JP2014123145A - 反射防止積層体 - Google Patents

反射防止積層体 Download PDF

Info

Publication number
JP2014123145A
JP2014123145A JP2014024381A JP2014024381A JP2014123145A JP 2014123145 A JP2014123145 A JP 2014123145A JP 2014024381 A JP2014024381 A JP 2014024381A JP 2014024381 A JP2014024381 A JP 2014024381A JP 2014123145 A JP2014123145 A JP 2014123145A
Authority
JP
Japan
Prior art keywords
refractive index
index layer
oxide
layer
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2014024381A
Other languages
English (en)
Inventor
Kensuke Fujii
健輔 藤井
Koji Sato
浩二 佐藤
Kota Hori
興太 堀
Tamotsu Morimoto
保 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2014024381A priority Critical patent/JP2014123145A/ja
Publication of JP2014123145A publication Critical patent/JP2014123145A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Laminated Bodies (AREA)

Abstract

【課題】反射色が適度な有彩色を有するとともに、多色化が抑制された反射防止積層体を提供する。
【解決手段】反射防止積層体1は、基体2と、この基体2に積層される反射防止層3とを有する。該反射防止層3は、4層構造を有するものであり、基体側から順に、第1の屈折率層31、第2の屈折率層32、第3の屈折率層33、および第4の屈折率層34を有する。また、第1の屈折率層31の屈折率は、1.6〜1.9、第2の屈折率層32の屈折率は、2.2〜2.5、第3の屈折率層33の屈折率は、2.0〜2.3、第4の屈折率層34の屈折率は、1.2〜1.5であり、かつ、第2の屈折率層32の屈折率は、第3の屈折率層33の屈折率よりも大きい。
【選択図】図1

Description

本発明は、反射防止積層体に関する。
従来から、画像表示装置の視認性を向上させるため、画像表示面上に反射防止フィルム等の反射防止積層体を設けることが行われている。反射防止積層体は、可視光波長領域全体にわたって反射を低減するように設計されており、例えば、透明な基体上に、高屈折率酸化物層と低屈折率酸化物層とを交互に積層したものが知られている。高屈折率酸化物層と低屈折率酸化物層との積層数は必ずしも限定されるものではないが、生産性の観点等から、一般に高屈折率酸化物層と低屈折率酸化物層とを合わせて4層程度とされている(例えば、特許文献1参照)。
反射防止積層体には、低反射率に加えて、耐擦傷性、耐水性、防汚性等が求められる。また、反射防止積層体には、反射防止積層体が装着された画像表示装置等の外観を良好にするために、反射色が適度な有彩色を有し、かつ光の入射角の変化に伴う反射色の変化、いわゆる多色化が抑制されていることが求められる。すなわち、正面から見たときの反射色が過度の青味等を帯びない適度な有彩色を有し、かつ斜めから見たときの反射色が過度の赤味等を帯びない白色等を有することが求められる。
反射色が適度な有彩色を有するとともに、その多色化を抑制したものとして、例えば、基体上に、第1の酸化物層、第2の酸化物層、および第3の酸化物層を設け、第1の酸化物の屈折率を1.74〜1.88、膜厚を45〜65nm、第2の酸化物層の屈折率を1.9〜2.1、膜厚を90〜110nm、第3の酸化物層の屈折率を1.48以下、膜厚を80〜110nmとしたものが知られている(例えば、特許文献2参照)。
日本特開2003−215309号公報 日本特開2006−289901号公報
上記したように、高屈折率酸化物層と低屈折率酸化物層とを交互に積層したものにおいて、酸化物層の屈折率および膜厚を所定の範囲内とすることで、反射色を適度な有彩色とするとともに、その多色化を抑制することが知られている。しかし、従来の反射防止積層体については、例えば、反射率(視感反射率)が0.7%を超えるものとなっており、さらに反射率を低減することが求められている。
また、高屈折率酸化物層と低屈折率酸化物層とを交互に積層するものにおいては、製造条件の僅かな違いなどから、必ずしも酸化物層の膜厚が所望の膜厚にならないことがあり、これにより反射色が適度な有彩色にならず、また反射色の変化が大きくなることがある。このため、実際の製品の製造時に安定した品質で生産できるようにするために、膜厚が変動した場合であっても、反射色の変化を抑制できるものが求められている。
本発明は、上記課題を解決するためになされたものであって、反射色が適度な有彩色を有するとともに、その多色化が抑制され、かつ反射率も低減された反射防止積層体を提供することを目的とする。
本発明の反射防止積層体は、基体と、この基体に積層される反射防止層とを有する。該反射防止層は、4層構造を有するものであり、基体側から順に、第1の屈折率層、第2の屈折率層、第3の屈折率層、および第4の屈折率層を有する。第1の屈折率層の屈折率は、1.6〜1.9であり、第2の屈折率層の屈折率は、2.2〜2.5であり、第3の屈折率層の屈折率は、2.0〜2.3であり、第4の屈折率層の屈折率は、1.2〜1.5である。また、第2の屈折率層の屈折率は、第3の屈折率層の屈折率よりも大きい。第1の屈折率層は、ケイ素酸化物、インジウム酸化物、スズ酸化物、ニオブ酸化物、チタン酸化物、ジルコニウム酸化物、セリウム酸化物、タンタル酸化物、アルミニウム酸化物、及び亜鉛酸化物からなる群から選ばれる少なくとも2種の酸化物を有する。
本発明の反射防止積層体によれば、反射防止層を4層構造とするとともに、各屈折率層の屈折率を所定の範囲内とすることで、反射率を低減しつつ、反射色を適度な有彩色とするとともに、その多色化を抑制することができる。また、若干膜厚が変動しても、反射色の変化をほとんど抑制することができる。
本発明の反射防止積層体の一例を示す断面図である。 実施例1同等品の反射色の入射角依存性を示す図である。 実施例1同等品の反射色の膜厚・入射角依存性を示す図である。 実施例2同等品の反射色の入射角依存性を示す図である。 実施例2同等品の反射色の膜厚・入射角依存性を示す図である。 実施例3同等品の反射色の入射角依存性を示す図である。 実施例3同等品の反射色の膜厚・入射角依存性を示す図である。 比較例1同等品の反射色の入射角依存性を示す図である。 比較例1同等品の反射色の膜厚・入射角依存性を示す図である。 参考例の反射防止積層体の反射色の入射角依存性を示す図である。 参考例の反射防止積層体の反射色の膜厚・入射角依存性を示す図である。
以下、本発明の反射防止積層体について詳細に説明する。
図1は、反射防止積層体の一例を示す断面図である。
反射防止積層体1は、例えば、基体2と、この基体2に積層された反射防止層3とを有する。反射防止層3は、基体2側から順に、屈折率が1.6〜1.9である第1の屈折率層31、屈折率が2.2〜2.5である第2の屈折率層32、屈折率が2.0〜2.3である第3の屈折率層33、および屈折率が1.2〜1.5である第4の屈折率層34を有している。また、第2の屈折率層の屈折率は、第3の屈折率層の屈折率よりも大きいのが好ましい。なお、屈折率は、波長550nmの光における屈折率である。
本発明の反射防止積層体1は、第1の屈折率層31〜第4の屈折率層34の膜厚を比較的に近いものとすることが好ましい。第1の屈折率層31〜第4の屈折率層34における、膜厚が最小の層の膜厚に対する膜厚が最大の層の膜厚の比は、1を超え5以下であることが好ましく、1を超え3以下であることがより好ましい。膜厚を比較的に近いものとすることで、入射角の変化に対する反射色の変化の敏感さを低減することができる。これにより、反射色を適度な有彩色とするとともに、入射角の変化に対する反射色の変化を低減し、多色化を効果的に抑制できる。また、反射色を適度な有彩色とし、入射角の変化に対する反射色の変化を低減しつつ、反射率も低減できる。さらに、製造条件の僅かな違いにより、第1の屈折率層31〜第4の屈折率層34の膜厚が所望の膜厚から若干ずれた場合であっても、反射色を適度な有彩色に維持するとともに、入射角の変化に対する反射色の変化を低減し、多色化を効果的に抑制できる。
基体2は、透明性を有するものであれば特に限定されるものではなく、例えば剛性のある板状体、柔軟性のある高分子フィルム等とすることができる。
板状体の材質としては、例えば、二酸化ケイ素を主成分とする一般的なガラスの他、種々の組成の無機材料からなる無機ガラス、透明なアクリル樹脂、ポリカーボネート樹脂等の有機材料が挙げられる。
高分子フィルムとしては、例えばポリエチレンテレフタレート等のポリエステル系フィルム、ポリプロピレン等のポリオレフィン系フィルム、ポリ塩化ビニルフィルム、アクリル樹脂系のフィルム、ポリエーテルサルフォンフィルム、ポリアリレートフィルム、ポリカーボネートフィルム等が挙げられる。
基体2の厚さは、用途に応じて適宜選択することができ、例えば、板状体からなるものの場合、0.1〜5mm程度、より好ましくは0.2〜2mm、高分子フィルムからなるものの場合、50〜200μm程度が好ましく、75〜150μmがより好ましい。なお、基体2は、必ずしも単一の層から構成される単層構造に限られず、複数の層から構成される多層構造であってもよい。
反射防止層3は、4層構造を有するものであり、基体2側から順に、屈折率が1.6〜1.9である第1の屈折率層31、屈折率が2.2〜2.5である第2の屈折率層32、屈折率が2.0〜2.3である第3の屈折率層33、および屈折率が1.2〜1.5である第4の屈折率層34を有している。
第1の屈折率層31は、屈折率が1.6〜1.9のものである。屈折率が1.6未満または1.9を超える場合、反射色が適度な有彩色とならず、また入射角の変化に対して反射色の変化が敏感となり、多色化しやすくなる。さらに、屈折率が1.6未満または1.9を超える場合、反射率を十分に低減できないおそれがある。第1の屈折率層31の屈折率は、好ましくは1.65〜1.87であり、より好ましくは1.70〜1.85である。
第1の屈折率層31の構成材料は、屈折率が1.6〜1.9の範囲内となるものであれば特に限定されないが、例えば、ケイ素酸化物、インジウム酸化物、スズ酸化物、ニオブ酸化物、チタン酸化物、ジルコニウム酸化物、セリウム酸化物、タンタル酸化物、アルミニウム酸化物、亜鉛酸化物等の金属酸化物が挙げられる。第1の屈折率層31は、これらの金属酸化物の中から選ばれる1種のみからなるものとしてもよいが、中程度の屈折率である1.6〜1.9の範囲内としやすいことから、2種以上からなるものとすることが好ましい。2種以上からなるものの場合、さらにその2種の金属の複合酸化物をさらに含んでも良い。第1の屈折率層31は、乾式法、例えば、化学蒸着(CVD)法や物理蒸着(PVD)法、特に物理蒸着法の一種である真空蒸着法やスパッタ法により好適に形成することができる。
第1の屈折率層31の厚さは、40〜100nmが好ましい。第1の屈折率層31の厚さを40nm以上とすることで、反射色を適度な有彩色としやすく、また入射角の変化に対する反射色の変化を低減し、多色化を効果的に抑制できる。さらに、第1の屈折率層31の厚さを40nm以上とすることで、反射率も効果的に低減できる。第1の屈折率層31の厚さは、100nmもあれば十分であり、これ以下とすることで、生産性も良好とすることができる。
第1の屈折率層31は、第2の屈折率層32〜第4の屈折率層34に比べて多色化に与える影響が大きい。例えば、第1の屈折率層31が薄くなると、入射角の変化に対して反射色の変化が敏感になりやすい。このため、特に、第1の屈折率層31の厚さは、40nm以上とすることが好ましい。第1の屈折率層31の厚さは、好ましくは50〜90nm、より好ましくは60〜80nmである。
第2の屈折率層32は、屈折率が2.2〜2.5のものである。屈折率が2.2未満または2.5を超える場合、反射色が適度な有彩色とならず、また入射角の変化に対して反射色の変化が敏感となり、多色化しやすくなる。さらに、屈折率が2.2未満または2.5を超える場合、反射率を十分に低減できないおそれがある。第2の屈折率層32の屈折率は、好ましくは2.23〜2.47、より好ましくは2.25〜2.45である。
第2の屈折率層32の構成材料は、屈折率が2.2〜2.5の範囲内となるものであれば特に限定されないが、比較的に高い屈折率が得られるものとして、例えば、ニオブ酸化物、チタン酸化物等の金属酸化物が挙げられる。第2の屈折率層32は、これらの中から選ばれる1種のみからなるものとしてもよいし、これらの金属酸化物にケイ素酸化物を加えた群の中から選ばれる2種以上からなるものとしてもよい。2種以上からなるものの場合、さらにその2種の金属の複合酸化物をさらに含んでも良い。第2の屈折率層32は、乾式法、例えば、化学蒸着(CVD)法や物理蒸着(PVD)法、特に物理蒸着法の一種である真空蒸着法やスパッタ法により好適に形成することができる。
第2の屈折率層32の厚さは、30〜80nmが好ましい。第2の屈折率層32の厚さを30nm以上とすることで、反射色を適度な有彩色としやすく、また入射角の変化に対する反射色の変化を低減し、多色化を効果的に抑制できる。さらに、第2の屈折率層32の厚さを30nm以上とすることで、反射率も効果的に低減できる。第2の屈折率層32の厚さは、80nmもあれば十分であり、これ以下とすることで、生産性も良好とすることができる。第2の屈折率層32の厚さは、好ましくは35〜70nm、より好ましくは40〜60nmである。
第3の屈折率層33は、屈折率が2.0〜2.3のものである。屈折率が2.0未満または2.3を超える場合、反射色が適度な有彩色とならず、また入射角の変化に対して反射色の変化が敏感となり、多色化しやすくなる。さらに、屈折率が2.0未満または2.3を超える場合、反射率を十分に低減できないおそれがある。なお、第3の屈折率層33の屈折率は、第2の屈折率層32の屈折率よりも小さくする必要がある。第3の屈折率層33の屈折率が第2の屈折率層32の屈折率よりも大きい場合、反射率を十分に低減できないおそれがある。第3の屈折率層33の屈折率は、好ましくは2.05〜2.28、より好ましくは2.10〜2.25である。
第3の屈折率層33の構成材料は、屈折率が2.0〜2.3の範囲内となるものであれば特に限定されないが、例えば、ケイ素酸化物、インジウム酸化物、スズ酸化物、ニオブ酸化物、チタン酸化物、ジルコニウム酸化物、セリウム酸化物、タンタル酸化物、アルミニウム酸化物、亜鉛酸化物等の金属酸化物が挙げられる。第3の屈折率層33は、これらの金属酸化物の中から選ばれる1種のみからなるものとしてもよいが、中程度の屈折率である2.0〜2.3の範囲内としやすいことから、2種以上からなるものとすることが好ましい。2種以上からなるものの場合、さらにその2種の金属の複合酸化物をさらに含んでも良い。第3の屈折率層33は、乾式法、例えば、化学蒸着(CVD)法や物理蒸着(PVD)法、特に物理蒸着法の一種である真空蒸着法やスパッタ法により好適に形成することができる。
第3の屈折率層33の厚さは、30〜90nmが好ましい。第3の屈折率層33の厚さを30nm以上とすることで、反射色を適度な有彩色としやすく、また入射角の変化に対する反射色の変化を低減し、多色化を効果的に抑制できる。さらに、第3の屈折率層33の厚さを30nm以上とすることで、反射率も効果的に低減できる。第3の屈折率層33の厚さは、90nmもあれば十分であり、これ以下とすることで、生産性も良好とすることができる。第3の屈折率層33の厚さは、好ましくは40〜80nmであり、より好ましくは50〜75nmである。
第4の屈折率層34は、屈折率が1.2〜1.5のものである。屈折率が1.2未満または1.5を超える場合、反射色が適度な有彩色とならず、また入射角の変化に対して反射色の変化が敏感となり、多色化しやすくなる。さらに、屈折率が1.2未満または1.5を超える場合、反射率を十分に低減できないおそれがある。第4の屈折率層34の屈折率は、好ましくは1.23〜1.45であり、より好ましくは1.25〜1.40である。
第4の屈折率層34の厚さは、60〜120nmが好ましい。第4の屈折率層34の厚さを60nm以上とすることで、反射色を適度な有彩色としやすく、また入射角の変化に対する反射色の変化を低減し、多色化を効果的に抑制できる。さらに、第4の屈折率層34の厚さを60nm以上とすることで、反射率も効果的に低減できる。第4の屈折率層34の厚さは、120nmもあれば十分であり、これ以下とすることで、生産性も良好とすることができる。第4の屈折率層34の厚さは、好ましくは70〜110nmであり、より好ましくは80〜100nmである。
第4の屈折率層34としては、屈折率が1.2〜1.5の範囲内となるものであれば特に限定されず、ケイ素酸化物、フッ化マグネシウム等の低屈折材料を構成材料とし、乾式法、すなわち、化学蒸着(CVD)法や物理蒸着(PVD)法により形成されるものであってもよい。また、屈折率が1.2〜1.5の低屈折率の範囲内にしやすく、他の特性、例えば、防汚性、耐水性、耐薬品性等の特性を付与しやすいことから、湿式法により形成されたものが好ましい。
湿式法によるものとしては、低屈折率微粒子を含有するもの、具体的には、バインダーとなるマトリックス成分中に低屈折率微粒子を含有させたものが挙げられる。低屈折率微粒子としては、例えば、屈折率が1.10〜1.40であるものが好ましい。このような屈折率のものを用いることで、第4の屈折率層34の屈折率を効果的に低減し、所定の範囲内にしやすくなる。低屈折率微粒子の屈折率は、1.15〜1.35が好ましく、1.20〜1.30がより好ましい。
低屈折率微粒子の構成材料は、屈折率の小さいケイ素酸化物またはフッ化マグネシウムが好ましく、屈折率、分散安定性、コストの点から、ケイ素酸化物が好ましい。ケイ素酸化物を構成材料とする低屈折率微粒子としては、ゾルゲル法によりシリコンアルコキシドをアンモニア等の塩基性触媒下で反応させて合成したシリカ粒子、珪酸ソーダなどを原料としたコロイダルシリカ、気相で合成されたヒュームドシリカなどが例示される。
低屈折率微粒子としては、特に外殻の内部に空隙が形成された中空構造を有する中空シリカ粒子が好ましい。中空シリカ粒子は、その内部に形成された空隙のために屈折率が小さく、第4の屈折率層34の屈折率を効果的に低減できる。中空シリカ粒子は、空隙の一部が粒子の外殻の外部に露出している状態、つまり中空シリカ粒子の内部の空隙が、中空シリカ粒子の外側と繋がっている状態であってもよい。中空シリカ粒子の形状は特に限定されず、球形、卵形、紡錘形、無定型等が挙げられる。
中空シリカ粒子は、公知の製造方法によって製造されたものを用いることができ、例えば、第1段階として、後処理によって除去可能なコア粒子の形成を行い、第2段階として、コア粒子を被覆するシェル層の形成を行い、第3段階として、コア粒子の溶解を行う方法により得られたものを用いることができる。
低屈折率微粒子の平均粒子径は、20〜100nmが好ましく、30〜90nmがより好ましく、40〜80nmが特に好ましい。低屈折率微粒子の平均粒子径を20nm以上とすることで、粒子間の空隙を増やし、第4の屈折率層34の屈折率を効果的に低減することができる。特に、低屈折率微粒子が中空シリカ粒子の場合、粒子内部の空隙の割合を増加させ、第4の屈折率層34の屈折率を効果的に低減することができる。また、低屈折率微粒子の粒径を100nm以下とすることで、第4の屈折率層34の表面における過度な凹凸の発生を抑制し、外観等を良好にすることができるとともに、粒子自身の耐久性も良好にすることができる。
低屈折率微粒子の平均粒子径は、例えば、1万倍〜5万倍の透過電子顕微鏡により、その平面的視野の中で実際に一次粒子(凝集して鎖状二次粒子を形成している場合は個々の一次粒子)の直径を実測し、下記式による個数(n=100)の数平均値dとして定義することができる。
Figure 2014123145
低屈折率微粒子が中空シリカ粒子の場合、その空隙率は、10〜80%が好ましく、20〜60%がより好ましい。空隙率を10%以上とすることで、内部の空隙により粒子自身の屈折率を効果的に低減させ、第4の屈折率層34の屈折率を低減できる。また、空隙率を80%以下とすることで、粒子の耐久性を良好にすることができる。
マトリックス成分としては、無機化合物が好ましく、金属酸化物がより好ましい。金属酸化物としては、例えば、ケイ素酸化物、アルミニウム酸化物、チタン酸化物、ジルコニウム酸化物、タンタル酸化物等が好適なものとして挙げられる。このようなマトリックス成分は、加水分解可能な金属化合物を原料とするものである。
加水分解可能な金属化合物としては、例えば、ケイ素、アルミニウム、チタン、ジルコニウム、タンタルの金属アルコキシドが膜の強度や化学的安定性等から好適である。これらの金属アルコキシドの中でも、シリコンテトラアルコキシド、アルミニウムトリアルコキシド、チタンテトラアルコキシド、ジルコニウムテトラアルコキシド等が好ましく用いられる。前記アルコキシドに含まれるアルコキシ基としては、特にメトキシ基、エトキシ基、プロポキシ基、ブトキシ基等が好ましく挙げられる。
マトリックス成分の屈折率は反射率に影響を与えることから、マトリックス成分の原料としては、屈折率の小さいものが得られるシリコンアルコキシド、特にシリコンテトラアルコキシドまたはそのオリゴマーが好ましい。マトリックス成分の原料は、これら金属アルコキシドの中から複数混合したものを使用しても構わない。
マトリックス成分の原料としては、金属アルコキシド以外でも、加水分解によりM(OH)の反応生成物が得られれば必ずしも限定されず、例えば、金属のハロゲン化物や、イソシアネート基、アシルオキシ基、アミノキシ基などを有する金属化合物が例示される。また、例えば、シリコンアルコキシドの一種であるR M(OR4−nで表される化合物(Mはケイ素原子、Rはアルキル基、アミノ基、エポキシ基、フェニル基、メタクリロキシ基など有機官能基、Rは例えばアルキル基、nは1〜3の整数)も使用できる。
第4の屈折率層34における低屈折率微粒子の含有量は、マトリックス成分と低屈折率微粒子との合計量中、40〜95質量%が好ましく、50〜90質量%がより好ましく、60〜85質量%が特に好ましい。低屈折率微粒子の含有量を40質量%以上とすることで、第4の屈折率層34における粒子内部や粒子間の空隙を多くし、第4の屈折率層34の屈折率を効果的に低減することができる。また、95質量%以下とすることで、マトリックス成分が少なくなることによる粒子間の密着力等の低下を抑制し、第4の屈折率層34の機械的強度を良好にすることができる。
第4の屈折率層34には、本発明の趣旨に反しない限度において、また必要に応じて、その他の成分を含有させることができる。その他の成分としては、例えば、防汚剤が挙げられ、具体的には含フッ素アルコキシシラン、ジメチルシリコーン等が挙げられる。
含フッ素アルコキシシランとしては、フルオロトリエトキシシラン、トリフルオロプロピルトリメトキシシラン、トリデカフルオロオクチルトリメトキシシラン、ヘプタデカフルオロデシルトリメトキシシラン等が挙げられる。
防汚剤は、1種を単独で用いてもよく、2種以上を併用してもよい。防汚剤は、例えば、第4の屈折率層34の構成材料全体中、0.01〜10質量%とすることが好ましい。
また、本発明の趣旨に反しない限度において、また必要に応じて、防汚剤以外の成分、例えば、紫外線吸収剤、顔料等を含有させてもよい。このような成分は、第4の屈折率層34の構成材料全体中、5質量%以下が好ましい。
第4の屈折率層34は、例えば、以下のようにして形成することができる。まず、低屈折率微粒子、マトリックス成分となる加水分解可能な金属化合物、加水分解のための触媒、水、および溶媒を混合し、加水分解可能な金属化合物を加水分解させてコーティング液を調製する。加水分解は、例えば、室温で1〜24時間攪拌して反応させるか、室温よりも高い温度、例えば40〜80℃で10〜50分攪拌して反応させることにより行うことができる。なお、加水分解可能な金属化合物は、上記したように低屈折率微粒子と混合した状態で加水分解させてもよいし、予め加水分解させてから低屈折率微粒子と混合してもよい。また、コーティング液は、コーティング方法等に応じて、適当な溶媒で希釈しても構わない。
加水分解の触媒としては、酸触媒が最も有効であり、例えば、塩酸、硝酸等の鉱酸や酢酸等が挙げられる。酸触媒は、加水分解可能な金属化合物、例えば金属アルコキシドの加水分解反応の速度に比して縮重合反応速度が小さく、加水分解反応生成物であるM(OH)を多量に生成させることから好ましい。塩基性触媒は、加水分解反応の速度に比して縮重合反応速度が大きく、金属アルコキシドが微粒子状の反応生成物となり、もともと存在している低屈折率微粒子の粒径成長に使用され、マトリックス成分を生成する作用が小さい。
触媒の含有量は、金属化合物に対してモル比で0.001〜4が好ましい。
金属化合物の加水分解に必要な水の添加量は、金属化合物に対してモル比で0.1〜100が好ましい。水添加量がモル比で0.1より少ないと、金属化合物の加水分解の促進が十分でなく、またモル比で100より多いと、コーティング液の安定性が低下しやすい。
溶媒は、実質的に金属化合物を溶解できるものであれば特に制限されないが、メタノール、エタノール、プロパノール、ブタノール等のアルコール類、エチルセロソルブ、ブチルセロソルブ、プロピルセロソルブ類などのセロソルブ類、エチレングリコール、プロピレングリコール、ヘキシレングリコール等のグリコール類が最も好ましい。
コーティング液における低屈折率微粒子と金属化合物との合計量に対する低屈折率微粒子の含有量の割合は、40〜95質量%が好ましく、50〜90質量%がより好ましく、60〜85質量%が特に好ましい。なお、金属化合物の含有量は、金属酸化物であるケイ素酸化物(SiO)、アルミニウム酸化物(Al)、チタン酸化物(TiO)、ジルコニウム酸化物(ZrO)、タンタル酸化物(Ta)にそれぞれ換算した含有量とする。
コーティング液は、第3の屈折率層33上に塗布し、乾燥、加熱することにより、金属化合物の加水分解物の脱水縮合反応、揮発成分の気化・燃焼を行って、第4の屈折率層34を形成することができる。コーティング液の塗布は、例えば、ディップコート法、エアーナイフコート法、カーテンコート法、ローラーコート法、ワイヤーバーコート法、グラビアコート法、ダイコート法等により行うことができる。
第4の屈折率層34の形成方法として、乾式法によるものとしては、例えば、フッ化マグネシウムを真空チャンバー内で加熱して物理蒸着法により成膜する方法が好ましく挙げられる。
第4の屈折率層34がフッ化マグネシウムを含む層である場合、本発明の趣旨に反しない程度の厚さで、必要に応じて、第4の屈折率層34上、すなわち第4の屈折率層34の基体2と反対側に防汚層(図示せず)を形成してもよい。防汚層の厚さは、3〜20nmであることが好ましく、5〜15nmがより好ましい。防汚層の厚さが3nm以上であれば十分防汚性能を発揮することができる。また、3nm以下であると、本発明の反射防止積層体の反射防止性能が損なわれることがないため好ましい。
防汚層に用いる材料としては、含フッ素有機ケイ素化合物が挙げられる。また、防汚層と第4の屈折率層との密着性を向上させるために、本発明の趣旨に反しない程度の厚さで、必要に応じて、ケイ素酸化物等の金属酸化物を含む密着層が第4の屈折率層と防汚層との間に形成されてもよい。密着層の厚さは、5〜20nmであることが好ましく、5〜10nmがより好ましい。密着層の厚さが5nm以上であれば、第4の屈折率層と防汚層との密着性を十分なものとすることができるため好ましい。また、20nm以下であれば、本発明の反射防止積層体の反射防止性能が損なわれることがないため好ましい。
本発明の反射防止積層体1は、必ずしも基体2上に反射防止層3のみが設けられたものに限られない。本発明の反射防止積層体1には、例えば、基体2となる高分子フィルム等の物理的強度を付与するために、ハードコート層を設けることができる。ハードコート層としては、電離放射線硬化性化合物の架橋反応、または重合反応により形成されるものが挙げられる。また、本発明の反射防止積層体1には、静電気防止の観点から、導電性層を設けることができる。導電性層としては、例えば、導電性微粒子と反応性硬化樹脂を含む導電性塗布液を塗布する方法、透明で導電性を有する高分子からなる透明導電性材料を塗布する方法、または金属、金属酸化物等を蒸着やスパッタリングして形成する方法等、従来公知の方法により製造されるものが挙げられる。
本発明の反射防止積層体1は、視感反射率(JIS Z 8701において規定されている反射の刺激値Y)が0.2%以下であることが好ましい。本発明の反射防止積層体1によれば、反射防止層3を第1の屈折率層31〜第4の屈折率層34の4層構造とするとともに、各屈折率層の屈折率を所定範囲内とすることで、反射色を適度な有彩色とし、多色化を抑制しつつ、視感反射率を0.2%以下とすることができる。本発明の反射防止積層体1では、特に、各屈折率層の屈折率を所定範囲内とすることに加え、各屈折率層の膜厚を所定範囲内とすることで、視感反射率を効果的に0.2%以下とすることができる。
また、本発明の反射防止積層体1は、入射角の角度5°における反射色の色度値(JIS Z 8701において規定されている色度座標x、y)が、0.15≦x≦0.30、0.15≦y≦0.30であることが好ましく、0.20≦x≦0.28、0.20≦y≦0.30であることがより好ましい。また、本発明の反射防止積層体1は、入射角の角度60°における反射色の色度値が、0.25≦x≦0.335、0.25≦y≦0.335であることが好ましく、0.28≦x≦0.330、0.28≦y≦0.330であることがより好ましい。このような色度値を有するものとすることで、過度な青味や赤身を帯びず、薄い青色から白色の反射色を得ることができ、反射防止積層体1が装着された画像表示装置等の外観を良好にすることができる。
反射色についても、反射防止層3を第1の屈折率層31〜第4の屈折率層34の4層構造とするとともに、各屈折率層の屈折率を所定範囲内とすることで、色度値を所定範囲内とすることができる。特に、各屈折率層の屈折率を所定範囲内とすることに加え、各屈折率層の膜厚を所定範囲内とすることで、反射色の色度値を効果的に所定範囲内にすることができる。
さらに、本発明の反射防止積層体1は、第4の屈折率層34の表面における水接触角が90度以上であることが好ましく、100度以上がより好ましい。なお、水接触角は、第4の屈折率層34の表面に純水を1μL滴下し、3点法により求められるものである。このような水接触角とすることで、反射防止積層体1の防汚性、耐水性、耐薬品性等を良好にすることができる。水接触角の調整は、例えば、第4の屈折率層34に、上記した含フッ素アルコキシシラン、ジメチルシリコーン等からなる防汚剤等を添加することにより行うことができる。本発明の反射防止積層体1では、第4の屈折率層34に防汚剤等を添加して防汚性等を良好にする観点からも、第4の屈折率層34を湿式法により得られたもの、特に中空シリカ粒子等の低屈折率微粒子をマトリックス成分に含有させたものとすることが好ましい。
第4の屈折率層34は、乾式法により得られたもの、例えば第4の屈折率層34がフッ化マグネシウムを有する層である場合には、第4の屈折率層上に防汚層を設けることが好ましい。
本発明の反射防止積層体1は、液晶表示装置(LCD)、プラズマディスプレイパネル(PDP)、エレクトロルミネッセンスディスプレイ(ELD)、陰極管表示装置(CRT)、表面電界ディスプレイ(SED)等の画像表示装置に適用することができる。
本発明の反射防止積層体1は、例えば基体2側を画像表示装置の画像表示面に接着して用いられる。本発明の反射防止積層体1を画像表示装置等に適用することで、該画像表示装置等の外観を良好にすることができる。
実施例
以下、本発明の反射防止積層体について、実施例によりさらに具体的に説明するが、以下の実施例に限定して解釈されるものではない。
(実施例1)
ガラス基板(ASガラス(ソーダライムガラス)厚さ2mm)を真空チャンバーに投入し、圧力が1×10−4Paになるまで排気し、マグネトロンスパッタ法により第1の屈折率層〜第3の屈折率層を順に成膜した。なお、以下に示す各屈折率層の屈折率は、分光透過率と分光反射率とから、波長分散をコーシー型と仮定して求めたものであり、波長550nmにおける値である。具体的には膜の屈折率をn=A+A/λ+A/λの形と仮定し(λは光の波長)、波長380nm〜780nmで分光透過率と分光反射率の実測値と計算値の残差2乗和が最小となるようにA〜Aを求めた。A、A及びAはそれぞれ、フィッティングパラメータである。
まず、ガラス基板上に、40原子%のシリコンを添加したスズターゲットを用いてアルゴンガスに40体積%の酸素ガスを混合した混合ガスを導入しながら、0.5Paの圧力で周波数20kHz、電力密度3.8W/cm、反転パルス幅5μsecのパルススパッタを行い、シリコンおよびスズの酸化物からなる厚さ67nmの第1の屈折率層を形成した。第1の屈折率層の屈折率は1.77であった。
酸化ニオブターゲット(AGCセラミック社製、商品名:NBO)を用いてアルゴンガスに10体積%の酸素ガスを混合した混合ガスを導入しながら、0.1Paの圧力で周波数20kHz、電力密度3.8W/cm、反転パルス幅5μsecのパルススパッタを行い、ニオブの酸化物からなる厚さ48nmの第2の屈折率層を形成した。第2の屈折率層の屈折率は2.38であった。
20質量%の酸化インジウムを酸化セリウムに添加して作製されたターゲットを用いて、アルゴンガスに10体積%の酸素ガスを混合した混合ガスを導入しながら、0.1Paの圧力で周波数20kHz、電力密度3.8W/cm、反転パルス幅5μsecのパルススパッタを行い、インジウムおよびセリウムの酸化物からなる厚さ62nmの第3の屈折率層を形成した。第3の屈折率層の屈折率は2.20であった。
次に、この第3の屈折率層上に、スピンコート法により第4の屈折率層を成膜し、反射防止積層体を得た。まず、イソプロピルアルコール(IPA)とポリエチレングリコールモノメチルエーテル(PGM)を質量比で4:1に混合した液と、中空シリカ粒子及びシリコンアルコキシドの加水分解物を含有する第4の屈折率層を成膜するためのコーティング液(日揮触媒化成社製、商品名:ELCOM AG−1027SIC)とを質量比で1:1.2の割合で混合して希釈液を得た。
第3の屈折率層上に、1ccの上記希釈液を静かに滴下し、スピンコーターを用いて、回転数500rpmで30秒、1000rpmで30秒、および5000rpmで0.5秒の条件で回転させ、塗膜を形成した。その後、高温チャンバーにて、150℃で30分間焼成し、中空シリカを含有する厚さ90nmの第4の屈折率層を形成した。第4の屈折率層の屈折率は1.33であった。
(実施例2)
ガラス基板(ASガラス(ソーダライムガラス)厚さ2mm)を真空チャンバーに投入し、圧力が1×10−4Paになるまで排気し、マグネトロンスパッタ法により第1の屈折率層〜第3の屈折率層を順に成膜した。
まず、ガラス基板上に、酸化ニオブターゲット(AGCセラミック社製、商品名:NBO)とシリコンターゲットとを用いて、アルゴンガスに30体積%の酸素ガスを混合した混合ガスを導入しながら、0.1Paの圧力でコスパッタを行った。酸化ニオブターゲットは、周波数20kHz、電力密度4.6W/cm、反転パルス幅5μsecのパルススパッタを行い、シリコンターゲットは、周波数20kHz、電力密度3.8W/cm、反転パルス幅5μsecのパルススパッタを行い、ニオブおよびシリコンの酸化物からなる厚さ72nmの第1の屈折率層を形成した。第1の屈折率層の屈折率は1.77であった。
ニオブターゲットを用いてアルゴンガスに40体積%の酸素ガスを混合した混合ガスを導入しながら、0.1Paの圧力で周波数20kHz、電力密度3.8W/cm、反転パルス幅5μsecのパルススパッタを行い、ニオブの酸化物からなる厚さ55nmの第2の屈折率層を形成した。第2の屈折率層の屈折率は2.33であった。
酸化ニオブターゲット(AGCセラミック社製、商品名:NBO)とシリコンターゲットとを用いて、アルゴンガスに30体積%の酸素ガスを混合した混合ガスを導入しながら、0.1Paの圧力でコスパッタを行った。酸化ニオブターゲットは、周波数20kHz、電力密度6.3W/cm、反転パルス幅5μsecのパルススパッタを行い、シリコンターゲットは、周波数20kHz、電力密度1.5W/cm、反転パルス幅5μsecのパルススパッタを行い、ニオブおよびシリコンの酸化物からなる厚さ60nmの第3の屈折率層を形成した。第3の屈折率層の屈折率は2.15であった。
次に、この第3の屈折率層上に、実施例1と同様にして、中空シリカを含有する厚さ90nm、屈折率1.33の第4の屈折率層を形成し、反射防止積層体を得た。
(実施例3)
ガラス基板(ASガラス(ソーダライムガラス)厚さ2mm)を真空チャンバーに投入し、圧力が1×10−4Paになるまで排気し、マグネトロンスパッタ法により第1の屈折率層〜第3の屈折率層を順に成膜した。
まず、ガラス基板上に、30質量%のシリコン酸化物をインジウム酸化物に添加して作製されたターゲットを用いてアルゴンガスに10体積%の酸素ガスを混合した混合ガスを導入しながら、0.1Paの圧力で周波数20kHz、電力密度3.8W/cm、反転パルス幅5μsecのパルススパッタを行い、シリコンおよびインジウムの酸化物からなる厚さ70nmの第1の屈折率層を形成した。第1の屈折率層の屈折率は1.79であった。
ニオブターゲットを用いてアルゴンガスに40体積%の酸素ガスを混合した混合ガスを導入しながら、0.1Paの圧力で周波数20kHz、電力密度3.8W/cm、反転パルス幅5μsecのパルススパッタを行い、ニオブの酸化物からなる厚さ55nmの第2の屈折率層を形成した。第2の屈折率層の屈折率は2.33であった。
20質量%インジウム酸化物を酸化セリウムに添加して作製されたターゲットを用いて、アルゴンガスに10体積%の酸素ガスを混合した混合ガスを導入しながら、0.5Paの圧力で周波数20kHz、電力密度3.8W/cm、反転パルス幅5μsecのパルススパッタを行い、インジウムおよびセリウムの酸化物からなる厚さ64nmの第3の屈折率層を形成した。第3の屈折率層の屈折率は2.15であった。
次に、この第3の屈折率層上に、実施例1と同様にして、中空シリカを含有する厚さ90nm、屈折率1.33の第4の屈折率層を形成し、反射防止積層体を得た。
(実施例4)
第4の屈折率層として、フッ化マグネシウムの層を以下の方法で形成したこと以外は、実施例3と同様にして反射防止積層体を作製した。
第1〜3の屈折率層を形成したガラス基板が置かれている真空チャンバー内に、フッ化マグネシウム顆粒(メルク社製)が充填されたハース(Hearth)を準備した。真空チャンバー内を排気し、圧力を1×10−4Paとした後、ガラス基板を300℃まで加熱し、電子ビーム蒸着法(物理蒸着法)で屈折率1.38のフッ化マグネシウムからなる厚さ85nmの第4の屈折率層を形成し、反射防止積層体を得た。
(実施例5)
第4の屈折率層の厚さを75nmとしたこと、及び第4の屈折率層上に防汚層を以下の方法で形成したこと以外は実施例4と同様にして、反射防止積層体を作製した。
含フッ素有機ケイ素化合物を含む溶液であるオプツールDSX(登録商標、ダイキン工業社製)75gを加熱容器である、るつぼ内に導入した。るつぼ内を真空ポンプで10時間以上脱気して前記溶液から溶媒を除去した。
次いで溶媒が除去された後にるつぼを270℃まで加熱した。その後、270℃に到達した後、温度が安定するまで10分間待った。次いで、るつぼから蒸発した含フッ素有機ケイ素化合物を、第1〜第4の屈折率層が形成されたガラス基板が準備された真空チャンバー内に導入し、第4の屈折率層上に蒸着法により厚さ10nmの防汚層を形成し、反射防止積層体を得た。
(実施例6)
第4の屈折率層と防汚層との間に密着層を以下の方法で形成したこと、及び密着層上に厚さ15nmの防汚層を形成したこと以外は実施例5と同様にして、反射防止積層体を作製した。
第1〜第4の屈折率層が形成されたガラス基板の第4の屈折率層上に、シリコンターゲットを用いて、アルゴンガスに40体積%の酸素ガスを混合した混合ガスを導入しながら、0.3Paの圧力で周波数20kHz、電力密度3.8W/cm、反転パルス幅5μsecのパルススパッタを行い、厚さ10nmの密着層を形成した。
次いで密着層上に、実施例5と同様の方法で厚さ15nmの防汚層を形成し、反射防止積層体を得た。
(比較例1)
ガラス基板(ASガラス(ソーダライムガラス)厚さ2mm)を真空チャンバーに投入し、圧力が1×10−4Paになるまで排気し、マグネトロンスパッタ法により第1の層〜第4の層を順に成膜して反射防止積層体を得た。
まず、ガラス基板上に、酸化ニオブターゲット(AGCセラミック社製、商品名:NBO)を用いてアルゴンガスに10体積%の酸素ガスを混合した混合ガスを導入しながら、0.1Paの圧力で周波数20kHz、電力密度3.8W/cm、反転パルス幅5μsecのパルススパッタを行い、ニオブの酸化物からなる厚さ12nmの第1の層を形成した。第1の層の屈折率は2.38であった。
ホウ素が添加された多結晶シリコンターゲットを用いてアルゴンガスに40体積%の酸素ガスを混合した混合ガスを導入しながら、0.1Paの圧力で周波数20kHz、電力密度3.8W/cm、反転パルス幅5μsecのパルススパッタを行い、シリコンの酸化物からなる厚さ29nmの第2の層を形成した。第2の層の屈折率は1.47であった。
酸化ニオブターゲット(AGCセラミック社製、商品名:NBO)を用いてアルゴンガスに10体積%の酸素ガスを混合した混合ガスを導入しながら、0.1Paの圧力で周波数20kHz、電力密度3.8W/cm、反転パルス幅5μsecのパルススパッタを行い、ニオブの酸化物からなる厚さ110nmの第3の層を形成した。第3の層の屈折率は2.38であった。
ホウ素が添加された多結晶シリコンターゲットを用いてアルゴンガスに40体積%の酸素ガスを混合した混合ガスを導入しながら、0.1Paの圧力で周波数20kHz、電力密度3.8W/cm、反転パルス幅5μsecのパルススパッタを行い、シリコンの酸化物からなる厚さ88nmの第4の層を形成した。第4の層の屈折率は1.47であった。
(比較例2)
ガラス基板(ASガラス(ソーダライムガラス)厚さ2mm)を真空チャンバーに投入し、圧力が1×10−4Paになるまで排気し、マグネトロンスパッタ法により第1の層〜第3の層を順に成膜して反射防止積層体を得た。なお、本比較例は、実質的に、日本特開2006−289901号公報の実施例1に示された構成を有するものである。
まず、ガラス基板上に、40原子%のシリコンを添加したスズターゲットを用いてアルゴンガスに40体積%の酸素ガスを混合した混合ガスを導入しながら、0.55Paの圧力で周波数100kHz、電力密度3.9W/cm、反転パルス幅2.5μsecのパルススパッタを行い、シリコンおよびスズの酸化物からなる厚さ55nmの第1の層を形成した。第1の層の屈折率は1.81であった。
スズターゲットを用いてアルゴンガスに55体積%の酸素ガスを混合した混合ガスを導入しながら、0.62Paの圧力で周波数100kHz、電力密度3.2W/cm、反転パルス幅2.5μsecのパルススパッタを行い、スズの酸化物からなる厚さ96nmの第2の層を形成した。第2の層の屈折率は2.0であった。
ホウ素が添加された多結晶シリコンターゲットを用いてアルゴンガスに30体積%の酸素ガスを混合した混合ガスを導入しながら、0.9Paの圧力で周波数100kHz、電力密度4.1W/cm、反転パルス幅2.5μsecのパルススパッタを行い、シリコンの酸化物からなる厚さ100nmの第3の層を形成した。第3の層の屈折率は1.47であった。
次に、実施例および比較例の反射防止積層体について、以下に示す方法により、視感反射率、反射色の入射角依存性、水接触角を求めた。結果を表1に示す。
(視感反射率)
分光光度計(島津製作所社製、商品名:SolidSpec−3700)により分光反射率を測定し、計算により視感反射率(JIS Z 8701において規定されている反射の刺激値Y)を求めた。なお、反射防止積層体の裏面側(ガラス基板側)をラッカーにより黒く塗り、裏面反射をなくした状態で測定した。
(反射色の入射角依存性)
分光光度計(島津製作所社製、商品名:SolidSpec−3700)により分光反射率を測定し、計算により反射色の色度値(JIS Z 8701において規定されている色度座標x、y)を求めた。入射角の角度は、5°、30°、60°とした。なお、光源としては標準の光Cを用いた。また、反射防止積層体の裏面側(ガラス基板側)をラッカーにより黒く塗り、裏面反射をなくした状態で測定した。
(水接触角)
協和界面科学社製の「DM−051」(商品名)を用いて測定した。測定は、反射防止積層体の表面(第4の屈折率層の表面または防汚層の表面)に純水を1μL滴下し、3点法により接触角を求めた。
Figure 2014123145
表1に示されるように、比較例の反射防止積層体については、必ずしも十分に反射率を低減できず、また反射色が入射角に大きく依存する。一方、実施例の反射防止積層体については、反射率を十分に低減でき、反射色の入射角への依存も小さくできる。また、実施例1〜3、5、および6の反射防止積層体について、水接触角を大きくすることができ、防汚性等を向上できることがわかる。
次に、実施例1〜3および比較例1の反射防止積層体と同等構成の反射防止積層体、並びに参考例の反射防止積層体について、反射色の入射角依存性、および反射色の膜厚・入射角依存性を計算により求めた。結果を図2〜11に示す。前記計算は、「光学薄膜と成膜技術」(著者:李 正中、出版:アグネ技術センター)に記載の計算式を用いて行った。
ここで、図2、4、6、8、および10に示す反射色の入射角依存性は、各反射防止積層体について、入射角を0°から70°まで10°刻みで変化させたときの計算結果を示したものである。また、図3、5、7、9、および11に示す反射色の膜厚・入射角依存性は、各反射防止積層体について、各層の膜厚を単独で+3%から−3%まで1%刻みで変化させたときの反射色の入射角依存性(入射角0°から60°まで10°刻み)の計算結果を示したものである。すなわち、図3、5、7、9、および11には、それぞれ、「層数×膜厚の変更数(+3%から−3%まで1%毎)」の種類の反射防止積層体(これらのものについて、さらに入射角0°から60°まで10°刻み)の計算結果が示されている。
また、参考例の反射防止積層体は、第1の層(厚さ12nm、屈折率2.38)、第2の層(厚さ32nm、屈折率1.47)、第3の層(厚さ110nm、屈折率え2.38)、第4の層(厚さ93nm、屈折率1.47)としたものである。
図8、9から明らかなように、比較例1と同等構成の反射防止積層体については、入射角0°のときの反射色の色度値が小さく強い青味を帯びており、入射角が大きくなるにつれて色度値が大きく変化し、最終的に赤味を帯びる(図8)。また、膜厚が変化することによって、色度値に大きなバラツキが発生する(図9)。
一方、図2、3から明らかなように、実施例1と同等構成の反射防止積層体については、入射角0°のときの反射色の色度値が過度に小さくならず薄い青味を帯びたものとなり、入射角が大きくなるにつれて色度値が大きくなるもののほぼ白色を維持できる(図2)。また、膜厚が変化したときの色度値のバラツキも抑制できる(図3)。実施例2、3と同等構成の反射防止積層体についても、図4〜7から明らかなように、同様の傾向を有することがわかる。
本発明の反射防止積層体は、反射色を低減しつつ、適度な有彩色を有するとともに、その多色化を抑制して視認性を向上させることができ、液晶表示装置(LCD)、プラズマディスプレイパネル(PDP)、エレクトロルミネッセンスディスプレイ(ELD)、陰極管表示装置(CRT)、表面電界ディスプレイ(SED)等の画像表示装置として、有用である。
なお、2011年4月28日に出願された日本特許出願2011−102038号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
1…反射防止積層体、2…基体、3…反射防止層、31…第1の屈折率層、32…第2の屈折率層、33…第3の屈折率層、34…第4の屈折率層

Claims (10)

  1. 基体と、前記基体に積層され、前記基体側から順に、第1の屈折率層、第2の屈折率層、第3の屈折率層、および第4の屈折率層を有する4層構造の反射防止層とを備える反射防止積層体であって、
    前記第1の屈折率層の屈折率が1.6〜1.9であり、前記第2の屈折率層の屈折率が2.2〜2.5であり、前記第3の屈折率層の屈折率が2.0〜2.3であり、前記第4の屈折率層の屈折率が1.2〜1.5であり、かつ前記第2の屈折率層の屈折率が前記第3の屈折率層の屈折率よりも大きく、
    前記第1の屈折率層が、ケイ素酸化物、インジウム酸化物、スズ酸化物、ニオブ酸化物、チタン酸化物、ジルコニウム酸化物、セリウム酸化物、タンタル酸化物、アルミニウム酸化物、及び亜鉛酸化物からなる群から選ばれる少なくとも2種の酸化物を有する
    ことを特徴とする反射防止積層体。
  2. 前記第1の屈折率層の厚さが40〜100nmであり、前記第2の屈折率層の厚さが30〜80nmであり、前記第3の屈折率層の厚さが30〜90nmであり、前記第4の屈折率層の厚さが60〜120nmであることを特徴とする請求項1に記載の反射防止積層体。
  3. 前記第4の屈折率層が、金属酸化物からなるマトリックス成分と、前記マトリックス成分に含有された中空シリカ粒子とを有することを特徴とする請求項1または2に記載の反射防止積層体。
  4. 前記第4の屈折率層の表面における水接触角が90度以上であることを特徴とする請求項1乃至3のいずれか1項に記載の反射防止積層体。
  5. 前記第4の屈折率層が、フッ化マグネシウムを有する層であることを特徴とする請求項1または2に記載の反射防止積層体。
  6. 前記第4の屈折率層の基体と反対側に防汚層を有することを特徴とする請求項5に記載の反射防止積層体。
  7. 視感反射率が0.2%以下であることを特徴とする請求項1乃至6のいずれか1項に記載の反射防止積層体。
  8. 第1の屈折率層が、ケイ素酸化物と、インジウム酸化物、スズ酸化物、およびニオブ酸化物からなる群から選ばれる少なくとも1種の酸化物とを有することを特徴とする請求項1乃至7のいずれか1項に記載の反射防止積層体。
  9. 第2の屈折率層が、ニオブ酸化物、チタン酸化物、及びケイ素酸化物からなる群から選ばれる少なくとも1種の金属酸化物を有することを特徴とする請求項1乃至8のいずれか1項に記載の反射防止積層体。
  10. 第3の屈折率層が、ケイ素酸化物、インジウム酸化物、スズ酸化物、ニオブ酸化物、チタン酸化物、ジルコニウム酸化物、セリウム酸化物、タンタル酸化物、アルミニウム酸化物、及び亜鉛酸化物からなる群から選ばれる少なくとも1種の金属酸化物を有することを特徴とする請求項1乃至9のいずれか1項に記載の反射防止積層体。
JP2014024381A 2011-04-28 2014-02-12 反射防止積層体 Withdrawn JP2014123145A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014024381A JP2014123145A (ja) 2011-04-28 2014-02-12 反射防止積層体

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011102038 2011-04-28
JP2011102038 2011-04-28
JP2014024381A JP2014123145A (ja) 2011-04-28 2014-02-12 反射防止積層体

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2013512443A Division JP5527482B2 (ja) 2011-04-28 2012-04-26 反射防止積層体

Publications (1)

Publication Number Publication Date
JP2014123145A true JP2014123145A (ja) 2014-07-03

Family

ID=47072390

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2013512443A Active JP5527482B2 (ja) 2011-04-28 2012-04-26 反射防止積層体
JP2014024381A Withdrawn JP2014123145A (ja) 2011-04-28 2014-02-12 反射防止積層体

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2013512443A Active JP5527482B2 (ja) 2011-04-28 2012-04-26 反射防止積層体

Country Status (7)

Country Link
US (1) US9025248B2 (ja)
EP (1) EP2703851B1 (ja)
JP (2) JP5527482B2 (ja)
KR (1) KR101458733B1 (ja)
CN (1) CN103492914B (ja)
TW (1) TWI497107B (ja)
WO (1) WO2012147876A1 (ja)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014194530A (ja) * 2013-02-28 2014-10-09 Asahi Glass Co Ltd 光学素子
US9359261B2 (en) * 2013-05-07 2016-06-07 Corning Incorporated Low-color scratch-resistant articles with a multilayer optical film
US9366784B2 (en) 2013-05-07 2016-06-14 Corning Incorporated Low-color scratch-resistant articles with a multilayer optical film
US9110230B2 (en) 2013-05-07 2015-08-18 Corning Incorporated Scratch-resistant articles with retained optical properties
JP6014551B2 (ja) * 2013-05-27 2016-10-25 日東電工株式会社 タッチパネルセンサ
JP6303803B2 (ja) * 2013-07-03 2018-04-04 ソニー株式会社 固体撮像装置およびその製造方法
KR102115564B1 (ko) * 2013-09-24 2020-05-27 삼성디스플레이 주식회사 표시기판 및 이를 포함하는 표시패널
JP6365942B2 (ja) * 2013-11-21 2018-08-01 大日本印刷株式会社 タッチパネル付き表示装置
JP6451424B2 (ja) * 2014-03-18 2019-01-16 三菱マテリアル株式会社 高耐久性低屈折率膜
WO2015159839A1 (ja) * 2014-04-15 2015-10-22 旭硝子株式会社 反射防止積層体およびその製造方法
US11267973B2 (en) 2014-05-12 2022-03-08 Corning Incorporated Durable anti-reflective articles
US9790593B2 (en) 2014-08-01 2017-10-17 Corning Incorporated Scratch-resistant materials and articles including the same
JP6561519B2 (ja) * 2015-03-20 2019-08-21 大日本印刷株式会社 反射防止フィルム、該反射防止フィルムを用いた表示装置、及び反射防止フィルムの選択方法
KR102467683B1 (ko) * 2015-03-20 2022-11-17 다이니폰 인사츠 가부시키가이샤 반사 방지 필름, 해당 반사 방지 필름을 사용한 표시 장치, 및 반사 방지 필름의 선택 방법
JP6561520B2 (ja) * 2015-03-20 2019-08-21 大日本印刷株式会社 反射防止フィルム、該反射防止フィルムを用いた表示装置、及び反射防止フィルムの選択方法
JP6628974B2 (ja) * 2015-03-30 2020-01-15 リンテック株式会社 透明導電性フィルム
DE112016003678B4 (de) 2015-08-10 2021-07-15 AGC Inc. Glasplatte mit Antiverschmutzungsschicht
EP3300520B1 (en) 2015-09-14 2020-11-25 Corning Incorporated High light transmission and scratch-resistant anti-reflective articles
CN107293564A (zh) * 2016-04-12 2017-10-24 上海和辉光电有限公司 一种oled显示面板及其制备方法
KR102666766B1 (ko) * 2016-06-29 2024-05-16 엘지디스플레이 주식회사 반사형 표시장치
US10877181B2 (en) * 2016-11-11 2020-12-29 AGC Inc. Substrate with low-reflection property and manufacturing method thereof
KR101926960B1 (ko) * 2017-02-10 2018-12-07 주식회사 케이씨씨 저반사 코팅 유리
CN109213347B (zh) * 2017-06-29 2021-08-13 南京瀚宇彩欣科技有限责任公司 可挠式面板以及可挠式面板的制造方法
IT201800000730A1 (it) * 2018-01-11 2019-07-11 Coerent Srl Strato di rivestimento per lenti
EP3759530A1 (en) * 2018-03-02 2021-01-06 Corning Incorporated Anti-reflective coatings and articles and methods of forming the same
WO2020037042A1 (en) 2018-08-17 2020-02-20 Corning Incorporated Inorganic oxide articles with thin, durable anti-reflective structures
US11171313B2 (en) * 2018-09-24 2021-11-09 Apple Inc. Incoherent thin film encapsulation for display
KR102594548B1 (ko) * 2019-01-02 2023-10-27 삼성디스플레이 주식회사 윈도우, 윈도우의 제조 방법 및 윈도우를 포함하는 표시 장치
KR102520745B1 (ko) * 2020-07-13 2023-04-12 닛토덴코 가부시키가이샤 적층체
CN115050904B (zh) * 2021-09-26 2023-04-07 荣耀终端有限公司 显示屏及电子设备
JP7473851B2 (ja) * 2022-01-18 2024-04-24 ダイキン工業株式会社 防汚性物品

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3463574A (en) * 1967-06-26 1969-08-26 Perkin Elmer Corp Multilayer antireflection coating for low index materials
US3781090A (en) * 1972-11-06 1973-12-25 Minolta Camera Kk Four layer anti-reflection coating
JP3124391B2 (ja) * 1992-09-29 2001-01-15 ホーヤ株式会社 反射防止膜を有する光学部材
JPH0760855A (ja) * 1993-08-30 1995-03-07 Toray Ind Inc 反射防止物品
FR2730990B1 (fr) * 1995-02-23 1997-04-04 Saint Gobain Vitrage Substrat transparent a revetement anti-reflets
JPH11183705A (ja) * 1997-12-19 1999-07-09 Nikon Corp 反射防止膜を有する光学部材
JP2001281415A (ja) * 2000-03-31 2001-10-10 Sony Corp 反射防止フィルタ及びその製造方法
JP4562157B2 (ja) * 2000-11-16 2010-10-13 キヤノン株式会社 反射防止膜および光学素子
JP2003215309A (ja) * 2001-04-17 2003-07-30 Sony Corp 反射防止フィルム及び反射防止層付きプラスチック基板
FR2841894B1 (fr) * 2002-07-03 2006-03-10 Saint Gobain Substrat transparent comportant un revetement antireflet
JP2004138662A (ja) 2002-10-15 2004-05-13 Fuji Photo Film Co Ltd 反射防止膜、反射防止フィルムおよび画像表示装置
TW200500630A (en) * 2003-06-18 2005-01-01 Asahi Chemical Ind Antireflective film
JP2005099757A (ja) * 2003-08-25 2005-04-14 Asahi Glass Co Ltd 反射防止膜
TWI388876B (zh) * 2003-12-26 2013-03-11 Fujifilm Corp 抗反射膜、偏光板,其製造方法,液晶顯示元件,液晶顯示裝置,及影像顯示裝置
US20080285133A1 (en) * 2005-03-14 2008-11-20 Fujifilm Corporation Antireflection Film, Production Method Thereof, Polarizing Plate Using the Antireflection Film and Image Display Device Using the Antireflection Film or Polarizing Plate
JP2006289901A (ja) * 2005-04-14 2006-10-26 Asahi Glass Co Ltd 反射防止フィルムおよびディスプレイ装置
US20070065638A1 (en) * 2005-09-20 2007-03-22 Eastman Kodak Company Nano-structured thin film with reduced light reflection
FR2898295B1 (fr) * 2006-03-10 2013-08-09 Saint Gobain Substrat transparent antireflet presentant une couleur neutre en reflexion
JP2008116611A (ja) 2006-11-02 2008-05-22 Toppan Printing Co Ltd 反射防止フィルム
JP4155337B1 (ja) * 2007-02-21 2008-09-24 ソニー株式会社 防眩性フィルムおよびその製造方法、ならびに表示装置
WO2009001723A1 (ja) * 2007-06-28 2008-12-31 Konica Minolta Opto, Inc. 反射防止フィルム、偏光板、表示装置および反射防止フィルムの製造方法
JP2009122416A (ja) * 2007-11-15 2009-06-04 Toppan Printing Co Ltd 光学薄膜フィルム
US8481148B2 (en) * 2008-04-30 2013-07-09 Hoya Corporation Optical device and antireflection film
JP5724171B2 (ja) * 2009-01-09 2015-05-27 ソニー株式会社 光学素子およびその製造方法、原盤およびその製造方法、ならびに表示装置
JP2013152425A (ja) * 2011-12-28 2013-08-08 Tamron Co Ltd 反射防止膜及び光学素子

Also Published As

Publication number Publication date
CN103492914B (zh) 2016-06-22
CN103492914A (zh) 2014-01-01
TWI497107B (zh) 2015-08-21
TW201303346A (zh) 2013-01-16
EP2703851A4 (en) 2014-11-05
KR101458733B1 (ko) 2014-11-05
US20140049827A1 (en) 2014-02-20
KR20140003505A (ko) 2014-01-09
EP2703851A1 (en) 2014-03-05
JPWO2012147876A1 (ja) 2014-07-28
JP5527482B2 (ja) 2014-06-18
EP2703851B1 (en) 2016-05-25
WO2012147876A1 (ja) 2012-11-01
US9025248B2 (en) 2015-05-05

Similar Documents

Publication Publication Date Title
JP5527482B2 (ja) 反射防止積層体
TWI459022B (zh) MgF with amorphous silicon oxide binder 2 An optical film and an optical element provided with the thin film, and the MgF 2 Manufacturing method of optical film
JP6361162B2 (ja) 両面低反射膜付ガラス基板の製造方法
US6793981B2 (en) Process for producing laminated film, and reflection reducing film
JP6081736B2 (ja) 反射防止膜、光学素子及び反射防止膜の製造方法。
JP7234514B2 (ja) 光学積層体
TW201433830A (zh) 介電鏡體
US7598595B2 (en) Fabrication of nanoporous antireflection film
JP3679074B2 (ja) 透明積層フィルム、偏光板、液晶表示素子及び液晶表示装置
KR20210059026A (ko) 다층 반사-방지 코팅된 물품
JP2005017544A (ja) 反射防止フィルム、および画像表示装置
JP2002243906A (ja) 反射防止積層体及びその製造方法
JP3965732B2 (ja) 反射防止フィルム
JP2010113175A (ja) 積層体
JPH1149532A (ja) 低反射ガラス物品およびその製造方法
JP2004255635A (ja) 透明積層フィルム、反射防止フィルム及びそれを用いた偏光板、液晶表示装置
JP2004223769A (ja) 透明積層フィルム、反射防止フィルム及びそれを用いた偏光板、液晶表示装置
JP3320776B2 (ja) 反射防止膜および表示装置
JP2005055724A (ja) 反射防止フィルム、および画像表示装置
JP2005062584A (ja) 光吸収性反射防止フィルム
WO2024066880A1 (zh) S偏振光透反膜、挡风窗、显示装置和交通设备
JP2002286932A (ja) 偏光フィルムまたは偏光子用保護フィルムの製造方法
JP2003255104A (ja) 透明積層フィルム及びその製造方法
WO2024080298A1 (ja) 光学積層体および物品
JP2003054996A (ja) 反射抑制膜およびこれを備えた透明基体

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150106

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20150306