WO2020024138A1 - 混合可变磁力的节能电动机 - Google Patents

混合可变磁力的节能电动机 Download PDF

Info

Publication number
WO2020024138A1
WO2020024138A1 PCT/CN2018/097986 CN2018097986W WO2020024138A1 WO 2020024138 A1 WO2020024138 A1 WO 2020024138A1 CN 2018097986 W CN2018097986 W CN 2018097986W WO 2020024138 A1 WO2020024138 A1 WO 2020024138A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnet
magnets
magnetic pole
energy
pole
Prior art date
Application number
PCT/CN2018/097986
Other languages
English (en)
French (fr)
Inventor
李天德
陈泰良
Original Assignee
加贺绿能科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 加贺绿能科技股份有限公司 filed Critical 加贺绿能科技股份有限公司
Priority to PCT/CN2018/097986 priority Critical patent/WO2020024138A1/zh
Priority to CN201880056484.8A priority patent/CN111095755B/zh
Publication of WO2020024138A1 publication Critical patent/WO2020024138A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/06Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with position sensing devices
    • H02K29/08Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with position sensing devices using magnetic effect devices, e.g. Hall-plates, magneto-resistors

Definitions

  • the invention relates to an electric motor, in particular to an energy-saving electric motor of mixed variable magnetic force that drives a rotor to rotate by the magnetic field action of a hybrid magnet and a permanent magnet.
  • the known electric motor is a type of electrical energy that can be converted into mechanical energy and can be used to generate kinetic energy to drive other devices. Most electric motors generate energy in the motor through magnetic fields and winding currents. .
  • the principle of the motor's rotation is based on Fleming's left-hand rule or right-handed rule.
  • the rotor or stator of the motor is provided with an electromagnet composed of multiple coils, and when a current enters the coil, the electromagnet generates a magnetic field, so that the magnetic effect of the current is used with the permanent magnetic field or the magnetic field generated by another set of coils
  • the interaction produces power, which in turn makes the rotor continuously rotate, so that electrical energy can be converted into mechanical kinetic energy.
  • the larger the current passing through the coil of the electromagnet the stronger the magnetic effect produced and the greater the output power of the motor, but this will cause excessive power consumption and overheating, which will cause the problem of shortening the life of the motor. Therefore, how to generate a larger magnetic field by passing a smaller current to the electromagnet, thereby achieving a larger output power, reducing the heating of the motor, and making the motor more energy-efficient and energy-saving has become the object of the present invention.
  • the main object of the present invention is to provide an energy-saving motor with mixed variable magnetic force, which has a housing, a rotating shaft, a rotor, a stator, and other components.
  • the structure and angle are set by special magnets on the rotor, and the mixing on the stator is matched.
  • the magnet design can generate a larger magnetic field through a smaller current to the electromagnet of the hybrid magnet, thereby achieving the purpose of increasing the output power, reducing the heating of the motor, and making the motor more energy efficient.
  • the energy-saving motor with mixed variable magnetic force of the present invention comprises: a hollow casing; a rotating shaft, the rotating shaft is rotatably disposed in the center of the casing, and one or both ends of the rotating shaft protrude from the A housing; a rotor having a rotating body coupled to a shaft body of the rotating shaft and located in the housing, and a plurality of first and second magnets coupled around the rotating body; the plurality of first magnets radiating
  • the second magnets are arranged radially on a first diameter around the swivel body, and the plurality of second magnets are arranged radially on a second diameter around the swivel body, the second diameter is smaller than the first diameter; Two magnets are respectively inserted between the first magnets.
  • An outer end of the first magnet is a first magnetic pole, and an outer end of the second magnet is a second magnetic pole.
  • the first magnetic pole is different from the second magnetic pole.
  • the magnetic poles are arranged so that the first magnetic pole and the second magnetic pole pass through the forks; and the outer ends of each of the first and second magnets are offset from the direction of rotation of the rotor, and each of the first magnets is offset.
  • the stator has a plurality of hybrid magnets that are combined around the inside of the casing, the hybrid magnets include a third magnet, and a combination of The yoke at the outer end of the third magnet is an electromagnet coupled to the inner end of the third magnet, and the electromagnet has a third magnetic pole facing the first magnetic pole and the second magnetic pole.
  • the included angle is 3 degrees to 35 degrees.
  • the electromagnet has an iron core resting on the inner end of the third magnet, an insulation layer surrounding the iron core, and a circle of the insulation surrounding the iron core.
  • One end of the core of the exciting coil outside the layer faces the first magnetic pole and the second magnetic pole.
  • the first magnetic pole is an S pole
  • the second magnetic pole is an N pole
  • the first magnetic pole is an N pole
  • the second magnetic pole is an S pole
  • the first magnet, the second magnet, and the third magnet are square magnets.
  • the iron core of the electromagnet is made by stacking several silicon steel sheets.
  • the mixed variable magnetic force energy-saving motor further includes a coaxial generator that converts mechanical energy into electrical energy.
  • the coaxial generator is disposed on an end surface of the casing and is connected to the rotating shaft.
  • the energy-saving motor with mixed variable magnetic force of the present invention acts on the hybrid magnet on the stator through components such as the housing, the rotating shaft, the rotor, and the stator, in particular, the first magnet and the second magnet on the rotor.
  • components such as the housing, the rotating shaft, the rotor, and the stator, in particular, the first magnet and the second magnet on the rotor.
  • the rotor rotates, It is possible to pass a smaller current to the electromagnet of the hybrid magnet to use the electromagnet of the hybrid magnet to attract the magnetic poles of the first magnet and the second magnet and then repel it, thereby achieving greater output power and reducing motor heating , And make the motor more energy efficient.
  • FIG. 1 is a schematic perspective view of a preferred embodiment of an energy-saving motor with a mixed variable magnetic force according to the present invention.
  • FIG. 2 is an exploded schematic view of a preferred embodiment of the energy-saving motor with mixed variable magnetic force according to the present invention.
  • FIG. 3 is a schematic longitudinal sectional view of a preferred embodiment of the energy-saving motor with mixed variable magnetic force according to the present invention.
  • FIG. 4 is a schematic cross-sectional view of a preferred embodiment of the energy-saving motor with mixed variable magnetic force according to the present invention.
  • FIG. 5 is an exploded view of a preferred embodiment of a combined structure of a first magnet and a second magnet according to the present invention.
  • FIG. 6 is a schematic diagram of a preferred embodiment of a mounting angle of a first magnet and a second magnet of the present invention.
  • FIG. 7 is a schematic perspective view of a preferred embodiment of a hybrid magnet of a stator of the present invention.
  • FIG. 8 is an exploded schematic view of a preferred embodiment of a hybrid magnet of a stator of the present invention.
  • FIG. 9 is a schematic diagram of a motor provided with a generator.
  • 10 housings 11 circular plates; 20 rotating shafts; 30 rotors; 31 rotating bodies; 311 perforations; 32 first magnets; 321 first magnetic poles; 33 second magnets; 331 second magnetic poles; A1 first diameter; A2 second diameter; B1 radial axis; B2 center point; C1 rotor rotation direction; ⁇ 1, ⁇ 2 included angle; 40 stator; 41 hybrid magnet; 42 third magnet; 43 yoke; 44 electromagnet; 441 third magnetic pole; 442 iron core; 443 Insulation layer; 444 excitation coil; 50 coaxial generator.
  • the energy-saving motor with mixed variable magnetic force is an energy-saving motor that converts electric energy into magnetic energy and then converts magnetic energy into mechanical energy.
  • a preferred specific embodiment is the hybrid variable
  • the magnetic energy-saving motor mainly includes a casing 10, a rotating shaft 20, a rotor 30, and a stator 40, wherein: the casing 10 may be composed of two corresponding circular plates 11 (as shown in Figs. 1 and 2), Or a hollow cylinder or a disk, the structure is basically unlimited; the rotating shaft 20 is rotatably disposed in the center of the housing 10, and one or both ends of the rotating shaft 20 protrude from the housing 10 ( As shown in FIG. 3), mechanical power can be output from the rotating shaft 20.
  • the structure of the rotor 30 is shown in FIG. 3, FIG. 4, and FIG. 5. It has a rotating body 31 coupled to the shaft of the rotating shaft 20 and located inside the housing 10, and several rotating bodies 31 coupled to the rotating body 31.
  • the first magnet 32 and the second magnet 33; the rotating body 31 may be implemented as a disc body, and a perforation 311 in the center of the rotating body 31 is provided for the shaft 20 to pass through; the first magnets 32 are arranged in a radial pattern.
  • the second diameter 33 is arranged on a first diameter A1 around the turning body 31, and the second magnets 33 are arranged in a radial pattern on the second diameter A2 around the turning body 31.
  • the second diameter A2 is smaller than the first diameter A2.
  • each of the second magnets 33 is inserted between each of the first magnets 32, an outer end of the first magnet 32 is a first magnetic pole 321, and an outer end of the second magnet 33 is a second magnetic pole 331,
  • the first magnetic pole 321 and the second magnetic pole 331 are different magnetic poles (for example, an N pole and an S pole), so that the first magnetic pole 321 and the second magnetic pole 331 are arranged in a cross-over arrangement; see FIG. 6.
  • each of the first magnets 32 and each of the second magnets 33 are the rotating bodies 31 that are in contact with each of the first magnets 32 and the second magnets 33
  • a center point B2 on the radial axis B1 is offset from the rotation direction C1 of the rotor 30, and each of the first magnets 32 and the second magnets 33 are in contact with one side of the rotor 31 in the radial direction.
  • An included angle ⁇ 1, ⁇ 2 is formed between the axes B1.
  • the preferred embodiment of the included angle ⁇ 1, ⁇ 2 is in the range of 3 degrees to 35 degrees.
  • the structure of the stator 40 is shown in FIG. 2, FIG. 3, FIG. 7 and FIG. 8.
  • the stator 40 has a plurality of hybrid magnets 41 which are combined around the inside of the casing 10.
  • the hybrid magnet 41 includes a third magnet 42.
  • the yoke 43 at the outer end of the third magnet 42 is an electromagnet 44 coupled to the inner end of the third magnet 42.
  • the electromagnet 44 has a third magnetic pole 441 facing the first magnetic pole 321 and the second magnetic pole 331.
  • the preferred embodiment of the electromagnet 44 is an iron core 442 resting on the inner end of the third magnet 42, an insulating layer 443 covering the iron core 442, and a circle wound around the iron core 442.
  • the exciting coil 444 outside the surrounding insulating layer 443 forms a third magnetic pole 441 through an end surface of the iron core 442 and faces the first magnetic pole 321 and the second magnetic pole 331.
  • the first magnetic pole 321 of the first magnet 32 may be implemented as an S pole, and the second magnetic pole 331 of the second magnet 33 may be implemented as an N pole; otherwise, the The first magnetic pole 321 is implemented as an N pole, and the second magnetic pole 331 of the second magnet 33 is implemented as an S pole.
  • the first magnet 32, the second magnet 33, and the third magnet 42 are preferably implemented as square magnets; and the iron core 442 of the electromagnet 44 is a block formed by stacking a plurality of silicon steel sheets.
  • the present invention can also implement a coaxial generator 50 that converts mechanical energy into electrical energy.
  • the coaxial generator 50 is disposed on one end surface of the housing 10 and is connected to the rotating shaft 20. Application becomes a generator.
  • the energy-saving motor with mixed variable magnetic force of the present invention is provided with a combination of components such as the casing 10, the rotating shaft 20, the rotor 30, and the stator 40, in particular, different magnetic poles of the first magnet 32 and the second magnet 33 on the rotor 30 and the arrangement thereof
  • the special included angles ⁇ 1 and ⁇ 2 correspond to the hybrid magnet 41 on the stator 40.
  • a relatively small current can be passed through the electromagnet 44 of the hybrid magnet 41 to the first magnet 32 and
  • the first magnetic pole 321 and the second magnetic pole 331 of the second magnet 33 generate a repulsive effect after being attracted.
  • the present invention can improve the electromagnet 44 by the structure in which the third magnet 42 of the hybrid magnet 41 and the electromagnet 44 are combined. The magnetic field, thereby achieving greater output power, reduces motor heating, and makes the motor more energy efficient.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

一种混合可变磁力的节能电动机,其主要包含一外壳(10),外壳内穿设一转轴(20),该转轴结合有一转子(30),该外壳内的周围设有定子(40);转子的转体周围设有数个第一磁铁(32)及数个第二磁铁(33),第一磁铁的磁极与第二磁铁的磁极为不同的磁极,且第一磁铁与第二磁铁均转动一角度;该定子是由数个第三磁铁(42)分别与电磁铁相连接所组成的混合磁体,电磁铁具有朝向第一磁铁与第二磁铁的磁极;借此,通过转子上的不同磁极作用于定子上的混合磁体,利用电磁铁对第一磁铁与第二磁铁产生吸引之后再排斥的作用,进而达到输出功率更大的目的。

Description

混合可变磁力的节能电动机 技术领域
本发明是关于一种电动机,尤其是指一种通过混合磁体与永久磁铁的磁场作用驱使转子转动的混合可变磁力的节能电动机。
背景技术
已知的电动机(Electric motor),是一种将电能转化成机械能,并可再使用机械能产生动能,用来驱动其他装置的电气设备,大部分的电动机通过磁场和绕组电流,在电动机内产生能量。电动机的旋转原理的依据为佛来明左手定则或是右手开掌定则,当一导线置放于磁场内,若导线通上电流,则导线会因切割磁场线而使导线产生移动。
因此在电动机的转子或定子设有由多个线圈构成的电磁铁,并且当电流进入线圈时,使电磁铁产生磁场,如此利用电流的磁效应与永久磁铁或由另一组线圈所产生的磁场互相作用产生动力,进而使转子连续转动,如此可以将电能转换成机械动能。通过电磁铁的线圈的电流越大,则产生的磁效应越强,使电动机产生更大的输出功率,但是这样会造成过度耗电及过热,以致缩短电动机寿命的问题出现。因此,如何通过较小的电流于电磁铁,就能够产生更大的磁场,进而达到更大的输出功率,并降低电动机发热,并且使电动机更节能省电,已成为本发明的目的。
发明内容
本发明的主要目的在于提供一种混合可变磁力的节能电动机,其具有一外壳、一转轴、一转子及一定子等构件,通过转子上特殊的磁铁设置构造与角度,并配合定子上的混合磁体设计,能够通过较小的电流于混合磁体的电磁铁,而产生更大的磁场,进而达到增大输出功率,降低电动机发热,及使电动机更节能省电的目的。
为了达到上述目的,本发明的混合可变磁力的节能电动机,其包含:一中空的外壳;一转轴,该转轴可转动地穿设在该外壳的中心,且该转轴的一端或两端突出该外壳;一转子,该转子具有一结合在该转轴的轴身并位于该外壳内的转体,及数个结合在该转体周围的第一磁铁与第二磁铁;该数个第一磁铁辐射状排列设置在该转体周围的一第一直径上,该数个第二磁铁辐射状排列设置在该转体周围的一第二直径上,该第二直径小于该第一直径;各该第二磁铁分别穿插设置在各该第一磁铁之间,该第一磁铁的外端为第一磁极,该第二磁铁的外端为第二磁极,该第一磁极与该第二磁极为不同的磁极,使该第一磁极与该第二磁极穿叉的排列设置;且各该第一磁铁与各该第二磁铁的外端均往相反于该转子旋转方向偏移,且各该 第一磁铁与各该第二磁铁均与其一侧相接的该转体的径向轴线之间形成有一夹角;以及一定子,该定子具有数个结合在该外壳内部周围的混合磁体,该混合磁体包含一第三磁铁,一结合在该第三磁铁外端的轭铁,一结合在该第三磁铁内端的电磁铁,该电磁铁具有一朝向该第一磁极与该第二磁极的第三磁极。
上述混合可变磁力的节能电动机中,该夹角角度为3度至35度。
上述混合可变磁力的节能电动机中,该电磁铁具有一靠合于该第三磁铁内端的铁芯,一包覆该铁芯周围的绝缘层,与一圈绕在该铁芯周围的该绝缘层外面的激磁线圈,该铁芯一端面朝向该第一磁极与该第二磁极。
上述混合可变磁力的节能电动机中,该第一磁极为S极,该第二磁极为N极,或该第一磁极为N极,该第二磁极为S极。
上述混合可变磁力的节能电动机中,该第一磁铁、该第二磁铁与该第三磁铁为方形磁铁。
上述混合可变磁力的节能电动机中,该电磁铁的铁芯为数片硅钢片叠合而成。
上述混合可变磁力的节能电动机中,还包含一机械能转电能的同轴发电机,该同轴发电机设置在该外壳的一端面并连接于该转轴。
本发明混合可变磁力的节能电动机,通过外壳、转轴、转子及定子等构件,特别是通过转子上的第一磁铁与第二磁铁不同磁极,作用于定子上的混合磁体,当转子转动时,能够通过较小的电流于混合磁体的电磁铁,以利用该混合磁体的电磁铁对该第一磁铁与第二磁铁的磁极产生吸引之后再排斥的作用,进而达到输出功率更大,降低电动机发热,及使电动机更节能省电的功效。
附图说明
以下配合附图详细说明本发明的特征及优点:
图1为本发明混合可变磁力的节能电动机较佳实施例的立体示意图。
图2为本发明混合可变磁力的节能电动机较佳实施例的分解示意图。
图3为本发明混合可变磁力的节能电动机较佳实施例的纵向剖面示意图。
图4为本发明混合可变磁力的节能电动机较佳实施例的横向剖面示意图。
图5为本发明第一磁铁与第二磁铁组合构造较佳实施例的分解示意图。
图6为本发明第一磁铁与第二磁铁安装角度较佳实施例的示意图。
图7为本发明定子的混合磁体较佳实施例的立体示意图。
图8为本发明定子的混合磁体较佳实施例的分解示意图。
图9为本发明电动机另外设置一发电机的示意图。
附图中的符号说明:
10外壳;11圆板;20转轴;30转子;31转体;311穿孔;32第一磁铁;321第一磁极;33第二磁铁;331第二磁极;A1第一直径;A2第二直径;B1径向轴线;B2中心点;C1转子旋转方向;θ1、θ2夹角;40定子;41混合磁体;42第三磁铁;43轭铁;44电磁铁;441第三磁极;442铁芯;443绝缘层;444激磁线圈;50同轴发电机。
具体实施方式
下面结合附图和具体实施例对本发明作进一步说明,但所举实施例不作为对本发明的限定。
参阅图1、图2及图3所示,本发明混合可变磁力的节能电动机,为一种电能转磁能且磁能再转成机械能的节能电动机,其较佳的具体实施例为该混合可变磁力的节能电动机主要包含一外壳10、一转轴20、一转子30及一定子40,其中:该外壳10可为两个相对应的圆板11所组成(如图1及图2所示),或一中空的圆筒或圆盘所构成,基本上其构造并无限制;该转轴20可转动地穿设在该外壳10的中心,并使该转轴20的一端或两端突出该外壳10(如图3所示),以能够将机械动力从该转轴20输出。
该转子30的构造参阅图3、图4及图5所示,其具有一结合在该转轴20的轴身并位于该外壳10内部的转体31,及数个结合在该转体31周围的第一磁铁32与第二磁铁33;该转体31可实施为一圆盘体,该转体31中心的一穿孔311供该转轴20穿置;该数个第一磁铁32是呈辐射状排列设置在该转体31周围的一第一直径A1上,该数个第二磁铁33呈辐射状排列设置在该转体31周围的一第二直径A2上,该第二直径A2小于该第一直径A1;各该第二磁铁33分别穿插设置在各该第一磁铁32之间,该第一磁铁32的外端为第一磁极321,该第二磁铁33的外端为第二磁极331,该第一磁极321与该第二磁极331为不同的磁极(例如一为N极,一为S极),使该第一磁极321与该第二磁极331穿叉的排列设置;参阅图6所示,各该第一磁铁32与各该第二磁铁33的外端以与各该第一磁铁32与各该第二磁铁33一侧相接的该转体31的径向轴线B1上的一中心点B2往相反于该转子30旋转方向C1偏移,且各该第一磁铁32与各该第二磁铁33均与其一侧相接的该转体31的径向轴线B1之间形成有一夹角θ1、θ2,该夹角θ1、θ2的角度较佳的实施例为3度至35度的范围。
该定子40的构造参阅图2、图3、图7及图8所示,其具有数个结合在该外壳10内部周围的混合磁体41,该混合磁体41包含一第三磁铁42,一结合在该第三磁铁42外端的轭铁43,一结合在该第三磁铁42内端的电磁铁44,该电磁铁44具有一朝向该第一磁极321与该第二磁极331的第三磁极441。其中,该电磁铁44较佳的实施例为具有一靠合于该第三磁铁42内端的铁芯 442,一包覆该铁芯442周围的绝缘层443,与一圈绕在该铁芯442周围的该绝缘层443外面的激磁线圈444,通过该铁芯442的一端面形成第三磁极441,并朝向该第一磁极321与该第二磁极331。
再参阅图4所示,该第一磁铁32的第一磁极321可实施为S极,该第二磁铁33的第二磁极331则实施为N极;反之,也可将该第一磁铁32的第一磁极321实施为N极,而该第二磁铁33的第二磁极331实施为S极。该第一磁铁32、该第二磁铁33与该第三磁铁42较佳的实施为方形磁铁;而该电磁铁44的铁芯442是由多片硅钢片叠合而成的块体。另外,参阅图9所示,本发明还可实施有一机械能转电能的同轴发电机50,该同轴发电机50设置在该外壳10的一端面并连接于该转轴20,据此本发明可应用成为发电机。
本发明混合可变磁力的节能电动机,通过该外壳10、转轴20、转子30及定子40等构件的组合,特别是通过该转子30上的第一磁铁32与第二磁铁33不同磁极与其设置上特殊的夹角θ1、θ2构造,对应于该定子40上的混合磁体41,当该转子30转动时,能够通过较小的电流于混合磁体41的电磁铁44,而对该第一磁铁32与第二磁铁33的第一磁极321、第二磁极331产生吸引之后再排斥的作用;而且,本发明能够通过该混合磁体41的第三磁铁42与电磁铁44结合的构造,增进电磁铁44的磁场,进而达到输出功率更大,降低电动机发热,及使电动机更节能省电的功效。
以上所述实施例仅是为充分说明本发明所举的较佳的实施例,本发明的保护范围不限于此。本技术领域的技术人员在本发明基础上所作的等同替代或变换,均在本发明的保护范围之内。本发明的保护范围以权利要求书为准。

Claims (7)

  1. 一种混合可变磁力的节能电动机,其特征在于,包含:
    一中空的外壳;
    一转轴,该转轴可转动地穿设在该外壳的中心,且该转轴的一端或两端突出该外壳;
    一转子,该转子具有一结合在该转轴的轴身并位于该外壳内的转体,及数个结合在该转体周围的第一磁铁与第二磁铁;该数个第一磁铁辐射状排列设置在该转体周围的一第一直径上,该数个第二磁铁辐射状排列设置在该转体周围的一第二直径上,该第二直径小于该第一直径;各该第二磁铁分别穿插设置在各该第一磁铁之间,该第一磁铁的外端为第一磁极,该第二磁铁的外端为第二磁极,该第一磁极与该第二磁极为不同的磁极,使该第一磁极与该第二磁极穿叉的排列设置;且各该第一磁铁与各该第二磁铁的外端均往相反于该转子旋转方向偏移,且各该第一磁铁与各该第二磁铁均与其一侧相接的该转体的径向轴线之间形成有一夹角;以及
    一定子,该定子具有数个结合在该外壳内部周围的混合磁体,该混合磁体包含一第三磁铁,一结合在该第三磁铁外端的轭铁,一结合在该第三磁铁内端的电磁铁,该电磁铁具有一朝向该第一磁极与该第二磁极的第三磁极。
  2. 如权利要求1所述的混合可变磁力的节能电动机,其特征在于,其中该夹角角度为3度至35度。
  3. 如权利要求1所述的混合可变磁力的节能电动机,其特征在于,其中该电磁铁具有一靠合于该第三磁铁内端的铁芯,一包覆该铁芯周围的绝缘层,与一圈绕在该铁芯周围的该绝缘层外面的激磁线圈,该铁芯一端面朝向该第一磁极与该第二磁极。
  4. 如权利要求1至3任意一项所述的混合可变磁力的节能电动机,其特征在于,其中该第一磁极为S极,该第二磁极为N极,或该第一磁极为N极,该第二磁极为S极。
  5. 如权利要求1所述的混合可变磁力的节能电动机,其特征在于,其中该第一磁铁、该第二磁铁与该第三磁铁为方形磁铁。
  6. 如权利要求3所述的混合可变磁力的节能电动机,其特征在于,其中该电磁铁的铁芯为数片硅钢片叠合而成。
  7. 如权利要求1所述的混合可变磁力的节能电动机,其特征在于,还包含一机械能转电能的同轴发电机,该同轴发电机设置在该外壳的一端面并连接于该转轴。
PCT/CN2018/097986 2018-08-01 2018-08-01 混合可变磁力的节能电动机 WO2020024138A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2018/097986 WO2020024138A1 (zh) 2018-08-01 2018-08-01 混合可变磁力的节能电动机
CN201880056484.8A CN111095755B (zh) 2018-08-01 2018-08-01 混合可变磁力的节能电动机

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/097986 WO2020024138A1 (zh) 2018-08-01 2018-08-01 混合可变磁力的节能电动机

Publications (1)

Publication Number Publication Date
WO2020024138A1 true WO2020024138A1 (zh) 2020-02-06

Family

ID=69231046

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/097986 WO2020024138A1 (zh) 2018-08-01 2018-08-01 混合可变磁力的节能电动机

Country Status (2)

Country Link
CN (1) CN111095755B (zh)
WO (1) WO2020024138A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1392655A (zh) * 2001-06-14 2003-01-22 许俊甫 可提升永磁式马达转速的装置
CN101295891A (zh) * 2007-04-27 2008-10-29 阿斯莫有限公司 磁铁嵌入式马达
CN102280983A (zh) * 2011-07-08 2011-12-14 陈国宝 双外转子同轴无铁芯线圈永磁发电机
CN103187816A (zh) * 2011-12-28 2013-07-03 瑞美技术有限责任公司 双磁体电动机
DE102013110413A1 (de) * 2012-09-21 2014-03-27 Denso Corporation Rotor und drehende elektrische Maschine

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR0311507A (pt) * 2002-06-04 2005-02-22 Wavecrest Lab Llc Motor elétrico de ìmã permanente giratório com folga de ar variável entre elementos de estator e rotor interfaceantes
CN201191788Y (zh) * 2008-05-12 2009-02-04 陈开芹 一种改进型磁力节能电动机
JP5634338B2 (ja) * 2011-06-27 2014-12-03 日立アプライアンス株式会社 磁石モータ及び磁石モータを備えたドラム式洗濯機
CN102710037A (zh) * 2011-10-14 2012-10-03 谢向荣 单向电动机
TW201317459A (zh) * 2011-10-26 2013-05-01 Assoma Inc 永磁罐裝泵結構改良
TWI586078B (zh) * 2016-09-06 2017-06-01 The stator structure of the motor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1392655A (zh) * 2001-06-14 2003-01-22 许俊甫 可提升永磁式马达转速的装置
CN101295891A (zh) * 2007-04-27 2008-10-29 阿斯莫有限公司 磁铁嵌入式马达
CN102280983A (zh) * 2011-07-08 2011-12-14 陈国宝 双外转子同轴无铁芯线圈永磁发电机
CN103187816A (zh) * 2011-12-28 2013-07-03 瑞美技术有限责任公司 双磁体电动机
DE102013110413A1 (de) * 2012-09-21 2014-03-27 Denso Corporation Rotor und drehende elektrische Maschine

Also Published As

Publication number Publication date
CN111095755A (zh) 2020-05-01
CN111095755B (zh) 2021-12-03

Similar Documents

Publication Publication Date Title
JP4999990B2 (ja) 回転電動機およびそれを用いた送風機
US7294948B2 (en) Rotor-stator structure for electrodynamic machines
US7808143B2 (en) Permanent magnet motor
CN108141068B (zh) 磁力传动装置和用于该装置的极片
JP5409380B2 (ja) 電気機械
TWI698073B (zh) 混合可變磁力之節能電動機
WO2020024138A1 (zh) 混合可变磁力的节能电动机
CN111030402B (zh) 方向性硅钢片轴向磁场电动机
EP1810391B1 (en) Rotor-stator structure for electrodynamic machines
TWM612028U (zh) 節能發電機
JPH11103552A (ja) モータ
CN112994300A (zh) 永磁空心线圈发电机
JP2017158333A (ja) 電動機
TWI385899B (zh) 永磁式電機之轉子結構及其製造方法
KR102473976B1 (ko) 하이브리드형 영구자석 토크모터
JP2004104853A (ja) モータ
JP2006180609A (ja) ブラシレスdcモータ及びそれを用いた送風ファン
TWI768360B (zh) 永磁空心線圈發電機
JP2006187075A (ja) ブラシレスdcモータ及びそれを用いた送風ファン
WO2022121069A1 (zh) 节能发电机
JP2010011581A (ja) クローポール型モータ及びこれを用いたポンプ
KR20180073769A (ko) 모터의 회전자 및 이를 이용한 모터
JP2008182863A (ja) モータ及び電動送風機
JP2011125170A (ja) 電動機
TW202218289A (zh) 節能發電機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18928474

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18928474

Country of ref document: EP

Kind code of ref document: A1