JP2014131485A - 永久磁石モータポンプ - Google Patents

永久磁石モータポンプ Download PDF

Info

Publication number
JP2014131485A
JP2014131485A JP2014081901A JP2014081901A JP2014131485A JP 2014131485 A JP2014131485 A JP 2014131485A JP 2014081901 A JP2014081901 A JP 2014081901A JP 2014081901 A JP2014081901 A JP 2014081901A JP 2014131485 A JP2014131485 A JP 2014131485A
Authority
JP
Japan
Prior art keywords
signal coil
shaft
inner rotor
yoke
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014081901A
Other languages
English (en)
Other versions
JP5792346B2 (ja
Inventor
Huan-Jan Chien
簡煥然
Ching-Chang Wang
王錦城
Chih-Hslen Shih
施志賢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Assoma Inc
Original Assignee
Assoma Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Assoma Inc filed Critical Assoma Inc
Publication of JP2014131485A publication Critical patent/JP2014131485A/ja
Application granted granted Critical
Publication of JP5792346B2 publication Critical patent/JP5792346B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D13/0606Canned motor pumps
    • F04D13/0633Details of the bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/021Units comprising pumps and their driving means containing a coupling
    • F04D13/024Units comprising pumps and their driving means containing a coupling a magnetic coupling
    • F04D13/026Details of the bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/06Units comprising pumps and their driving means the pump being electrically driven
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D13/0606Canned motor pumps
    • F04D13/0626Details of the can
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D15/00Control, e.g. regulation, of pumps, pumping installations or systems
    • F04D15/0088Testing machines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D15/00Control, e.g. regulation, of pumps, pumping installations or systems
    • F04D15/0094Indicators of rotational movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/04Shafts or bearings, or assemblies thereof
    • F04D29/046Bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/04Shafts or bearings, or assemblies thereof
    • F04D29/046Bearings
    • F04D29/0465Ceramic bearing designs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/18Rotors
    • F04D29/22Rotors specially for centrifugal pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/426Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for liquid pumps
    • F04D29/4286Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for liquid pumps inside lining, e.g. rubber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D7/00Pumps adapted for handling specific fluids, e.g. by selection of specific materials for pumps or pump parts
    • F04D7/02Pumps adapted for handling specific fluids, e.g. by selection of specific materials for pumps or pump parts of centrifugal type
    • F04D7/06Pumps adapted for handling specific fluids, e.g. by selection of specific materials for pumps or pump parts of centrifugal type the fluids being hot or corrosive, e.g. liquid metals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/07Hall effect devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/07Hall effect devices
    • G01R33/077Vertical Hall-effect devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/21Devices for sensing speed or position, or actuated thereby
    • H02K11/215Magnetic effect devices, e.g. Hall-effect or magneto-resistive elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/16Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields
    • H02K5/167Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields using sliding-contact or spherical cap bearings
    • H02K5/1677Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields using sliding-contact or spherical cap bearings radially supporting the rotor around a fixed spindle; radially supporting the rotor directly
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2207/00External parameters
    • F04B2207/70Warnings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/06Control using electricity
    • F04B49/065Control using electricity and making use of computers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2270/00Control; Monitoring or safety arrangements
    • F04C2270/78Warnings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/10Stators
    • F05B2240/14Casings, housings, nacelles, gondels or the like, protecting or supporting assemblies there within
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/50Bearings
    • F05B2240/52Axial thrust bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2280/00Materials; Properties thereof
    • F05B2280/40Organic materials
    • F05B2280/4003Synthetic polymers, e.g. plastics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • G01M13/04Bearings

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Motor Or Generator Frames (AREA)

Abstract

【課題】固定軸の構造強度を向上させるために、ポンプ内にモニタ装置を設けることができる、永久磁石型キャンド・モータポンプを提供すること。
【解決手段】キャンド・ポンプの構造的な改良は、固定軸の剛性を向上させることであり、また、要件に従ってモニタ装置を配置することである。モニタ装置は、複数の二次磁石と、モニタセットとを有し、モニタ装置は、二次磁石の数が主磁石と同じであり、二次磁石は、格納シェルの底側付近で内側回転子の回転子継鉄の内側の一端に組み付けられて、二次磁石の磁極方向は、主磁石と異なっており、また、二次磁石は、腐食性流体により腐食することを防ぐために、主磁石とともにカプセル化されており、二次磁石の軸方向の長さは、内側回転子の(軸受の軸方向の摩耗を含む)軸方向運動距離の2倍の大きさよりも少なくとも大きく、磁束線は、前記回転子継鉄に主磁気ループと共存する二次磁気ループを形成している。
【選択図】図1B

Description

本発明は、シールレス・キャンド・モータポンプに関し、より具体的には、軸受モニタ装置を有する耐腐食シールレス・キャンド・モータポンプに関するものである。シールレス・キャンド・モータポンプは、1つのユニットに統合されたキャンド・モータとポンプとを備える。モータの内側回転子と固定子巻線は、耐腐食性材料で保護されており、PCB製造装置における薬液など、有毒で可燃性かつ腐食性の輸送流体と直接接触する。誘導モータを含むモータ(誘導型キャンド・モータポンプ)または永久磁石ポンプ(永久磁石型キャンド・モータポンプ)は、リークフリーが要求される工業的用途でよく知られている。
また、輸送流体と直接接触するシールレス・キャンド・モータポンプの内側回転子は、グラファイト、酸化アルミニウム、または炭化ケイ素などのセラミック材料で構成された滑り軸受を備える。ところが、軸受の摩耗に起因して内側回転子が偏心回転することがあり、これによって、固定軸は、より大きな遠心力とそのモーメントを受けることになり、内側回転子と格納シェルが互いに衝突して損傷し、流体が漏れることがある。よって、モータ軸系の構造は設計の焦点の一つとなる。高い信頼性でリークを防ぐための方法は、ポンプ内に軸受モニタ装置を配置することである。
そこで、本発明は、固定軸の構造強度を向上させるために、プラスチックで構成されるか、またはプラスチック・ライナを備え、ポンプ内にモニタ装置を設けることができる、永久磁石型キャンド・モータポンプについて開示する。
金属製の誘導型キャンド・モータポンプは、内側回転子と固定子をカプセル化するための、低透磁率かつ耐腐食性の金属薄板で構成された円筒キャンを備えている。キャンは、流体と巻線を分離するように固定子の内側に組み付けられる。別の金属板が、同様に篭形内側回転子をカプセル化して、流体を隔離するために用いられる。
この場合、モータの空隙は、固定子のケイ素鋼の歯部と内側回転子のケイ素鋼の歯部との間の、片側の径方向の距離である。空隙の幅のほとんどは3ミリメートル(mm)未満であり、よって、上記モータのモータ特性は、小空隙のモータ構造である。自動車水冷ポンプなどの清浄かつ非腐食性の流体を輸送するために採用されるシールレス・キャンド・モータポンプは、ポリフェニレンサルファイド(PPS)など、温度耐性および限られた耐腐食能力を持つ耐熱プラスチック材料で構成され、また、耐熱プラスチック材料を用いて固定子と内側回転子がカプセル化される。耐熱プラスチック材料の片側のカプセル厚さは1.5mmを超え、全空隙の幅は4mmを超える。
つまり、そのモータ特性は、より大きな空隙を有する構造である。フッ化水素酸など、高毒性かつ強腐食性の薬液を輸送するためには、ポリプロペン(PP)またはフルオロポリマなどの耐腐食性プラスチックの部材またはライナが、固定子と内側回転子のカプセル化のために採用される。耐腐食性プラスチック材料の採用によって、モータ軸系の構造強度が設計の焦点の一つとなる。モータ方式は、回転軸と固定軸に分類される。
本発明は、ゆとりを含んだその片側のカプセル厚さが3mmを超え、全空隙幅のほとんどが7mmを超える、好ましい固定軸系を提供するものであり、よって、本発明によるモータの特性は、より大きな空隙を有するモータ構造である。この場合、永久磁石同期モータは、より大きな空隙を有するポンプに好ましい選択肢である。シールレス・キャンド・モータポンプは、セラミック材料で構成された滑り軸受を備えているが、この軸受は、軸受の摩耗、ドライラン、または過度の振動によって、すり減ることがある。
このため、その信頼性を向上させるには、軸受の摩耗を監視するモニタ装置を配置することが必要である。また、モニタ装置はホールセンサとすることができ、この場合、永久磁石型キャンド・モータポンプの駆動方式は、センサ方式またはセンサレス方式の両方での駆動が可能である。このように、特定のドライバへの依存を低減し、ユーザによる装置の選択の幅を広げることができる。
つぎの事例は、固定軸構造、センサレス駆動、センサ駆動、および軸受摩耗検出を含むシールレス・キャンド・モータポンプの問題に対するソリューションである。これらの事例の内容について、以下で記載する。
事例1:
特許文献1:永久磁石型キャンド・モータポンプ、2009年。
この発明は、高温かつ腐食条件で使用されるポンプを開示している。モータ構造は、片持ち固定構造と、径方向空隙を備えた内側モータと、を有している。腐食許容値を含んだカプセル厚さは3mmであり、全空隙は8mmである。この発明に開示されたセンサレス方式は、永久磁石ポンプを駆動するために磁極位置を算出することであり、剛性の複合固定構造によって、高温かつ高出力での使用のための要件を満たしている。しかしながら、この発明の構造は、軸受摩耗検出能力を備えていない。
事例2:
特許文献2:キャンド・モータポンプ。
これは、エンジン冷却に適用される永久磁石型キャンド・モータポンプである。この発明の低出力ポンプは、単純固定軸構造である。セラミック軸が、三角フロントサポートとポンプ格納シェルとを含む耐熱プラスチック部材によって支持されている。永久磁石ポンプを駆動するために磁極位置を検出する二次磁石とホールセンサが、主磁石の内側回転子継鉄の内側空間に設けられている。ホールセンサは、格納シェルの底側から外向きに延出している。
これに応じて内側回転子の磁石も軸方向に延出して、これによりホールセンサが独立に延びる長さを減少させている。このポンプでは清浄な流体のみが輸送されるので、軸受の摩耗について懸念する必要はない。単純固定構造が採用されているが、磁石の長さの追加によって製造コストが増加することがあり、また、磁石の表面に分布する磁束のみが検出されるのは、正確な磁極位置を検出するためには好ましくない。
事例3:
特許文献3:ブラシレスモータおよび流体ポンプ装置、2008年。
これは、エンジン冷却に適用される永久磁石型キャンド・モータポンプを開示している。この発明の低出力ポンプは、単純固定軸構造である。セラミック軸が、三角フロントサポートとポンプ格納シェルとを含む耐熱プラスチック部材によって支持されている。永久磁石ポンプを駆動するため、ホールセンサおよびその駆動回路基板が、格納シェルの外側に設けられている。磁石は、磁石の後端がホールセンサに近接するように、軸方向に延出している。
また、磁石の磁束が基板上のホールセンサを斜め方向に通過し得るように、磁石の後端の形状は面取状に加工されており、これにより、磁極位置の検出精度を向上させている。このポンプでは清浄な流体のみが輸送されるので、軸受の摩耗について懸念する必要はない。単純固定構造が採用されているが、磁石の長さの追加によって製造コストが増加することがあり、また、磁石の表面に分布する磁束のみが検出されるのは、正確な磁極位置を検出するためには好ましくない。
事例4:
特許文献4:運転中の回転電機で生じる故障または初期故障を検出するための装置、1980年。
これは、誘導型キャンド・モータポンプに適用されるものである。信号コイル対は、固定子継鉄の全長をカバーするのに十分な長さである。信号コイル対は、主磁束による同期誘導電圧と内側回転子すべりによる内側回転子起電力の高調波電圧とを含む周期的電圧信号を出力することができる。軸受が摩耗すると、空隙の大きさが僅かに変わり、それに応じて信号コイル対により出力される電圧信号が変化する。
2つの信号コイル対が、固定子の歯部の対向する径方向位置にそれぞれある場合、出力電圧は、相反する主磁束により中和されて、周期的高調波電圧が残る。軸受が摩耗することで内側回転子の偏心回転が生じると周期的高調波電圧が増加し、これは軸方向空隙型誘導モータおよび径方向空隙型誘導モータに当てはまる。このような方法は、三相巻線の不平衡問題など、モータ電源またはモータ巻線の問題を検出するために利用してもよい。しかしながら、この発明は、誘導モータのラジアル軸受の摩耗を検出するためにのみ用いられるものであって、軸スラスト軸受の摩耗を検出するために用いられるものではない。
事例5:
特許文献5:キャンド・モータの軸受摩耗モニタ装置、1999年。
これは、誘導型キャンド・モータポンプに適用されるものである。固定子の2つの対向する端部のそれぞれにおいて、4つの垂直歯部の内側に4つの穴がそれぞれ形成されて、8つのコイルのうちの4つが一方の端部のそれぞれの穴に設けられ、その他のコイルは反対側の端部に設けられる。8つのコイルが軸受の径方向の摩耗、軸方向の摩耗、斜めの摩耗を検出することができるように、対向する端部において2つの対応する穴の各々が、同一の特別な角度を有している。
事例6:
特許文献6:シールレスポンプの内側回転子位置および軸受モニタ、1999年。
これは、誘導型キャンド・モータポンプに適用されるものである。2つのコイルと、異なる磁極を持つ継鉄とによって、高周波励磁コイルセットを形成している。2つのコイルは、互いに平行に、それぞれ固定子の各端部の外側の軸方向位置に、継鉄によってキャンの外面に固定されている。コイルセットの磁束は、キャンを通って、内側回転子の両端の外側空間に至り、そこに入る。そして、磁束は、軸の内側回転子の両端にあるプレート上の磁気導体を介して逆向きに異なる磁極コイルまで戻る。
このようにして、閉磁回路を形成しており、すなわち、磁気導体とコイルセットは互いに同心状である。コイルは、3つの巻線を一緒に含み、それらの巻線の1つは、2つの信号線となる他の2つの巻線の高周波数での励磁のために用いられる。信号線のうち一方は径方向の検出に用いられ、他方は軸方向の検出に用いられる。軸受の片側で軸方向の摩耗が生じると、プレートの径方向位置が径方向に動き、これにより、プレートは、コイルセットに近づくか、またはコイルセットから離れる。従って、磁気回路の磁気抵抗が変化し、そして磁気回路の出力電圧も変化する。
互いに垂直な4つのコイルセットを径方向位置に設けると、軸受の径方向の摩耗を検出することができる。コイルセットとプレートが、両方とも内側回転子の両側に設けられる場合には、さらに軸方向の移動を検出することができる。
軸方向検出の信号処理は、内側回転子の両側のコイルセットからの2つの電圧信号を相互に比較して、内側回転子の軸方向の移動を算出することである。また、1Kから4Kの間の高周波信号によって、コイルの高調波信号干渉を防ぐことができる。さらに、高調波信号干渉を低減するために、固定子コイルの後端に磁束遮蔽装置が追加して設けられる。
事例7:
特許文献7:軸受摩耗モニタ装置を有するモータ、2000年。
これは、誘導型キャンド・モータポンプに適用されるものである。この発明は、固定子の2つの対向する端部にいくつかの信号コイル対を配置することで、軸受の径方向の摩耗を検出することができることを実際に示している。ところが、固定子、内側回転子、スピンドル、または信号コイル対の交換を含むモータの修理の際に、ユーザは、固定子および内側回転子の機械的な軸方向の位置決めを、それらの電気的な軸方向の位置決めに合わせて行うことができない場合があり、または、ユーザは、コイルを以前の位置に配置されるように巻回することができない場合があり、これによって異常信号が発生する。
そこで、このモニタ装置では、相対位置を調整して、軸方向摩耗の信号のゼロ点調整を行うことができるようにしている。この方法は、モータを組み立てたときに、軸の内側回転子側と軸の固定子側との間の距離だけ、内側回転子の厚さが固定子の厚さよりも大きいことによるものである。内側回転子側がコイルの中心に面し、内側回転子の突起が固定子の後端から突き出して、内側回転子の後端が径方向の余裕無くコイルを完全に覆っている。従って、スラスト軸受が摩耗して内側回転子が前方に移動すると、前端のコイル信号が明らかに変化し、後端のコイル信号は僅かに変化する。
事例8:
特許文献8:キャンド・モータの軸方向軸受摩耗検出装置、2002年。
これは、誘導型キャンド・モータポンプに適用されるものである。この装置は、固定子の2つの対向する歯部にそれぞれ2つのコイルを180度の空間角を成すように有するコイルセットを備えている。この発明は、固定子の前端と後端にいくつかの信号コイル対を配置することで、軸受の軸方向の摩耗を検出できることを明確に示しているが、モータの前端と後端に設けられている摩耗リングの軸方向の長さは、内側回転子の前端と後端に設けられているスラスト軸受の軸方向の長さよりも大きい。
内側回転子は、自由である径方向に、摩耗リングの間でおよそ±2.5mm動くことができる。軸受の軸方向の摩耗を検出するためのモニタ装置は、内側回転子の異常な軸方向の動きを、内側回転子の通常の軸方向の動きと区別しなければならない。つまり、軸受の実際の摩耗を検出する必要がある。この発明によると、基準回路と不感帯回路とを相互に比較することで、内側回転子の軸方向の動きが正常範囲内であるかどうか判定するためのコイル信号の検出が可能である。
事例9:
特許文献9:キャンド・モータの軸方向軸受摩耗検出器、2006年。
これは、誘導型キャンド・モータに適用されるものである。この発明でのコイル検出の方法は、事例8と同様である。この発明は、固定子の前端と後端にいくつかの信号コイル対を配置することで軸受の軸方向の摩耗を検出して信号を生成することができることと、信号をゼロ点調整すると摩耗値を正確に検出することができることと、を明確に示している。
しかしながら、信号コイル対によって出力される電圧信号の値は、エレクトロマイグレーションを発生させるモータの作動電圧による影響を受けることがあり、このことが信号のゼロ点調整を難しくしている。すなわち、軸受の摩耗値は正確ではない。この発明は、信号を処理する方法を提供しており、これによる装置によって、信号を確実にゼロ点調整することができる。
誘導型キャンド・モータポンプおよび永久磁石型キャンド・モータポンプに対するソリューションは、つぎのように3つのタイプに分けられる。
1.軸受を検出するためのモニタ装置を設けることで、ポンプの信頼性を向上させる。
2.ポンプをタイミングよく駆動するためにホールセンサが設けられるが、磁石を長くする必要がある。
3.固定軸の剛性を向上させることで、ポンプの信頼性を向上させる。
台湾実用新案第M369391号 特開2005−344589号公報 特開2008−220008号公報 米国特許第4211973号 米国特許第5926001号 米国特許第5955880号 米国特許第6114966号 米国特許第6429781号 米国特許第7019661号
上記の対応する問題に対するソリューションは実施が可能であるかもしれないが、上記の例は、信頼性を向上させるために、固定軸の剛性を向上させると同時に、モニタ装置を配置するものではない場合がある。本発明において開示する永久磁石型キャンド・モータポンプは、つぎのような課題を解決する必要がある。
課題1:材料の強度の弱さ。
温度が85℃を超えると耐腐食性プラスチック構造またはライナの強度が容易に低下するという問題を回避するように構造強度を向上させ、また、モニタ装置を配置することなくポンプの信頼性を向上させる。
課題2:軸受の摩耗を検出するための要件。
高毒性かつ強腐食性の薬液の輸送についての安全要件を満たすため、軸受の摩耗状態を継続的に検出するためのモニタ装置が設けられ、これによりポンプの信頼性を向上させる。
課題3:より大きな空隙というモータ特性を備える場合の低コスト要件。
永久磁石モータは、より大きな空隙を備えるモータとしての好ましい選択肢であるが、費用のかかる磁石を多く必要とする。モニタ素子の信号源を提供するために、主磁石の長さを大きくすることが利用される。このため、磁石のコストが比較的大きくなる。
課題4:永久磁石モータの高周波パルス幅変調(PWM)信号駆動からの高調波干渉を防ぐ。
モニタ装置の構造は、高周波PWM電力駆動からの高調波干渉を余儀なくされる。
課題5:モニタ装置が使用可能である場合に、より良い品質の信号を受け取るための要件。
キャンド・モータポンプの内側回転子は、高い耐腐食性を要する用途では、より大きな軸方向自由運動空間を有し、これによってモニタ装置の磁束が容易に曲がるので、電圧供給が変わることに起因する信号のドリフトを防ぐ必要がある。
課題6:構成部品が容易に修理および交換される。
構成部品の修理または交換の際に、位置決めの問題、または他の個人的なファクタの問題を回避する必要がある。
本発明は、永久磁石型キャンド・モータポンプの固定軸の剛性を、いかなる出力範囲のものであっても、合理的コストで向上させるものであり、要件に従ってモニタ装置を設けることが可能である。これによって、信頼性が確保されるとともに、寿命が延長され、また、本発明は、単純固定軸構造にも複合軸構造にも適している。
本発明において開示する、以下でキャンド・ポンプと呼ぶ永久磁石型キャンド・モータポンプの目的は、固定軸の剛性を向上させることであり、さらに、軸受の摩耗を検出するためのモニタ装置または他のモニタ装置などのモニタ装置が、ポンプなどの信頼性を向上させるための要件に従って設けられる。高温かつ強腐食の製造プロセスでポンプが使用される場合のソリューションについて、以下に記載する。
このキャンド・ポンプの目的は、固定軸の剛性を向上させることであり、さらに、要件に従ってモニタ装置が設けられる。固定軸の剛性を向上させることを目的として、固定軸の剛性を改善する方法は、キャンド・モータのモータ・リアケーシングの金属構造の軸後部金属サポートを、キャンド・モータの内側回転子の回転子継鉄の内径空間に軸方向に挿入することと、格納シェルのブランク後部軸サポートによって腐食性流体を隔離することと、より長い保持長さによって固定軸の剛性を向上させ、合力のアーム長を短くするように、軸後部金属サポートをブランク後部軸サポートに緊密に装着することと、を含んでいる。その結果、固定軸の剛性の向上によって構造信頼性が向上する。
格納シェルのブランク後部軸サポートは、例えば軸受の摩耗を検出するためのモニタ装置であるモニタ装置を収容するための十分なスペースを径方向および軸方向に有し、これによって、ポンプの信頼性が確保されるか、または他の要件が満たされる。モニタ装置は、二次磁石とモニタセットとを有し、それらの間に閉ループ磁束線が存在する。二次磁石の数は主磁石と同じであり、二次磁石の体積は、主磁石の体積の10分の1未満である。主磁石に背を向けて内側回転子の回転子継鉄の内側に取り付けられる二次磁石、および内側回転子は、これらが腐食性流体により腐食することを防ぐためカプセル化されており、また、回転子継鉄磁気経路と固定子継鉄磁気経路は回転子継鉄に共存することが可能である(つまり、モニタ装置の磁束線は、干渉することなく回転子継鉄を通過する)。
負荷要求を満たすために、より長い軸受を用いる場合は、より長い回転子継鉄が使用され、これにより回転子継鉄上への二次磁石の組み付けが容易に可能である。モニタセットは二次継鉄とモニタ素子とを含み、内側回転子が回転しているときには、モニタ素子が磁束線を横切ることで電圧信号を出力する。格納シェルは、ブランク後部軸サポートの環状スロットに取り付けられるモニタセットを保護する。
モニタ素子は、軸受の摩耗を監視するために用いられる信号コイル対、または磁極を検出してキャンド・ポンプを駆動するために用いられるホールセンサとすることができ、キャンド・ポンプの駆動は、以下でセンサレス・キャンド・ポンプと呼ぶモニタ装置を持たない駆動装置によるか、または以下でセンサ・キャンド・ポンプと呼ぶモニタ装置を持つ駆動装置によるか、いずれかとすることができ、これによって、ユーザが装置を選択する利便性が向上する。
二次磁石の軸方向の長さは、内側回転子の(軸受の軸方向の摩耗を含む)軸方向自由運動距離の2倍を超えている。二次磁石の表面から出る磁束線は、空隙を通って二次継鉄に至り、続いて逆に戻る磁力線によって隣接する二次磁石に至り、そして回転子継鉄を通って元の二次磁石に至り、このようにして閉ループを形成している。モニタセットのモニタ素子は、例えば信号コイル対とホールセンサであって、二次継鉄の表面上に設けられ、セットにして絶縁体によりカプセル化されている。
モニタセットは、格納シェルの底部の環状スロットに取り付けられ、この環状スロットは、格納シェルの底部に外側からモニタセットを組み付けることができるようにする開口部を備えている。二次継鉄の内面は、軸後部金属サポートの外面にぴったりとフィットしている。二次継鉄の後端部はアラインメント点を有し、その電気角位置は、モータ・リアケーシングの軸後部金属サポートの軸における別のアラインメント点に結び付けられており、また、キャンド・モータの固定子がモータ・ケーシングに組み付けられる際には、巻線固定子の電気角位置の基準点に結び付けられる。
信号コイル対を有するモニタセットにおいて、各信号コイルの円周幅は、二次磁石の磁極数によって変わるものの、180度の電気夾角を超えることはなく、各信号コイルは、十分な回転速度で回転して磁束線を横切ることで、電圧信号を出力する。信号コイル対は2つのグループに分けられ、その2つのグループの間の空間夾角の位相差は90度である。各グループの配列には、同じグループの2つの信号コイル対の間の空間夾角の位相差を180度とする方法と、2つのグループが向き合って軸方向の列に取り付けられる別の方法とが含まれる。
内側回転子の回転速度、軸の遠心角度、軸方向位置、および径方向位置は、信号コイル対からの信号の演算により算出することができる。軸の遠心角度は、運動軌道についての詳細な情報を提供する。内側回転子の位置と比較することで、ラジアル軸受およびスラスト軸受の摩耗量が得られる。さらには、摩耗に関する警告通知を伝達してもよく、あるいはポンプの運転がモニタ装置により停止される。信号コイル対の出力電圧は、内側回転子の回転速度の傾きによって低下するので、例えば定格回転速度が3000rpmである場合など、定格回転速度が40%未満である状況では適用できない。
本発明は、さらに、そのうちの一部はモニタ装置を含み、一部は含まない、以下の構造によって説明されるものであり、これらの構造は、本発明を限定するものではない。同様の機能を有する他の構造も本発明の範囲内に含まれる。
戦略1:キャンド・ポンプの構造的な改良は、固定軸の剛性を向上させることであり、また、要件に従ってモニタ装置を設けることである。固定軸の剛性を向上させる方法は、キャンド・モータのモータ・リアケーシングの金属構造の軸後部金属サポートを、キャンド・モータの内側回転子の回転子継鉄の内側空間に軸方向に挿入することと、格納シェルのブランク後部軸サポートによって腐食性流体を隔離することと、より長い保持長さによって固定軸の剛性を向上させ、合力のアーム長を短くするように、軸後部金属サポートをブランク後部軸サポートに緊密に装着することと、を含んでいる。その結果、固定軸の剛性の向上によって構造信頼性が向上する。
戦略2:格納シェルのブランク後部軸サポートの内側には、例えば軸受の摩耗を検出するモニタ装置であるモニタ装置を取り付けるためのスペースが提供されており、これによって、ポンプの信頼性が確保される。モニタ装置は、二次磁石とモニタセットとを有し、閉ループ磁界を形成している。二次磁石は、内側回転子の回転子継鉄の内側で、主磁石の反対側の対応する位置に設けられる。内側回転子は、腐食性流体による腐食を防ぐためにカプセル化されている。二次継鉄とモニタ素子とを含むモニタセットは、格納シェルのブランク後部軸サポートの環状スロットに取り付けられ、これにより、モニタセットは格納シェルで保護されている。モニタ素子は、例えば、軸受の摩耗を監視するための信号コイル対である。
戦略3:回転子継鉄の内側空間にあるモニタ装置は、二次磁石とモニタセットとを有する。二次磁石の体積は、順磁束磁石の体積の10分の1未満であり、このため、順磁束磁石を延長するのに比べて磁石のコストが低い。また、高負荷に耐えるために、より長い軸受を用いる場合には、より長い回転子継鉄を用いることができ、この回転子継鉄に二次磁石を組み付けることができる。
戦略4:磁束線と高周波PWM電源により形成される高調波とによって生成される回転子継鉄磁気経路は、回転子継鉄を通過する。回転子継鉄は、この回転子継鉄の内側空間に設けられるモニタ装置を遮蔽する。モニタ装置の二次磁石の数は主磁石と同じであり、二次磁石は、内側回転子の回転子継鉄の内側で、主磁石の反対側の対応する位置に設けられ、これにより、回転子継鉄磁気経路と固定子継鉄磁気経路は回転子継鉄に共存することが可能である(つまり、モニタ装置の磁束線は、回転子継鉄磁気経路の磁束線と干渉することなく回転子継鉄を通過する)。
二次磁石の表面から出る磁束線は、空隙を通って二次継鉄に至り、続いて逆に戻る磁力線によって隣接する二次磁石に至り、そして回転子継鉄を通って元の二次磁石に至り、このようにして閉ループを形成している。内側回転子が回転しているときには、モニタ素子が磁束を横切ることで電圧信号を出力し、この電圧信号は独立であって、外側の電圧による影響を受けない。
戦略5:独立モニタ装置の環状二次継鉄の長さは、回転子継鉄の軸方向の長さと内側回転子の軸方向運動距離の和よりも長く、また、信号コイル対の軸方向の全長よりも長い。各信号コイルの軸方向の長さは、二次磁石の軸方向の長さ60%よりも長い。信号コイル対の軸方向の全長は、二次磁石の軸方向の長さと内側回転子の軸方向自由運動距離の和よりも長く、これによって、内側回転子の回転に伴って二次磁石が軸方向に移動することがあっても、回転子継鉄磁気経路は変形なく安定したままであり、その結果、外部からの干渉の影響を受けることなく信頼性の高い信号出力が得られる。
信号コイル対が横切る磁束線の量は、内側回転子の軸方向の移動量または軸受の軸方向の摩耗量に比例的に減少する。互いに対向する2つの信号コイルにより生成される電圧信号の差分電圧は、内側回転子の径方向変位または軸受の径方向の摩耗に比例する。
戦略6:二次継鉄の後端部はアラインメント点を有し、これはモータ・リアケーシングの軸後部金属サポートの別のアラインメント点に一致しており、キャンド・モータの固定子がモータ・ケーシングに組み付けられるときには、アラインメント点を合わせることにより、固定子と回転子の継鉄の電気角位置が揃うことになる。モニタ素子と継鉄は、完全なモニタセットとしてカプセル化されており、これにより、メンテナンスおよび交換を容易にして、磁気的位置決めの補正を確保している。
本発明は、さらに、そのうちの一部はモニタ装置を含み、一部は含まない、以下の構造によって説明されるものであり、これらの構造は、本発明を限定するものではない。同様の機能を有する他の構造も本発明の範囲内に含まれる。
1.センサレス・モードで作動してポンプを駆動するドライバを必要とする、センサレス・キャンド・ポンプ。
(a)単純固定軸:この固定軸は、軸受摩耗の可能性が低い、全出力範囲での一般的用途に適している。軸方向に延出する格納シェルのブランク後部軸サポートと、軸後部金属サポートとによって、合力のアーム長を短くしており、また、軸後部金属サポートとブランク後部軸サポートとは、固定軸の剛性を向上させるように、緊密に結合されている。
(b)複合固定軸:この固定軸は、軸受摩耗の可能性が低く、高温で作動し、低NPSHr(必要有効吸込ヘッド)要件に関連し、高出力範囲に関連する分野で使用される。軸方向に延出する格納シェルのブランク後部軸サポートと、軸後部金属サポートとによって、合力のアーム長を短くしており、また、そのセラミック軸スリーブは、ネジによって、金属軸の円形頭部と軸後部金属サポートの圧縮面との間で強く圧迫されており、これにより固定軸の剛性を向上させている。
2.センサレス・モードで作動してポンプを駆動するドライバを必要とする、センサ・キャンド・ポンプ。
(a)単純固定軸:この固定軸は、軸受摩耗の可能性が高い、全出力範囲での一般的用途に適している。軸方向に延出する格納シェルのブランク後部軸サポートと、軸後部金属サポートとによって、合力のアーム長を短くしており、また、軸後部金属サポートとブランク後部軸サポートとは、固定軸の剛性を向上させるように、緊密に結合されている。
二次磁石が、内側回転子の回転子継鉄の内側で、主磁石の反対側の対応する位置に設けられ、二次継鉄と信号コイル対とを含むモニタ装置のモニタセットが、軸後部金属サポートにしっかり固定されて、軸受の摩耗を監視するために格納シェルのブランク後部軸サポートの環状スロットに配置されている。高負荷要求を満たすために、より長い軸受が用いられ、この場合、より長い回転子継鉄を採用することができ、その回転子継鉄に二次磁石を設けることができる。
(b)複合固定軸:この固定軸は、軸受摩耗の可能性が高く、高温で作動し、低NPSHr要件に関連し、高出力範囲での一般的用途に適している。軸方向に延出する格納シェルのブランク後部軸サポートと、軸後部金属サポートとによって、合力のアーム長を短くしており、また、そのセラミック軸スリーブは、ネジによって、金属軸の円形頭部と軸後部金属サポートの圧縮面との間で強く圧迫されており、これにより固定軸の剛性を向上させている。
二次磁石が、内側回転子の回転子継鉄の内側で、主磁石の反対側の対応する位置に設けられ、二次継鉄と信号コイル対とを含むモニタ装置のモニタセットが、軸後部金属サポートにしっかり固定されて、軸受の摩耗を監視するために格納シェルの後部軸座の環状スロットに配置されている。高負荷要求を満たすために、より長い軸受が用いられ、この場合、より長い回転子継鉄を採用することができ、その回転子継鉄に二次磁石を設けることができる。
3.モニタ装置の構造
モニタ装置は、内側回転子の回転子継鉄の内側で主磁石の反対側の対応する位置に設けられる二次磁石を有する。さらに、二次継鉄とモニタ素子とを含むモニタセットを有し、これは、軸後部金属サポートにしっかり固定されて、軸受の摩耗を監視するために格納シェルのブランク後部軸サポートの環状スロットに配置されており、モニタ素子としてホールセンサと信号コイル対の両方を含む場合は、センサ・モードで作動するドライバを提供し、モニタ素子が信号コイル対のみである場合は、センサレス・モードで作動するドライバが必要である。
本開示は、本明細書において単に説明を目的として以下で提示する、よって本開示を限定するものではない、詳細な説明によって、より良く理解されるであろう。
本発明に係るキャンド・ポンプの、モニタ装置なしの両持ち固定軸の断面図である。 本発明に係るキャンド・ポンプの、モニタ装置付きの両持ち固定軸の断面図である。 本発明に係るキャンド・ポンプの、モニタ装置なしの片持ちカンチレバー複合固定軸の断面図である。 本発明に係るキャンド・ポンプの、モニタ装置付きの片持ちカンチレバー複合固定軸の断面図である。 本発明に係るキャンド・ポンプの、モニタ装置と延長された軸受とを備える両持ち固定軸の断面図である。 本発明により1つのユニットに統合されたモータの内側回転子とインペラの断面図である。 本発明に係るキャンド・ポンプの、両持ち固定軸の格納シェルの断面図である。 本発明に係るキャンド・ポンプの、片持ち固定軸の格納シェルの断面図である。 本発明による両持ち固定軸の軸方向の保持長さLを示している。 本発明による片持ち固定軸の軸方向の保持長さLを示している。 本発明による両持ち固定軸上で多様な力とそのモーメントを受ける内側回転子を示している。 本発明による片持ちカンチレバー固定軸上で多様な力とそのモーメントを受ける内側回転子を示している。 本発明によりモータの軸受の摩耗を検出するためのモニタ装置の径方向断面図である。 本発明により軸受の摩耗を検出するためのモニタ装置の軸方向断面図である。 本発明により8つの信号コイル対を利用して軸受の摩耗を検出するためのモニタ装置の概略図である。 本発明により軸受の摩耗を検出するためのモニタ装置の概略斜視図である。 本発明により4つの信号コイル対を利用して軸受の摩耗を検出するためのモニタ装置の概略図である。 本発明により3つのホールセンサを有する、キャンド・ポンプのモニタ装置の概略図である。
第1の実施形態:図1Aおよび3Aに示すように、モニタ装置を持たない両持ち固定軸を備えるキャンド・ポンプ。
図1A、3Aを参照すると、図1Aは、本発明に係るキャンド・ポンプの、モニタ装置なしの両持ち固定軸の断面図であり、図3Aは、本発明に係るキャンド・ポンプの、両持ち固定軸の格納シェルの断面図である。このキャンド・ポンプは、ポンプ・ケーシング4と、三角フロントサポート31と、I型インペラ5と、I型格納シェル41と、固定軸3と、キャンド・モータ8と、を備える。
ポンプ・ケーシング4は、入口44と、出口45と、流路47とを有し、I型インペラ5を収容するために用いられる。ポンプ・ケーシング4の入口44の内側に設けられたフロント・スラストリング46は、I型インペラ5のスラスト軸受53と対になって一緒に軸スラスト軸受を形成するために用いられる。
ポンプ・ケーシング4の入口44に固定された三角フロントサポート31は、ハブ開口部54を軸方向に通って、固定軸3の一端を支持している。
I型インペラ5は、ポンプ・ケーシング4内に組み付けられている。三角フロントサポート31は、ハブ開口部54を軸方向に通ることができ、固定軸3の端部を支持するために用いられる。ハブプレート52は、キャンド・モータ8の内側回転子7の軸方向延出部76に結合するように用いられ、これによって、I型インペラ5と内側回転子7は、一体に統合されるか、または1つに結合するように組み込まれている。
I型格納シェル41は、このI型格納シェル41の底側に設けられたブランク後部軸サポート413を備えるカップ状シェル構造である。環状スロット413bを備えるブランク後部軸サポート413に貫通孔がないことによって、I型格納シェル41からのリークがないことが保証される。I型格納シェル41の前側に設けられたシェルフランジ部411は、ポンプ・ケーシング4およびキャンド・モータ8のポンプ側フランジ811と結合されて、これにより腐食性流体のリークを防いでいる。I型格納シェル41の横方向外側に設けられたシェル柱状部412は、摺動遊合で固定子83の内側を通っている。
キャンド・モータ8のモータ・リアケーシング82は、十分な支持強度でI型格納シェル41の底側に緊密に装着されている。ブランク後部軸サポート413は、I型格納シェル41の底側の中心に設けられて、軸方向内向きに回転子継鉄72の内側空間に延出している。ブランク後部軸サポート413は、このブランク後部軸サポート413内に配置されて内向きに突き出した軸保持穴413aを有し、さらに、ブランク後部軸サポート413の外側に設けられた環状スロット413bを有している。リア・スラストリング414が、軸保持穴413aの前面に設けられて、内側回転子7のセラミック軸受79と一緒になって軸スラスト軸受を形成するように用いられる。
軸保持穴413aの外側の側壁面は、モータ・リアケーシング82の軸後部金属サポート821aと完全に結合されて、これにより支持されており、軸保持穴413aの底側は、モータ・リアケーシング82の後方バルジ部823の内側に完全に嵌合し、固定軸3の高剛性支持を提供するようにバルジ部823の長さは軸保持穴413aの深さHと一致しており、この種の構造を以下では金属保持サポートと呼ぶ。I型格納シェル41は、固定軸3の剛性支持を提供することなく、防食隔離特性を提供するためにのみに用いられる。
両持ち支持構造である固定軸3は、耐腐食性かつ耐摩耗性のセラミック材料で構成されている。固定軸3の前側は、三角フロントサポート31によって支持されており、固定軸3の後側は、外向きに延出するブランク後部軸サポート413によって支持されている。固定軸3の中央部分は、セラミック軸受79とかみ合って、内側回転子7の回転を支持し、固定軸3の中央部分の長さは、セラミック軸受79の長さを満たしており、この中央部分の長さは、内側回転子7が受ける合力に耐えるため、また、内側回転子7の軸方向自由運動空間を確保するために適している。
ブランク後部軸サポート413の環状スロット413bは、モータ・リアケーシング82の軸後部金属サポート821aとしっかり結合されて、これにより支持されており、また、保持長さLを提供している。さらに、この環状スロット413bは、プラスチック材料の強度が温度の上昇により低下するという問題を克服することができる。
キャンド・モータ8は、固定子83と、モータ・ケーシング81と、モータ・リアケーシング82と、内側回転子7と、を備える。
固定子83は、モータ・ケーシング81内にしっかりと固定されている。固定子83には、巻線831が巻回されている。巻線831に印加されるPWM電力によって、内側回転子7の磁界と相互作用する磁束を発生させ、その内側回転子7がトルクを発生して回転することでI型インペラ5を駆動し、これにより流体動力を出力する。固定子83の巻線831が腐食性流体によって腐食することを、I型格納シェル41により防いでいる。
モータ・ケーシング81のポンプ側フランジ811は、腐食性流体のリークを防ぐように、シェルフランジ部411およびポンプ・ケーシング4と、しっかり固定するために用いられる。モータ・ケーシング81のバックフランジは、モータ・リアケーシング82を固定するために用いられ、これによって、固定軸3が必要とする支持をモータ・リアケーシング82の軸後部金属サポート821aにより提供することができるように、完全な構造支持を与える。
モータ・リアケーシング82は、固定軸3が必要とする支持をモータ・リアケーシング82の軸後部金属サポート821aにより提供することができるように、モータ・ケーシング81のバックフランジと固定される。固定子83の巻線831の電力線は、リードポート822を介して駆動電源に接続される。
内側回転子7は、主磁石71と、回転子継鉄72と、軸方向延出部76と、を備える環状構造であり、耐腐食性エンジニアリングプラスチックで覆われた環状の回転子樹脂エンクロージャ74を形成している。セラミック軸受79が、内側回転子7の中心穴に取り付けられている。ハブプレート52は、内側回転子7の軸方向延出部76と結合するように用いられ、これによって、I型インペラ5と内側回転子7は、一体に統合されるか、または1つに相互に結合するように組み込まれている。
ポンプが作動しているときには、流体が入口流線6に沿って流れ、インペラ出口流線61のようにI型インペラ5を通って流れた後の流体は加圧されている。加圧された流体は出口45により出力され、その流体の一部分は、折り返し流線62のように、I型インペラ5の後側を通ってI型格納シェル41の内部空間415に入る。その後、流体は、内側回転子7の外側とI型格納シェル41の内部空間415との間の隙間に流れ、続いて固定軸3とセラミック軸受79との間の別の隙間を通って流れる。つぎに、流体は、終端潤滑流線65のようにハブ開口部54を通って、I型インペラ5の入口に流れる。このような流体の循環的な流れは、セラミック軸受79を潤滑するとともに、内側回転子7により発生する熱を運び去るために用いられる。
第2の実施形態:図1C、図3B、および図5Bに示すように、モニタ装置を持たない片持ちカンチレバー複合固定軸を備えるキャンド・ポンプ。
図1Cおよび図3Bを参照すると、図1Cは、本発明に係るキャンド・ポンプの、モニタ装置なしの片持ちカンチレバー複合固定軸の断面図であり、図3Bは、本発明に係るキャンド・ポンプの、片持ち固定軸の格納シェルの断面図であり、図5Bは、本発明による片持ちカンチレバー固定軸上で多様な力とそのモーメントを受ける内側回転子を示している。このキャンド・ポンプは、金属ケーシング4aと、II型インペラ5aと、II型格納シェル41aと、複合固定軸3aと、キャンド・モータ8と、を備える。
金属ケーシング4aは、入口44と、出口45と、流路47とを有し、II型インペラ5aを収容するために用いられる。金属ケーシング4aは、鋳造による金属ウォック構造である。金属ケーシング4aの内側は、耐腐食性プラスチック製のケーシング・ライナ4bで覆われている。金属ケーシング4aの内側で入口44に設けられたフロント・スラストリング46は、II型インペラ5aのスラスト軸受53と一緒になって軸スラスト軸受を形成するために用いられる。
II型インペラ5aは、金属ケーシング4a内に設けられる。ハブプレート52は、内側回転子7の軸方向延出部76と結合するように用いられ、これによって、II型インペラ5aと内側回転子7は、一体に統合されるか、または相互に一体に組み込まれている。ハブ釣合い穴54aは、循環流体を例えば終端潤滑流線65に沿って再循環させるために、曲面ハブプレート55の中心にある開口部である。金属ケーシング4aの入口44とII型インペラ5aの入口とによって、滑らかで障害のない、内径が大きくなる流路を形成しており、また、曲面ハブプレート55の形状も、同じく滑らかな曲面形状である。これは、ポンプが良好なNPSHr性能を持つことを確実にするために、流体の流速を低減させるのに適している。
II型格納シェル41aは、このII型格納シェル41aの底側に設けられた穴を含む後部軸座418を有するカップ状構造である。II型格納シェル41aの前側に設けられたシェルフランジ部411は、金属ケーシング4aおよびキャンド・モータ8のポンプ側フランジ811と結合されて、これにより流体のリークを防いでいる。II型格納シェル41aの横方向外側に設けられたシェル柱状部412は、摺動遊合で固定子83の内側を通っている。
また、II型格納シェル41aの底側は、十分な支持強度でモータ・リアケーシング82に緊密に装着されている。II型格納シェル41aの底側の中心に設けられた後部軸座418は、回転子継鉄72の内側空間に向かって内向きに延出し、後部軸座418は、内向きにさらに突き出して、後部軸座418の内側に設けられた開口部418aと、後部軸座418の外側に設けられた凹型開口部418bとを、互いに対応するように有している。
この後部軸座418の中心に設けられた開口部は複合固定軸3aを収容するために用いられるものであり、また、後部軸座418のシール面418dは、Oリングおよびモータ・リアケーシング82の軸後部金属サポート821cを含んで、セラミック軸スリーブ33の表面により緊密に付着されており、この種の構造を以下では金属複合サポートと呼び、これによって確実にリークがないようにすることができる。本実施形態は、軸受の摩耗を検出するための検出装置を提供するモニタ装置を備えていない。
片持ち支持構造である複合固定軸3aは、セラミック軸スリーブ33と、金属軸32と、耐腐食性かつ耐摩耗性のモータ・リアケーシング82とで構成されている。複合固定軸3aとII型格納シェル41aとによって、完全密封軸系を形成している。複合固定軸3aの一端がモータ・リアケーシング82の複合軸後部金属サポート821cに取り付けられると、必要な支持強度が提供される。
金属軸32は、セラミック軸スリーブ33のスリーブ中心穴332を通っており、また、金属軸32の一端に設けられた円形頭部321を有し、これがセラミック軸スリーブ33の前端面333に対して強く押し付けられる。金属軸32の歯部323が、II型格納シェル41aの後部軸座418と、径方向内向きに延出する複合軸後部金属サポート821cの中心穴とを貫通している。セラミック軸スリーブ33の滑りスラスト面331が複合軸後部金属サポート821cの表面に強く押し付けられるように、歯部323のナットは、モータ・リアケーシング82a上で固定されている。
金属軸32の円形頭部321は樹脂エンクロージャ322で覆われており、円形頭部321上には封止および耐腐食のために用いられるOリングが設けられている。セラミック軸スリーブ33の滑りスラスト面331は、内側回転子7のセラミック軸受79と一緒になって軸スラスト軸受を形成するために用いられる。
滑りスラスト面331の表面と、モータ・リアケーシング82aの複合軸後部金属サポート821cの表面とは、互いに強く固定および圧迫されており、滑りスラスト面331と複合軸後部金属サポート821cとの間に緊密に詰めて設けられる後部軸座418のシール面418dが、別のOリングを含む滑りスラスト面331の表面によりカプセル化されて、これにより確実にリークがないようにしており、このようにして高剛性の複合固定軸3aを形成している。
キャンド・モータ8は、固定子83と、モータ・ケーシング81と、モータ・リアケーシング82aと、内側回転子7と、を備える。
固定子83は、モータ・ケーシング81内にしっかりと固定されている。固定子83には、巻線831が巻回されている。巻線831に印加されるPWM電力によって、内側回転子7の磁界と相互作用する磁束を発生させることができ、その内側回転子7がトルクを発生して回転することでII型インペラ5aを駆動し、これにより流体動力を出力する。固定子83の巻線831が腐食性流体によって腐食することを、II型格納シェル41aにより防いでいる。
モータ・ケーシング81のポンプ側外方に設けられたポンプ側フランジ811は、腐食性流体のリークを防ぐように、シェルフランジ部411および金属ケーシング4aと固定するために用いられる。モータ・ケーシング81のバックフランジは、モータ・リアケーシング82aと固定するために用いられ、これによって、複合固定軸3aが必要とする支持をモータ・リアケーシング82aの複合軸後部金属サポート821cにより提供することができるように、完全な構造支持を与える。
モータ・リアケーシング82aは、複合固定軸3aが必要とする支持をモータ・リアケーシング82aの複合軸後部金属サポート821cにより提供することができるように、モータ・ケーシング81のバックフランジとしっかり固定される。固定子83の巻線831の電力線は、リードポート822を介して駆動電源に接続される。
内側回転子7は、主磁石71と、回転子継鉄72と、軸方向延出部76と、を備える環状構造であり、耐腐食性エンジニアリングプラスチックで覆われた環状の回転子樹脂エンクロージャ74を形成している。セラミック軸受79が、内側回転子7の中心穴に取り付けられている。ハブプレート52は、内側回転子7の軸方向延出部76と結合するように用いられ、これによって、II型インペラ5aと内側回転子7は、一体に統合されるか、または1つに相互に結合するように組み込まれている。
ポンプが作動しているときには、流体が入口流線6に沿って流れ、インペラ出口流線61のようにII型インペラ5aを通って流れた後の流体は加圧されている。加圧された流体は出口45により出力され、このとき、その流体の一部分は、折り返し流線62のように、II型インペラ5aの後側を通ってII型格納シェル41aの内部空間415に入る。
その後、流体は、内側回転子7の外側とII型格納シェル41aの内部空間415との間の隙間に流れ、続いて複合固定軸3aとセラミック軸受79との間の別の隙間を通って流れる。つぎに、流体は、終端潤滑流線65のように曲面ハブプレート55の中心に設けられたハブ釣合い穴54aを通って、II型インペラ5aの入口に流れる。このような流体の循環的な流れは、セラミック軸受79を潤滑するとともに、内側回転子7により発生する熱を運び去るために用いられる。
第3の実施形態:図1B、1E、および図3Aに示す、両持ちカンチレバー複合固定軸とモニタ装置とを備えるキャンド・ポンプ。
図1B、1E、および図3Aを参照すると、図1Bは、本発明に係るキャンド・ポンプの、モニタ装置付きの両持ち固定軸の断面図であり、図1Eは、本発明に係るキャンド・ポンプの、モニタ装置と延長された軸受とを備える両持ち固定軸の断面図であり、図3Aは、本発明に係るキャンド・ポンプの、両持ち固定軸の格納シェルの断面図である。このキャンド・ポンプは、ポンプ・ケーシング4と、三角フロントサポート31と、I型インペラ5と、I型格納シェル41と、モニタ装置9と、固定軸3と、キャンド・モータ8と、を備える。
ポンプ・ケーシング4は、入口44と、出口45と、流路47とを有し、I型インペラ5を収容するために用いられる。フロント・スラストリング46が、ポンプ・ケーシング4の入口44の内側に設けられ、I型インペラ5のスラスト軸受53と対になって一緒に軸スラスト軸受を形成するために用いられる。
三角フロントサポート31は、ポンプ・ケーシング4の入口44に固定されて、ハブ開口部54を軸方向に通り、固定軸3の一端を支持するために用いられる。
I型インペラ5は、ポンプ・ケーシング4内に組み付けられている。三角フロントサポート31は、ハブ開口部54を軸方向に通ることができ、固定軸3の端部を支持するために用いられる。ハブプレート52は、キャンド・モータ8の内側回転子7の軸方向延出部76に結合するように用いられ、これによって、I型インペラ5と内側回転子7は、一体に統合されるか、または1つに結合するように組み込まれている。
I型格納シェル41は、このI型格納シェル41の底側に設けられたブランク後部軸サポート413を備えるカップ状シェル構造である。環状スロット413bを備えるブランク後部軸サポート413に貫通孔がないことによって、I型格納シェル41からのリークがないことが保証される。I型格納シェル41の前側に設けられたシェルフランジ部411は、ポンプ・ケーシング4およびキャンド・モータ8のポンプ側フランジ811と結合されて、これにより腐食性流体のリークを防いでいる。
I型格納シェル41の横方向外側に設けられたシェル柱状部412は、摺動遊合で固定子83の内側を通っている。キャンド・モータ8のモータ・リアケーシング82は、十分な支持強度でI型格納シェル41の底側に緊密に装着されている。ブランク後部軸サポート413は、I型格納シェル41の底側の中心に設けられて、軸方向内向きに回転子継鉄72の内側空間に延出している。ブランク後部軸サポート413は、内向きに突き出した中心の軸保持穴413aを有し、環状スロット413bは、ブランク後部軸サポート413の外側にある。
リア・スラストリング414が、軸保持穴413aの前面に設けられ、内側回転子7のセラミック軸受79と一緒になって軸スラスト軸受を形成するように用いられる。二次継鉄91と複数の信号コイル対92とを含むモニタセット93が、モータ・リアケーシング82のモニタリング軸後部金属サポート821b上に設けられて、軸保持穴413aの外側側壁面の環状スロット413b内に配置されている。ブランク後部軸サポート413の底側は、モータ・リアケーシング82のバルジ部823の内側に完全に嵌合している。固定軸3の高剛性を提供するように、バルジ部823の長さは軸保持穴413aの深さHに一致している。I型格納シェル41は、固定軸3の剛性支持を提供することなく、防食隔離機能を提供するためにのみに用いられる。
軸方向に延びるブランク後部軸サポート413の環状スロット413bに配置されたモニタ装置9は、軸受の摩耗を検出するために用いられる。モニタ装置9の構造は、複数の二次磁石73と、モニタセット93とを含んでいる。二次磁石73の数は、主磁石71と同じである。二次磁石73は、I型格納シェル41の底側付近で、内側回転子7の回転子継鉄72の内側の一端に組み付けられるとともに、主磁石71に背を向けて向かい合っている。
二次磁石73の軸方向の長さは、少なくとも、内側回転子7の(軸受の軸方向の摩耗を含む)軸方向運動距離の2倍よりも大きい。モニタセット93は、二次継鉄91(図示せず)と、複数の信号コイル対92とを含んでいる。二次継鉄91は、基準点として二次磁石73の中心に位置を取り、二次継鉄91の軸方向の長さは前部と後部の2つのセクションに分けられる。二次磁石73が軸方向に動いたときに、二次磁石73の両端が二次継鉄91の2つのセクションの範囲を超えることはない。
固定軸3は、耐腐食性かつ耐摩耗性のセラミック材料で構成された両持ち支持構造である。固定軸3の前側は、三角フロントサポート31によって支持されており、固定軸3の後側は、外向きに延出するブランク後部軸サポート413によって支持されている。固定軸3の中央部分は、セラミック軸受79とかみ合って、内側回転子7の回転を支持しており、固定軸3の中央部分の長さは、セラミック軸受79の長さを満たすとともに、内側回転子7の軸方向自由運動空間を確保している。
ブランク後部軸サポート413の環状スロット413bは、モータ・リアケーシング82のモニタリング軸後部金属サポート821bとしっかりと結合されて、これにより支持されており、また、保持長さLを提供している。さらに、この環状スロット413bは、プラスチック材料の強度が温度の上昇により低下するという問題を克服することができる。
キャンド・モータ8は、固定子83と、モータ・ケーシング81と、モータ・リアケーシング82と、内側回転子7と、を備える。
固定子83は、モータ・ケーシング81内にしっかりと固定されている。固定子83には、巻線831が巻回されている。巻線831に印加されるPWM電力によって、内側回転子7の磁界と相互作用する磁束を発生させる。その内側回転子7がトルクを発生して回転することでI型インペラ5を駆動し、これにより流体動力を出力する。固定子83の巻線831が腐食性流体によって腐食することを、I型格納シェル41により防いでいる。
モータ・ケーシング81のポンプ側フランジ811は、腐食性流体のリークを防ぐように、シェルフランジ部411およびポンプ・ケーシング4と、しっかり固定するために用いられる。モータ・ケーシング81のバックフランジは、モータ・リアケーシング82を固定するために用いられ、これによって、固定軸3が必要とする支持をモータ・リアケーシング82のモニタリング軸後部金属サポート821bにより提供することができるように、完全な構造支持を与える。
モータ・リアケーシング82は、固定軸3が必要とする支持をモータ・リアケーシング82上でモニタリング軸後部金属サポート821bにより提供することができるように、モータ・ケーシング81と固定される。固定子83の巻線831の電力線は、リードポート822を介して駆動電源に接続される。
内側回転子7は、主磁石71と、回転子継鉄72と、二次磁石73と、軸方向延出部76と、を備える環状構造である。二次磁石73の数は、主磁石71と同じである。二次磁石73は、I型格納シェル41の底側付近で、内側回転子7の回転子継鉄72の内側の一端に組み付けられるとともに、主磁石71に背を向けて向かい合っている。セラミック軸受79が、内側回転子7の中心穴に取り付けられている。ハブプレート52は、内側回転子7の軸方向延出部76と結合するように用いられ、これによって、I型インペラ5と内側回転子7は、一体に統合されるか、または1つに相互に結合するように組み込まれている。
ポンプが作動しているときには、流体が入口流線6に沿って流れ、インペラ出口流線61のようにI型インペラ5を通って流れた後の流体は加圧されている。加圧された流体は出口45により出力され、その流体の一部分は、折り返し流線62のように、I型インペラ5の後側を通ってI型格納シェル41の内部空間415に入る。
その後、流体は、内側回転子7の外側とI型格納シェル41の内部空間415との間の隙間に流れ、続いて固定軸3とセラミック軸受79との間の別の隙間を通って流れる。つぎに、流体は、終端潤滑流線65のようにハブ開口部54を通って、I型インペラ5の入口に流れる。このような流体の循環的な流れは、セラミック軸受79を潤滑するとともに、内側回転子7により発生する熱を運び去るために用いられる。
図1Eを参照すると、これは、本発明に係るキャンド・ポンプの、モニタ装置と延長された軸受とを備える両持ち固定軸の断面図である。この実施形態は、高負荷運転のために延長されたセラミック軸受79を備えるキャンド・ポンプを開示するものである。この場合、ポンプの構造設計において、回転子継鉄72の長さは、セラミック軸受79の長さに合わせて適宜延長することができる。
第4の実施形態:図1D、3B、4B、および5Bに示す、片持ちカンチレバー複合固定軸とモニタ装置とを備えるキャンド・ポンプ。
図1D、3B、4B、および5Bを参照すると、図1Dは、本発明に係るキャンド・ポンプの、モニタ装置付きの片持ちカンチレバー複合固定軸の断面図であり、図3Bは、本発明に係るキャンド・ポンプの、片持ち固定軸の格納シェルの断面図であり、図4Bは、本発明による片持ち固定軸の軸方向の保持長さLを示しており、図5Bは、本発明による片持ちカンチレバー固定軸上で多様な力とそのモーメントを受ける内側回転子を示している。このキャンド・ポンプは、金属ケーシング4aと、II型インペラ5aと、II型格納シェル41aと、モニタ装置9と、複合固定軸3aと、キャンド・モータ8と、を備える。
金属ケーシング4aは、入口44と、出口45と、流路47とを有し、II型インペラ5aを収容するために用いられる。金属ケーシング4aは、鋳造による金属ウォック構造である。金属ケーシング4aの内側は、耐腐食性プラスチック製のケーシング・ライナ4bで覆われている。金属ケーシング4aの内側で入口44に設けられたフロント・スラストリング46は、II型インペラ5aのスラスト軸受53と一緒になって軸スラスト軸受を形成するために用いられる。
II型インペラ5aは、金属ケーシング4a内に設けられる。ハブプレート52は、内側回転子7の軸方向延出部76と結合するように用いられ、これによって、II型インペラ5aと内側回転子7は、一体に統合されるか、または相互に一体に組み込まれている。ハブ釣合い穴54aは、循環流体を例えば終端潤滑流線65に沿って再循環させるため、曲面ハブプレート55の中心にある貫通穴である。金属ケーシング4aの入口44とII型インペラ5aの入口とによって、滑らかで障害のない、内径が大きくなる流路を形成しており、また、曲面ハブプレート55の形状も、同じく滑らかな曲面形状である。これは、ポンプが良好なNPSHr性能を有することを確実にするために、流体の流速を低減させるのに適している。
II型格納シェル41aは、このII型格納シェル41aの底側に設けられた開口部を含む後部軸座418を有するカップ状構造である。II型格納シェル41aの前側で、シェルフランジ部411が、金属ケーシング4aおよびキャンド・モータ8のポンプ側フランジ811と結合されて、これにより腐食性流体のリークを防いでいる。II型格納シェル41aの横方向外側に設けられたシェル柱状部412は、摺動遊合で固定子83の内側を通っている。
また、II型格納シェル41aの底側は、十分な支持強度でモータ・リアケーシング82aに緊密に装着されている。II型格納シェル41aの底側の中心で、後部軸座418が、回転子継鉄72の内側空間に向かって内向きに延出している。後部軸座418は、内向きにさらに突き出して、後部軸座418の内側に設けられた開口部418aと、後部軸座418の外側に設けられた凹型開口部418bとを、互いに対応するように有している。この後部軸座418の中心に設けられた開口部は、複合固定軸3aを収容するために用いられる。
後部軸座418のシール面418dは、Oリングおよびモータ・リアケーシング82aのモニタリング複合軸後部金属サポート821dを含んで、セラミック軸スリーブ33の表面により緊密に付着されており、これによってリークがないようにしている。
軸方向に延びる後部軸座418の凹型開口部418bの環状面に配置されたモニタ装置9は、軸受の摩耗を検出するために用いられる。モニタ装置9の構造は、複数の二次磁石73と、モニタセット93とを含んでいる。二次磁石73の数は、主磁石71と同じである。二次磁石73は、II型格納シェル41aの底側付近で、内側回転子7の回転子継鉄72の内側の一端に組み付けられるとともに、主磁石71に背を向けて向かい合っている。二次磁石73の軸方向の長さは、少なくとも、内側回転子7の(軸受の軸方向の摩耗を含む)軸方向運動距離の2倍よりも大きい。モニタセット93は、二次継鉄91と、複数の信号コイル対92とを含んでいる。二次継鉄91は、基準点として二次磁石73の中心に位置を取り、二次継鉄91の軸方向の長さは前部と後部の2つのセクションに分けられる。二次磁石73が動いたときに、二次磁石73の軸方向の両端が二次継鉄91の2つのセクションの範囲を超えることはない。
片持ち支持構造である複合固定軸3aは、セラミック軸スリーブ33と、金属軸32と、モータ・リアケーシング82aと、を備える。複合固定軸3aとII型格納シェル41aとによって、完全密封軸系を形成している。複合固定軸3aの一端がモータ・リアケーシング82aのモニタリング複合軸後部金属サポート821dに取り付けられると、必要な支持強度が提供される。金属軸32は、セラミック軸スリーブ33のスリーブ中心穴332を通り、金属軸32の円形頭部321は、セラミック軸スリーブ33の前端面333に対して強く押し付けられる。
金属軸32の歯部323が、II型格納シェル41aの後部軸座418と、軸方向内向きに延出するモニタリング複合軸後部金属サポート821dの中心穴とを貫通している。セラミック軸スリーブ33の滑りスラスト面331がモニタリング複合軸後部金属サポート821dの表面に強く押し付けられるように、歯部323のナットは、モータ・リアケーシング82a上で固定されている。金属軸32の円形頭部321は樹脂エンクロージャ322で覆われており、円形頭部321には封止および耐腐食のために用いられるOリングが設けられている。セラミック軸スリーブ33の滑りスラスト面331は、内側回転子7のセラミック軸受79と一緒になって軸スラスト軸受を形成するために用いられる。
滑りスラスト面331の表面と、モータ・リアケーシング82aのモニタリング複合軸後部金属サポート821dの表面とは、互いに強く固定および圧迫されて、後部軸座418のシール面418dが滑りスラスト面331とモニタリング複合軸後部金属サポート821dとの間に緊密に詰めて設けられており、また、Oリングを圧迫することで確実にリークがないようにして、このように高剛性の複合固定軸3aを形成している。
キャンド・モータ8は、固定子83と、モータ・ケーシング81と、モータ・リアケーシング82aと、内側回転子7と、を備える。
固定子83は、モータ・ケーシング81内にしっかりと固定されている。固定子83には、巻線831が巻回されている。巻線831に印加されるPWM電力によって、内側回転子7の磁界と相互作用する磁束を発生させることができ、その内側回転子7がトルクを発生して回転することでII型インペラ5aを駆動し、これにより流体動力を出力する。固定子83の巻線831が腐食性流体によって腐食することを、II型格納シェル41aにより防いでいる。
モータ・ケーシング81のポンプ側外方で固定されるポンプ側フランジ811は、さらに、腐食性流体のリークを防ぐように、シェルフランジ部411および金属ケーシング4aを固定する。モータ・ケーシング81のバックフランジは、モータ・リアケーシング82aと固定するために用いられ、これによって、複合固定軸3aが必要とする支持をモータ・リアケーシング82aのモニタリング複合軸後部金属サポート821dにより提供することができるように、完全な構造支持を与える。
モータ・リアケーシング82aは、複合固定軸3aが必要とする支持をモータ・リアケーシング82aのモニタリング複合軸後部金属サポート821dにより提供することができるように、モータ・ケーシング81のバックフランジとしっかり固定される。固定子83の巻線831の電力線は、リードポート822を介して駆動電源に接続される。
内側回転子7は、複数の主磁石71と、回転子継鉄72と、複数の二次磁石73と、軸方向延出部76と、を備える環状構造である。二次磁石73の数は、主磁石71と同じである。二次磁石73は、II型格納シェル41aの底側付近で、内側回転子7の回転子継鉄72の内側の一端に組み付けられるとともに、主磁石71に背を向けて向かい合っている。二次磁石73は、耐腐食性エンジニアリングプラスチックで構成された環状の回転子樹脂エンクロージャ74によって覆われている。セラミック軸受79が、内側回転子7の中心穴に取り付けられている。ハブプレート52は、内側回転子7の軸方向延出部76と結合するように用いられ、これによって、II型インペラ5aと内側回転子7は、一体に統合されるか、または1つに相互に結合するように組み込まれている。
ポンプが作動しているときには、流体が入口流線6に沿って流れ、インペラ出口流線61のようにII型インペラ5aを通って流れた後の流体は加圧されている。加圧された流体は出口45により出力され、このとき、その流体の一部分は、折り返し流線62のように、II型インペラ5aの後側を通ってII型格納シェル41aの内部空間415に入る。
その後、流体は、内側回転子7の外側とII型格納シェル41aの内部空間415との間の隙間に流れ、続いて複合固定軸3aとセラミック軸受79との間の別の隙間を通って流れる。つぎに、流体は、終端潤滑流線65のように曲面ハブプレート55の中心にあるハブ釣合い穴54aを通って、II型インペラ5aの入口に流れる。このような流体の循環的な流れは、セラミック軸受79を潤滑するとともに、内側回転子7により発生する熱を運び去るために用いられる。
図2を参照すると、これは、第3の実施形態により1つのユニットに統合されたモータの内側回転子7とI型インペラ5の断面図である。この実施形態の構造は、本発明の他の実施形態にも適用可能である。内側回転子7の中空部に取り付けられるセラミック軸受79は、固定軸3とかみ合うように用いられて、これにより、内側回転子7の回転を支持し、モータ出力を伝達するために用いられる動圧軸受を形成している。軸方向延出部76は、ハブプレート52と結合して、内側回転子7のトルクを伝達するために用いられる。
二次磁石73は、内側回転子7の回転子継鉄72の内側の一端に組み付けられるとともに、主磁石71に背を向けて向かい合っている。二次磁石73と内側回転子7は、腐食を防ぐために一緒にカプセル化されている。二次磁石73の数は主磁石71と同じであるが、二次磁石73の大きさは、主磁石71の10分の1未満である。
図3Aを参照すると、これは、本発明に係るキャンド・ポンプの、両持ち固定軸の格納シェルの断面図である。第3の実施形態のI型格納シェル41を例にとって、環状スロット413bとモニタセット93の組み付けについて以下で説明する。
I型格納シェル41は、リークがないように貫通孔を持たないカップ状構造である。I型格納シェル41の底側の中心にあるブランク後部軸サポート413は、内向きに延出している。軸方向に延出する長さGは、I型格納シェル41の底側からシェルフランジ部411に向かって延びている。ブランク後部軸サポート413は、内側から突き出して、中心軸保持穴413aを有し、その深さHはブランク後部軸サポート413の開口から軸保持穴413aの底側までである。
環状スロット413bは、I型格納シェル41の外側にある。リア・スラストリング414が、軸保持穴413aの前面にある。二次継鉄91と信号コイル対92とを含むモニタセット93は、ブランク後部軸サポート413の外側にある環状スロット413bに配置することができる。I型格納シェル41は、固定軸3の剛性支持を提供することなく、防食隔離機能を提供するためにのみに用いられる。
図3Bを参照すると、これは、本発明に係るキャンド・ポンプの、片持ち固定軸の格納シェルの断面図である。第4の実施形態のII型格納シェル41aを例にとって、凹型開口部418bとモニタセット93の組み付けについて以下で説明する。II型格納シェル41aは、その底側の中心に穴を有するカップ状シェル構造であり、(図1Cに示す)複合固定軸3aを収容するために用いられる。
II型格納シェル41aの底側の中心にある後部軸座418は、内向きに内部空間の中に延出している。後部軸座418は、開口部418aを有して、内側から突出する凸型構造である。軸方向に延出する長さGは、II型格納シェル41aの底側からシェルフランジ部411に向かって、シール面418dまで延びている。後部軸座418の外側は、凹型開口部418bに対応している。
凹型開口部418bの内側環状面に配置されたモニタセット93は、二次継鉄91と複数の信号コイル対92とを含んでいる。二次継鉄91は、モニタリング複合軸後部金属サポート821dにしっかりと固定されている。(図1Cに示す)複合固定軸3aは、後部軸座418の中心にある開口部に取り付けられている。
後部軸座418のシール面418dは、Oリングおよびモータ・リアケーシング82aのモニタリング複合軸後部金属サポート821dを含んで、(図1Cに示す)セラミック軸スリーブ33の滑りスラスト面331の表面によって強く圧迫されて、これによりII型格納シェル41aからのリークが確実にないようにしている。複合固定軸3aの剛性支持は、モータ・リアケーシング82aとモニタリング複合軸後部金属サポート821dの保持長さLとによって、すべて提供される。
図4Aを参照すると、これは、本発明による両持ち固定軸の軸方向の保持長さLを示している。両持ち固定軸3を例にとって、軸方向の保持長さLについて以下で説明する。ブランク後部軸サポート413が、I型格納シェル41の底側の中心に位置し、(図1Aに示す)回転子継鉄72の内側空間に軸方向内向きに延出している。ブランク後部軸サポート413は、内向きに突き出してブランク後部軸サポート413内に位置する(図3Aに示す)軸保持穴413aと、ブランク後部軸サポート413の外側に位置する(図3Aに示す)環状スロット413bと、を有している。
二次継鉄91と信号コイル対92とを含むモニタセット93が、(図3Aに示す)環状スロット413bに取り付けられている。二次継鉄91が相互にしっかり結合されたモータ・リアケーシング82のモニタリング軸後部金属サポート821bにより支持される(図3Aに示す)軸保持穴413aの強度は、この保持穴413aの外側側壁により提供される。
軸保持穴413aの底側は、モータ・リアケーシング82の後方バルジ部823の内側に完全に嵌合している。高剛性支持を提供するように、バルジ部823の長さは、軸保持穴413aの保持長さLに適合している。すなわち、I型格納シェル41は、固定軸3の剛性支持を提供することなく、防食隔離機能を提供するためにのみに用いられる。
保持長さLは、軸方向の剛性支持を実用的に提供することができるように、ブランク後部軸サポート413が軸方向に延出する長さGと、保持穴の深さHとによって決定される。保持長さLが長いほど、プラスチック強度が温度の上昇によって低下する問題がより良く解決される。
図4Bを参照すると、これは、本発明による片持ち固定軸の軸方向の保持長さLを示している。(図1Cに示す)片持ち複合固定軸3aの保持長さLを例にとって、これについて以下で説明する。カップ状シェル構造であるII型格納シェル41aは、その底側の中心に位置して、回転子継鉄72の内側空間において軸方向内向きに延出する後部軸座418を有し、これは(図1Cに示す)複合固定軸3aを収容するためのものである。
後部軸座418は、開口部418aを有して、内側から突き出す凸型構造であり、その外側には凹型開口部418bがある。モニタセット93が、凹型開口部418bの内側環状面に取り付けられている。後部軸座418のシール面418dは、Oリングおよびモータ・リアケーシング82aのモニタリング複合軸後部金属サポート821dを含んで、(図1Cに示す)セラミック軸スリーブ33の滑りスラスト面331の表面によって強く圧迫されている。
保持長さLが長いほど、より大きな力およびモーメントに耐えることができる。本発明による複合固定軸3aの構造によって、II型格納シェル41aのプラスチック材料の強度が温度の上昇により低下し得る問題を回避することができる。
図5Aを参照すると、これは、本発明による両持ち固定軸上で多様な力とそのモーメントを受ける内側回転子を示している。第1および第3の実施形態による両持ち固定軸3上で多様な力とそのモーメントを受ける内側回転子7を例にとって、これについて以下で説明する。固定軸3は、耐腐食性かつ耐摩耗性のセラミック材料で構成されている。固定軸3の前端は、プラスチック製の三角フロントサポート31によって支持されており、固定軸3の後端は、軸方向に延出するブランク後部軸サポート413によって支持および固定されている。
ブランク後部軸サポート413の強度は、二次継鉄91と相互にしっかりと結合されたモニタリング軸後部金属サポート821bにより提供される。固定軸3の中央部分は、内側回転子7の回転を支持するために用いられるセラミック軸受79とかみ合っている。中央部分の長さは、セラミック軸受79の長さを満たすとともに、図のA、B、Cのように内側回転子7の軸方向自由運動空間を確保している。
内側回転子7が実際に回転する際に、セラミック軸受79とリア・スラストリング414との間に、後部の軸方向自由空間Aが存在し、セラミック軸受79と三角フロントサポート31との間に、前部の軸方向自由空間Cが存在し、内側回転子7とI型格納シェル41との間に軸方向隙間Bが存在する。上記の間隙(空間)は、フロント・スラストリング46、スラスト軸受53、リア・スラストリング414、およびセラミック軸受79の表面の摩耗に起因して変化し得る。多くの場合、フロント・スラストリング46をスラスト軸受53とかみ合わせて摺動可能に回転させるI型インペラ5による軸スラストによって、内側回転子7が前方に移動する。
この場合、前部の軸方向自由空間Cの軸方向の幅は、フロント・スラストリング46とスラスト軸受53の摩耗代の量の和よりも大きくなければならず、前部の軸方向自由空間Cが減少すると、それに応じて軸方向隙間Bの幅が増加する。一方、ポンプが高流量・低ヘッドの条件で回転する場合には、リア・スラストリング414をセラミック軸受79とかみ合わせて摺動可能に回転させる流体の軸方向運動量によって、内側回転子7は後方に移動することがあり、後部の軸方向自由空間Aの幅はゼロまで減少する。
この場合、軸方向隙間Bの幅は、後部の軸方向自由空間Aと、セラミック軸受79の表面およびリア・スラストリングの表面の摩耗の総量よりも大きくなければならず、これによって、内側回転子7がI型格納シェル41に直接接触して損傷につながることが防止される。つまり、内側回転子7の軸方向自由運動距離は、後部の軸方向自由空間Aと前部の軸方向自由空間Cの和に等しく、また、プラスチック製のI型格納シェル41とポンプ・ケーシング4の寸法変形量は通常大きいので、確保される隙間の大きさは製造公差を含んでいなければならない。
上記の作動条件下で、固定軸3とその支持構造は、内側回転子重量W、偏心遠心力X、径方向の力P、およびそれらの力のモーメントを含む多様な負荷に耐えるものでなければならない。内側回転子重量Wは、内側回転子7の重量によって生じる力である。偏心遠心力Xは、セラミック軸受79の隙間に起因して内側回転子7の重心により発生する。ポンプ・ケーシング4の流路47の不均一な流体圧力により生じる径方向の力Pは、I型インペラ5の流出面に作用する。重量のモーメントは、内側回転子重量Wに重量アーム長WLを掛けたものに等しい。遠心力のモーメントは、偏心遠心力Xに偏心長XLを掛けたものに等しい。径方向の力のモーメントは、径方向の力Pに径方向力アーム長PLを掛けたものに等しい。これらの力とモーメントが固定軸3に作用する。
耐腐食性プラスチック材料で構成された三角フロントサポート31の強度は、温度が上昇すると低下するため、これらの力とモーメントの大部分は、固定軸3の後端の支持構造で受ける。セラミック軸受79の摩耗に伴って変化する偏心遠心力Xは、固定軸3に作用する最も主要な変動負荷である。摩耗量が大きいほど、偏心遠心力Xは大きい。固定軸3に作用する第2の主要な変動負荷は、インペラ5の流出面の不均一な流体圧力による径方向の力Pである。
最長の径方向力アーム長は、インペラ5の外径から固定軸3の後端までであり、これによって、内側回転子7の中心と固定軸3の軸との間にスキューが生じることで、支持構造が継続的に変形する。軸方向に延出する長さGによって、径方向力アーム長の長さは実質的に減少し、また、保持長さLによって、固定軸3の耐モーメント性が向上するので、上記スキューおよび構造変形の問題を軽減および改善することができ、従って、固定軸3の前端に位置する三角フロントサポート31の支持構造の強度要件を大幅に減少させることができる。
図5Bを参照すると、これは、本発明による片持ちカンチレバー固定軸上で多様な力とそのモーメントを受ける内側回転子である。第2および第4の実施形態による片持ち複合固定軸3a上で多様な力とそのモーメントを受ける内側回転子7を例にとって、これについて以下で説明する。複合固定軸3aは、金属軸32とセラミック軸スリーブ33とで構成されている。
複合固定軸3aの端部を、モータ・リアケーシング82のモニタリング複合軸後部金属サポート821dに取り付けると、必要な支持強度を得ることができる。金属軸32は、セラミック軸スリーブ33のスリーブ中心穴332を通り、その円形頭部321の端は、セラミック軸スリーブ33の前端面333に強く押し付けられている。金属軸32の歯部323は、II型格納シェル41aの後部軸座418とモニタリング複合軸後部金属サポート821dの中心穴を貫通して、金属軸32でモータ・リアケーシング82と固定されている。
セラミック軸スリーブ33の滑りスラスト面331の表面は、モニタリング複合軸後部金属サポート821dの表面に強く押し付けることができ、これにより複合固定軸3aが高剛性で形成される。複合固定軸3aは、その長さがセラミック軸受79のための長さ要件を満たして、セラミック軸受79とかみ合うことで内側回転子7の回転を支持しており、また、A、Bのような内側回転子7の軸方向自由運動空間を確保している。
内側回転子7が実際に作動する際に、セラミック軸受79とリア・スラストリング414との間には後部の軸方向自由空間Aが存在し、内側回転子7とII型格納シェル41aとの間には軸方向隙間Bが存在する。上記の2つの隙間は、フロント・スラストリング46、スラスト軸受53、リア・スラストリング414、およびセラミック軸受79の摩耗によって変化する。ほとんどの条件下では、フロント・スラストリング46をスラスト軸受53とかみ合わせて摺動可能に回転させるII型インペラ5aの軸スラストによって、内側回転子7は前方に移動する。
これに応じて、軸方向隙間Bの幅が増加する。ポンプが高流量・低ヘッドの条件で作動する場合には、リア・スラストリング414をセラミック軸受79とかみ合わせて摺動可能に回転させる流体の軸方向運動量によって、内側回転子7は後方に移動し、後部の軸方向自由空間Aの幅はゼロまで減少する。この場合、軸方向隙間Bの幅は、後部の軸方向自由空間Aと、セラミック軸受79およびリア・スラストリング414の表面の摩耗量の和よりも大きくなければならず、これによって、内側回転子7がII型格納シェル41aと直接接触して損傷につながることが防止される。
つまり、後部の軸方向自由空間Aは、内側回転子7の軸方向自由運動に従って変化し、また、プラスチック製のII型格納シェル41aの寸法変形量は通常大きいので、確保される隙間の大きさの各々は、製造公差を含んでいなければならない。上記の作動条件下で、複合固定軸3aとその支持構造は、内側回転子重量W、偏心遠心力X、径方向の力P、およびそれらの力のモーメントを含む多様な負荷に耐えるものでなければならない。内側回転子重量Wは、内側回転子7の重量によって生じる力である。
偏心遠心力Xは、セラミック軸受79の隙間に起因して内側回転子7の重心により発生する。金属ケーシング4aの流路47の不均一な流体圧力により生じる径方向の力Pは、II型インペラ5aの流出面に作用する。重量のモーメントは、内側回転子重量Wに重量アーム長WLを掛けたものに等しい。遠心力のモーメントは、偏心遠心力Xに偏心長XLを掛けたものに等しい。径方向の力のモーメントは、径方向の力Pに径方向力アーム長PLを掛けたものに等しい。
これらの力とモーメントは、複合固定軸3aに作用し、複合金属サポートで受ける。セラミック軸受79の摩耗に伴って変化する偏心遠心力Xは、複合固定軸3aに作用する最も主要な変動負荷である。摩耗量が大きいほど、偏心遠心力Xは大きい。複合固定軸3aに作用する第2の主要な変動負荷は、インペラ5の流出面の不均一な流体圧力による径方向の力Pである。
最長の径方向力アーム長は、インペラ5の外径から複合固定軸3aの後端までであり、これによって、内側回転子7の中心と複合固定軸3aの軸との間にスキューが生じることで、支持構造が継続的に変形する。軸方向に延出する長さGによって、径方向力アーム長の長さは実質的に減少し、また、保持長さLによって、複合固定軸3aの耐モーメント性が向上するので、上記スキューおよび構造変形の問題を軽減および改善することができる。
第5の実施形態:軸受の摩耗を検出するためのキャンド・ポンプのモニタ装置、図6A、6B、6C、6D。
図6Aを参照すると、これは、本発明によりモータの軸受の摩耗を検出するためのモニタ装置の径方向断面図である。この図面では、8極8コイル設計を例として挙げているが、本発明を限定するものではない。他の実施形態に従って、他の設計または方法により同様の効果を得ることができる。
モニタ装置9は、複数の二次磁石73と、モニタセット93とを備える。二次磁石73は、I型格納シェル41の底側付近で、内側回転子7の回転子継鉄72の内側の一端に組み付けられるとともに、主磁石71に背を向けて向かい合っている。二次磁石73の数は主磁石71と同じであるが、二次磁石73の大きさは、主磁石71の10分の1未満であり、二次磁石73の面積と厚さは、信号コイル対により必要とされる起磁力(MMF:MagnetoMotive Force)および磁束を少なくとも提供するものである。
ここでは、内側回転子7の周囲は、二次磁石73の数に従って8つに分割されており、それらの各々は、180度の電気夾角と45度の空間夾角とを有する。主磁束線は、順磁束磁石71aの表面から出て、モータ磁気ギャップ98を通って固定子83の固定子歯部83aに達し、続いて固定子継鉄83bを経由して隣接する固定子歯部83cに達し、さらにモータ磁気ギャップ98を再び通って、元の隣接する逆磁束磁石71bに達し、そして回転子継鉄72を経由して元の順磁束磁石71aに戻る。
このようにして、(以下で主磁気ループと呼ぶ)固定子継鉄磁気経路96aを形成している。二次磁束線は、順磁束二次磁石73aの表面から出て、モニタリング磁気ギャップ97を通って二次継鉄91に達し、そして二次継鉄91を経由し、モニタリング磁気ギャップ97を再び通って元の隣接する逆磁束二次磁石73bともう1つの逆磁束二次磁石73cとにそれぞれ戻り、さらに回転子継鉄72を通って元の二次磁石73aに戻ることで、(以下で二次磁気ループと呼ぶ)回転子継鉄磁気経路96を形成しており、この二次磁気ループはモニタ装置を通っている。
このように、主磁気ループと二次磁気ループは、回転子継鉄72に共存している。つまり、モニタ装置9の磁束線は、擾乱されることなく回転子継鉄72を通っている。内側回転子7が回転すると、モニタ装置9は二次磁束線を横切ることによって起電力信号(すなわち、電圧信号)を出力し、この電圧信号は独立であって、外側の電圧の干渉は回避される。モニタセット93は、二次継鉄91と、複数の信号コイル対92とを含んでいる。二次継鉄91の表面に取り付けられた複数の信号コイル対92は、フロント信号コイル対92aとリアコイル対92bとを含み、これらは軸方向にぴったりと並んで配置されており、(図6Cに示す)二次磁石中心73gと位置合わせされている。
また、信号コイル対92は、周方向に沿って、信号コイルαと信号コイルβの2つのコイル・グループに分けられる。各グループは、180度の径方向で互いに対応する2つの信号コイル対を含んでいる。信号コイルα11と、信号コイルα12と、信号コイルα21と、信号コイルα22と、信号コイルβ11と、信号コイルβ12と、信号コイルβ21と、信号コイルβ22と、を含む8つの信号コイルは同一の大きさを有し、信号コイルαと信号コイルβの電気夾角の間の差は90度(または270度)であり、信号コイルαと信号コイルβの空間夾角Θの間の差は112.5度(または67.5度)である。
フロント信号コイル対92aには、信号コイルα11と、信号コイルα21と、信号コイルβ11と、信号コイルβ21と、が含まれる。リア信号コイル対92bには、信号コイルα12と、信号コイルα22と、信号コイルβ12と、信号コイルβ22と、が含まれる。上記信号コイル対92の電気夾角および空間夾角の位置決めは、二次継鉄91の二次継鉄後端部91bの(図6Cに示す)磁石アラインメント点911によって得られる。磁石アラインメント点911は、信号コイルα11の中心と位置合わせされ、このとき、磁石アラインメント点911の電気夾角が90度であって、磁石アラインメント点911の空間夾角が22.5度であると、モニタセット93の修理および交換のために好ましい。
独立モニタ装置9の環状二次継鉄91の長さは、回転子継鉄72の軸方向の長さと内側回転子7の軸方向運動距離の和よりも長く、また、(スラスト軸受の摩耗限界値を含む)信号コイル対92の軸方向の全長よりも長い。信号コイル対92の円周幅は、180度の電気夾角を超えない。二次継鉄前端91aと二次継鉄後端91bは、信号コイル対92を完全にカバーして、これにより、内側回転子7が軸方向に動いても、二次磁石の回転子継鉄磁気経路96の磁束線が依然として安定しているとともに、変形および曲がりが生じないことを確実に可能にすることで、信号コイル対92の電圧信号の安定性および線形性を確保している。
内側回転子7が径方向と軸方向の両方に動くと、信号コイル対92の差分電圧信号が得られる。信号コイル対の異なる組み合わせの差分電圧信号によって、軸方向移動量または径方向移動量を表すことができる。移動量が軸方向自由空間またはセラミック軸受79の隙間を超えたら、それは軸受の摩耗が生じたことを示しており、摩耗量を算出することが可能である。移動量が摩耗警告値を超えたときには、警告通知が伝達されなければならず、また、移動量が摩耗限界値を超えたときには、ポンプの運転を停止させなければならない。
図6B、6C、および6Dを参照すると、図6Bは、本発明により軸受の摩耗を検出するためのモニタ装置の軸方向断面図であり、図6Cは、本発明により8つの信号コイル対を利用して軸受の摩耗を検出するためのモニタ装置の概略図であり、図6Dは、本発明により軸受の摩耗を検出するためのモニタ装置の概略斜視図である。
これらの図面は、軸受の摩耗を検出するためにモニタ装置の信号コイル対を実際に配列する方法、および電圧信号を計算する方法を示している。図面では、8極8コイル設計を例として挙げているが、本発明を限定するものではない。他の実施形態に従って、他の設計および計算方法により同様の効果を得ることができる。モニタ装置9は、信号コイルα11と、信号コイルα12と、信号コイルα21と、信号コイルα22と、信号コイルβ11と、信号コイルβ12と、信号コイルβ21と、信号コイルβ22と、を含む8つの信号コイル対92を備えている。
内側回転子7が回転すると、二次磁石73と信号コイル対92との間に回転磁界が形成されて、電圧信号が出力され、この電圧信号をdq軸変換法により計算することによって、内側回転子7の軸方向と径方向の移動量に変換することができ、これらを軸受の摩耗の基準とすることができる。これに相当する仕様について、以下で説明する。
モニタ装置9の8つの信号コイル対の信号は、つぎのような信号値としての平均値を取る。
Figure 2014131485
Figure 2014131485
上記の平均値信号は、軸受の軸方向の摩耗および径方向の摩耗の影響を受けず、また、eαTとeβTの信号の間の電気夾角の差は90度であるので、eαTおよびeβTの等式がつぎのように仮定される。
Figure 2014131485
Figure 2014131485
上記の式において、ωγは回転速度であり、λmTは二次磁石73と信号コイル対92との鎖交磁束であり、θγ-fはモニタ装置9のαとβ信号コイルの間の二次磁石の相対角度位置である。上記の式(2)および(3)から、ωγとθγ-fは、つぎのように計算することができる。
Figure 2014131485
Figure 2014131485
ここで、λmTは、測定により得ることができる。機械的回転速度と相対機械角度位置は、つぎの式により求められる。
Figure 2014131485
Figure 2014131485
軸受の軸方向の摩耗および径方向の摩耗を算出するため、以下に示すように、信号コイル対92の各信号に変換行列を適用することにより、信号をdq軸座標に変換する。
Figure 2014131485
Figure 2014131485
Figure 2014131485
Figure 2014131485
Figure 2014131485
Figure 2014131485
Figure 2014131485
Figure 2014131485
Figure 2014131485
つぎの2つの差分値のうち大きい方が、軸方向移動量および軸受の摩耗の基準として採用される。
Figure 2014131485
Figure 2014131485
つぎの2つの差分値のうち大きい方が、径方向移動量および軸受の摩耗の基準として採用される。
Figure 2014131485
Figure 2014131485
つぎの2つの差分値のうち大きい方が、径方向移動量、軸方向移動量、および軸受の摩耗の全体的基準として採用される。
Figure 2014131485
Figure 2014131485
内側回転子7の偏心運動の値および角度位置、すなわち内側回転子の慣性中心の実際の運動軌道は、上記の式によって算出することができる。
第6の実施形態:キャンド・ポンプの軸受の摩耗を検出するためのモニタ装置、図6E。
図6Eを参照すると、これは、本発明により2組の信号コイル対を利用して軸受の摩耗を検出するためのモニタ装置の概略図である。本実施形態によると、第5の実施形態と比較して、軸受の摩耗を検出するためのモニタ装置9の信号コイル対92の数が4つに削減されている。図面では、8極4コイル設計を例として挙げているが、本発明を限定するものではない。
他の実施形態に従って、他の設計または方法により同様の効果を得ることができる。二次磁石73の面積と厚さは、信号コイル対により必要とされる起磁力(MMF)および磁束を少なくとも提供するものである。モニタセット93は、二次継鉄91と、複数の信号コイル対92と、を含んでいる。ここでは、内側回転子7の周囲は、二次磁石73の数に従って8つに分割されており、それらの各々は、180度の電気夾角と45度の空間夾角とを有する。
信号コイル対92は、信号コイルαと信号コイルβを含む2つのグループに分けられる。信号コイルαとして信号コイルα1と信号コイルα2とを含み、信号コイルβとして信号コイルβ1と信号コイルβ2とを含んでいる。信号コイルαと信号コイルβとの電気夾角および空間夾角の差は、それぞれ、90度(または270度)と、112.5度(または67.5度)である。
各グループは、180度の径方向で互いに対応する2つの信号コイル対を含んでいる。信号コイルα1、α2、β1、β2は同一の大きさを有し、コイルα1、α2、β1、β2のそれぞれの軸方向の長さは、二次磁石73の長さと内側回転子7の(スラスト軸受の摩耗限界値を含む)軸方向自由運動距離の和を下回ることはなく、また、各信号コイルの円周幅は180度の電気夾角を超えない。信号コイルα1とβ2のそれぞれの前端は、二次継鉄91の二次継鉄前端91aと位置合わせされている。信号コイルα1とβ2のそれぞれの後端は、二次磁石73の二次磁石後端73fと位置合わせされている。
信号コイルα2とβ1のそれぞれの前端は、二次磁石73の二次磁石前端73eと位置合わせされている。信号コイルα2とβ1のそれぞれの後端は、二次継鉄91の二次継鉄後端91bと位置合わせされている。つまり、信号コイルα1、α2、β1、β2は、軸方向にずらすようにして配列され、二次磁石73の前端および後端と軸方向に位置合わせされている。上記の信号コイル対92の電気角と空間角の位置は、二次継鉄91の二次継鉄後端部91bに位置して信号コイルα1の中心に対応する磁石アラインメント点911によって得られる。
磁石アラインメント点911の電気角と空間角は、それぞれ90度と22.5度であり、これは、モニタセット93の修理および交換を便利にするのに適している。二次継鉄91の軸方向の長さは、配列された信号コイル対92の軸方向の全長よりも大きく、二次継鉄前端91aと二次継鉄後端91bは信号コイル対92を完全にカバーすることができ、これにより、内側回転子7が軸方向に動いても、二次磁石73の二次磁気ループの磁束線が変形または曲がりなく安定しているとともに、それが二次継鉄91の表面に安定的に分布するように維持されることを確実に可能にすることで、信号コイル対92の電圧信号の安定性および線形性を確保している。
内側回転子7の軸方向移動量および径方向移動量は、信号コイル対92のそれらの電圧信号の差分値から算出することが可能である。移動量が軸方向自由空間またはセラミック軸受79の隙間を超えたら、それは軸受の摩耗が生じたことを示しており、摩耗量を算出することが可能である。移動量が摩耗警告値を超えたときには、警告通知が伝達されなければならず、また、移動量が摩耗限界値を超えたときには、ポンプの運転を停止させなければならない。
モニタ装置9の4つの信号コイルの信号は、つぎのような信号値としての平均値を取る。
Figure 2014131485
Figure 2014131485
上記の平均値信号は、軸受の軸方向の摩耗および径方向の摩耗の影響を受けず、また、eαTとeβTとの信号の間の電気夾角の差は90度であるので、eαTおよびeβTの等式がつぎのように仮定される。
Figure 2014131485
Figure 2014131485
上記の式において、ωγは回転速度であり、λmTは二次磁石73と信号コイル対92との鎖交磁束であり、θγ-fはモニタ装置9のαとβ信号コイルの間の二次磁石の相対角度位置である。上記の式(14)および(15)から、ωγとθγ-fは、つぎのように計算することができる。
Figure 2014131485
Figure 2014131485
ここで、λmTは、測定により得ることができる。機械的回転速度と相対機械角度位置は、つぎの式により求められる。
Figure 2014131485
Figure 2014131485
軸受の軸方向の摩耗および径方向の摩耗を算出するため、以下に示すように、信号コイル対92の各信号に変換行列を適用することにより、信号をdq軸座標に変換する。
Figure 2014131485
Figure 2014131485
Figure 2014131485
Figure 2014131485
Figure 2014131485
Figure 2014131485
Figure 2014131485
Figure 2014131485
Figure 2014131485
つぎの差分値が、軸方向移動量および軸受の摩耗の基準として採用される。
Figure 2014131485
つぎの差分値が、径方向移動量および軸受の摩耗の基準として採用される。
Figure 2014131485
径方向移動量、軸方向移動量、および軸受の摩耗の全体的基準として、εαおよびεγを考慮することができる。
内側回転子7の偏心運動の値および角度位置、すなわち内側回転子の慣性中心の実際の運動軌道は、上記の式によって算出することができる。
第7の実施形態:ホールセンサを備えるキャンド・ポンプ、図7。
図7を参照すると、これは、本発明によりホールセンサを有する、キャンド・ポンプのモニタ装置の概略図である。この図面では、8極で4つの信号コイルを備え、3つのホールセンサ94を有する複合モニタ装置9を例として挙げているが、本発明を限定するものではない。
他の設計により同様の効果を得ることができる。信号コイルは、信号コイルαと信号コイルβの2つのグループに分けられる。信号コイルαとして信号コイルα1と信号コイルα2とを含み、信号コイルβとして信号コイルβ1と信号コイルβ2とを含んでいる。αとβの信号コイルの間の電気夾角は90度(270度)であり、αとβの信号コイルの間の空間夾角Θは112.5度(67.5度)である。
信号コイルα1、α2、β1、β2は同一の大きさを有し、コイルα1、α2、β1、β2のそれぞれの軸方向の長さは、二次磁石73の長さと内側回転子7の(スラスト軸受の摩耗限界値を含む)軸方向自由運動距離の和を下回ることはなく、また、各信号コイルの円周幅は180度の電気夾角を超えない。信号コイルα1とβ2のそれぞれの前端は、二次継鉄91の二次継鉄前端91aと位置合わせされている。信号コイルα1とβ2のそれぞれの後端は、二次磁石73の二次磁石後端73fと位置合わせされている。
信号コイルα2とβ1のそれぞれの前端は、二次磁石73の二次磁石前端73eと位置合わせされている。信号コイルα2とβ1のそれぞれの後端は、二次継鉄91の二次継鉄後端91bと位置合わせされている。つまり、信号コイルα1、α2、β1、β2は、軸方向にずらすようにして配列され、二次磁石73の前端および後端と軸方向に位置合わせされている。
上記の信号コイル対92の電気角と空間角の位置は、二次継鉄91の二次継鉄後端部91bに位置して信号コイルα1の中心に対応する磁石アラインメント点911によって得られる。磁石アラインメント点911の電気角と空間角は、それぞれ90度と22.5度であり、これは、モニタセット93の修理および交換を便利にするのに適している。
3つのホールセンサ94の間の電気夾角および空間夾角の差は、それぞれ、120度と30度である。3つのうち中央位置にあるホールセンサ94は、信号コイルα2の内側中央に設けられ、中央のホールセンサ94の電気夾角および空間夾角は、それぞれ、90度と202.5度である。他の2つのホールセンサ94は、その電気夾角の差が120度であって、信号コイルα2の外側表面の2つの対向する側にそれぞれ設けられる。
二次継鉄91の軸方向の長さは、配列された信号コイル対92の軸方向の全長よりも大きく、二次継鉄前端91aと二次継鉄後端91bは信号コイル対92を完全にカバーすることができ、これにより、内側回転子7が軸方向に動いても、二次磁石73の二次磁気ループの磁束線が変形または曲がりなく安定しているとともに、それが二次継鉄91の表面に安定的に分布するように維持されることを確実に可能にすることで、信号コイル対92の電圧信号の安定性および線形性を確保している。
内側回転子7の軸方向移動量および径方向移動量は、信号コイル対92のそれらの電圧信号の差分値から算出することが可能である。移動量が軸方向自由空間またはセラミック軸受79の隙間を超えたら、それは軸受の摩耗が生じたことを示しており、摩耗量を算出することが可能である。移動量が摩耗警告値を超えたときには、警告通知が伝達されなければならず、また、移動量が摩耗限界値を超えたときには、ポンプの運転を停止させなければならない。
軸受の摩耗を計算する方法は、第6の実施形態と同様である。内側回転子7が回転して軸方向の移動が生じても、二次磁気ループの磁束線が変形または曲がりなく安定していることで、ホールセンサ94の電圧信号の安定性が確保され、このようにして、キャンド・ポンプを駆動するためのモニタセンサ9を含む駆動が提供される。
本発明の典型的な実施形態についての上記説明は、単に例示および説明を目的として提示したものであって、網羅的なものではなく、または開示した厳密な形態に本発明を限定するものではない。上記教示に照らして、様々な変形および変更が可能である。
実施形態は、本発明の原理およびその実際の適用について説明するために選択され、記載されたものであり、これによって、他の当業者が、本発明および様々な実施形態を、予定される特定の用途に合わせた様々な変更を加えて、利用することを促している。
本発明が属する技術分野に精通した者には、その趣旨および範囲から逸脱することなく、他の実施形態が明らかになるであろう。従って、本発明の範囲は、上記説明およびそこで記載した例示的実施形態によってではなく、添付の請求項によって規定される。

Claims (9)

  1. 固定軸の構造強度を向上させるための永久磁石モータポンプであって、該永久磁石モータポンプは要件に応じたモニタ装置を備え、該モニタ装置は、複数の二次磁石と、モニタセットとを有し、該モニタ装置は、
    前記二次磁石の数が主磁石と同じであり、前記二次磁石は、格納シェルの底側付近で内側回転子の回転子継鉄の内側の一端に組み付けられて、前記二次磁石の磁極方向は、前記主磁石と異なっており、また、前記二次磁石は、腐食性流体により腐食することを防ぐために、前記主磁石とともにカプセル化されており、前記二次磁石の軸方向の長さは、前記内側回転子の(軸受の軸方向の摩耗を含む)軸方向運動距離の2倍の大きさよりも少なくとも大きく、磁束線は、前記回転子継鉄に主磁気ループと共存する二次磁気ループを形成しており、
    前記モニタセットは、二次継鉄と、複数のモニタ素子とを含み、前記モニタ素子は、環状の前記二次継鉄の表面に強磁性体と共に設けられ、絶縁体を用いて1つの構成部品にカプセル化されており、前記二次継鉄の内側は、モニタリング軸後部金属サポートまたはモニタリング複合軸後部金属サポートの外径面に固定されており、磁石アラインメント点が、前記二次継鉄の後端部に設けられて、前記モニタリング軸後部金属サポートまたは前記モニタリング複合軸後部金属サポートの軸アラインメント点および固定子の巻線固定子の磁石アラインメント点と結び付けられており、前記二次磁石の軸方向の両端が、前記二次継鉄の軸方向範囲を超えることはない、ことを特徴とする、永久磁石モータポンプ。
  2. 前記モニタ素子の数は偶数であって、少なくとも4つであり、前記モニタ素子の軸方向の長さは、前記二次磁石の長さと前記内側回転子の(スラスト軸受の摩耗限界値を含む)軸方向自由運動の和を下回ることはなく、また、前記モニタ素子の円周幅は、180度の電気夾角を超えていない、請求項1に記載の永久磁石モータポンプ。
  3. 前記モニタ素子は信号コイル対であって、前記モニタセットは、前記二次継鉄と前記複数の信号コイル対とを含み、起電力信号の計算によって、軸方向の移動量、径方向の移動量、および角度が得られる、請求項2に記載の永久磁石モータポンプ。
  4. 前記モニタ素子は信号コイル対であって、前記モニタセットは、前記二次継鉄と前記複数の信号コイル対とを含み、前記複数の信号コイル対は、環状の前記二次継鉄の表面上に設けられて配列されており、周方向に沿って、前記信号コイル対は信号コイルαとβの2つのグループに分けられ、前記2つのグループの間の電気夾角の位相差は90(270度)であり、前記信号コイル対の電気夾角および空間夾角の位置決めは、前記モニタセットの修理および交換に適した前記二次継鉄の磁石アラインメント点によって得られる、請求項1に記載の永久磁石モータポンプ。
  5. 前記モニタ素子は信号コイル対であって、前記モニタセットは、前記二次継鉄と前記複数の信号コイル対とを含み、起電力信号の計算によって、軸方向の移動量、径方向の移動量、および角度が得られる、請求項4に記載の永久磁石モータポンプ。
  6. 前記信号コイル対の各々は、前記二次継鉄の軸方向の長さの半分より多くを少なくともカバーするように配置され、前記信号コイル対を軸方向に配列する方法には、前記信号コイル対の前端と後端をそれぞれ互いに隣接させる1つの方法と、前記信号コイル対の前端と後端を相互にずらすもう1つの方法と、各信号コイル対を180度の空間夾角内に配置する更なるもう1つの方法と、それらの組み合わせとが含まれる、請求項4に記載の永久磁石モータポンプ。
  7. 前記モニタ素子は信号コイル対であって、前記モニタセットは、前記二次継鉄と前記複数の信号コイル対とを含み、起電力信号の計算によって、軸方向の移動量、径方向の移動量、および角度が得られる、請求項6に記載の永久磁石モータポンプ。
  8. 前記二次継鉄の軸方向の長さは、配列された前記信号コイル対の軸方向の全長よりも長く、前記二次継鉄の前端と後端は、前記信号コイル対を完全にカバーしており、前記内側回転子の前記二次磁石の軸方向移動の範囲は、前記二次継鉄の軸方向の長さを超えない、請求項4に記載の永久磁石モータポンプ。
  9. 前記モニタ素子は、複数の信号コイル対と複数のホールセンサとを含み、前記複数の信号コイル対は、環状の前記二次継鉄の表面上に設けられており、周方向に沿って、前記信号コイル対は信号コイルαとβの2つのグループに分けられ、前記2つのグループの間の電気夾角の位相差は90(270度)であり、前記信号コイル対の電気夾角および空間夾角の位置決めは、前記モニタセットの修理および交換に適した前記二次継鉄の磁石アラインメント点によって得られ、前記3つのホールセンサの電気夾角の位相差はそれぞれ120度であり、中央位置のホールセンサは、前記信号コイル対の1つにおける電気夾角の中央に取り付けられる、請求項1に記載の永久磁石モータポンプ。
JP2014081901A 2011-10-26 2014-04-11 永久磁石モータポンプ Active JP5792346B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW100138846 2011-10-26
TW100138846A TW201317459A (zh) 2011-10-26 2011-10-26 永磁罐裝泵結構改良

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2012232764A Division JP5575201B2 (ja) 2011-10-26 2012-10-22 永久磁石モータポンプ

Publications (2)

Publication Number Publication Date
JP2014131485A true JP2014131485A (ja) 2014-07-10
JP5792346B2 JP5792346B2 (ja) 2015-10-07

Family

ID=47172369

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2012232764A Active JP5575201B2 (ja) 2011-10-26 2012-10-22 永久磁石モータポンプ
JP2014081901A Active JP5792346B2 (ja) 2011-10-26 2014-04-11 永久磁石モータポンプ

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2012232764A Active JP5575201B2 (ja) 2011-10-26 2012-10-22 永久磁石モータポンプ

Country Status (6)

Country Link
US (3) US9599113B2 (ja)
EP (3) EP2587066B1 (ja)
JP (2) JP5575201B2 (ja)
KR (1) KR101395185B1 (ja)
RU (1) RU2533795C2 (ja)
TW (1) TW201317459A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7250195B1 (ja) 2022-04-27 2023-03-31 日機装株式会社 モータ軸受摩耗監視装置、モータ軸受摩耗監視装置の補正方法、および補正プログラム

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103465215B (zh) * 2013-09-27 2015-01-28 哈尔滨电气动力装备有限公司 300mw核电站主泵主轴密封的拆卸和安装工具
DE102013017975A1 (de) * 2013-11-29 2015-06-03 Fte Automotive Gmbh Elektromotorisch angetriebene Flüssigkeitspumpe, insbesondere zur Zwangsschmierung eines Schaltgetriebes für Kraftfahrzeuge
CN104976136A (zh) * 2015-07-14 2015-10-14 王进 无刷电机屏蔽泵
CN106487155A (zh) * 2015-08-31 2017-03-08 德昌电机(深圳)有限公司 液泵、电机及其轴套单元
CN105443400B (zh) * 2016-01-26 2018-02-16 河北深海电器有限公司 电子水泵
CA2936219C (en) 2016-07-15 2020-12-15 Geo Pressure Systems Inc. Progressive cavity pump (pcp) monitoring system and method
DE102018105136A1 (de) * 2018-03-06 2019-09-12 Gkn Sinter Metals Engineering Gmbh Verfahren zum Betreiben einer Pumpenanordnung
CN109238726B (zh) * 2018-07-02 2020-02-14 岭东核电有限公司 一种压水堆核电站柴油机轴瓦的鉴定试验方法
WO2020024138A1 (zh) * 2018-08-01 2020-02-06 加贺绿能科技股份有限公司 混合可变磁力的节能电动机
TWI698073B (zh) * 2018-08-02 2020-07-01 加賀綠能科技股份有限公司 混合可變磁力之節能電動機
CN109038959B (zh) * 2018-09-13 2023-11-28 珠海凯邦电机制造有限公司 电机轴承防电蚀结构、定子和电机
CN109038910B (zh) * 2018-09-18 2020-02-07 珠海格力电器股份有限公司 塑封电机
CN109038911B (zh) * 2018-09-18 2020-02-11 珠海格力电器股份有限公司 塑封电机
CN111130273B (zh) * 2018-10-31 2023-07-14 安徽美芝精密制造有限公司 分布卷电机和具有其的压缩机、空调系统
NO344841B1 (en) 2018-11-02 2020-05-25 Kongsberg Maritime CM AS Health monitoring method and device for a permanent magnet electric machine
CN109209914A (zh) * 2018-11-11 2019-01-15 长沙小如信息科技有限公司 一种环保水泵
US11218048B2 (en) 2018-12-14 2022-01-04 Nidec Motor Corporation Shaft-mounted slinger for electric motor
TWI667869B (zh) 2018-12-20 2019-08-01 日益電機股份有限公司 Canned motor unit
KR20200105553A (ko) 2019-02-27 2020-09-08 (주)디지링크 광원을 구비한 휴대 일체형 복합 전기자극기 및 그 제어방법
KR20210055840A (ko) 2019-11-07 2021-05-18 (주)디지링크 미세전류와 광원을 이용한 일체형 다기능 전기 자극기 및 그 제어방법
KR20210057344A (ko) 2019-11-12 2021-05-21 (주)디지링크 착탈 일체형 웨어러블 저주파 자극기 및 그 제어방법
KR102251251B1 (ko) * 2020-02-20 2021-05-13 지이 일렉트리컬 엔지니어링 컴퍼니., 리미티드. 캔드 모터 장치
TWI721846B (zh) * 2020-03-31 2021-03-11 日益電機股份有限公司 具測漏功能的罐裝磁力泵
JP6884440B1 (ja) * 2020-05-26 2021-06-09 日益電機股▲ふん▼有限公司Zi Yi Electrical Engineering Co., Ltd. マグネットポンプ
KR102430825B1 (ko) * 2020-08-18 2022-08-08 지이 일렉트리컬 엔지니어링 컴퍼니., 리미티드. 캔드 모터 장치
TWI746299B (zh) * 2020-12-02 2021-11-11 日益電機股份有限公司 具測漏功能的永磁泵
JPWO2022225069A1 (ja) * 2021-04-20 2022-10-27
KR20220166001A (ko) 2021-06-09 2022-12-16 (주)디지링크 다채널 경피성 통증 완화 전기자극 장치 및 방법
CN113680683B (zh) * 2021-08-22 2022-03-11 余姚市新丰轴承有限公司 车头碗轴承组配斜高检测设备及其检测方法
WO2024106895A1 (ko) * 2022-11-15 2024-05-23 엘지이노텍 주식회사 모터 및 이를 포함하는 펌프
CN117346640B (zh) * 2023-12-05 2024-02-20 中国航发四川燃气涡轮研究院 一种压气机转轴与测扭器轴心的对中调整方法
KR102654562B1 (ko) 2023-12-06 2024-04-05 주식회사 긴트 저온에서의 모터의 회전자의 탈조현상 방지 방법 및 그 장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04248348A (ja) * 1991-01-10 1992-09-03 Nikkiso Co Ltd 交流回転電機の軸受摩耗検出装置
JP2005201156A (ja) * 2004-01-15 2005-07-28 Teikoku Electric Mfg Co Ltd モータの軸受摩耗検出装置
JP2008185038A (ja) * 2008-04-04 2008-08-14 Matsushita Electric Works Ltd ポンプ
JP2009225619A (ja) * 2008-03-18 2009-10-01 Panasonic Electric Works Co Ltd クローポール型モータ及びポンプ
JP2011101594A (ja) * 2011-02-25 2011-05-19 Mitsubishi Electric Corp ポンプ用電動機の固定子及びポンプ用電動機及びポンプ及びポンプ用電動機の固定子の製造方法

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4211973A (en) 1972-10-11 1980-07-08 Kabushiki Kaisha Teikoku Denki Seisakusho Apparatus for detecting faults to be occurred or initially existing in a running electric rotary machine
FR2246757B1 (ja) * 1973-10-08 1980-05-30 Apv Co Ltd
DE3536092A1 (de) * 1985-10-09 1987-04-16 Ngk Insulators Ltd Magnetkupplungs-zentrifugalpumpe
JPS6352992U (ja) * 1986-09-25 1988-04-09
US4924180A (en) * 1987-12-18 1990-05-08 Liquiflo Equipment Company Apparatus for detecting bearing shaft wear utilizing rotatable magnet means
JPH03237291A (ja) * 1990-02-14 1991-10-23 World Chem:Kk マグネットポンプ
JP3033139B2 (ja) 1990-06-19 2000-04-17 ミノルタ株式会社 変倍ファインダー光学系
JP2509600Y2 (ja) * 1992-07-21 1996-09-04 日機装株式会社 軸受摩耗モニタ
US5336996A (en) * 1992-08-21 1994-08-09 The Duriron Company, Inc. Hall effect monitoring of wear of bearing supporting a rotor within a stationary housing
JP3488578B2 (ja) 1996-09-06 2004-01-19 日機装株式会社 キャンドモータの軸受摩耗監視装置
US5955880A (en) 1996-12-05 1999-09-21 Beam; Palmer H. Sealless pump rotor position and bearing monitor
US5944489A (en) * 1996-12-11 1999-08-31 Crane Co. Rotary fluid pump
US6114966A (en) 1997-09-03 2000-09-05 Nikkiso Co., Ltd. Motor having a bearing wear monitoring device
JP3604276B2 (ja) * 1998-04-13 2004-12-22 株式会社荏原製作所 誘導電動機およびその軸受摩耗の検知方法
US6234748B1 (en) * 1998-10-29 2001-05-22 Innovative Mag-Drive, L.L.C. Wear ring assembly for a centrifugal pump
WO2001012993A1 (fr) * 1999-08-10 2001-02-22 Iwaki Co., Ltd. Pompe a aimant
JP2001123996A (ja) 1999-10-21 2001-05-08 Matsushita Electric Ind Co Ltd ポンプ
JP2001231217A (ja) 2000-02-14 2001-08-24 Teikoku Electric Mfg Co Ltd キャンドモータの軸方向軸受摩耗検出装置
RU2238442C2 (ru) * 2000-04-18 2004-10-20 Текнолоджи Коммершиализейшн Корпорейшн Способ и устройство для уменьшения осевого усилия в ротационных машинах
DE10024953A1 (de) * 2000-05-22 2001-11-29 Richter Chemie Tech Itt Gmbh Kreiselpumpe mit Magnetkupplung
JP2002039712A (ja) * 2000-07-27 2002-02-06 Mikuni Corp 非接触式ロータリセンサと回動軸との結合構造
EP1346458B1 (en) * 2000-11-30 2008-11-12 C.D.R. Pompe S.P.A. Mechanical drive system operating by magnetic force
JP2002327695A (ja) 2001-04-27 2002-11-15 Nikkiso Co Ltd キャンドモータポンプ
CN1559101A (zh) * 2001-12-18 2004-12-29 ��ʽ����۹���������� 屏蔽电动机的轴向轴承磨损检测装置
US6908291B2 (en) * 2002-07-19 2005-06-21 Innovative Mag-Drive, Llc Corrosion-resistant impeller for a magnetic-drive centrifugal pump
JP4554988B2 (ja) 2004-05-20 2010-09-29 株式会社荻原製作所 シリンダ状マグネット型ポンプ
JP2005344589A (ja) 2004-06-02 2005-12-15 Asmo Co Ltd キャンドモータポンプ
JP2007097257A (ja) 2005-09-27 2007-04-12 Nidec Sankyo Corp キャンドモータ及びキャンドポンプ
DE202006005189U1 (de) * 2006-03-31 2007-08-16 H. Wernert & Co. Ohg Kreiselpumpe mit koaxialer Magnetkupplung
WO2008072438A1 (ja) 2006-12-14 2008-06-19 Panasonic Electric Works Co., Ltd. 水中すべり軸受ポンプ
JP2008220008A (ja) * 2007-03-01 2008-09-18 Asmo Co Ltd ブラシレスモータ及び流体ポンプ装置
TW201038828A (en) 2009-04-28 2010-11-01 Assoma Inc Permanent magnetism can pump
TWM369391U (en) 2009-04-28 2009-11-21 Assoma Inc Improved structure of permanent-magnet bottle-packaged pump
JP5212292B2 (ja) 2009-07-16 2013-06-19 ブラザー工業株式会社 情報通信システム、ノード装置、ノード装置確認方法及びプログラム
JP2013502532A (ja) 2009-08-19 2013-01-24 ホフマン エンクロージャーズ インコーポレイテッド ディー/ビー/エー ペンテアー テクニカル プロダクツ 組込型モータを用いた磁気駆動ポンプ組立体
JP2011052569A (ja) 2009-08-31 2011-03-17 Yamada Seisakusho Co Ltd ウォータポンプ及びその組付方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04248348A (ja) * 1991-01-10 1992-09-03 Nikkiso Co Ltd 交流回転電機の軸受摩耗検出装置
JP2005201156A (ja) * 2004-01-15 2005-07-28 Teikoku Electric Mfg Co Ltd モータの軸受摩耗検出装置
JP2009225619A (ja) * 2008-03-18 2009-10-01 Panasonic Electric Works Co Ltd クローポール型モータ及びポンプ
JP2008185038A (ja) * 2008-04-04 2008-08-14 Matsushita Electric Works Ltd ポンプ
JP2011101594A (ja) * 2011-02-25 2011-05-19 Mitsubishi Electric Corp ポンプ用電動機の固定子及びポンプ用電動機及びポンプ及びポンプ用電動機の固定子の製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7250195B1 (ja) 2022-04-27 2023-03-31 日機装株式会社 モータ軸受摩耗監視装置、モータ軸受摩耗監視装置の補正方法、および補正プログラム
WO2023210416A1 (ja) * 2022-04-27 2023-11-02 日機装株式会社 モータ軸受摩耗監視装置、モータ軸受摩耗監視装置の補正方法、および補正プログラム
JP2023162577A (ja) * 2022-04-27 2023-11-09 日機装株式会社 モータ軸受摩耗監視装置、モータ軸受摩耗監視装置の補正方法、および補正プログラム
TWI822633B (zh) * 2022-04-27 2023-11-11 日商日機裝股份有限公司 馬達軸承磨耗監測裝置、馬達軸承磨耗監測裝置之校正方法及校正程式

Also Published As

Publication number Publication date
JP2013092145A (ja) 2013-05-16
EP2960517B1 (en) 2019-12-04
TWI441984B (ja) 2014-06-21
JP5575201B2 (ja) 2014-08-20
US20160348682A1 (en) 2016-12-01
TW201317459A (zh) 2013-05-01
US20130108488A1 (en) 2013-05-02
KR101395185B1 (ko) 2014-05-15
EP2587066A2 (en) 2013-05-01
EP2587066B1 (en) 2019-10-09
EP2960516B1 (en) 2019-10-30
EP2960517A1 (en) 2015-12-30
KR20130045812A (ko) 2013-05-06
JP5792346B2 (ja) 2015-10-07
US9599113B2 (en) 2017-03-21
EP2587066A3 (en) 2015-09-30
EP2960516A1 (en) 2015-12-30
US9951778B2 (en) 2018-04-24
US9702364B2 (en) 2017-07-11
RU2533795C2 (ru) 2014-11-20
US20160348683A1 (en) 2016-12-01
RU2012145269A (ru) 2014-04-27

Similar Documents

Publication Publication Date Title
JP5792346B2 (ja) 永久磁石モータポンプ
CN103075350B (zh) 永磁罐装泵结构改良
JP5262583B2 (ja) レゾルバ一体型回転電機及びロータコア
JP2014058986A (ja) 磁気駆動ポンプ
US10594196B2 (en) Dual shaft integrated motor
TWI444539B (zh) 磁浮式液態冷媒泵
JP5840226B2 (ja) 電動機
US9157443B2 (en) Turbo molecular pump device
JP2013090447A (ja) 誘導電動機および誘導電動機の回転子
EP0943082B1 (en) Sealless pump rotor position and bearing monitor
WO2016199822A1 (ja) 回転機械
JP6616388B2 (ja) 回転子及び回転電機
JP2018107865A (ja) 回転電機
RU2419948C1 (ru) Усовершенствование конструкции экранированного электронасоса (варианты)
TWM369391U (en) Improved structure of permanent-magnet bottle-packaged pump
JP3604276B2 (ja) 誘導電動機およびその軸受摩耗の検知方法
US20230261535A1 (en) Machine with paramagnetic shell and magnet
CN117098919A (zh) 马达泵、泵单元及马达泵的叶轮的平衡调整方法
JP2022149161A (ja) モータ
CN116877435A (zh) 真空泵

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150721

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150805

R150 Certificate of patent or registration of utility model

Ref document number: 5792346

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250