WO2023286857A1 - 銅/セラミックス接合体、および、絶縁回路基板 - Google Patents

銅/セラミックス接合体、および、絶縁回路基板 Download PDF

Info

Publication number
WO2023286857A1
WO2023286857A1 PCT/JP2022/027855 JP2022027855W WO2023286857A1 WO 2023286857 A1 WO2023286857 A1 WO 2023286857A1 JP 2022027855 W JP2022027855 W JP 2022027855W WO 2023286857 A1 WO2023286857 A1 WO 2023286857A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper
active metal
layer
thickness
less
Prior art date
Application number
PCT/JP2022/027855
Other languages
English (en)
French (fr)
Inventor
伸幸 寺▲崎▼
Original Assignee
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱マテリアル株式会社 filed Critical 三菱マテリアル株式会社
Priority to US18/559,155 priority Critical patent/US20240234242A1/en
Priority to CN202280041666.4A priority patent/CN117500769A/zh
Priority to DE112022003587.0T priority patent/DE112022003587T5/de
Publication of WO2023286857A1 publication Critical patent/WO2023286857A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4871Bases, plates or heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/023Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used
    • C04B37/026Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used consisting of metals or metal salts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4846Leads on or in insulating or insulated substrates, e.g. metallisation
    • H01L21/4857Multilayer substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3736Metallic materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/388Improvement of the adhesion between the insulating substrate and the metal by the use of a metallic or inorganic thin film adhesion layer
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5409Particle size related information expressed by specific surface values
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/122Metallic interlayers based on refractory metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/124Metallic interlayers based on copper
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/125Metallic interlayers based on noble metals, e.g. silver
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/126Metallic interlayers wherein the active component for bonding is not the largest fraction of the interlayer
    • C04B2237/127The active component for bonding being a refractory metal
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/368Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/407Copper
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/60Forming at the joining interface or in the joining layer specific reaction phases or zones, e.g. diffusion of reactive species from the interlayer to the substrate or from a substrate to the joining interface, carbide forming at the joining interface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/29109Indium [In] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/29111Tin [Sn] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29139Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29147Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0201Thermal arrangements, e.g. for cooling, heating or preventing overheating
    • H05K1/0203Cooling of mounted components
    • H05K1/0204Cooling of mounted components using means for thermal conduction connection in the thickness direction of the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0271Arrangements for reducing stress or warp in rigid printed circuit boards, e.g. caused by loads, vibrations or differences in thermal expansion
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0058Laminating printed circuit boards onto other substrates, e.g. metallic substrates
    • H05K3/0061Laminating printed circuit boards onto other substrates, e.g. metallic substrates onto a metallic substrate, e.g. a heat sink

Definitions

  • the present invention provides a copper/ceramic bonded body in which a copper member made of copper or a copper alloy and a ceramic member are joined together, and an insulating circuit in which a copper plate made of copper or a copper alloy is joined to the surface of a ceramic substrate. It relates to substrates.
  • a power module, an LED module, and a thermoelectric module have a structure in which a power semiconductor element, an LED element, and a thermoelectric element are joined to an insulating circuit board in which a circuit layer made of a conductive material is formed on one side of an insulating layer.
  • power semiconductor elements for high power control used to control wind power generation, electric vehicles, hybrid vehicles, etc. generate a large amount of heat during operation.
  • Patent Document 1 proposes an insulated circuit board in which a circuit layer and a metal layer are formed by bonding copper plates to one side and the other side of a ceramic substrate.
  • copper plates are arranged on one surface and the other surface of a ceramic substrate with an Ag—Cu—Ti brazing material interposed therebetween, and the copper plates are joined by heat treatment (so-called active metal brazing method).
  • Patent Document 2 proposes a power module substrate in which a copper plate made of copper or a copper alloy and a ceramic substrate made of silicon nitride are bonded using a bonding material containing Ag and Ti.
  • a copper plate and a ceramic substrate are bonded using a bonding material containing Ti
  • Ti which is an active metal, reacts with the ceramic substrate, thereby improving the wettability of the bonding material and the copper plate.
  • the bonding strength with the ceramic substrate is improved.
  • the heat generation temperature of the semiconductor elements mounted on the insulated circuit board tends to be higher, and the insulated circuit board is required to have higher cooling/heating cycle reliability to withstand severe cooling/heating cycles.
  • Ti which is an active metal
  • an intermetallic compound containing Cu and Ti precipitates.
  • the vicinity of the joint interface becomes hard, cracks may occur in the ceramic member during thermal cycle loading, and there is a risk of deterioration in thermal cycle reliability.
  • the present invention has been made in view of the above-mentioned circumstances. It is an object of the present invention to provide an insulated circuit board made of this copper/ceramic bonded body.
  • the inventors of the present invention conducted intensive studies and found that when a ceramic member and a copper member are joined using a joining material containing an active metal, the liquid phase generated at the time of joining is a liquid phase in the copper member.
  • the active metal is repelled from the central portion to the peripheral edge portion side, and a relatively large amount of active metal exists in the peripheral edge portion of the copper member. It was found that there is a tendency to be harder than the region. Then, the inventors have found that stress concentrates on the peripheral edge region of the hard copper member at the bonding interface during a thermal cycle load, and cracking of the ceramic member is likely to occur.
  • a copper/ceramic joined body is a joint between a copper member made of copper or a copper alloy and a ceramic member made of silicon nitride.
  • An active metal nitride layer is formed on the side of the ceramic member at the bonding interface between the ceramic member and the copper member, and the active metal nitride layer forms the
  • the active metal compound containing Si and the active metal has an area ratio of 10% or less in a region 10 ⁇ m from the copper member side, and the area ratio P A of the active metal compound in the peripheral region of the copper member and the copper A ratio P A /P B of the area ratio P B of the active metal compound in the central region of the member is in the range of 0.7 or more and 1.4 or less. It can also be said that the copper/ceramic joined body has the copper member and the ceramic member, and the copper member and the ceramic member are joined together.
  • the copper/ceramic bonded body at the bonding interface with the copper member bonded to at least one surface of the ceramic member, a distance of 10 ⁇ m from the active metal nitride layer toward the copper member side Since the area ratio of the active metal compound containing Si and the active metal in the region is set to 10% or less, the joining interface between the ceramic member and the copper member is prevented from becoming hard more than necessary.
  • the ratio P A /P B of the area ratio P A of the active metal compound in the peripheral region of the copper member and the area ratio P B of the active metal compound in the central region of the copper member is 0.7.
  • the thickness t1A of the active metal nitride layer formed in the peripheral region of the copper member and the thickness t1A formed in the central region of the copper member is in the range of 0.05 ⁇ m or more and 0.8 ⁇ m or less, and the thickness ratio t1A / t1B is in the range of 0.7 or more and 1.4 or less. preferably.
  • the thickness t1A of the active metal nitride layer formed in the peripheral region of the copper member and the thickness t1B of the active metal nitride layer formed in the central region of the copper member are 0.
  • the thickness is within the range of 0.05 ⁇ m or more and 0.8 ⁇ m or less, the ceramic member and the copper member are reliably and strongly bonded by the active metal, and hardening of the bonding interface is further suppressed. Further, since the thickness ratio t1A / t1B is within the range of 0.7 or more and 1.4 or less, there is a large difference in the hardness of the bonding interface between the peripheral region and the central region of the copper member. Therefore, it is possible to further suppress the occurrence of cracks in the ceramic member under thermal cycle load.
  • an Ag—Cu alloy layer is formed on the copper member side at the bonding interface between the ceramic member and the copper member, and the copper member
  • the thickness t2 A of the Ag--Cu alloy layer formed in the peripheral region of the and the thickness t2 B of the Ag--Cu alloy layer formed in the central region of the copper member are in the range of 1 ⁇ m or more and 30 ⁇ m or less. and the thickness ratio t2A / t2B is preferably in the range of 0.7 or more and 1.4 or less.
  • the thickness t2A of the Ag--Cu alloy layer formed in the peripheral region of the copper member and the thickness t2B of the Ag--Cu alloy layer formed in the central region of the copper member are 1 ⁇ m. Since the thickness is within the range of 30 ⁇ m or less, the Ag of the bonding material sufficiently reacts with the copper member, so that the ceramic member and the copper member are reliably and firmly bonded, and the bonding interface is further hardened. Suppressed. Since the thickness ratio t2A / t2B is in the range of 0.7 or more and 1.4 or less, there is a large difference in the hardness of the bonding interface between the peripheral region and the central region of the copper member. is not generated, and the occurrence of cracks in the ceramic member under thermal cycle load can be further suppressed.
  • An insulated circuit board is an insulated circuit board in which a copper plate made of copper or a copper alloy is bonded to the surface of a ceramic substrate made of silicon nitride, wherein the bonding of the ceramic substrate and the copper plate At the interface, an active metal nitride layer is formed on the ceramic substrate side, and the active metal compound containing Si and the active metal has an area ratio of 10 in a region of 10 ⁇ m from the active metal nitride layer to the copper plate side.
  • the ratio P A /P B of the area ratio P A of the active metal compound in the peripheral region of the copper plate and the area ratio P B of the active metal compound in the central region of the copper plate is It is characterized by being in the range of 0.7 or more and 1.4 or less. It can also be said that the insulating circuit board has the ceramic substrate and the copper plate, and the copper plate is joined to the surface of the ceramic substrate.
  • the insulated circuit board according to one aspect of the present invention, at the bonding interface with the copper plate bonded to at least one surface of the ceramic substrate, Si and Si in a region of 10 ⁇ m from the active metal nitride layer to the copper plate side Since the area ratio of the active metal compound containing the active metal is set to 10% or less, the bonding interface between the ceramic substrate and the copper plate is prevented from becoming hard more than necessary.
  • the ratio P A /P B of the area ratio P A of the active metal compound in the peripheral region of the copper plate and the area ratio P B of the active metal compound in the central region of the copper plate is 0.7 or more and 1 .4 or less, there is no large difference in hardness between the peripheral edge region of the copper plate and the central region of the copper plate, and cracking of the ceramic substrate can be suppressed during thermal cycle loads. Excellent thermal cycle reliability.
  • the thickness t1A of the active metal nitride layer formed in the peripheral region of the copper plate and the thickness t1A formed in the central region of the copper plate is in the range of 0.05 ⁇ m or more and 0.8 ⁇ m or less, and the thickness ratio t1 A /t1 B is in the range of 0.7 or more and 1.4 or less. is preferred.
  • the thickness t1A of the active metal nitride layer formed in the peripheral region of the copper plate and the thickness t1B of the active metal nitride layer formed in the central region of the copper plate are 0.05 ⁇ m.
  • the thickness is within the range of 0.8 ⁇ m or less, the ceramic substrate and the copper plate are reliably and strongly bonded by the active metal, and hardening of the bonding interface is further suppressed. Further, since the thickness ratio t1A / t1B is within the range of 0.7 or more and 1.4 or less, there is a large difference in the hardness of the bonding interface between the peripheral region and the central region of the copper plate. Moreover, it is possible to further suppress the occurrence of cracks in the ceramic substrate under thermal cycle load.
  • an Ag—Cu alloy layer is formed on the side of the copper plate at the bonding interface between the ceramic substrate and the copper plate, and in the peripheral region of the copper plate.
  • the thickness t2 A of the Ag—Cu alloy layer formed and the thickness t2 B of the Ag—Cu alloy layer formed in the central region of the copper plate are in the range of 1 ⁇ m or more and 30 ⁇ m or less, and the thickness ratio It is preferable that t2A / t2B is in the range of 0.7 or more and 1.4 or less.
  • the thickness t2A of the Ag--Cu alloy layer formed in the peripheral region of the copper plate and the thickness t2B of the Ag--Cu alloy layer formed in the central region of the copper plate are 1 ⁇ m or more and 30 ⁇ m. Since it is within the following range, the Ag of the bonding material sufficiently reacts with the copper plate, and the ceramic substrate and the copper plate are reliably and strongly bonded, and hardening of the bonding interface is further suppressed. Since the thickness ratio t2A / t2B is in the range of 0.7 or more and 1.4 or less, there is a large difference in the hardness of the bonding interface between the peripheral region and the central region of the copper plate. In addition, it is possible to further suppress the occurrence of cracks in the ceramic substrate under a thermal cycle load.
  • a copper/ceramic joint that can suppress the occurrence of cracks in a ceramic member even when a severe thermal cycle is applied and has excellent thermal cycle reliability, and the copper/ceramic It is possible to provide an insulated circuit board made of a bonded body.
  • FIG. 1 is a schematic explanatory diagram of a power module using an insulated circuit board according to an embodiment of the present invention
  • FIG. FIG. 2 is an enlarged explanatory view of a bonding interface between a circuit layer and a metal layer of an insulated circuit board and a ceramic substrate according to an embodiment of the present invention
  • (a) is an explanatory diagram of the peripheral region and the central region of the circuit layer and the metal layer
  • (b) is the peripheral region
  • (c) is the central region.
  • 1 is a flowchart of a method for manufacturing an insulated circuit board according to an embodiment of the present invention
  • FIG. It is a schematic explanatory drawing of the manufacturing method of the insulation circuit board which concerns on embodiment of this invention.
  • FIG. 4 is an explanatory diagram of a bonding material disposing step in the method of manufacturing an insulated circuit board according to the embodiment of the present invention
  • FIG. 4 is an explanatory diagram showing a method of calculating the area ratio of active metal compounds in the examples of the present invention.
  • the copper/ceramic bonded body according to the present embodiment includes a ceramic substrate 11 as a ceramic member made of ceramics, and a copper plate 42 (circuit layer 12) and a copper plate 43 (metal layer 13) as copper members made of copper or a copper alloy. is an insulating circuit board 10 formed by bonding the .
  • FIG. 1 shows a power module 1 having an insulated circuit board 10 according to this embodiment.
  • This power module 1 includes an insulating circuit board 10 on which a circuit layer 12 and a metal layer 13 are arranged, and a semiconductor element 3 bonded to one surface (upper surface in FIG. 1) of the circuit layer 12 via a bonding layer 2. and a heat sink 5 arranged on the other side (lower side in FIG. 1) of the metal layer 13 .
  • the semiconductor element 3 is made of a semiconductor material such as Si.
  • the semiconductor element 3 and the circuit layer 12 are bonded via the bonding layer 2 .
  • the bonding layer 2 is made of, for example, a Sn--Ag-based, Sn--In-based, or Sn--Ag--Cu-based solder material.
  • the heat sink 5 is for dissipating heat from the insulating circuit board 10 described above.
  • the heat sink 5 is made of copper or a copper alloy, and is made of phosphorus-deoxidized copper in this embodiment.
  • the heat sink 5 is provided with a channel through which cooling fluid flows.
  • the heat sink 5 and the metal layer 13 are joined by a solder layer 7 made of a solder material.
  • the solder layer 7 is made of, for example, a Sn--Ag-based, Sn--In-based, or Sn--Ag--Cu-based solder material.
  • the insulating circuit board 10 of the present embodiment includes a ceramic substrate 11, a circuit layer 12 provided on one surface (upper surface in FIG. 1) of the ceramic substrate 11, and a ceramic substrate. and a metal layer 13 disposed on the other surface (lower surface in FIG. 1) of the substrate 11 .
  • the ceramic substrate 11 is made of silicon nitride (Si 3 N 4 ), which has excellent insulation and heat dissipation properties.
  • the thickness of the ceramic substrate 11 is set, for example, within a range of 0.2 mm or more and 1.5 mm or less, and is set to 0.32 mm in this embodiment.
  • the circuit layer 12 is formed by bonding a copper plate 42 made of copper or a copper alloy to one surface (upper surface in FIG. 4) of the ceramic substrate 11. As shown in FIG. In this embodiment, the circuit layer 12 is formed by bonding a rolled plate of oxygen-free copper to the ceramic substrate 11 .
  • the thickness of the copper plate 42 that forms the circuit layer 12 is set within a range of 0.1 mm or more and 2.0 mm or less, and is set to 0.6 mm in this embodiment.
  • the metal layer 13 is formed by bonding a copper plate 43 made of copper or a copper alloy to the other surface of the ceramic substrate 11 (the lower surface in FIG. 4).
  • the metal layer 13 is formed by bonding a rolled plate of oxygen-free copper to the ceramic substrate 11 .
  • the thickness of the copper plate 43 that forms the metal layer 13 is set within a range of 0.1 mm or more and 2.0 mm or less, and is set to 0.6 mm in this embodiment.
  • an active metal nitride layer 21 and an Ag—Cu alloy layer 22 are formed in this order from the ceramic substrate 11 side. . It can also be said that the active metal nitride layer 21 is part of the ceramic substrate 11 . It can also be said that the Ag—Cu alloy layer 22 is part of the circuit layer 12 and the metal layer 13 . Therefore, the bonding interface between the ceramic substrate 11 and the circuit layer 12 and metal layer 13 (copper plates 42 and 43) is the interface between the active metal nitride layer 21 and the Ag--Cu alloy layer 22.
  • the bonding interface between the ceramic substrate 11, the circuit layer 12 and the metal layer 13 is formed by the active metal nitride layer 21, the circuit layer 12 and the metal layer 13 (copper plate 42, 43).
  • the interface structure between the peripheral region A and the central region B of the circuit layer 12 and the metal layer 13 is as follows. stipulated.
  • the peripheral region A of the circuit layer 12 and the metal layer 13 is a cross section along the lamination direction of the circuit layer 12 and the metal layer 13 and the ceramic substrate 11. 2, the region extends from the widthwise end of the circuit layer 12 and the metal layer 13 to 200 ⁇ m further inward in the width direction from a position 20 ⁇ m inward from the widthwise end.
  • the central region B of the circuit layer 12 and the metal layer 13 is the circuit layer 12 in the cross section along the lamination direction of the circuit layer 12 and the metal layer 13 and the ceramic substrate 11. and a region of 200 ⁇ m in the width direction including the center of the metal layer 13 in the width direction.
  • the area ratio PA is 10% or less.
  • the circuit layer 12 (metal layer 13) of the active metal nitride layer 21 in the central region B of the bonding interface between the ceramic substrate 11 and the circuit layer 12 and the metal layer 13, the circuit layer 12 (metal layer 13) of the active metal nitride layer 21
  • the ratio PB is set to 10% or less.
  • the ratio P A /P B to the area ratio P B of the active metal compound in the central region B of the joint interface with the is in the range of 0.7 or more and 1.4 or less.
  • the intermetallic compound (active metal compound) containing Si and active metal (Ti) include TiSi 2 , TiSi, Ti 5 Si 4 , Ti 5 Si 3 , and Ti 5 Si. , it is Ti 5 Si 3 .
  • the thickness t1B of the active metal nitride layer 21B formed in the central region B of the bonding interface between the circuit layer 12 and the metal layer 13 is in the range of 0.05 ⁇ m or more and 0.8 ⁇ m or less. It is preferable that the thickness ratio t1A / t1B is in the range of 0.7 or more and 1.4 or less.
  • the active metal nitride layers 21 (21A, 21B) are formed by aggregates of active metal nitride particles.
  • the average particle size of these particles is 10 nm or more and 100 nm or less.
  • the active metal nitride layers 21 (21A, 21B) are made of titanium nitride (TiN). consists of That is, the active metal nitride layers 21 (21A, 21B) are formed by aggregation of particles of titanium nitride (TiN) having an average particle diameter of 10 nm or more and 100 nm or less.
  • the ratio t2A / t2B to the thickness t2B of the Ag—Cu alloy layer 22B formed in the central region B of the bonding interface between the layer 12 and the metal layer 13 is in the range of 0.7 or more and 1.4 or less. preferably within.
  • the thickness of the Ag--Cu alloy layer 22 (22A, 22B) is preferably 1 ⁇ m or more and 30 ⁇ m or less.
  • FIG. 1 A method for manufacturing the insulated circuit board 10 according to the present embodiment will be described below with reference to FIGS. 3 and 4.
  • FIG. 1 A method for manufacturing the insulated circuit board 10 according to the present embodiment will be described below with reference to FIGS. 3 and 4.
  • a copper plate 42 to be the circuit layer 12 and a copper plate 43 to be the metal layer 13 are prepared. Then, a bonding material 45 is applied to the bonding surfaces of the copper plate 42 to be the circuit layer 12 and the copper plate 43 to be the metal layer 13 and dried.
  • the coating thickness of the paste-like bonding material 45 is preferably within the range of 10 ⁇ m or more and 50 ⁇ m or less after drying. In this embodiment, the paste bonding material 45 is applied by screen printing.
  • the bonding material 45 contains Ag and an active metal (one or more selected from Ti, Zr, Nb, and Hf).
  • an Ag--Ti based brazing material (Ag--Cu--Ti based brazing material) is used as the bonding material 45.
  • the Ag--Ti-based brazing material (Ag--Cu--Ti-based brazing material) contains, for example, 0% by mass or more and 45% by mass or less of Cu, and 0.5% by mass or more and 20% by mass of Ti, which is an active metal. It is preferable to use a composition having a content in the range of mass % or less, with the balance being Ag and unavoidable impurities.
  • the specific surface area of Ag powder contained in the bonding material 45 is preferably 0.15 m 2 /g or more, more preferably 0.25 m 2 /g or more, and more preferably 0.40 m 2 /g or more. is more preferred.
  • the specific surface area of the Ag powder contained in the bonding material 45 is preferably 1.40 m 2 /g or less, more preferably 1.00 m 2 /g or less, and 0.75 m 2 /g or less. is more preferable.
  • the particle size of the Ag powder contained in the paste-like bonding material 45 preferably has a D10 of 0.7 ⁇ m or more and 3.5 ⁇ m or less and a D100 of 4.5 ⁇ m or more and 23 ⁇ m or less. D10 is the particle size at which the cumulative frequency is 10% on a volume basis in the particle size distribution measured by a laser diffraction scattering particle size distribution measurement method, and D100 is the particle size at which the cumulative frequency is 100% on a volume basis. .
  • the bonding material 45 is applied so as to be thinner than the coating thickness of the bonding material 45B in the central portion of the copper plate 43 that becomes the metal layer 13 .
  • the difference between the coating thickness of the bonding material 45A in the peripheral edge portion of the copper plate 42 serving as the circuit layer 12 and the copper plate 43 serving as the metal layer 13 and the coating thickness of the bonding material 45B in the central portion is in the range of 5 ⁇ m or more and 15 ⁇ m or less. It is preferable to The peripheral portion to which the bonding material 45A is applied is a portion of the peripheral portion that includes the peripheral portion area and has an area of 1.5% to 10% of the surface area of the copper plates 42 and 43, and the maximum line width of the peripheral portion is 1 mm. is.
  • the central portion to which the bonding material 45B is applied is a central portion that includes the central region and has an area of 90% to 98.5% of the surface areas of the copper plates 42 and 43 .
  • a copper plate 42 to be the circuit layer 12 is laminated on one surface (upper surface in FIG. 4) of the ceramic substrate 11 with a bonding material 45 interposed therebetween, and on the other surface (lower surface in FIG. 4) of the ceramic substrate 11 , a copper plate 43 to be the metal layer 13 is laminated with a bonding material 45 interposed therebetween.
  • the heating temperature in the pressurizing and heating step S03 is preferably in the range of 800° C. or higher and 850° C. or lower.
  • the sum of temperature integral values in the heating step from 780° C. to the heating temperature and the holding step at the heating temperature is preferably in the range of 7° C. ⁇ h or more and 120° C. ⁇ h or less.
  • the pressure load in the pressurization and heating step S03 is preferably within the range of 0.029 MPa or more and 2.94 MPa or less.
  • the degree of vacuum in the pressurizing and heating step S03 is preferably in the range of 1 ⁇ 10 ⁇ 6 Pa or more and 5 ⁇ 10 ⁇ 2 Pa or less.
  • the cooling rate in this cooling step S04 is preferably within the range of 2° C./min or more and 20° C./min or less.
  • the cooling rate here is the cooling rate from the heating temperature to 780° C., which is the Ag—Cu eutectic temperature.
  • the insulated circuit board 10 of the present embodiment is manufactured through the bonding material disposing step S01, the laminating step S02, the pressurizing and heating step S03, and the cooling step S04.
  • Heat-sink bonding step S05 Next, the heat sink 5 is bonded to the other side of the metal layer 13 of the insulated circuit board 10 .
  • the insulating circuit board 10 and the heat sink 5 are laminated with a solder material interposed therebetween and placed in a heating furnace.
  • semiconductor element bonding step S06 Next, the semiconductor element 3 is soldered to one surface of the circuit layer 12 of the insulating circuit board 10 .
  • the power module 1 shown in FIG. 1 is produced by the above-described steps.
  • the insulated circuit board 10 (copper/ceramic bonded body) of the present embodiment configured as described above, in the peripheral region A of the bonding interface between the ceramic substrate 11 and the circuit layer 12 and the metal layer 13, active Si and active metal (In the present embodiment, the area ratio P A of the active metal compound containing Ti) is set to 10% or less, and the active metal Si and active metal (this In the embodiment, since the area ratio PB of the active metal compound containing Ti) is set to 10% or less, the bonding interface between the ceramic substrate 11 and the circuit layer 12 and the metal layer 13 is suppressed from becoming unnecessarily hard. be done.
  • the area ratios P A and P B of the active metal compounds are set to 8% or less. preferably 7% or less, more preferably 5% or less.
  • the area ratios P A and P B of the active metal compounds are preferably 1.5% or more, more preferably 2% or more, and more preferably 3% or more.
  • the ratio P A between the area ratio P A of the active metal compound in the peripheral region A of the circuit layer 12 and the metal layer 13 and the area ratio P B of the active metal compound in the central region B of the circuit layer 12 and the metal layer 13 /PB is in the range of 0.7 or more and 1.4 or less, so the hardness of the peripheral region A of the circuit layer 12 and the metal layer 13 and the central region B of the circuit layer 12 and the metal layer 13 There is no large difference in , cracking of the ceramic substrate 11 can be suppressed under a thermal cycle load, and the thermal cycle reliability is excellent.
  • the area ratio P A of the active metal compound in the peripheral edge region A of the circuit layer 12 and the metal layer 13 and the active metal compound in the central region B of the circuit layer 12 and the metal layer 13 is more preferably in the range of 0.8 or more and 1.2 or less, and more preferably in the range of 0.9 or more and 1.1 or less. more preferred.
  • the thickness t1 A of the active metal nitride layer 21A formed in the peripheral region A of the circuit layer 12 and the metal layer 13, and the thickness t1A in the central region B of the circuit layer 12 and the metal layer 13 When the thickness t1B of the formed active metal nitride layer 21B is in the range of 0.05 ⁇ m or more and 0.8 ⁇ m or less, the ceramic substrate 11, the circuit layer 12 and the metal layer 13 are separated by the active metal. are reliably and firmly joined, and hardening of the joining interface is further suppressed.
  • the thickness t1 of the active metal nitride layer 21A formed in the peripheral region A of the circuit layer 12 and the metal layer 13 A and the thickness t1B of the active metal nitride layer 21B formed in the central region B of the circuit layer 12 and the metal layer 13 is preferably 0.08 ⁇ m or more, and preferably 0.15 ⁇ m or more. is more preferred.
  • the thickness t1B of the active metal nitride layer 21B formed in the central region B of the layer 12 and the metal layer 13 is preferably 0.6 ⁇ m or less, more preferably 0.4 ⁇ m or less.
  • the thickness t1 A of the active metal nitride layer 21A formed in the peripheral region A of the circuit layer 12 and the metal layer 13, and the thickness t1 A in the central region B of the circuit layer 12 and the metal layer 13 When the ratio t1A / t1B of the thickness t1B of the formed active metal nitride layer 21B is within the range of 0.7 or more and 1.4 or less, the circuit layer 12 and the metal layer 13 There is no large difference in the hardness of the bonding interface between the peripheral edge region A and the central region B, and cracking of the ceramic substrate 11 under thermal cycle load can be further suppressed.
  • the active metal nitride layer 21A formed in the peripheral region A of the circuit layer 12 and the metal layer 13 has a thickness t1 A
  • the ratio t1A / t1B of the thickness t1B of the active metal nitride layer 21B formed in the central region B of the circuit layer 12 and the metal layer 13 is within the range of 0.8 or more and 1.2 or less. It is more preferable to make it within the range of 0.9 or more and 1.1 or less.
  • the thickness t2 A of the Ag—Cu alloy layer 22A formed in the peripheral region A of the circuit layer 12 and the metal layer 13, and the thickness t2 A of the central region B of the circuit layer 12 and the metal layer 13 When the thickness t2B of the formed Ag—Cu alloy layer 22B is in the range of 1 ⁇ m or more and 30 ⁇ m or less, the Ag of the bonding material 45, which will be described later, and the circuit layer 12 and the metal layer 13 are sufficiently As a result, the ceramic substrate 11, the circuit layer 12 and the metal layer 13 are reliably and strongly bonded together, and hardening of the bonding interface is further suppressed.
  • the thickness t2 A and the thickness t2B of the Ag—Cu alloy layer 22B formed in the central region B of the circuit layer 12 and the metal layer 13 are preferably 3 ⁇ m or more, more preferably 5 ⁇ m or more. Further, in order to further suppress the joining interface from becoming harder than necessary, the thickness t2 A of the Ag—Cu alloy layer 22A formed in the peripheral region A of the circuit layer 12 and the metal layer 13 and the circuit The thickness t2B of the Ag—Cu alloy layer 22B formed in the central region B of the layer 12 and the metal layer 13 is preferably 25 ⁇ m or less, more preferably 15 ⁇ m or less.
  • the thickness t2A of the Ag—Cu alloy layer 22A formed in the peripheral region A of the circuit layer 12 and the metal layer 13 and the thickness t2A formed in the central region B of the circuit layer 12 and the metal layer 13 When the ratio t2A / t2B to the thickness t2B of the Ag--Cu alloy layer 22B is within the range of 0.7 or more and 1.4 or less, the circuit layer 12 and the metal layer 13 There is no large difference in the hardness of the joint interface between the peripheral edge region A and the central region B, and cracking of the ceramic substrate under thermal cycle load can be further suppressed.
  • the Ag—Cu alloy layer 22A formed in the peripheral region A of the circuit layer 12 and the metal layer 13 has a thickness t2 A and , the ratio t2A / t2B of the thickness t2B of the Ag—Cu alloy layer 22B formed in the central region B of the circuit layer 12 and the metal layer 13 is within the range of 0.8 or more and 1.2 or less. It is more preferable to make it within the range of 0.9 or more and 1.1 or less.
  • a power module is configured by mounting a semiconductor element on an insulated circuit board, but the present invention is not limited to this.
  • an LED module may be configured by mounting an LED element on the circuit layer of the insulating circuit board, or a thermoelectric module may be configured by mounting a thermoelectric element on the circuit layer of the insulating circuit board.
  • Ti was used as an example of the active metal contained in the bonding material. It suffices if it contains the above active metals. These active metals may be contained as hydrides.
  • the coating thickness of the bonding material in the peripheral edge portion and the central portion of the copper plate by adjusting the coating thickness of the bonding material in the peripheral edge portion and the central portion of the copper plate, the area ratio P A of the active metal compound in the peripheral edge region of the circuit layer and the metal layer, and the circuit layer and Although it has been described as controlling the area ratio PB of the active metal compound in the central region of the metal layer, it is not limited to this, and it is assumed that different bonding materials are applied to the peripheral edge portion and the central portion of the copper plate. , the area fraction P A of the active metal compound in the peripheral region of the circuit layer and the metal layer and the area fraction P B of the active metal compound in the central region of the circuit layer and the metal layer may be controlled.
  • the area ratios P A and P B of the active metal compounds can be controlled. That is, when the specific surface area of the Ag powder is small, the sinterability of the paste-like bonding material becomes high, and a liquid phase is likely to occur in the pressurization and heating processes, promoting the diffusion of the active metal, and the active metal compound described above. area ratio increases. On the other hand, when the specific surface area of the Ag powder is large, the sinterability of the paste-like bonding material becomes low, making it difficult to generate a liquid phase in the pressurization and heating processes, suppressing the diffusion of the active metal, and suppressing the diffusion of the active metal compound. area ratio becomes lower.
  • bonding materials containing different types and amounts of active metals may be used to separately paint the peripheral edge portion and the central portion of the copper plate.
  • the circuit layer was described as being formed by bonding a rolled plate of oxygen-free copper to a ceramic substrate, but the present invention is not limited to this, and a copper piece punched out of a copper plate is used.
  • a circuit layer may be formed by bonding to a ceramic substrate while being arranged in a circuit pattern. In this case, each copper piece should have the interface structure with the ceramic substrate as described above.
  • the bonding material is provided on the bonding surface of the copper plate, but the present invention is not limited to this, and the bonding material may be provided between the ceramic substrate and the copper plate. Alternatively, a bonding material may be provided on the bonding surface of the ceramic substrate.
  • a ceramic substrate 40 mm ⁇ 40 mm, thickness 0.32 mm
  • silicon nitride Si 3 N 4
  • a copper plate made of oxygen-free copper and having a size of 37 mm ⁇ 37 mm and a thickness of 0.8 mm was prepared as a copper plate serving as a circuit layer.
  • a copper plate made of oxygen-free copper and having a size of 37 mm ⁇ 37 mm and a thickness of 0.8 mm was prepared as a copper plate serving as a metal layer.
  • a bonding material containing Ag powder having a BET value shown in Table 1 was applied to the peripheral portion of the copper plate serving as the circuit layer and the metal layer so that the target thickness after drying would be the value shown in Table 1.
  • a bonding material containing Ag powder having a BET value shown in Table 1 was applied to the central portion of the copper plate serving as the circuit layer and the metal layer so that the target thickness after drying would be the value shown in Table 1.
  • a paste material was used as the bonding material, and the amounts of Ag, Cu, and active metal were as shown in Table 1.
  • the BET value (specific surface area) of the Ag powder was measured by using AUTOSORB-1 manufactured by QUANTACHRROME, vacuum deaeration by heating at 150 ° C. for 30 minutes as pretreatment, N 2 adsorption, liquid nitrogen 77 K, BET multipoint method. It was measured.
  • a copper plate which will be the circuit layer, is laminated on one side of the ceramic substrate.
  • a copper plate serving as a metal layer was laminated on the other surface of the ceramic substrate.
  • This laminate was heated while being pressed in the lamination direction to generate an Ag—Cu liquid phase.
  • the pressure load was set to 0.294 MPa, and the temperature integral value was set as shown in Table 2. Then, by cooling the heated laminate, the copper plate serving as the circuit layer, the ceramic substrate, and the metal plate serving as the metal layer were bonded to obtain an insulated circuit substrate (copper/ceramic bonded body).
  • the area ratio of the active metal compound, the active metal nitride layer, the Ag-Cu alloy layer, and the thermal cycle reliability were evaluated as follows.
  • Comparative Example 1 the area ratio of the active metal compound containing Si and the active metal in the region of 10 ⁇ m from the active metal nitride layer to the copper plate side exceeds 10%, and the number of cracks generated in the thermal cycle test is 1100 times. became.
  • Comparative Example 2 the ratio P A /P B of the area ratio P A of the active metal compound in the peripheral region of the copper plate and the area ratio P B of the active metal compound in the central region of the copper plate was set to 0.6. , and the number of cracks generated was 1300 times in the thermal cycle test.
  • the area ratio of the active metal compound containing Si and the active metal in the region of 10 ⁇ m from the active metal nitride layer to the copper plate side is 10% or less
  • the copper plate The ratio P A /P B of the area ratio P A of the active metal compound in the peripheral region of the copper plate and the area ratio P B of the active metal compound in the central region of the copper plate is set to 0.7 or more and 1.4 or less, In the thermal cycle test, the number of times cracks occurred exceeded 1500 to 2000, indicating excellent thermal cycle reliability.
  • the copper/ceramic bonded body and insulating circuit board of this embodiment are suitably applied to power modules, LED modules and thermoelectric modules.
  • Insulated circuit board (copper/ceramic joint) 11 Ceramic substrate (ceramic member) 12 circuit layer (copper member) 13 metal layer (copper member) 21 (21A, 21B) active metal nitride layer 22 (22A, 22B) Ag—Cu alloy layer

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Products (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)

Abstract

この銅/セラミックス接合体(10)は、銅又は銅合金からなる銅部材(12,13)と、窒化ケイ素からなるセラミックス部材(11)とを有し、銅部材(12,13)とセラミックス部材(11)とが接合され、セラミックス部材(11)と銅部材(12,13)との接合界面において、セラミックス部材(11)側には活性金属窒化物層(21)が形成されており、活性金属窒化物層(21)から銅部材(12)側へ10μmの領域におけるSiと活性金属とを含む活性金属化合物の面積率が10%以下とされており、銅部材(12)の周縁部領域(A)における活性金属化合物の面積率PAと銅部材(12)の中央部領域(B)における活性金属化合物の面積率PBとの比PA/PBが、0.7以上1.4以下の範囲内とされている。

Description

銅/セラミックス接合体、および、絶縁回路基板
 この発明は、銅又は銅合金からなる銅部材と、セラミックス部材とが接合されてなる銅/セラミックス接合体、および、セラミックス基板の表面に、銅又は銅合金からなる銅板が接合されてなる絶縁回路基板に関するものである。
 本願は、2021年7月16日に、日本に出願された特願2021-117950号に基づき優先権を主張し、その内容をここに援用する。
 パワーモジュール、LEDモジュールおよび熱電モジュールにおいては、絶縁層の一方の面に導電材料からなる回路層を形成した絶縁回路基板に、パワー半導体素子、LED素子および熱電素子が接合された構造とされている。
 例えば、風力発電、電気自動車、ハイブリッド自動車等を制御するために用いられる大電力制御用のパワー半導体素子は、動作時の発熱量が多いことから、これを搭載する基板としては、セラミックス基板と、このセラミックス基板の一方の面に導電性の優れた金属板を接合して形成した回路層と、セラミックス基板の他方の面に金属板を接合して形成した放熱用の金属層と、を備えた絶縁回路基板が、従来から広く用いられている。
 例えば、特許文献1には、セラミックス基板の一方の面および他方の面に、銅板を接合することにより回路層および金属層を形成した絶縁回路基板が提案されている。この特許文献1においては、セラミックス基板の一方の面および他方の面に、Ag-Cu-Ti系ろう材を介在させて銅板を配置し、加熱処理を行うことにより銅板が接合されている(いわゆる活性金属ろう付け法)。
 また、特許文献2には、銅又は銅合金からなる銅板と、窒化ケイ素からなるセラミックス基板とが、AgおよびTiを含む接合材を用いて接合されたパワーモジュール用基板が提案されている。
 前述のように、Tiを含む接合材を用いて銅板とセラミックス基板とを接合した場合には、活性金属であるTiがセラミックス基板と反応することにより、接合材の濡れ性が向上し、銅板とセラミックス基板との接合強度が向上することになる。
 ところで、最近では、絶縁回路基板に搭載される半導体素子の発熱温度が高くなる傾向にあり、絶縁回路基板には、従来にも増して、厳しい冷熱サイクルに耐えることができる冷熱サイクル信頼性が求められている。
 ここで、前述のように、Tiを含む接合材を用いて銅板とセラミックス基板とを接合した場合には、銅板側に活性金属であるTiが拡散し、CuとTiを含む金属間化合物が析出することで、接合界面近傍が硬くなり、冷熱サイクル負荷時にセラミックス部材に割れが生じ、冷熱サイクル信頼性が低下するおそれがあった。
特許第3211856号公報 特開2018-008869号公報
 この発明は、前述した事情に鑑みてなされたものであって、厳しい冷熱サイクルを負荷した場合であっても、セラミックス部材における割れの発生を抑制でき、冷熱サイクル信頼性に優れた銅/セラミックス接合体、および、この銅/セラミックス接合体からなる絶縁回路基板を提供することを目的とする。
 前述の課題を解決するために、本発明者らが鋭意検討した結果、セラミックス部材と銅部材とを活性金属を含む接合材を用いて接合する際に、接合時に生成した液相が銅部材の中央部から周縁部側に排斥され、銅部材の周縁部に活性金属が相対的に多く存在することになり、セラミックス部材と銅部材との接合界面において、銅部材の周縁部領域が、中央部領域に比べて硬くなる傾向があることが分かった。そして、冷熱サイクル負荷時に、接合界面において硬い銅部材の周縁部領域に応力が集中してセラミックス部材の割れが生じやすくなるとの知見を得た。
 本発明は、前述の知見を基になされたものであって、本発明の一態様に係る銅/セラミックス接合体は、銅又は銅合金からなる銅部材と、窒化ケイ素からなるセラミックス部材とが接合されてなる銅/セラミックス接合体であって、前記セラミックス部材と前記銅部材との接合界面において、前記セラミックス部材側には活性金属窒化物層が形成されており、前記活性金属窒化物層から前記銅部材側へ10μmの領域におけるSiと活性金属とを含む活性金属化合物の面積率が10%以下とされており、前記銅部材の周縁部領域における前記活性金属化合物の面積率Pと前記銅部材の中央部領域における前記活性金属化合物の面積率Pとの比P/Pが、0.7以上1.4以下の範囲内とされていることを特徴としている。
 銅/セラミックス接合体は、前記銅部材と、前記セラミックス部材とを有し、前記銅部材と前記セラミックス部材とが接合されていると言うこともできる。
 本発明の一態様に係る銅/セラミックス接合体によれば、前記セラミックス部材の少なくとも一方の面に接合された銅部材との接合界面において、前記活性金属窒化物層から前記銅部材側へ10μmの領域におけるSiと活性金属とを含む活性金属化合物の面積率が10%以下とされているので、セラミックス部材と銅部材との接合界面が必要以上に硬くなることが抑制される。
 そして、前記銅部材の周縁部領域における前記活性金属化合物の面積率Pと前記銅部材の中央部領域における前記活性金属化合物の面積率Pとの比P/Pが、0.7以上1.4以下の範囲内とされているので、前記銅部材の周縁部領域と前記銅部材の中央部領域の硬さに大きな差が生じず、冷熱サイクル負荷時におけるセラミックス部材の割れの発生を抑制でき、冷熱サイクル信頼性に優れている。
 ここで、本発明の一態様に係る銅/セラミックス接合体においては、前記銅部材の周縁部領域に形成された前記活性金属窒化物層の厚さt1および前記銅部材の中央部領域に形成された前記活性金属窒化物層の厚さt1が0.05μm以上0.8μm以下の範囲内とされ、厚さ比t1/t1が0.7以上1.4以下の範囲内とされていることが好ましい。
 この場合、前記銅部材の周縁部領域に形成された前記活性金属窒化物層の厚さt1および前記銅部材の中央部領域に形成された前記活性金属窒化物層の厚さt1が0.05μm以上0.8μm以下の範囲内とされているので、活性金属によってセラミックス部材と銅部材とが確実に強固に接合されているとともに、接合界面が硬くなることがさらに抑制される。
 そして、厚さ比t1/t1が0.7以上1.4以下の範囲内とされているので、前記銅部材の周縁部領域と中央部領域とで接合界面の硬さに大きな差が生じず、冷熱サイクル負荷時におけるセラミックス部材の割れの発生をさらに抑制することができる。
 また、本発明の一態様に係る銅/セラミックス接合体においては、前記セラミックス部材と前記銅部材との接合界面において、前記銅部材側にはAg-Cu合金層が形成されており、前記銅部材の周縁部領域に形成された前記Ag-Cu合金層の厚さt2および前記銅部材の中央部領域に形成された前記Ag-Cu合金層の厚さt2が1μm以上30μm以下の範囲内とされ、厚さ比t2/t2が0.7以上1.4以下の範囲内とされていることが好ましい。
 この場合、前記銅部材の周縁部領域に形成された前記Ag-Cu合金層の厚さt2および前記銅部材の中央部領域に形成された前記Ag-Cu合金層の厚さt2が1μm以上30μm以下の範囲内とされているので、接合材のAgが銅部材と十分に反応してセラミックス部材と銅部材とが確実に強固に接合されているとともに、接合界面が硬くなることがさらに抑制される。
 そして、厚さ比t2/t2が、0.7以上1.4以下の範囲内とされているので、前記銅部材の周縁部領域と中央部領域とで接合界面の硬さに大きな差が生じず、冷熱サイクル負荷時におけるセラミックス部材の割れの発生をさらに抑制することができる。
 本発明の一態様に係る絶縁回路基板は、窒化ケイ素からなるセラミックス基板の表面に、銅又は銅合金からなる銅板が接合されてなる絶縁回路基板であって、前記セラミックス基板と前記銅板との接合界面において、前記セラミックス基板側には活性金属窒化物層が形成されており、前記活性金属窒化物層から前記銅板側へ10μmの領域におけるSiと活性金属とを含む活性金属化合物の面積率が10%以下とされており、前記銅板の周縁部領域における前記活性金属化合物の面積率Pと前記銅板の中央部領域における前記活性金属化合物の面積率Pとの比P/Pが、0.7以上1.4以下の範囲内とされていることを特徴としている。
 絶縁回路基板は、前記セラミックス基板と、前記銅板とを有し、前記セラミックス基板の表面に前記銅板が接合されていると言うこともできる。
 本発明の一態様に係る絶縁回路基板によれば、前記セラミックス基板の少なくとも一方の面に接合された銅板との接合界面において、前記活性金属窒化物層から前記銅板側へ10μmの領域におけるSiと活性金属とを含む活性金属化合物の面積率が10%以下とされているので、セラミックス基板と銅板との接合界面が必要以上に硬くなることが抑制される。
 そして、前記銅板の周縁部領域における前記活性金属化合物の面積率Pと前記銅板の中央部領域における前記活性金属化合物の面積率Pとの比P/Pが、0.7以上1.4以下の範囲内とされているので、前記銅板の周縁部領域と前記銅板の中央部領域の硬さに大きな差が生じず、冷熱サイクル負荷時におけるセラミックス基板の割れの発生を抑制でき、冷熱サイクル信頼性に優れている。
 ここで、本発明の一態様に係る絶縁回路基板においては、前記銅板の周縁部領域に形成された前記活性金属窒化物層の厚さt1および、前記銅板の中央部領域に形成された前記活性金属窒化物層の厚さt1が0.05μm以上0.8μm以下の範囲内とされ、厚さ比t1/t1が0.7以上1.4以下の範囲内とされていることが好ましい。
 この場合、前記銅板の周縁部領域に形成された前記活性金属窒化物層の厚さt1および前記銅板の中央部領域に形成された前記活性金属窒化物層の厚さt1が0.05μm以上0.8μm以下の範囲内とされているので、活性金属によってセラミックス基板と銅板とが確実に強固に接合されているとともに、接合界面が硬くなることがさらに抑制される。
 そして、厚さ比t1/t1が0.7以上1.4以下の範囲内とされているので、前記銅板の周縁部領域と中央部領域とで接合界面の硬さに大きな差が生じず、冷熱サイクル負荷時におけるセラミックス基板の割れの発生をさらに抑制することが可能となる。
 また、本発明の一態様に係る絶縁回路基板においては、前記セラミックス基板と前記銅板との接合界面において、前記銅板側にはAg-Cu合金層が形成されており、前記銅板の周縁部領域に形成された前記Ag-Cu合金層の厚さt2および前記銅板の中央部領域に形成された前記Ag-Cu合金層の厚さt2が1μm以上30μm以下の範囲内とされ、厚さ比t2/t2が0.7以上1.4以下の範囲内とされていることが好ましい。
 この場合、前記銅板の周縁部領域に形成された前記Ag-Cu合金層の厚さt2および前記銅板の中央部領域に形成された前記Ag-Cu合金層の厚さt2が1μm以上30μm以下の範囲内とされているので、接合材のAgが銅板と十分に反応してセラミックス基板と銅板とが確実に強固に接合されているとともに、接合界面が硬くなることがさらに抑制される。
 そして、厚さ比t2/t2が、0.7以上1.4以下の範囲内とされているので前記銅板の周縁部領域と中央部領域とで接合界面の硬さに大きな差が生じず、冷熱サイクル負荷時におけるセラミックス基板の割れの発生をさらに抑制することができる。
 本発明の一態様によれば、厳しい冷熱サイクルを負荷した場合であっても、セラミックス部材における割れの発生を抑制でき、冷熱サイクル信頼性に優れた銅/セラミックス接合体、および、この銅/セラミックス接合体からなる絶縁回路基板を提供することができる。
本発明の実施形態に係る絶縁回路基板を用いたパワーモジュールの概略説明図である。 本発明の実施形態に係る絶縁回路基板の回路層および金属層とセラミックス基板との接合界面の拡大説明図である。(a)が回路層および金属層の周縁部領域と中央部領域の説明図、(b)が周縁部領域、(c)が中央部領域である。 本発明の実施形態に係る絶縁回路基板の製造方法のフロー図である。 本発明の実施形態に係る絶縁回路基板の製造方法の概略説明図である。 本発明の実施形態に係る絶縁回路基板の製造方法における接合材配設工程の説明図である。 本発明の実施例において、活性金属化合物の面積率の算出方法を示す説明図である。
 以下に、本発明の実施形態について添付した図面を参照して説明する。
 本実施形態に係る銅/セラミックス接合体は、セラミックスからなるセラミックス部材としてのセラミックス基板11と、銅又は銅合金からなる銅部材としての銅板42(回路層12)および銅板43(金属層13)とが接合されてなる絶縁回路基板10である。図1に、本実施形態である絶縁回路基板10を備えたパワーモジュール1を示す。
 このパワーモジュール1は、回路層12および金属層13が配設された絶縁回路基板10と、回路層12の一方の面(図1において上面)に接合層2を介して接合された半導体素子3と、金属層13の他方側(図1において下側)に配置されたヒートシンク5と、を備えている。
 半導体素子3は、Si等の半導体材料で構成されている。この半導体素子3と回路層12は、接合層2を介して接合されている。
 接合層2は、例えばSn-Ag系、Sn-In系、若しくはSn-Ag-Cu系のはんだ材で構成されている。
 ヒートシンク5は、前述の絶縁回路基板10からの熱を放散するためのものである。このヒートシンク5は、銅又は銅合金で構成されており、本実施形態ではりん脱酸銅で構成されている。このヒートシンク5には、冷却用の流体が流れるための流路が設けられている。
 なお、本実施形態においては、ヒートシンク5と金属層13とが、はんだ材からなるはんだ層7によって接合されている。このはんだ層7は、例えばSn-Ag系、Sn-In系、若しくはSn-Ag-Cu系のはんだ材で構成されている。
 そして、本実施形態である絶縁回路基板10は、図1に示すように、セラミックス基板11と、このセラミックス基板11の一方の面(図1において上面)に配設された回路層12と、セラミックス基板11の他方の面(図1において下面)に配設された金属層13と、を備えている。
 セラミックス基板11は、絶縁性および放熱性に優れた窒化ケイ素(Si)で構成されている。セラミックス基板11の厚さは、例えば、0.2mm以上1.5mm以下の範囲内に設定されており、本実施形態では、0.32mmに設定されている。
 回路層12は、図4に示すように、セラミックス基板11の一方の面(図4において上面)に、銅又は銅合金からなる銅板42が接合されることにより形成されている。
 本実施形態においては、回路層12は、無酸素銅の圧延板がセラミックス基板11に接合されることで形成されている。
 なお、回路層12となる銅板42の厚さは0.1mm以上2.0mm以下の範囲内に設定されており、本実施形態では、0.6mmに設定されている。
 金属層13は、図4に示すように、セラミックス基板11の他方の面(図4において下面)に、銅又は銅合金からなる銅板43が接合されることにより形成されている。
 本実施形態においては、金属層13は、無酸素銅の圧延板がセラミックス基板11に接合されることで形成されている。
 なお、金属層13となる銅板43の厚さは0.1mm以上2.0mm以下の範囲内に設定されており、本実施形態では、0.6mmに設定されている。
 セラミックス基板11と回路層12および金属層13との接合界面においては、図2に示すように、セラミックス基板11側から順に、活性金属窒化物層21、Ag-Cu合金層22が形成されている。
 活性金属窒化物層21は、セラミックス基板11の一部であると言うこともできる。Ag-Cu合金層22は、回路層12および金属層13の一部であると言うこともできる。このため、セラミックス基板11と回路層12および金属層13(銅板42,43)との接合界面は、活性金属窒化物層21とAg-Cu合金層22との界面である。Ag-Cu合金層22を有しない場合、セラミックス基板11と回路層12および金属層13(銅板42,43)との接合界面は、活性金属窒化物層21と回路層12および金属層13(銅板42,43)との界面である。
 そして、本実施形態である絶縁回路基板10においては、図2(a)に示すように、回路層12および金属層13の周縁部領域Aと中央部領域Bにおける界面構造について、以下のように規定されている。
 なお、本実施形態において、回路層12および金属層13の周縁部領域Aは、図2(a)に示すように、回路層12および金属層13とセラミックス基板11との積層方向に沿った断面において、回路層12および金属層13の幅方向端部から20μm内方位置を起点としてさらに幅方向内方に200μmまでの領域である。
 また、回路層12および金属層13の中央部領域Bは、図2(a)に示すように、回路層12および金属層13とセラミックス基板11との積層方向に沿った断面において、回路層12および金属層13の幅方向中心を含む幅方向200μmの領域である。
 ここで、図2(b)に示すように、セラミックス基板11と回路層12および金属層13との接合界面の周縁部領域Aにおいては、活性金属窒化物層21の回路層12(金属層13)側の界面(Ag-Cu合金層22との界面)から回路層12(金属層13)側へ10μmの領域EにおけるSiと活性金属(本実施形態ではTi)とを含む活性金属化合物の面積率Pが10%以下とされている。
 また、図2(c)に示すように、セラミックス基板11と回路層12および金属層13との接合界面の中央部領域Bにおいては、活性金属窒化物層21の回路層12(金属層13)側の界面(Ag-Cu合金層22との界面)から回路層12(金属層13)側へ10μmの領域EにおけるSiと活性金属(本実施形態ではTi)とを含む活性金属化合物の面積率Pが10%以下とされている。
 そして、本実施形態においては、セラミックス基板11と回路層12および金属層13との接合界面の周縁部領域Aにおける活性金属化合物の面積率Pと、セラミックス基板11と回路層12および金属層13との接合界面の中央部領域Bにおける活性金属化合物の面積率Pとの比P/Pが、0.7以上1.4以下の範囲内とされている。
 なお、Siと活性金属(Ti)とを含む金属間化合物(活性金属化合物)としては、例えば、TiSi,TiSi,TiSi4,TiSi,TiSiが挙げられ、本実施形態では、TiSiとされている。
 また、本実施形態においては、セラミックス基板11と回路層12および金属層13との接合界面の周縁部領域Aに形成された活性金属窒化物層21Aの厚さt1、および、セラミックス基板11と回路層12および金属層13との接合界面の中央部領域Bに形成された活性金属窒化物層21Bの厚さt1が、0.05μm以上0.8μm以下の範囲内とされ、これらの厚さ比t1/t1が0.7以上1.4以下の範囲内とされていることが好ましい。活性金属窒化物層21(21A,21B)は活性金属窒化物の粒子が集合して形成されている。この粒子の平均粒径は10nm以上100nm以下である。
 なお、本実施形態では、接合材45が活性金属としてTiを含有し、セラミックス基板11が窒化珪素で構成されているため、活性金属窒化物層21(21A,21B)は、窒化チタン(TiN)で構成される。すなわち、活性金属窒化物層21(21A,21B)は、平均粒径が10nm以上100nm以下の窒化チタン(TiN)の粒子が集合して形成されている。
 さらに、本実施形態においては、セラミックス基板11と回路層12および金属層13との接合界面の周縁部領域Aに形成されたAg-Cu合金層22Aの厚さt2と、セラミックス基板11と回路層12および金属層13との接合界面の中央部領域Bに形成されたAg-Cu合金層22Bの厚さt2との比t2/t2が、0.7以上1.4以下の範囲内とされていることが好ましい。
 また、Ag-Cu合金層22(22A,22B)の厚さは、1μm以上30μm以下とすることが好ましい。
 以下に、本実施形態に係る絶縁回路基板10の製造方法について、図3および図4を参照して説明する。
(接合材配設工程S01)
 回路層12となる銅板42と、金属層13となる銅板43とを準備する。
 そして、回路層12となる銅板42および金属層13となる銅板43の接合面に、接合材45を塗布し、乾燥させる。ペースト状の接合材45の塗布厚さは、乾燥後で10μm以上50μm以下の範囲内とすることが好ましい。
 本実施形態では、スクリーン印刷によってペースト状の接合材45を塗布する。
 接合材45は、Agと活性金属(Ti,Zr,Nb,Hfから選択される1種以上)を含有するものとされている。本実施形態では、接合材45として、Ag-Ti系ろう材(Ag-Cu-Ti系ろう材)を用いている。なお、Ag-Ti系ろう材(Ag-Cu-Ti系ろう材)としては、例えば、Cuを0質量%以上45質量%以下の範囲内、活性金属であるTiを0.5質量%以上20質量%以下の範囲で含み、残部がAgおよび不可避不純物とされた組成のものを用いることが好ましい。
 接合材45に含まれるAg粉の比表面積は、0.15m/g以上とすることが好ましく、0.25m/g以上とすることがさらに好ましく、0.40m/g以上とすることがより好ましい。一方、接合材45に含まれるAg粉の比表面積は、1.40m/g以下とすることが好ましく、1.00m/g以下とすることがさらに好ましく、0.75m/g以下とすることがより好ましい。
 なお、ペースト状の接合材45に含まれるAg粉の粒径は、D10が0.7μm以上3.5μm以下、かつ、D100が4.5μm以上23μm以下の範囲内であることが好ましい。D10は、レーザー回折散乱式粒度分布測定法により測定された粒度分布において、体積基準で累積頻度が10%になる粒径であり、D100は体積基準で累積頻度が100%になる粒径である。
 ここで、後述する加圧および加熱工程S03において、積層方向に加圧することにより、発生した液相が銅板42,43の中央部から周縁部側へ排斥され、銅板42,43の周縁部に活性金属成分が比較的多く存在することになる。
 よって、本実施形態では、図5に示すように、回路層12となる銅板42および金属層13となる銅板43の周縁部における接合材45Aの塗布厚さが、回路層12となる銅板42および金属層13となる銅板43の中央部における接合材45Bの塗布厚さよりも薄くなるように、接合材45を塗布している。
 なお、回路層12となる銅板42および金属層13となる銅板43の周縁部における接合材45Aの塗布厚さと、中央部における接合材45Bの塗布厚さの差は、5μm以上15μm以下の範囲内とすることが好ましい。
 接合材45Aを塗布する周縁部は、周縁部領域を含み、かつ銅板42,43の表面積の1.5%~10%の面積を有する周縁の部位であり、周縁部の線幅は最大で1mmである。接合材45Bを塗布する中央部は、中央部領域を含み、かつ銅板42,43の表面積の90%~98.5%の面積を有する中央の部位である。
(積層工程S02)
 次に、セラミックス基板11の一方の面(図4において上面)に、接合材45を介して回路層12となる銅板42を積層するとともに、セラミックス基板11の他方の面(図4において下面)に、接合材45を介して金属層13となる銅板43を積層する。
(加圧および加熱工程S03)
 次に、銅板42とセラミックス基板11と銅板43とを加圧した状態で、真空雰囲気の加熱炉内で加熱し、接合材45を溶融する。
 ここで、加圧および加熱工程S03における加熱温度は、800℃以上850℃以下の範囲内とすることが好ましい。780℃から加熱温度までの昇温工程および加熱温度での保持工程における温度積分値の合計は、7℃・h以上120℃・h以下の範囲内とすることが好ましい。
 また、加圧および加熱工程S03における加圧荷重は、0.029MPa以上2.94MPa以下の範囲内とすることが好ましい。
 さらに、加圧および加熱工程S03における真空度は、1×10-6Pa以上5×10-2Pa以下の範囲内とすることが好ましい。
(冷却工程S04)
 そして、加圧および加熱工程S03の後、冷却を行うことにより、溶融した接合材45を凝固させて、回路層12となる銅板42とセラミックス基板11、セラミックス基板11と金属層13となる銅板43とを接合する。
 なお、この冷却工程S04における冷却速度は、2℃/min以上20℃/min以下の範囲内とすることが好ましい。なお、ここでの冷却速度は加熱温度からAg-Cu共晶温度である780℃までの冷却速度である。
 以上のように、接合材配設工程S01、積層工程S02、加圧および加熱工程S03、冷却工程S04によって、本実施形態である絶縁回路基板10が製造される。
(ヒートシンク接合工程S05)
 次に、絶縁回路基板10の金属層13の他方の面側にヒートシンク5を接合する。
 絶縁回路基板10とヒートシンク5とを、はんだ材を介して積層して加熱炉に装入し、はんだ層7を介して絶縁回路基板10とヒートシンク5とをはんだ接合する。
(半導体素子接合工程S06)
 次に、絶縁回路基板10の回路層12の一方の面に、半導体素子3をはんだ付けにより接合する。
 前述の工程により、図1に示すパワーモジュール1が製出される。
 以上のような構成とされた本実施形態の絶縁回路基板10(銅/セラミックス接合体)によれば、セラミックス基板11と回路層12および金属層13との接合界面の周縁部領域Aにおいて、活性金属窒化物層21の回路層12(金属層13)側の界面(Ag-Cu合金層22との界面)から回路層12(金属層13)側へ10μmの領域EにおけるSiと活性金属(本実施形態ではTi)とを含む活性金属化合物の面積率Pが10%以下とされるとともに、セラミックス基板11と回路層12および金属層13との接合界面の中央部領域Bにおいて、活性金属窒化物層21の回路層12(金属層13)側の界面(Ag-Cu合金層22との界面)から回路層12(金属層13)側へ10μmの領域EにおけるSiと活性金属(本実施形態ではTi)とを含む活性金属化合物の面積率Pが10%以下とされているので、セラミックス基板11と回路層12および金属層13との接合界面が必要以上に硬くなることが抑制される。
 なお、セラミックス基板11と回路層12および金属層13との接合界面が必要以上に硬くなることをさらに抑制するためには、上述の活性金属化合物の面積率P,Pを8%以下とすることが好ましく、7%以下とすることがより好ましく、5%以下とすることがより好ましい。また活性金属化合物の面積率P,Pを1.5%以上とすることが好ましく、2%以上とすることがより好ましく、3%以上とすることがより好ましい。
 そして、回路層12および金属層13の周縁部領域Aにおける活性金属化合物の面積率Pと回路層12および金属層13の中央部領域Bにおける活性金属化合物の面積率Pとの比P/Pが、0.7以上1.4以下の範囲内とされているので、回路層12および金属層13の周縁部領域Aと回路層12および金属層13の中央部領域Bの硬さに大きな差が生じず、冷熱サイクル負荷時におけるセラミックス基板11の割れの発生を抑制でき、冷熱サイクル信頼性に優れている。
 なお、冷熱サイクル信頼性をさらに向上させるためには、回路層12および金属層13の周縁部領域Aにおける活性金属化合物の面積率Pと回路層12および金属層13の中央部領域Bにおける活性金属化合物の面積率Pとの比P/Pを、0.8以上1.2以下の範囲内とすることがさらに好ましく、0.9以上1.1以下の範囲内とすることがより好ましい。
 また、本実施形態において、回路層12および金属層13の周縁部領域Aに形成された活性金属窒化物層21Aの厚さt1A、および、回路層12および金属層13の中央部領域Bに形成された活性金属窒化物層21Bの厚さt1が、0.05μm以上0.8μm以下の範囲内とされている場合には、活性金属によってセラミックス基板11と回路層12および金属層13とが確実に強固に接合されているとともに、接合界面が硬くなることがさらに抑制される。
 なお、セラミックス基板11と回路層12および金属層13とをさらに強固に接合するためには、回路層12および金属層13の周縁部領域Aに形成された活性金属窒化物層21Aの厚さt1、および、回路層12および金属層13の中央部領域Bに形成された活性金属窒化物層21Bの厚さt1を、0.08μm以上とすることが好ましく、0.15μm以上とすることがより好ましい。
 また、接合界面が必要以上に硬くなることをさらに抑制するためには、回路層12および金属層13の周縁部領域Aに形成された活性金属窒化物層21Aの厚さt1、および、回路層12および金属層13の中央部領域Bに形成された活性金属窒化物層21Bの厚さt1を、0.6μm以下とすることが好ましく、0.4μm以下とすることがより好ましい。
 さらに、本実施形態において、回路層12および金属層13の周縁部領域Aに形成された活性金属窒化物層21Aの厚さt1、および、回路層12および金属層13の中央部領域Bに形成された活性金属窒化物層21Bの厚さt1の比t1/t1が、0.7以上1.4以下の範囲内とされている場合には、回路層12および金属層13の周縁部領域Aと中央部領域Bとで接合界面の硬さに大きな差が生じず、冷熱サイクル負荷時におけるセラミックス基板11の割れの発生をさらに抑制することが可能となる。
 なお、冷熱サイクル負荷時におけるセラミックス基板11の割れの発生をさらに抑制するためには、回路層12および金属層13の周縁部領域Aに形成された活性金属窒化物層21Aの厚さt1、および、回路層12および金属層13の中央部領域Bに形成された活性金属窒化物層21Bの厚さt1の比t1/t1を、0.8以上1.2以下の範囲内とすることがさらに好ましく、0.9以上1.1以下の範囲内とすることがより好ましい。
 また、本実施形態において、回路層12および金属層13の周縁部領域Aに形成されたAg-Cu合金層22Aの厚さt2、および、回路層12および金属層13の中央部領域Bに形成されたAg-Cu合金層22Bの厚さt2が、1μm以上30μm以下の範囲内とされている場合には、後述する接合材45のAgと回路層12および金属層13とが十分に反応し、セラミックス基板11と回路層12および金属層13とが確実に強固に接合されているとともに、接合界面が硬くなることがさらに抑制される。
 なお、セラミックス基板11と回路層12および金属層13とをさらに強固に接合するためには、回路層12および金属層13の周縁部領域Aに形成されたAg-Cu合金層22Aの厚さt2、および、回路層12および金属層13の中央部領域Bに形成されたAg-Cu合金層22Bの厚さt2を、3μm以上とすることが好ましく、5μm以上とすることがより好ましい。
 また、接合界面が必要以上に硬くなることをさらに抑制するためには、回路層12および金属層13の周縁部領域Aに形成されたAg-Cu合金層22Aの厚さt2、および、回路層12および金属層13の中央部領域Bに形成されたAg-Cu合金層22Bの厚さt2を、25μm以下とすることが好ましく、15μm以下とすることがより好ましい。
 さらに、本実施形態において、回路層12および金属層13の周縁部領域Aに形成されたAg-Cu合金層22Aの厚さt2と、回路層12および金属層13の中央部領域Bに形成されたAg-Cu合金層22Bの厚さt2との比t2/t2が、0.7以上1.4以下の範囲内とされている場合には、回路層12および金属層13の周縁部領域Aと中央部領域Bとで接合界面の硬さに大きな差が生じず、冷熱サイクル負荷時におけるセラミックス基板の割れの発生をさらに抑制することができる。
 なお、冷熱サイクル負荷時におけるセラミックス基板11の割れの発生をさらに抑制するためには、回路層12および金属層13の周縁部領域Aに形成されたAg-Cu合金層22Aの厚さt2と、回路層12および金属層13の中央部領域Bに形成されたAg-Cu合金層22Bの厚さt2との比t2/t2を、0.8以上1.2以下の範囲内とすることがさらに好ましく、0.9以上1.1以下の範囲内とすることがより好ましい。
 以上、本発明の実施形態について説明したが、本発明はこれに限定されることはなく、その発明の技術的要件を逸脱しない範囲で適宜変更可能である。
 例えば、本実施形態では、絶縁回路基板に半導体素子を搭載してパワーモジュールを構成するものとして説明したが、これに限定されることはない。例えば、絶縁回路基板の回路層にLED素子を搭載してLEDモジュールを構成してもよいし、絶縁回路基板の回路層に熱電素子を搭載して熱電モジュールを構成してもよい。
 さらに、本実施形態では、接合材に含まれる活性金属としてTiを例に挙げて説明したが、これに限定されることはなく、Ti,Zr,Hf,Nbから選択される1種又は2種以上の活性金属を含んでいればよい。なお、これらの活性金属は、水素化物として含まれていてもよい。
 また、本実施形態では、銅板の周縁部および中央部における接合材の塗布厚さを調整することで、回路層および金属層の周縁部領域における活性金属化合物の面積率Pと、回路層および金属層の中央部領域における活性金属化合物の面積率Pを制御するものとして説明したが、これに限定されることはなく、銅板の周縁部および中央部で、塗布する接合材を異なるものとして、回路層および金属層の周縁部領域における活性金属化合物の面積率Pと、回路層および金属層の中央部領域における活性金属化合物の面積率Pを制御してもよい。
 例えば、接合材に含まれるAg粉の比表面積(BET値)を調整することにより、前述の活性金属化合物の面積率P,Pを制御することができる。すなわち、Ag粉の比表面積が小さいとペースト状の接合材の焼結性が高くなり、加圧および加熱工程において液相が発生し易くなり、活性金属の拡散が促進され、前述の活性金属化合物の面積率が高くなる。一方、Ag粉の比表面積が大きいとペースト状の接合材の焼結性が低くなり、加圧および加熱工程において液相が発生し難くなり、活性金属の拡散が抑制され、前述の活性金属化合物の面積率が低くなる。
 また、含まれる活性金属の種類や量の異なる接合材を用いて、銅板の周縁部と中央部とで塗り分けてもよい。
 さらに、本実施形態においては、回路層を、無酸素銅の圧延板をセラミックス基板に接合することにより形成するものとして説明したが、これに限定されることはなく、銅板を打ち抜いた銅片を回路パターン状に配置された状態でセラミックス基板に接合されることによって回路層を形成してもよい。この場合、それぞれの銅片において、上述のようなセラミックス基板との界面構造を有していればよい。
 また、本実施形態では、銅板の接合面に接合材を配設するものとして説明したが、これに限定されることはなく、セラミックス基板と銅板の間に接合材が配設されていればよく、セラミックス基板の接合面に接合材を配設してもよい。
 以下に、本発明の効果を確認すべく行った確認実験の結果について説明する。
 まず、窒化ケイ素(Si)からなるセラミックス基板(40mm×40mm、厚さ0.32mm)を準備した。
 また、回路層となる銅板として、無酸素銅からなり、37mm×37mm、厚さ0.8mmの銅板を準備した。さらに、金属層となる銅板として、無酸素銅からなり、37mm×37mm、厚さ0.8mmの銅板を準備した。
 回路層および金属層となる銅板の周縁部に、表1に示すBET値のAg粉を含む接合材を、乾燥後の目標厚さが表1に示す値となるよう塗布した。
 また、回路層および金属層となる銅板の中央部に、表1に示すBET値のAg粉を含む接合材を、乾燥後の目標厚さが表1に示す値となるよう塗布した。
 なお、接合材はペースト材を用い、Ag,Cu,活性金属の量は表1の通りとした。
 また、Ag粉のBET値(比表面積)はQUANTACHRROME社製AUTOSORB-1を用い、前処理として150℃で30分加熱の真空脱気を行い、N吸着、液体窒素77K、BET多点法で測定した。
 セラミックス基板の一方の面に、回路層となる銅板を積層した。また、セラミックス基板の他方の面に、金属層となる銅板を積層した。
 この積層体を、積層方向に加圧した状態で加熱し、Ag-Cu液相を発生させた。このとき、加圧荷重を0.294MPaとし,温度積分値は表2の通りとした。
 そして、加熱した積層体を冷却することにより、回路層となる銅板とセラミックス基板と金属層となる金属板を接合し、絶縁回路基板(銅/セラミックス接合体)を得た。
 得られた絶縁回路基板(銅/セラミックス接合体)について、活性金属化合物の面積率、活性金属窒化物層、Ag-Cu合金層、冷熱サイクル信頼性を、以下のようにして評価した。
(活性金属化合物の面積率)
 回路層および金属層とセラミックス基板との接合界面の断面を、EPMA装置によって観察し、回路層および金属層の周縁部領域と中央部領域における活性金属およびSiに関して元素マップ(幅50μm×高さ30μm)を、それぞれ5視野ずつ取得した。
 そして、図6に示すように、活性金属窒化物層から回路層(金属層)表面に向かって10μmまでの領域において、Siと活性金属とが重なる部分をSiと活性金属とを含む活性金属化合物と認定し、活性金属化合物の面積率を算出した。面積率は、50μm×10μmの面積を100%とした時の値である。なお、それぞれ5視野、計10視野の平均値を表2に記載した。
(活性金属窒化物層)
 回路層および金属層とセラミックス基板との接合界面の断面を、走査型電子顕微鏡(カールツァイスNTS社製ULTRA55、加速電圧1.8kV)を用いて倍率30000倍で測定し、エネルギー分散型X線分析法により、N及び活性金属元素の元素マッピングをそれぞれ5視野取得した。活性金属元素とNが同一領域に存在する場合に活性金属窒化物層が有ると判断した。
 それぞれ5視野、計10視野で観察を行い、活性金属元素とNが同一領域に存在する範囲の面積を、測定した幅で割ったものの平均値を「活性金属窒化物層の厚さ」とした。
(Ag-Cu合金層)
 回路層とセラミックス基板との接合界面、および、セラミックス基板と金属層との接合界面の断面を、EPMA装置を用いて、Ag,Cu,活性金属の各元素マッピングを取得した。それぞれ5視野で各元素マッピングを取得した。
 そして、Ag+Cu+活性金属=100質量%としたとき、Ag濃度が15質量%以上である領域をAg-Cu合金層とし、その面積を求めて、測定領域の幅で割った値(面積/測定領域の幅)を求めた。その値の平均をAg-Cu合金層の厚さとして表2に記載した。
(冷熱サイクル信頼性)
 上述の絶縁回路基板に対して、40℃×5min←→150℃×5minの冷熱サイクルを負荷し、2000サイクルまで100サイクル毎にSAT検査(超音波探傷検査)を行い、セラミックス割れの有無を確認し、セラミックス割れの発生回数を評価した。評価結果を表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 比較例1においては、活性金属窒化物層から銅板側へ10μmの領域におけるSiと活性金属とを含む活性金属化合物の面積率が10%を超えており、冷熱サイクル試験において割れ発生回数が1100回となった。
 比較例2においては、銅板の周縁部領域における活性金属化合物の面積率Pと銅板の中央部領域における活性金属化合物の面積率Pとの比P/Pが0.6とされており、冷熱サイクル試験において割れ発生回数が1300回となった。
 比較例3においては、銅板の周縁部領域における活性金属化合物の面積率Pと銅板の中央部領域における活性金属化合物の面積率Pとの比P/Pが1.5とされており、冷熱サイクル試験において割れ発生回数が1200回となった。
 これに対して、本発明例1~8においては、活性金属窒化物層から銅板側へ10μmの領域におけるSiと活性金属とを含む活性金属化合物の面積率が10%以下とされるとともに、銅板の周縁部領域における活性金属化合物の面積率Pと銅板の中央部領域における活性金属化合物の面積率Pとの比P/Pが0.7以上1.4以下とされており、冷熱サイクル試験において割れ発生回数が1500~2000回超えとなり、冷熱サイクル信頼性に優れていた。
 以上の確認実験の結果から、本発明例によれば、厳しい冷熱サイクルを負荷した場合であっても、セラミックス部材における割れの発生を抑制でき、冷熱サイクル信頼性に優れた絶縁回路基板(銅/セラミックス接合体)を提供可能であることが確認された。
 本実施形態の銅/セラミックス接合体及び絶縁回路基板は、パワーモジュール、LEDモジュールおよび熱電モジュールに好適に適用される。
10 絶縁回路基板(銅/セラミックス接合体)
11 セラミックス基板(セラミックス部材)
12 回路層(銅部材)
13 金属層(銅部材)
21(21A,21B) 活性金属窒化物層
22(22A,22B) Ag-Cu合金層

Claims (6)

  1.  銅又は銅合金からなる銅部材と、窒化ケイ素からなるセラミックス部材とが接合されてなる銅/セラミックス接合体であって、
     前記セラミックス部材と前記銅部材との接合界面において、前記セラミックス部材側には活性金属窒化物層が形成されており、前記活性金属窒化物層から前記銅部材側へ10μmの領域におけるSiと活性金属とを含む活性金属化合物の面積率が10%以下とされており、
     前記銅部材の周縁部領域における前記活性金属化合物の面積率Pと前記銅部材の中央部領域における前記活性金属化合物の面積率Pとの比P/Pが、0.7以上1.4以下の範囲内とされていることを特徴とする銅/セラミックス接合体。
  2.  前記銅部材の周縁部領域に形成された前記活性金属窒化物層の厚さt1および前記銅部材の中央部領域に形成された前記活性金属窒化物層の厚さt1が0.05μm以上0.8μm以下の範囲内とされ、厚さ比t1/t1が0.7以上1.4以下の範囲内とされていることを特徴とする請求項1に記載の銅/セラミックス接合体。
  3.  前記セラミックス部材と前記銅部材との接合界面において、前記銅部材側にはAg-Cu合金層が形成されており、
     前記銅部材の周縁部領域に形成された前記Ag-Cu合金層の厚さt2および前記銅部材の中央部領域に形成された前記Ag-Cu合金層の厚さt2が1μm以上30μm以下の範囲内とされ、厚さ比t2/t2が0.7以上1.4以下の範囲内とされていることを特徴とする請求項1または請求項2に記載の銅/セラミックス接合体。
  4.  窒化ケイ素からなるセラミックス基板の表面に、銅又は銅合金からなる銅板が接合されてなる絶縁回路基板であって、
     前記セラミックス基板と前記銅板との接合界面において、前記セラミックス基板側には活性金属窒化物層が形成されており、前記活性金属窒化物層から前記銅板側へ10μmの領域におけるSiと活性金属とを含む活性金属化合物の面積率が10%以下とされており、
     前記銅板の周縁部領域における前記活性金属化合物の面積率Pと前記銅板の中央部領域における前記活性金属化合物の面積率Pとの比P/Pが、0.7以上1.4以下の範囲内とされていることを特徴とする絶縁回路基板。
  5.  前記銅板の周縁部領域に形成された前記活性金属窒化物層の厚さt1および、前記銅板の中央部領域に形成された前記活性金属窒化物層の厚さt1が0.05μm以上0.8μm以下の範囲内とされ、厚さ比t1/t1が0.7以上1.4以下の範囲内とされていることを特徴とする請求項4に記載の絶縁回路基板。
  6.  前記セラミックス基板と前記銅板との接合界面において、前記銅板側にはAg-Cu合金層が形成されており、
     前記銅板の周縁部領域に形成された前記Ag-Cu合金層の厚さt2および前記銅板の中央部領域に形成された前記Ag-Cu合金層の厚さt2が1μm以上30μm以下の範囲内とされ、厚さ比t2/t2が0.7以上1.4以下の範囲内とされていることを特徴とする請求項4または請求項5に記載の絶縁回路基板。
PCT/JP2022/027855 2021-07-16 2022-07-15 銅/セラミックス接合体、および、絶縁回路基板 WO2023286857A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/559,155 US20240234242A1 (en) 2021-07-16 2022-07-15 Copper/ceramic assembly and insulating circuit substrate
CN202280041666.4A CN117500769A (zh) 2021-07-16 2022-07-15 铜-陶瓷接合体及绝缘电路基板
DE112022003587.0T DE112022003587T5 (de) 2021-07-16 2022-07-15 Kupfer/keramik-aufbau und isolierendes schaltungssubstrat

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021117950A JP2023013628A (ja) 2021-07-16 2021-07-16 銅/セラミックス接合体、および、絶縁回路基板
JP2021-117950 2021-07-16

Publications (1)

Publication Number Publication Date
WO2023286857A1 true WO2023286857A1 (ja) 2023-01-19

Family

ID=84920314

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/027855 WO2023286857A1 (ja) 2021-07-16 2022-07-15 銅/セラミックス接合体、および、絶縁回路基板

Country Status (5)

Country Link
US (1) US20240234242A1 (ja)
JP (1) JP2023013628A (ja)
CN (1) CN117500769A (ja)
DE (1) DE112022003587T5 (ja)
WO (1) WO2023286857A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008024561A (ja) * 2006-07-24 2008-02-07 Toshiba Corp セラミックス−金属接合部品およびその製造方法
JP2013211546A (ja) * 2012-02-29 2013-10-10 Hitachi Metals Ltd セラミックス−銅接合体およびその製造方法
JP2016184606A (ja) * 2015-03-25 2016-10-20 京セラ株式会社 放熱基板
JP2018008869A (ja) * 2016-06-30 2018-01-18 三菱マテリアル株式会社 銅/セラミックス接合体、及び、絶縁回路基板
WO2020203787A1 (ja) * 2019-03-29 2020-10-08 デンカ株式会社 窒化珪素基板、窒化珪素-金属複合体、窒化珪素回路基板、及び、半導体パッケージ
WO2021015122A1 (ja) * 2019-07-23 2021-01-28 日本碍子株式会社 接合基板および接合基板の製造方法
WO2021124923A1 (ja) * 2019-12-19 2021-06-24 三菱マテリアル株式会社 銅/セラミックス接合体、及び、絶縁回路基板

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3211856U (ja) 2017-05-09 2017-08-10 株式会社アイエスピー メジャー付きタオル
JP6770273B1 (ja) 2020-01-24 2020-10-14 株式会社Genesis 電子通貨税申告支援システム

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008024561A (ja) * 2006-07-24 2008-02-07 Toshiba Corp セラミックス−金属接合部品およびその製造方法
JP2013211546A (ja) * 2012-02-29 2013-10-10 Hitachi Metals Ltd セラミックス−銅接合体およびその製造方法
JP2016184606A (ja) * 2015-03-25 2016-10-20 京セラ株式会社 放熱基板
JP2018008869A (ja) * 2016-06-30 2018-01-18 三菱マテリアル株式会社 銅/セラミックス接合体、及び、絶縁回路基板
WO2020203787A1 (ja) * 2019-03-29 2020-10-08 デンカ株式会社 窒化珪素基板、窒化珪素-金属複合体、窒化珪素回路基板、及び、半導体パッケージ
WO2021015122A1 (ja) * 2019-07-23 2021-01-28 日本碍子株式会社 接合基板および接合基板の製造方法
WO2021124923A1 (ja) * 2019-12-19 2021-06-24 三菱マテリアル株式会社 銅/セラミックス接合体、及び、絶縁回路基板

Also Published As

Publication number Publication date
JP2023013628A (ja) 2023-01-26
DE112022003587T5 (de) 2024-05-02
CN117500769A (zh) 2024-02-02
US20240234242A1 (en) 2024-07-11

Similar Documents

Publication Publication Date Title
US10818585B2 (en) Copper/ceramic joined body, insulated circuit board, method for producing copper/ceramic joined body, and method for producing insulated circuit board
CN109417056B (zh) 铜-陶瓷接合体及绝缘电路基板
US10016956B2 (en) Cu/ceramic bonded body, method for manufacturing Cu/ceramic bonded body, and power module substrate
US12027434B2 (en) Bonded body of copper and ceramic, insulating circuit substrate, bonded body of copper and ceramic production method, and insulating circuit substrate production method
EP2811513A1 (en) Substrate for power modules, substrate with heat sink for power modules, power module, method for producing substrate for power modules, and paste for bonding copper member
WO2015141295A1 (ja) 接合体、パワーモジュール用基板、パワーモジュール、及び、接合体の製造方法
WO2018159590A1 (ja) 銅/セラミックス接合体、絶縁回路基板、及び、銅/セラミックス接合体の製造方法、絶縁回路基板の製造方法
WO2014088025A1 (ja) パワーモジュール用基板、ヒートシンク付パワーモジュール用基板、パワーモジュール、パワーモジュール用基板の製造方法、銅板接合用ペースト、及び接合体の製造方法
CN114728857B (zh) 铜-陶瓷接合体、绝缘电路基板、铜-陶瓷接合体的制造方法及绝缘电路基板的制造方法
WO2021044844A1 (ja) 銅/セラミックス接合体、及び、絶縁回路基板
WO2023286857A1 (ja) 銅/セラミックス接合体、および、絶縁回路基板
CN108701659B (zh) 接合体、功率模块用基板、功率模块、接合体的制造方法及功率模块用基板的制造方法
WO2023286860A1 (ja) 銅/セラミックス接合体、および、絶縁回路基板
WO2023286856A1 (ja) 銅/セラミックス接合体、および、絶縁回路基板
WO2022224946A1 (ja) 銅/セラミックス接合体、および、絶縁回路基板
WO2023286862A1 (ja) 銅/セラミックス接合体、および、絶縁回路基板
WO2023008565A1 (ja) 銅/セラミックス接合体、および、絶縁回路基板
WO2022224958A1 (ja) 銅/セラミックス接合体、および、絶縁回路基板
WO2023008562A1 (ja) 銅/セラミックス接合体、および、絶縁回路基板
WO2023286858A1 (ja) 銅/セラミックス接合体、絶縁回路基板、および、銅/セラミックス接合体の製造方法、絶縁回路基板の製造方法
WO2022224949A1 (ja) 銅/セラミックス接合体、および、絶縁回路基板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22842198

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18559155

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202280041666.4

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 112022003587

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22842198

Country of ref document: EP

Kind code of ref document: A1