WO2023286858A1 - 銅/セラミックス接合体、絶縁回路基板、および、銅/セラミックス接合体の製造方法、絶縁回路基板の製造方法 - Google Patents

銅/セラミックス接合体、絶縁回路基板、および、銅/セラミックス接合体の製造方法、絶縁回路基板の製造方法 Download PDF

Info

Publication number
WO2023286858A1
WO2023286858A1 PCT/JP2022/027861 JP2022027861W WO2023286858A1 WO 2023286858 A1 WO2023286858 A1 WO 2023286858A1 JP 2022027861 W JP2022027861 W JP 2022027861W WO 2023286858 A1 WO2023286858 A1 WO 2023286858A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper
ceramic
ceramic substrate
active metal
copper plate
Prior art date
Application number
PCT/JP2022/027861
Other languages
English (en)
French (fr)
Inventor
伸幸 寺▲崎▼
晶 櫻井
Original Assignee
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱マテリアル株式会社 filed Critical 三菱マテリアル株式会社
Priority to DE112022003588.9T priority Critical patent/DE112022003588T5/de
Priority to CN202280041985.5A priority patent/CN117480871A/zh
Priority to US18/560,166 priority patent/US20240274497A1/en
Publication of WO2023286858A1 publication Critical patent/WO2023286858A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/023Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used
    • C04B37/026Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used consisting of metals or metal salts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4846Leads on or in insulating or insulated substrates, e.g. metallisation
    • H01L21/4857Multilayer substrates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/04Ceramic interlayers
    • C04B2237/08Non-oxidic interlayers
    • C04B2237/083Carbide interlayers, e.g. silicon carbide interlayers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/04Ceramic interlayers
    • C04B2237/08Non-oxidic interlayers
    • C04B2237/086Carbon interlayers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/125Metallic interlayers based on noble metals, e.g. silver
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/126Metallic interlayers wherein the active component for bonding is not the largest fraction of the interlayer
    • C04B2237/127The active component for bonding being a refractory metal
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/343Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/366Aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/368Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/407Copper
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/60Forming at the joining interface or in the joining layer specific reaction phases or zones, e.g. diffusion of reactive species from the interlayer to the substrate or from a substrate to the joining interface, carbide forming at the joining interface
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/70Forming laminates or joined articles comprising layers of a specific, unusual thickness
    • C04B2237/708Forming laminates or joined articles comprising layers of a specific, unusual thickness of one or more of the interlayers

Definitions

  • the present invention provides a copper/ceramic joined body in which a copper member made of copper or a copper alloy and a ceramic member are joined, an insulated circuit board in which a copper plate made of copper or a copper alloy is joined to the surface of a ceramic substrate, Also, the present invention relates to a method for manufacturing a copper/ceramic bonded body and a method for manufacturing an insulated circuit board.
  • a power module, an LED module, and a thermoelectric module have a structure in which a power semiconductor element, an LED element, and a thermoelectric element are joined to an insulating circuit board in which a circuit layer made of a conductive material is formed on one side of an insulating layer.
  • power semiconductor elements for high power control used to control wind power generation, electric vehicles, hybrid vehicles, etc. generate a large amount of heat during operation.
  • Patent Document 1 proposes an insulated circuit board in which a circuit layer and a metal layer are formed by bonding copper plates to one side and the other side of a ceramic substrate.
  • copper plates are arranged on one surface and the other surface of a ceramic substrate with an Ag—Cu—Ti brazing material interposed therebetween, and the copper plates are joined by heat treatment (so-called active metal brazing method).
  • Patent Document 2 proposes a power module substrate in which a copper plate made of copper or a copper alloy and a ceramic substrate made of AlN or Al 2 O 3 are bonded using a bonding material containing Ag and Ti. ing. Furthermore, Patent Document 3 proposes a power module substrate in which a copper plate made of copper or a copper alloy and a ceramic substrate made of silicon nitride are bonded using a bonding material containing Ag and Ti. As described above, when a copper plate and a ceramic substrate are bonded using a bonding material containing Ti, Ti, which is an active metal, reacts with the ceramic substrate, thereby improving the wettability of the bonding material and the copper plate. The bonding strength with the ceramic substrate is improved.
  • the heat generation temperature of the semiconductor elements mounted on the insulated circuit board tends to be higher, and the insulated circuit board is required to have higher cooling/heating cycle reliability to withstand severe cooling/heating cycles. It is Here, as described above, when a copper plate and a ceramic substrate are bonded using a bonding material containing Ti, the vicinity of the bonding interface becomes hard, cracks occur in the ceramic member during thermal cycle loading, and the thermal cycle reliability is improved. was likely to decline.
  • An object of the present invention is to provide a body, an insulated circuit board comprising this copper/ceramic bonded body, a method for manufacturing the copper/ceramic bonded body, and a method for manufacturing an insulated circuit board.
  • the inventors of the present invention conducted intensive studies. It was found that the metal reacts with carbon to form an active metal carbide, and hardening by the active metal carbide hardens the bonding interface. For this reason, the present inventors have found that by optimizing the amount of active metal carbide present, it is possible to suppress the occurrence of cracks in the ceramic member during thermal cycle loads.
  • a copper/ceramic joined body is a copper member obtained by joining a copper member made of copper or a copper alloy and a ceramic member.
  • a ceramic bonded body wherein an active metal compound layer is formed on the ceramic member side at the bonding interface between the ceramic member and the copper member, and the active metal compound layer extends from the active metal compound layer to the copper member side by 10 ⁇ m.
  • the area ratio of the active metal carbide in the region is set to 8% or less. It can also be said that the copper/ceramic joined body has the copper member and the ceramic member, and the copper member and the ceramic member are joined together.
  • an active metal compound layer is formed on the ceramic member side at the joint interface between the ceramic member and the copper member, and the active metal compound layer Since the area ratio of the active metal carbide in the region from to the copper member side to 10 ⁇ m is set to 8% or less, it is possible to suppress the bonding interface from becoming hard, and suppress the occurrence of cracks in the ceramic member during thermal cycle loading. can do.
  • the thickness t1 of the active metal compound layer is in the range of 0.05 ⁇ m or more and 1.2 ⁇ m or less.
  • the thickness t1 of the active metal compound layer is in the range of 0.05 ⁇ m or more and 1.2 ⁇ m or less, the ceramic member and the copper member are reliably and strongly bonded by the active metal, Hardening of the joint interface is further suppressed.
  • an Ag—Cu alloy layer is formed on the copper member side at the bonding interface between the ceramic member and the copper member, and the Ag— It is preferable that the thickness t2 of the Cu alloy layer is in the range of 1 ⁇ m or more and 30 ⁇ m or less. In this case, the Ag of the bonding material sufficiently reacts with the copper member to reliably and firmly bond the ceramic member and the copper member together, and hardening of the bonding interface is further suppressed.
  • An insulated circuit board is an insulated circuit board in which a copper plate made of copper or a copper alloy is bonded to a surface of a ceramic substrate, wherein the bonding interface between the ceramic substrate and the copper plate includes: An active metal compound layer is formed on the ceramic substrate side, and the area ratio of the active metal carbide in a region from the active metal compound layer to the copper plate side of 10 ⁇ m is 8% or less. It can also be said that the insulating circuit board has the ceramic substrate and the copper plate, and the copper plate is joined to the surface of the ceramic substrate.
  • the active metal compound layer is formed on the ceramic substrate side at the bonding interface between the ceramic substrate and the copper plate, and the active metal compound layer extends from the copper plate. Since the area ratio of the active metal carbide in the region up to 10 ⁇ m to the side is set to 8% or less, it is possible to suppress the bonding interface from becoming hard and suppress the occurrence of cracks in the ceramic substrate during thermal cycle loading. .
  • the thickness t1 of the active metal compound layer is in the range of 0.05 ⁇ m or more and 1.2 ⁇ m or less.
  • the thickness t1 of the active metal compound layer is in the range of 0.05 ⁇ m or more and 1.2 ⁇ m or less, the ceramic substrate and the copper plate are reliably and strongly bonded by the active metal, Hardening of the interface is further suppressed.
  • an Ag—Cu alloy layer is formed on the copper plate side at the bonding interface between the ceramic substrate and the copper plate, and the Ag—Cu alloy layer It is preferable that the thickness t2 is within the range of 1 ⁇ m or more and 30 ⁇ m or less. In this case, the Ag of the bonding material sufficiently reacts with the copper plate to ensure firm bonding between the ceramic substrate and the copper plate, and hardening of the bonding interface is further suppressed.
  • a method for manufacturing a copper/ceramic bonded body is a method for manufacturing a copper/ceramic bonded body, in which a copper/ceramic bonded body is manufactured from the copper member and the ceramic member. , Ag and one or more active metals selected from Ti, Zr, Nb, and Hf.
  • a laminating step of laminating the copper member and the ceramic member is charged into a heating furnace, and the pressure in the furnace is increased while introducing an inert gas into the furnace and discharging the gas in the furnace.
  • a heat treatment is performed while the ceramic member is pressed in the stacking direction to generate a liquid phase at the interface between the copper member and the ceramic member, and then the liquid phase is solidified by cooling to solidify the copper member and the ceramic member. and a final joining step of joining the ceramic member.
  • the laminate of the copper member and the ceramic member is charged into a heating furnace, an inert gas is introduced into the furnace, and an inert gas is introduced into the furnace.
  • the amount of carbon between the copper member and the ceramic member is set to 200 ⁇ g/cm 2 or less. is preferred. In this case, since the amount of carbon between the copper member and the ceramic member is limited to 200 ⁇ g/cm 2 or less in the bonding material disposing step, the generation of active metal carbide during bonding can be further suppressed. can be done.
  • a method of manufacturing an insulated circuit board according to an aspect of the present invention is a method of manufacturing an insulated circuit board described above, wherein Ag, Ti, Zr, a bonding material disposing step of disposing a bonding material containing one or more active metals selected from Nb and Hf; a lamination step of laminating the copper plate and the ceramic substrate via the bonding material;
  • the laminate of the copper plate and the ceramic substrate is put into a heating furnace, and the pressure in the furnace is maintained within the range of 150 Pa or more and 700 Pa or more while introducing an inert gas into the furnace and discharging the gas in the furnace.
  • the laminate of the copper plate and the ceramic substrate is placed in a heating furnace, an inert gas is introduced into the furnace, and the gas in the furnace is expelled. While discharging, the pressure in the furnace is maintained within a range of 150 Pa or more and 700 Pa or more and heated, and a carbon component discharging step is provided to discharge the carbon component between the copper plate and the ceramic substrate. It is possible to suppress the formation of active metal carbide in. Therefore, it is possible to suppress the bonding interface from becoming hard, and to suppress the occurrence of cracks in the ceramic substrate under thermal cycle load.
  • the amount of carbon between the copper plate and the ceramic substrate is 200 ⁇ g/cm 2 or less in the step of disposing the bonding material. .
  • the amount of carbon between the copper plate and the ceramic substrate is limited to 200 ⁇ g/cm 2 or less in the step of disposing the bonding material, it is possible to further suppress the generation of active metal carbide during bonding. can.
  • a copper/ceramic joined body that can suppress the occurrence of cracks in a ceramic member even when a severe thermal cycle is applied and has excellent thermal cycle reliability, and the copper/ceramic joined body It is possible to provide an insulated circuit board made of, a method for manufacturing a copper/ceramic bonded body, and a method for manufacturing an insulated circuit board.
  • FIG. 1 is a schematic explanatory diagram of a power module using an insulated circuit board according to an embodiment of the present invention
  • FIG. FIG. 2 is an enlarged explanatory view of a bonding interface between a circuit layer and a metal layer of an insulated circuit board and a ceramic substrate according to an embodiment of the present invention
  • 1 is a flowchart of a method for manufacturing an insulated circuit board according to an embodiment of the present invention
  • FIG. It is a schematic explanatory drawing of the manufacturing method of the insulation circuit board which concerns on embodiment of this invention.
  • FIG. 4 is an explanatory diagram showing a method of calculating the area ratio of active metal carbide in an example of the present invention.
  • the copper/ceramic bonded body according to the present embodiment includes a ceramic substrate 11 as a ceramic member made of ceramics, and a copper plate 42 (circuit layer 12) and a copper plate 43 (metal layer 13) as copper members made of copper or a copper alloy. is an insulating circuit board 10 formed by bonding the .
  • FIG. 1 shows a power module 1 having an insulated circuit board 10 according to this embodiment.
  • This power module 1 includes an insulating circuit board 10 on which a circuit layer 12 and a metal layer 13 are arranged, and a semiconductor element 3 bonded to one surface (upper surface in FIG. 1) of the circuit layer 12 via a bonding layer 2. and a heat sink 5 arranged on the other side (lower side in FIG. 1) of the metal layer 13 .
  • the semiconductor element 3 is made of a semiconductor material such as Si.
  • the semiconductor element 3 and the circuit layer 12 are bonded via the bonding layer 2 .
  • the bonding layer 2 is made of, for example, a Sn--Ag-based, Sn--In-based, or Sn--Ag--Cu-based solder material.
  • the heat sink 5 is for dissipating heat from the insulating circuit board 10 described above.
  • the heat sink 5 is made of copper or a copper alloy, and is made of phosphorus-deoxidized copper in this embodiment.
  • the heat sink 5 is provided with a channel through which cooling fluid flows.
  • the heat sink 5 and the metal layer 13 are joined by a solder layer 7 made of a solder material.
  • the solder layer 7 is made of, for example, a Sn--Ag-based, Sn--In-based, or Sn--Ag--Cu-based solder material.
  • the insulating circuit board 10 of the present embodiment includes a ceramic substrate 11, a circuit layer 12 provided on one surface (upper surface in FIG. 1) of the ceramic substrate 11, and a ceramic substrate. and a metal layer 13 disposed on the other surface (lower surface in FIG. 1) of the substrate 11 .
  • the ceramics substrate 11 is made of ceramics such as silicon nitride (Si 3 N 4 ), aluminum nitride (AlN), alumina (Al 2 O 3 ), etc., which are excellent in insulation and heat dissipation.
  • the ceramic substrate 11 is made of aluminum nitride (AlN), which has excellent heat dissipation properties.
  • the thickness of the ceramic substrate 11 is set within a range of, for example, 0.2 mm or more and 1.5 mm or less, and is set to 0.635 mm in this embodiment.
  • the circuit layer 12 is formed by bonding a copper plate 42 made of copper or a copper alloy to one surface (upper surface in FIG. 4) of the ceramic substrate 11. As shown in FIG. In this embodiment, the circuit layer 12 is formed by bonding a rolled plate of oxygen-free copper to the ceramic substrate 11 .
  • the thickness of the copper plate 42 that forms the circuit layer 12 is set within a range of 0.1 mm or more and 2.0 mm or less, and is set to 0.6 mm in this embodiment.
  • the metal layer 13 is formed by bonding a copper plate 43 made of copper or a copper alloy to the other surface of the ceramic substrate 11 (the lower surface in FIG. 4).
  • the metal layer 13 is formed by bonding a rolled plate of oxygen-free copper to the ceramic substrate 11 .
  • the thickness of the copper plate 43 that forms the metal layer 13 is set within a range of 0.1 mm or more and 2.0 mm or less, and is set to 0.6 mm in this embodiment.
  • an active metal compound layer 21 and an Ag—Cu alloy layer 22 are formed in order from the ceramic substrate 11 side at the bonding interface between the ceramic substrate 11, the circuit layer 12 and the metal layer 13. ing.
  • the active metal compound constituting the active metal compound layer 21 does not contain an active metal carbide. It can also be said that the active metal compound layer 21 is part of the ceramic substrate 11 . It can also be said that the Ag—Cu alloy layer 22 is part of the circuit layer 12 and the metal layer 13 . Therefore, the bonding interface between the ceramic substrate 11 and the circuit layer 12 and metal layer 13 (copper plates 42 and 43) is the interface between the active metal compound layer 21 and the Ag--Cu alloy layer 22.
  • the bonding interface between the ceramic substrate 11 and the circuit layer 12 and the metal layer 13 (copper plates 42 and 43) is the active metal compound layer 21, the circuit layer 12 and the metal layer 13 (copper plate 42 , 43).
  • the active metal compound layer 21 is a layer made of a compound of an active metal (one or more selected from Ti, Zr, Nb, and Hf) used in the bonding material 45 . More specifically, when the ceramic substrate is made of silicon nitride (Si 3 N 4 ) or aluminum nitride (AlN), the layer becomes a nitride of these active metals, and the ceramic substrate is made of alumina (Al 2 O 3 ), the layer consists of oxides of these active metals.
  • the active metal compound layer 21 is formed by aggregating active metal compound particles.
  • the average particle size of these particles is 10 nm or more and 100 nm or less.
  • the active metal compound layer 21 is made of titanium nitride (TiN). That is, particles of titanium nitride (TiN) having an average particle diameter of 10 nm or more and 100 nm or less are aggregated and formed.
  • active metal carbide 24 is present at the joint interface between the ceramic substrate 11 and the circuit layer 12 and the metal layer 13, as shown in FIG.
  • the active metal carbide 24 in the field of view up to 10 ⁇ m from the surface of the active metal compound layer 21 toward the circuit layer 12 and the metal layer 13. area ratio is 8% or less.
  • the thickness t1 of the active metal compound layer 21 formed at the bonding interface between the ceramic substrate 11 and the circuit layer 12 and metal layer 13 is within the range of 0.05 ⁇ m or more and 1.2 ⁇ m or less. It is preferable that Further, in the present embodiment, the thickness t2 of the Ag—Cu alloy layer 22 formed at the bonding interface between the ceramic substrate 11 and the circuit layer 12 and the metal layer 13 is preferably 1 ⁇ m or more and 30 ⁇ m or less. .
  • FIG. 1 A method for manufacturing the insulated circuit board 10 according to the present embodiment will be described below with reference to FIGS. 3 and 4.
  • FIG. 1 A method for manufacturing the insulated circuit board 10 according to the present embodiment will be described below with reference to FIGS. 3 and 4.
  • a copper plate 42 to be the circuit layer 12 and a copper plate 43 to be the metal layer 13 are prepared. Then, a bonding material 45 is applied to the bonding surfaces of the copper plate 42 to be the circuit layer 12 and the copper plate 43 to be the metal layer 13 and dried.
  • the coating thickness of the paste-like bonding material 45 is preferably within the range of 10 ⁇ m or more and 50 ⁇ m or less after drying. In this embodiment, the paste bonding material 45 is applied by screen printing.
  • the bonding material 45 contains Ag and active metals (Ti, Zr, Nb, Hf).
  • an Ag--Ti based brazing material (Ag--Cu--Ti based brazing material) is used as the bonding material 45.
  • the Ag--Ti-based brazing material (Ag--Cu--Ti-based brazing material) contains, for example, 0% by mass or more and 45% by mass or less of Cu, and 0.5% by mass or more and 20% by mass of Ti, which is an active metal. It is preferable to use a composition having a content in the range of mass % or less, with the balance being Ag and unavoidable impurities.
  • the specific surface area of Ag powder contained in the bonding material 45 is preferably 0.15 m 2 /g or more, more preferably 0.25 m 2 /g or more, and more preferably 0.40 m 2 /g or more. is more preferred.
  • the specific surface area of the Ag powder contained in the bonding material 45 is preferably 1.40 m 2 /g or less, more preferably 1.00 m 2 /g or less, and 0.75 m 2 /g or less. is more preferable.
  • the amount of carbon between the copper plates 42 and 43 and the ceramic substrate 11 is preferably within the range of 5 ⁇ g/cm 2 or more and 200 ⁇ g/cm 2 or less.
  • the amount of carbon is the amount of carbon determined by the following method. First, regarding the organic components (components other than Ag powder and active metal powder) of the bonding material 45, the residue amount (%) when the temperature was raised from room temperature to 500° C. at 10° C./min in an Ar flow atmosphere was measured by TG-DTA. , and the amount of carbon in the organic component converted per application amount was obtained.
  • the amount of carbon in the Ag powder and the active metal powder contained in the bonding material was measured by gas analysis (infrared absorption method).
  • the sum of the amount of carbon in the organic component and the amount of carbon in the powder is the amount of carbon.
  • This amount of carbon can be adjusted by adjusting the amount of carbon contained in the organic components (solvent, dispersant, etc.) contained in the bonding material 45, the Ag powder, and the active metal powder.
  • the amount of carbon exceeds 200 ⁇ g/cm 2
  • the discharge of carbon in the carbon component discharge step S03 described later becomes insufficient, and the precipitation density of the active metal carbide particles increases, causing hardening near the interface and thermal cycle. Reliability may decrease.
  • the bonding material 45 particularly the Ag powder and the active metal powder, contains a certain amount of carbon that is difficult to decompose by heat as an inevitable impurity, it is difficult to reduce the amount of carbon to less than 5 ⁇ g/cm 2 .
  • a copper plate 42 to be the circuit layer 12 is laminated on one surface (upper surface in FIG. 4) of the ceramic substrate 11 with a bonding material 45 interposed therebetween, and on the other surface (lower surface in FIG. 4) of the ceramic substrate 11 , a copper plate 43 to be the metal layer 13 is laminated with a bonding material 45 interposed therebetween.
  • Carbon component discharge step S03 Next, the laminate of the copper plate 42, the ceramic substrate 11, and the copper plate 43 is put into a heating furnace, and heated while introducing an inert gas (He, Ar, etc.) into the furnace and discharging the gas in the furnace. , carbon components (carbon contained in organic components (solvent, dispersant, etc.), Ag powder and active metal powder) between the copper plates 42 and 43 and the ceramic substrate 11 are discharged.
  • the pressure inside the heating furnace is set within the range of 10 ⁇ 6 Pa or more and 10 ⁇ 3 or less.
  • the inert gas is introduced into the furnace and the in-furnace gas is discharged, and the introduction amount of the inert gas and the discharge amount of the in-furnace gas are adjusted so that the pressure in the furnace is within the range of 150 Pa or more and 700 Pa or less. adjust.
  • the pressure in the furnace is less than 150 Pa
  • the discharge of the carbon component becomes insufficient, and the deposition density of the active metal carbide particles increases, causing hardening in the vicinity of the interface and lowering the thermal cycle reliability.
  • the pressure in the furnace exceeds 700 Pa
  • the discharge of the carbon component is inhibited, and the precipitation density of the active metal carbide particles increases, hardening the vicinity of the interface and lowering the thermal cycle reliability.
  • the heating temperature in the main bonding step S04 is preferably within the range of 800° C. or higher and 850° C. or lower.
  • the sum of temperature integral values in the heating step from 780° C. to the heating temperature and the holding step at the heating temperature is preferably in the range of 7° C. ⁇ h or more and 120° C. ⁇ h or less.
  • the pressure load in the main bonding step S04 is within the range of 0.029 MPa or more and 2.94 MPa or less. Note that the load may be applied from the carbon component discharge step S03.
  • the degree of vacuum in the main bonding step S04 is preferably in the range of 1 ⁇ 10 ⁇ 6 Pa or more and 5 ⁇ 10 ⁇ 2 Pa or less.
  • the cooling rate during cooling is preferably in the range of 2° C./min or more and 20° C./min or less.
  • the cooling rate here is the cooling rate from the heating temperature to 780° C., which is the Ag—Cu eutectic temperature.
  • the insulating circuit board 10 of the present embodiment is manufactured through the bonding material disposing step S01, the laminating step S02, the carbon component discharging step S03, and the main bonding step S04.
  • Heat-sink bonding step S05 Next, the heat sink 5 is bonded to the other side of the metal layer 13 of the insulated circuit board 10 .
  • the insulating circuit board 10 and the heat sink 5 are laminated with a solder material interposed therebetween and placed in a heating furnace.
  • semiconductor element bonding step S06 Next, the semiconductor element 3 is soldered to one surface of the circuit layer 12 of the insulating circuit board 10 .
  • the power module 1 shown in FIG. 1 is produced by the above-described steps.
  • the insulating circuit board 10 (copper/ceramic bonded body) of the present embodiment configured as described above, at the bonding interface between the ceramic substrate 11, the circuit layer 12, and the metal layer 13, on the ceramic substrate 11 side,
  • the active metal compound layer 21 is formed, and the area ratio of the active metal carbide 24 in the region from the active metal compound layer 21 to the circuit layer 12 and metal layer 13 side of 10 ⁇ m is set to 8% or less. Hardening of the ceramic substrate 11 can be suppressed, and the occurrence of cracks in the ceramic substrate 11 under thermal cycle load can be suppressed.
  • the area ratio of the active metal carbide 24 is preferably 7% or less, more preferably 5% or less. Although it is preferable that there is no active metal carbide 24, the area ratio of the active metal carbide 24 contained as unavoidable impurities is 0.6% or more.
  • the thickness t1 of the active metal compound layer 21 is in the range of 0.05 ⁇ m or more and 1.2 ⁇ m or less, the ceramic substrate 11 and the circuit layer are separated by the active metal. 12 and metal layer 13 are reliably and strongly bonded, and hardening of the bonding interface is further suppressed.
  • the thickness t1 of the active metal compound layer 21 is preferably 0.08 ⁇ m or more and 1.0 ⁇ m or less, more preferably 0.15 ⁇ m or more and 0.6 ⁇ m or less.
  • an Ag—Cu alloy layer 22 is formed at the joint interface between the ceramic substrate 11, the circuit layer 12 and the metal layer 13, and the Ag—Cu alloy layer 22 has a thickness t2 is in the range of 1 ⁇ m or more and 30 ⁇ m or less, Ag contained in the bonding material 45 sufficiently reacts with the copper plate 42 that becomes the circuit layer 12 and the copper plate 43 that becomes the metal layer 13 to form the ceramic substrate 11.
  • the circuit layer 12 and the metal layer 13 are reliably and strongly bonded, and hardening of the bonding interface is further suppressed.
  • the thickness t2 of the Ag—Cu alloy layer 22 is preferably 3 ⁇ m or more and 25 ⁇ m or less, more preferably 5 ⁇ m or more and 15 ⁇ m or less.
  • the pressure in the furnace is increased while discharging the carbon component between the copper plate 42 serving as the circuit layer 12 and the copper plate 43 serving as the metal layer 13 and the ceramics substrate 11. Since the carbon component discharging step S03 is provided for discharging the carbon component between the copper plates 42 and 43 and the ceramic substrate 11 while maintaining the pressure within the range of 150 Pa or more and 700 Pa or more and heating, the active metal carbide 24 is removed during bonding. generation can be suppressed. Therefore, it is possible to suppress hardening of the joint interface, and it is possible to suppress the occurrence of cracks in the ceramic substrate 11 under thermal cycle load.
  • the amount of carbon between the copper plate 42 that becomes the circuit layer 12 and the copper plate 43 that becomes the metal layer 13 and the ceramic substrate 11 is reduced to 200 ⁇ g. /cm 2 or less, the formation of the active metal carbide 24 during bonding can be further suppressed.
  • the amount of carbon is preferably 170 ⁇ g/cm 2 or less, more preferably 150 ⁇ g/cm 2 or less.
  • a power module is configured by mounting a semiconductor element on an insulated circuit board, but the present invention is not limited to this.
  • an LED module may be configured by mounting an LED element on the circuit layer of the insulating circuit board, or a thermoelectric module may be configured by mounting a thermoelectric element on the circuit layer of the insulating circuit board.
  • the ceramic substrate is made of aluminum nitride ( AlN).
  • other ceramic substrates such as silicon nitride (Si 3 N 4 ) may be used.
  • Ti was used as an example of the active metal contained in the bonding material. It suffices if it contains the above active metals. These active metals may be contained as hydrides.
  • the circuit layer was described as being formed by bonding a rolled plate of oxygen-free copper to a ceramic substrate, but the present invention is not limited to this, and a copper piece punched out of a copper plate is used.
  • a circuit layer may be formed by bonding to a ceramic substrate while being arranged in a circuit pattern. In this case, each copper piece should have the interface structure with the ceramic substrate as described above.
  • the bonding material is provided on the bonding surface of the copper plate, but the present invention is not limited to this, and the bonding material may be provided between the ceramic substrate and the copper plate. Alternatively, a bonding material may be provided on the bonding surface of the ceramic substrate.
  • a ceramic substrate (40 mm ⁇ 40 mm) shown in Table 1 was prepared.
  • the thickness of AlN and Al 2 O 3 was 0.635 mm, and the thickness of Si 3 N 4 was 0.32 mm.
  • a copper plate made of oxygen-free copper and having a thickness of 37 mm ⁇ 37 mm and having a thickness shown in Table 1 was prepared as a copper plate serving as a circuit layer and a metal layer.
  • a bonding material containing Ag powder and active metal powder shown in Table 1 was applied to a copper plate serving as a circuit layer and a metal layer so that the target thickness after drying would be the value shown in Table 1.
  • a paste material was used as the bonding material, and the amounts of Ag, Cu, and active metal were as shown in Table 1.
  • the BET value (specific surface area) of the Ag powder was measured by using AUTOSORB-1 manufactured by QUANTACHRROME, vacuum deaeration by heating at 150 ° C. for 30 minutes as pretreatment, N 2 adsorption, liquid nitrogen 77 K, BET multipoint method. It was measured.
  • the amount of carbon in the bonding material was measured as follows. First, regarding the organic component of the bonding material, the amount of residue (%) when the temperature was raised from room temperature to 500° C. at 10° C./min in an Ar flow atmosphere was measured by TG-DTA, and the organic component was converted per application amount. was determined. Next, the amount of carbon in the Ag powder and the active metal powder contained in the bonding material (the amount of carbon in the powder) was measured by gas analysis (infrared absorption method). The sum of the amount of carbon in the organic component and the amount of carbon in the powder is the amount of carbon, which is shown in the table.
  • a copper plate which will be the circuit layer, was laminated on one side of the ceramic substrate.
  • a copper plate serving as a metal layer was laminated on the other surface of the ceramic substrate.
  • This laminate was put into a heating furnace. Then, as a carbon discharge step, the pressure in the heating furnace is set to 3 ⁇ 10 -3 Pa, then an inert gas (Ar gas) is introduced and the gas in the furnace is discharged, and the pressure in the furnace is set to the value shown in Table 2. adjusted to be Further, the temperature and time were set so that the temperature integral value within the range of 300° C. or higher and 650° C. or lower was as shown in Table 2.
  • Ar gas inert gas
  • the laminate was heated while being pressed in the lamination direction to generate an Ag—Cu liquid phase.
  • the pressure load was set to 0.294 MPa, and the temperature integral values within the range of 780° C. or higher and 850° C. or lower were as shown in Table 2.
  • the copper plate serving as the circuit layer, the ceramic substrate, and the metal plate serving as the metal layer were bonded to obtain an insulated circuit substrate (copper/ceramic bonded body).
  • the area ratio of the active metal carbide, the thickness t1 of the active metal compound layer, the thickness t2 of the Ag—Cu alloy layer, and the thermal cycle reliability were evaluated as follows. and evaluated.
  • the area S1 Elemental maps of Ag, Cu, active metals, and ceramic components in a region of 100 ⁇ m in width ⁇ 10 ⁇ m in thickness direction were obtained for five fields of view, respectively.
  • the ceramic components are Al and N in the case of AlN, Al and O in the case of Al 2 O 3 , and Si and N in the case of Si 3 N 4 .
  • the area excluding the overlapping portion of the active metal and other components was defined as "active metal carbide", and its area S2 was calculated.
  • the area ratio of the active metal carbide was defined as 100 ⁇ S2/S1, and Table 2 shows the average values of 5 fields of view and a total of 10 fields of view. If the active metal compound layer has undulations, the region is set along the undulations.
  • invention examples 1 to 3 using AlN as a ceramic substrate and comparative examples 1 and 2 are compared.
  • the furnace pressure in the carbon component discharging step was set to 50 Pa, and the area ratio of the active metal carbide in the region from the active metal compound layer to the copper plate side of 10 ⁇ m was 13.2%.
  • the furnace pressure in the carbon component discharging step was set to 1200 Pa, and the area ratio of the active metal carbide in the region from the active metal compound layer to the copper plate side of 10 ⁇ m was 11.3%.
  • the thermal cycle test cracks occurred 50 times, indicating insufficient thermal cycle reliability.
  • the pressure in the furnace in the carbon component discharge step was set to 150 Pa, 250 Pa, and 600 Pa, and the active metal carbide in the region from the active metal compound layer to the copper plate side up to 10 ⁇ m
  • the area ratios were 7.9%, 2.7% and 6.6%.
  • cracks occurred 300 times, 500 times, and 400 times, indicating excellent thermal cycle reliability.
  • inventive examples 4 to 6 using Si 3 N 4 as the ceramic substrate and comparative examples 3 and 4 are compared.
  • the furnace pressure in the carbon component discharging step was set to 80 Pa, and the area ratio of the active metal carbide in the region from the active metal compound layer to the copper plate side of 10 ⁇ m was 10.8%.
  • the furnace pressure in the carbon component discharging step was set to 1500 Pa, and the area ratio of the active metal carbide in the region from the active metal compound layer to the copper plate side of 10 ⁇ m was 9.3%.
  • the thermal cycle test cracks occurred 1400 times, indicating insufficient thermal cycle reliability.
  • the furnace pressure in the carbon component discharge step was set to 600 Pa, 400 Pa, and 300 Pa, and the active metal carbide in the region from the active metal compound layer to the copper plate side up to 10 ⁇ m
  • the area ratios were 5.9%, 0.6% and 2.1%.
  • cracks occurred more than 1,800 times, more than 2,000 times, more than 2,000 times, indicating excellent cooling/heating cycle reliability.
  • inventive examples 7 and 8 using Al 2 O 3 as the ceramic substrate and comparative example 5 are compared.
  • the furnace pressure in the carbon component discharging step was set to 80 Pa, and the area ratio of the active metal carbide in the region from the active metal compound layer to the copper plate side of 10 ⁇ m was 11.2%.
  • the furnace pressure in the carbon component discharging process was set to 1200 Pa, and the area ratio of the active metal carbide in the region from the active metal compound layer to the copper plate side of 10 ⁇ m was 10.7%.
  • the furnace pressure in the carbon component discharge step was set to 500 Pa and 700 Pa, and the area ratio of the active metal carbide in the region from the active metal compound layer to the copper plate side of 10 ⁇ m was 3.6% and 6.8%.
  • the cooling/heating cycle test cracks occurred 450 times and 500 times, indicating excellent cooling/heating cycle reliability.
  • the copper/ceramic bonded body and insulating circuit board of this embodiment are suitably applied to power modules, LED modules and thermoelectric modules.
  • Insulated circuit board (copper/ceramic joint) 11 Ceramic substrate (ceramic member) 12 circuit layer (copper member) 13 metal layer (copper member) 21 Active metal compound layer 22 Ag—Cu alloy layer

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Ceramic Engineering (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Products (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Laminated Bodies (AREA)

Abstract

この銅/セラミックス接合体(10)は、銅又は銅合金からなる銅部材(12,13)と、セラミックス部材(11)とを有し、銅部材(12,13)とセラミックス部材(11)とが接合され、セラミックス部材(11)と銅部材(12,13)との接合界面において、セラミックス部材(11)側には活性金属化合物層(21)が形成されており、活性金属化合物層(21)から銅部材(12,13)側へ10μmまでの領域における活性金属炭化物の面積率が8%以下とされている。

Description

銅/セラミックス接合体、絶縁回路基板、および、銅/セラミックス接合体の製造方法、絶縁回路基板の製造方法
 この発明は、銅又は銅合金からなる銅部材と、セラミックス部材とが接合されてなる銅/セラミックス接合体、セラミックス基板の表面に、銅又は銅合金からなる銅板が接合されてなる絶縁回路基板、および、銅/セラミックス接合体の製造方法、絶縁回路基板の製造方法に関するものである。
 本願は、2021年7月16日に、日本に出願された特願2021-117953号に基づき優先権を主張し、その内容をここに援用する。
 パワーモジュール、LEDモジュールおよび熱電モジュールにおいては、絶縁層の一方の面に導電材料からなる回路層を形成した絶縁回路基板に、パワー半導体素子、LED素子および熱電素子が接合された構造とされている。
 例えば、風力発電、電気自動車、ハイブリッド自動車等を制御するために用いられる大電力制御用のパワー半導体素子は、動作時の発熱量が多いことから、これを搭載する基板としては、セラミックス基板と、このセラミックス基板の一方の面に導電性の優れた金属板を接合して形成した回路層と、セラミックス基板の他方の面に金属板を接合して形成した放熱用の金属層と、を備えた絶縁回路基板が、従来から広く用いられている。
 例えば、特許文献1には、セラミックス基板の一方の面および他方の面に、銅板を接合することにより回路層および金属層を形成した絶縁回路基板が提案されている。この特許文献1においては、セラミックス基板の一方の面および他方の面に、Ag-Cu-Ti系ろう材を介在させて銅板を配置し、加熱処理を行うことにより銅板が接合されている(いわゆる活性金属ろう付け法)。
 また、特許文献2においては、銅又は銅合金からなる銅板と、AlN又はAlからなるセラミックス基板とが、AgおよびTiを含む接合材を用いて接合されたパワーモジュール用基板が提案されている。
 さらに、特許文献3には、銅又は銅合金からなる銅板と、窒化ケイ素からなるセラミックス基板とが、AgおよびTiを含む接合材を用いて接合されたパワーモジュール用基板が提案されている。
 前述のように、Tiを含む接合材を用いて銅板とセラミックス基板とを接合した場合には、活性金属であるTiがセラミックス基板と反応することにより、接合材の濡れ性が向上し、銅板とセラミックス基板との接合強度が向上することになる。
 ところで、最近では、絶縁回路基板に搭載される半導体素子の発熱温度が高くなる傾向にあり、絶縁回路基板には、従来にも増して、厳しい冷熱サイクルに耐えることができる冷熱サイクル信頼性が求められている。
 ここで、前述のように、Tiを含む接合材を用いて銅板とセラミックス基板とを接合した場合には、接合界面近傍が硬くなり、冷熱サイクル負荷時にセラミックス部材に割れが生じ、冷熱サイクル信頼性が低下するおそれがあった。
特許第3211856号公報 特許第5757359号公報 特開2018-008869号公報
 この発明は、前述した事情に鑑みてなされたものであって、厳しい冷熱サイクルを負荷した場合であっても、セラミックス部材における割れの発生を抑制でき、冷熱サイクル信頼性に優れた銅/セラミックス接合体、この銅/セラミックス接合体からなる絶縁回路基板、および、銅/セラミックス接合体の製造方法、絶縁回路基板の製造方法を提供することを目的とする。
 前述の課題を解決するために、本発明者らが鋭意検討した結果、セラミックス部材と銅部材とを、活性金属を含む接合材を用いて接合した際に、接合界面にカーボンが存在すると、活性金属とカーボンとが反応して活性金属炭化物が形成され、この活性金属炭化物による硬化によって接合界面が硬くなることが分かった。このため、活性金属炭化物の存在量を適正化することで、冷熱サイクル負荷時のセラミックス部材の割れの発生を抑制可能となるとの知見を得た。
 本発明は、前述の知見を基になされたものであって、本発明の一態様に係る銅/セラミックス接合体は、銅又は銅合金からなる銅部材と、セラミックス部材とが接合されてなる銅/セラミックス接合体であって、前記セラミックス部材と前記銅部材との接合界面において、前記セラミックス部材側には活性金属化合物層が形成されており、前記活性金属化合物層から前記銅部材側へ10μmまでの領域における活性金属炭化物の面積率が8%以下とされていることを特徴としている。
 銅/セラミックス接合体は、前記銅部材と、前記セラミックス部材とを有し、前記銅部材と前記セラミックス部材とが接合されていると言うこともできる。
 本発明の一態様に係る銅/セラミックス接合体によれば、前記セラミックス部材と前記銅部材との接合界面において、前記セラミックス部材側には活性金属化合物層が形成されており、前記活性金属化合物層から前記銅部材側へ10μmまでの領域における活性金属炭化物の面積率が8%以下とされているので、接合界面が硬くなることを抑制でき、冷熱サイクル負荷時のセラミックス部材の割れの発生を抑制することができる。
 ここで、本発明の一態様に係る銅/セラミックス接合体においては、前記活性金属化合物層の厚さt1が0.05μm以上1.2μm以下の範囲内とされていることが好ましい。
 この場合、前記活性金属化合物層の厚さt1が0.05μm以上1.2μm以下の範囲内とされているので、活性金属によってセラミックス部材と銅部材とが確実に強固に接合されているとともに、接合界面が硬くなることがさらに抑制される。
 また、本発明の一態様に係る銅/セラミックス接合体においては、前記セラミックス部材と前記銅部材との接合界面において、前記銅部材側にはAg-Cu合金層が形成されており、前記Ag-Cu合金層の厚さt2が1μm以上30μm以下の範囲内とされていることが好ましい。
 この場合、接合材のAgが銅部材と十分に反応してセラミックス部材と銅部材とが確実に強固に接合されているとともに、接合界面が硬くなることがさらに抑制される。
 本発明の一態様に係る絶縁回路基板は、セラミックス基板の表面に、銅又は銅合金からなる銅板が接合されてなる絶縁回路基板であって、前記セラミックス基板と前記銅板との接合界面において、前記セラミックス基板側には活性金属化合物層が形成されており、前記活性金属化合物層から前記銅板側へ10μmまでの領域における活性金属炭化物の面積率が8%以下とされていることを特徴としている。
 絶縁回路基板は、前記セラミックス基板と、前記銅板とを有し、前記セラミックス基板の表面に前記銅板が接合されていると言うこともできる。
 本発明の一態様に係る絶縁回路基板によれば、前記セラミックス基板と前記銅板との接合界面において、前記セラミックス基板側には活性金属化合物層が形成されており、前記活性金属化合物層から前記銅板側へ10μmまでの領域における活性金属炭化物の面積率が8%以下とされているので、接合界面が硬くなることを抑制でき、冷熱サイクル負荷時のセラミックス基板の割れの発生を抑制することができる。
 ここで、本発明の一態様に係る絶縁回路基板においては、前記活性金属化合物層の厚さt1が0.05μm以上1.2μm以下の範囲内とされていることが好ましい。
 この場合、前記活性金属化合物層の厚さt1が0.05μm以上1.2μm以下の範囲内とされているので、活性金属によってセラミックス基板と銅板とが確実に強固に接合されているとともに、接合界面が硬くなることがさらに抑制される。
 また、本発明の一態様に係る絶縁回路基板においては、前記セラミックス基板と前記銅板との接合界面において、前記銅板側にはAg-Cu合金層が形成されており、前記Ag-Cu合金層の厚さt2が1μm以上30μm以下の範囲内とされていることが好ましい。
 この場合、接合材のAgが銅板と十分に反応してセラミックス基板と銅板とが確実に強固に接合されているとともに、接合界面が硬くなることがさらに抑制される。
 本発明の一態様に係る銅/セラミックス接合体の製造方法は、上述の銅/セラミックス接合体を製造する銅/セラミックス接合体の製造方法であって、前記銅部材と前記セラミックス部材との間に、AgとTi,Zr,Nb,Hfから選択される1種以上の活性金属を含む接合材を配設する接合材配設工程と、前記銅部材と前記セラミックス部材とを、前記接合材を介して積層する積層工程と、前記銅部材と前記セラミックス部材との積層体を加熱炉に装入し、炉内に不活性ガスを導入するとともに炉内のガスを排出しながら、炉内の圧力を150Pa以上700Pa以上の範囲内に維持するとともに加熱し、前記銅部材と前記セラミックス部材との間のカーボン成分を排出するカーボン成分排出工程と、前記接合材を介して積層された前記銅部材と前記セラミックス部材とを積層方向に加圧した状態で加熱処理し、前記銅部材と前記セラミックス部材の界面に液相を生じさせ、その後、冷却することで前記液相を凝固させて、前記銅部材と前記セラミックス部材とを接合する本接合工程と、を備えていることを特徴としている。
 本発明の一態様に係る銅/セラミックス接合体の製造方法によれば、前記銅部材と前記セラミックス部材との積層体を加熱炉に装入し、炉内に不活性ガスを導入するとともに炉内のガスを排出しながら、炉内の圧力を150Pa以上700Pa以上の範囲内に維持するとともに加熱し、前記銅部材と前記セラミックス部材との間のカーボン成分を排出するカーボン成分排出工程を備えているので、接合時における活性金属炭化物の生成を抑制することができる。よって、接合界面が硬くなることを抑制でき、冷熱サイクル負荷時のセラミックス部材の割れの発生を抑制することが可能となる。
 ここで、本発明の一態様に係る銅/セラミックス接合体の製造方法においては、前記接合材配設工程において、前記銅部材と前記セラミックス部材との間におけるカーボン量を200μg/cm以下とすることが好ましい。
 この場合、前記接合材配設工程において、前記銅部材と前記セラミックス部材との間におけるカーボン量を200μg/cm以下に制限しているので、接合時における活性金属炭化物の生成をさらに抑制することができる。
 本発明の一態様に係る絶縁回路基板の製造方法は、上述の絶縁回路基板を製造する絶縁回路基板の製造方法であって、前記銅板と前記セラミックス基板との間に、AgとTi,Zr,Nb,Hfから選択される1種以上の活性金属を含む接合材を配設する接合材配設工程と、前記銅板と前記セラミックス基板とを、前記接合材を介して積層する積層工程と、前記銅板と前記セラミックス基板との積層体を加熱炉に装入し、炉内に不活性ガスを導入するとともに炉内のガスを排出しながら、炉内の圧力を150Pa以上700Pa以上の範囲内に維持するとともに加熱し、前記銅板と前記セラミックス基板との間のカーボン成分を排出するカーボン成分排出工程と、前記接合材を介して積層された前記銅板と前記セラミックス基板とを積層方向に加圧した状態で加熱処理し、前記銅板と前記セラミックス基板の界面に液相を生じさせ、その後、冷却することで前記液相を凝固させて、前記銅板と前記セラミックス基板とを接合する本接合工程と、を備えていることを特徴としている。
 本発明の一態様に係る絶縁回路基板の製造方法によれば、前記銅板と前記セラミックス基板との積層体を加熱炉に装入し、炉内に不活性ガスを導入するとともに炉内のガスを排出しながら、炉内の圧力を150Pa以上700Pa以上の範囲内に維持するとともに加熱し、前記銅板と前記セラミックス基板との間のカーボン成分を排出するカーボン成分排出工程を備えているので、接合時における活性金属炭化物の生成を抑制することができる。よって、接合界面が硬くなることを抑制でき、冷熱サイクル負荷時のセラミックス基板の割れの発生を抑制することが可能となる。
 ここで、本発明の一態様に係る絶縁回路基板の製造方法においては、前記接合材配設工程において、前記銅板と前記セラミックス基板との間におけるカーボン量を200μg/cm以下とすることが好ましい。
 この場合、前記接合材配設工程において、前記銅板と前記セラミックス基板との間におけるカーボン量を200μg/cm以下に制限しているので、接合時における活性金属炭化物の生成をさらに抑制することができる。
 本発明の一態様によれば、厳しい冷熱サイクルを負荷した場合であっても、セラミックス部材における割れの発生を抑制でき、冷熱サイクル信頼性に優れた銅/セラミックス接合体、この銅/セラミックス接合体からなる絶縁回路基板、および、銅/セラミックス接合体の製造方法、絶縁回路基板の製造方法を提供することができる。
本発明の実施形態に係る絶縁回路基板を用いたパワーモジュールの概略説明図である。 本発明の実施形態に係る絶縁回路基板の回路層および金属層とセラミックス基板との接合界面の拡大説明図である。 本発明の実施形態に係る絶縁回路基板の製造方法のフロー図である。 本発明の実施形態に係る絶縁回路基板の製造方法の概略説明図である。 本発明の実施例において、活性金属炭化物の面積率の算出方法を示す説明図である。
 以下に、本発明の実施形態について添付した図面を参照して説明する。
 本実施形態に係る銅/セラミックス接合体は、セラミックスからなるセラミックス部材としてのセラミックス基板11と、銅又は銅合金からなる銅部材としての銅板42(回路層12)および銅板43(金属層13)とが接合されてなる絶縁回路基板10である。図1に、本実施形態である絶縁回路基板10を備えたパワーモジュール1を示す。
 このパワーモジュール1は、回路層12および金属層13が配設された絶縁回路基板10と、回路層12の一方の面(図1において上面)に接合層2を介して接合された半導体素子3と、金属層13の他方側(図1において下側)に配置されたヒートシンク5と、を備えている。
 半導体素子3は、Si等の半導体材料で構成されている。この半導体素子3と回路層12は、接合層2を介して接合されている。
 接合層2は、例えばSn-Ag系、Sn-In系、若しくはSn-Ag-Cu系のはんだ材で構成されている。
 ヒートシンク5は、前述の絶縁回路基板10からの熱を放散するためのものである。このヒートシンク5は、銅又は銅合金で構成されており、本実施形態ではりん脱酸銅で構成されている。このヒートシンク5には、冷却用の流体が流れるための流路が設けられている。
 なお、本実施形態においては、ヒートシンク5と金属層13とが、はんだ材からなるはんだ層7によって接合されている。このはんだ層7は、例えばSn-Ag系、Sn-In系、若しくはSn-Ag-Cu系のはんだ材で構成されている。
 そして、本実施形態である絶縁回路基板10は、図1に示すように、セラミックス基板11と、このセラミックス基板11の一方の面(図1において上面)に配設された回路層12と、セラミックス基板11の他方の面(図1において下面)に配設された金属層13と、を備えている。
 セラミックス基板11は、絶縁性および放熱性に優れた窒化ケイ素(Si)、窒化アルミニウム(AlN)、アルミナ(Al)等のセラミックスで構成されている。本実施形態では、セラミックス基板11は、特に放熱性の優れた窒化アルミニウム(AlN)で構成されている。また、セラミックス基板11の厚さは、例えば、0.2mm以上1.5mm以下の範囲内に設定されており、本実施形態では、0.635mmに設定されている。
 回路層12は、図4に示すように、セラミックス基板11の一方の面(図4において上面)に、銅又は銅合金からなる銅板42が接合されることにより形成されている。
 本実施形態においては、回路層12は、無酸素銅の圧延板がセラミックス基板11に接合されることで形成されている。
 なお、回路層12となる銅板42の厚さは0.1mm以上2.0mm以下の範囲内に設定されており、本実施形態では、0.6mmに設定されている。
 金属層13は、図4に示すように、セラミックス基板11の他方の面(図4において下面)に、銅又は銅合金からなる銅板43が接合されることにより形成されている。
 本実施形態においては、金属層13は、無酸素銅の圧延板がセラミックス基板11に接合されることで形成されている。
 なお、金属層13となる銅板43の厚さは0.1mm以上2.0mm以下の範囲内に設定されており、本実施形態では、0.6mmに設定されている。
 ここで、セラミックス基板11と回路層12および金属層13との接合界面においては、図2に示すように、セラミックス基板11側から順に、活性金属化合物層21、Ag-Cu合金層22が形成されている。なお、活性金属化合物層21を構成する活性金属化合物に活性金属炭化物は含まない。
 活性金属化合物層21は、セラミックス基板11の一部であると言うこともできる。Ag-Cu合金層22は、回路層12および金属層13の一部であると言うこともできる。このため、セラミックス基板11と回路層12および金属層13(銅板42,43)との接合界面は、活性金属化合物層21とAg-Cu合金層22との界面である。Ag-Cu合金層22を有しない場合、セラミックス基板11と回路層12および金属層13(銅板42,43)との接合界面は、活性金属化合物層21と回路層12および金属層13(銅板42,43)との界面である。
 ここで、活性金属化合物層21は接合材45で用いる活性金属(Ti,Zr,Nb,Hfから選択される1種以上)の化合物からなる層である。より具体的には、セラミックス基板が窒化ケイ素(Si)、又は、窒化アルミニウム(AlN)からなる場合には、これらの活性金属の窒化物からなる層となり、セラミックス基板がアルミナ(Al)である場合には、これらの活性金属の酸化物からなる層となる。
 活性金属化合物層21は活性金属化合物の粒子が集合して形成されている。この粒子の平均粒径は10nm以上100nm以下である。
 なお、本実施形態では、接合材45が活性金属としてTiを含有し、セラミックス基板11が窒化アルミニウムで構成されているため、活性金属化合物層21は、窒化チタン(TiN)で構成される。すなわち、平均粒径が10nm以上100nm以下の窒化チタン(TiN)の粒子が集合して形成されている。
 そして、本実施形態である絶縁回路基板10においては、図2に示すように、セラミックス基板11と回路層12および金属層13との接合界面には、活性金属炭化物24が存在している。
 ここで、セラミックス基板11と回路層12および金属層13との積層方向に沿った断面において、活性金属化合物層21の表面から回路層12および金属層13側へ10μmまでの視野における活性金属炭化物24の面積率が8%以下とされている。
 さらに、本実施形態においては、セラミックス基板11と回路層12および金属層13との接合界面に形成された活性金属化合物層21の厚さt1が、0.05μm以上1.2μm以下の範囲内とされていることが好ましい。
 また、本実施形態においては、セラミックス基板11と回路層12および金属層13との接合界面に形成されたAg-Cu合金層22の厚さt2が、1μm以上30μm以下とされていることが好ましい。
 以下に、本実施形態に係る絶縁回路基板10の製造方法について、図3および図4を参照して説明する。
(接合材配設工程S01)
 回路層12となる銅板42と、金属層13となる銅板43とを準備する。
 そして、回路層12となる銅板42および金属層13となる銅板43の接合面に、接合材45を塗布し、乾燥させる。ペースト状の接合材45の塗布厚さは、乾燥後で10μm以上50μm以下の範囲内とすることが好ましい。
 本実施形態では、スクリーン印刷によってペースト状の接合材45を塗布する。
 接合材45は、Agと活性金属(Ti,Zr,Nb,Hf)を含有するものとされている。本実施形態では、接合材45として、Ag-Ti系ろう材(Ag-Cu-Ti系ろう材)を用いている。なお、Ag-Ti系ろう材(Ag-Cu-Ti系ろう材)としては、例えば、Cuを0質量%以上45質量%以下の範囲内、活性金属であるTiを0.5質量%以上20質量%以下の範囲で含み、残部がAgおよび不可避不純物とされた組成のものを用いることが好ましい。
 接合材45に含まれるAg粉の比表面積は、0.15m/g以上とすることが好ましく、0.25m/g以上とすることがさらに好ましく、0.40m/g以上とすることがより好ましい。一方、接合材45に含まれるAg粉の比表面積は、1.40m/g以下とすることが好ましく、1.00m/g以下とすることがさらに好ましく、0.75m/g以下とすることがより好ましい。
 ここで、本実施形態においては、銅板42,43とセラミックス基板11との間におけるカーボン量を5μg/cm以上200μg/cm以下の範囲内とすることが好ましい。ここでのカーボン量は以下の方法により求めたカーボン量である。まず、接合材45の有機成分(Ag粉と活性金属粉を除く成分)については、Arフロー雰囲気で室温から500℃まで10℃/minで昇温した時の残渣量(%)をTG-DTAにより測定し、塗布量当たりに換算した有機成分のカーボン量を求めた。次に、接合材に含まれるAg粉および活性金属粉のカーボン量(粉末のカーボン量)は、ガス分析(赤外線吸収法)によって測定した。これらの、有機成分のカーボン量と粉末のカーボン量との合計がカーボン量である。
 このカーボン量は、接合材45に含まれる有機成分(溶媒、分散剤等)、Ag粉および活性金属粉に含まれるカーボン量により調整することができる。
 ここで、カーボン量が200μg/cmを超える場合、後述するカーボン成分排出工程S03でのカーボンの排出が不十分となり、活性金属炭化物粒子の析出密度の上昇により、界面近傍が硬化し、冷熱サイクル信頼性が低下するおそれがある。また、接合材45、特にAg粉と活性金属粉には、不可避不純物として熱により分解しにくいカーボンが一定量含まれることからカーボン量を5μg/cm未満とすることは困難である。
(積層工程S02)
 次に、セラミックス基板11の一方の面(図4において上面)に、接合材45を介して回路層12となる銅板42を積層するとともに、セラミックス基板11の他方の面(図4において下面)に、接合材45を介して金属層13となる銅板43を積層する。
(カーボン成分排出工程S03)
 次に、銅板42とセラミックス基板11と銅板43との積層体を加熱炉内に装入し、炉内に不活性ガス(He,Ar等)を導入するとともに炉内ガスを排出しながら加熱し、銅板42,43とセラミックス基板11の間のカーボン成分(有機成分(溶媒、分散剤等)、Ag粉および活性金属粉に含まれるカーボン)を排出する。
 カーボン成分排出工程S03においては、不活性ガスを導入する前に、加熱炉の炉内圧力を10-6Pa以上10-3以下の範囲内とする。そして、炉内への不活性ガスの導入および炉内ガスの排出を行い、炉内圧力が150Pa以上700Pa以下の範囲内となるように、不活性ガスの導入量および炉内ガスの排出量を調整する。
 ここで、炉内圧力が150Pa未満の場合、カーボン成分の排出が不十分となり、活性金属炭化物粒子の析出密度の上昇により、界面近傍が硬化し、冷熱サイクル信頼性が低下する。炉内圧力が700Paを超えると、カーボン成分の排出が阻害され、活性金属炭化物粒子の析出密度の上昇により、界面近傍が硬化し、冷熱サイクル信頼性が低下する。
 また、カーボン成分排出工程S03において、300℃以上650℃以下の範囲内における温度積分値を250℃・h以上1000℃・h以下の範囲内となるように、温度と時間を調整することが好ましい。
(本接合工程S04)
 次に、銅板42とセラミックス基板11と銅板43とを加圧した状態で、真空雰囲気の加熱炉内で加熱し、接合材45を溶融する。その後、冷却を行うことにより、溶融した接合材45を凝固させて、回路層12となる銅板42とセラミックス基板11、セラミックス基板11と金属層13となる銅板43とを接合する。
 ここで、本接合工程S04における加熱温度は、800℃以上850℃以下の範囲内とすることが好ましい。780℃から加熱温度までの昇温工程および加熱温度での保持工程における温度積分値の合計は、7℃・h以上120℃・h以下の範囲内とすることが好ましい。
 また、本接合工程S04における加圧荷重は、0.029MPa以上2.94MPa以下の範囲内とすることが好ましい。なお、荷重はカーボン成分排出工程S03から付与されていても構わない。
 さらに、本接合工程S04における真空度は、1×10-6Pa以上5×10-2Pa以下の範囲内とすることが好ましい。
 また、冷却時における冷却速度は、2℃/min以上20℃/min以下の範囲内とすることが好ましい。なお、ここでの冷却速度は加熱温度からAg-Cu共晶温度である780℃までの冷却速度である。
 以上のように、接合材配設工程S01、積層工程S02、カーボン成分排出工程S03、本接合工程S04によって、本実施形態である絶縁回路基板10が製造されることになる。
(ヒートシンク接合工程S05)
 次に、絶縁回路基板10の金属層13の他方の面側にヒートシンク5を接合する。
 絶縁回路基板10とヒートシンク5とを、はんだ材を介して積層して加熱炉に装入し、はんだ層7を介して絶縁回路基板10とヒートシンク5とをはんだ接合する。
(半導体素子接合工程S06)
 次に、絶縁回路基板10の回路層12の一方の面に、半導体素子3をはんだ付けにより接合する。
 前述の工程により、図1に示すパワーモジュール1が製出される。
 以上のような構成とされた本実施形態の絶縁回路基板10(銅/セラミックス接合体)によれば、セラミックス基板11と回路層12および金属層13との接合界面において、セラミックス基板11側には活性金属化合物層21が形成されており、活性金属化合物層21から回路層12および金属層13側へ10μmまでの領域における活性金属炭化物24の面積率が8%以下とされているので、接合界面が硬くなることを抑制でき、冷熱サイクル負荷時のセラミックス基板11の割れの発生を抑制することができる。
 活性金属炭化物24の面積率は、好ましくは7%以下であり、より好ましくは5%以下である。活性金属炭化物24は無いことが好ましいが、不可避不純物として含まれる活性金属炭化物24の面積率は0.6%以上である。
 また、本実施形態の絶縁回路基板10において、活性金属化合物層21の厚さt1が0.05μm以上1.2μm以下の範囲内とされている場合には、活性金属によってセラミックス基板11と回路層12および金属層13とが確実に強固に接合されているとともに、接合界面が硬くなることがさらに抑制される。
 活性金属化合物層21の厚さt1は、好ましくは0.08μm以上1.0μm以下であり、より好ましくは0.15μm以上0.6μm以下である。
 さらに、本実施形態の絶縁回路基板10において、セラミックス基板11と回路層12および金属層13と接合界面にAg-Cu合金層22が形成されており、このAg-Cu合金層22の厚さt2が1μm以上30μm以下の範囲内とされている場合には、接合材45に含まれるAgが、回路層12となる銅板42および金属層13となる銅板43と十分に反応してセラミックス基板11と回路層12および金属層13とが確実に強固に接合されているとともに、接合界面が硬くなることがさらに抑制される。
 Ag-Cu合金層22の厚さt2は、好ましくは3μm以上25μm以下であり、より好ましくは5μm以上15μm以下である。
 本実施形態の絶縁回路基板10の製造方法によれば、回路層12となる銅板42および金属層13となる銅板43とセラミックス基板11との間のカーボン成分を排出しながら、炉内の圧力を150Pa以上700Pa以上の範囲内に維持するとともに加熱し、銅板42,43とセラミックス基板11との間のカーボン成分を排出するカーボン成分排出工程S03を備えているので、接合時における活性金属炭化物24の生成を抑制することができる。よって、接合界面が硬くなることを抑制でき、冷熱サイクル負荷時のセラミックス基板11の割れの発生を抑制することが可能となる。
 さらに、本実施形態の絶縁回路基板10の製造方法において、接合材配設工程S01で、回路層12となる銅板42および金属層13となる銅板43とセラミックス基板11との間におけるカーボン量を200μg/cm以下とした場合には、接合時における活性金属炭化物24の生成をさらに抑制することができる。
 カーボン量は、好ましくは170μg/cm以下であり、より好ましくは150μg/cm以下である。
 以上、本発明の実施形態について説明したが、本発明はこれに限定されることはなく、その発明の技術的要件を逸脱しない範囲で適宜変更可能である。
 例えば、本実施形態では、絶縁回路基板に半導体素子を搭載してパワーモジュールを構成するものとして説明したが、これに限定されることはない。例えば、絶縁回路基板の回路層にLED素子を搭載してLEDモジュールを構成してもよいし、絶縁回路基板の回路層に熱電素子を搭載して熱電モジュールを構成してもよい。
 また、本実施形態の絶縁回路基板では、セラミックス基板として、窒化アルミニウム(AlN)で構成されたものを例に挙げて説明したが、これに限定されることはなく、アルミナ(Al)、窒化ケイ素(Si)等の他のセラミックス基板を用いたものであってもよい。
 さらに、本実施形態では、接合材に含まれる活性金属としてTiを例に挙げて説明したが、これに限定されることはなく、Ti,Zr,Hf,Nbから選択される1種又は2種以上の活性金属を含んでいればよい。なお、これらの活性金属は、水素化物として含まれていてもよい。
 さらに、本実施形態においては、回路層を、無酸素銅の圧延板をセラミックス基板に接合することにより形成するものとして説明したが、これに限定されることはなく、銅板を打ち抜いた銅片を回路パターン状に配置された状態でセラミックス基板に接合されることによって回路層を形成してもよい。この場合、それぞれの銅片において、上述のようなセラミックス基板との界面構造を有していればよい。
 また、本実施形態では、銅板の接合面に接合材を配設するものとして説明したが、これに限定されることはなく、セラミックス基板と銅板の間に接合材が配設されていればよく、セラミックス基板の接合面に接合材を配設してもよい。
 以下に、本発明の効果を確認すべく行った確認実験の結果について説明する。
 まず、表1記載のセラミックス基板(40mm×40mm)を準備した。なお、厚さは、AlNおよびAlは0.635mm、Siは0.32mmとした。
 また、回路層および金属層となる銅板として、無酸素銅からなり、表1に示す厚さの37mm×37mmの銅板を準備した。
 回路層および金属層となる銅板に、表1に示すAg粉および活性金属粉を含む接合材を、乾燥後の目標厚さが表1に示す値となるよう塗布した。
 なお、接合材はペースト材を用い、Ag,Cu,活性金属の量は表1の通りとした。
 また、Ag粉のBET値(比表面積)はQUANTACHRROME社製AUTOSORB-1を用い、前処理として150℃で30分加熱の真空脱気を行い、N吸着、液体窒素77K、BET多点法で測定した。
 ここで、接合材のカーボン量を以下のように測定した。
 まず、接合材の有機成分については、Arフロー雰囲気で室温から500℃まで10℃/minで昇温した時の残渣量(%)をTG-DTAにより測定し、塗布量当たりに換算した有機成分のカーボン量を求めた。次に、接合材に含まれるAg粉および活性金属粉のカーボン量(粉末のカーボン量)は、ガス分析(赤外線吸収法)によって測定した。これらの、有機成分のカーボン量と粉末のカーボン量との合計がカーボン量であり、これを表に記載した。
 次に、セラミックス基板の一方の面に、回路層となる銅板を積層した。また、セラミックス基板の他方の面に、金属層となる銅板を積層した。
 この積層体を、加熱炉に装入した。そして、カーボン排出工程として、加熱炉内の圧力を3×10-3Paとし、次いで不活性ガス(Arガス)を導入するとともに炉内ガスを排出し、炉内圧力を表2記載の値となるように調整した。さらに、300℃以上650℃以下の範囲内における温度積分値を表2に記載となるように、温度、時間を設定した。
 次に、積層体を、積層方向に加圧した状態で加熱し、Ag-Cu液相を発生させた。このとき、加圧荷重を0.294MPaとし、780℃以上850℃以下の範囲内における温度積分値を表2の通りとした。
 そして、加熱した積層体を冷却することにより、回路層となる銅板とセラミックス基板と金属層となる金属板を接合し、絶縁回路基板(銅/セラミックス接合体)を得た。
 得られた絶縁回路基板(銅/セラミックス接合体)について、活性金属炭化物の面積率、活性金属化合物層の厚さt1、Ag-Cu合金層の厚さt2、冷熱サイクル信頼性を、以下のようにして評価した。
(活性金属炭化物の面積率)
 回路層および金属層とセラミックス基板との接合界面の断面を観察し、SEM-EDSにより活性金属化合物層からから回路層表面および金属層表面側に向けて、図5に示すように、面積S1=幅100μm×厚み方向10μmの領域におけるAg,Cu,活性金属およびセラミックス成分の元素マップをそれぞれ5視野取得した。なお、セラミックス成分は、AlNの場合はAl,Nであり、Alの場合はAl,Oであり、Siの場合はSi,Nとなる。
 活性金属のマップにおいて、活性金属と他成分の重複部を除外した領域を「活性金属炭化物」とし、その面積S2を算出した。
 活性金属炭化物の面積率=100×S2/S1と定義し、それぞれ5視野、計10視野の平均値を表2に記載した。なお、活性金属化合物層にうねりが生じている場合には、うねりに沿って領域を設定する。
(活性金属化合物層)
 回路層とセラミックス基板との接合界面、および、セラミックス基板と金属層との接合界面の断面を、走査型電子顕微鏡(カールツァイスNTS社製ULTRA55、加速電圧1.8kV)を用いて倍率30000倍で測定し、エネルギー分散型X線分析法により、N、O及び活性金属元素の元素マッピングをそれぞれ5視野取得した。活性金属元素とNまたはOが同一領域に存在する場合に活性金属化合物層が有ると判断した。
 それぞれ5視野、計10視野で観察を行い、活性金属元素とNまたはOが同一領域に存在する範囲の面積を、測定した幅で割ったものの平均値を「活性金属化合物層の厚さ」として表2に記載した。
(Ag-Cu合金層)
 回路層とセラミックス基板との接合界面、および、セラミックス基板と金属層との接合界面の断面を、EPMA装置を用いて、Ag,Cu,活性金属の各元素マッピングを取得した。それぞれ5視野で各元素マッピングを取得した。
 それぞれ5視野、計10視野で観察を行い、Ag+Cu+活性金属=100質量%としたとき、Ag濃度が15質量%以上である領域をAg-Cu合金層とし、その面積を求めて、測定領域の幅で割った値(面積/測定領域の幅)を求めた。その値の平均をAg-Cu合金層の厚さとして表2に記載した。
(冷熱サイクル信頼性)
 上述の絶縁回路基板を、セラミックス基板の材質に応じて、下記の冷熱サイクルを負荷し、SAT検査(超音波探傷検査)によりセラミックス割れの有無を判定した。評価結果を表2に示す。
 AlN,Alの場合:-40℃×10min←→150℃×10minを500サイクルまで50サイクル毎にSAT検査。
 Siの場合:-40℃×5min←→150℃×10minを2000サイクルまで200サイクル毎にSAT検査。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 まず、セラミックス基板としてAlNを用いた本発明例1~3と比較例1,2とを比較する。
 比較例1においては、カーボン成分排出工程における炉内圧力が50Paとされており、活性金属化合物層から銅板側へ10μmまでの領域における活性金属炭化物の面積率が13.2%となった。そして、冷熱サイクル試験において割れ発生回数が50回となり、冷熱サイクル信頼性が不十分であった。
 比較例2においては、カーボン成分排出工程における炉内圧力が1200Paとされており、活性金属化合物層から銅板側へ10μmまでの領域における活性金属炭化物の面積率が11.3%となった。そして、冷熱サイクル試験において割れ発生回数が50回となり、冷熱サイクル信頼性が不十分であった。
 これに対して、本発明例1~3においては、カーボン成分排出工程における炉内圧力が150Pa,250Pa,600Paとされており、活性金属化合物層から銅板側へ10μmまでの領域における活性金属炭化物の面積率が7.9%,2.7%,6.6%となった。そして、冷熱サイクル試験において割れ発生回数が300回,500回,400回となり、冷熱サイクル信頼性に優れていた。
 次に、セラミックス基板としてSiを用いた本発明例4~6と比較例3,4とを比較する。
 比較例3においては、カーボン成分排出工程における炉内圧力が80Paとされており、活性金属化合物層から銅板側へ10μmまでの領域における活性金属炭化物の面積率が10.8%となった。そして、冷熱サイクル試験において割れ発生回数が1200回となり、冷熱サイクル信頼性が不十分であった。
 比較例4においては、カーボン成分排出工程における炉内圧力が1500Paとされており、活性金属化合物層から銅板側へ10μmまでの領域における活性金属炭化物の面積率が9.3%となった。そして、冷熱サイクル試験において割れ発生回数が1400回となり、冷熱サイクル信頼性が不十分であった。
 これに対して、本発明例4~6においては、カーボン成分排出工程における炉内圧力が600Pa,400Pa,300Paとされており、活性金属化合物層から銅板側へ10μmまでの領域における活性金属炭化物の面積率が5.9%,0.6%,2.1%となった。そして、冷熱サイクル試験において割れ発生回数が1800回,2000回超え,2000回超えとなり、冷熱サイクル信頼性に優れていた。
 次に、セラミックス基板としてAlを用いた本発明例7,8と比較例5とを比較する。
 比較例5においては、カーボン成分排出工程における炉内圧力が80Paとされており、活性金属化合物層から銅板側へ10μmまでの領域における活性金属炭化物の面積率が11.2%となった。そして、冷熱サイクル試験において割れ発生回数が100回となり、冷熱サイクル信頼性が不十分であった。
 比較例6においては、カーボン成分排出工程における炉内圧力が1200Paとされており、活性金属化合物層から銅板側へ10μmまでの領域における活性金属炭化物の面積率が10.7%となった。そして、冷熱サイクル試験において割れ発生回数が150回となり、冷熱サイクル信頼性が不十分であった。
 これに対して、本発明例7,8においては、カーボン成分排出工程における炉内圧力が500Pa,700Paとされており、活性金属化合物層から銅板側へ10μmまでの領域における活性金属炭化物の面積率が3.6%,6.8%となった。そして、冷熱サイクル試験において割れ発生回数が450回,500回となり、冷熱サイクル信頼性に優れていた。
 以上の確認実験の結果から、本発明例によれば、厳しい冷熱サイクルを負荷した場合であっても、セラミックス部材における割れの発生を抑制でき、冷熱サイクル信頼性に優れた絶縁回路基板(銅/セラミックス接合体)、および、絶縁回路基板の製造方法(銅/セラミックス接合体の製造方法)を提供可能であることが確認された。
 本実施形態の銅/セラミックス接合体及び絶縁回路基板は、パワーモジュール、LEDモジュールおよび熱電モジュールに好適に適用される。
10 絶縁回路基板(銅/セラミックス接合体)
11 セラミックス基板(セラミックス部材)
12 回路層(銅部材)
13 金属層(銅部材)
21 活性金属化合物層
22 Ag-Cu合金層

Claims (10)

  1.  銅又は銅合金からなる銅部材と、セラミックス部材とが接合されてなる銅/セラミックス接合体であって、
     前記セラミックス部材と前記銅部材との接合界面において、前記セラミックス部材側には活性金属化合物層が形成されており、
     前記活性金属化合物層から前記銅部材側へ10μmまでの領域における活性金属炭化物の面積率が8%以下とされていることを特徴とする銅/セラミックス接合体。
  2.  前記活性金属化合物層の厚さt1が0.05μm以上1.2μm以下の範囲内とされていることを特徴とする請求項1に記載の銅/セラミックス接合体。
  3.  前記セラミックス部材と前記銅部材との接合界面において、前記銅部材側にはAg-Cu合金層が形成されており、
     前記Ag-Cu合金層の厚さt2が1μm以上30μm以下の範囲内とされていることを特徴とする請求項1または請求項2に記載の銅/セラミックス接合体。
  4.  セラミックス基板の表面に、銅又は銅合金からなる銅板が接合されてなる絶縁回路基板であって、
     前記セラミックス基板と前記銅板との接合界面において、前記セラミックス基板側には活性金属化合物層が形成されており、
     前記活性金属化合物層から前記銅板側へ10μmまでの領域における活性金属炭化物の面積率が8%以下とされていることを特徴とする絶縁回路基板。
  5.  前記活性金属化合物層の厚さt1が0.05μm以上1.2μm以下の範囲内とされていることを特徴とすることを特徴とする請求項4に記載の絶縁回路基板。
  6.  前記セラミックス基板と前記銅板との接合界面において、前記銅板側にはAg-Cu合金層が形成されており、
     前記Ag-Cu合金層の厚さt2が1μm以上30μm以下の範囲内とされていることを特徴とする請求項4または請求項5に記載の絶縁回路基板。
  7.  請求項1または請求項2に記載の銅/セラミックス接合体を製造する銅/セラミックス接合体の製造方法であって、
     前記銅部材と前記セラミックス部材との間に、AgとTi,Zr,Nb,Hfから選択される1種以上の活性金属を含む接合材を配設する接合材配設工程と、
     前記銅部材と前記セラミックス部材とを、前記接合材を介して積層する積層工程と、
     前記銅部材と前記セラミックス部材との積層体を加熱炉に装入し、炉内に不活性ガスを導入するとともに炉内のガスを排出しながら、炉内の圧力を150Pa以上700Pa以上の範囲内に維持するとともに加熱し、前記銅部材と前記セラミックス部材との間のカーボン成分を排出するカーボン成分排出工程と、
     前記接合材を介して積層された前記銅部材と前記セラミックス部材とを積層方向に加圧した状態で加熱処理し、前記銅部材と前記セラミックス部材の界面に液相を生じさせ、その後、冷却することで前記液相を凝固させて、前記銅部材と前記セラミックス部材とを接合する本接合工程と、
     を備えていることを特徴とする銅/セラミックス接合体の製造方法。
  8.  前記接合材配設工程において、前記銅部材と前記セラミックス部材との間におけるカーボン量を200μg/cm以下とすることを特徴とする請求項7に記載の銅/セラミックス接合体の製造方法。
  9.  請求項4または請求項5に記載の絶縁回路基板を製造する絶縁回路基板の製造方法であって、
     前記銅板と前記セラミックス基板との間に、AgとTi,Zr,Nb,Hfから選択される1種以上の活性金属を含む接合材を配設する接合材配設工程と、
     前記銅板と前記セラミックス基板とを、前記接合材を介して積層する積層工程と、
     前記銅板と前記セラミックス基板との積層体を加熱炉に装入し、炉内に不活性ガスを導入するとともに炉内のガスを排出しながら、炉内の圧力を150Pa以上700Pa以上の範囲内に維持するとともに加熱し、前記銅板と前記セラミックス基板との間のカーボン成分を排出するカーボン成分排出工程と、
     前記接合材を介して積層された前記銅板と前記セラミックス基板とを積層方向に加圧した状態で加熱処理し、前記銅板と前記セラミックス基板の界面に液相を生じさせ、その後、冷却することで前記液相を凝固させて、前記銅板と前記セラミックス基板とを接合する本接合工程と、
     を備えていることを特徴とする絶縁回路基板の製造方法。
  10.  前記接合材配設工程において、前記銅板と前記セラミックス基板との間におけるカーボン量を200μg/cm以下とすることを特徴とする請求項9に記載の絶縁回路基板の製造方法。
PCT/JP2022/027861 2021-07-16 2022-07-15 銅/セラミックス接合体、絶縁回路基板、および、銅/セラミックス接合体の製造方法、絶縁回路基板の製造方法 WO2023286858A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112022003588.9T DE112022003588T5 (de) 2021-07-16 2022-07-15 Kupfer/keramik-anordnung, isolierendes schaltungssubstrat, herstellungsverfahren für kupfer/keramik-anordnung und herstellungsverfahren für isolierendes schaltungssubstrat
CN202280041985.5A CN117480871A (zh) 2021-07-16 2022-07-15 铜-陶瓷接合体、绝缘电路基板及铜-陶瓷接合体的制造方法、绝缘电路基板的制造方法
US18/560,166 US20240274497A1 (en) 2021-07-16 2022-07-15 Copper/ceramic assembly, insulating circuit substrate, production method for copper/ceramic assembly, and production method for insulating circuit substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021117953A JP2023013631A (ja) 2021-07-16 2021-07-16 銅/セラミックス接合体、絶縁回路基板、および、銅/セラミックス接合体の製造方法、絶縁回路基板の製造方法
JP2021-117953 2021-07-16

Publications (1)

Publication Number Publication Date
WO2023286858A1 true WO2023286858A1 (ja) 2023-01-19

Family

ID=84920319

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/027861 WO2023286858A1 (ja) 2021-07-16 2022-07-15 銅/セラミックス接合体、絶縁回路基板、および、銅/セラミックス接合体の製造方法、絶縁回路基板の製造方法

Country Status (5)

Country Link
US (1) US20240274497A1 (ja)
JP (1) JP2023013631A (ja)
CN (1) CN117480871A (ja)
DE (1) DE112022003588T5 (ja)
WO (1) WO2023286858A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05170563A (ja) * 1991-12-25 1993-07-09 Kawasaki Steel Corp 銅板とセラミックスの接合方法
WO2013002407A1 (ja) * 2011-06-30 2013-01-03 日立金属株式会社 ろう材、ろう材ペースト、セラミックス回路基板、セラミックスマスター回路基板及びパワー半導体モジュール
WO2018180965A1 (ja) * 2017-03-30 2018-10-04 株式会社 東芝 セラミックス銅回路基板およびそれを用いた半導体装置
WO2021044854A1 (ja) * 2019-09-02 2021-03-11 株式会社 東芝 接合体、回路基板、及び半導体装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5757359U (ja) 1980-09-22 1982-04-03
JP6904088B2 (ja) 2016-06-30 2021-07-14 三菱マテリアル株式会社 銅/セラミックス接合体、及び、絶縁回路基板
JP3211856U (ja) 2017-05-09 2017-08-10 株式会社アイエスピー メジャー付きタオル
JP2021117953A (ja) 2020-01-27 2021-08-10 広洲 石黒 デザイン思考エンジンの構成と定式化の方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05170563A (ja) * 1991-12-25 1993-07-09 Kawasaki Steel Corp 銅板とセラミックスの接合方法
WO2013002407A1 (ja) * 2011-06-30 2013-01-03 日立金属株式会社 ろう材、ろう材ペースト、セラミックス回路基板、セラミックスマスター回路基板及びパワー半導体モジュール
WO2018180965A1 (ja) * 2017-03-30 2018-10-04 株式会社 東芝 セラミックス銅回路基板およびそれを用いた半導体装置
WO2021044854A1 (ja) * 2019-09-02 2021-03-11 株式会社 東芝 接合体、回路基板、及び半導体装置

Also Published As

Publication number Publication date
CN117480871A (zh) 2024-01-30
JP2023013631A (ja) 2023-01-26
US20240274497A1 (en) 2024-08-15
DE112022003588T5 (de) 2024-05-02

Similar Documents

Publication Publication Date Title
EP3590909B1 (en) Copper/ceramic joined body insulated circuit board, method for producing copper/ceramic joined body, and method for producing insulated circuit board
CN109417056B (zh) 铜-陶瓷接合体及绝缘电路基板
EP3632879B1 (en) Ceramic circuit board and method of production
US10016956B2 (en) Cu/ceramic bonded body, method for manufacturing Cu/ceramic bonded body, and power module substrate
US12027434B2 (en) Bonded body of copper and ceramic, insulating circuit substrate, bonded body of copper and ceramic production method, and insulating circuit substrate production method
WO2018159590A1 (ja) 銅/セラミックス接合体、絶縁回路基板、及び、銅/セラミックス接合体の製造方法、絶縁回路基板の製造方法
EP4053091A1 (en) Copper/ceramic assembly, insulated circuit board, method for producing copper/ceramic assembly, and method for producing insulated circuit board
EP4071128B1 (en) Copper/ceramic bonded body, insulating circuit board, method for producing copper/ceramic bonded body, and method for producing insulating circuit board
JP6870767B2 (ja) 銅/セラミックス接合体、及び、絶縁回路基板
JP2023086688A (ja) 銅/セラミックス接合体、および、絶縁回路基板
WO2023286858A1 (ja) 銅/セラミックス接合体、絶縁回路基板、および、銅/セラミックス接合体の製造方法、絶縁回路基板の製造方法
WO2023286862A1 (ja) 銅/セラミックス接合体、および、絶縁回路基板
WO2022224946A1 (ja) 銅/セラミックス接合体、および、絶縁回路基板
WO2022224958A1 (ja) 銅/セラミックス接合体、および、絶縁回路基板
WO2023008565A1 (ja) 銅/セラミックス接合体、および、絶縁回路基板
WO2023286860A1 (ja) 銅/セラミックス接合体、および、絶縁回路基板
WO2023286857A1 (ja) 銅/セラミックス接合体、および、絶縁回路基板
WO2023286856A1 (ja) 銅/セラミックス接合体、および、絶縁回路基板
WO2022224949A1 (ja) 銅/セラミックス接合体、および、絶縁回路基板
WO2023106226A1 (ja) 銅/セラミックス接合体、および、絶縁回路基板
WO2023008562A1 (ja) 銅/セラミックス接合体、および、絶縁回路基板
WO2021112046A1 (ja) 銅/セラミックス接合体、絶縁回路基板、及び、銅/セラミックス接合体の製造方法、絶縁回路基板の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22842199

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18560166

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202280041985.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 112022003588

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22842199

Country of ref document: EP

Kind code of ref document: A1