WO2015141295A1 - 接合体、パワーモジュール用基板、パワーモジュール、及び、接合体の製造方法 - Google Patents
接合体、パワーモジュール用基板、パワーモジュール、及び、接合体の製造方法 Download PDFInfo
- Publication number
- WO2015141295A1 WO2015141295A1 PCT/JP2015/052660 JP2015052660W WO2015141295A1 WO 2015141295 A1 WO2015141295 A1 WO 2015141295A1 JP 2015052660 W JP2015052660 W JP 2015052660W WO 2015141295 A1 WO2015141295 A1 WO 2015141295A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ceramic
- brazing material
- active metal
- power module
- joined body
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K1/00—Soldering, e.g. brazing, or unsoldering
- B23K1/0008—Soldering, e.g. brazing, or unsoldering specially adapted for particular articles or work
- B23K1/0016—Brazing of electronic components
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
- B23K35/24—Selection of soldering or welding materials proper
- B23K35/30—Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
- B23K35/302—Cu as the principal constituent
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B37/00—Joining burned ceramic articles with other burned ceramic articles or other articles by heating
- C04B37/02—Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
- C04B37/023—Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used
- C04B37/026—Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used consisting of metals or metal salts
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/12—Mountings, e.g. non-detachable insulating substrates
- H01L23/14—Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
- H01L23/15—Ceramic or glass substrates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
- H01L25/18—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/18—Printed circuits structurally associated with non-printed electric components
- H05K1/181—Printed circuits structurally associated with non-printed electric components associated with surface mounted components
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6567—Treatment time
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/02—Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
- C04B2237/12—Metallic interlayers
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/02—Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
- C04B2237/12—Metallic interlayers
- C04B2237/121—Metallic interlayers based on aluminium
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/02—Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
- C04B2237/12—Metallic interlayers
- C04B2237/122—Metallic interlayers based on refractory metals
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/02—Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
- C04B2237/12—Metallic interlayers
- C04B2237/124—Metallic interlayers based on copper
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/02—Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
- C04B2237/12—Metallic interlayers
- C04B2237/126—Metallic interlayers wherein the active component for bonding is not the largest fraction of the interlayer
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/02—Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
- C04B2237/12—Metallic interlayers
- C04B2237/126—Metallic interlayers wherein the active component for bonding is not the largest fraction of the interlayer
- C04B2237/127—The active component for bonding being a refractory metal
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/02—Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
- C04B2237/12—Metallic interlayers
- C04B2237/126—Metallic interlayers wherein the active component for bonding is not the largest fraction of the interlayer
- C04B2237/128—The active component for bonding being silicon
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/30—Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
- C04B2237/32—Ceramic
- C04B2237/34—Oxidic
- C04B2237/343—Alumina or aluminates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/30—Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
- C04B2237/32—Ceramic
- C04B2237/36—Non-oxidic
- C04B2237/366—Aluminium nitride
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/30—Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
- C04B2237/40—Metallic
- C04B2237/402—Aluminium
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/30—Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
- C04B2237/40—Metallic
- C04B2237/407—Copper
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/50—Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
- C04B2237/60—Forming at the joining interface or in the joining layer specific reaction phases or zones, e.g. diffusion of reactive species from the interlayer to the substrate or from a substrate to the joining interface, carbide forming at the joining interface
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/50—Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
- C04B2237/70—Forming laminates or joined articles comprising layers of a specific, unusual thickness
- C04B2237/708—Forming laminates or joined articles comprising layers of a specific, unusual thickness of one or more of the interlayers
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/50—Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
- C04B2237/72—Forming laminates or joined articles comprising at least two interlayers directly next to each other
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
- H01L2224/29—Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
- H01L2224/29001—Core members of the layer connector
- H01L2224/29099—Material
- H01L2224/291—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/29101—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
- H01L2224/29111—Tin [Sn] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/31—Structure, shape, material or disposition of the layer connectors after the connecting process
- H01L2224/32—Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
- H01L2224/321—Disposition
- H01L2224/32151—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/32221—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/32225—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/83—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
- H01L2224/831—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus
- H01L2224/83101—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus as prepeg comprising a layer connector, e.g. provided in an insulating plate member
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/36—Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
- H01L23/373—Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
- H01L23/3735—Laminates or multilayers, e.g. direct bond copper ceramic substrates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L24/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
- H01L24/29—Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L24/31—Structure, shape, material or disposition of the layer connectors after the connecting process
- H01L24/32—Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L24/83—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
- H01L25/03—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
- H01L25/04—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
- H01L25/07—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/10—Details of components or other objects attached to or integrated in a printed circuit board
- H05K2201/10227—Other objects, e.g. metallic pieces
- H05K2201/10378—Interposers
Definitions
- the present invention relates to a bonded body in which a ceramic member and a Cu member are firmly bonded, a power module substrate including the bonded body, a power module, and a method for manufacturing the bonded body.
- a semiconductor device such as an LED or a power module has a structure in which a semiconductor element is bonded on a circuit layer made of a conductive material.
- Power semiconductor elements used to control large power such as wind power generation and electric vehicles such as electric vehicles, generate a large amount of heat.
- a substrate on which such a power semiconductor element is mounted for example, Si 3 N 4 (silicon nitride), AlN (aluminum nitride), Al 2 O 3 (alumina), etc. are excellent in heat resistance and insulation.
- a ceramic substrate is used. And the board
- a metal plate may be bonded to the other surface of the ceramic substrate.
- the present invention has been made in view of the above-described circumstances, and provides a bonded body, a power module substrate, a power module, and a bonded body manufacturing method that have high bonding reliability between a ceramic member and a Cu member. For the purpose.
- the joined body according to the first aspect of the present invention is a joined body in which a ceramic member made of ceramic containing Al and a Cu member made of Cu or Cu alloy are joined, and the ceramic member and the Cu member A joint is formed, and an active metal compound region made of a compound containing an active metal is formed on the ceramic member side of the joint, and one side forming the Cu member side of the active metal compound region To the Cu member side, the Al concentration of the joint in the thickness range of 0.5 ⁇ m to 3 ⁇ m is in the range of 0.5 at% or more and 15 at% or less.
- the Al component in the joint portion is generated when a constituent material of the ceramic member, that is, a part of the ceramic containing Al is decomposed when the ceramic member and the Cu member are joined, and the Al component diffuses toward the joint portion.
- the Al concentration indicates the degree of decomposition of the ceramic member, and the higher the Al concentration, the more the decomposition of the ceramic member proceeds, indicating that the bonding force between the ceramic member and the bonding portion is increased.
- the Al concentration is less than 0.5 at%, the decomposition of the ceramic member does not proceed, and the peeling rate between the ceramic member and the Cu member increases.
- the Al concentration exceeds 15 at% the Al component in the joint increases, and the Al intermetallic compound increases.
- the hardness of the bonded portion increases, and the bonding reliability between the ceramic member and the Cu member decreases. Therefore, as in the present invention, by setting the Al concentration in the joint within a predetermined range, the bonding force between the ceramic member and the joint can be maintained high, the peeling rate at the joint can be reduced, and the ceramic can be reduced. A joined body in which the member and the Cu member are firmly joined can be realized.
- the one surface of the active metal compound region is a surface having irregularities
- the thickness range is a range from a point closest to the Cu member among the irregularities.
- the ceramic member is composed of any one of AlN and Al 2 O 3 .
- AlN or Al 2 O 3 as the ceramic member, it is possible to manufacture a bonded body excellent in insulation and heat resistance.
- the active metal compound region includes any one of an active metal nitride and an active metal oxide.
- a power module substrate is a power module substrate including the above-described joined body, wherein the Cu member is used as a circuit layer, and the circuit layer is bonded to the ceramic member.
- a metal layer is formed on the opposite surface.
- a Cu member is used as a circuit layer, and a metal layer is formed on the surface of the ceramic member opposite to the surface where the circuit layer is bonded. Therefore, the Al concentration of the joint formed between the ceramic member and the circuit layer is kept within a predetermined range, the bonding force between the ceramic member and the joint can be kept high, and the peeling rate at the joint is And a power module substrate in which the ceramic member and the circuit layer are firmly bonded can be realized.
- the metal layer is made of Cu or a Cu alloy.
- the metal layer made of Cu or Cu alloy is formed on the surface opposite to the surface to which the circuit layer of the ceramic member is bonded, a power module substrate excellent in heat dissipation can be realized.
- the metal layer is made of Al or an Al alloy.
- the deformation resistance is reduced, and this heat is applied when thermal stress is applied to the ceramic member.
- the stress can be absorbed by the metal layer made of Al or Al alloy, and the ceramic member can be prevented from being damaged by the thermal stress.
- the power module which concerns on the 3rd aspect of this invention is equipped with the above-mentioned board for power modules, and the electronic component joined to the surface on the opposite side to the said ceramic member among the said circuit layers.
- the power module substrate having the bonded body as described above is used, the ceramic member and the circuit layer are firmly bonded and excellent in reliability.
- a method for manufacturing a joined body according to a fourth aspect of the present invention is a method for producing a joined body in which a ceramic member made of a ceramic containing Al and a Cu member made of Cu or a Cu alloy are joined together.
- a heat treatment step of melting the Cu—P brazing material and diffusing Al contained in the ceramic member toward the Cu—P brazing material is a method for producing a joined body in which a ceramic member made of a ceramic containing Al and a Cu member made of Cu or a Cu alloy are joined together.
- the method for manufacturing a joined body of the present invention in the heat treatment process, Al contained in the ceramic member is diffused toward the Cu-P brazing material, thereby maintaining a high joining force between the ceramic member and the joint. It is possible to manufacture a bonded body in which the peeling rate at the bonded portion is reduced and the ceramic member and the Cu member are firmly bonded.
- the Cu—P-based brazing material contains 3 mass% or more and 10 mass% or less of P.
- a Cu—P brazing material containing 3 mass% or more and 10 mass% or less of P has a low melting point, so that when heated, a melt is likely to be generated, and the reaction between the ceramic member and the Cu member is likely to proceed.
- the ceramic member and the Cu member can be firmly bonded.
- the Cu—P brazing material is a Cu—P brazing material, a Cu—P—Sn brazing material, a Cu—P—Sn—Ni brazing material, or a Cu—P—Zn brazing material. Any one selected from materials. When such a brazing material is used, since the melting point of the brazing material is low, the ceramic member and the Cu member can be reliably joined.
- a bonded body, a power module substrate, a power module, and a method for manufacturing the bonded body which have high bonding reliability between the ceramic member and the Cu member.
- FIG. 1 is a cross-sectional view showing an example of a joined body according to an embodiment of the present invention.
- the joined body 10 is used, for example, as a power module substrate that constitutes a power module including a power semiconductor.
- the joined body 10 includes a ceramic substrate (ceramic member) 11 and a Cu member 12 disposed on one surface 11 a (upper surface in FIG. 1) of the ceramic substrate 11. Further, the ceramic substrate 11 and the Cu member 12 are bonded via a bonding portion 13.
- the joint 13 is formed, for example, by heat-treating an active metal material and a Cu—P brazing material. The method for manufacturing the joined body 10 will be described in detail later.
- the ceramic substrate 11 is made of a highly insulating ceramic containing Al, such as AlN (aluminum nitride), Al 2 O 3 (alumina), or the like.
- the ceramic substrate 11 is made of AlN having excellent heat dissipation.
- the thickness of the ceramic substrate 11 is set within a range of 0.2 to 1.5 mm, for example, and in this embodiment, a thickness of 0.635 mm is used.
- a metal plate made of Cu or Cu alloy having high conductivity is used as the Cu member 12.
- a metal plate made of oxygen-free copper is used as the Cu member 12.
- the thickness of the Cu member 12 is set, for example, within a range of 0.1 mm or more and 1.0 mm or less. In the present embodiment, a thickness of 0.6 mm is used.
- Such a Cu member 12 is used as a circuit layer of a power module substrate, for example.
- FIG. 2 is an enlarged cross-sectional view of a main part showing an outline of the joint portion 13 of the joined body according to the embodiment of the present invention.
- FIG. 3 is a cross-sectional observation photograph of the joint portion 13 of the joined body according to the embodiment of the present invention.
- the joint portion 13 of the present embodiment uses a Cu—P—Sn—Ni brazing material and Ti as an active metal for joining the ceramic substrate 11 and the Cu member 12. This is an example of the case.
- examples of the active metal include Zr, Nb, and Hf.
- the joining portion 13 is a joining layer produced by heat-treating an active metal material (Ti in this embodiment) and a Cu—P brazing material at a predetermined temperature and time.
- the joint part 13 includes an alloy layer 17 on the Cu member 12 side and an active metal compound region 16 on the ceramic substrate 11 side.
- the active metal compound region 16 is mainly composed of Ti nitride formed by combining Ti diffused from the active metal material and N contained in AlN constituting the ceramic substrate 11, for example, TiN. It is configured.
- the alloy layer 17 is composed of Cu, P, Sn, Ni, which are components of the brazing material, Ti diffused from the active metal material, and their alloys and intermetallic compounds.
- the Al concentration in the thickness range E of 0.5 ⁇ m to 3 ⁇ m is 0.5 at% from the one surface 16a forming the Cu member 12 side of the active metal compound region 16 toward the Cu member 12 side. As described above, it is formed to be in a range of 15 at% or less. That is, between the surface 16a that extends from the one surface 16a of the active metal compound region 16 toward the Cu member 12 at a position of 0.5 ⁇ m ( ⁇ t1) and the surface that extends toward the Cu member 12 at a position of 3 ⁇ m ( ⁇ t2). In the region extending in the thickness range E of 2.5 ⁇ m, the Al concentration is 0.5 at% or more and 15 at% or less.
- the Al concentration is an average value in the thickness range E.
- the Al concentration in the thickness range E is preferably 0.5 at% or more and 10 at% or less, but is not limited thereto.
- the Al component in the joint portion 13 is decomposed when the ceramic substrate 11 and the Cu member 12 are joined together with a constituent material of the ceramic substrate 11, that is, a part of the ceramic containing Al, and the Al component diffuses toward the joint portion 13.
- a constituent material of the ceramic substrate 11 that is, a part of the ceramic containing Al
- the Al component diffuses toward the joint portion 13.
- AlN constituting the ceramic substrate 11 is decomposed and Al is diffused toward the joint portion 13.
- Such control of the Al concentration in the thickness range E of the joint portion 13 can be achieved by setting the joining temperature in the heat treatment process or setting the heating time when joining the ceramic substrate 11 and the Cu member 12. Controlled.
- the active metal compound region 16 is mainly composed of an active metal nitride formed by combining an active metal material and N contained in AlN constituting the ceramic substrate 11.
- the active metal compound region 16 is mainly composed of an oxide of an active metal formed by combining O contained in the Al 2 O 3 and the active metal. Is done.
- one surface 16a of the active metal compound region 16 is schematically shown as a flat surface. However, actually, as shown in the observation photograph of FIG. The surface is uneven.
- the thickness range E of the joint portion 13 in which the concentration of Al is defined is a point Sp (most Cu member 12) closest to the Cu member in one surface 16 a of the active metal compound region 16.
- a thickness range E of 0.5 ⁇ m to 3 ⁇ m may be defined with the apex Sp) protruding to the side as a base point.
- a metal member for example, an Al member made of Al or an Al alloy, or a Cu member made of Cu or Cu alloy is further joined to the other surface 11b side of the ceramic substrate 11.
- a metal member include an Al member made of 4N—Al and a Cu member made of oxygen-free copper.
- an Al—Si brazing material or a Cu—P brazing material can be used for joining the ceramic member 11 and the metal member.
- the Al—Si brazing material include a brazing material having a Si content of 1 mass% to 12 mass%.
- the bonding portion 13 for bonding the ceramic substrate 11 and the Cu member 12 is 0.5 ⁇ m to 1 ⁇ a from the one surface 16a of the active metal compound region 16 toward the Cu member 12 side.
- the Al concentration in the thickness range E of 3 ⁇ m is formed to be 0.5 at% or more and 15 at% or less.
- the Al is diffused toward the bonding portion 13 as AlN and Al 2 O 3 constituting the ceramic substrate 11 are decomposed. Therefore, the concentration of Al indicates the degree of decomposition of these AlN and Al 2 O 3 , and the higher the concentration of Al, the more decomposition of AlN and Al 2 O 3 proceeds, and the bonding force between the ceramic substrate 11 and the bonding portion 13. Indicates that it is growing.
- the bonding force between the ceramic substrate 11 and the joint portion 13 can be maintained high, and the peeling rate of the joint portion 13 can be reduced.
- FIG. 5 is a cross-sectional view illustrating a method for manufacturing a joined body according to an embodiment of the present invention in stages.
- a ceramic substrate (ceramic member) 11 made of ceramics containing Al such as AlN (aluminum nitride) and Al 2 O 3 (alumina) is prepared.
- AlN aluminum nitride
- Al 2 O 3 alumina
- the brazing material 31, the active metal material 32, and the Cu member 12 are sequentially laminated on the one surface 11a side of the ceramic substrate 11 to form a laminated body 35 (see FIG. 5B: laminating step).
- a Cu—P based brazing material is used for the brazing material 31 .
- the Cu-P brazing material include Cu-P brazing material, Cu-P-Sn brazing material, Cu-P-Sn-Ni brazing material, Cu-P-Zn brazing material, and Cu-P.
- a Cu-P-Sn-Ni brazing material is used for this embodiment.
- the composition of the Cu—P—Sn—Ni brazing material is Cu-7 mass% P-15 mass% Sn-10 mass% Ni.
- the thickness of the Cu—P—Sn—Ni brazing material is formed to be 5 ⁇ m or more and 150 ⁇ m or less.
- P which is a component of the Cu—P brazing material, is an element having an effect of lowering the melting point of the brazing material. Moreover, this P prevents oxidation of the brazing filler metal by covering the surface of the brazing filler metal with the P oxide generated by oxidation of P, and the surface of the molten brazing filler metal has good fluidity. It is an element having an effect of improving the wettability of the brazing material by covering.
- the content of P contained in the Cu—P brazing material is preferably in the range of 3 mass% to 10 mass%.
- the content of P contained in the Cu-P brazing filler is more preferably in the range of 6 mass% to 8 mass%, but is not limited thereto.
- Sn which is an example of a component of the Cu—P brazing material
- Sn content is 0.5 mass% or more, the melting point of the brazing material can be reliably lowered.
- Sn content is 25 mass% or less, low-temperature embrittlement of the brazing material can be suppressed, and the bonding reliability between the ceramic substrate 11 and the Cu member 12 can be improved.
- the content is preferably in the range of 0.5 mass% to 25 mass%.
- Ni, Cr, Fe, Mn, etc. which are examples of components of a Cu—P brazing material, have the effect of suppressing the formation of intermetallic compounds containing P at the interface between the ceramic substrate 11 and the brazing material. It is an element having When the content of any one or more of Ni, Cr, Fe, and Mn is 2 mass% or more in total, an intermetallic compound containing P is formed at the bonding interface between the ceramic substrate 11 and the brazing material. This can be suppressed, and the bonding reliability between the ceramic substrate 11 and the Cu member 12 is improved.
- the content of any one or more of Ni, Cr, Fe, and Mn is 20 mass% or less in total, the melting point of the brazing material is suppressed from increasing, and the fluidity of the brazing material is lowered. This can be suppressed, and the bondability between the ceramic substrate 11 and the Cu member 12 can be improved.
- the total content thereof is in the range of 2 mass% to 20 mass%. It is preferable to do.
- Zn which is an example of a component of the Cu—P brazing material, is an element having an effect of improving the oxidation resistance of the brazing material.
- the Zn content is 0.5 mass% or more, it is possible to sufficiently secure the oxidation resistance of the brazing material and improve the bondability.
- the Zn content is 50 mass% or less, it is possible to prevent a large amount of brittle intermetallic compounds from being formed, and to ensure the bonding reliability between the ceramic substrate 11 and the Cu member 12.
- the content is preferably in the range of 0.5 mass% to 50 mass%.
- the brazing material 31 is formed by mixing powders of constituent element components and applying a paste (brazing material paste) to the one surface 11a of the ceramic substrate 11 through an appropriate binder.
- the active metal material 32 contains at least an active element.
- the properties of the active metal material 32 include foil, powder, and paste obtained by adding an appropriate binder to the powder and kneading.
- Ti foil is used as the active metal material, and the thickness of the Ti foil is 0.5 ⁇ m or more and 25 ⁇ m or less. Further, the composition of the Ti foil may be 99.4 mass% or more, and in this embodiment, the purity is 99.6 mass%.
- the active metal material 32 is disposed on the Cu member 12 side, but may be disposed on the ceramic member 11 side.
- the stacking order of the stacked body 35 is the ceramic member 11, the active metal material 32, the brazing material 31, and the Cu member 12 in this order.
- the laminated body 35 is placed in a vacuum heat treatment furnace H, and is heated to a temperature equal to or higher than the melting temperature (joining temperature) of the brazing material 31 while pressing the laminated body 35. (Heat treatment process). As a result, the brazing material 31 is melted. Thereafter, when cooled, a bonded body 10 is obtained in which the ceramic member 11 and the Cu member 12 are bonded via the bonding portion 13 as shown in FIG.
- the temperature was set to 10 ⁇ 3 Pa or less, the heating temperature was 700 ° C. or more and 850 ° C. or less, and the heating time was 10 minutes or more and 60 minutes or less.
- the heat treatment is performed to such an extent that AlN on the one surface 11a of the ceramic substrate 11 is decomposed and Al diffuses into the joint portion 13. That is, in the joint portion 13 of the obtained joined body 10 shown in FIG. 2, the thickness range of 0.5 ⁇ m to 3 ⁇ m from the one surface 16a forming the Cu member 12 side of the active metal compound region 16 toward the Cu member 12 side. Heat treatment is performed so that the Al concentration in E is in the range of 0.5 at% or more and 15 at% or less.
- the degree of decomposition of AlN constituting the ceramic substrate 11 falls within an appropriate range, and the bonding force between the ceramic substrate 11 and the bonding portion 13 is increased. Therefore, the bonding force between the ceramic substrate 11 and the bonding portion 13 of the bonded body 10 can be maintained high, and the initial peeling rate of the bonding portion 13 can be reduced.
- FIG. 6 is a cross-sectional view showing a power module substrate and a power module according to an embodiment of the present invention.
- the power module 1 includes a power module substrate 40 and a power semiconductor (electronic component) 3 joined to a surface on one side (the upper side in FIG. 6) of the power module substrate 40 via a solder layer 2.
- the solder layer 2 is made of, for example, a Sn—Ag, Sn—In, or Sn—Ag—Cu solder material.
- the power module substrate 40 includes a ceramic substrate (ceramic member) 11, a Cu member (circuit layer) 12 disposed on one surface 11 a (upper surface in FIG. 6), the ceramic substrate 11, and the Cu member 12. And a joined body 10 comprising a joined portion 13 for joining the two.
- the power module substrate 40 has a metal layer on the other surface 11b (the lower surface in FIG. 6) of the ceramic substrate 11 that is opposite to the one surface 11a of the ceramic substrate 11 on which the Cu member (circuit layer) 12 is disposed. 41 is provided.
- a metal plate made of Cu or a Cu alloy is used for the metal layer 41.
- a metal plate made of oxygen-free copper is used as the metal layer 41.
- the thickness of the Cu member 12 is set, for example, within a range of 0.1 mm or more and 1.0 mm or less. In the present embodiment, a thickness of 0.6 mm is used.
- the Cu member (circuit layer) 12 in the power module substrate 40 constitutes a power semiconductor circuit layer when applied to the power module. That is, the Cu member 12 forms a power semiconductor conductor.
- the ceramic substrate 11 forms an insulator that insulates the lower layer side of the conductor.
- the power module substrate 40 and the power module 1 by applying the joined body 10 shown in FIG. 1, the specific region of the joint portion 13 that joins the ceramic substrate 11 and the Cu member (circuit layer) 12.
- the power module substrate 40 and the power module 1 can be realized in which the Al concentration is controlled and the bonding force between the ceramic substrate 11 and the bonding portion 13 is maintained high.
- the metal layer 41 on the other surface 11b of the ceramic substrate 11 is formed as the power module substrate 40.
- the metal layer 41 may not be particularly formed.
- the metal layer 41 is not limited to Cu or Cu alloy, and various metals can be used.
- Al or an Al alloy can also be applied as the metal layer. If the metal layer 41 is formed of Al or an Al alloy, when thermal stress is applied to the ceramic member, the thermal stress can be absorbed by the metal layer made of Al or Al alloy, and the ceramic member is prevented from being damaged by the thermal stress. It becomes possible.
- the thickness of the metal layer is preferably set in the range of 0.1 mm to 3.0 mm.
- Example 1 On one surface of a ceramic substrate (40 mm ⁇ 40 mm ⁇ thickness 0.635 mm) made of the materials shown in Table 1, the brazing material (37 mm ⁇ 37 mm) shown in Table 1 and the active metal material shown in Table 1 (37 mm ⁇ 37 mm) Then, Cu plates (37 mm ⁇ 37 mm ⁇ thickness 0.3 mm) made of oxygen-free copper were sequentially laminated to form a laminate.
- a paste made of Cu-7 mass% P-15 mass% Sn-10 mass% Ni powder and Ti powder was used as a brazing material and an active element. The paste coating thickness was 80 ⁇ m.
- the Cu plate was joined to one surface of the ceramic substrate by putting in the vacuum heating furnace in the state which pressurized the laminated body with the pressure of 5 kgf / cm ⁇ 2 > (0.49 MPa) in the lamination direction, and heating.
- the heating temperature and time were as shown in Table 1.
- joined bodies of Invention Examples 1 to 8 and Comparative Examples 1 to 3 were obtained.
- the obtained bonded body was evaluated for “presence / absence of active metal compound region”, “Al concentration in bonded portion”, and “bonding rate”.
- the cross section of the joined body was measured with an EPMA (electron beam microanalyzer, JXA-8530F manufactured by JEOL Ltd.) at a magnification of 10,000 times, and the elements contained in the ceramic substrate (N in the case of AlN, N in the case of Al 2 O 3 ) Obtain element mapping of O) and active metal elements.
- EPMA electron beam microanalyzer, JXA-8530F manufactured by JEOL Ltd.
- Al concentration at the joint As a method for measuring the Al concentration in the joint, the cross section of the joint is analyzed by EPMA (electron beam microanalyzer, JXA-8530F manufactured by JEOL Ltd.), and the range from 0.5 ⁇ m to 3 ⁇ m from one side of the active metal compound region was quantitatively analyzed to measure the Al concentration. Specifically, 10 arbitrary points within the above range were analyzed, and the average value was taken as the Al concentration.
- EPMA electron beam microanalyzer, JXA-8530F manufactured by JEOL Ltd.
- the initial bonding area is the area to be bonded before bonding, that is, the area of the Cu member (37 mm ⁇ 37 mm) in this embodiment.
- the peeling is indicated by the white portion in the joint portion. Therefore, the area of the white portion is defined as the peeling area.
- (Bonding rate (%)) ⁇ (initial bonding area) ⁇ (peeling area) ⁇ / (initial bonding area) ⁇ 100
- the evaluation of the joining rate was performed before the cooling cycle test (initial bonding rate) and after the cooling cycle test. The results are shown in Table 1.
- Example 2 (Invention Examples 9 to 10) Using the joined body obtained in Example 1, aluminum (4N—Al) having a purity of 99.99 mass% or more was joined to the other surface of the ceramic substrate via an Al—Si brazing material to form a metal layer. A power module substrate was prepared. In Invention Example 9, the joined body of Invention Example 2 was used, and in Invention Example 10, the joined body of Invention Example 8 was used. In Examples 9 to 10, an Al-7 mass% Si brazing material was used as the Al—Si brazing material.
- the joining reliability between the ceramic member and the Cu member can be increased. Therefore, according to the method for manufacturing a joined body according to the present invention, it is suitable for a power module having a severe use environment such as a power semiconductor element for high power control used for controlling an electric vehicle such as wind power generation or an electric vehicle. Can be manufactured and a substrate for a power module.
- Power module 3 Power semiconductor (electronic parts) 10 Bonded body 11 Ceramic substrate (ceramic member) 12 Cu member 13 Joint portion 31 Brazing material 32 Active metal material 40 Power module substrate 41 Metal layer
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Ceramic Products (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
Abstract
Description
本願は、2014年3月20日に、日本に出願された特願2014-058869号に基づき優先権を主張し、その内容をここに援用する。
風力発電、電気自動車等の電気車両など、大電力を制御するために用いられるパワー半導体素子は発熱量が多い。このため、このようなパワー半導体素子を搭載する基板としては、例えば、Si3N4(窒化ケイ素)、AlN(窒化アルミニウム)、Al2O3(アルミナ)など、耐熱性、および絶縁性に優れたセラミックス基板が用いられる。そして、このセラミックス基板の一方の面に、導電性の優れたCu板を回路層として接合したパワーモジュール用基板が、従来から広く用いられている。また、セラミックス基板の他方の面にも金属板を接合することもある。
本発明の第一の態様に係る接合体は、Alを含むセラミックスからなるセラミックス部材と、Cu又はCu合金からなるCu部材とが接合されてなる接合体であって、前記セラミックス部材と前記Cu部材との間には、接合部が形成され、該接合部のセラミックス部材側には、活性金属を含む化合物からなる活性金属化合物領域が形成され、該活性金属化合物領域の前記Cu部材側をなす一面から、前記Cu部材側に向かって、0.5μm~3μmの厚み範囲における前記接合部のAl濃度が0.5at%以上、15at%以下の範囲である。
ここで、前記Al濃度が0.5at%未満であるとセラミックス部材の分解が進んでおらず、セラミックス部材とCu部材との剥離率が増加する。また、前記Al濃度が15at%を超えると接合部におけるAl成分が多くなり、Alの金属間化合物等が増加する。これより、接合部の硬度が上昇し、セラミックス部材とCu部材との接合信頼性が低下する。
従って、本発明のように、接合部のAl濃度を所定の範囲内にすることによって、セラミックス部材と接合部との接合力を高く維持することができ、接合部における剥離率を低減させ、セラミックス部材とCu部材とが強固に接合された接合体を実現できる。
これによって、Al濃度によるセラミックス部材の分解の度合いをより正確に把握でき、接合部における剥離率の低減を確実に実現することができる。
セラミックス部材としてAlN、Al2O3を選択することで、絶縁性、および耐熱性に優れた接合体を製造することができる。
活性金属化合物領域に活性金属の窒化物、活性金属の酸化物を含むことにより、セラミックス部材とCu部材との接合性が向上し、セラミックス部材とCu部材との剥離率の低減を確実に実現することができる。
このパワーモジュール用基板は、Cu部材を回路層として用い、セラミックス部材におけるこの回路層が接合された面の反対面に金属層を形成している。そのため、セラミックス部材と回路層との間に形成される接合部のAl濃度が所定の範囲内に保たれ、セラミックス部材と接合部との接合力を高く維持することができ、接合部における剥離率を低減させ、セラミックス部材と回路層とが強固に接合されたパワーモジュール用基板を実現できる。
この場合、セラミックス部材の回路層が接合される面の反対面に、Cu又はCu合金からなる金属層が形成されているので、放熱性に優れたパワーモジュール基板を実現できる。
この場合、セラミックス部材の回路層が接合される面の反対面に、Al又はAl合金からなる金属層を接合することによって変形抵抗が小さくなり、セラミックス部材に熱応力が加わった際に、この熱応力をAl又はAl合金からなる金属層によって吸収でき、セラミックス部材の熱応力による破損を抑制することが可能になる。
本発明のパワーモジュールによれば、前述のような接合体を有するパワーモジュール用基板を用いているので、セラミックス部材と回路層とが強固に接合されており、信頼性に優れている。
Pを3mass%以上10mass%以下含有するCu-P系ろう材は、融点が低いので、加熱した際に、融液が発生しやすくなり、セラミックス部材とCu部材との反応が進みやすくなるため、セラミックス部材とCu部材とを強固に接合することができる。
このようなろう材を用いた場合、ろう材の融点が低いので、確実にセラミックス部材とCu部材との接合を行うことができる。
図1は、本発明の実施形態に係る接合体の一例を示す断面図である。
接合体10は、例えば、パワー半導体を備えたパワーモジュールを構成するパワーモジュール用基板として用いられる。この接合体10は、図1に示すように、セラミックス基板(セラミックス部材)11と、このセラミックス基板11の一面11a(図1において上面)に配設されたCu部材12とを備えている。また、このセラミックス基板11とCu部材12とは、接合部13を介して接合されている。接合部13は、例えば、活性金属材及びCu-P系ろう材を加熱処理することによって形成される。なお、接合体10の製造方法は、後ほど詳述する。
このようなCu部材12は、例えば、パワーモジュール用基板の回路層として用いられる。
接合部13は、活性金属材(本実施形態ではTi)及びCu-P系ろう材を所定の温度、時間で熱処理することで生じる接合層である。
接合部13は、Cu部材12側にある合金層17と、セラミックス基板11側にある活性金属化合物領域16とを備えている。
上述したような構成の接合体の製造方法について説明する。
図5は、本発明の実施形態に係る接合体の製造方法を段階的に示した断面図である。
例えば、パワーモジュール用基板として用いられる接合体を製造する際には、まず、AlN(窒化アルミニウム)、Al2O3(アルミナ)等のAlを含むセラミックスからなるセラミックス基板(セラミックス部材)11を用意する(図5(a)参照)。本実施形態では、AlNからなり、厚みが0.635mmのセラミックス基板を用いた。
このような理由からCu-P系ろう材に含まれるPの含有量は、3mass%以上10mass%以下の範囲内が好ましい。上記Cu-P系ろう材に含まれるPの含有量は、6mass%以上8mass%以下の範囲内であることがさらに好ましいが、これに限定されることはない。
このような理由からCu-P系ろう材にSnを含有させる場合、その含有量は0.5mass%以上25mass%以下の範囲内にすることが好ましい。
Ni、Cr、Fe、Mnのうちいずれか1種または2種以上の含有量が合計で2mass%以上では、セラミックス基板11とろう材との接合界面にPを含有する金属間化合物が形成されることを抑制することができ、セラミックス基板11とCu部材12との接合信頼性が向上する。
このような理由からCu-P系ろう材にNi、Cr、Fe、Mnのうちいずれか1種または2種以上を含有させる場合、それらの合計含有量は2mass%以上20mass%以下の範囲内にすることが好ましい。
Znの含有量が0.5mass%以上では、ろう材の耐酸化性を十分に確保し、接合性を向上させることができる。また、Znの含有量が50mass%以下では、脆い金属間化合物が多く形成されることを防止し、セラミックス基板11とCu部材12との接合信頼性を確保することができる。
このような理由からCu-P系ろう材にZnを含有させる場合、その含有量は0.5mass%以上50mass%以下の範囲内にすることが好ましい。
本実施形態では、活性金属材として、Ti箔を用いており、Ti箔の厚さは、0.5μm以上25μm以下とされている。また、Ti箔の組成を純度99.4mass%以上としても良く、本実施形態では純度99.6mass%としている。
上述した接合体を用いた本発明の実施形態に係るパワーモジュール用基板及びパワーモジュールの構成について説明する。なお、図1、図2に示す接合体10と同一の構成には同一の符号を付し、その詳細な説明を略す。
図6は、本発明の実施形態に係るパワーモジュール用基板及びパワーモジュールを示す断面図である。
ここで、はんだ層2は、例えばSn-Ag系、Sn-In系、若しくはSn-Ag-Cu系のはんだ材とされている。
金属層41をAlやAl合金によって形成すれば、セラミックス部材に熱応力が加わった際に、この熱応力をAl又はAl合金からなる金属層によって吸収でき、セラミックス部材の熱応力による破損を抑制することが可能になる。金属層をAlやAl合金によって形成する場合、金属層の厚さは0.1mm~3.0mmの範囲内に設定することが好ましい。
表1記載の材質からなるセラミックス基板(40mm×40mm×厚さ0.635mm)の一方の面に、表1記載のろう材(37mm×37mm)、表1記載の活性金属材(37mm×37mm)、無酸素銅からなるCu板(37mm×37mm×厚さ0.3mm)を順に積層し、積層体を形成した。なお、本発明例4については、Cu-7mass%P-15mass%Sn-10mass%Ni粉末とTi粉末からなるペーストをろう材及び活性元素として用いた。なお、ペーストの塗布厚は80μmとした。
このようにして、本発明例1~8、比較例1~3の接合体を得た。得られた接合体の「活性金属化合物領域の有無」「接合部におけるAl濃度」「接合率」について評価した。
接合体の断面をEPMA(電子線マイクロアナライザー、日本電子株式会社製JXA-8530F)により倍率10000倍で測定し、セラミックス基板に含まれる元素(AlNの場合はN、Al2O3の場合にはO)及び活性金属元素の元素マッピングを取得する。得られたマッピングにおいて、活性金属元素とセラミックス基板に含まれる元素が同一領域に存在する場合に活性金属化合物領域が有ると判断した。
図7に、活性金属化合物領域の観察例を示す。この図7においては、活性金属元素(Ti)とセラミックス基板(AlN)に含まれる元素(N)が同一領域に存在しており、活性金属化合物領域が有ると判断される。
接合部におけるAl濃度の測定方法としては、接合部の断面をEPMA(電子線マイクロアナライザー、日本電子株式会社製JXA-8530F)により分析し、活性金属化合物領域の一面から0.5μm~3μmの範囲を定量分析しAl濃度を測定した。具体的には上記範囲内の任意の個所10点を分析し、その平均値をAl濃度とした。
冷熱サイクル試験は、冷熱衝撃試験機(エスペック株式会社製TSB-51)を使用し、パワーモジュール用基板に対して、液相(フロリナート)で、-40℃にて5分と150℃にて5分のサイクルで2000サイクルを実施した。
(接合率)
接合率の評価は、接合体に対し、セラミックス基板とCu部材との界面の接合率について超音波探傷装置(株式会社日立パワーソリューションズ製FineSAT200)を用いて評価し、以下の式から接合率を算出した。
ここで、初期接合面積とは、接合前における接合すべき面積、すなわち本実施例ではCu部材の面積(37mm×37mm)とした。超音波探傷像を二値化処理した画像において剥離は接合部内の白色部で示されることから、この白色部の面積を剥離面積とした。
(接合率(%))={(初期接合面積)-(剥離面積)}/(初期接合面積)×100
接合率の評価は、冷熱サイクル試験を行う前(初期接合率)及び冷熱サイクル試験後に行った。
結果を表1に示す。
(本発明例9~10)
実施例1で得られた接合体を用い、セラミックス基板の他方の面にAl-Si系ろう材を介して純度99.99mass%以上のアルミニウム(4N-Al)を接合し、金属層を形成したパワーモジュール用基板を作成した。本発明例9では本発明例2の接合体を、本発明例10では本発明例8の接合体を用いた。なお、実施例9~10では、Al-Si系ろう材として、Al-7mass%Siろう材を用いた。
(本発明例11~12)
セラミックス基板の一方の面及び他方の面に、Cu-7mass%P-15mass%Sn-10mass%Niろう材、Ti箔、無酸素銅(OFC)からなるCu板を順に積層し、積層体を形成した。その積層体を積層方向に加圧した状態で真空加熱炉に投入し、加熱することによってセラミックス基板の一方の面及び他方の面にCu板が接合されたパワーモジュール用基板を作成した。本発明例11ではセラミックス基板としてAlNを、本発明例12ではAl2O3を用いた。
得られた本発明例9~12のパワーモジュール用基板に対し、回路層(セラミックス基板の一方の面)の接合率を評価した。評価方法は実施例1記載と同じとした。
結果を表2に示す。
一方、比較例1及び比較例2は、Al濃度が0.5at%以上、15at%以下の範囲から外れているため、セラミックス基板とCu板との初期接合率及び冷熱サイクル後の接合率が、本発明例と比較して劣った。また、接合時に活性金属材を用いなかった比較例3では、Cu板とセラミックス基板が接合されなかった。
また、表2に示す結果から、本発明例9~12については、冷熱サイクル試験後の接合率が高く、接合信頼性が高いことが確認された。
3 パワー半導体(電子部品)
10 接合体
11 セラミックス基板(セラミックス部材)
12 Cu部材
13 接合部
31 ろう材
32 活性金属材
40 パワーモジュール用基板
41 金属層
Claims (11)
- Alを含むセラミックスからなるセラミックス部材と、Cu又はCu合金からなるCu部材とが接合されてなる接合体であって、
前記セラミックス部材と前記Cu部材との間には、接合部が形成され、該接合部のセラミックス部材側には、活性金属を含む化合物からなる活性金属化合物領域が形成され、
該活性金属化合物領域の前記Cu部材側をなす一面から、前記Cu部材側に向かって、0.5μm~3μmの厚み範囲における前記接合部のAl濃度が0.5at%以上、15at%以下の範囲である接合体。 - 前記活性金属化合物領域の前記一面は、凹凸を有する面であり、前記厚み範囲は、前記凹凸のうち最も前記Cu部材に近い地点からの範囲である請求項1に記載の接合体。
- 前記セラミックス部材は、AlN、Al2O3のうち、いずれかより構成される請求項1または請求項2に記載の接合体。
- 前記活性金属化合物領域は、活性金属の窒化物、活性金属の酸化物のうち、いずれかを含む請求項1から請求項3のいずれか一項に記載の接合体。
- 請求項1から請求項4のいずれか一項に記載の接合体を備えたパワーモジュール用基板であって、
前記Cu部材を回路層として用い、前記セラミックス部材において前記回路層が接合される面の反対面に、金属層を形成したパワーモジュール用基板。 - 前記金属層はCu又はCu合金からなる請求項5に記載のパワーモジュール用基板。
- 前記金属層はAl又はAl合金からなる請求項5に記載のパワーモジュール用基板。
- 請求項5から請求項7のいずれか一項に記載のパワーモジュール用基板と、前記回路層のうち前記セラミックス部材とは反対側の面に接合された電子部品と、を備えたパワーモジュール。
- Alを含むセラミックスからなるセラミックス部材と、Cu又はCu合金からなるCu部材とが接合されてなる接合体の製造方法であって、
Cu-P系ろう材と、活性金属を含有する活性金属材とを介して、前記セラミックス部材に前記Cu部材を積層させた積層体を形成する積層工程と、
前記積層体を加熱処理して、前記Cu-P系ろう材を溶融させるとともに、前記セラミックス部材に含まれるAlを前記Cu-P系ろう材に向けて拡散させる加熱処理工程と、を備えている接合体の製造方法。 - 前記Cu-P系ろう材は、Pを3mass%以上10mass%以下含有する請求項9に記載の接合体の製造方法。
- 前記Cu-P系ろう材は、Cu-Pろう材、Cu-P-Snろう材、Cu-P-Sn-Niろう材、Cu-P-Znろう材の中から選択されるいずれか1種である請求項9または請求項10に記載の接合体の製造方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/119,547 US9735085B2 (en) | 2014-03-20 | 2015-01-30 | Bonded body, power module substrate, power module and method for producing bonded body |
KR1020167023026A KR102300413B1 (ko) | 2014-03-20 | 2015-01-30 | 접합체, 파워 모듈용 기판, 파워 모듈 및 접합체의 제조 방법 |
EP15765052.4A EP3121157B1 (en) | 2014-03-20 | 2015-01-30 | Bonded body, substrate for power modules, power module and method for producing bonded body |
CN201580003060.1A CN105829266A (zh) | 2014-03-20 | 2015-01-30 | 接合体、功率模块用基板、功率模块及接合体的制造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014058869 | 2014-03-20 | ||
JP2014-058869 | 2014-03-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015141295A1 true WO2015141295A1 (ja) | 2015-09-24 |
Family
ID=54144275
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/052660 WO2015141295A1 (ja) | 2014-03-20 | 2015-01-30 | 接合体、パワーモジュール用基板、パワーモジュール、及び、接合体の製造方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US9735085B2 (ja) |
EP (1) | EP3121157B1 (ja) |
JP (1) | JP5871081B2 (ja) |
KR (1) | KR102300413B1 (ja) |
CN (1) | CN105829266A (ja) |
TW (1) | TWI619207B (ja) |
WO (1) | WO2015141295A1 (ja) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20170073618A (ko) * | 2014-10-16 | 2017-06-28 | 미쓰비시 마테리알 가부시키가이샤 | 냉각기가 장착된 파워 모듈용 기판 및 그 제조 방법 |
DE112018000457T5 (de) * | 2017-02-23 | 2019-09-26 | Ngk Insulators, Ltd. | Isoliertes wärmeableitungssubstrat |
JP6965768B2 (ja) * | 2017-02-28 | 2021-11-10 | 三菱マテリアル株式会社 | 銅/セラミックス接合体、絶縁回路基板、及び、銅/セラミックス接合体の製造方法、絶縁回路基板の製造方法 |
DE102017114893B4 (de) * | 2017-07-04 | 2023-11-23 | Rogers Germany Gmbh | Lötmaterial zum Aktivlöten und Verfahren zum Aktivlöten |
EP3702341B1 (en) * | 2017-10-27 | 2022-06-01 | Mitsubishi Materials Corporation | Bonded body and insulated circuit board |
JP7124633B2 (ja) * | 2017-10-27 | 2022-08-24 | 三菱マテリアル株式会社 | 接合体、及び、絶縁回路基板 |
JP7230432B2 (ja) | 2017-11-02 | 2023-03-01 | 三菱マテリアル株式会社 | 接合体、及び、絶縁回路基板 |
JP7192451B2 (ja) | 2018-01-25 | 2022-12-20 | 三菱マテリアル株式会社 | 銅/セラミックス接合体、絶縁回路基板、及び、銅/セラミックス接合体の製造方法、絶縁回路基板の製造方法 |
WO2020044590A1 (ja) | 2018-08-28 | 2020-03-05 | 三菱マテリアル株式会社 | 銅/セラミックス接合体、絶縁回路基板、及び、銅/セラミックス接合体の製造方法、及び、絶縁回路基板の製造方法 |
WO2020111256A1 (ja) * | 2018-11-30 | 2020-06-04 | 京セラ株式会社 | 配線基板、電子装置及び電子モジュール |
JP6870767B2 (ja) * | 2019-09-02 | 2021-05-12 | 三菱マテリアル株式会社 | 銅/セラミックス接合体、及び、絶縁回路基板 |
EP4123697A4 (en) * | 2020-03-18 | 2024-04-24 | Mitsubishi Materials Corporation | INSULATED CIRCUIT BOARD |
DE102020120188B4 (de) | 2020-07-30 | 2024-08-01 | Rogers Germany Gmbh | Verfahren zur Herstellung eines Trägersubstrats und ein Trägersubstrat hergestellt mit einem solchen Verfahren |
CN115989579A (zh) * | 2020-10-07 | 2023-04-18 | 株式会社东芝 | 接合体、陶瓷电路基板及半导体装置 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61215272A (ja) * | 1985-03-20 | 1986-09-25 | 株式会社東芝 | セラミツクス部材と金属部材との接合方法 |
JPH0492871A (ja) * | 1990-08-07 | 1992-03-25 | Sankiyuu Kk | セラミックス―金属接合体及びその製造方法 |
JPH06183851A (ja) * | 1991-03-07 | 1994-07-05 | Mitsubishi Heavy Ind Ltd | セラミックスのろう付け前処理方法 |
JPH10286666A (ja) * | 1997-04-11 | 1998-10-27 | Hitachi Cable Ltd | 熱交換器の製造方法 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04162756A (ja) | 1990-10-26 | 1992-06-08 | Toshiba Corp | 半導体モジュール |
KR100255027B1 (ko) * | 1995-05-17 | 2000-05-01 | 니시무로 타이죠 | 세라믹 금속접합재 및 이를 사용한 세라믹 금속접합체 제조방법 및 이를 이용하여 제작한 진공기밀용기 |
JP3512977B2 (ja) * | 1996-08-27 | 2004-03-31 | 同和鉱業株式会社 | 高信頼性半導体用基板 |
JP2001130976A (ja) * | 1999-11-01 | 2001-05-15 | Mitsubishi Electric Corp | セラミックスと金属の接合方法及びその方法により接合されたセラミックスと金属の接合体 |
CN100471668C (zh) | 2002-11-20 | 2009-03-25 | 同和控股(集团)有限公司 | 金属/陶瓷粘合制品 |
JP4936261B2 (ja) * | 2010-08-31 | 2012-05-23 | 美濃窯業株式会社 | 炭化ホウ素含有セラミックス接合体及び該接合体の製造方法 |
US8804339B2 (en) * | 2011-02-28 | 2014-08-12 | Toyota Motor Engineering & Manufacturing North America, Inc. | Power electronics assemblies, insulated metal substrate assemblies, and vehicles incorporating the same |
DE102011103746A1 (de) * | 2011-05-31 | 2012-12-06 | Ixys Semiconductor Gmbh | Verfahren zum Fügen von Metall-Keramik-Substraten an Metallkörpern |
JP6127540B2 (ja) * | 2012-03-30 | 2017-05-17 | 三菱マテリアル株式会社 | パワーモジュール用基板の製造方法 |
JP6111764B2 (ja) * | 2013-03-18 | 2017-04-12 | 三菱マテリアル株式会社 | パワーモジュール用基板の製造方法 |
JP5720839B2 (ja) * | 2013-08-26 | 2015-05-20 | 三菱マテリアル株式会社 | 接合体及びパワーモジュール用基板 |
-
2015
- 2015-01-30 US US15/119,547 patent/US9735085B2/en active Active
- 2015-01-30 KR KR1020167023026A patent/KR102300413B1/ko active IP Right Grant
- 2015-01-30 EP EP15765052.4A patent/EP3121157B1/en active Active
- 2015-01-30 JP JP2015017670A patent/JP5871081B2/ja active Active
- 2015-01-30 WO PCT/JP2015/052660 patent/WO2015141295A1/ja active Application Filing
- 2015-01-30 TW TW104103218A patent/TWI619207B/zh active
- 2015-01-30 CN CN201580003060.1A patent/CN105829266A/zh active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61215272A (ja) * | 1985-03-20 | 1986-09-25 | 株式会社東芝 | セラミツクス部材と金属部材との接合方法 |
JPH0492871A (ja) * | 1990-08-07 | 1992-03-25 | Sankiyuu Kk | セラミックス―金属接合体及びその製造方法 |
JPH06183851A (ja) * | 1991-03-07 | 1994-07-05 | Mitsubishi Heavy Ind Ltd | セラミックスのろう付け前処理方法 |
JPH10286666A (ja) * | 1997-04-11 | 1998-10-27 | Hitachi Cable Ltd | 熱交換器の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
US20170062305A1 (en) | 2017-03-02 |
JP2015193526A (ja) | 2015-11-05 |
EP3121157B1 (en) | 2019-03-20 |
TW201541570A (zh) | 2015-11-01 |
KR102300413B1 (ko) | 2021-09-08 |
US9735085B2 (en) | 2017-08-15 |
KR20160135177A (ko) | 2016-11-25 |
CN105829266A (zh) | 2016-08-03 |
JP5871081B2 (ja) | 2016-03-01 |
TWI619207B (zh) | 2018-03-21 |
EP3121157A4 (en) | 2017-11-08 |
EP3121157A1 (en) | 2017-01-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5871081B2 (ja) | 接合体、パワーモジュール用基板、パワーモジュール、及び、接合体の製造方法 | |
CN110382445B (zh) | 铜-陶瓷接合体、绝缘电路基板、铜-陶瓷接合体的制造方法及绝缘电路基板的制造方法 | |
JP6127833B2 (ja) | 接合体の製造方法及びパワーモジュール用基板の製造方法 | |
WO2015029810A1 (ja) | 接合体及びパワーモジュール用基板 | |
WO2018159590A1 (ja) | 銅/セラミックス接合体、絶縁回路基板、及び、銅/セラミックス接合体の製造方法、絶縁回路基板の製造方法 | |
JP7056744B2 (ja) | 銅/セラミックス接合体、絶縁回路基板、及び、銅/セラミックス接合体の製造方法、及び、絶縁回路基板の製造方法 | |
JP2014177031A (ja) | 接合体、パワーモジュール用基板、及びヒートシンク付パワーモジュール用基板 | |
JP2017183716A (ja) | ヒートシンク付絶縁回路基板の製造方法、及び、ヒートシンク付絶縁回路基板 | |
JP6256176B2 (ja) | 接合体の製造方法、パワーモジュール用基板の製造方法 | |
WO2021085451A1 (ja) | 銅/セラミックス接合体、絶縁回路基板、及び、銅/セラミックス接合体の製造方法、絶縁回路基板の製造方法 | |
JP7052374B2 (ja) | セラミックス/アルミニウム接合体の製造方法、絶縁回路基板の製造方法 | |
JP2022023954A (ja) | セラミックス/アルミニウム接合体、絶縁回路基板、ledモジュール、セラミックス部材 | |
WO2015122446A1 (ja) | 銅/セラミックス接合体、及び、パワーモジュール用基板 | |
JP5828352B2 (ja) | 銅/セラミックス接合体、及び、パワーモジュール用基板 | |
JP6819299B2 (ja) | 接合体、パワーモジュール用基板、接合体の製造方法及びパワーモジュール用基板の製造方法 | |
JP5825380B2 (ja) | 銅/セラミックス接合体、及び、パワーモジュール用基板 | |
CN108701659B (zh) | 接合体、功率模块用基板、功率模块、接合体的制造方法及功率模块用基板的制造方法 | |
KR102524698B1 (ko) | 접합체, 파워 모듈용 기판, 파워 모듈, 접합체의 제조 방법 및 파워 모듈용 기판의 제조 방법 | |
JP7008188B2 (ja) | 銅/セラミックス接合体、絶縁回路基板、及び、銅/セラミックス接合体の製造方法、及び、絶縁回路基板の製造方法 | |
WO2017126641A1 (ja) | 接合体、パワーモジュール用基板、接合体の製造方法及びパワーモジュール用基板の製造方法 | |
JP2023013628A (ja) | 銅/セラミックス接合体、および、絶縁回路基板 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15765052 Country of ref document: EP Kind code of ref document: A1 |
|
REEP | Request for entry into the european phase |
Ref document number: 2015765052 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2015765052 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15119547 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 20167023026 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |