JP2014070611A - ピストンクーリングジェット - Google Patents

ピストンクーリングジェット Download PDF

Info

Publication number
JP2014070611A
JP2014070611A JP2012218928A JP2012218928A JP2014070611A JP 2014070611 A JP2014070611 A JP 2014070611A JP 2012218928 A JP2012218928 A JP 2012218928A JP 2012218928 A JP2012218928 A JP 2012218928A JP 2014070611 A JP2014070611 A JP 2014070611A
Authority
JP
Japan
Prior art keywords
valve
oil
piston cooling
cooling jet
housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012218928A
Other languages
English (en)
Other versions
JP5680601B2 (ja
Inventor
Yuki Yamaguchi
由貴 山口
Takahiro Kawahara
賢大 川原
Genichi Murakami
元一 村上
Akihiro Honda
暁拡 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiho Kogyo Co Ltd
Toyota Motor Corp
Original Assignee
Taiho Kogyo Co Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiho Kogyo Co Ltd, Toyota Motor Corp filed Critical Taiho Kogyo Co Ltd
Priority to JP2012218928A priority Critical patent/JP5680601B2/ja
Priority to US14/027,784 priority patent/US9010282B2/en
Priority to EP13186233.6A priority patent/EP2713020B1/en
Publication of JP2014070611A publication Critical patent/JP2014070611A/ja
Application granted granted Critical
Publication of JP5680601B2 publication Critical patent/JP5680601B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M1/00Pressure lubrication
    • F01M1/08Lubricating systems characterised by the provision therein of lubricant jetting means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/06Arrangements for cooling pistons
    • F01P3/08Cooling of piston exterior only, e.g. by jets

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Lubrication Of Internal Combustion Engines (AREA)

Abstract

【課題】オイル経路に異物が詰まった場合であっても、開弁状態を確保することができるピストンクーリングジェットを提供することを課題とする。
【解決手段】ピストンクーリングジェット1は、ハウジング2と、ハウジング2から外側に突設されピストン91にオイルOを噴射可能なノズル3と、ハウジング2の内部を往復動可能であって、表側からエンジン側オイル通路900の油圧による荷重Fuが加わり、エンジン側オイル通路900に連通するバルブ側オイル通路40を有するバルブ4と、ハウジング2の内部においてバルブ4の裏側に区画され、バルブ側オイル通路40に連通する圧力室21と、圧力室21とハウジング2の外部との間に配置される圧力調整通路Bと、バルブ4に配置され、バルブ側オイル通路40を流れるオイルOから、圧力調整通路Bを通過できない異物Pを除去するフィルタ75と、を備える。
【選択図】図6

Description

本発明は、エンジンのピストンの裏面にオイルを噴射することにより、ピストンを冷却するピストンクーリングジェットに関する。
ピストンクーリングジェットは、エンジンのシリンダブロックに取り付けられている。ピストンクーリングジェットは、シリンダブロックのメインオイルギャラリに連通している。メインオイルギャラリは、エンジンのオイル循環回路の一部を構成している。ピストンクーリングジェットには、油圧式バルブ機構が配置されている。
メインオイルギャラリのオイルの油圧が所定のしきい値以上になると、ピストンクーリングジェットの油圧式バルブ機構が開く。このため、メインオイルギャラリのオイルが、ピストンクーリングジェットにより、ピストンの裏面に噴射される。当該噴射により、ピストンが冷却される。
ここで、ピストンが高温の温間時においては、ピストンクーリングジェットによりピストンを冷却する方が好ましい。しかしながら、ピストンが低温の冷間時においては、ピストンを早期に昇温させる必要がある。このため、冷間時にピストンクーリングジェットを用いてピストンを冷却すると、ピストンの昇温を阻害してしまう。また、ピストンの裏面に噴射されたオイルは、クランクシャフトに落下する。ここで、冷間時においては、オイルの油温が低い。このため、オイルの粘度が高い。したがって、粘度の高いオイルがクランクシャフトに落下することになり、クランクシャフトの回転抵抗(オイルに対する攪拌抵抗)が大きくなってしまう。このような理由から、冷間時においては、オイルを噴射しない方が好ましい。しかしながら、従来のピストンクーリングジェットの油圧式バルブ機構は、エンジンの温度ではなく、メインオイルギャラリの油圧に応じて開閉する。このため、冷間時においても、ピストンクーリングジェットが作動してしまう。
この点に鑑み、特許文献1には、油圧用バルブ機構部と、油温用バルブ機構部と、を備えるピストンクーリングジェットが開示されている。同文献のピストンクーリングジェットによると、油圧用バルブ機構部が、オイルの油圧に応じて、オイルの噴射状態を切り替える。また、油温用バルブ機構部が、オイルの油温に応じて、オイルの噴射状態を切り替える。
油圧用バルブ機構部には、一つのコイルスプリングが使用されている。また、油温用バルブ機構部には、二つのコイルスプリングが使用されている。油温用バルブ機構部の二つのコイルスプリングは、閉止部材を介して、オイルの通路方向に沿って直列に並んでいる。二つのコイルスプリングのうち、上側(上流側)のコイルスプリングは形状記憶合金製の形状記憶スプリングである。当該コイルスプリングの付勢力は、温度により変化する。二つのコイルスプリングのうち、下側(下流側)のコイルスプリングは、バイアススプリングである。
冷間時においては、バイアススプリングの方が、形状記憶スプリングよりも、付勢力が大きい。このため、オイルの通路が閉じている。したがって、オイルの噴射を停止することができる。
一方、温間時においては、形状記憶スプリングの方が、バイアススプリングよりも、付勢力が大きい。このため、オイルの通路が開いている。したがって、オイルの噴射を許容することができる。
特開2011−12650号公報
しかしながら、同文献記載のピストンクーリングジェットによると、合計三つのコイルスプリングが必要である。このため、ピストンクーリングジェットの構造が複雑である。また、部品点数が多い。
また、同文献記載のピストンクーリングジェットによると、三つのコイルスプリングのうち、一つのコイルスプリングを、形状記憶合金製とする必要がある。このため、ピストンクーリングジェットの製造コストが高くなる。
この点に鑑み、本発明者は、新規のピストンクーリングジェットを開発した。ただし、当該ピストンクーリングジェットは、従来技術ではない。当該ピストンクーリングジェットは、ハウジングと、バルブと、リーク隙間と、コイルスプリングと、を備えている。バルブは、ハウジングに往復動可能に収容されている。バルブは、ハウジングの内部を、上側の受圧室と下側の圧力室とに、可動的に仕切っている。バルブには、オリフィスが配置されている。コイルスプリングは、圧力室に収容されている。コイルスプリングは、バルブを上側に付勢している。受圧室は、エンジンのメインオイルギャラリに連通している。圧力室の下流側には、リーク隙間が配置されている。リーク隙間は、外部に連通している。メインオイルギャラリのオイルは、受圧室→オリフィス→圧力室→リーク隙間という経路を辿って、外部に流出する。
当該ピストンクーリングジェットは、圧力室の上流側にオリフィスを、圧力室の下流側にリーク隙間を、備えている。このため、オイルの油温および油圧に応じて、圧力室の内圧を変化させることができる。また、当該内圧の変化を利用して、開弁位置と閉弁位置との間で、バルブを往復動させることができる。
このように、新規のピストンクーリングジェットによると、油温および油圧に応じたオイル噴射制御を、単一のコイルスプリングを用いて実行することができる。このため、ピストンクーリングジェットの構造が簡単である。また、部品点数が少ない。また、新規のピストンクーリングジェットによると、コイルスプリングを、敢えて形状記憶合金製とする必要がない。このため、ピストンクーリングジェットの製造コストが低くなる。
当該新規のピストンクーリングジェットの場合、圧力室の内圧を制御するために、オイル経路(メインオイルギャラリから、圧力室を経由して、外部に至る経路)を確保する必要がある。しかしながら、オイルには、例えば、スラッジ、摩耗粉、ゴミ、エンジン製造時の加工粉などの異物が混入している場合がある。異物がオイル経路に詰まると、オイルが円滑に流れにくくなる。このため、圧力室の内圧を制御しにくくなる。
このような場合、ピストンの昇温を抑制するという観点から、ピストンクーリングジェットは、ピストンにオイルを噴射しない閉弁状態にあるよりも、ピストンにオイルを噴射する開弁状態にある方が、好ましい。
本発明のピストンクーリングジェットは、上記課題に鑑みて完成されたものである。本発明は、オイル経路に異物が詰まった場合であっても、開弁状態を確保することができるピストンクーリングジェットを提供することを目的とする。
(1)上記課題を解決するため、本発明のピストンクーリングジェットは、ハウジングと、該ハウジングから外側に突設されピストンにオイルを噴射可能なノズルと、該ハウジングの内部を往復動可能であって、表側からエンジン側オイル通路の油圧による荷重が加わり、該エンジン側オイル通路に連通するバルブ側オイル通路を有するバルブと、該ハウジングの内部において該バルブの裏側に区画され、該バルブ側オイル通路に連通する圧力室と、該圧力室と該ハウジングの外部との間に配置される圧力調整通路と、該バルブに配置され、該バルブ側オイル通路を流れるオイルから、該圧力調整通路を通過できない異物を除去するフィルタと、を備え、該エンジン側オイル通路と該ノズルとの連通を禁止する閉弁状態と、該閉弁状態に対して該圧力室の体積が小さくなるように該バルブが裏側に移動し、該エンジン側オイル通路と該ノズルとの連通を許容する開弁状態と、に切替可能であることを特徴とする。
本発明のピストンクーリングジェットは、フィルタを備えている。このため、上述した新規のピストンクーリングジェット(従来技術ではない)と比較して、オイル経路(エンジン側オイル通路から、圧力室を経由して、外部に至る経路)を流れるオイルに混入した異物を、フィルタにより除去することができる。
また、フィルタは、バルブに配置されている。フィルタに異物が詰まると、オイルがフィルタを、表側から裏側に通過しにくくなる。つまり、フィルタの通過抵抗が大きくなる。このため、表側からバルブに加わる荷重が大きくなる。したがって、バルブは裏側に移動し、ピストンクーリングジェットは開弁状態になる。このように、本発明のピストンクーリングジェットによると、フィルタに異物が詰まった場合であっても、開弁状態を確保することができる。このため、フィルタに異物が詰まった場合であっても、ピストンを冷却することができる。
ところで、オイルは、エンジンを、一例として、オイルパン→ポンプ→オイルフィルタ→シリンダブロック→ピストンクーリングジェット→再びオイルパンという経路で循環している。エンジン製造直後においては、シリンダブロックに、エンジン製造時の加工粉が残留している場合がある。このため、エンジン製造直後にエンジンを駆動すると、加工粉は、オイルフィルタを通過する前に、ピストンクーリングジェットに流れ込んでしまう。したがって、ピストンクーリングジェットのオイル経路に異物が詰まりやすくなる。
この点、本発明のピストンクーリングジェットによると、エンジン製造直後にエンジンを駆動する場合であっても、オイルに混入した異物を、フィルタにより除去することができる。
また、仮に、バルブにフィルタが配置されていない場合、バルブ側オイル通路を通過した異物が、圧力調整通路に詰まることも考えられる。この場合、圧力室の内圧が高くなる。このため、裏側からバルブに加わる荷重が大きくなる。したがって、ピストンクーリングジェットが開弁状態に切り替わりにくくなる。
この点、本発明のピストンクーリングジェットによると、フィルタは、圧力調整通路を通過できない異物を除去することができる。このため、異物が、圧力調整通路に詰まりにくい。したがって、ピストンクーリングジェットが開弁状態に切り替わりやすくなる。
(2)好ましくは、上記(1)の構成において、前記バルブ側オイル通路は、オリフィスを有し、前記圧力調整通路は、開口幅が該オリフィスよりも小さく、総開口面積が該オリフィスよりも大きいリーク隙間である構成とする方がよい。本構成によると、オイルの油温および油圧に応じて、圧力室の内圧を簡単に調整することができる。
(3)好ましくは、上記(2)の構成において、前記フィルタは、前記オリフィスの上流側に配置されている構成とする方がよい。本構成によると、異物が、リーク隙間のみならず、オリフィスに詰まりにくくなる。
本発明によると、オイル経路に異物が詰まった場合であっても、開弁状態を確保することができるピストンクーリングジェットを提供することができる。
第一実施形態のピストンクーリングジェットの配置図である。 同ピストンクーリングジェットの斜視図である。 同ピストンクーリングジェットの分解斜視断面図である。 同ピストンクーリングジェットの閉弁状態の上下方向断面図である。 同ピストンクーリングジェットの開弁状態の上下方向断面図である。 図5の枠VI内の拡大図である。 第二実施形態のピストンクーリングジェットの閉弁状態の上下方向拡大断面図である。
以下、本発明のピストンクーリングジェットの実施の形態について説明する。
<第一実施形態>
[ピストンクーリングジェットの配置]
まず、本実施形態のピストンクーリングジェットの配置について説明する。図1に、本実施形態のピストンクーリングジェットの配置図を示す。図1に示すように、エンジン9は、シリンダブロック90と、ピストン91と、コンロッド92と、クランクシャフト93と、を備えている。
ピストン91は、コンロッド92を介して、クランクシャフト93に接続されている。ピストン91は、シリンダブロック90内を、上下方向に往復動可能である。シリンダブロック90には、メインオイルギャラリ900が形成されている。メインオイルギャラリ900は、本発明の「エンジン側オイル通路」の概念に含まれる。ピストンクーリングジェット1は、シリンダブロック90に取り付けられている。
オイルは、エンジン9を、オイルパン(図略)→ポンプ(図略)→オイルフィルタ(図略)→シリンダブロック90→ピストンクーリングジェット1→再びオイルパンという経路で循環している。すなわち、オイル循環回路において、シリンダブロック90は、オイルフィルタの下流側であって、ピストンクーリングジェット1の上流側に配置されている。
図1に示すピストンクーリングジェット1は、開弁状態である。図1に点線で示すように、ピストンクーリングジェット1は、メインオイルギャラリ900内のオイルOを、ピストン91の下面(裏面、つまり燃焼室と反対側の面。)に噴射可能である。
[ピストンクーリングジェットの構成]
次に、本実施形態のピストンクーリングジェットの構成について説明する。以下の図において、上側は、本発明の「表側」に対応している。また、下側は、本発明の「裏側」に対応している。図2に、本実施形態のピストンクーリングジェットの斜視図を示す。図3に、同ピストンクーリングジェットの分解斜視断面図を示す。図4に、同ピストンクーリングジェットの閉弁状態の上下方向断面図を示す。図5に、同ピストンクーリングジェットの開弁状態の上下方向断面図を示す。図6に、図5の枠VI内の拡大図を示す。
図1〜図6に示すように、ピストンクーリングジェット1は、ハウジング2と、ノズル3と、バルブ4と、ホルダ5と、プラグ6と、コイルスプリング70と、ブラケット71と、溝72と、フィルタ75と、を備えている。
(ハウジング2、ブラケット71)
ハウジング2は、鋼製であって、円筒状を呈している。図1に示すように、ハウジング2は、ブラケット71を介して、シリンダブロック90に、ボルト(図略)により固定されている。図4、図5に示すように、ハウジング2は、受圧室20と、圧力室21と、ハウジング側ノズル連通孔22と、第一段差部23と、第二段差部24と、を備えている。
受圧室20および圧力室21は、ハウジング2の内部に区画されている。受圧室20と圧力室21とは、後述するバルブ4により、仕切られている。すなわち、受圧室20は、バルブ4の上側に配置されている。一方、圧力室21は、バルブ4の下側に配置されている。バルブ4の動きに応じて、受圧室20および圧力室21の体積は、変化する。
ハウジング側ノズル連通孔22は、ハウジング2の側周壁を貫通している。ハウジング側ノズル連通孔22の断面は、真円状を呈している。第一段差部23は、ハウジング2の内部の上端(軸方向一端)付近に配置されている。第一段差部23は、下側から上側に向かって縮径するテーパ状を呈している。第一段差部23は、後述するバルブ4の上死点(閉弁位置)を決定している。第二段差部24は、ハウジング2の内部の下端(軸方向他端)付近に配置されている。第二段差部24は、下側から上側に向かって縮径する階段状を呈している。第二段差部24は、後述するホルダ5の取付位置を決定している。
(ノズル3、バルブ4、フィルタ75)
図4、図5に示すように、ノズル3は、鋼製であって、長軸円筒状を呈している。ノズル3は、ハウジング2の側周壁から、径方向外側に突設されている。図1に示すように、ノズル3の上端(軸方向一端)は、ピストン91の方向を向いている。ノズル3の下端(軸方向他端)は、ハウジング2のハウジング側ノズル連通孔22に接続されている。
図6に示すように、バルブ4は、鋼製であって、円柱状を呈している。バルブ4は、バルブ側オイル通路40と、バルブ側スプリング座44と、を備えている。バルブ側オイル通路40は、バルブ4を上下方向(軸方向)に貫通している。バルブ側オイル通路40の断面は、真円状を呈している。バルブ側オイル通路40の水平方向(軸直方向)の通路断面積は、受圧室20の水平方向の断面積に対して、縮小されている。
バルブ側オイル通路40の上側部分には、段差部400が配置されている。段差部400は、下側から上側に向かって拡径する階段状を呈している。
フィルタ75は、短軸円柱状であって、鋼製のメッシュを備えている。フィルタ75は、バルブ側オイル通路40に配置されている。フィルタ75は、段差部400に上側から当接している。フィルタ75は、バルブ側オイル通路40を通過するオイルOから、異物Pを除去している。ここで、フィルタ75のメッシュは、後述するリーク隙間Bの径方向幅(開口幅)よりも、小さく設定されている。このため、リーク隙間Bを通過できない異物P(リーク隙間Bに詰まってしまう異物P)は、フィルタ75により、濾し取られる。
バルブ側オイル通路40におけるフィルタ75の下側部分(下流側部分)には、オリフィス(絞り部)Aが配置されている。オリフィスAの断面は、真円状を呈している。バルブ側オイル通路40の水平方向の通路断面積は、オリフィスAにおいて、局所的に縮小されている。
バルブ側スプリング座44は、バルブ4の外周面の下側部分に、全周的に配置されている。バルブ側スプリング座44は、下側から上側に向かって拡径する階段状を呈している。
(ホルダ5、コイルスプリング70)
図3〜図6に示すように、ホルダ5は、鋼製であって、下側に開口する有底円筒状を呈している。ホルダ5は、ハウジング2の第二段差部24に当接するように、ハウジング2の内部に収容されている。ホルダ5は、底部50と、筒部51と、を備えている。
底部50は、バルブ4の下側に配置されている。底部50は、円板状を呈している。底部50は、ホルダ側孔500と、ホルダ側スプリング座501と、を備えている。ホルダ側孔500は、底部50の径方向中央に配置されている。ホルダ側孔500は、底部50を上下方向に貫通している。ホルダ側孔500の断面は、真円状を呈している。ホルダ側スプリング座501は、底部50の上面に配置されている。ホルダ側スプリング座501は、ホルダ側孔500の径方向外側に配置されている。ホルダ側スプリング座501は、円環リブ状を呈している。筒部51は、底部50の下側に連なっている。筒部51は、円筒状を呈している。
コイルスプリング70は、鋼製であって、バルブ側スプリング座44と、ホルダ側スプリング座501と、の間に介装されている。図4〜図6に示すように、コイルスプリング70は、バルブ4を、上側(開弁状態から閉弁状態に切り替える方向)に付勢している。
(プラグ6)
図3〜図6に示すように、プラグ6は、鋼製であって、上側に突出する画鋲状を呈している。プラグ6は、ハウジング2の下側の開口を封止している。プラグ6は、底部60と、凸部61と、シャフト62と、を備えている。
底部60は、円板状を呈している。底部60は、ハウジング2の下側の開口を、下側から覆っている。凸部61は、底部60の上面から突設されている。凸部61は、短軸円柱状を呈している。凸部61は、ホルダ5の内部に収容されている。凸部61は、ホルダ5により位置決めされている。ここで、凸部61の外周面と、筒部51の内周面と、は隙間無く当接している。すなわち、筒部51は、凸部61つまりシャフト62の、ホルダ側孔500に対する径方向位置を決定している。凸部61は、四つのプラグ側オイル通路610を備えている。四つのプラグ側オイル通路610は、各々、軸方向に延在している。四つのプラグ側オイル通路610の断面は、各々、真円状を呈している。四つのプラグ側オイル通路610は、90°ずつ離間して配置されている。図4、図5に示すように、四つのプラグ側オイル通路610は、各々、後述するリーク隙間Bと、ハウジング2の外部と、を上下方向(軸方向)に連通している。
シャフト62は、凸部61の上面から突設されている。シャフト62は、長軸円柱状を呈している。シャフト62の上面は、平面状を呈している。シャフト62の断面は、真円状を呈している。シャフト62は、ホルダ側孔500の径方向内側を貫通している。図6に示すように、開弁状態において、シャフト62の上面と、バルブ4の下面と、は当接している。すなわち、シャフト62の上面は、バルブ4の下死点(開弁位置)を決定している。
シャフト62とホルダ側孔500とは、同軸上に配置されている。リーク隙間Bは、シャフト62の外周面と、ホルダ側孔500の内周面と、の間に区画されている。リーク隙間Bは、円環状を呈している。リーク隙間Bの径方向幅(開口幅)は、オリフィスAの直径(開口幅)よりも、小さく設定されている。また、リーク隙間Bの水平方向(軸直方向)の通路断面積(総開口面積)は、オリフィスAの水平方向(軸直方向)の通路断面積(総開口面積)よりも、大きく設定されている。
(溝72)
図6に示すように、溝72は、バルブ4の下面に凹設されている。下側から見て、溝72は、+(プラス)状に延在している。溝72は、バルブ側オイル通路40に連通している。図6に示すように、開弁状態において、バルブ4の下面は、シャフト62の上面に、当接している。バルブ4の下面とシャフト62の上面との間には、溝72の凹形状に応じて、オイル通路が区画されている。このため、バルブ4の下面とシャフト62の上面とが当接しているにもかかわらず、開弁状態において、バルブ側オイル通路40と圧力室21とは、溝72を介して繋がっている。
[ピストンクーリングジェットのバルブに加わる荷重]
次に、本実施形態のピストンクーリングジェットのバルブに加わる荷重について、簡単に説明する。図4、図5に示すように、バルブ4の上面には、上側から、メインオイルギャラリ900のオイルOの油圧による荷重Fuが加わる。一方、バルブ4の下面には、下側から、コイルスプリング70の付勢力による荷重Fd1が加わる。並びに、バルブ4の下面には、下側から、圧力室21の内圧(オイルOの油圧)による荷重Fd2が加わる。
このように、バルブ4には、上側から荷重Fuが、下側から荷重Fd1、Fd2が、加わる。これらの荷重の大小関係に応じて、バルブ4は、上下方向に往復動する。なお、バルブ4には、ピストンクーリングジェット1の取付方向に応じて、バルブ4の自重や浮力などによる荷重も作用するが、ここでは、説明の便宜上、割愛する。
[ピストンクーリングジェットの動き]
次に、本実施形態のピストンクーリングジェットの動きについて説明する。前述したように、バルブ4には、上側から荷重Fuが、下側から荷重Fd1、Fd2が、加わる。これらの荷重の大小関係に応じて、バルブ4は、上下方向に往復動する。つまり、ピストンクーリングジェット1は、図4に示す閉弁状態と、図5に示す開弁状態と、に切り替わる。
荷重Fd2を決定しているのは、圧力室21の内圧である。圧力室21内の内圧は、圧力室21に流入するオイルOの流量Q1と、圧力室21から流出するオイルOの流量Q2と、の関係により変化する。
すなわち、圧力室21には、オリフィスAを経由して、オイルOが流入する。このため、オイルOの密度をρ、受圧室20内(つまり図1に示すメインオイルギャラリ900内)の油圧をPa、圧力室21内の油圧をPb、流量係数をK1、オリフィスAの流路断面積をSとすると、ベルヌーイの定理により、オリフィスAを通過するオイルOの流量、つまり圧力室21に流入するオイルOの流量Q1は、以下の式(1)から導出される。
Figure 2014070611
式(1)から、圧力室21に流入するオイルOの流量Q1は、オイルOの密度ρの影響を受けることが判る。ここで、オイルOの密度ρは、オイルOの油温が変化しても、あまり変化しない。このため、冷間時(エンジン9始動後であって、エンジン9の暖機が未完了で、ピストン91が低温の場合)から温間時(エンジン9の暖機完了後でピストン91が高温の場合)に至るまで、オイルOの密度ρは、あまり変化しない。したがって、冷間時から温間時に至るまで、圧力室21に流入するオイルOの流量Q1は、あまり変化しない。
これに対して、圧力室21からは、リーク隙間Bを経由して、オイルOが流出する。このため、オイルOの粘度をη、係数をK2、大気圧をPcとすると、ハーゲン・ポアズイユの法則により、リーク隙間Bを通過するオイルOの流量、つまり圧力室21から流出するオイルOの流量Q2は、以下の式(2)から導出される。
Figure 2014070611
式(2)から、圧力室21から流出するオイルOの流量Q2は、オイルOの粘度ηの影響を受けることが判る。ここで、オイルOの粘度ηは、オイルOの油温が変化すると、大きく変化する。このため、冷間時から温間時に至る際に、オイルOの粘度ηは、大きく変化する。したがって、冷間時から温間時に至る際に、圧力室21から流出するオイルOの流量Q2は、大きく変化する。具体的には、油温が上昇すると粘度ηは低下する。このため、式(2)から、流量Q2は増加する。
このように、油温の変化に対する流量Q1の変化に対して、油温の変化に対する流量Q2の変化は、大きい。このため、油温が高いほど、リーク隙間BからオイルOが漏れやすくなる。したがって、油温が高いほど、圧力室21内の内圧が小さくなる。よって、油温が高いほど、荷重Fd2は小さくなる。
油温が低い冷間時においては、荷重Fd2が大きい。このため、ピストンクーリングジェット1を、図4に示す閉弁状態から、図5に示す開弁状態に、切り替える際、大きな荷重Fuが必要になる。つまり、開弁圧が大きくなる。
一方、油温が高い温間時においては、荷重Fd2が小さい。このため、ピストンクーリングジェット1を、図4に示す閉弁状態から、図5に示す開弁状態に、切り替える際、小さな荷重Fuで足りる。つまり、開弁圧が小さくなる。
このように、本実施形態のピストンクーリングジェット1によると、油温に応じて開弁圧を自動的に調整している。
[作用効果]
次に、本実施形態のピストンクーリングジェットの作用効果について説明する。図4、図5に示すように、本実施形態のピストンクーリングジェット1は、油温および油圧に応じたオイル噴射制御を、オリフィスA、リーク隙間B、コイルスプリング70を用いて実行することができる。このため、ピストンクーリングジェット1の構造が簡単である。また、部品点数が少ない。
また、油温に応じてピストンクーリングジェットを作動させる従来技術として、形状記憶合金製のスプリングが用いられる。すなわち、油温に応じてばね定数が変化するスプリングが用いられる。この点、本実施形態のピストンクーリングジェット1によると、形状記憶合金製のスプリングは必要ない。このため、ピストンクーリングジェット1の製造コストが低くなる。
また、図6に示すように、本実施形態のピストンクーリングジェット1のバルブ4の下面には、溝72が凹設されている。このため、開弁状態において、確実に、オリフィスAと、リーク隙間Bと、を連通させることができる。すなわち、開弁状態において、メインオイルギャラリ900からハウジング2の外部まで、圧力室21の内圧調整用のオイルOを流すことができる。
また、図5に示すように、本実施形態のピストンクーリングジェット1によると、開弁状態において、バルブ4の下面が、シャフト62の上面に着座する。このため、バルブ4の開弁位置を規制することができる。また、コイルスプリング70の最大圧縮量を規制することができる。したがって、コイルスプリング70がへたりにくい。
また、図6に示すように、本実施形態のピストンクーリングジェット1は、フィルタ75を備えている。フィルタ75は、オリフィスA、リーク隙間Bの上流側に配置されている。また、「フィルタ75のメッシュ」<「リーク隙間Bの径方向幅(開口幅)」<「オリフィスAの直径(開口幅)」という大小関係が成立している。このため、オイル経路(メインオイルギャラリ900から、圧力室21を経由して、外部に至る経路)を流れるオイルOに混入した異物Pを、フィルタ75により除去することができる。したがって、異物Pが、オリフィスAやリーク隙間Bに詰まりにくい。
また、フィルタ75は、バルブ4に配置されている。フィルタ75に異物が詰まると、オイルOがフィルタ75を、表側から裏側に通過しにくくなる。つまり、フィルタ75の通過抵抗が大きくなる。このため、上側からバルブ4に加わる荷重Fuが大きくなる。したがって、図5に示すように、バルブ4は下側に移動し、ピストンクーリングジェット1は開弁状態になる。このように、本実施形態のピストンクーリングジェット1によると、フィルタ75に異物Pが詰まった場合であっても、開弁状態を確保することができる。このため、図1に示すように、フィルタ75に異物が詰まった場合であっても、ピストン91を冷却することができる。
また、エンジン9の製造直後においては、シリンダブロック90に、製造時の加工粉が残留している場合がある。このため、製造直後にエンジン9を駆動すると、加工粉は、オイルフィルタを通過する前に、ピストンクーリングジェット1に流れ込んでしまう。したがって、ピストンクーリングジェット1のオイル経路に異物Pが詰まりやすくなる。
この点、本実施形態のピストンクーリングジェット1によると、製造直後にエンジン9を駆動する場合であっても、オイルOに混入した異物Pを、フィルタ75により除去することができる。このため、異物Pが、オリフィスAやリーク隙間Bに詰まりにくい。
また、仮に、バルブ4にフィルタ75が配置されていない場合、バルブ側オイル通路40を通過した異物Pが、リーク隙間Bに詰まることも考えられる。この場合、圧力室21の内圧が高くなる。このため、下側からバルブ4に加わる荷重Fd2が大きくなる。したがって、図4に示すように、ピストンクーリングジェット1が閉弁状態に切り替わりやすくなる。
この点、本実施形態のピストンクーリングジェット1によると、フィルタ75は、リーク隙間Bを通過できない異物Pを除去することができる。このため、異物Pが、リーク隙間Bに詰まりにくい。したがって、図5に示すように、ピストンクーリングジェット1が開弁状態に切り替わりやすくなる。
<第二実施形態>
本実施形態のピストンクーリングジェットと、第一実施形態のピストンクーリングジェットとの相違点は、フィルタがオリフィスの下流側に配置されている点である。また、ハウジングの内周面にリブが配置されている点である。ここでは、相違点についてのみ説明する。
図7に、本実施形態のピストンクーリングジェットの閉弁状態の上下方向拡大断面図を示す。なお、図6と対応する部位については、同じ符号で示す。図7に示すように、フィルタ75は、バルブ側オイル通路40の下端の開口を覆っている。フィルタ75は、オリフィスAの下流側に配置されている。また、バルブ4の下面は、平面状を呈している。また、シャフト62の上面は、平面状を呈している。
ハウジング2の内周面(圧力室21の内周面)には、円環状のリブ73が配置されている。リブ73は、径方向内側に張り出している。上側または下側から見て、リブ73は、バルブ4の外周縁に、重複するように配置されている。並びに、上側または下側から見て、リブ73は、コイルスプリング70に、重複しないように配置されている。リブ73は、バルブ4の下死点(開弁位置)を決定している。すなわち、開弁状態において、リブ73は、バルブ4を下側から支持している。このため、バルブ4の下面とリーク隙間Bとの間には、隙間が確保されている。
本実施形態のピストンクーリングジェットと、第一実施形態のピストンクーリングジェットとは、構成が共通する部分に関しては、同様の作用効果を有する。また、本実施形態のピストンクーリングジェットのハウジング2の内周面には、リブ73が配置されている。このため、開弁状態において、バルブ4の下面とリーク隙間Bとの間に隙間を確保することができる。したがって、バルブ側オイル通路40と圧力室21とを、連通させることができる。また、隙間の上下方向幅を小さくすることにより、ハウジング2の上下方向長さ、延いてはピストンクーリングジェット1の上下方向長さを、小さくすることができる。
また、本実施形態のように、オリフィスAの下流側にフィルタ75を配置しても、リーク隙間Bに異物Pが詰まるのを抑制することができる。また、バルブ4にフィルタ75が配置されているため、フィルタ75に異物Pが詰まった場合、ピストンクーリングジェットを開弁状態に切り替えることができる。
<その他>
以上、本発明のピストンクーリングジェットの実施の形態について説明した。しかしながら、実施の形態は上記形態に特に限定されるものではない。当業者が行いうる種々の変形的形態、改良的形態で実施することも可能である。
図6に示すフィルタ75の濾材の種類は特に限定しない。例えば、濾紙、合成繊維、金属製のメッシュなどを用いて、オイルOを濾過すればよい。リーク隙間Bを通過できない異物Pを、オイルOから除去できればよい。
フィルタ75の配置場所は特に限定しない。バルブ側オイル通路40の外部であってもよい。例えば、フィルタ75をバルブ4の上面や下面に貼り付けてもよい。フィルタ75の配置数は特に限定しない。例えば、バルブ側オイル通路40に、メッシュ(濾過孔幅)の異なる複数のフィルタ75を、上流側から下流側に向かってメッシュが細かくなるように、直列に並べて配置してもよい。フィルタ75の濾過孔幅は特に限定しない。例えば、50μm以下であればよい。
第一実施形態においては、図6に示すように、バルブ4の下面に溝72を配置した。しかしながら、シャフト62の上面に溝72を配置してもよい。また、バルブ4の下面およびシャフト62の上面に溝72を配置してもよい。すなわち、上下に対向する溝72が合体することにより、バルブ4の下面とシャフト62の上面との間に、オイル通路を確保してもよい。
図4、図5に示す受圧室20、圧力室21、バルブ側オイル通路40、ハウジング側ノズル連通孔22、ノズル3の内部空間、オリフィスA、プラグ側オイル通路610の、通路方向に直交する方向の断面形状は、特に限定しない。例えば、真円状、楕円状、多角形状(三角形、四角形、五角形、六角形など)などであってもよい。
図6に示すリーク隙間Bの通路方向に直交する方向の断面形状は、特に限定しない。例えば、環状(真円環状、楕円環状、多角形環状など)、スリット状、真円状、楕円状、多角形状などであってもよい。また、リーク隙間Bは、ハウジング2の側周壁に配置してもよい。こうすると、リーク隙間Bに、異物Pが詰まりにくい。
リーク隙間Bは、複数配置してもよい。この場合、本発明の「開口幅」とは、単一のリーク隙間Bの開口幅をいう。また、本発明の「総開口面積」とは、全てのリーク隙間Bの開口面積の総和をいう。
また、オリフィスA、リーク隙間Bの開口形状が長尺状(例えば、スリット状、環状など)の場合、本発明の「開口幅」とは、オリフィスA、リーク隙間Bの短手方向幅をいう。
また、オリフィスA、リーク隙間Bの開口形状が真円状、楕円状、多角形状の場合、本発明の「開口幅」とは、オリフィスA、リーク隙間Bの図形重心を通る直線長をいう。例えば、オリフィスA、リーク隙間Bが真円状の場合、本発明の「開口幅」とは、直径長をいう。
上側または下側から見た場合の、溝72の形状は特に限定しない。+状、−(マイナス)状、Y字状などであってもよい。溝72を、30°、45°、60°、90°、120°、180°など、等角度ごとに、放射状に配置してもよい。
第二実施形態においては、図7に示すように、無端環状のリブ73を配置した。しかしながら、リブ73の代わりに、単一または複数の、径方向内側に突出する突起を配置してもよい。複数の突起を配置する場合、ハウジング2の内周面に、等角度ごとに突起を配置してもよい。
上記実施形態においては、図4、図5に示すように、バルブ側オイル通路40にオリフィスAを配置した。しかしながら、バルブ側オイル通路40にオリフィスAを配置しなくてもよい。
上記実施形態においては、図6、図7に示すように、バルブ4の下死点を決定する部材(シャフト62、リブ73)を配置した。しかしながら、バルブ4の下死点を決定する部材を配置しなくてもよい。すなわち、コイルスプリング70および圧力室21の内圧により、バルブ4の下死点を規制してもよい。
1:ピストンクーリングジェット。
2:ハウジング、20:受圧室、21:圧力室、22:ハウジング側ノズル連通孔、23:第一段差部、24:第二段差部。
3:ノズル。
4:バルブ、40:バルブ側オイル通路、400:段差部、44:バルブ側スプリング座。
5:ホルダ、50:底部、500:ホルダ側孔、501:ホルダ側スプリング座、51:筒部。
6:プラグ、60:底部、61:凸部、610:プラグ側オイル通路、62:シャフト。
70:コイルスプリング、71:ブラケット、72:溝、73:リブ、75:フィルタ。
9:エンジン、90:シリンダブロック、900:メインオイルギャラリ(エンジン側オイル通路)、91:ピストン、92:コンロッド、93:クランクシャフト。
A:オリフィス、B:リーク隙間、Fd1:荷重、Fd2:荷重、Fu:荷重、O:オイル、P:異物。
ここで、ピストンが高温の温間時においては、ピストンクーリングジェットによりピストンを冷却する方が好ましい。しかしながら、ピストンが低温の冷間時においては、ピストンを早期に昇温させる必要がある。このため、冷間時にピストンクーリングジェットを用いてピストンを冷却すると、ピストンの昇温を阻害してしまう。このような理由から、冷間時においては、オイルを噴射しない方が好ましい。しかしながら、従来のピストンクーリングジェットの油圧式バルブ機構は、エンジンの温度ではなく、メインオイルギャラリの油圧に応じて開閉する。このため、冷間時においても、ピストンクーリングジェットが作動してしまう。

Claims (3)

  1. ハウジングと、
    該ハウジングから外側に突設されピストンにオイルを噴射可能なノズルと、
    該ハウジングの内部を往復動可能であって、表側からエンジン側オイル通路の油圧による荷重が加わり、該エンジン側オイル通路に連通するバルブ側オイル通路を有するバルブと、
    該ハウジングの内部において該バルブの裏側に区画され、該バルブ側オイル通路に連通する圧力室と、
    該圧力室と該ハウジングの外部との間に配置される圧力調整通路と、
    該バルブに配置され、該バルブ側オイル通路を流れるオイルから、該圧力調整通路を通過できない異物を除去するフィルタと、
    を備え、
    該エンジン側オイル通路と該ノズルとの連通を禁止する閉弁状態と、
    該閉弁状態に対して該圧力室の体積が小さくなるように該バルブが裏側に移動し、該エンジン側オイル通路と該ノズルとの連通を許容する開弁状態と、に切替可能なピストンクーリングジェット。
  2. 前記バルブ側オイル通路は、オリフィスを有し、
    前記圧力調整通路は、開口幅が該オリフィスよりも小さく、総開口面積が該オリフィスよりも大きいリーク隙間である請求項1に記載のピストンクーリングジェット。
  3. 前記フィルタは、前記オリフィスの上流側に配置されている請求項2に記載のピストンクーリングジェット。
JP2012218928A 2012-09-29 2012-09-29 ピストンクーリングジェット Expired - Fee Related JP5680601B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012218928A JP5680601B2 (ja) 2012-09-29 2012-09-29 ピストンクーリングジェット
US14/027,784 US9010282B2 (en) 2012-09-29 2013-09-16 Piston cooling jet
EP13186233.6A EP2713020B1 (en) 2012-09-29 2013-09-26 Piston cooling jet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012218928A JP5680601B2 (ja) 2012-09-29 2012-09-29 ピストンクーリングジェット

Publications (2)

Publication Number Publication Date
JP2014070611A true JP2014070611A (ja) 2014-04-21
JP5680601B2 JP5680601B2 (ja) 2015-03-04

Family

ID=49293479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012218928A Expired - Fee Related JP5680601B2 (ja) 2012-09-29 2012-09-29 ピストンクーリングジェット

Country Status (3)

Country Link
US (1) US9010282B2 (ja)
EP (1) EP2713020B1 (ja)
JP (1) JP5680601B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10233816B2 (en) 2013-08-09 2019-03-19 Toyota Jidosha Kabushiki Kaisha Oil jet

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5827164B2 (ja) * 2012-04-04 2015-12-02 トヨタ自動車株式会社 オイルジェット
US8899190B2 (en) * 2013-04-26 2014-12-02 GM Global Technology Operations LLC Temperature dependent flow control for combustion engine piston squirters
US20180306096A1 (en) * 2015-05-28 2018-10-25 Hitachi Automotive Systems, Ltd. Oil jet for internal combustion engine and piston cooling device for internal combustion engine
GB201519640D0 (en) * 2015-11-06 2015-12-23 Gm Global Tech Operations Inc Piston cooling jet for an internal combustion engine
CN106091010B (zh) * 2016-06-21 2019-03-08 中国航空工业集团公司沈阳发动机设计研究所 一种发动机燃烧室双油路喷嘴活门
DE102017223465A1 (de) * 2017-12-20 2019-06-27 Volkswagen Aktiengesellschaft Kolbenkühldüse
DE102019218934B4 (de) 2018-12-19 2023-06-29 Ford Global Technologies, Llc Kraftfahrzeug
USD921044S1 (en) * 2019-08-02 2021-06-01 Transportation Ip Holdings, Llc Piston cooling apparatus
USD928201S1 (en) * 2019-08-02 2021-08-17 Transportation Ip Holdings, Llc Piston cooling apparatus
CN113356991B (zh) * 2020-03-04 2022-07-15 一汽解放汽车有限公司 一种可以检测压力的带过滤功能的活塞冷却系统
WO2021224903A1 (en) * 2020-05-03 2021-11-11 Yaacobi Amnon Method and system for controlling the temperature of an engine
CN114592963B (zh) * 2022-03-17 2023-05-23 潍柴动力股份有限公司 一种活塞冷却系统监测方法、装置及发动机

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54164328U (ja) * 1978-05-11 1979-11-17
JPS5773341U (ja) * 1980-10-24 1982-05-06
JPS57204423U (ja) * 1981-06-23 1982-12-25
JPS62167819U (ja) * 1986-04-14 1987-10-24
JPS62193537U (ja) * 1986-05-30 1987-12-09
JPS6349066U (ja) * 1986-09-18 1988-04-02
JPH0521127U (ja) * 1991-08-30 1993-03-19 いすゞ自動車株式会社 ピストン冷却用オイルジエツト装置
JPH09112267A (ja) * 1995-10-16 1997-04-28 Unisia Jecs Corp 内燃機関のピストン冷却装置
JP2001271951A (ja) * 2000-03-24 2001-10-05 Toyoda Mach Works Ltd パイロット式リリーフ弁装置
JP2002310540A (ja) * 2001-04-12 2002-10-23 Saginomiya Seisakusho Inc 絞り装置および空気調和機
US20030005893A1 (en) * 2001-07-04 2003-01-09 Christophe Bontaz Piston cooling nozzle
JP2003166408A (ja) * 2001-11-29 2003-06-13 Aisin Seiki Co Ltd オイルポンプの調圧弁機構搭載構造
US20040031736A1 (en) * 2002-08-19 2004-02-19 Evans John R. Fluid filtration system with helical filter element
JP2006138307A (ja) * 2004-10-15 2006-06-01 Toyota Motor Corp 内燃機関の潤滑装置
JP2006291904A (ja) * 2005-04-13 2006-10-26 Hikari Seiko Co Ltd 2方向噴出式オイルジェット
JP2009197630A (ja) * 2008-02-20 2009-09-03 Ogino Kogyo Kk オイルジェット装置
JP2009228789A (ja) * 2008-03-24 2009-10-08 Nabtesco Corp オリフィスバルブ装置
JP2011012650A (ja) * 2009-07-06 2011-01-20 Matsumoto Jukogyo Kk オイルジェット
JP2014009603A (ja) * 2012-06-28 2014-01-20 Toyota Motor Corp オイルジェット

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2800119A (en) * 1955-05-05 1957-07-23 Maschf Augsburg Nuernberg Ag Arrangement for cooling the piston of internal combustion engines
DE1956121A1 (de) * 1969-11-07 1971-05-27 Kloeckner Humboldt Deutz Ag Kolbenkuehlung fuer Hubkolbenbrennkraftmaschinen mit abstellbaren Spritzduesen
JPH0617503B2 (ja) 1986-01-17 1994-03-09 新日本製鐵株式会社 圧延強靭鋼の製造方法
JPH0227112A (ja) 1988-06-07 1990-01-29 Stanadyne Automot Corp 内燃機関のピストンのクラウン冷却用ノズル組立体
JP2722216B2 (ja) 1988-09-09 1998-03-04 本田技研工業株式会社 ピストンの冷却装置
US4995346A (en) * 1989-06-28 1991-02-26 Sharon Manufacturing Company Oil jet piston cooler
JPH0968042A (ja) 1995-08-31 1997-03-11 Suzuki Motor Corp 4サイクルエンジンのオイル噴射装置
US5819692A (en) * 1997-05-01 1998-10-13 Schafer; Timothy Vernon Piston cooling oil control valve
JPH1122813A (ja) 1997-07-03 1999-01-26 Daihatsu Motor Co Ltd 自動変速機の油圧制御装置
US5881684A (en) * 1997-07-21 1999-03-16 Bontaz Centre, Societe Anonyme Interference fit cooling spray nozzle
JP3946005B2 (ja) * 2001-07-17 2007-07-18 本田技研工業株式会社 ピストン冷却用オイルジェット装置
EP1391593A1 (en) * 2002-08-19 2004-02-25 Perkins Engines Company Limited Fluid filtration system with resiliently expandable filter element
JP2009221893A (ja) 2008-03-13 2009-10-01 Ogino Kogyo Kk オイルジェット装置
JP5190428B2 (ja) 2009-09-18 2013-04-24 日立オートモティブシステムズ株式会社 内燃機関用ピストンの冷却装置
JP5827164B2 (ja) 2012-04-04 2015-12-02 トヨタ自動車株式会社 オイルジェット

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54164328U (ja) * 1978-05-11 1979-11-17
JPS5773341U (ja) * 1980-10-24 1982-05-06
JPS57204423U (ja) * 1981-06-23 1982-12-25
JPS62167819U (ja) * 1986-04-14 1987-10-24
JPS62193537U (ja) * 1986-05-30 1987-12-09
JPS6349066U (ja) * 1986-09-18 1988-04-02
JPH0521127U (ja) * 1991-08-30 1993-03-19 いすゞ自動車株式会社 ピストン冷却用オイルジエツト装置
JPH09112267A (ja) * 1995-10-16 1997-04-28 Unisia Jecs Corp 内燃機関のピストン冷却装置
JP2001271951A (ja) * 2000-03-24 2001-10-05 Toyoda Mach Works Ltd パイロット式リリーフ弁装置
JP2002310540A (ja) * 2001-04-12 2002-10-23 Saginomiya Seisakusho Inc 絞り装置および空気調和機
US20030005893A1 (en) * 2001-07-04 2003-01-09 Christophe Bontaz Piston cooling nozzle
JP2003166408A (ja) * 2001-11-29 2003-06-13 Aisin Seiki Co Ltd オイルポンプの調圧弁機構搭載構造
US20040031736A1 (en) * 2002-08-19 2004-02-19 Evans John R. Fluid filtration system with helical filter element
JP2006138307A (ja) * 2004-10-15 2006-06-01 Toyota Motor Corp 内燃機関の潤滑装置
JP2006291904A (ja) * 2005-04-13 2006-10-26 Hikari Seiko Co Ltd 2方向噴出式オイルジェット
JP2009197630A (ja) * 2008-02-20 2009-09-03 Ogino Kogyo Kk オイルジェット装置
JP2009228789A (ja) * 2008-03-24 2009-10-08 Nabtesco Corp オリフィスバルブ装置
JP2011012650A (ja) * 2009-07-06 2011-01-20 Matsumoto Jukogyo Kk オイルジェット
JP2014009603A (ja) * 2012-06-28 2014-01-20 Toyota Motor Corp オイルジェット

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10233816B2 (en) 2013-08-09 2019-03-19 Toyota Jidosha Kabushiki Kaisha Oil jet

Also Published As

Publication number Publication date
US9010282B2 (en) 2015-04-21
EP2713020A8 (en) 2014-05-14
EP2713020B1 (en) 2015-07-08
EP2713020A1 (en) 2014-04-02
JP5680601B2 (ja) 2015-03-04
US20140091161A1 (en) 2014-04-03

Similar Documents

Publication Publication Date Title
JP5680601B2 (ja) ピストンクーリングジェット
JP6148111B2 (ja) オイルジェット
US10641143B2 (en) Relief device of oil circuit of engine
US10012143B2 (en) Internal combustion engine with settable variable compression ratio and with a switching module
JP5827164B2 (ja) オイルジェット
JP2013241835A (ja) 高圧燃料ポンプのリリーフ弁
JP6308921B2 (ja) 高圧燃料供給ポンプ
KR20130140131A (ko) 유량 제한 장치를 구비한 분사 밸브
KR20170002437A (ko) 연료 인젝터
JP2014070614A (ja) ピストンクーリングジェット
JP2014070609A (ja) ピストンクーリングジェット
JP2014070613A (ja) ピストンクーリングジェット
JP2014070608A (ja) ピストンクーリングジェット
JP2014070610A (ja) ピストンクーリングジェット
JP2014152625A (ja) オイル供給システム
JP2014070605A (ja) ピストンクーリングジェット
JP2014152631A (ja) 油量調整装置
JP2015004303A (ja) 油量調整装置
JP2014070612A (ja) ピストンクーリングジェット
JP2015004302A (ja) 油量調整装置
JP2011099387A (ja) オイルジェット
JP2015004299A (ja) 油量調整装置
JP2014070607A (ja) ピストンクーリングジェット
JP2014070606A (ja) ピストンクーリングジェット
JP2014070604A (ja) ピストンクーリングジェット

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140902

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150107

R150 Certificate of patent or registration of utility model

Ref document number: 5680601

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees