JP 2015180600 A JP2015180600 A JP 2015180600A JP 2015127751 A JP2015127751 A JP 2015127751A JP 2015127751 A JP2015127751 A JP 2015127751A JP 2015180600 A JP2015180600 A JP 2015180600A
Authority
JP
Japan
Prior art keywords
power module
ceramic substrate
nitride
substrate
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015127751A
Other languages
English (en)
Other versions
JP6048541B2 (ja
Inventor
伸幸 寺▲崎▼
Nobuyuki Terasaki
伸幸 寺▲崎▼
長友 義幸
Yoshiyuki Nagatomo
義幸 長友
仁人 西川
Masato Nishikawa
仁人 西川
黒光 祥郎
Yoshio Kuromitsu
祥郎 黒光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=49270615&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2015180600(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2015127751A priority Critical patent/JP6048541B2/ja
Publication of JP2015180600A publication Critical patent/JP2015180600A/ja
Application granted granted Critical
Publication of JP6048541B2 publication Critical patent/JP6048541B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/021Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles in a direct manner, e.g. direct copper bonding [DCB]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/023Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used
    • C04B37/025Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used consisting of glass or ceramic material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/023Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used
    • C04B37/026Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used consisting of metals or metal salts
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/04Ceramic interlayers
    • C04B2237/08Non-oxidic interlayers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/124Metallic interlayers based on copper
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/125Metallic interlayers based on noble metals, e.g. silver
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/366Aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/368Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/70Forming laminates or joined articles comprising layers of a specific, unusual thickness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Ceramic Products (AREA)
  • Structure Of Printed Boards (AREA)

Abstract

【課題】セラミックス基板に銅または銅合金からなる銅板が接合されてなり、冷熱サイクル負荷時におけるセラミックス基板の割れの発生を抑制できるパワーモジュール用基板を提供する。
【解決手段】セラミックス基板11の表面に銅または銅合金からなる銅板12が積層されて接合されたパワーモジュール用基板であって、Ag及び窒化物形成元素層を介して前記セラミックス基板と前記銅板とを積層し、積層された前記セラミックス基板と前記銅板を積層方向に1〜35kgf/cmで加圧するとともに加熱して、前記セラミックス基板と前記銅板とが接合されており、銅板12とセラミックス基板11との間において、セラミックス基板11の表面に窒化物層31が形成されているとともに、窒化物層31に積層するようにAg−Cu共晶組織層32が形成され、Ag−Cu共晶組織層32の厚さが14μm以下とされている。
【選択図】図2

Description

この発明は、大電流、高電圧を制御する半導体装置に用いられるパワーモジュール用基板、ヒートシンク付パワーモジュール用基板、パワーモジュール及びパワーモジュール用基板の製造方法、並びに、銅部材接合用ペーストに関するものである。
半導体素子の中でも電力供給のためのパワーモジュールは、発熱量が比較的高いため、これを搭載する基板としては、例えば、AlN(窒化アルミ)、Al(アルミナ)、Si(窒化ケイ素)などからなるセラミックス基板と、このセラミックス基板の一方の面側に第一の金属板が接合されて構成された回路層と、セラミックス基板の他方の面側に第二の金属板が接合されて構成された金属層と、を備えたパワーモジュール用基板が用いられる。
このようなパワーモジュール基板では、回路層の上に、はんだ材を介してパワー素子等の半導体素子が搭載される。
例えば、特許文献1には、第一の金属板(回路層)及び第二の金属板(金属層)としてアルミニウム板を用いてなるパワーモジュール用基板が提案されている。
また、特許文献2、3には、第一の金属板(回路層)及び第二の金属板(金属層)を銅板とし、この銅板を、Ag−Cu−Ti系のろう材を用いた活性金属法によってセラミックス基板に接合してなるパワーモジュール用基板が提案されている。
特許第3171234号公報 特開昭60−177634号公報 特許第3211856号公報
ところで、特許文献1に記載されたパワーモジュール用基板においては、回路層を構成する第一の金属板としてアルミニウム板が用いられている。ここで、銅とアルミニウムとを比較すると、アルミニウムの熱伝導率が低いことから、回路層としてアルミニウム板を用いた場合には、銅板を用いた場合に比べて回路層上に搭載された電気部品等の発熱体からの熱を拡げて放散することができない。このため、電子部品の小型化や高出力化により、パワー密度が上昇した場合には、熱を十分に放散することができなくなるおそれがあった。
ここで、特許文献2,3においては、回路層を銅板で構成していることから、回路層上に搭載された電気部品等の発熱体からの熱を効率的に放散することが可能となる。
ところで、特許文献2,3に記載されたように、銅板とセラミックス基板とを活性金属法によって接合した場合には、銅板とセラミックス基板との接合部に、Ag−Cu−Ti系のろう材が溶融して凝固することによってAg−Cu共晶組織層が形成されることになる。
このAg−Cu共晶組織層は非常に硬いことから、上述のパワーモジュール用基板に冷熱サイクルが負荷された際に、セラミックス基板と銅板との熱膨張係数の差に起因するせん断応力が作用したときに、Ag−Cu共晶組織層が変形せずに、セラミックス基板に割れ等が発生するといった問題があった。
この発明は、前述した事情に鑑みてなされたものであって、セラミックス基板に銅または銅合金からなる銅板が接合されてなり、冷熱サイクル負荷時におけるセラミックス基板の割れの発生を抑制できるパワーモジュール用基板、ヒートシンク付パワーモジュール用基板、パワーモジュール及びパワーモジュール用基板の製造方法、並びに、銅部材接合用ペーストを提供することを目的とする。
このような課題を解決して、前記目的を達成するために、本発明のパワーモジュール用基板は、セラミックス基板の表面に銅または銅合金からなる銅板が積層されて接合されたパワーモジュール用基板であって、前記セラミックス基板の接合面、及び、前記銅板の接合面のうちの少なくとも一方に、Agと窒化物形成元素とを含有するAg及び窒化物形成元素層を形成し、このAg及び窒化物形成元素層を介して前記セラミックス基板と前記銅板とを積層し、積層された前記セラミックス基板と前記銅板を積層方向に1〜35kgf/cmで加圧するとともに加熱して溶融金属領域を形成し、この溶融金属領域を凝固させることにより、前記セラミックス基板と前記銅板とが接合されており、前記銅板と前記セラミックス基板との間において、前記セラミックス基板の表面に窒化物層が形成されているとともに、前記窒化物層に積層するようにAg−Cu共晶組織層が形成され、前記Ag−Cu共晶組織層の厚さが14μm以下とされていることを特徴としている。
この構成のパワーモジュール用基板においては、銅または銅合金からなる銅板とセラミックス基板との接合部において、Ag−Cu共晶組織層の厚さが14μm以下とされているので、冷熱サイクル負荷時にセラミックス基板と銅板との熱膨張係数の差に起因するせん断応力が作用した場合であっても、銅板側が適度に変形することになり、セラミックス基板の割れを抑制することができる。
また、前記セラミックス基板の表面に窒化物層が形成されているので、セラミックス基板と銅板とを確実に接合することができる。
ここで、前記セラミックス基板は、AlN又はSiのいずれかで構成されていることが好ましい。
この場合、セラミックス基板に含有された窒素と反応することで前記セラミックス基板の表面に窒化物層が形成されることになり、セラミックス基板と窒化物層とが強固に結合することになる。
また、前記窒化物層は、Ti、Hf、Zr、Nbから選択される1種又は2種以上の元素の窒化物を含有していることが好ましい。
この場合、セラミックス基板と窒化物層とが強固に結合することになり、セラミックス基板と銅板とを強固に接合することができる。
本発明のヒートシンク付パワーモジュール用基板は、前述のパワーモジュール用基板と、このパワーモジュール用基板を冷却するヒートシンクと、を備えていることを特徴としている。
この構成のヒートシンク付パワーモジュール用基板によれば、パワーモジュール用基板で発生した熱をヒートシンクによって放散することができる。また、銅板とセラミックス基板とが確実に接合されているので、パワーモジュール用基板の熱をヒートシンク側へと確実に伝達することが可能となる。
本発明のパワーモジュールは、前述のパワーモジュール用基板と、前記回路層上に搭載された電子部品と、を備えたことを特徴としている。
この構成のパワーモジュールによれば、回路層上に搭載された電子部品からの熱を効率的に放散することができ、電子部品のパワー密度(発熱量)が向上した場合であっても、十分に対応することができる。
本発明のパワーモジュール用基板の製造方法は、前述のパワーモジュール用基板の製造方法であって、前記セラミックス基板の接合面及び前記銅板の接合面のうち少なくとも一方に、Agと窒化物形成元素とを含有するAg及び窒化物形成元素層を形成するAg及び窒化物形成元素層形成工程と、このAg及び窒化物形成元素層を介して前記セラミックス基板と前記銅板と積層する積層工程と、積層された前記セラミックス基板と前記銅板を積層方向に加圧するとともに加熱し、前記セラミックス基板と前記銅板との界面に溶融金属領域を形成する加熱工程と、この溶融金属領域を凝固させることによって、前記セラミックス基板と前記銅板とを接合する凝固工程と、を有し、前記加熱工程において、前記セラミックス基板と前記銅板を積層方向に1〜35kgf/cmで加圧し、Agを前記銅板側に拡散させることにより前記セラミックス基板と前記銅板との界面に前記溶融金属領域を形成するとともに、前記窒化物層に積層するようにAg−Cu共晶組織層を形成し、前記Ag−Cu共晶組織層の厚さを14μm以下とすることを特徴としている。
この構成のパワーモジュール用基板の製造方法によれば、前記加熱工程において、Agを前記銅板側に拡散させることにより前記セラミックス基板と前記銅板との界面に前記溶融金属領域を形成しているので、溶融金属領域の厚さを薄く抑えることができ、Ag−Cu共晶組織層の厚さを14μm以下とすることができる。また、前記加熱工程において、前記セラミックス基板の表面に窒化物層を形成する構成としているので、セラミックス基板と銅板とを強固に接合することができる。
前記窒化物形成元素は、Ti、Hf、Zr、Nbから選択される1種又は2種以上の元素であることが好ましい。
この場合、前記セラミックス基板の表面に、Ti、Hf、Zr、Nbの窒化物を含む窒化物層を形成することができ、セラミックス基板と銅板とを強固に接合することが可能となる。
前記Ag及び窒化物形成元素層形成工程では、Ag及び窒化物形成元素以外に、In、Sn、Al、Mn及びZnから選択される1種又は2種以上の添加元素を配設させることが好ましい。
この場合、前記加熱工程において、前記溶融金属領域をさらに低い温度で形成することができ、Ag−Cu共晶組織層の厚さをさらに薄くすることができる。
前記Ag及び窒化物形成元素層形成工程では、Ag及び窒化物形成元素を含有する銅部材接合用ペーストを塗布することが好ましい。
この場合、銅部材接合用ペーストを塗布することで、前記セラミックス基板の接合面及び前記銅板の接合面のうち少なくとも一方に、確実にAg及び窒化物形成元素層を形成することが可能となる。
前記銅部材接合用ペーストは、前記窒化物形成元素の水素化物を含有していてもよい。
この場合、窒化物形成元素の水素化物の水素が還元剤として作用するので、銅板の表面に形成された酸化膜等を除去でき、Agの拡散及び窒化物層の形成を確実に行うことができる。
本発明の銅部材接合用ペーストは、前述のパワーモジュール用基板の製造方法で使用されるAg及び窒化物形成元素層含有ペーストであって、Ag及び窒化物形成元素を含む粉末成分と、樹脂と、溶剤と、を含むことを特徴とする。
本発明によれば、セラミックス基板に銅または銅合金からなる銅板が接合されてなり、冷熱サイクル負荷時におけるセラミックス基板の割れの発生を抑制できるパワーモジュール用基板、ヒートシンク付パワーモジュール用基板、パワーモジュール及びパワーモジュール用基板の製造方法、並びに、銅部材接合用ペーストを提供することができる。
本発明の第一の実施形態であるパワーモジュール用基板、及び、このパワーモジュール用基板を用いたヒートシンク付パワーモジュール用基板、パワーモジュールの概略説明図である。 図1における回路層とセラミックス基板の接合界面の拡大説明図である。 本発明の第一の実施形態において、回路層となる銅板とセラミックス基板を接合する際に使用されるAg及び窒化物形成元素を含有する銅部材接合用ペーストの製造方法を示すフロー図である。 本発明の第一の実施形態であるパワーモジュール用基板、及び、このパワーモジュール用基板を用いたヒートシンク付パワーモジュール用基板の製造方法を示すフロー図である。 本発明の第一の実施形態であるパワーモジュール用基板、及び、このパワーモジュール用基板を用いたヒートシンク付パワーモジュール用基板の製造方法を示す説明図である。 セラミックス基板と銅板との接合工程を示す拡大説明図である。 本発明の第二の実施形態であるパワーモジュール用基板の概略説明図である。 図7における回路層及び金属層とセラミックス基板の接合界面の拡大説明図である。 本発明の第二の実施形態であるパワーモジュール用基板の製造方法を示すフロー図である。 本発明の第二の実施形態であるパワーモジュール用基板の製造方法を示す説明図である。 本発明の他の実施形態であるパワーモジュール用基板、及び、このパワーモジュール用基板を用いたヒートシンク付パワーモジュール用基板の製造方法を示す説明図である。 本発明の他の実施形態であるパワーモジュール用基板、及び、このパワーモジュール用基板を用いたヒートシンク付パワーモジュール用基板の製造方法を示す説明図である。 本発明の他の実施形態であるパワーモジュール用基板、及び、このパワーモジュール用基板を用いたヒートシンク付パワーモジュール用基板の製造方法を示す説明図である。 実施例における膜厚の測定箇所を示した説明図である。
以下に、本発明の実施形態であるパワーモジュール用基板、ヒートシンク付パワーモジュール用基板、パワーモジュールについて、添付した図面を参照して説明する。
(第一の実施形態)
まず、第一の実施形態について説明する。図1に、本実施形態であるパワーモジュール用基板10を用いたヒートシンク付パワーモジュール用基板50及びパワーモジュール1を示す。
このパワーモジュール1は、回路層12が配設されたパワーモジュール用基板10と、回路層12の表面にはんだ層2を介して接合された半導体素子3(電子部品)と、緩衝板41と、ヒートシンク51とを備えている。ここで、はんだ層2は、例えばSn−Ag系、Sn−In系、若しくはSn−Ag−Cu系のはんだ材とされている。なお、本実施形態では、回路層12とはんだ層2との間にNiめっき層(図示なし)が設けられている。
パワーモジュール用基板10は、セラミックス基板11と、このセラミックス基板11の一方の面(図1において上面)に配設された回路層12と、セラミックス基板11の他方の面(図1において下面)に配設された金属層13と、を備えている。
セラミックス基板11は、回路層12と金属層13との間の電気的接続を防止するものであって、絶縁性の高いAlN(窒化アルミ)で構成されている。また、セラミックス基板11の厚さは、0.2〜1.5mmの範囲内に設定されており、本実施形態では、0.635mmに設定されている。
回路層12は、図5に示すように、セラミックス基板11の一方の面(図5において上面)に、銅板22が接合されることにより形成されている。回路層12の厚さは0.1mm以上1.0mm以下の範囲内に設定されており、本実施形態では、0.3mmに設定されている。また、この回路層12には、回路パターンが形成されており、その一方の面(図1において上面)が、半導体素子3が搭載される搭載面とされている。
本実施形態においては、銅板22(回路層12)は、純度99.99質量%以上の無酸素銅(OFC)の圧延板とされている。
ここで、セラミックス基板11と回路層12との接合には、後述するAg及び窒化物形成元素を含有する銅部材接合用ペーストが使用されている。
金属層13は、図5に示すように、セラミックス基板11の他方の面(図5において下面)に、アルミニウム板23が接合されることにより形成されている。金属層13の厚さは0.6mm以上6.0mm以下の範囲内に設定されており、本実施形態では、0.6mmに設定されている。
本実施形態においては、アルミニウム板23(金属層13)は、純度が99.99質量%以上のアルミニウム(いわゆる4Nアルミニウム)の圧延板とされている。
緩衝板41は、冷熱サイクルによって発生する歪みを吸収するものであり、図1に示すように、金属層13の他方の面(図1において下面)に形成されている。緩衝板41の厚さは0.5mm以上7.0mm以下の範囲内に設定されており、本実施形態では、0.9mmに設定されている。
本実施形態においては、緩衝板41は、純度が99.99質量%以上のアルミニウム(いわゆる4Nアルミニウム)の圧延板とされている。
ヒートシンク51は、前述のパワーモジュール用基板10からの熱を放散するためのものである。本実施形態におけるヒートシンク51は、パワーモジュール用基板10と緩衝板41を介して接合されている。
本実施形態においては、ヒートシンク51は、アルミニウム及びアルミニウム合金で構成されており、具体的にはA6063合金の圧延板とされている。また、ヒートシンク51の厚さは1mm以上10mm以下の範囲内に設定されており、本実施形態では、5mmに設定されている。
図2に、セラミックス基板11と回路層12との接合界面の拡大図を示す。セラミックス基板11の表面には、銅部材接合用ペーストに含有された窒化物形成元素の窒化物からなる窒化物層31が形成されている。
そして、この窒化物層31に積層するようにAg−Cu共晶組織層32が形成されている。ここで、Ag−Cu共晶組織層32の厚さは14μm以下とされている。
次に、前述の構成のパワーモジュール用基板10の製造方法、ヒートシンク付パワーモジュール用基板50の製造方法について説明する。
上述のように、セラミックス基板11と回路層12となる銅板22の接合には、Ag及び窒化物形成元素を含有する銅部材接合用ペーストが使用されている。そこで、まず、銅部材接合用ペーストについて説明する。
銅部材接合用ペーストは、Agおよび窒化物形成元素を含む粉末成分と、樹脂と、溶剤と、分散剤と、可塑剤と、還元剤と、を含有するものである。
ここで、粉末成分の含有量が、銅部材接合用ペースト全体の40質量%以上90質量%以下とされている。
また、本実施形態では、銅部材接合用ペーストの粘度が10Pa・s以上500Pa・s以下、より好ましくは50Pa・s以上300Pa・s以下に調整されている。
窒化物形成元素は、Ti、Hf、Zr、Nbから選択される1種又は2種以上の元素であることが好ましく、本実施形態では、窒化物形成元素としてTiを含有している。
ここで、粉末成分の組成は、窒化物形成元素(本実施形態ではTi)の含有量が0.4質量%以上75質量%以下とされ、残部がAg及び不可避不純物とされている。本実施形態では、Tiを10質量%含んでおり、残部がAg及び不可避不純物とされている。
また、本実施形態においては、Ag及び窒化物形成元素(Ti)を含む粉末成分として、AgとTiとの合金粉末を使用している。この合金粉末は、アトマイズ法によって作製されたものであり、作製された合金粉末を篩い分けすることによって、粒径を40μm以下、好ましくは20μm以下、さらに好ましくは10μm以下に設定している。
なお、この合金粉末の粒径は、例えば、マイクロトラック法を用いることで測定することができる。
樹脂は、銅部材接合用ペーストの粘度を調整するものであり、例えば、エチルセルロース、メチルセルロース、ポリメチルメタクリレート、アクリル樹脂、アルキッド樹脂等を適用することができる。
溶剤は、前述の粉末成分の溶媒となるものであり、例えば、メチルセルソルブ、エチルセルソルブ、テルピネオール、トルエン、テキサノ−ル、トリエチルシトレート等を適用できる。
分散剤は、粉末成分を均一に分散させるものであり、例えば、アニオン性界面活性剤、カチオン性界面活性剤等を適用することができる。
可塑剤は、銅部材接合用ペーストの成形性を向上させるものであり、例えば、フタル酸ジブチル、アジピン酸ジブチル等を適用することができる。
還元剤は、粉末成分の表面に形成された酸化皮膜等を除去するものであり、例えば、ロジン、アビエチン酸等を適用することができる。なお、本実施形態では、アビエチン酸を用いている。
なお、分散剤、可塑剤、還元剤は、必要に応じて添加すればよく、分散剤、可塑剤、還元剤を添加することなく銅部材接合用ペーストを構成してもよい。
ここで、銅部材接合用ペーストの製造方法について、図3に示すフロー図を参照して説明する。
まず、前述のように、Agと窒化物形成元素(Ti)とを含有する合金粉末をアトマイズ法によって作製し、これを篩い分けすることによって粒径40μm以下の合金粉末を得る(合金粉末作製工程S01)。
また、溶剤と樹脂とを混合して有機混合物を生成する(有機物混合工程S02)。
そして、合金粉末作製工程S01で得られた合金粉末と、有機物混合工程S02で得られた有機混合物と、分散剤、可塑剤、還元剤等の副添加剤と、をミキサーによって予備混合する(予備混合工程S03)。
次いで、予備混合物を、複数のロールを有するロールミル機を用いて練り込みながら混合する(混錬工程S04)。
混錬工程S04によって得られた混錬物を、ペーストろ過機によってろ過する(ろ過工程S05)。
このようにして、上述の銅部材接合用ペーストが製出されることになる。
次に、この銅部材接合用ペーストを用いた本実施形態であるパワーモジュール用基板10の製造方法、ヒートシンク付パワーモジュール用基板50の製造方法について、図4から図6を参照して説明する。
(Ag及び窒化物形成元素層形成工程S11)
まず、図5に示すように、セラミックス基板11の一方の面に、スクリーン印刷によって、前述の銅部材接合用ペーストを塗布して乾燥させることにより、Ag及び窒化物形成元素層24を形成する。なお、Ag及び窒化物形成元素層24の厚さは、乾燥後で20μm以上300μm以下とされている。
(積層工程S12)
次に、銅板22をセラミックス基板11の一方の面側に積層する。すなわち、セラミックス基板11と銅板22との間に、Ag及び窒化物形成元素層24を介在させているのである。
(加熱工程S13)
次いで、銅板22、セラミックス基板11を積層方向に加圧(圧力1〜35kgf/cm)した状態で真空加熱炉内に装入して加熱する。すると、図6に示すように、Ag及び窒化物形成元素層24のAgが銅板22に向けて拡散する。このとき、銅板22の一部がCuとAgとの反応によって溶融し、銅板22とセラミックス基板11との界面に、溶融金属領域27が形成されることになる。
ここで、本実施形態では、真空加熱炉内の圧力は10−6Pa以上10−3Pa以下の範囲内に、加熱温度は790℃以上850℃以下の範囲内に設定している。
(凝固工程S14)
次に、溶融金属領域27を凝固させることにより、セラミックス基板11と銅板22とを接合する。なお、凝固工程S14が終了した後では、Ag及び窒化物形成元素層24のAgが十分に拡散されており、セラミックス基板11と銅板22との接合界面にAg及び窒化物形成元素層24が残存することはない。
(金属層接合工程S15)
次に、セラミックス基板11の他方の面側に金属層13となるアルミニウム板23を接合する。本実施形態では、図5に示すように、セラミックス基板11の他方の面側に、金属層13となるアルミニウム板23が厚さ5〜50μm(本実施形態では14μm)のろう材箔25を介して積層される。なお、本実施形態においては、ろう材箔25は、融点降下元素であるSiを含有したAl−Si系のろう材とされている。
次に、セラミックス基板11、アルミニウム板23を積層方向に加圧(圧力1〜35kgf/cm)した状態で加熱炉内に装入して加熱する。すると、ろう材箔25とアルミニウム板23の一部とが溶融し、アルミニウム板23とセラミックス基板11との界面に溶融金属領域が形成される。ここで、加熱温度は550℃以上650℃以下、加熱時間は30分以上180分以下とされている。
次に、アルミニウム板23とセラミックス基板11との界面に形成された溶融金属領域を凝固させることにより、セラミックス基板11とアルミニウム板23とを接合する。
このようにして、本実施形態であるパワーモジュール用基板10が製出される。
(緩衝板及びヒートシンク接合工程S16)
次に、図5に示すように、パワーモジュール用基板10の金属層13の他方の面側(図5において下側)に、緩衝板41と、ヒートシンク51と、を、それぞれろう材箔42,52を介して積層する。
本実施形態では、ろう材箔42,52は、厚さ5〜50μm(本実施形態では14μm)とされ、融点降下元素であるSiを含有したAl−Si系のろう材とされている。
次に、パワーモジュール用基板10、緩衝板41、ヒートシンク51を積層方向に加圧(圧力1〜35kgf/cm)した状態で加熱炉内に装入して加熱する。すると、金属層13と緩衝板41との界面及び緩衝板41とヒートシンク51との界面に、それぞれ溶融金属領域が形成される。ここで、加熱温度は550℃以上650℃以下、加熱時間は30分以上180分以下とされている。
次に、金属層13と緩衝板41との界面及び緩衝板41とヒートシンク51との界面にそれぞれ形成された溶融金属領域を凝固させることにより、パワーモジュール用基板10と緩衝板41とヒートシンク51とを接合する。
これにより、本実施形態であるヒートシンク付パワーモジュール用基板50が製出されることになる。
そして、回路層12の表面に、はんだ材を介して半導体素子3を載置し、還元炉内においてはんだ接合する。
これにより、はんだ層2を介して半導体素子3が回路層12上に接合されたパワーモジュール1が製出されることになる。
以上のような構成とされた本実施形態であるパワーモジュール用基板10によれば、銅板22からなる回路層12とセラミックス基板11との接合部において、Ag−Cu共晶組織層32の厚さが14μm以下とされているので、冷熱サイクル負荷時にセラミックス基板11と回路層12との熱膨張係数の差に起因するせん断応力が作用した場合であっても、回路層12側が適度に変形することになり、セラミックス基板11の割れを抑制することができる。
また、セラミックス基板11の表面に窒化物層31が形成されているので、セラミックス基板11と回路層12とを確実に接合することができる。
また、本実施形態では、セラミックス基板11がAlNで構成されているので、銅部材接合用ペーストに含有された窒化物形成元素とセラミックス基板11とが反応することによって、セラミックス基板11の表面に窒化物層31が形成されることになり、セラミックス基板11と窒化物層31とが強固に結合することになる。
さらに、窒化物層31が、Ti、Hf、Zr、Nbから選択される1種又は2種以上の元素の窒化物を含有しており、本実施形態では、具体的に窒化物層31がTiNを含有しているので、セラミックス基板11と窒化物層31とが強固に結合することになり、セラミックス基板11と回路層12とを強固に接合することができる。
また、本実施形態であるヒートシンク付パワーモジュール用基板50及びパワーモジュール1によれば、パワーモジュール用基板10で発生した熱をヒートシンク51によって放散することができる。また、回路層12とセラミックス基板11とが確実に接合されているので、回路層12の搭載面に搭載された半導体素子3から発生する熱をヒートシンク51側へと確実に伝達させることができ、半導体素子3の温度上昇を抑制することができる。よって、半導体素子3のパワー密度(発熱量)が向上した場合であっても、十分に対応することができる。
さらに、本実施形態であるヒートシンク付パワーモジュール用基板50及びパワーモジュール1は、パワーモジュール用基板10とヒートシンク51との間に緩衝板41が配設されているので、パワーモジュール用基板10とヒートシンク51との熱膨張係数の差に起因する歪を緩衝板41の変形によって吸収することができる。
また、本実施形態においては、セラミックス基板11の接合面にAgと窒化物形成元素とを含有するAg及び窒化物形成元素層24を形成するAg及び窒化物形成元素層形成工程S11と、このAg及び窒化物形成元素層24を介してセラミックス基板11と銅板22と積層する積層工程S12と、積層されたセラミックス基板11と銅板22を積層方向に加圧するとともに加熱し、セラミックス基板11と銅板22との界面に溶融金属領域27を形成する加熱工程S13と、この溶融金属領域27を凝固させることによってセラミックス基板11と銅板22とを接合する凝固工程S14と、を有しており、加熱工程S13において、Agを銅板22側に拡散させることによりセラミックス基板11と銅板22との界面に溶融金属領域27を形成しているので、溶融金属領域27の厚さを薄く抑えることができ、Ag−Cu共晶組織層32の厚さを14μm以下とすることができる。さらに、加熱工程S13において、セラミックス基板11の表面に窒化物層31を形成する構成としているので、セラミックス基板11と銅板22とを強固に接合することができる。
さらに、本実施形態では、Ag及び窒化物形成元素層形成工程S11において、Ag及び窒化物形成元素を含有する銅部材接合用ペーストを塗布する構成としているので、セラミックス基板11の接合面に、確実にAg及び窒化物形成元素層24を形成することが可能となる。
また、本実施形態で使用した銅部材接合用ペーストにおける粉末成分の組成が、窒化物形成元素の含有量が0.4質量%以上75質量%以下とされ、残部がAg及び不可避不純物とされているので、セラミックス基板11の表面に窒化物層31を形成することができる。このように、窒化物層31を介してセラミックス基板11と銅板22からなる回路層12が接合されているので、セラミックス基板11と回路層12との接合強度の向上を図ることができる。
また、本実施形態では、粉末成分を構成する粉末、すなわち、Agと窒化物形成元素(Ti)とを含有する合金粉末の粒径が40μm以下とされているので、この銅部材接合用ペーストを薄く塗布することが可能となる。よって、接合後(凝固後)に形成されるAg−Cu共晶組織層32の厚さを薄くすることが可能となる。
また、粉末成分の含有量が、40質量%以上90質量%以下とされているので、Agを銅板22へと拡散させて確実に溶融金属領域27を形成し、銅板22とセラミックス基板11とを接合することができる。また、溶剤の含有量が確保されることになり、セラミックス基板11の接合面に銅部材接合用ペーストを確実に塗布でき、Ag及び窒化物形成元素層24を確実に形成することができる。
また、本実施形態では、必要に応じて分散剤を含有しているので、粉末成分を分散させることができ、Agの拡散を均一に行うことができる。また、窒化物層31を均一に形成することができる。
さらに、本実施形態では、必要に応じて可塑剤を含有しているので、銅部材接合用ペーストの形状を比較的自由に成形することができ、セラミックス基板11の接合面に確実に塗布することができる。
また、本実施形態では、必要に応じて還元剤を含有しているので、還元剤の作用により、粉末成分の表面に形成された酸化皮膜等を除去でき、Agの拡散及び窒化物層31の形成を確実に行うことができる。
(第二の実施形態)
次に、第二の実施形態について説明する。図7に、本実施形態であるパワーモジュール用基板110を示す。
このパワーモジュール用基板110は、セラミックス基板111と、このセラミックス基板111の一方の面(図7において上面)に配設された回路層112と、セラミックス基板111の他方の面(図7において下面)に配設された金属層113と、を備えている。
セラミックス基板111は、回路層112と金属層113との間の電気的接続を防止するものであって、絶縁性の高いSi(窒化珪素)で構成されている。また、セラミックス基板111の厚さは、0.2〜1.5mmの範囲内に設定されており、本実施形態では、0.32mmに設定されている。
回路層112は、図10に示すように、セラミックス基板111の一方の面(図10において上面)に、銅板122が接合されることにより形成されている。回路層112の厚さは0.1mm以上1.0mm以下の範囲内に設定されており、本実施形態では、0.6mmに設定されている。また、この回路層112には、回路パターンが形成されており、その一方の面(図7において上面)が、半導体素子が搭載される搭載面とされている。
本実施形態においては、銅板122(回路層112)は、純度99.99質量%以上の無酸素銅(OFC)の圧延板とされている。
金属層113は、図10に示すように、セラミックス基板111の他方の面(図10において下面)に、銅板123が接合されることにより形成されている。金属層113の厚さは0.1mm以上1.0mm以下の範囲内に設定されており、本実施形態では、0.6mmに設定されている。
本実施形態においては、銅板123(金属層113)は、純度99.99質量%以上の無酸素銅(OFC)の圧延板とされている。
ここで、セラミックス基板111と回路層112との接合、及び、セラミックス基板111と金属層113との接合には、後述するAg及び窒化物形成元素を含有する銅部材接合用ペーストが使用されている。
図8に、セラミックス基板111と回路層112及び金属層113との接合界面の拡大図を示す。セラミックス基板111の表面には、銅部材接合用ペーストに含有された窒化物形成元素の窒化物からなる窒化物層131が形成されている。
また、本実施形態では、第一の実施形態で観察されたAg−Cu共晶組織層が明確に観察されない構成とされている。
次に、前述の構成のパワーモジュール用基板110の製造方法について説明する。
上述のように、セラミックス基板111と回路層112となる銅板122は、Ag及び窒化物形成元素を含有する銅部材接合用ペーストが使用されている。そこで、まず、銅部材接合用ペーストについて説明する。
本実施形態で用いられる銅部材接合用ペーストは、Ag及び窒化物形成元素を含む粉末成分と、樹脂と、溶剤と、分散剤と、可塑剤と、還元剤と、を含有するものである。
そして、粉末成分は、Ag及び窒化物形成元素以外に、In、Sn、Al、Mn及びZnから選択される1種又は2種以上の添加元素を含有するものとされており、本実施形態では、Snを含有している。
ここで、粉末成分の含有量が、銅部材接合用ペースト全体の40質量%以上90質量%以下とされている。
また、本実施形態では、銅部材接合用ペーストの粘度が10Pa・s以上500Pa・s以下、より好ましくは50Pa・s以上300Pa・s以下に調整されている。
窒化物形成元素は、Ti、Hf、Zr、Nbから選択される1種又は2種以上の元素であることが好ましく、本実施形態では、窒化物形成元素としてZrを含有している。
ここで、粉末成分の組成は、窒化物形成元素(本実施形態ではZr)の含有量が0.4質量%以上75質量%以下とされ、In、Sn、Al、Mn及びZnから選択される1種又は2種以上の添加元素(本実施形態ではSn)の含有量が0質量%以上50質量%以下とされ、残部がAg及び不可避不純物とされている。ただし、Agの含有量は25質量%以上である。本実施形態では、Zr;40質量%、Sn;20質量%を含んでおり、残部がAg及び不可避不純物とされている。
また、本実施形態においては、粉末成分として、要素粉末(Ag粉末、Zr粉末、Sn粉末)を用いている。これらのAg粉末、Zr粉末、Sn粉末は、粉末成分全体が上述の組成となるように、配合されているのである。
これらのAg粉末、Zr粉末、Sn粉末は、それぞれ粒径を40μm以下、好ましくは20μm以下、さらに好ましくは10μm以下に設定している。
なお、これらのAg粉末、Zr粉末、Sn粉末の粒径は、例えば、マイクロトラック法を用いることで測定することができる。
ここで、樹脂、溶剤は、第一の実施形態と同様のものが適用されている。また、本実施形態においても、必要に応じて分散剤、可塑剤、還元剤が添加されている。
また、本実施形態で用いられる銅部材接合用ペーストは、第一の実施形態で示した製造方法に準じて製造されている。すなわち、合金粉末の代わりに、Ag粉末、Zr粉末、Sn粉末を用いた以外は、第一の実施形態と同様の手順で製造されているのである。
次に、この銅部材接合用ペーストを用いた本実施形態であるパワーモジュール用基板110の製造方法について、図9及び図10を参照して説明する。
(Ag及び窒化物形成元素層形成工程S111)
まず、図10に示すように、セラミックス基板111の一方の面及び他方の面に、スクリーン印刷によって、前述の本実施形態である銅部材接合用ペーストを塗布し、Ag及び窒化物形成元素層124,125を形成する。なお、Ag及び窒化物形成元素層124,125の厚さは、乾燥後で20μm以上300μm以下とされている。
(積層工程S112)
次に、銅板122をセラミックス基板111の一方の面側に積層する。また、銅板123をセラミックス基板111の他方の面側に積層する。すなわち、セラミックス基板111と銅板122、セラミックス基板111と銅板123との間に、Ag及び窒化物形成元素層124,125を介在させているのである。
(加熱工程S113)
次いで、銅板122、セラミックス基板111、銅板123を積層方向に加圧(圧力1〜35kgf/cm)した状態で真空加熱炉内に装入して加熱する。すると、Ag及び窒化物形成元素層124のAgが銅板122に向けて拡散するとともに、Ag及び窒化物形成元素層125のAgが銅板123に向けて拡散する。
このとき、銅板122のCuとAgとが反応によって溶融し、銅板122とセラミックス基板111との界面に、溶融金属領域が形成される。また、銅板123のCuとAgとが反応によって溶融し、銅板123とセラミックス基板111との界面に、溶融金属領域が形成される。
ここで、本実施形態では、真空加熱炉内の圧力は10−6Pa以上10−3Pa以下の範囲内に、加熱温度は790℃以上850℃以下の範囲内に設定している。
(凝固工程S114)
次に、溶融金属領域を凝固させることにより、セラミックス基板111と銅板122、123とを接合する。なお、凝固工程S114が終了した後では、Ag及び窒化物形成元素層124,125のAgが十分に拡散されており、セラミックス基板111と銅板122、123との接合界面にAg及び窒化物形成元素層124、125が残存することはない。
このようにして、本実施形態であるパワーモジュール用基板110が製出される。
このパワーモジュール用基板110には、回路層112の上に半導体素子が搭載されるとともに、金属層113の他方側にヒートシンクが配設されることになる。
以上のような構成とされた本実施形態であるパワーモジュール用基板110によれば、銅板122からなる回路層112とセラミックス基板111との接合部において、Ag−Cu共晶組織層の厚さが15μm以下とされており、本実施形態では、明確に観察されなくなっているので、冷熱サイクル負荷時にセラミックス基板111と回路層112との熱膨張係数の差に起因するせん断応力が作用した場合であっても、回路層112側が適度に変形することになり、セラミックス基板111の割れを抑制することができる。
また、セラミックス基板111の表面に窒化物層131が形成されているので、セラミックス基板111と回路層112とを確実に接合することができる。
また、Agの銅板122,123への拡散によって溶融金属領域が形成されることから、セラミックス基板111と銅板122、123との接合部において溶融金属領域が必要以上に形成されなくなり、接合後(凝固後)に形成されるAg−Cu共晶組織層の厚さが薄くなるのである。よって、セラミックス基板111における割れの発生を抑制することができる。
また、本実施形態では、窒化物形成元素としてZrを含有しているので、Siからなるセラミックス基板111とZrが反応して窒化物層131が形成されることになり、セラミックス基板111と銅板122,123とを確実に接合することができる。
そして、本実施形態では、粉末成分として、Ag及び窒化物形成元素(本実施形態ではZr)以外に、In、Sn、Al、Mn及びZnから選択される1種又は2種以上の添加元素(本実施形態ではSn)を含有しているので、溶融金属領域をさらに低い温度で形成することができ、形成されるAg−Cu共晶組織層の厚さをさらに薄くすることが可能となる。
以上、本発明の実施形態について説明したが、本発明はこれに限定されることはなく、その発明の技術的思想を逸脱しない範囲で適宜変更可能である。
例えば、窒化物形成元素としてTi、Zrを用いたものとして説明したが、これに限定されることはなく、Hf,Nb等の他の窒化物形成元素であってもよい。
また、Ag及び窒化物形成元素層含有ペースト(銅部材接合用ペースト)に含まれる粉末成分が、TiH、ZrH等の窒化物形成元素の水素化物を含んでいてもよい。この場合、窒化物形成元素の水素化物の水素が還元剤として作用するので、銅板の表面に形成された酸化膜等を除去でき、Agの拡散及び窒化物層の形成を確実に行うことができる。
また、第二の実施形態において、添加元素としてSnを添加したものとして説明したが、これに限定されることはなく、In、Sn、Al、Mn及びZnから選択される1種又は2種以上の添加元素を用いてもよい。
粉末成分を構成する粉末の粒径を40μm以下としたもので説明したが、これに限定されることはなく、粒径に限定はない。
また、分散剤、可塑剤、還元剤を含むものとして説明したが、これに限定されることはなく、これらを含んでいなくてもよい。これら分散剤、可塑剤、還元剤は、必要に応じて添加すればよい。
さらに、アルミニウム板とセラミックス基板、あるいは、アルミニウム板同士をろう付けにて接合するものとして説明したが、これに限定されることはなく、鋳造法、金属ペースト法等を適用してもよい。また、アルミニウム板とセラミックス基板、アルミニウム板と天板、あるいは、その他のアルミニウム材間に、Cu,Si,Zn,Ge,Ag,Mg,Ca,Ga,Liを配し、過渡液相接合法(Transient Liquid Phase Bonding)を用いて接合してもよい。
また、図5、図6及び図10に示す製造方法で製造されたパワーモジュール用基板、ヒートシンク付パワーモジュール用基板に限定されることはなく、他の製造方法で製造されたパワーモジュール用基板等であってもよい。
例えば、図11に示すように、セラミックス基板211の一方の面にAg及び窒化物形成元素層224を介して回路層212となる銅板222を接合し、セラミックス基板211の他方の面にろう材箔225を介して金属層213となるアルミニウム板223を接合するとともに、アルミニウム板223の他方の面にろう材箔252を介してヒートシンク251を接合してもよい。このようにして、パワーモジュール用基板210と、ヒートシンク251と、を備えたヒートシンク付パワーモジュール用基板250が製造されることになる。
また、図12に示すように、セラミックス基板311の一方の面にAg及び窒化物形成元素層324を介して回路層312となる銅板322を接合し、セラミックス基板311の他方の面にろう材箔325を介して金属層313となるアルミニウム板323を接合することで、パワーモジュール用基板310を製造し、その後、金属層213の他方の面にろう材箔352を介してヒートシンク351を接合してもよい。このようにして、パワーモジュール用基板310と、ヒートシンク351と、を備えたヒートシンク付パワーモジュール用基板350が製造されることになる。
さらに、図13に示すように、セラミックス基板411の一方の面にAg及び窒化物形成元素層424を介して回路層412となる銅板422を接合し、セラミックス基板411の他方の面にろう材箔425を介して金属層413となるアルミニウム板423を接合するとともに、アルミニウム板423の他方の面にろう材箔442を介して緩衝板441を接合し、この緩衝板441の他方の面にろう材箔452を介してヒートシンク451を接合してもよい。このようにして、パワーモジュール用基板410と、緩衝板441と、ヒートシンク451と、を備えたヒートシンク付パワーモジュール用基板450が製造されることになる。
本発明の有効性を確認するために行った比較実験について説明する。表1、表2、表3に示す条件で各種ペーストを作成した。なお、表1では、粉末成分として合金粉末を使用した。表2では、粉末成分として各元素の粉末(要素粉末)を使用した。表3では、粉末成分として各元素の粉末(要素粉末)を使用し、窒化物形成元素については窒化物形成元素の水素化物の粉末を使用した。なお、表3には、窒化物形成元素の水素化物の要素粉混合比の他に、窒化物形成元素の含有量(活性金属含有量)も併せて記載した。
また、分散剤としてアニオン性界面活性剤を、可塑剤としてアジピン酸ジブチルを、還元剤としてアビエチン酸を用いた。
粉末成分以外の樹脂、溶剤、分散剤、可塑剤、還元剤の混合比率は、質量比で、樹脂:溶剤:分散剤:可塑剤:還元剤=7:70:3:5:15とした。
Figure 2015180600
Figure 2015180600
Figure 2015180600
この表1、表2、表3に示す各種ペーストを用いてセラミックス基板と銅板とを接合することによって、図10に示す構造及び製造方法で製造されたパワーモジュール用基板、図11、図12に示す構造及び製造方法で製造されたヒートシンク付パワーモジュール用基板、図5、図13に示す構造及び製造方法で製造されたヒートシンク付パワーモジュール用基板を作製した。
図10に示すパワーモジュール用基板においては、セラミックス基板の一方の面及び他方の面に、上述の各種ペーストを用いて銅板を接合し、回路層及び金属層が銅板で構成されたパワーモジュール用基板とした。なお、銅板として無酸素銅の圧延板を使用した。
図11、図12に示すヒートシンク付パワーモジュール用基板は、セラミックス基板の一方の面に、上述の各種ペーストを用いて銅板を接合して回路層とした。
また、セラミックス基板の他方の面に、アルミニウム板をろう材を介して接合して金属層を形成した。なお、アルミニウム板として純度99.99質量%以上の4Nアルミを使用し、ろう材としてAl−7.5質量%Si、厚さ20μmのろう材箔を用いた。
さらに、金属層の他方の面側に、ヒートシンクとしてA6063からなるアルミニウム板を、ろう材を介してパワーモジュール用基板の金属層側に接合した。なお、ろう材としてAl−7.5質量%Si、厚さ70μmのろう材箔を用いた。
図5、図13に示すヒートシンク付パワーモジュール用基板は、セラミックス基板の一方の面に、上述の各種ペーストを用いて銅板を接合して回路層とした。
また、セラミックス基板の他方の面に、アルミニウム板をろう材を介して接合して金属層を形成した。なお、アルミニウム板として純度99.99質量%以上の4Nアルミニウムを使用し、ろう材としてAl−7.5質量%Si、厚さ14μmのろう材箔を用いた。
さらに、金属層の他方の面に、緩衝板として4Nアルミニウムからなるアルミニウム板をろう材を介して接合した。なお、ろう材としてAl−7.5質量%Si、厚さ100μmのろう材箔を用いた。
また、緩衝板の他方の面側に、ヒートシンクとしてA6063からなるアルミニウム板を、ろう材を介してパワーモジュール用基板の金属層側に接合した。なお、ろう材としてAl−7.5質量%Si、厚さ100μmのろう材箔を用いた。
なお、セラミックス基板と銅板との接合は、表4、表5、表6に示す条件で実施した。
また、セラミックス基板とアルミニウム板をろう付けする際の接合条件は、真空雰囲気、加圧圧力12kgf/cm、加熱温度650℃、加熱時間30分とした。さらに、アルミニウム板同士をろう付けする際の接合条件は、真空雰囲気、加圧圧力6kgf/cm、加熱温度610℃、加熱時間30分とした。
セラミックス基板の材質、サイズを表4、表5、表6に示す。
銅板のサイズは、37mm×37mm×0.3mmとした。
金属層となるアルミニウム板のサイズは、ヒートシンク付パワーモジュール用基板の場合は37mm×37mm×2.1mmとし、ヒートシンク及び緩衝板付パワーモジュール用基板の場合は37mm×37mm×0.6mmとした。
ヒートシンクとなるアルミニウム板のサイズは、50mm×60mm×5mmとした。
緩衝板となるアルミニウム板のサイズは、40mm×40mm×0.9mmとした。
また、表4、表5、表6に、上述の各種ペーストを用いて構成したパワーモジュール用基板、ヒートシンク付パワーモジュール用基板、ヒートシンク及び緩衝板付パワーモジュール用基板の構造及び製造方法について記載した。
構造「DBC」が図10に示すパワーモジュール用基板、
構造「H−1」が図11に示すヒートシンク付パワーモジュール用基板、
構造「H−2」が図12に示すヒートシンク付パワーモジュール用基板、
構造「B−1」が図13に示すヒートシンク付パワーモジュール用基板、
構造「B−2」が図5に示すヒートシンク付パワーモジュール用基板、である。
Figure 2015180600
Figure 2015180600
Figure 2015180600
ここで、膜厚換算量(換算平均膜厚)を次のように測定し表7、表8、表9に示した。
まず、セラミックス基板と銅板との表面に、表1、表2、表3に示す各種ペーストを塗布して乾燥した。乾燥された各種ペーストにおける各元素の膜厚換算量(換算平均膜厚)を測定した。
膜厚は、蛍光X線膜厚計(エスアイアイ・ナノテクノロジー株式会社製STF9400)を用いて、塗布した各種ペーストに対し、図14に示す箇所(9点)を各3回測定した平均値とした。なお、予め膜厚が既知のサンプルを測定して蛍光X線強度と濃度の関係を求めておき、その結果を基準として、各試料において測定された蛍光X線強度から各元素の膜厚換算量を決定した。
Figure 2015180600
Figure 2015180600
Figure 2015180600
上述のようにして得られたパワーモジュール用基板、ヒートシンク付パワーモジュール用基板について、セラミックス割れ、冷熱サイクル負荷後の接合率、窒化物層の有無、Ag−Cu共晶組織層の厚さを評価した。評価結果を表10、表11、表12に示す。
セラミックス割れは、冷熱サイクル(−45℃←→125℃)を500回繰り返す毎にクラックの発生の有無を確認し、クラックが確認された回数で評価した。
冷熱サイクル負荷後の接合率は、冷熱サイクル(−45℃←→125℃)を4000回繰り返した後のパワーモジュール用基板を用いて、以下の式で算出した。なお、3500回を満たさないうちにクラックが発生した場合には、4000回繰り返した後の接合率については評価しなかった。
接合率 = (初期接合面積−剥離面積)/初期接合面積
窒化物層は、EPMA(電子線マイクロアナライザー)による窒化物形成元素のマッピングから銅板/セラミックス基板界面での窒化物形成元素の存在を確認して実施した。
Ag−Cu共晶組織層の厚さは、銅板/セラミックス基板界面のEPMA(電子線マイクロアナライザー)による反射電子像から、倍率2000倍の視野(縦45μm;横60μm)において接合界面に連続的に形成されたAg−Cu共晶組織層の面積を測定し、測定視野の幅の寸法で除して求め、5視野の平均をAg−Cu共晶組織層の厚さとした。なお、銅板とセラミックス基板との接合部に形成されたAg−Cu共晶組織層のうち、接合界面から厚さ方向に連続的に形成されていない領域を含めずに、Ag−Cu共晶組織層の面積を測定した。
Figure 2015180600
Figure 2015180600
Figure 2015180600
比較例1、2、51においては、共晶組織厚さが15μmを超えており、少ないサイクル数でセラミックス基板にクラックが発生した。
また、従来例1及び従来例51では、共晶組織厚さが15μmを超えており、比較例と同様に少ないサイクル数でセラミックス基板にクラックが発生した。
一方、共晶組織厚さが15μm以下とされた本発明例1−23、51−73、81−90においては、セラミックス基板におけるクラックの発生が抑制されていることが確認される。また、4000サイクル後の接合率も91%以上と高かった。
以上の結果から、本発明例によれば、冷熱サイクル負荷時におけるセラミックス基板の割れの発生を抑制できるパワーモジュール用基板を提供できることが確認された。
1 パワーモジュール
3 半導体素子(電子部品)
10、110、210、310、410 パワーモジュール用基板
11、111、211、311、411 セラミックス基板
12、112、212、312、412 回路層
13、113、213、313、413 金属層
22、122、123、222、322、422 銅板
23、223、323、423 アルミニウム板
31、131 窒化物層
32 Ag−Cu共晶組織層
41、441 緩衝板
50、250、350、450 ヒートシンク付パワーモジュール用基板
51、251、351、451 ヒートシンク

Claims (11)

  1. セラミックス基板の表面に銅または銅合金からなる銅板が積層されて接合されたパワーモジュール用基板であって、
    前記セラミックス基板の接合面、及び、前記銅板の接合面のうちの少なくとも一方に、Agと窒化物形成元素とを含有するAg及び窒化物形成元素層を形成し、このAg及び窒化物形成元素層を介して前記セラミックス基板と前記銅板とを積層し、積層された前記セラミックス基板と前記銅板を積層方向に1〜35kgf/cmで加圧するとともに加熱して溶融金属領域を形成し、この溶融金属領域を凝固させることにより、前記セラミックス基板と前記銅板とが接合されており、
    前記銅板と前記セラミックス基板との間において、前記セラミックス基板の表面に窒化物層が形成されているとともに、前記窒化物層に積層するようにAg−Cu共晶組織層が形成され、前記Ag−Cu共晶組織層の厚さが14μm以下とされていることを特徴とするパワーモジュール用基板。
  2. 前記セラミックス基板は、AlN又はSiのいずれかで構成されていることを特徴とする請求項1に記載のパワーモジュール用基板。
  3. 前記窒化物層は、Ti、Hf、Zr、Nbから選択される1種又は2種以上の元素の窒化物を含有していることを特徴とする請求項1又は請求項2に記載のパワーモジュール用基板。
  4. 請求項1から請求項3のいずれか一項に記載のパワーモジュール用基板と、このパワーモジュール用基板を冷却するヒートシンクと、を備えたことを特徴とするヒートシンク付パワーモジュール用基板。
  5. 請求項1から請求項3のいずれか一項に記載のパワーモジュール用基板と、該パワーモジュール用基板上に搭載される電子部品と、を備えたことを特徴とするパワーモジュール。
  6. 請求項1から請求項3のいずれか一項に記載のパワーモジュール用基板の製造方法であって、
    前記セラミックス基板の接合面及び前記銅板の接合面のうち少なくとも一方に、Agと窒化物形成元素とを含有するAg及び窒化物形成元素層を形成するAg及び窒化物形成元素層形成工程と、
    このAg及び窒化物形成元素層を介して前記セラミックス基板と前記銅板と積層する積層工程と、
    積層された前記セラミックス基板と前記銅板を積層方向に加圧するとともに加熱し、前記セラミックス基板と前記銅板との界面に溶融金属領域を形成する加熱工程と、
    この溶融金属領域を凝固させることによって、前記セラミックス基板と前記銅板とを接合する凝固工程と、を有し、
    前記加熱工程において、前記セラミックス基板と前記銅板を積層方向に1〜35kgf/cmで加圧し、Agを前記銅板側に拡散させることにより前記セラミックス基板と前記銅板との界面に前記溶融金属領域を形成するとともに、前記窒化物層に積層するようにAg−Cu共晶組織層を形成し、前記Ag−Cu共晶組織層の厚さを14μm以下とすることを特徴とするパワーモジュール用基板の製造方法。
  7. 前記窒化物形成元素は、Ti、Hf、Zr、Nbから選択される1種又は2種以上の元素であることを特徴とする請求項6に記載のパワーモジュール用基板の製造方法。
  8. 前記Ag及び窒化物形成元素層形成工程では、Ag及び窒化物形成元素以外に、In、Sn、Al、Mn及びZnから選択される1種又は2種以上の添加元素を配設させることを特徴とする請求項6又は請求項7に記載のパワーモジュール用基板の製造方法。
  9. 前記Ag及び窒化物形成元素層形成工程では、Ag及び窒化物形成元素を含有する銅部材接合用ペーストを塗布することを特徴とする請求項6から請求項8のいずれか一項に記載のパワーモジュール用基板の製造方法。
  10. 前記銅部材接合用ペーストは、前記窒化物形成元素の水素化物を含有していることを特徴とする請求項9に記載のパワーモジュール用基板の製造方法。
  11. 請求項9または請求項10に記載のパワーモジュール用基板の製造方法で使用される銅部材接合用ペーストであって、
    Ag及び窒化物形成元素を含む粉末成分と、樹脂と、溶剤と、を含むことを特徴とする銅部材接合用ペースト。
JP2015127751A 2012-02-01 2015-06-25 パワーモジュール用基板、ヒートシンク付パワーモジュール用基板、パワーモジュール及びパワーモジュール用基板の製造方法、並びに、銅部材接合用ペースト Active JP6048541B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015127751A JP6048541B2 (ja) 2012-02-01 2015-06-25 パワーモジュール用基板、ヒートシンク付パワーモジュール用基板、パワーモジュール及びパワーモジュール用基板の製造方法、並びに、銅部材接合用ペースト

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012020171 2012-02-01
JP2012020171 2012-02-01
JP2015127751A JP6048541B2 (ja) 2012-02-01 2015-06-25 パワーモジュール用基板、ヒートシンク付パワーモジュール用基板、パワーモジュール及びパワーモジュール用基板の製造方法、並びに、銅部材接合用ペースト

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2014143522A Division JP5928535B2 (ja) 2012-02-01 2014-07-11 パワーモジュール用基板、ヒートシンク付パワーモジュール用基板、パワーモジュール及びパワーモジュール用基板の製造方法、並びに、銅部材接合用ペースト

Publications (2)

Publication Number Publication Date
JP2015180600A true JP2015180600A (ja) 2015-10-15
JP6048541B2 JP6048541B2 (ja) 2016-12-21

Family

ID=49270615

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2012267298A Pending JP2013179263A (ja) 2012-02-01 2012-12-06 パワーモジュール用基板、ヒートシンク付パワーモジュール用基板、パワーモジュール及びパワーモジュール用基板の製造方法
JP2014143522A Active JP5928535B2 (ja) 2012-02-01 2014-07-11 パワーモジュール用基板、ヒートシンク付パワーモジュール用基板、パワーモジュール及びパワーモジュール用基板の製造方法、並びに、銅部材接合用ペースト
JP2015127751A Active JP6048541B2 (ja) 2012-02-01 2015-06-25 パワーモジュール用基板、ヒートシンク付パワーモジュール用基板、パワーモジュール及びパワーモジュール用基板の製造方法、並びに、銅部材接合用ペースト

Family Applications Before (2)

Application Number Title Priority Date Filing Date
JP2012267298A Pending JP2013179263A (ja) 2012-02-01 2012-12-06 パワーモジュール用基板、ヒートシンク付パワーモジュール用基板、パワーモジュール及びパワーモジュール用基板の製造方法
JP2014143522A Active JP5928535B2 (ja) 2012-02-01 2014-07-11 パワーモジュール用基板、ヒートシンク付パワーモジュール用基板、パワーモジュール及びパワーモジュール用基板の製造方法、並びに、銅部材接合用ペースト

Country Status (1)

Country Link
JP (3) JP2013179263A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018506496A (ja) * 2015-12-28 2018-03-08 日本碍子株式会社 接合基板および接合基板の製造方法
WO2023106226A1 (ja) * 2021-12-10 2023-06-15 三菱マテリアル株式会社 銅/セラミックス接合体、および、絶縁回路基板

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6127852B2 (ja) * 2013-09-13 2017-05-17 三菱マテリアル株式会社 ヒートシンク付パワーモジュール用基板及びその製造方法
WO2018199060A1 (ja) 2017-04-25 2018-11-01 デンカ株式会社 セラミックス回路基板及びその製造方法とそれを用いたモジュール
CN116995059A (zh) * 2018-06-29 2023-11-03 长江存储科技有限责任公司 半导体结构及其形成方法
JP7379813B2 (ja) * 2018-11-20 2023-11-15 富士電機株式会社 接合体及び接合体の製造方法
JP7484268B2 (ja) 2020-03-18 2024-05-16 三菱マテリアル株式会社 金属部材の仮止め方法、接合体の製造方法、及び、絶縁回路基板の製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60177635A (ja) * 1984-02-24 1985-09-11 Toshiba Corp 良熱伝導性基板の製造方法
JPH05148053A (ja) * 1991-11-29 1993-06-15 Toshiba Corp セラミツクス−金属接合体
JPH09162325A (ja) * 1995-12-07 1997-06-20 Denki Kagaku Kogyo Kk 窒化珪素回路基板及びその製造方法
JPH10251075A (ja) * 1997-03-12 1998-09-22 Dowa Mining Co Ltd 金属−セラミックス複合基板及びその製造法並びにそれに用いるろう材
JP2000335983A (ja) * 1999-05-28 2000-12-05 Denki Kagaku Kogyo Kk 接合体の製造方法
JP2002274964A (ja) * 2001-03-13 2002-09-25 Denki Kagaku Kogyo Kk 接合体の製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0697671B2 (ja) * 1984-02-24 1994-11-30 株式会社東芝 パワー半導体モジユール基板の製造方法
JP2501835B2 (ja) * 1987-08-25 1996-05-29 昭和電工株式会社 金属質接着材料
JP2571233B2 (ja) * 1987-09-05 1997-01-16 昭和電工株式会社 回路基板の製造方法
JP3495051B2 (ja) * 1992-07-03 2004-02-09 株式会社東芝 セラミックス−金属接合体
JP4077888B2 (ja) * 1995-07-21 2008-04-23 株式会社東芝 セラミックス回路基板
EP0935286A4 (en) * 1997-05-26 2008-04-09 Sumitomo Electric Industries COPPER CIRCUIT JUNCTION SUBSTRATE AND PROCESS FOR PRODUCING THE SAME
JPH11130555A (ja) * 1997-10-28 1999-05-18 Kyocera Corp セラミックス−銅接合用ろう材
JP2003197824A (ja) * 2001-12-25 2003-07-11 Toshiba Corp セラミックス回路基板
JP2003285195A (ja) * 2002-03-26 2003-10-07 Ngk Spark Plug Co Ltd セラミック回路基板及びその製造方法
JP3795038B2 (ja) * 2003-10-03 2006-07-12 電気化学工業株式会社 回路基板及びその製造方法
JP4345066B2 (ja) * 2005-05-24 2009-10-14 日立金属株式会社 セラミックス回路基板及びこれを用いたパワー半導体モジュール
JP5133960B2 (ja) * 2009-10-22 2013-01-30 電気化学工業株式会社 半導体搭載用回路基板及びその製造方法
JP5066197B2 (ja) * 2010-02-08 2012-11-07 京セラ株式会社 半導体モジュール

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60177635A (ja) * 1984-02-24 1985-09-11 Toshiba Corp 良熱伝導性基板の製造方法
JPH05148053A (ja) * 1991-11-29 1993-06-15 Toshiba Corp セラミツクス−金属接合体
JPH09162325A (ja) * 1995-12-07 1997-06-20 Denki Kagaku Kogyo Kk 窒化珪素回路基板及びその製造方法
JPH10251075A (ja) * 1997-03-12 1998-09-22 Dowa Mining Co Ltd 金属−セラミックス複合基板及びその製造法並びにそれに用いるろう材
JP2000335983A (ja) * 1999-05-28 2000-12-05 Denki Kagaku Kogyo Kk 接合体の製造方法
JP2002274964A (ja) * 2001-03-13 2002-09-25 Denki Kagaku Kogyo Kk 接合体の製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018506496A (ja) * 2015-12-28 2018-03-08 日本碍子株式会社 接合基板および接合基板の製造方法
US10784182B2 (en) 2015-12-28 2020-09-22 Ngk Insulators, Ltd. Bonded substrate and method for manufacturing bonded substrate
WO2023106226A1 (ja) * 2021-12-10 2023-06-15 三菱マテリアル株式会社 銅/セラミックス接合体、および、絶縁回路基板

Also Published As

Publication number Publication date
JP6048541B2 (ja) 2016-12-21
JP2014187411A (ja) 2014-10-02
JP2013179263A (ja) 2013-09-09
JP5928535B2 (ja) 2016-06-01

Similar Documents

Publication Publication Date Title
JP6056432B2 (ja) パワーモジュール用基板、ヒートシンク付パワーモジュール用基板、パワーモジュール、パワーモジュール用基板の製造方法
WO2013115359A1 (ja) パワーモジュール用基板、ヒートシンク付パワーモジュール用基板、パワーモジュール、パワーモジュール用基板の製造方法、および銅部材接合用ペースト
JP6048541B2 (ja) パワーモジュール用基板、ヒートシンク付パワーモジュール用基板、パワーモジュール及びパワーモジュール用基板の製造方法、並びに、銅部材接合用ペースト
JP5757359B2 (ja) Cu/セラミックス接合体、Cu/セラミックス接合体の製造方法、及び、パワーモジュール用基板
JP2012161818A (ja) 液相拡散接合用Agペースト、および、この液相拡散接合用Agペーストを用いたパワーモジュール用基板の製造方法
JP6569511B2 (ja) 接合体、冷却器付きパワーモジュール用基板、冷却器付きパワーモジュール用基板の製造方法
JP2017139260A (ja) Ag下地層付き金属部材、Ag下地層付き絶縁回路基板、半導体装置、ヒートシンク付き絶縁回路基板、及び、Ag下地層付き金属部材の製造方法
JP5966504B2 (ja) はんだ接合構造、パワーモジュール、ヒートシンク付パワーモジュール用基板、並びに、はんだ接合構造の製造方法、パワーモジュールの製造方法、ヒートシンク付パワーモジュール用基板の製造方法
JP2014172802A (ja) 銅部材接合用ペースト、接合体、及びパワーモジュール用基板
JP6213204B2 (ja) Ag下地層形成用ペースト
JP2015149349A (ja) 下地層付き金属部材、絶縁回路基板、半導体装置、ヒートシンク付き絶縁回路基板、及び、下地層付き金属部材の製造方法
JP5605423B2 (ja) 接合体の製造方法
JP6171912B2 (ja) Ag下地層付き金属部材、絶縁回路基板、半導体装置、ヒートシンク付き絶縁回路基板、及び、Ag下地層付き金属部材の製造方法
WO2023286857A1 (ja) 銅/セラミックス接合体、および、絶縁回路基板
WO2023286860A1 (ja) 銅/セラミックス接合体、および、絶縁回路基板
JP2023020265A (ja) 銅/セラミックス接合体、および、絶縁回路基板
JP5640571B2 (ja) パワーモジュール用基板の製造方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160809

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161107

R150 Certificate of patent or registration of utility model

Ref document number: 6048541

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150